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History of PME 

The International Group for the Psychology of Mathematics Education came into existence at the 

Third International Congress on Mathematical Education (ICME-3) in Karlsruhe, Germany in 

1976. It is affiliated with the International Commission for Mathematical Instruction. 

 

 

 

Goals of PME-NA 

The major goals of the North American Chapter of the International Group for the Psychology of 
Mathematics Education are: 

1. To promote international contacts and the exchange of scientific information 
in the psychology of mathematics education. 

2. To promote and stimulate interdisciplinary research in the aforesaid area, with 
the cooperation of psychologists, mathematicians and mathematics teachers. 

3. To further a deeper and better understanding of the psychological aspects of 
teaching and learning mathematics and the implications thereof. 
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Preface 

Organizing the twenty-eighth edition of PME-NA has been an honor, a responsibility and also a 
great pleasure. The vast panorama of excellent academic work that will be displayed at the 
conference and that is contained in these pages makes us immensely proud to be part of the 
project.  

The Mérida Conference proposed the theme Focus on learners, focus on teachers, which 
comprises an extensive amount of possibilities in the juxtaposition of both ways of focusing 
mathematics education: Focus on learners and focus on teachers, Focus on learners or focus on 
teachers, Focus on learners vs. focus on teachers, Focus on learners through focus on teachers, 
etc. Thus, we proposed to emphasize the duality of the roles of learners and teachers in the 
educational process, and this call received many different and interesting reactions. 

Our three plenary speakers are prominent figures from the three countries of North America. 
Luis Radford from Ontario’s Université Laurentienne will use a semiotic point of view to study 
the algebraic thinking. Marta Civil of the University of Arizona will tackle the issue of equity by 
focusing not only on learners and teachers but also on parents. Tenoch Cedillo of the Mexican 
Universidad Pedagógica Nacional will propose a way in which teachers can –and do– learn from 
students. Not less notorious are the three personalities that have been selected to react to these 
plenary presentations: Carolyn Kieran from the Université du Québec à Montreal, Arthur Powell 
from Rutgers University, and Sharon Senk from Michigan State University. (We have been 
fortunate enough to have Carolyn Kieran’s reaction paper in time for publication; the other two 
are unfortunately not included in the proceedings but will undoubtedly also cast a lucid light upon 
the topics that will be approached). 

We will have six of the Working Groups that have been productively working for the last 
years, and engaging in topics from the complexity of learning to reason probabilistically to 
gender and mathematics, from in-service teacher education and  teaching assistant preparation to 
the mathematics classroom discourse, and of course the classic WG on models and modeling. 
Two new Discussion Groups are proposed this year, which will certainly add to the interest and 
quality of the reunion: one on the lesson study and one on transnational issues in mathematics 
education. 

After the plenary sessions and the WG and DG, which comprise the first volume of the 
proceedings, the second one displays the 240 Research Reports, Short Oral Reports and Posters 
of the traditional fifteen topics (this year the topics of Rational Numbers and Whole Numbers 
have been put together in one). It may be pointed out that this year we received more than 350 
proposals, which unfortunately contrasted with the very limited amount of rooms available in the 
Conference’s venue; in order to give as many people as possible the space and time for their 
presentations we decided on the following distribution: 28% Research Reports, 34% Short Oral 
Reports, and 38% Posters. As a consequence of this, we are sure that all the sessions will excel; 
for instance, our two sessions of posters are very promising. 

This is the general overview of the papers included in these proceedings. Their richness, 
however, will begin to be appreciated during the Conference, in the presentations and in the 
following discussions. And, of course, the quality of the presented papers, the fruitfulness of the 
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discussions and the interaction with international researchers will without doubt benefit the 
Mexican Mathematics Education community. 

I would like to thank all the authors of proposals for contributing with such samples of good 
work, and also the reviewers for taking time to carefully read the proposals and give their 
professional opinion on them. I also wish to thank the Steering Committee for all their support, 
good advise, and thoughtful work throughout this year. The Local Committee has certainly been 
fundamental in taking this car to a good end; my gratitude to all of them. Last, but not least, the 
Universidad Pegagógica Nacional, host of the Conference, has given all sorts of support to make 
this event come true.   

 
Silvia Alatorre 
Program Chair 
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ALGEBRAIC THINKING AND THE GENERALIZATION OF PATTER NS:  
A SEMIOTIC PERSPECTIVE 

Luis Radford 
Université Laurentienne  
Lradford@laurentian.ca  

The most important operation of the mind is that of generalization. 
C. S. Peirce, Collected Papers 1.82. 

Introduction 
Several years ago, I had the opportunity to conduct longitudinal research in four Junior High-

School classes about the teaching and learning of algebra. The timing was just perfect: the 
previous year, i.e. 1997, the Ontario Ministry of Education released a new Mathematics 
Curriculum based on a new type of assessment, the enlargement and reorientation of knowledge 
content and the rigorous description of the expected learning. To say the least, teachers were 
worried about the new high expectations. The time was just ripe for collaboration. There was a 
clear sense in the educational community that, in order to implement the new curriculum, we all 
had a lot to learn from each other. For me, working with three or four teachers every year for six 
years and following the same students in the classroom as they moved through Junior and Senior 
High School constituted a marvellous opportunity.  

We designed a flexible teaching-researching agenda committed to meeting two main goals: 
First, we wanted the students to learn the algebraic concepts stipulated by the Curriculum. This 
was a practical concern framed by the aforementioned political educational context. Second, we 
wanted to deepen our understanding of the emergence and development of students’ algebraic 
thinking, the difficulties that the students encounter as they engage in the practice of algebra and 
the possible ways to overcome them. The longitudinal research was characterized by a 
continuous loop: (1) classroom activity design → (2) classroom activity implementation → (3) 
data interpretation → (4) theory generation → (1) classroom activity design → (2) … Our 
longitudinal research was informed by the wealth of research previously conducted on the 
transition from arithmetic to algebra. In the early 1980s, Matz (1980) and Kaput and Sims-
Knight (1983) investigated some errors associated with symbol use and Kieran (1981) pointed 
out different concepts associated with the equal sign. Some years later, Filloy and Rojano (1989) 
put into evidence some key problems that novice students face in solving equations; a bit later 
Sfard (1991) and Gray and Tall (1994) called attention to the students’ difficulties in 
distinguishing between objects and processes, while Bednarz and Janvier (1996) studied the 
effects of word problem structure in arithmetic and algebraic reasoning. At about the same time, 
several researchers showed the limits of X-Y numerical tables in the generalization of patterns 
(Castro Martínez, 1995; MacGregor & Stacey, 1992, 1995). It was apparent that X-Y tables were 
emphasizing a formulaic aspect of generality based on trial and error heuristics, hence confining 
algebraic notations to the status of place holders bearing very limited algebraic meaning. 

The research conducted in the 1980s and 1990s −the above sketch of which is obviously 
incomplete− led to an unavoidable and difficult question asked again and again: that of the exact 
nature of algebraic thinking. Commenting on the Research Agenda Conference in Algebra 
(Wagner & Kieran, 1989), held in March 1987 at the University of Georgia, Kieran (1989, p. 
163) said: “One of the topics pointed to in the Research Agenda … as an area sorely in need of 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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research attention is that of algebraic thinking.” Certainly, since then, the several studies 
conducted by mathematics educators and historians have made an important contribution to this 
area (e.g. Arzarello & Robutti, 2001; Boero, 2001; Carraher, Brizuela, & Schliemann, 2000; 
Høyrup, 2002; Lee, 1996; Lins, 2001; Martzloff, 1997; Puig, 2004; Ursini & Trigueros, 2001). 
And if we still do not have a sharp and concise definition of algebraic thinking, it may very well 
be because of the broad scope of algebraic objects (e.g. equations, functions, patterns, ….) and 
processes (inverting, simplifying, …) as well the various possible ways of conceiving thinking in 
general.  

It is clear that algebraic thinking is a particular form of reflecting mathematically. But what is 
it that makes algebraic thinking distinctive? Trying to come up with a working characterization 
to guide our research, we adopted the following non-exhaustive list of three interrelated 
elements. The first one deals with a sense of indeterminacy that is proper to basic algebraic 
objects such as unknowns, variables and parameters. It is indeterminacy (as opposed to 
numerical determinacy) that makes possible e.g. the substitution of one variable or unknown 
object for another; it does not make sense to substitute “3” by “3”, but it may make sense to 
substitute one unknown for another under certain conditions. Second, indeterminate objects are 
handled analytically. This is why Vieta and other mathematicians in the 16th century referred to 
algebra as an Analytic Art. Third, that which makes thinking algebraic is also the peculiar 
symbolic mode that it has to designate its objects. Indeed, as the German philosopher Immanuel 
Kant suggested in the 18th century, while the objects of geometry can be represented ostensively, 
unknowns, variables and other algebraic objects can only be represented indirectly, through 
means of constructions based on signs (see Kant, 1929, p. 579). These signs may be letters, but 
not necessarily. Using letters does not amount to doing algebra. The history of mathematics 
clearly shows that algebra can also be practiced resorting to other semiotic systems (e.g. coloured 
tokens moved on a wood tablet, as used by Chinese mathematicians around the 1st century BC 
and geometric drawings as used by Babylonian scribes in the 17th century BC). 

Drawing on the working characterization of algebraic thinking sketched above and the then-
emerging Vygotskian perspective in mathematics education (Bartolini Bussi, 1995; Lerman, 
1996), we formulated our research problem in semiotic terms. Starting from a broad conception 
of signs, we wanted to investigate the students’ use of signs and processes of meaning production 
in algebra. Naturally, contemporary curricula favour the alphanumeric algebraic symbolism. It 
was our contention, however, that, ontogenetically speaking, the students’ formation of the 
corresponding meanings and rules of sign-use were rooted in other semiotic systems that they 
had already mastered. Since the history of mathematics suggests that, in some cultural traditions, 
the evolution of some algebraic notations relied heavily on speech (Radford, 2001), we had 
strong reasons to look to language for the antecedents of the students’ alphanumeric algebraic 
meanings. The results that we obtained during the first years confirmed our hypothesis, but, as 
we shall see in a moment, we also came to realize that language was only part of the story. 

In this paper, I want to present an overview of some of our results. Although our general goal 
was to investigate the various aspects of students’ algebraic thinking, as related to the algebraic 
concepts stipulated by the Ontario Curriculum, for the sake of simplicity, I will focus here on the 
generalization of patterns only (some results concerning equations can be found in Radford, 
2002a, 2002b; Radford and Puig, in press). In Section 1, I suggest making a distinction between 
generalization and (naïve) induction. I will claim that, just as not all symbolization is algebraic, 
not all patterning activity leads to algebraic thinking. I will argue in particular that this is the case 
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for inductive reasoning (as frequently used by the students), even if the inductive process can be 
expressed in symbols, such as “2n+1”. I will even go further and claim that, among the possible 
forms of generalization, not all are algebraic in nature (there are some pattern generalizations 
that are arithmetic but not algebraic, a point that I discuss later in the paper). One practical result 
that comes out of this is the following. In the use of patterning activities as a route to algebra, we 
−teachers and educators− have to remain vigilant in order not to confound algebraic 
generalizations with other forms of dealing with the general; we also have to be equipped with 
the adequate pedagogical strategies to make the students engage with patterns in an algebraic 
sense. In Section 2, I discuss the theoretical construct of knowledge objectification, which I use 
in the subsequent sections to give an account of the students’ sign use and meaning production in 
classical pattern activities. 

1. Towards a Definition of Algebraic Generalization of Patterns 
One of the introductory activities to algebraic symbolism that we proposed to Grade 8 

students included the classical pattern shown in Figure A.  
 

 

Fig. A. The sequence of figures given to the students in a Grade 8 class. 

At the beginning of the activity, the students −who always worked in small groups of two to 
four− were required to find the number of circles in Figure 10 and in Figure 100. Their strategies 
fell into two main categories. 

In the first one, the heuristic is based on trial and error: the students propose simple rules 
like “times 2 plus 1”, “times 2 plus 2” or “times 2 plus 3” and check their validity on a few cases. 
The symbolization of the rule may vary. Here is one provided by one of our small groups: 
“nx2(+3)”. When the students of this small group were asked to explain how they found this rule, 
they said: “We found it by accident.” 

In the second one, the students search for a commonality in the given figures. Mel, for 
instance, wrote: “The top line always has one more circle than the number of the figure and the 
bottom line always has two circles more than the number of the figure”. Mel’s formula was: 
“(n+1) + (n+2)=” 

Although both procedures lead to the use of symbolism, the heuristics are incommensurately 
different. The latter rests on noticing certain common features of the given figures and 
generalizing them to the figures that follow in the sequence. In contrast, the former rests on a 
rule formed by guessing. Rules formed in this way are in fact hypotheses. This way of reasoning 
works on the basis of probable reasoning whose conclusion goes beyond what is contained in its 
premises.  In more precise terms, it is a type of induction −a type that I will qualify as naïve to 
distinguish it from other more sophisticated types of induction1. Thus, instead of generalizing 
something, when resorting to the first procedure, the students merely make an induction and not 
a generalization2.  

The comparison of the two aforementioned strategies emphasizes an important distinction 
between induction and generalization −a difference that is often overlooked and that ends up 
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calling something generalization while in reality it is simply an induction (Peirce, CP 2. 429). At 
the same time, it suggests one of the traits that may constitute the core of the generalization of a 
pattern, namely the capability of noticing something general in the particular, a trait upon which 
Love (1986), Mason (1996) and others have previously insisted. 

Kieran, however, claimed that this trait alone may not be sufficient to characterize the 
algebraic generalization of patterns. She argued that in addition to seeing the general in the 
particular, “one must also be able to express it algebraically” (Kieran, 1989, p. 165). To 
understand Kieran’s objection, we should bear in mind that usually, the generalization of patterns 
as a route to algebra rests on the idea of a natural correspondence between algebraic thinking and 
generalizing. Kieran took argument against the alleged natural character of this correspondence 
and contended that to think algebraically is more than thinking about the general. It is to think 
about the general or the generalized in a way that makes it distinctively algebraic in its form of 
reasoning as in its expression. As she put the matter, “a necessary component [of algebraic 
generalization] is the use of algebraic symbolism to reason about and to express that 
generalization.” (Kieran, 1989, p. 165).  

I concur with Kieran’s exigency concerning the inclusion of one’s ability to express the 
general. Following a Vygotskian thread to which I shall return in the next section, what I would 
like to add here is that algebraic generality is made up of different layers −some deeper than 
others. Furthermore, the scope of the generality that we can attain within a certain layer is 
interwoven with the material form that we use to reason and to express the general (e.g. the 
standard alphanumeric algebraic semiotic system, natural language or something else). 

In this line of thought, I want to suggest the following definition. Generalizing a pattern 
algebraically rests on the capability of grasping a commonality noticed on some elements of a 
sequence S, being aware that this commonality applies to all the terms of S and being able to use 
it to provide a direct expression of whatever term of S. 

In other words, the algebraic generalization of a pattern rests on the noticing of a local 
commonality that is then generalized to all the terms of the sequence and that serves as a warrant 
to build expressions of elements of the sequence that remain beyond the perceptual field. The 
generalization of the commonality to all the terms is the formation of what, in Aristotelian 
terminology, is called a genus, i.e. that in virtue of which the terms are held together (see e.g. 
Aristotle’s Categories, 2a13-2a18). Direct expression of the terms of the sequence requires the 
elaboration of a rule −more precisely a schema in Kant’s terms (Radford, 2005a). I will come 
back to this definition later. For the time being, I want to stress two main elements involved in 
the definition. On the one hand, there is a phenomenological element related to the grasping of 
the generality. On the other hand, there is a semiotic element related to the expression through 
signs of what is noticed in the phenomenological realm. In the next section, I will argue that 
these two elements are interrelated and that they may be investigated through two theoretical 
constructs −knowledge objectification and the concomitant semiotic resources to achieve it. 

2. Knowledge Objectification 
For the novice student, noticing the underlying commonality of the terms of a pattern is not 

something that happens all of a sudden. On the contrary, it is a gradual process underpinned by a 
dynamic distinction between the same and the different. Even in a pattern as simple as the 
previous one (see Figure A), there are several ways to look for what may qualify as the same and 
the different in the given figures. Thus, talking to his two group-mates, Doug −a Grade 9 
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student− says: “So, we just add another thing, like that”.  At exactly the moment he utters the 
word “another”, he starts making a sequence of six rhythmic parallel gestures (see Fig. B). 
 
 

Naturally, the figures all have the same shape, but at the same time, they are different: that 
which makes them different, Doug is suggesting, is the last two circles diagonally disposed at the 
end of each figure (see Figure C). 

 

 

Fig. C. Doug emphasizes the last two circles in an attempt to notice a commonality in 
the terms of the sequence 

We see hence that Doug’s grasping of the commonality is different from Mel’s (see Section 
1); so too is Doug’s expression of it. While Mel saw the figures as made up of two horizontal 
lines and expressed generality in a verbal form, Doug saw the figures as recursively built by the 
addition of two circles diagonally arranged and expressed it dynamically through gestures and 
words. 

In more general terms, what we observed in the classroom from the first day was that the 
perceptual act of noticing unfolds in a process mediated by a multi-semiotic activity (spoken 
words, gestures, drawings, formulas, etc.) in the course of which the object to be seen emerges 
progressively. This process of noticing I have termed a process of objectification.  

The term objectification has its ancestor in the word object, whose origin derives from the 
Latin verb obiectare, meaning “to throw something in the way, to throw before”. The suffix –
tification comes from the verb facere meaning “to do” or “to make”, so that in its etymology, 
objectification becomes related to those actions aimed at bringing or throwing something in front 
of somebody or at making something apparent −e.g. a certain aspect of a concrete object, like its 
colour, its size or a general mathematical property. Now, to make something apparent, students 
and teachers make recourse to signs and artefacts of different sorts (mathematical symbols, 
graphs, words, gestures, calculators and so on). These artefacts, gestures, signs and other 
semiotic resources used to objectify knowledge I call semiotic means of objectification (a 
detailed account can be found in Radford, 2003; 2002c). 

    

Fig. B. Excerpt of Doug’s sequence of rhythmic gestures. 
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In our previous example, Doug started making apparent a general mathematical structure −he 
started objectifying it. To accomplish this, Doug resorted to two semiotic means of 
objectification: words and gestures. In addition to highlighting the last two circles, the rhythmic 
repetition of gestures allowed Doug to achieve something notable: through this, Doug expressed 
the idea of something general, something that continues further and further, in space and in time.  

I am not suggesting, though, that Doug’s six gestures and one utterance were enough to fully 
disclose the mathematical structure behind the pattern. Neither am I affirming that Doug was 
providing a direct expression of whatever term of the sequence. What I am saying is that the 
objectification of the general goes through various layers of awareness. To get a better grasp of 
the structure behind the pattern, Doug’s process of objectification had to continue. Through 
mediating signs, Doug continued engaging with the object of knowledge and signifying 
generality in more precise terms. It is obvious that the sense of generality achieved through 
words and gestures is not the same as the one achieved through a formula or a graph. A semiotic 
system provides us with specific ways to signify or to say certain things, while another semiotic 
system provides us with other ways of signification. The linguist Émile Benveniste referred to 
this situation as the principle of nonredundancy: “Semiotic systems”, Benveniste said, “are not 
‘synonymous’; we are not able to say ‘the same thing’ with spoken words that we can with 
music, as they are systems with different bases.” (Benveniste in Innis, 1985, p. 235). The same 
distinction is true of gestures and formulas. 

By the same token, Benveniste’s nonredundancy principle warns us against the common 
belief in translatability −the belief that e.g. a formula says the same thing as its graph, or that a 
formula says the same thing as the word-problem it “translates” (see e.g. Duval, 2002; Radford, 
2002b). The nonredundancy principle does not mean, however, that what we intend or express in 
one semiotic system is completely independent from what we express in another one. The 
objectification of the mathematical structure behind a pattern that was mediated by words and 
gestures may be deepened by an activity mediated through other types of signs.  

 
As previously described, the objectification of knowledge is a theoretical construct to 

account for the way in which the students engage with something in order to notice and make 
sense of it.  By focusing on the students’ phenomenological mathematical experience, it 
emphasizes the subjective dimension of knowing. But this is only half of the story. Since we are 
sociocultural knowers, objectification takes also account of the social and cultural dimensions of 
knowing. The concept of knowledge objectification rests indeed on the idea that classrooms are 
not merely a bunch of external conditions to which the students must adapt. Classrooms are 
rather seen as interactive zones of mediated activities conveying scientific, ethical, aesthetical 
and other culturally and historically formed values that the students objectify through reflective 
and active participation (Radford, in press). In these activities, embedded in cultural, historical 
traditions, the students relate not only to the objects of knowledge (the subject-object plane), but 
also to other students through face-to-face, virtual or potential communicative actions (the 
subject-subject plane or plane of social interaction).  

 
Within the previous theoretical context, our investigation of the students’ use of signs and 

processes of meaning production in algebra focused on a detailed study of the students’ 
knowledge objectification as they moved along different layers of generality and awareness. 
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Guided by our definition of algebraic generalization and theoretical framework, some of the 
research questions that we tackled were the following: 

1. How do the students grasp the commonality in a pattern? 
2. What are the mechanisms (linguistic or others) through which the students 

generalize the locally observed commonality to all the terms of the sequence? 
3. How do they express generality? 
In the rest of this paper, I discuss these questions focusing particularly on the work done by 

one of the Grade 8 (13-14 years old) and also one of the Grade 9 (14-15 years old) small-groups 
which are representative of most of the work done by other groups.  

3. Genus Formation: Grasping and Generalizing a Local Commonality 
Roughly speaking, our classroom activities were organized along the two aforementioned 

subject-object and subject-subject planes as follows: 
The students were presented with patterns whose complexity was commensurate to the 

curriculum requirements. Working in small groups, the students were invited to carry out: 
1. an arithmetic investigation (often conducted by continuing the pattern on the basis of 

some given information, as well as answering questions about specific figures such as 
Figure 10, Figure 25, Figure 100); 

2. the expression of generalization in natural language (in the form of a message), and 
3. the use of standard algebraic symbolism to express generality. 
Among the patterns that we selected, there were some classical circle and toothpick patterns 

(such as those shown in Figure A and Figure D) and variations of increased difficulty as the 
students moved through their Junior and Senior High School years (see Bardini, Radford, & 
Sabena, 2005). 

 

Fig. D. An example of a toothpick pattern. 

As indicated in Section 1, using different techniques, the students usually succeeded in 
answering questions about Figure 10, Figure 25, Figure 100, etc. Let us put aside the inductive, 
non generalizing techniques, and focus on the generalizing strategies only. 

When adolescent or younger students tackle questions about “big” figures, such as Figure 25 
or 100, a frequent strategy consists in noticing a recurrent relation between consecutive figures 
(see e.g. Castro Martínez, 1995, and Warren, 2006, respectively). This typical strategy is 
illustrated in the following excerpt from a Grade 8 small-group, concerning Figure 25 of the 
toothpick pattern:  

1. Judith: The next figure has two more than … look … […] [Figure] 6 is 13, 13 plus 2.  
You have to continue there […]. 

2. Anik: Well, you can’t always go plus 2, plus 2, plus 2... 
3. Judith: But of course! That’s Figure 7, plus 2 equals Figure 8. 
4. Josh: That will take too long! 
As the dialogue implies, the students noticed that the terms of the sequence increase by two. 

Furthermore, the dialogue provides us with a clear indication that, for the students, this common 
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increment applies not only to the terms that were explicitly mentioned but also to the terms that 
followed. One unambiguous indicator is the expression: “you have to continue there”. However, 
up to this point, the students did not make use of the already-noticed regularity to provide an 
exact value for the number of toothpicks in Figure 25. Actually, as line 4 indicates, they were 
aware that their procedure was unpractical. According to our definition of algebraic 
generalization, the students have not yet stepped into the realm of algebra. They did generalize 
something but are still in the realm of arithmetic. What they generalized was a local 
commonality observed on some figures, without being able to use this information to provide an 
expression of whatever term of the sequence. A generalization of this kind I will call arithmetic 
generalization.  

Trying to come up with another strategy, Josh proposed a more direct procedure: 
1. Josh: It’s always the next. Look! (Then, pointing to the figures with the pencil he 

says) 1 plus 2, 2 plus 3  […] 
2. Anik: So, 25 plus 26... 
Line 1 shows the moment at which Josh realized that there was a different commonality 

linking the number of toothpicks in a figure and the sum of the ranks of two consecutive figures. 
The utterance “It’s always the next” (my emphasis) indicates Josh’s awareness that this 
commonality applies to all the terms. Drawing on Josh’s idea, Anik was then able to directly 
provide an expression for the value of Figure 25. Thus, the students here made an algebraic 
generalization −one that in a previous work (Radford, 2003) I have referred to as factual 
generalization. 

The adjective factual stresses the idea that this generalization occurs within an elementary 
layer of generality −one in which the universe of discourse does not go beyond particular figures, 
like Figure 1000, Figure 1000000, and so on. This layer of generality is rather the layer of action: 
The genus of the sequence leads to the formation of a schema that operates on particular numbers 
(e.g. “1 plus 2, 2 plus 3”, see Line 1). Another way to say this is that in factual generalizations, 
indeterminacy −the first characteristic of algebraic thinking mentioned in the Introduction− does 
not reach the level of enunciation: it is expressed in concrete actions (see also Vergnaud’s (1996) 
“theorem-in-act”). 

Of course, the students had pragmatic reasons to remain bounded to the factual level of 
generality. Factual generalization was good enough to get the answers that we asked of them. 
This was not to be the case when the students tackled the next question. Before going there, I 
want to discuss another excerpt, from a Grade 9 class, dealing with the sequence shown in Figure 
A. 

 
This group was formed by three students: Jay, Mimi (sitting side by side) and Rita (sitting in 

front of them). Prior to the excerpt that I am going to present, the students found that the number 
of circles in Figures 10 and 100 was 23 and 203 respectively. They perceived the given figures as 
formed by two horizontal rows, generalize this commonality to the other figures of the sequence 
and formed a factual generalization (“11 and 12”, “101 and 102”; see Sabena, Radford, and 
Bardini, 2005). However, Mimi was intrigued by the fact that the digit 3 was at the end of the 
answers. In the excerpt which follows she tries to come up with another generalizing schema that 
would include the digit ‘3’ and the number of the figure: 

1.  Mimi: Add… Add three to the number of the figure! (pointing to the results “23” 
and “203” already written on the paper). 
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2. Jay: No! 101 (meaning the top row of Figure 100), 100 (meaning Figure 100) and 
you got that, 203. 

In line 1, Mimi tried to formulate a new schema. As Jay quickly noticed, the schema is faulty 
(line 2). Jay’s utterance was followed by a long pause (5.2 seconds) during which the students 
silently looked at the figures. Jay became interested in Mimi’s idea but, like Mimi, still did not 
see the link in a clear way. 

Trying to come up with something, while putting his pen on Figure 1 and echoing Mimi’s 
utterance, Jay pensively said: “Add 3”. At the same time, Mimi moved her finger to Figure 1 
(close to Jay’s pencil) and said: “I mean like … I mean like …” (see Figure E). Right after She 
intervened again and said: “You know what I mean? Like… 
for Figure 1 (making a gesture; see Figure F, left) you will 
add like (making another gesture; see Figure F, right) …” 

To explore the role of digit 3, Mimi made two gestures. 
The first one has an 
indexical-associative 
meaning: it indicates 
the first circle on the 
top of the first row 
and associates it to 
Figure 1 (Figure F, 
left). The second one achieves a meaningful link between 
digit 3 and three “remarkable” circles in the figure 
(Figure F, right). Although Mimi has not mentioned 
or pointed to the first circle on the bottom row, the circle 
has been noticed, i.e., although the first circle on the 
bottom has remained outside the realms of word and 
gesture, it has fallen into the realm of vision. Indeed, right after finishing her previous utterance, 
Mimi starts with a firm “OK!” that announces the recapitulation of what has been said and the 
opening up towards a deeper level of objectification, a level where all the circles of the figures 
will become objects of discourse, gesture and vision. She says: 

Mimi: OK! It would’be like one (indexical gesture on Figure 1; see Picture 1), one 
(indexical gesture on Figure 1; see Picture 2), plus three (grouping gesture; see Picture 3); 
this (making the same set of gestures but now on Figure 2) would’be two, two, plus three; 
this (making the same set of gestures but now on Figure 3) would be three, three, plus three.  

 

 

Fig. E. Jay and Mimi 
pointing at Figure 1, trying to 

notice a commonality. 

for Figure 1 you will add 

  

  
 

  
 

Fig. F. Perceptual 
objectifying effects of word 

and gesture on Figure 1. 

   

Fig. G. In Pictures 1 and 2 Mimi makes an indexical gesture to 
indicate the first circle on the top row and the first circle on the bottom 

row of Figure 1; in Picture 3, she makes a “grouping gesture” to put 
together the last three circles of Figure 1. 
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Making two indexical gestures and one “grouping gesture” that surrounds the three last 
circles on Figure 1, Mimi rendered a specific configuration visible to herself and to her group-
mates. This set of three gestures was repeated as she moved to Figure 2 and Figure 3. In so 
doing, Mimi made apparent a local commonality. Now, how does she manage to generalize it to 
all the terms of the sequence? We are here at the kernel of the generalization process. To answer 
this question, let us pay attention to Mimi’s semiotic means of objectification.  

We have already noted the crucial objectifying role of gestures. However, Mimi’s gestures 
were accompanied by the same sentence structure (see Figure H). Through repetition and a 
coordination of gestures and words, Mimi generalized a locally perceived commonality to the 
other figures and moved from the particular to the general. 

 

« one, 
   one, 
   plus three » 

« two, 
   two, 
   plus three » 

« three, 
   three, 
   plus three » 

 

Fig. H. Mimi’s objectification of a new genus of the sequence. 

But in fact, in addition to gestures and words there was also rhythm. Rhythm was also present 
in Anik’s utterance quoted in the first example of this section. Rhythm creates the expectation of 
a forthcoming event (You, 1994) and constitutes a crucial semiotic means of objectification to 
make apparent the feeling of an order that goes beyond the particular figures (for a detailed 
discussion of rhythm see Radford, Bardini and Sabena, 2006). 

Mimi’s generalization was hence forged with words, gestures and rhythm. Her generalization 
led to a schema through which the students were able to directly determine the number of circles 
in any particular figure. It is a factual generalization. 

4. Showing versus Saying 
Let us now discuss how students tackled the question concerning the expression of generality 

in natural language. The students were asked to write a message explaining how to find the 
number of toothpicks or circles in any figure to an imaginary student in another class of the same 
level. The level of generality that is required here is of course greater; for one thing, factual 
generalizations are no longer sufficient.  

In Josh’s group, Anik suggested a first idea: 

We can say, like, it’s the number of the figure, right? Like, let’s say it’s 1 there.  If … if 
… OK.  You add … like, how do you say that?  In order of … (Then, implicitly referring to 
Figure 2, she says) You add it by itself, like. You do 2 plus 2, then after this, plus 1, like.  
You always do this, right?  […] You would do (while she rhythmically mentions the 
numbers to reveal the underlying commonality, she gestures as if pointing to something) 3 
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plus 3 … plus 1, 4 plus 4 … plus 1, 5 plus 5 … plus 1.  Do you know what I want to say? 
[…] How do we say it then? 

The problem, as Anik mentions, is how to express in words something general that is 
nonetheless easy to show through numbers and gestures. There is, in fact, a profound gap 
between showing and saying. The expression of the genus of the sequence (be it the first one 
objectified earlier by this group, based on the addition of consecutive ranks of figures, or the new 
one, suggested by Anik here) now has to fall in the realm of language.  Indeterminacy has to be 
named. 

After a series of unsuccessful efforts, Anik came back to their previous factual 
generalization:  

1. Anik: Yes. Yes.  OK.  You add the figure plus the next figure … No. Plus the … […] 
(she writes as she says) You add the first figure… 

2. Josh: (interrupting and completing Anik’s utterance says) … [to] the second figure […] 
3. Anik: So...(inaudible). It’s not the second figure.  It’s not the next figure? 
4. Josh: Yes, the next one [figure]. 
5. Judith: Uh, yes, the next [figure] […] 
6. Anik: (summing up the discussion) You add the figure and the next figure. 
To name indeterminacy in the message, the students transformed the expression “any figure” 

(as mentioned in the question) into “the figure” −a linguistic generic expression that does not 
designate a particular term of the sequence but whatever term you want to consider. The concrete 
actions on which the students’ previous factual generalizations were based (“1 plus 2”, etc.) 
appear now as a single action, as an action in abeyance: “You add the figure and the next 
figure.” 

The above generalization is located at a deeper layer of generality, one in which rhythm and 
ostensive gestures have been excluded. The students have to work here with reduced forms of 
expression. At the same time, to succeed at this level of generality, the students have to 
compensate for the reduction of semiotic resources with a concentration of meanings in the 
fewer number of signs (words) through which the generalization is now expressed. This 
reduction of signs and concentration of meanings constitutes a semiotic contraction (Radford 
2002c; see also Duval 2002). 

To distinguish these kinds of generalizations from factual ones, I termed them contextual 
generalizations (Radford 2003). They are contextual in that they refer to contextual, embodied 
objects, like “the next figure” which supposes a privileged viewpoint from where the sequence is 
supposedly seen, making it thereby possible to talk about the figure and the next figure. 

The expression of generality beyond the level of factual generality has been investigated in 
the context of early algebra research. At the PME 2006 Conference, Elizabeth Warren reported a 
study with Grade 5 students (10 years old). Among other things, she asked the students to write 
in natural language the general rule for some patterns and found that between 6 and 10 students 
out of 27 were able to write a relationship between the position of the term and its numerical 
value, while between 16 and 21 students failed to do so (Warren, 2006). At the same conference, 
Ferdinand Rivera reported results from a research project conducted with Grade 6 students (11 
years old) (Rivera, 2006). The students were presented with a slightly modified version of the 
sequence shown in Figure A. The terms started with one circle and increased by two circles. The 
students had to write a message to an imaginary Grade 6 student clearly explaining what s/he 
must do in order to find out how many circles there were in any given figure of the sequence.  
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Two answers were the following. Student 1: “You start at one and keep adding two until you get 
the right number of circles in all”. Student 2: “You look at the figure number and then draw the 
number of circles then going up you put a # less then add it all together.” 

There are several interesting features in the answers. Student 2 took advantage of the 
geometric shape of the figures to form a genus of the sequence and provided a contextual 
generalization, the embodied dimension of which appears in the situated description of the 
actions as in “going up”.  Student 1 formed a different genus: the common increment of two 
circles between figures. However, the student did not provide a direct expression for any given 
figure.  This is hence an example of an arithmetic generalization that does not reach an algebraic 
character. 

 
Let us come back to Mimi’s group. The students continued refining the factual generalization 
that we discussed in Section 3. Mimi said: 
1. Mimi: The number of the figure like ... we’ll say that the figure is 10 (gesture with an 

open hand as to indicate a row on the desk), you’ll have ten dots (similar gesture on the 
desk) plus three (sort of grouping gestures a bit more to the right and to the bottom, on 
the desk) right? (pause) No… 

2. Jay: (Almost simultaneously) No. 
3. Mimi: You double the number of the figure.  
4. Jay: ten plus ten (pointing to the sheet) 
5. Mimi (interrupting): So it will be twenty dots plus three (pointing to the number 23 

on the sheet). You double the number of the figure and you add three, right? So Figure 25 
will be fifty...three. Right? That’s what it is […] 

6. Jay: Figure times two plus three. 
 
The written message was the following: “The number of the figure × 2, + 3. It gives you the 

amount of circles.” 
The message is a mixture of mathematical symbols and terms in natural language. 

Undoubtedly, the comma is the most interesting element: it translates, in a written form, the 
spatial and temporal characteristics of one crucial distinctive event objectified in the course of 
the students’ mathematical experience, namely the distinction between the same and the different 
elements in the figures, as the students perceived them. 

5. Writing Little while Saying a Lot 
In Josh’s group, expressing the generalization through alphanumeric symbols −what I have 

called a symbolic generalization (Radford, 2003)− was a complex process during the course of 
which the students had to decide about the meaning of letters. One particular problem was to 
decide how to say “the next figure”. The following excerpt illustrates some of the difficulties: 

1. That would be like n + a or something else, n + n or something else. 
2. Anik: Well [no] because "a" could be any figure […] You can’t add your 9 plus your 

… like ... […] You know, whatever you want it has to be your next  [figure]. 
When the students reached an impasse, the teacher intervened:  “If the figure I have here is 

‘n’, which one comes next?” Thinking of the letter in the alphabet that comes after n, Josh 
replied: “o”. In the end they ended up with the following formula: “(n+1) + n”. 
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The formula in Jay’s group was as follows: “nx2+3”. Formed out of a commonality noticed 
through a complex coordination of hands in space, rhythm, nouns, deictics and adverbs, the 
formula reached here an extremely concise expression. The “space” to be occupied by each one 
of its five signs (i.e. “n”, “×”, “2”, “+”, and “3”) was progressively prepared by the students’ 
previous joint mathematical experience. Thus, the symbolic letter n is the “semiotic contraction” 
of the “number of the figure” that has been so often quoted before, either directly or by means of 
examples. In fact, the whole formula is the crystallization of a semiotic process endowed with its 
situated history. It is a history in which each sign acquired a distinctive meaning and which may 
explain why the students do not simplify the formula into the more standard expression: 2n +3. 
The formula still hangs behind the remnants of the narrative side of algebra (Radford, 2002b), 
where signs play the role of narrating a story and where the formula has not yet reached the 
autonomy of a detached symbolic artifact. The letters of which a formula is made up play indeed 
the role of indexes pointing to words of the students’ contextual and factual generalizations. 

Obviously, some students’ formulas do not correspond to the standard algebraic syntax. 
Thus, dealing with the sequence shown in Figure A, Samantha, one Grade 8 student, managed to 
produce a contextual generalization: “You must add 1 more than the figure for the top and 2 
more on the bottom.” Her formula was: “(n+1)+2=”. Now, despite its inaccurate algebraic 
syntax, the formula was not written at random. A closer look at the formula indeed suggests that 
the formula does have a meaning. The formula was built following a syntax based on the 
criterion of juxtaposition of signs. It is a sentence structured in the manner of a narrative where 
signs become encoded as key terms (much as ideograms did in the written language used in 
Mesopotamia ca 3500 BC –where, e.g., the drawing of a foot after the drawing of a mountain in 
a clay tablet could mean a long walk). The formula is recounting us Samantha’s mathematical 
experience with the general. The composed term “n+1” is telling us that, to determine the 
number of circles on the top row, we have to add 1 more (circle) than the (number of the) figure, 
and that once we have finished doing this (something scrupulously indicated by the brackets), we 
still have to add two (circles) to the bottom row. Now, by adding these results, we may be in a 
position to find the total number of circles in the figure. The inaccuracy of algebraic syntax 
cannot be imputed to Samantha’s misunderstanding of the problem: she succeeded in finding the 
number of circles in Figure 10 and Figure 100. Had we asked her questions about “bigger” 
figures, like Figure 1000000, she would have provided the right answers. The problem lies 
elsewhere. It lies in the students’ understanding of a cultural mathematical practice based on a 
specific use of signs.  

6. Synthesis and Concluding Remarks 
Noticing a commonality in a few particular terms of a sequence is by no means the result of a 

contemplative act. As Kant put it: 

 I see a fir, a willow, and a linden. In firstly comparing these objects, I notice that they 
are different from one another in respect of trunk, branches, leaves, the like; further, 
however, I reflect only on what they have in common … and abstract from their size, shape, 
and so forth; thus I gain a concept of tree. (Kant, 1974, p. 100). 

Our ability to notice differences in things is one of our basic cognitive components. Without 
it, we would be unable to sort the amazing amount of sensorial stimuli that we receive from the 
exterior and the world in front of us would be reduced to an amorphous visual, tactile and aural 
mass. Naturally, as many of Kant’s commentators have pointed out, things are a good deal more 
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complicated than Kant himself suggested. Noticing the differences and similarities that lead to 
the genus of a pattern in our case or to the genus of a tree in Kant’s own example, occur in social 
activities subsumed in cultural traditions conveying ideas about the same and the different and 
about how these differences may be reflected and abstracted. This is why some cultures make 
finer or different categorizations of plants and colors than others. We certainly notice differences 
and similarities—not through neutral tactile, aural, visual and other sense impressions—but 
through our historically and culturally species-evolved senses (Gibson, 1966; Wartofsky, 1979). 
So, instead of a contemplative and obvious act, to notice something −anything, trivial though it 
may be, like the circles in a pattern− is already a complex cultural-cognitive process. 

Now, we do not remain confined to what we materially see −perception, it is true, is always 
the perception of particulars. We go beyond the realm of particulars by noticing something else 
−something general, conceptual− and by trying to make sense of it. I referred to this process of 
concept-noticing and sense-making as a process of objectification. 

The whole idea of objectification is embedded in an ontology according to which the 
concepts or objects of knowledge are made up of layers of generality. The epistemological 
counterpart to this ontological premise asserts that our knowledge of a certain conceptual object 
is concurrent with the layers of generality in which we can deal with the object. Because each 
one of these objects’ layers is general, they cannot be fully grasped in the realm of the particular. 
The diaphanous or insubstantial general can only come into being through signs. This is why to 
objectify something is to make it come into the world of (re)presentation, i.e. to appear within a 
semiotic process. 

In this line of thought, I have suggested distinguishing between the diverse strategies that the 
students use when they deal with the generalization of patterns. Patterning activity has been 
justly considered as one of the prominent routes for introducing students to algebra. However, 
not all patterning activity leads there. This is the case of inductive procedures based on rule 
formation by trial and error and other guessing strategies. These procedures do not lead to 
algebra because algebra is certainly neither about guessing nor about just using signs. It is rather 
about using signs to think in a distinctive way. As far as patterns are concerned, algebra is about 
generalizing. Now, as Kant’s example intimates, to talk about generalizing is to talk about two 
things: (1) that which is generalized (the object of generalization), and (2) the generalized object. 
Drawing on Kieran (1989), Love (1986) and Mason (1996), I have suggested that the process 
that goes from one to the other includes two interrelated components. The first one is noticing a 
commonality in some given particular terms. The second one is to form a general concept −a 
genus− by generalizing the noticed commonality to all the terms of the sequence. In order for a 
generalization of patterns to be called algebraic, I have suggested a third component: that the 
genus or generalized object crystallize itself into a schema, i.e. a rule providing one with an 
expression of whatever term of the sequence (arithmetic generalizations would be those which 
fail to meet the third component). Next, I have discussed three layers of algebraic generality and 
the corresponding modes of expression: factual, contextual and symbolic (see Table 1). 

Naïve Induction Generalization 
Arithmetic Algebraic Guessing  

(Trial and Error)  Factual Contextual Symbolic 

Table 1. Students’ strategies for dealing with pattern activities and the subdivision of 
algebraic generalizations in accordance with their level of generality. 
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These layers of generality are characterized by the semiotic means of objectification to which 
the students resort in order to accomplish their generalizations. In factual generality, 
indeterminacy remains unnamed; generality rests on actions performed on numbers; actions are 
made up here of words, gestures and perceptual activity. In the contextual and symbolic layers of 
generality, the indeterminate is made linguistically explicit: it is named. While in contextual 
generality the general objects are named through an embodied and situated description of them 
(e.g. “the next figure”, “the top row”, etc.), in symbolic generality the general objects and the 
operations made with them are expressed in the alphanumeric semiotic system of algebra.  

Factual generality provides the raw material that, through successive semiotic contractions, 
the students will later transform into higher forms of algebraic generality. The issue here is not 
just to say the same thing in a different code. It is rather about gaining access to deeper forms of 
consciousness. It is in this respect that the genetic link between layers of generality is most 
revealing. For instance, we saw the tremendous cognitive importance of words, gestures and 
perceptual activity in factual generality (as expressed in “1 plus 2”, etc.) and their important 
objectifying effects: they prepare the space where the designation of objects may occur later and 
where the students’ consciousness of indeterminacy may reach a deeper layer of objectification. 

In this context, an important question to ask is the following: Why did the students gesture? 
Why did they not limit themselves to talking? Gestures helped the students to refine their 
awareness of the general. These gestures stood for the rows that could not be seen. Gestures 
helped the students to visualize (Presmeg, 2006) and hereby came to fill the gap left by 
impossible direct perception. Generally speaking, gestures do not merely carry out intentions or 
information; they are key elements of the process of knowledge objectification (Radford, 
2005b)3. 

From an educational perspective, it is important to bear in mind that each one of the layers of 
generality presents its own challenges. As we saw in the classroom examples discussed earlier, in 
factual and contextual generalizations, the students often talk about “the figure” instead of “the 
number of the figure”; because of the embodied and metonymic mode of designation of objects, 
the students’ generalizations often carry some ambiguities. In symbolic generalizations, the 
students’ formulas often tend to simply narrate events and remain attached to the context. The 
understanding and proper use of algebraic symbolism entails the attainment of a disembodied 
cultural way of using signs and signifying through them. The disembodiment of meaning of 
symbolic generalizations I am talking about should nevertheless not be understood as the decline 
or elimination of the individual, but as a new way of engaging with, and reflecting about, the 
general and the particular (see Radford, 2006, p. 60; see also Roth, 2006). This attainment, I 
want to suggest, can only be possible through a transformation of the way in which letters signify 
in a formula. In addition to their indexical mode of signification, letters have to acquire a 
symbolic mode as well. In Peirce’s terminology, letters have to become genuine symbols. The 
didactic situations that may promote the transformation of the index into symbol in the students’ 
formulas have still to be investigated further (see Barallobres, 2005). When we invited our 
students to simplify formulas, some progress in the direction from index to symbol was 
observed, even with the youngest. Thus, several groups of Grade 8 students went from “r+r+r+1” 
to “rx3+1”. However, examples such as these are not enough to provide us with a clear idea of 
the genetic path that goes from one mode of signification to the other. My conjecture at this point 
is that this path is paved with subtle qualitative changes where indexicality is progressively put 
in the background and the letters acquire a relational meaning (see Radford and Puig, in press). 
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Be this as it may, I hardly believe that the didactic situations susceptible to leading our 
students to deeper layers of symbolic or other forms of generality can be reduced to the choice of 
fortuitously good mathematical problems.  Powerful though it may be, the plane subject-object is 
not, epistemologically speaking, strong enough. The plane of social interaction must be 
included. The students have to learn to see the objects of knowledge from others’ (teachers and 
students) perspectives. This is why, in the classroom, we often organized an exchange of ideas 
and solutions and the discussion of them between groups, followed by general class discussions 
(Radford & Demers, 2004). The idea, however, is not merely to ‘share’ solutions in order to 
catalyze the attainment of deeper layers of generality. It is rather that the objectification of 
knowledge presupposes the encounter with an object whose appearance in our consciousness is 
only possible through contrasts. Our awareness and understanding of an object of knowledge is 
only possible through the encounter with other individuals’ understanding of it (Bakhtin, 1990; 
Hegel, 1977; Vygotsky, 1962). In this encounter, our understanding becomes entangled with the 
understandings of others and the historical intelligence embodied in cultural artifacts (e.g. 
language, writing) that we use to make our experience of the world possible in the first place. 
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EndNotes 
(1) The concept of induction has been the object of a vast number of investigations in 

epistemology and in education; see e.g. Peirce in Hoopes, 1991, pp. 59-61; Polya, 1945, pp. 114-
121; Poincaré, 1968 p. 32 ff.). In what follows, to simplify the text, I will use induction to refer 
to the students’ naïve induction described above. 

(2) Because of the students’ strong tendency to use inductive procedures instead of 
generalizing ones, we proposed some patterns with decimal numbers. One of those patters was 
the following: 0.82, 1.13, 1.44, 1.75, 2.06, … Here, the possible values of a and b in the rule 
“an+b” (or “nxa+b” as the students would write) increase considerably making trial and error a 
heuristic which is no longer viable. As one of the students commented after failing at several trial 
and error guesses, “I got more numbers in my head than ever”. 

(3). Currently, there is an intense interest in gestures in general, as well as in science and 
mathematics education. Some recent work includes Arzarello and Edwards, 2005; Goldin-
Meadow, 2003; Kendon, 2004; Kita, 2003; McNeill, 2000; Robutti, in press; Roth, 2001. 
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In this reaction to the plenary paper presented by Luis Radford, I point to selective features of 
Luis’s theoretical framework -- a framework that offers powerful means for describing algebraic 
thinking within the context of generalizing activity involving patterning. Then, I highlight some 
examples from Luis’s data using the perspectives of ‘sameness-and-difference’ and the 
‘interaction of the geometric and the numeric in geometric patterning’ and suggest that these 
foci, which were provoked by Luis’s analyses, offer additional areas for further research.  

Generalization is the heart of mathematics. Because algebra is a domain of mathematics, it is 
a given that generalization is also at the core of algebra. In his plenary paper, Luis Radford takes 
us on a compelling voyage into the realm of generalization, as experienced by 8th and 9th grade 
students as they grapple with the challenge of developing algebraic thinking within the context of 
geometric patterning activity. In my response to his paper, I first point to some features of Luis’s 
framework that pertain specifically to algebraic thinking. Then, I look more closely at particular 
aspects of his student data and discuss two issues that his analysis provoked within me. 

Algebraic Thinking 
Luis states that we still do not have a sharp and concise definition of algebraic thinking, 

suggesting that it may very well be because of the broad scope of algebraic objects (e.g., 
equations, functions, patterns, … ) and processes (inverting, simplifying, … ) as well as the 
various possible ways of conceiving thinking in general. I suggest that another reason can be 
found in the competing views of that which constitutes school algebra, with some advocates 
arguing for polynomial and equation-centered content and others for a primarily function-based 
orientation. However, by focusing on generalization as a central component of algebraic 
thinking, Luis finesses such cul-de-sac polemics. His perspective finds its mathematics education 
roots in the generalization-related research involving proving, which was carried out in the 1970s 
and early 1980s (e.g., Bell, 1976; Mason & Pimm, 1984). More recently, one of the pioneers of a 
generalization approach to algebra, John Mason, defined algebraic thinking as follows: 

Algebraic thinking is rooted in and emerges from learners’ natural powers to make 
sense mathematically. At the very heart of algebra is the expression of generality. 
Exploiting algebraic thinking within arithmetic, through explicit expression of 
generality makes use of learners’ powers to develop their algebraic thinking and 
hence to appreciate arithmetic more thoroughly. Algebraic symbols are a language 
for expressing generalities. As fluency and facility with expressions of generality 
develops, the expressions become more succinct, and hence manipulable. The 
force and desire to manipulate comes from several sources. One is from 
recognizing that different looking expressions sometimes purport to express the 
same thing [in, for example, a geometric pattern] … . Another source for desire to 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A. (Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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manipulate algebraic expressions is from recognizing properties of numbers in 
arithmetic and generalizing these (hence generalized arithmetic). Another source 
for purposeful algebraic manipulation is from wanting to develop calculation 
techniques to manifest graphical properties. For example, when two graphs 
intersect, how can you find the coordinates of the intersection from the equations 
for the graphs? … In parallel with expressing generality is the use of symbols to 
denote as-yet-unknown numbers so that relationships can be expressed (a form of 
expressing generality). (Mason, 2005, p. 310) 

While Mason emphasizes the role of generalization in algebra, Luis extends these ideas with 
an elaboration of a theoretical framework that combines semiotics and socio-cultural 
perspectives and applies the framework to the study of algebraic thinking, in particular, the 
generalization of patterns.  

Definitions of algebraic thinking that are closely tied to generalizing activity lead to the 
question of what it is that makes algebraic thinking distinct from other kinds of mathematical 
thinking. Luis grapples head-on with this difficult question. In his paper, he suggests that there 
are three aspects that characterize algebraic thinking. The first concerns the indeterminacy that is 
proper to basic algebraic objects such as unknowns, variables, and parameters; the second, the 
analytic manner in which the indeterminate objects are handled; and the third, the symbolic mode 
used in designating its objects. With this third component, we enter the intricate world of 
semiotics that constitutes the essence of Luis’s approach to the study of students’ use of signs 
and processes of meaning production in algebra. Luis carefully tracks students’ gestures, 
rhythmic motions, drawings, formulas, and spoken words as they reach deeper and deeper levels 
of generalization in the process of becoming aware of the commonalities in selected examples of 
geometric patterns. With the caveat that not all symbolization is algebraic and that not all 
patterning activity leads to algebraic thinking, Luis clearly distinguishes algebraic 
generalizations from other forms of dealing with the general. In other words, there are some 
pattern generalizations that are arithmetic in nature and which are not considered algebraic, 
according to Luis. 

In Table 1, he synthesizes the various approaches used by students in dealing with pattern 
activities, two of which are deemed non-algebraic: trial-and-error guessing and arithmetic 
generalization. 

Naïve Induction Generalization 
Arithmetic Algebraic Guessing  

(Trial and Error)  Factual Contextual Symbolic 

Table 1. Students’ strategies for dealing with pattern activities and the subdivision of 
algebraic generalizations in accordance with their level of generality (from Radford) 

Trial-and-error guessing leads to rules that students cannot explain, for example, “we found it 
by accident.” Such rules, which Luis qualifies as naïve induction, are considered to be merely 
hypotheses and not within the realm of generalization at all. Arithmetic generalization, which is 
in fact generalization because the rule is applied not only to the terms that were explicitly 
mentioned but also to the terms that followed, is illustrated by the use of recursive rules – rules 
that express a local commonality but which cannot be used to provide an expression of whatever 
term of the sequence. We note Josh’s, “That will take too long.” 
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Factual generalizations, in contrast, offer action rules for arriving at the number of objects in 
any particular figure, but they do not involve the enunciation of indeterminacy, as in Anik’s, “So, 
25 plus 26.” Contextual generalization, on the other hand, names the indeterminacy, as was for 
example enunciated later on by Anik; however, the generalization still refers to contextual, 
embodied objects: “You add the figure and the next figure.” Finally, symbolic generalization 
expresses the generalization through alphanumeric symbols in a form that permits the calculation 
of values according to the position in the sequence. 

The allure of Luis’s categorization of algebraic generalization within the context of 
patterning into three ever-deepening levels of generality lies in its potential as a tool for 
describing students’ generalizing in terms other than all-or-nothing. It also permits intermediate 
characterization of generalizations over the sometimes lengthy time periods that students may 
need in order to develop the kind of thinking that can express itself in the letter-symbolic. 
Furthermore, this nuancing of the generalizing process within the activity of geometric 
patterning can lead researchers to think about extensions to more advanced areas of algebraic 
thinking, as in, for example, seeing structure and form within algebraic expressions. In other 
words, algebraic symbolic generalization might itself be subcategorized into even more levels of 
generality when studying algebraic activity that is engaged in by more experienced algebra 
students. This is indeed an area where further theorizing and research could be conducted.  

Two Related Issues Arising from the Given Extracts of Student Activity 

Sameness-and-Difference 
Luis emphasizes that generalizing a pattern algebraically rests on the capability of: 

i) grasping a commonality noticed on some elements of a sequence S, 
ii) being aware that this commonality applies to all the terms of S, and 
iii) being able to use it to provide a direct expression of whatever term of S. 

More specifically, he notes that, “for the novice student, noticing the commonality of the 
terms of a pattern is not something that happens all of a sudden. On the contrary, it is a gradual 
process underpinned by a dynamic distinction between the same and different. Even in a pattern 
as simple as the one below (see Figure A), there are several ways to look for what may qualify as 
the same and the different.” Although the latter statement that, “there are several ways to look for 
what may qualify as the same and the different,” seems quite straightforward, the student data 
presented by Luis suggest to me that the appropriate identification of that which is the same and 
that which is different within a given geometric pattern may be crucial in arriving eventually at 
algebraic symbolic generalization. 

 

 

Figure A. The sequence of figures given to the students in a  
Grade 8 class (from Radford). 

For the student Doug, what makes the figures different is the last two circles. Luis states that 
Doug saw the figures as recursively built by the addition of two circles diagonally arranged. In 
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other words, that which was different in each figure had to do with the recursive component of 
the figure – in this case, the addition of two circles to each successive figure.  

Focusing on the addition of two new circles for each figure, and considering that aspect as 
the “difference” between the figures, is a typical form of reasoning among students who use 
recursive thinking when analyzing growing patterns. In the mathematics education literature, 
such recursive thinking involving an iterative approach to generating successive values of a 
function is contrasted with a closed-form view that uses the figure number to arrive at the value 
of the function for a given figure of the pattern. However, up to now, research has not, in 
general, been able to pinpoint critical steps in the transition toward developing a closed-form 
representation in pattern generalization. Luis’s example of the thinking of Mimi suggests the 
importance of students’ being able to identify ‘what is the same and what is different.’ 

For the pattern of circles shown in Figure A above, the three students, Jay, Mimi, and Rita 
perceived a structure composed of two horizontal rows, the top row having one more circle than 
the figure number, and the bottom row having two more. They thus arrived at the total number of 
circles for Figure 10 by adding 11 and 12, and for Figure 100 by adding 101 and 102. Mimi was, 
however, intrigued by the numerical pattern of the two results, 23 and 203 respectively -- the 3 in 
particular: “Add… Add three to the number of the figure! (pointing to the results “23” and 
“203” already written on the paper).” 

The numerical totals for Figures 10 and 100, in combination with the arrangement of the 
pattern, had begun to suggest to Mimi a relationship between 3 and the figure number. 
Subsequent numerical analysis involving the 23 and the 203 would lead her to notice the 3 
objects that were the same in each figure and that what was different was really the rest of each 
figure – but that this “rest” could be related to the figure number. Notice the dissimilarity 
between what was different for Mimi versus what was different for Doug. For Doug that which 
was different was the two circles at the end of each figure that were being added each time. For 
Mimi, these same two circles, along with the one circle just to the lower left of these two, would 
come to constitute that which was the same in each figure, while that which was different was the 
basic form that changed in size for each figure number (see Figure B). 

 

Figure B: For Mimi, the three contoured objects would come to represent the 
“sameness” of the pattern; the non-contoured objects would come  
to represent that which is different for each figure of the pattern –  

a difference that is related to the figure number. 

Mason (2005) has said the following about same and different: 
Whenever there are two or more objects present, it can be helpful to consider what 
is the same and what is different, or, put another way, what is changing, what is 
staying invariant. To do this requires you to stress some features and consequently 
to ignore others, which is the basis for generalization (p. 111). … Human senses 
all work by detecting change. But change only makes sense if there is something 
that is not changing as a background against which to detect the change. … To 
appreciate sameness-and-difference requires that you discriminate features, some 
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of which are shared by all objects being considered but which might not be shared 
by all possible objects (sameness), and some of which can be used to distinguish 
between the objects (difference). … When you stress certain features apparently 
shared by all the objects, and ignore differences, you are engaged in abstraction or 
generalization” (pp. 270-1, emphasis added). 

But Mimi’s comments suggest that it is not the case that one can ignore the differences in 
patterning activity. The thinking engaged in by Mimi and her fellow group members illustrates 
how essential it is to consider simultaneously both what is the same and what is different within 
the various figures of a pattern. This identification of what is the same and what is different in 
patterning activity can be crucial in reaching the deeper levels of generalization described by 
Luis. 

The Interaction of the Geometric and the Numeric in Geometric Patterning 
A second issue that arises from an examination of the generalizing activity of Mimi is the 

role played by the numeric in her thinking. When Mimi noticed the 3s in 23 and 203 for the 
number of circles in Figures 10 and 100, she went back to the geometric pattern to begin the 
process of trying to associate this numerical noticing with the geometric configuration. The 
coordination of the numerical with the geometric was instrumental in allowing Mimi and her 
group to begin to see the pattern in a new way – a much deeper way that could link the changing 
part of the pattern to the figure number. Eventually, this seeing was expressed as:  
“n × 2,  + 3”.  

Although one might argue that the 23 and 203 were artifacts of this particular pattern and the 
specific questions that were posed, researchers have suggested that nevertheless the two 
representations (i.e., the geometric and the numeric) mutually contribute to the emergence of 
generalization within patterning activity. More specifically, Warren (2006) has argued that, “it is 
the synergy between both representations that results in rich dialogues about variables, 
equivalent expressions, … ; we believe a continual mapping from one to the other is imperative 
to support these understandings.” 

Because numerical interpretations of pattern relations are often synthesized in table-of-values 
representations, Luis reminds us that, “several researchers have shown the limits of X-Y 
numerical tables in the generalization of patterns.” He suggests further that some past studies 
have indicated that, “X-Y tables emphasize a formulaic aspect of generality based on trial-and-
error heuristics, hence confining algebraic notations to the status of place holders bearing very 
limited algebraic meaning.” Although it may be the case that rushing into the use of numeric 
tables of values can in fact curtail the richness of developing generalizations from the geometric 
representation, and that some students may not be able to apply the formula derived from a table 
of values back to the geometric pattern itself, there is no question but that at a certain moment in 
time the geometric perception of the physical arrangement of objects needs to be expressed 
numerically in order to reach deeper levels of generalization. However, a mere numeric 
perception of the geometric may be insufficient. Luis’s data suggest that students can reach the 
deeper levels of symbolic generality when the passage from the geometric to the numeric is 
intertwined with an emerging awareness of what is the same and what is different in a geometric 
pattern. In this regard, the example of the thinking that emerged in the case of Mimi and her 
group is contrasted with what happened in Josh’s group. 

Mimi: OK! It would’be like one (indexical gesture on Figure 1; see Picture 1 in the Radford 
paper), one (indexical gesture on Figure 1; see Picture 2), plus three (grouping gesture; see 
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Picture 3); this (making the same set of gestures but now on Figure 2) would’be two, two, 
plus three; this (making the same set of gestures but now on Figure 3) would be three, 
three, plus three. 
… 
Mimi: The number of the figure like ... we’ll say that the figure is 10 (gesture with an open 
hand as to indicate a row on the desk), you’ll have ten dots (similar gesture on the desk) plus 
three (sort of grouping gestures a bit more to the right and to the bottom, on the desk) right? 
(pause) No… 
Jay: (Almost simultaneously) No. 
Mimi: You double the number of the figure.  
Jay: ten plus ten (pointing to the sheet) 
Mimi (interrupting): So it will be twenty dots plus three (pointing to the number 23 on the 
sheet). You double the number of the figure and you add three, right? So Figure 25 will 
be fifty...three. Right? That’s what it is […] 
Jay: Figure times two plus three. 
 
This scenario culminated in the written message: “The number of the figure × 2, + 3. It gives 

you the amount of circles,” with the comma serving to demarcate that which was different (i.e., 
before the comma) from that which was the same (i.e., after the comma) in the various elements 
of the pattern. 

 

 

Figure C: The toothpick pattern (from Radford) 

In contrast, the group of Josh, Anik, and Judith -- for the toothpick pattern (see Figure C) -- 
perceived a structure that, while it did not include the identification of what was the same and 
what was different for each element of the pattern, did involve the going back and forth between 
the geometric and the numeric.  They developed a generalization that focused on the sum of the 
figure number and the next figure, and the use of this sum to determine the number of toothpicks 
for the figure: 

  
Josh: It’s always the next. Look! (Then, pointing to the figures with the pencil he says) 1 plus 
2, 2 plus 3  […] 
Anik: So, 25 plus 26… 
[The students were asked to write a message explaining how to find the number of toothpicks 
or circles in any figure to an imaginary student in another class of the same level.] 
Anik: We can say, like, it’s the number of the figure, right? Like, let’s say it’s 1 there.  If 
… if … OK.  You add … like, how do you say that?  In order of … (Then, implicitly 
referring to Figure 2, she says) You add it by itself, like. You do 2 plus 2, then after this, 
plus 1, like.  You always do this, right?  […] You would do (while she rhythmically mentions 
the numbers to reveal the underlying commonality, she gestures as if pointing to something) 
3 plus 3 … plus 1, 4 plus 4 … plus 1, 5 plus 5 … plus 1.  Do you know what I want to say? 
[…] How do we say it then? 
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… 
Anik: Yes. Yes.  OK.  You add the figure plus the next figure … No. Plus the … […] (she 
writes as she says) You add the first figure… 
Josh: (interrupting and completing Anik’s utterance says) … [to] the second figure […] 
Anik: So…(inaudible). It’s not the second figure.  It’s not the next figure? 
Josh: Yes, the next one [figure]. 
Judith: Uh, yes, the next [figure] […] 
Anik: (summing up the discussion) You add the figure and the next figure. 
… 
Josh: That would be like n + a or something else, n + n or something else. 
Anik: Well [no] because “a” could be any figure […] You can’t add your 9 plus your … like 
… […] You know, whatever you want it has to be your next  [figure]. 
 
However, this group could go no further without some teacher intervention. 
Although Josh, Anik, and Judith finally ended up with a correct formula, “(n + 1) + n,” it is 

suggested that, because their processes of generalization did not follow a path that allowed them 
to take into account what was the same and what was different within the elements of the 
toothpick pattern, their formula could be considered of an ad hoc nature. The mysterious relation 
between the two figure numbers and the structure of the pattern was never made explicit. The 
approach that they used thus leads to further research questions regarding the generative power 
(or lack thereof) of the particular strategies employed in arriving at contextual, and certain 
symbolic, generalizations. However, there is no denying that the process engaged in by Mimi 
and her group touched upon structural aspects that were not uncovered in the course of action 
followed by Josh, Anik, and Judith – structural aspects that were grounded in the identification 
of sameness and difference within the pattern. 

Concluding Remarks 
Luis Radford, in his Synthesis and Concluding Remarks, suggests: 

The process [of generalizing] that goes from one to the other [from that which is 
generalized to the generalized object] includes two interrelated components. The 
first one is noticing a commonality in some given particular terms. The second 
one is to form a general concept … by generalizing the noticed commonality to all 
the terms of the sequence. In order for a generalization of patterns to be called 
algebraic, I have suggested a third component … a rule providing one with an 
expression of whatever term of the sequence.   

However, I propose that it may not be sufficient to ‘notice a commonality.’ Becoming 
simultaneously aware of that which is the same and that which is different among the elements of 
a geometric pattern, while also going back and forth between the geometric and the numeric, 
may be crucial to students’ reaching deeper levels of algebraic symbolic generalization. This 
particular facet of students’ generalizing within patterning activity merits further research.  

In this reaction, I have not centered on the semiotic tools that Luis brought to bear in his 
data-collection and analysis and which, in fact, permitted him to gain access to levels of student 
thinking that have heretofore rarely been seen in prior research on generalization within 
patterning activity. Let me add, as an aside, that the study of the ways in which diverse resources 
such as gestures, bodily movements, words, metaphors, and artefacts become interwoven during 
mathematical activity and, in fact, constitute a central source of meaning making in mathematics 
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has of late been the focus of an ever-increasing body of research in mathematics education (see 
Kieran, 2006, for a review of this research). In conclusion, I want to emphasize that the results of 
the semiotic analysis conducted by Luis permit us to now have a much deeper understanding of 
the processes by which students arrive at generalizations within patterning activity. In the broad 
and diverse field of study that is collectively known as pattern-generalization research, Luis’s 
methods of analysis serve as a model for future research. 
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This paper presents a reflection on my research largely grounded on my interest in students’, 
teachers’, and parents’ ideas about mathematics. Starting with some considerations from a 
cognitive point of view, in particular preservice teachers’ understanding and beliefs, I move onto 
sociocultural aspects. I specifically address issues related to context, valorization of knowledge, 
participation, and in-school and out-of-school mathematics. I draw on examples from my 
research in Latino, working-class communities to highlight the need (yet the complexity) to focus 
on all interested parties (parents, teachers, and students) and on mathematics if we are to 
address equity in mathematics education. 

In this essay1 I reflect on my trajectory as a researcher in mathematics education, with an eye 
on the theme for this conference – focus on learners, focus on teachers. My entry into the world 
of mathematics education research was largely focused on teachers, and more specifically on 
preservice elementary teachers. As a researcher, my approach was essentially cognitive—I 
wanted to understand their understanding and to learn about their beliefs about mathematics. I 
was and continue to be fascinated by how people (teachers, children, parents) make sense out of 
mathematics and what role their beliefs play in this process. As a teacher educator, however, I 
wondered about the implications of preservice teachers’ understanding of mathematics and their 
beliefs about its teaching and learning for the children they would be teaching (Civil, 1993). I 
was also concerned about how preservice elementary teachers were sometimes portrayed in a 
negative way, focusing on their inadequate understanding of mathematics. To me, these 
“inadequacies” were intriguing and, while a cognitive approach was certainly very helpful, the 
ideas of situated cognition and social and cultural context added to my understanding of those 
“inadequacies.” Although equity per se was not in my agenda yet, I think that some of those 
initial experiences opened the way towards my interest in equity in mathematics education. A 
concern for those who are being left out of the mathematical journey seems to guide my work. 
Sometimes I wonder if I have moved away from my initial cognitive-based interest in research 
in mathematics education to address issues that focus largely on the social and cultural context, 
with mathematics playing a very peripheral role. As I look over my writing from the last few 
years, I notice that I often raise the question “where is the mathematics?” Mathematics plays a 
central role in my work and recently, in our current project, I find myself pushing for the 
mathematics in our activities and research discussions. My interest is in equity in mathematics 
education, where equity to me is related to access by all students to opportunities to engage in 
rich mathematics. In this paper, my goal is to share some examples from my research throughout 
the years, to illustrate the role of and the need for different frameworks in mathematics education 
research and in particular to argue for the need to combine cognitive approaches with 
sociocultural ones (Brenner, 1998; Cobb & Yackel, 1996). In doing so, I also aim to emphasize 
the need for a serious look at what we mean by equity. The word “equity” (or references along 
those lines) is present in most mathematics education documents (not only in the U.S., but based 
on my research collaborations with a colleague in Spain and conversations with researchers 

_____________________________ 
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elsewhere in the world, it seems to be a widespread, relatively recent phenomenon), yet what do 
we mean by equity in mathematics education? Personally, it is hard for me now to look at any 
mathematics education area without an equity lens. For example, I have always had an interest in 
how students communicate about mathematics. Yet, my interest in this topic has considerably 
changed over the years. In Civil (1998) I focused on issues related to communication when 
students are working in small groups. My approach then was essentially cognitive, as I was 
primarily interested in the interplay of understanding and beliefs in small group discussions. 
More recently, my interest in communication relates to questions of participation (Civil & 
Planas, 2004): who has a voice in classrooms’ discussions and whose voices are being heard. 
Yet, as I reflect on this more recent work and look at my current work, I am looking for how to 
frame the discussion of participation in such a way that mathematics becomes more central.  

Research in Teacher Education: From Beliefs and Understanding to Equity 
My first experience presenting at a conference was actually at PME-NA in 1989 (Civil, 

1989). In that piece, a group of preservice elementary teachers were given a proportional 
reasoning task in which a fifth grader used incorrect reasoning (an additive approach) but the 
answer he obtained happened to be the correct one (at least in terms of a typical school 
mathematics task). The preservice teachers were to comment on this child’s work. My emphasis 
in that paper was on questions such as “how ready are these prospective teachers to understand 
children’s work. How are they going to handle it when one of their students comes up with a 
method different from theirs? What means do they have to determine the validity of a method?” 
(p. 292). I expressed concern for what I saw as a tendency to praise children’s work without 
attention to the mathematics behind that thinking (Civil, 1993). Years later, I continued to 
express this concern, when I visited “reform” oriented classrooms in which children were 
encouraged to work in groups, discuss mathematics, look for different approaches to solve a 
problem, in short, many of the features that I value in a mathematical community of learners. But 
I also noticed how hard it is to listen to children’s ideas about mathematics and what to do with 
that listening. As a result, I often heard comments along the lines of “great thinking” (was it 
always “great”?) and “thank you for sharing” (with no further discussion on the mathematical 
contribution of that sharing). Working on understanding how others (in most cases, students) 
make sense out of mathematics is one of the main reasons why I went into mathematics 
education. Whether I am working with children, preservice teachers, practicing teachers, parents, 
listening to their ideas about a mathematical situation fascinates me. Where is “equity” in this? 
When working with preservice teachers (and later on, with practicing teachers), I think I had an 
implicit concern for equity in that I worried about how a fragile understanding of the 
mathematics, and in particular of the mathematics for teaching (Adler & Davis, 2006; Ball & 
Bass, 2000) would affect their teaching and therefore their students’ learning and enjoyment of 
mathematics. But that was the extent of my concern for equity at that time. In fact, I am not even 
aware that the term “equity” entered my conversation. In this paper I look at some of my work 
from those years with my current lens of equity. A typical topic in courses for prospective 
elementary teachers is a discussion of different algorithms for arithmetic operations. For 
example, one of the tasks I gave to that same group of preservice teachers to discuss was the 
“European” subtraction algorithm (the equal addition algorithm). I presented it to them as the 
way I learned how to subtract and they were to try to make sense out of it. Although my analysis 
of their discussion focused on cognitive aspects (e.g., assimilation to borrowing), some of their 
comments can certainly be looked at from a different angle:  
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Ann: Could you imagine if they said, “let’s do math this way in American schools”? 
Carol: Oh, my God! 
Vicky: I don’t think the kids would have as much problem with this as the teachers. 
Ann: Uh, uh, you’re right; that’s exactly what would happen. 
Carol: What’s the value though?  I mean, why are we doing this? 

When talking about yet another algorithm for subtraction, in which the child had used 
negative numbers to find the answer (e.g., to do 62 – 48: 2- 8 = -6; 60 – 40 = 20; -6 + 20 = 14), 
Vicky said, “I do believe that you could eventually convince him that learning to carry is easier 
and leaves less room for error.” And when talking about a left to right algorithm for subtraction, 
Carol said, “ Wouldn’t kids get confused? From left to right, wouldn’t kids get confused? If I sat 
down with a group of kids and said, ‘Ok, this is how you do it,’ and showed them from left to 
right, I would think that when you got to the real thing, that they would get upset or that they 
would be confused.” 

Scenarios like the ones I just briefly presented can be analyzed from an understanding / 
cognitive approach: how do these preservice teachers understand these different algorithms? 
They can also be analyzed from a beliefs approach: what do they tell us about these prospective 
teachers beliefs about the teaching and learning of mathematics (as well as about their own 
beliefs about mathematics in general)? But these scenarios can also be analyzed from an equity 
point of view. For example, what are the implications of Ann’s comment, “Could you imagine if 
they said, ‘let’s do math this way in American schools’?” or Carol’s comment, “what’s the value 
though? I mean, why are we doing this?” or Vicky’s comment: “you could eventually convince 
him that learning to carry is easier” or Carol’s comment “when you got to the real thing.” What 
is the real thing? Is there a way (as in only one) that should be taught in “American” schools? 
And in the case of subtraction, is “the way” that of learning to “carry”? Is this why Carol 
wonders about the value of engaging in these discussions around different algorithms? My 
current research is located in low-income neighborhoods, with a large number of immigrant 
families—mostly from Mexico and Central America. Of particular concern to me is whether we 
are preparing teachers to address different approaches, particularly when those different 
approaches may be coming from low-income, immigrant children. About four years ago, I asked 
a class of preservice elementary teachers to write a reaction paper to an article by Perkins and 
Flores (2002) on the “mathematical notations and procedures of recent immigrant students.” A 
few of the preservice teachers wrote comments indicating the need for immigrant students to 
learn the way arithmetic is done in the U.S. As one of them wrote, “this is nice but they need to 
learn to do things the U.S. way.” Is it that they were concerned about their own understanding of 
these different ways, as one of the preservice teachers hints in the comment, “how can we be 
expected to know all these different ways?” Or is it related to valorization of knowledge (as in 
one way being better than the other) (or as in Carol’s comment earlier of “what’s the value 
though?”). 

With the rapidly changing demographics in the U.S., most teachers are likely to be in 
classrooms where children or their parents may have different approaches to doing mathematics. 
How do we incorporate or build on these approaches?  What value do we give to the different 
approaches? The notion of valorization of knowledge is very present in my work, as it relates not 
only to my concern for equity but also to my other area of research on in-school / out-of-school 
mathematics. The next section explores this notion. 
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Valorization of Knowledge 
While in the previous section my focus was on preservice teachers, here I will focus on 

children / school-age students and parents. For the last ten years I have been conducting research 
around issues of parents’ views on the teaching and learning of mathematics (Bratton, Quintos, 
& Civil, 2004; Civil & Andrade, 2003; Civil & Bernier, 2006; Civil, Bratton, & Quintos, 2005; 
Civil, Planas, & Quintos, 2005). Throughout this research there is a recurrent theme that emerges 
in our conversations and interviews with families. This theme relates to immigrant parents’ 
views on how their children are being taught in the U.S. versus the schooling traditions in their 
country of origin (which in my context is usually Mexico). As everybody else, parents bring their 
valorizations of knowledge to the discussion. Let me illustrate this point with an example related 
to different algorithms to show how this topic is of concern not only to teachers and preservice 
teachers. 

All the parents we have talked to who learned how to divide in Mexico comment on their 
method being more “efficient” and “cleaner.” A basic difference between the way they learned 
and the “traditional” approach to long division in the U.S. is that in Mexico they do not write 
down the subtraction, “we do it in our heads”, and they only write down the result (the answer). 
This is what Marisol and Verónica said about the division algorithms: 

Marisol : When I looked at how he [her son] was dividing, he subtracted and subtracted and 
that he wrote all the equation complete I said, I even said, “this teacher wants to make things 
complicated. No, son, not that way! This way!” And he learned faster with this [Marisol’s] 
procedure. 
Verónica: I tried to do the same with my child with divisions, that he didn’t write everything, 
but he says, “no, no, mom, the teacher is going to think that I did it on the computer.” “You 
don’t need to write the subtraction son,” I say, “you only put what is left.”… “No, no, my 
teacher is going to think that I did it on the computer, I have to do it like that.” “Ok, you 
think that… but I want to teach you how we learned.”  And I did teach him, but he still uses 
his method, and that way he feels safe that he is doing his homework as they told him to. The 
same thing with writing above what they borrow and crossing it out, I tell him, “and I 
remember our homework could not have any cross-outs,” whereas his does. 

A topic of concern for many of the families we have interviewed is their perception that the 
level of education is lower in the U.S., often commenting that they thought their children were 
behind in mathematics compared to relatives or friends in Mexico.  

Ernesto: I think that the educational level, in the case of my son, the schools are very basic 
the level in Mexico is much higher. I’m saying that because I have nieces and nephews there 
and here and there, I see that they have learned more things at school…No, it’s that he’s [one 
of his nephews in Mexico] in fourth grade and my son is in fourth grade too. What they’re 
giving my son now, he (the other child) learned in second grade. So, the educational level is 
lower and they learn more slowly than they learn in Mexico 
Bertha: No, I’m not happy. I feel that there is repetition of a lot of things; I don’t understand 
why the teaching is so slow, I don’t like it, I don’t like the system, I don’t like it at all. I, 
when we go to México … my nieces and nephews or my husband’s nieces and nephews, 
there are children that are more or less the same age as Jaime and I see that Jaime is behind. 
Here they tell me that Jaime (is) really excellent. 
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Researchers have made observations similar to those of our participants. McLaughlin (2002) 
suggests that Mexican students’ mathematics background often exceeds the expectations they 
face when entering a school in the United States. We also have data from the children’s 
experiences with the different educational systems. Lucinda, one of the mothers who was 
concerned with her daughter’s schooling in the U.S. and wanted to also teach her the way she 
had learned in Mexico, commented that when they first arrived, her daughter was a third grader 
(8 years old) and was not very happy with the school in the U.S. because she said that it looked 
like play, “why, mijita?” asked her mother; “because they are making me do 4 +3, mom, I don’t 
want to go this school. It’s weird.” And by “weird” she meant “easy.”  

Below is an excerpt from an interview with a sixth grader in 2001, when he had recently 
arrived from Mexico: 

Researcher: Describe yourself as a math student 
Student: I am advanced because in Mexico the schools are a year ahead. I am very fast at 
doing things. The teacher gives me harder work. (…) 
Researcher: What is your best subject in math?  
Student: Algebra 
Researcher: You already know algebra?  
Student: Yes 
Researcher: Where did you learn algebra? 
Student: The teacher [name of his current teacher] showed us. In Mexico, they had already 
taught me algebra. And the teacher here is barely starting to teach some algebra. 

As part of our more recent work, we continue to study parents’ and children’s perceptions of 
the teaching and learning of mathematics, in particular among those who have experienced two 
educational systems (e.g., U.S. and Mexico), but we are also playing close attention to issues of 
language and how they affect students’ learning of mathematics. The excerpt below is from an 
interview with a mother and her son (a sixth grader), about four months after they arrival to the 
U.S. This interview underscores the child’s and mother’s frustration at knowing the mathematics 
but not having the language (English) to participate or to fully understand the teaching: 

Marta : So, I would like to know, if you can explain to me, if I went to your school in 
Mexico, when you lived in Mexico, what would I see in a math class? Tell me a little bit  
Alberto : There, they teach things that here… there they teach you… they are ahead 
Marta : They are ahead.  
Alberto : And here, they teach me things too, things that they taught me there… but what 
they taught me there, I already know it here, it’s just that here it’s hard because of the 
English. (…) 
Alberto’s mother: What I feel is that yes, I notice that they teach them more things there. 
Now, here the difference is that you run into the language, because in this sense… That is, 
for them it’s perfect what they are teaching them because in this way it’s going to help them 
grasp it, to get to the level, because for them, with the lack in English that they have, and if to 
that we were to add, uh, what’s the word? If they give them all the information, like a lot, 
very dense, too much teaching during this period, to tell you the truth, it would disorient 
them more. Right now, what he is learning, what I see is that it’s things that he had already 
seen, but if he gets stuck, it’s because of the language, but he doesn’t get stuck because of 
lack of knowledge. (…) 
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Marta : So, you think that since he has already studied it in Mexico, the content, that this to a 
certain extent helps him 
Alberto’s mother: It makes it easier (…) Because he says, “ay, mom,” he says, “and things 
that they ask and that they are really easy, and I get desperate because I want to answer, 
because I understood. And there are other things that I don’t understand, but once I see the 
answer, I realize that I already knew it. … But I didn’t understand the question. If I didn’t 
understand the question, I cannot answer it, because I didn’t understand them.” 

Alberto’s mother thinks that it is a good idea that they are teaching him something that he 
already knows because he does not know English well yet and it would be too much for him to 
learn new content and English. Is this an equitable approach to the teaching of immigrant 
students? In Anhalt, Ondrus, & Horak (in press), the authors discuss an experience in which an 
instructor taught a mathematics lesson in Chinese to a group of middle school teachers. The 
teachers (most of whom were part of our Center CEMELA2 and therefore, taught a large number 
of English Language Learners (ELLs)) realized the similarity in trying to learn in Chinese to 
their students’ learning in English. Some of the teachers observed that because they were 
familiar with the mathematical content, they did not pay attention to the Chinese language and 
focused only on the mathematics. Teachers reported this was a powerful experience that made 
them think about the policy of student placement in their schools. It made them wonder about a 
common placement practice that places ELL students in lower level mathematics, the idea being 
that it will help them learn English. Teachers questioned whether through this practice students 
would learn neither English nor mathematics.  

Are the educational needs of immigrants students being met by lowering the level of the 
content so that “they can learn the language”? This situation is not unique to the U.S. For the past 
several years, I have been collaborating with Núria Planas, a researcher in Barcelona (Spain) 
whose work focuses on the mathematics education of immigrant students in that city. Until 2000, 
immigrant students in public schools in Barcelona were placed in special classes with students 
with learning difficulties and physical disabilities. Currently, students with “language problems” 
(e.g., immigrants) are in a separate program for part of the day primarily for two subjects 
(mathematics and language). In that program they still work on the same adapted curriculum (as 
students with learning difficulties), which usually covers material two or three grades below their 
current grade.  

In the first part of this section on valorization of knowledge I have focused mainly on 
parents’ perceptions, and in particular immigrant parents, of the mathematics education their 
children are receiving in their “new” country. One could say that this is normal generational 
discourse—parents trying to show their children how they were taught because they feel that it 
was a “better” way. I argue, however, that these differences in approach take on a different light 
when those affected are low-income, immigrant families, whose knowledge has historically not 
been recognized or valued by institutions such as schools (Abreu, Cline, & Shamsi, 2002). This 
notion of their knowledge not being recognized or valued may even be more exacerbated if these 
students are given a lower level curriculum and made seem seen as “deficient” because they are 
not proficient in the language(s) of instruction. Planas (in press) looks into this situation by 
focusing on local students’ perceptions of their immigrant peers’ knowledge. In her research 
study, Planas interviewed twelve 15 and 16 year-old non-immigrant students from the same 
classroom in a high school in Barcelona that had a high percentage of immigrant students (60% 
of the students were from Morocco). In that particular classroom fourteen out of twenty-eight 
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students were immigrants (Morocco, Dominican Republic, Pakistan, and Bangladesh). The 
school, as is the case with schools with high numbers of immigrants in Barcelona, is in a low-
income neighborhood. Planas’ research is particularly insightful in that it seeks to understand 
issues related to immigrant students in the mathematics classroom, not only from the point of 
view of these students, but also from the point of view of the “local” students (see Planas & 
Civil, 2002; Planas & Gorgorió, 2004). Planas’ (in press) findings point to a deficit view on the 
part of the local students towards their immigrant peers. Attached to this deficit view is a lack of 
recognition and appreciation for the immigrant students’ ways of doing mathematics. The “local” 
students point out that their peers’ mathematics are different and these different forms of 
mathematics are not seen as useful or appropriate, as the quotes from two of these local students 
show:  

Pau: Their [immigrant students] comments help us make sense of the situations before 
starting solving the problems, but anyway, we cannot always start making sense of it like 
they do. Our maths are what they are. And theirs… they are fine, but sometimes they just 
don’t fit in.  
Maria : We are not in the classroom to learn their mathematics but to learn ours. That’s what 
the exams are about. (…) I am not expected to learn Murshed’s way of subtracting.  

It is well known that there are different algorithms for arithmetic operations. My point here is 
not about “the” way to divide in Mexico vs. the U.S. or “the” way to subtract in Spain vs. 
Morocco. My point is about whose knowledge is being valued and how these different 
valorizations may affect students’ participation in mathematics classes. This brings me to a key 
concept in my research—the notion of participation. 

Does Everybody have a Voice? 
I try to understand and in class, I listen and ask questions but most of the time 

I have absolutely no idea what is going on. And what my peers say to me sounds 
like a dialect of the Alaskan Eskimo. [Carol, preservice elementary teacher] 

There is hope yet when I can legally use my methods to solve a problem. 
[Vicky, preservice elementary teacher] 

Carol and Vicky were students in the same section of a mathematics content course for 
preservice elementary teachers, for which I was the instructor. In this course I used a discussion-
based approach, in which students largely worked in small groups on mathematical tasks that 
were often intended to create cognitive conflict (such as the proportional reasoning task alluded 
to earlier (Civil, 1989)). My approach (though not so clearly formulated at the time) was 
grounded on the idea of developing a community of learners in which students would feel 
comfortable questioning approaches and procedures they had taken for granted (e.g., why do we 
“invert and multiply” to divide fractions?). By encouraging different approaches to solving 
problems, I was aiming to open up the patterns of participation and, if possible, to undo the 
labeling that tends to classify learners as being “good at math” or “not good at math.” My efforts 
failed with Carol, who often expressed her frustration at an approach that in her view exposed 
her as a failure to her peers and the instructor. She would have preferred a lecture-based 
approach, in which she was allowed to “remain anonymous.” Vicky was also very anxious about 
her mathematics knowledge and kept on saying how she “couldn’t do it using algebra” and 
would often look up to her peers who could use algebra. But Vicky became more comfortable 
participating in group discussions once she saw that her methods were accepted. Although she 
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tended to label her methods as not being the “math way,” the fact is that her approaches were 
often conceptually clearer than the more “traditional” ones her peers used. For example, for the 
following problem, “If you need 1 1/3 cups of sugar and 4 cups of four to bake a cake, how many 
cups of sugar will you need if you want to use 7 cups of flour?” Vicky drew the cups of sugar 
and flour and immediately saw the correspondence between 1/3 cup of sugar and 1 cup of flour, 
thus concluding that she would need 2 1/3 cups of sugar. Vicky seemed to approach the problem 
in what could be called a more informal way, using everyday type reasoning. The rest of her 
peers opted for an algebraic approach quite typical of how ratio problems are solved in school. 
Some of them became lost in the procedure, due to their difficulties handling mixed numbers. 

This is just one illustration of the many examples that I have encountered in my work with 
preservice elementary teachers (and now more recently with parents), in which adult learners 
who often feel unsuccessful in school mathematics, bring in ways of reasoning that are clearer 
and more efficient than the school-based procedures. Certainly, the issue of how general are 
these informal / out-of-school procedures remains. Would Vicky have been able to solve the 
sugar-flour problem had the numbers involved been others? Or when is it appropriate for 
students to bring in their everyday knowledge? For example, Cooper and Dunne (2000) illustrate 
some of the problems that occur when students (particularly working class students)  “import 
their everyday knowledge when it is ‘inappropriate’ to do so” (p. 43). But my interest in these 
out-of-school approaches is on their potential for the participation of more students in the 
learning process.  

My interest in the concept of participation started with trying to understand the obstacles to 
participation in the sense of students not feeling confident in or not valuing their own approaches 
to mathematics because they were not the “school way.” The large body of research on situated 
cognition and on out-of-school mathematics versus in-school mathematics is particularly relevant 
to my work (Brenner & Moschkovich, 2002; Brown, Collins, & Duguid, 1989; Lave, 1988; 
Nunes, Schliemann, & Carraher, 1993). Many of these studies document how successful and 
resourceful people are at inventing their own methods of solution to tackle tasks that they see as 
relevant in their everyday life. Yet, some of these studies also document a lower performance 
once a “similar” task is presented in a school context. To me, a key question is that asked by 
Hoyles (1991), “is it possible to capture the power and motivation of informal non-school 
learning environments for use as a basis for school mathematics?” (p. 149) (italics in original). 
This interest in bridging in-school and out-of-school mathematics and thus my interest in 
opening up the participation patterns moved from a somehow cognitive emphasis (as in an 
intellectual interest in different approaches to problems) to a more social and cultural emphasis 
when I started working in primarily low-income, Latino communities. I was struck by how 
resourceful and involved in the everyday working of the household some of the children were, 
while these same children were not particularly “successful” by school standards (Civil & 
Andrade, 2002). I was intrigued by what it would look like to try to develop learning experiences 
that would build on these students’ (and their families) knowledge and experiences while 
ensuring that they advance in their learning of academic mathematics.  

In Civil (in press) I discuss some of our efforts towards developing a mathematical 
apprenticeship in a school setting by embedding the mathematical learning in the “context of a 
sociocultural activity in which the pupils want to participate and in which they are able to 
participate given their actual abilities” (van Oers, 1996, p. 104). A construction module in a 
second grade class highlights my dilemmas at developing an approach to teaching and learning 
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that emphasizes collaboration and engagement in activities that are important to the practices of 
the community (Lave, 1996; Rogoff, 1994), but also brings the mathematics to the foreground. 
The garden module in a fourth/ fifth grade classroom presents an example in which sociocultural 
practices are combined with cognitive approaches (e.g., enlarging a garden is followed up by a 
school task on exploring area of an irregular shape; task-based interviews are used to assess 
students’ understanding of certain aspects of measurement). 

Finally, there is another aspect of participation that was probably present all along in my 
work but has become more prominent in my recent research. It relates back to the concept of 
valorization of knowledge and whose knowledge is valued / recognized and when or where. We 
have looked at these issues in relation to the concept of norms (Yackel & Cobb, 1996), as in, for 
example, how immigrant students may be interpreting the norms differently from local students 
(Civil & Planas, 2004; Planas & Civil, 2002). In Civil (2002), I document a teaching innovation 
in a fifth grade class in which we tried to combine three forms of mathematics: school 
mathematics, mathematicians’ mathematics, and everyday mathematics. Although some of the 
patterns of participation changed and opened up, overall the social and sociomathematical norms 
that were in place (and conflicted with those from our innovation) and the influence of status and 
students’ perceptions of each other played a role in who had a voice when in the classroom. The 
“popular” students (which in that school often meant those in sports teams such as basketball or 
softball) and the students in the Gifted and Talented program had a voice in the mathematical 
discussions. As Lampert, Rittenhouse, and Crumbaugh (1996) write, “children do not readily 
separate the quality of ideas from the person expressing those ideas in judging the veracity of 
assertions” (p. 740). 

Some Issues for Reflection  
In this section I raise what I view are some issues derived from what I have presented so far 

in this paper. One such issue relates to the difficulties in developing mathematical learning 
experiences that while being true to the context (e.g., the construction or the garden modules) are 
also true to our mathematical agenda (Civil, in press). These difficulties, I argue, have to do 
largely with our values as to what we count as mathematics, as well as our own academic 
training that may make it harder to uncover the mathematics in everyday contexts. As a teacher 
in one of our study groups once asked, “if you have too much school mathematics, does it erase 
our practical mathematics?” In our work we have found the pedagogical transformation of 
community knowledge into school mathematics learning opportunities to be a non-trivial 
endeavor.  

Students’ views as to what they are willing to count as valid mathematics also play a key role 
in this process. Do students view the mathematics in the teaching innovations as “real 
mathematics”? Students may have indeed been involved in rich mathematical opportunities but if 
they do not see what they did as the mathematics they should be learning in school, or if the 
connections to what they may expect to see in the next grade are not made, are we helping these 
students? As I reflect on our efforts to try to bring change to the teaching of mathematics in these 
classrooms, I find Spradbery’s (1976) work particularly relevant (even though it is 30 years 
old!). Spradbery describes the experiences of a group of sixteen-year-old students unsuccessful 
at school mathematics. Outside school, some of these students kept and raced pigeons. The 
author goes on to describe some of the mathematics embedded in this practice, and then writes: 

Although the mathematician may regard certain aspects of pigeon-keeping (along 
with many of the other daily activities of children) as being ‘mathematical’, such 
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knowledge appears to have little value or status in the classroom. For ‘Maths’ to 
be ‘Maths’ (or ‘proper Maths’, as a number of children described it) it has to be 
separated from other everyday knowledge. (p. 237) 

Spradbery (1976) describes the opposition among students—who had so far failed at school 
mathematics—towards an innovative curriculum that was intended to be more liberating by 
presenting situations for which the students were encouraged to use their own intuitions and 
knowledge. In our work, we also had students questioning whether what they were doing was 
mathematics. Currently, I often find myself wondering about innovations that try to contextualize 
the mathematics in situations that claim to be more relevant to the reality of the working-class 
Latino students with whom we work. Who decides what is relevant?  

Another related issue in our work relates to the notion of norms (Yackel & Cobb, 1996). The 
teaching innovations we have tried to implement combine notions of communities of learners in 
which students engage with mathematics as mathematicians (Lampert, 1990) with notions of 
apprenticeship learning and other characteristics of out-of-school learning. The norms for these 
innovations had to be very different from the norms that were often in place (and well 
established) in the school where we conducted our work. Students resisted our approaches. One 
of the main obstacles we encountered with the fifth graders was their reluctance to engage in 
discussions about mathematical problems. As the teacher explained, “they [students] didn’t see 
the point of the discussion; they didn’t like waiting on everybody to talk. …They didn’t feel like 
that was work. To them, work is filling out worksheets and turning the paper in and seeing if 
they got it right or wrong”  (Civil, 2002; in press). 

A Closer Look at an Example of Bridging In-school and Out-of-school Learning 
I have briefly referred to some of the teaching innovations that we tried over the years and 

that are described in more detail elsewhere. Here I describe a teaching experience that took place 
quite a few years ago and that for many will seem like a trip to the past because it is based on the 
use of a Logo environment. What we used (i.e., Logo) is not the point here; what I want to do is 
to illustrate some of the issues raised earlier in this paper and provide an example of an 
experience in which we tried to develop a learning environment that captured some of the 
characteristics of out-of-school learning while pushing for the mathematics. The choice of Logo 
reflects my cognitive inclination, as it provides an environment in which with very basic few 
commands, students can right away explore mathematics. At the same time, our approach took 
into account the context, hence showing my socio-cultural inclination. This was a particularly 
difficult fifth grade classroom in which the academic agenda of the teacher (who was new to the 
school) clashed with the children’s agenda. One of the researchers conducted interviews with 
each of the children to gain a better understanding of their social context. As she shared with me, 
“learning about what some of these children were going through in their daily lives made their 
resistance to change in the classroom quite understandable. Change for many of these children 
came as yet another form of upheaval in their already hectic lives.” It was under these conditions 
that we tried to create a change to the teaching and learning of mathematics. A key feature of the 
learning innovation we envisioned was the sharing of ideas in a safe and supportive environment. 
Establishing this feature was a major obstacle in this classroom, given that the class was 
dominated by a core power group of five boys, who through popularity and intimidation 
manipulated the classroom dynamics. 

We introduced the use of Logo to the whole class and after a few sessions, we offered the 
option to continue working in the computer environment. A group of eight children expressed 
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interest in doing this (but one dropped after two sessions). The rest of the class (17) stayed in the 
regular classroom with the teacher. With this group of seven children (who were representative 
of the diversity in the classroom) we set out to develop an environment that would have some of 
the characteristics of out-of-school learning, which we had identified from the literature (Brown, 
Collins, & Duguid, 1989; Hoyles, 1991; Lave, 1988, 1996; Rogoff, 1994), namely: 1) Learning 
by apprenticeship; 2) Working on contextualized problems; 3) Control remains largely in the 
hands of the person working on the task; and 4) Mathematics is often hidden; it is not the center 
of attention and may actually be abandoned in the solution process. Rogoff (1994) discusses 
three models of teaching and learning. In the transmission model, knowledge from others is 
passed on to the learner (adult-centered) and in the acquisition model the learner discovers the 
knowledge on her or his own (child-centered). In the participation model, the learner participates 
in a community of learners. In this model, learning takes places through collaboration and 
engagement in activities that are important to the practices of the community. I argue that this 
group of seven students learned through participation in a community of practice that emerged in 
the computer lab. Logo was new to all students in this class. In a sense Logo had an “equalizer 
effect” that may have allowed for a fresh start for all the students who stayed in the group. They 
were able to put aside their roles and labels. It allowed for children who had been labeled as 
being “less successful” in academic subjects to shine as they demonstrated their expertise and as 
they followed their own inquiries. Students who barely spoke to each other in the regular 
classroom started trading discoveries about Logo. For example, one student became an expert at 
using color; another became an expert at writing procedures on the flip side (this is the area 
where procedures are written, as opposed to immediate mode programming); another student, 
using his prior knowledge of the computer system, explored all the different “gadgets” included 
in Logo. What we soon noticed was that students were constantly sharing ideas and were well 
aware of who knew what. We saw “learning traveling through the lab” and students learning 
through interactions with their peers. It is in this sense that we believe that what took place in 
this Logo group had some of the characteristics of learning through apprenticeship. This idea of 
apprenticing is also addressed by Moll and Greenberg (1990), who write, “it is when the content 
of interactions is important or needed that people are motivated to establish the social contexts 
for the transfer or application of knowledge and other resources” (p. 326). I next give a glimpse 
of the dynamics in this group with a focus on the mathematical explorations. 

A Mathematical Community of Practice? 
While working on a task on how to draw a hexagon, two students (Daniel and Ben) found a 

way to make a variety of star polygons. Soon thereafter, two other students (Jennifer and Jorge) 
became interested in drawing star polygons. We discussed with Jennifer and Jorge some of the 
mathematics involved in this task. From a previous discussion on turns (grounded in part on 
several students’ knowledge about skateboarding), these two students were familiar with the 
notion of 720 for two whole turns. They then found 720 ÷ 5 and tested the procedure: repeat 5 
[fd 40 rt 144], which produced a five-pointed star. Following this, Jorge started working on 
looking for divisors of 720 using, at times, the calculator available in the computer. For example, 
he came up with: 720 = 72 x 10. He then typed: repeat 10 [fd 40 rt 72], except that this 
command did not produce a star polygon. On his own, Jorge continued exploring and found: 
repeat 9 [fd 70 rt 80], which does produce a star polygon. Through a process of mathematical 
calculations and manipulation of the commands, Jorge found combinations that produced star 
polygons and recorded them on the flip side. 
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As Jorge and Jennifer were working on star polygons, the question of “how to draw a circle” 
arose. Several of the students became interested in this challenge. On the blackboard, Jennifer 
drew a 90º angle, and then a 40º (exterior) angle. She then said, pointing to her drawing, “it’s 
going to have to be a very subtle turn, a subtle angle.” She had the correct image of turning 
minutely (a subtle turn) every time, however, she did not quite know how to do it on the 
computer. Ben, meanwhile, did get the turtle to draw a circle. In response to Ben’s 
accomplishment, which came as a result of step-by-step commands, our challenge to him was to 
draw a circle in one single command. Though the challenge was made to Ben, it was Jorge who 
took it up and explored with the template repeat __ [ fd 1 rt 1]. After trying several inputs, 360 
clicked all of a sudden. Sara, meanwhile, who was not sitting near this group of students, had 
also figured out how to make a circle and quickly shared it with Carolina and Judith who ended 
up incorporating a procedure to draw a circle as part of their final projects. Daniel also ended up 
working with circles for his final project because he became interested in creating a spiraling 
tunnel. To do this he needed circles of differing sizes, which led to his learning about variables in 
Logo. Daniel ended up with this procedure:  

To c :n 
 repeat 180  [fd :n rt 2]  
end 

In order to get the desired effect of increasingly larger circles within close proximity to each 
other, the need for decimals arose. We were not aware of what these children knew about 
decimals. We suggested that he try c .7, c .8. Daniel explored with these numbers. The first 
“surprise” came up when, after typing c .9, he typed c .10 and a smaller circle appeared. He then 
tried c 10, which gave him a much larger “circle” (actually, it did not look at all like a circle!). 
Following this, we drew a number line on the blackboard and asked Daniel to place .9 and 10 on 
a number line. He appeared to be confused by this question. Jennifer, who was working on 
something else but sitting near the blackboard, became interested in the conversation and helped 
him out. Daniel seemed unclear about what decimals were. He was not sure about what “that 
point,” as he called it, was doing. We then switched to decimal fractions, since the students had 
worked with these in class. This seemed to help, but it was difficult to tell whether there was 
understanding or rather pattern recognition taking place. In looking at 12/10, 14/10, Daniel 
quickly supplied 13/10 and 11/10. His final project, however, went back to the decimal notation, 
this time in an increasing sequence from .1 to 1.9 (by increments of .1). In the presentation of 
their Logo projects to the whole class, students were intrigued by Daniel’s procedure “c” and the 
various inputs. They asked Daniel to try c .50 and were surprised by the fact that it was the same 
as c .5. They then suggested c .47, expecting something bigger, and again were puzzled with the 
outcome. Looking back at Daniel’s work, we think that similar scenarios could be turned into an 
opportunity to explore students’ understanding of decimal numbers. 

I would like to emphasize two salient features of the work with these seven children, at the 
social and cognitive levels. The social behavior governing our work in the lab with these seven 
children was a complete change from that present in the regular classroom. While in the lab, we 
did not witness any put downs or negative comments directed at each other or at us (several of 
these same children did not get along in the regular classroom). Students behaved in a very polite 
manner, informing us when they were leaving the room, and being overall very cooperative. This 
occurred in a natural way, since we never talked about what behavior we expected from them. 
We focused on their work on the computers. The students seemed relaxed, happy to be in the lab, 
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and while quite individualistic in their work on the computers, there was considerable chitchat 
and sharing of ideas. 

Engaging with the students in conversations about their work was difficult. The teacher had 
mentioned to us that many of the children in the classroom did not seem to trust adults and were 
not willing to converse. An added difficulty, perhaps, was that we were trying to dialogue with 
them on an academic topic. As we tried to have them tell us more about what they wanted to do 
or what they were thinking, we were often met with silence or comments we could not quite 
follow. But with most of them, we succeeded in engaging in a conversation on their problem 
solving strategies for their project. For example, with Jennifer, it was on patterns; with Daniel, 
decimals; with Jorge, how to make sure the football field fit on the screen and was an accurate 
(to scale) representation; and with Carolina, how and where to put the moon and how to obtain a 
visually aesthetic effect “more efficiently.” The cognitive gains became clearer as the students 
presented their projects to the class as a whole. The Logo students were knowledgeable and 
comfortable with the language of the Logo environment. Each child spoke as an expert, 
demonstrating considerable command of the situation and clarity in the presentation, in what was 
for many of them a less than receptive audience (i.e., the reality of the classroom). 

A Look at Our Current Work 
The Logo project I just presented allowed me to experience some of the theoretical constructs 

such as characteristics of out-of-school learning, communities of practice, mediation, and 
constructivism in the context of students engaging in mathematical explorations. That work 
underscored the importance of understanding and paying attention to the social context. In our 
current work we are determined about the concept of context as we take a holistic approach to 
the mathematics education of working-class Latino children: parents, teachers, children are 
central to our work. Most of my research at the moment takes place at a school that is 90% 
Latino, 26% English Language Learners, and with 95% of the students eligible for free or 
reduced lunch (the average for the state of Arizona is 49%). At this school we have several 
research activities in place, including: 1) a teacher study group aimed at teachers reflecting on 
their practice; teachers explore mathematical content for themselves, as learners, but also reflect 
on students’ work, and engage in discussion around language and mathematics; 2) classroom 
visits to not only observe the mathematics instruction but also to support the teachers and 
students; 3) a parental component in which parents take part in mathematics workshops 
(sometimes with their children and facilitated, in part, by their children’s teachers); 4) an after-
school mathematics club in which children are encouraged to work on contextualized 
mathematical projects (e.g. a garden; getting to know your community) and where both 
languages (English and Spanish) are used (bilingual education is severely limited in this state, 
thus children have few opportunities to engage in academic discourse about mathematics in 
Spanish during their regular school hours). All these research activities emphasize our focus on 
teachers, students, and parents. 

A focus on teachers 
The mathematics curriculum in place at this school is “reform-based” and the teachers with 

whom we work are working hard at implementing it. The curriculum is relatively new for most 
of the teachers and, as with any curriculum, it portrays a certain view of what it means to do 
mathematics. In some aspects, that view is not very different from what teachers at this school 
have been engaged in throughout their participation in professional development experiences. 
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For example, in these experiences they learned about group work, hands-on materials, open-
ended problems, and teaching for understanding. But, as I discuss in Civil (2006), some of these 
professional development efforts aimed at helping teachers teach using a “reform-approach” 
leave me wondering whether teaching mathematics was becoming a smorgasbord of activities 
with no apparent road map. At this school the fact that teachers are expected to use a specific 
curriculum provides to a certain extent this road map that I saw lacking at other places, years 
back. This is not to say that it is unproblematic. I am particularly intrigued by how teachers make 
sense out of the curriculum and how they decide on which tasks to implement and what that 
implementation looks like. The work of Stein, Smith, Henningsen, and Silver (2000) on the 
cognitive demands of tasks is particularly helpful to my analysis of classroom teaching at this 
school. But in addition to the content demands of the tasks, I am also interested in what kind of 
support (affective and cognitive) the teacher and students create in the classroom to encourage 
the mathematical participation of all students. For this area, Empson’s (2003) use of participant 
frameworks in her analysis of two low-performing students is quite relevant as I look at 
interactions in the classroom. And a third area of interest is what view of what it means to do 
mathematics is being conveyed or co-constructed in these classrooms. 

I am currently in the middle of analyzing data from several videotaped lessons from a 
fourth/fifth grade classroom with my focus being on mathematical discourse and in particular on 
students’ reasoning. These three areas of interest I just mentioned (nature and demands of tasks; 
support; view of mathematics) are closely intertwined in my analysis. For example, one of the 
lessons focused on solving word-problems on multiplication and division. The students worked 
in groups and for each problem they had to 1) demonstrate how they solve the word problem; 2) 
write an equation; 3) solve; 4) explain the process. One of the problems was “a restaurant serves 
different types of sandwiches; it has four different types of meat (turkey, ham, baloney, and roast 
beef) and three different types of cheese (Swiss, Cheddar, and Jalapeño). How many different 
sandwich combinations can the restaurant sell?” Students approached this problem in a variety 
of ways, using several different representations in their solutions. All the students but two 
interpreted the problem as “expected,” thus leading to 12 different kinds of sandwich. These two 
students, who were working together, tried to find different combinations, that is, with 2 kinds of 
meat and 1 cheese, 3 kinds of meat and 1 cheese, or 2 kinds of meat and 2 types of cheese, and 
so on, making it a much more demanding problem. The teacher encouraged the different groups 
in their work, as she walked around the room. She then asked some of the groups to present, and 
as they presented, she asked them questions that related to the idea of making sense “why did 
you choose to multiply?”, or “why did you decide on that equation?” When a group presented 
their work on a different problem in which they had first divided incorrectly (and they showed 
that incorrect way), the teacher said “you see, they did it four different ways, and three didn’t 
make sense to them, but they kept with it and they got it.” And later on, she said, talking in 
general about the different ways to solve a problem, “remember, you never give up; look at all 
the different ways you could do it.” It is true, however, that the teacher seemed somewhat at a 
loss with the two children who approached the sandwich problem by looking at combinations 
differently form all the other students. But although she did not really probe these two children 
much on the mathematics, she encouraged them to pursue their thinking and invited them to 
present it to the class. She certainly offered them (as well as the other students) affective support 
and to an extent cognitive support. Through her emphasis on making sense, looking for and at 
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different ways, persistence, this teacher is trying to convey a view of mathematics as an area of 
inquiry and creativity. 

Our analysis of classrooms is only a piece of this holistic approach in which we try to 
understand the interactions of the linguistic, cultural, social and political contexts with the 
teaching and learning of mathematics by paying attention to the children, their parents and their 
teachers. In the next two sections we focus on parents by looking at parent-child interactions 
around arithmetic, and we focus on students, by presenting an incipient case study of a child to 
illustrate how we are looking at children as learners of mathematics. 

A focus on parents 
In Civil, Planas and Quintos (2005), we use a Bourdieuian perspective to interpret parents’ 

perspectives on their children’s mathematics education. In that article we argue for the need to 
know more about students’ social contexts and in particular about their parents’ perceptions of 
their children’s mathematics education as part of our efforts to gain a better understanding of 
students’ performance in mathematics. As Marisol, a mother in a previous research project tells 
us, “parents and children come together.” Thus, at this school we are working on this idea of 
parents and children coming together and, based on a prior research project in which parents and 
teachers worked together, we are also building on the lessons learned from that experience (Civil 
& Bernier, 2006) and bringing in the teachers.  

A particular emphasis of this school’s curriculum is the development of flexibility when 
working with numbers. For example, in the 4th/5th grade class, to multiply 23 by 14, a student 
may do (20 + 3) (10 + 4), while another student may do (5 + 5 + 4) (10 + 10 + 3)). Some of the 
students seem to enjoy coming up with quite complicated and, I would argue, rather inefficient 
ways to break the numbers. But they appear to enjoy doing this (and in some cases, when I have 
asked them, they are aware that there are more efficient ways to break apart the numbers). Do 
they do it for fun? Or do they think that that is the goal of the activity, to come up with 
“complicated” ways to break apart the numbers? If that is the case, what view of mathematics are 
they developing? How are the tasks being interpreted is a question that I find myself asking, and 
not only about the students but the teachers too, as some of these approaches to doing 
mathematics are new to them also. How tasks are being interpreted by the different parties 
involved is particularly important in classrooms that are trying to implement a different approach 
to mathematics teaching and learning, as Lerman and Zevenbergen (2004) point out:  

Bernstein (1996) is detailed in explaining how power and control are translated 
into different pedagogies; the implications are that if students are to be successful 
they need to recognise the unspoken, or invisible, aspects of some pedagogies, 
particularly reform ones, as we discuss later. Two important considerations need 
to be made; one is how tasks are framed for students—the issue of 
contextualisation and recontextualisation--, and the second is how they are 
answered by the students—the issue of recognition and realisation rules (p. 29). 

In our workshops with parents and children one of the goals is to introduce the parents to 
these other ways to do arithmetic. So, for example, at the 2nd/3rd grade level, to do 23 + 46 +7, 
children may do 20 + 40, then 7 +3, and finally add the 6 to the prior result. What we are 
currently analyzing shows the parents trying to teach their children the way they were taught (the 
“traditional” algorithm) in a very procedural way, with an emphasis on how to write it 
“correctly.” For example, in the addition 23 + 46 + 7, a father showed his daughter how to write 
it vertically and put a 0 in front of the 7 to keep the numbers lined up. In another case, I was 
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working with a mother and her son; I explained to her (based on the handout the teacher had 
given them) a way to do 51 – 22 by first doing 30 – 22, 8, then adding the 21 we were missing 
from the 51. I next suggested to her that she try this strategy on 42 – 13; instead, the mother went 
back to 51 – 22, set it up vertically and started explaining in to her son “if you have 2, to get to 
10”; she wrote “8” but then realized that that is not what she wanted. I brought up again the 
strategy I just showed them, and she said, “but to me, it’s easier this way” [pointing to the 
vertical set up she had written on the paper]. She then walked her son through the “standard” 
subtraction procedure, “when the number on top is smaller, you ask for 1 from the one next to it, 
…”. The mother walked him through 51-22 and then encouraged him to try 42 –13. The mother 
helped him make the “2” into “12” and then the child asked, “do I put a 5?” pointing to the 4 in 
42. The mother said very calmly, “no, no 3.” After this, I tried to explain to the mother one of the 
approaches to subtraction that they were using in her son’s classroom, showing her how they 
start at 13, then they may jump to 15 (by adding 2), then to 20 (by adding 5), then maybe to 40 
(by adding 20) and finally to 42 (by adding 2), and then they add all the jumps to find the 
answer. As I was explaining this, I remember thinking “she is probably wondering, why are we 
teaching this, when her method is so much quicker.” We are in the preliminary analysis of these 
interactions but we can already see how different views about teaching and learning mathematics 
are in play and can potentially come into conflict, even with the parents who are coming to the 
workshops and therefore being exposed to how and why their children are being taught this 
“different” way. 

A focus on learners: The case of Julián 
Julián was born in the U.S. but his parents are from México and he speaks Spanish at home. 

By fifth grade he had attended five different schools, 2 in México and 3 in the U.S. Part of the 
reason for the change in schools had to do with his family moving, but another part was his not 
feeling comfortable and thus changing schools, “the first school I went to was, Kindergarten, and 
there were these kids that always called me names. It hurt me. And my teacher never understood 
me” [interview, February 2006]. When referring to a more recent school, from which he also 
moved out to come to “our” school), he said, “she [the teacher at that other school] embarrassed 
me. … Sometimes she was okay, but, but then when I asked questions, she said, ‘why are you 
asking the same question over and over?’ And then, that’s when, ah, when she embarrassed me, 
and I didn’t understand it. ‘Well, you should, you should if you were paying attention,’ and I 
was.” 

When asked about his perception as a student of mathematics in the classroom, he placed 
himself as third best. He takes his work very seriously: his homework is carefully written; during 
the scale-drawing project in the after-school mathematics club, he inquired about whether they 
were going to also make a three-dimensional model, which would then involve measuring the 
height of the walls. The facilitator said that it was up to them; Julián then told one of his peers 
(who did not seem interested at all in doing it), “you don’t need it, I have to, I want to do the 
model.” In many ways, Julián is a “school boy”; he is quite good at following the rules of school 
and following what the teacher tells them to do. On the problem-solving day I referred to earlier 
(the sandwich problem), another problem they worked on was: “this year Mark saved $420; last 
year he only saved $60. How many times as much money did he save this year than last year?” 
Julián and two other boys, Alberto and Leo, worked on this problem together. Alberto, who often 
seemed to be off task or claimed being “lost,” right away said, “so, this is a division problem.” 
Julián first said yes, then no and then said, “we need to subtract.” As their first step on their 



Vol.1-46  PME-NA 2006 Proceedings 

 

paper they wrote the subtraction (420-60=360). Alberto, “we’re done”; Julián, “no, we are not… 
for an equation.” They seemed unsure as to what to write for an equation (this is a topic that I am 
currently trying to understand better, as the writing of equations seems to be very important for 
this teacher; it brings back the issue of how, in this case the teacher, is interpreting the task (i.e., 
why did she want them to write an equation for each of these problems?)). They finally settled on 
$420 - $60 = N for their equation and Julián moved to the third step of instructions on the board 
(1) demonstrate; 2) write an equation; 3) solve; 4) explain your process) and says:  

Julián: solve it [as if reading the instructions] 
Alberto: we already solved it. 
Julián: we did, but how can we demonstrate it, yeah, we solved it up here (points at the 
subtraction) but… 
Alberto: just say that (points at the subtraction) 
Julián: that’s all we did 

While Alberto clearly indicates that they are done with the problem, Julián looks worried as 
he feels that what they have done does not reflect the four steps they were asked to have; they 
have numbered their steps and they only have two. This episode brings up many issues: what 
was Leo’s role in all of this? He does not say anything, though appears to be following what his 
classmates are doing; Alberto had the right idea, to divide, yet Julián’s is the one that prevails, 
why? Alberto seems willing to let go of the instructions the teacher has given them, as he 
considers they have solved the problem, while Julián struggles to make sense out of the 
directions, in particular “demonstrate” versus “solve.” Does he want to have the four steps 
because that is what the teacher is asking for? Does he realize that depending on how they 
approach the problem, some of these steps may be unnecessary? How does Julián decide when to 
follow the rules and when to “challenge” them?  

Julián does seem aware of the school game and the artificiality of school tasks. To support 
their exploration of factors, prime numbers and other elementary number theory concepts, I 
presented a problem that involves machines that stretch bubble gum, where machine n stretches a 
piece of gum to a length n times its original length. So, for example, if I wanted to stretch a one-
inch bubble-gum stick to 30 inches, and the machine 30 is broken, I could use machine 6 
followed by machine 5. Julián right away said to the whole class, “but it’s still the same amount 
of bubble gum.” He is right; the way the problem is worded, these machines stretch the lengths 
of the sticks of gum but do not increase the amount of actual gum. Julián understood the problem 
and was able to offer different combinations for the various numbers I gave them. He knew how 
to interpreted the task from a school point of view. I doubt that Julián in a formal assessment 
situation would let his everyday or common sense interpretation “interfere” with his performance 
(Cooper & Dunne, 2000). 

To a certain extent, in the after-school mathematics club we try to develop an environment in 
which school and everyday mathematics are brought together along the lines of my previous 
research. Because we see these children as mathematics learners, both in the school setting and 
in the after-school, we can address some of the issues brought up by Frankenstein and Powell 
(1994) in relation to the separation (and maybe even opposition) between everyday and academic 
knowledge. We can see how a concept such as that of scale, which is often studied in school 
mathematics, is applied to a task that while school-based (e.g., making a scale drawing of their 
classroom), because it is done in a somewhat informal setting, takes on a different flavor. As 
mentioned earlier, Julián took the scale-drawing project very seriously. At one point in that 
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project the facilitator (a university researcher) is working with another student using a drawing 
that he (the facilitator) had made of the room showing some dimensions. Julián is working on his 
own sketch. All of a sudden Julián looks over their work and asks about one measurement that 
they have on the facilitator’s sheet. From there, a conversation follows in which Julián 
challenges the facilitator’s drawing and tells him he has the wrong measurements for one of the 
sides, “yes [takes his pencil and starts drawing on the facilitator’s sketch], from here to here, it 
has to go till here, you didn’t draw it correctly; they have to be the same [he then starts pointing 
to the walls in the classroom], look they are the same.” And after that, Julián just goes back to his 
sketch.  

One of our goals in this research is to focus on Latino, low-income students as powerful 
thinkers and doers of mathematics, in opposition to the deficit approach that is often used to 
describe these students. In the scale-drawing project, we see Julián as a confident student, 
immersed in the task, while offering suggestions to one of his peers and engaging in a content-
based conversation with the adult facilitator. Crucial to capturing the case of Julián is the 
affective aspect (uncovered through rapport and interviews), Julián in the classroom (and hence 
the teacher’s role), and in the after-school setting, as a place to pursue our understanding of 
Julián as a learner of mathematics.  

Moschkovich (1999) points out that we do not know enough about the participation 
structures in the home cultures of Latino students in our local contexts. Furthermore, 
Moschkovich (in press), in her analysis of the potential contributions of non-mathematics 
education studies to the study of bilingual mathematics learners, writes, “sociolinguistics also 
suggests that analyses of classroom communication should be informed by data on students’ 
experiences, building profiles of students’ language history, educational background, and 
attitudes towards bilingual communication for students, peers, teachers, and parents” (p. 29). 
Through our current research we hope to address the issues that Moschkovich raises. We are 
developing case studies that cut across different activities and people and use multiple sources of 
data: video-tapes and field notes of classroom and after-school mathematics club sessions; 
interviews (affective / perceptions and cognitive) with children, teachers, and parents; 
observations and video-tapes of parents’ workshops. Our goal is to try to capture the experience 
as learners of mathematics of a few of these children by looking at them doing mathematics in 1) 
the regular classroom; 2) the after-school mathematics club; 3) (if possible), out-of-school 
activities; 4) Through their parents’ eyes or with their parents. This research is allowing me to 
bring together my cognitive and my socio-cultural interests to hopefully gain a better 
understanding of the complexity of what it means to teach and learn mathematics. 

Endnotes  
1. Parts of this paper are adapted from Civil, 2006. 
2. CEMELA (Center for the Mathematics Education of Latinos/as) is funded by the National 

Science Foundation under grant – ESI-0424983. The views expressed here are those of the 
author and do not necessarily reflect the views of the funding agency. 
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This paper discusses the results of a professional development program aimed at in-service 
middle school mathematics teachers. The method we used consisted in videotaping carefully 
prepared mathematics classroom sessions with 8th grade middle school students (13-14 year 
olds). These sessions focused on presenting selected curricular topics which students confronted 
through a series of articulated problems situations. We intentionally presented problems that did 
not require the use of high-level mathematical knowledge, rather the use of elementary 
mathematics and mathematical inquiry. Once the videos were ready, 10 monthly workshops 
aimed at in-service teachers were carried out in which the teachers were asked to face the same 
problem situations posed to students.  In the closing part of each workshop, teachers watched the 
videos of the classroom sessions with students and were asked to discuss a set of questions aimed 
at encouraging them to reflect on their practice. These teacher workshops were also videotaped. 
Further analysis of the data suggests that the teachers experienced relevant changes both in 
their conceptions of teaching and learning mathematics as well as in their mathematical content 
knowledge.  

The research carried out during the last 30 years on the learning of mathematics has provided 
an important knowledge base that raises the need for new educational strategies, new paradigms 
for teacher education, new curricula and new evaluation procedures (Kilpatrick, 1992). The 
results of that research have influenced the mathematics curriculum of middle school and have 
raised new demands for the teachers’ professional task. The theoretical positions based on social 
constructivism have also had an impact on educational programs. Briefly summarized these 
theories conceive knowledge as a product of the intellectual work of communities formed by 
creative individuals; these ideas are reflected in courses and materials aimed at making the 
teacher leave his role as a deliverer of concepts, basic facts and skills in order to become a tutor 
of his students’ development in mathematical thinking. (Cobb et al, 1990).  

The new paradigms in the ways of teaching not only entail attending to basic 
recommendations, like asking the students to solve different types of problems or motivating 
them towards greater class participation; they also demand that teachers make deep changes in 
their mathematical knowledge and their conceptions of learning and teaching mathematics. Such 
theoretical positions propose that each student arrives in the classroom with his own ideas and 
that the teacher must bring to the classroom new experiences that induce his students to collect 
data to affirm or refute their conjectures. 

This implies that teachers make evident in their everyday practice they are convinced that 
their students are not “containers expecting to be filled” and that they see their students as 
intellectually creative subjects able to formulate non-trivial questions, solve problems and 
construct theories and reasonable knowledge. This framework demands that teachers remove 
both themselves and the textbook from the role of intellectual authorities in the classroom, and 
that they deposit such authority in the rigorous arguments that they and their students produce 
(Thompson, 1992).  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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PME studies on mathematics teaching have focused on the role played by teachers in 
educational improvement (Llinares & Krainer, 2006). Particularly, during the past 15 years the 
Mexican mathematics curriculum for middle school has introduced reforms that require teachers 
to develop didactic approaches based on methods of inquiry centered on student learning. These 
reforms also demand the implementation of a number of teachers’ professional development 
programs. The assumption on which these programs are based is that the professional 
development of teachers will induce improvements in teaching and in students’ learning.  

This paper reports the work we have done in Mexico with in-service middle school 
mathematics teachers during the last few years. We begin by discussing our previous experience 
with teachers because it had an important influence on designing the method, instruments and 
teaching materials we used in the professional development program here reported. In a second 
section we describe and discuss the main elements of the present ongoing professional 
development program: the questions that guide its research component, the program goals the 
conditions in which it is being implemented, the profiles of the subjects participating in the 
project and the mathematical activities used. A third section of the paper deals with the 
preliminary findings we have henceforth. Finally, we put forward a set of concluding remarks 
regarding the work that we have done and the challenges that we believe it will be necessary to 
confront in the future.  

Background 
Our initial work with teachers grew out of a four-year-long professional development 

program conducted in 100 Mexican middle schools that in 1999 were equipped with symbolic 
calculators and materials especially designed to approach the curricular topics using this 
technology. As we expected, a good number of teachers enthusiastically joined the project from 
its outset and commenced using the equipment and materials in their classrooms; this was 
especially true for the youngest teachers. However, most of the more experienced teachers were 
rather skeptical and some overtly reluctant. Previous research work in this field indicates that 
effective use of these new resources requires important changes in teachers’ practices (Guin & 
Trouche, 1999; Cedillo, 2001; Artigue 2002; Lagrange et al., 2003). From the beginning of the 
project our data confirmed that one of the major challenges we had to face was that of helping 
teachers realize that they have real reasons to change (Cobb & McClain, 2001; Cedillo & Kieran, 
2003). To this end we prepared several strategies; among others, the discussion of research 
documents on the potential of using computer algebra systems in the classroom; the analysis of 
the innovative and promising approach presented in the curricular materials designed for the 
project; the discussion of reports informing the increasing and creative use of symbolic 
calculators within schools; and live classroom demonstrations with students conducted by project 
instructors and observed by teachers.  

The data gathered during the training sessions strongly suggest that the most influencing 
factor in convincing the teachers to take active part in the project were the opportunities the 
teachers had to observe what they called “students’ unexpected mathematical achievements” 
during the mathematics sessions conducted by the instructors. In many cases the teachers 
established an association between this mathematical progress and positive changes in students’ 
attitude towards mathematics in school (Cedillo, 2006). The following excerpt from an 
experienced teacher’s remarks during a project meeting exemplifies most teachers’ reactions to 
this aspect:  



Plenary Sessions  Vol.1-53 

 

“In the beginning I thought it was just one more fashionable project… The 
regular presence of the instructors in the school, the discussions we had, and 
mostly what I noticed the students learned, showed me that it was worth it to try, 
that there were many new and interesting things that actually worked… My 
students are what I care for most, that is why I have already decided that I will 
make an effort and try it… I have to say that I am convinced that the students 
were showing such progress mainly due to the ways in which the instructor deals 
with the class… During this time I have learned a lot from my students and it has 
a lot to do with the didactic approach used by the instructor… I have learned from 
him too. I was thinking of retiring, but now I am sure that it is worth it to take part 
in the project … I will continue here for a while”. 

The teaching style adopted by project instructors was guided by the principle of framing the 
classroom events according to the students’ ways of reasoning as opposed to students following 
their teacher’s ways of reasoning. By adopting such a principle we assume that learning is an 
active construction process that is socially shared by the learners and the teacher. This requires 
the teacher to play a different role. In order to briefly describe how we conceive that teacher’s 
role, we used the metaphor of conceiving the activity in the classroom as a multiple chess game; 
in such game the teacher is the expert player who simultaneously plays against 30 other players 
who can communicate and discuss amongst themselves before making a move. The expert makes 
the first move and has to be prepared to receive up to 30 different challenging responses; upon 
the second move on the chess board the expert player (teacher) has to give specific and 
challenging responses to each player, and so on. A major difference between the conventional 
chess game and the version we use in the metaphor is that in our chess game the teacher must 
manage the game in such ways that, eventually, the students legally win.  

This metaphor helped make us aware of the challenge that taking on this responsibility 
implied for teachers. It encapsulates the stance that mathematics learning is an active 
confrontation between learners and mathematic challenges. It encloses the position of seeing 
mathematics learning as an active confrontation of the learners with challenging mathematics. 
Krainer (2004) suggests that to fulfill that position it is necessary to consider both the prior 
students’ and prior teacher’s knowledge:  “It is unproductive to ignore students’ recent 
understanding and fresh ideas, and it is equally unproductive to ignore the knowledge produced 
by generations of mathematicians. Thus, teaching mathematics is a continuous dilemma situation 
for teachers: on the one hand, they need to start where the students are, and on the other they aim 
at supporting students in developing an understanding of the mathematical concepts that are part 
of a socio-historically constructed body of mathematical knowledge” (Krainer, 2004, p. 87). 

Lessons Learned 
We learned a number of lessons from the experience briefly described above that were the 

basis on which we shaped the professional development program that will be discussed in the 
next section. As a sort of summary, we describe these lessons in the paragraphs below: 

� The didactic strategy of framing the classroom events according to students’ ways of 
reasoning proved to be a powerful resource for teachers in regards to motivating their 
students to engage in productive learning processes. However, adopting this strategy 
is a highly challenging duty for the teacher to take on. It requires that teachers have 
both a strong mathematical content knowledge and a strong pedagogical content 
knowledge. In this respect, we found that those teachers who felt inspired to adopt 
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such a didactical strategy willingly engaged in a series of project workshops aimed at 
strengthening their mathematical content knowledge. The following excerpt from a 
teacher’s remarks illustrates this:  

“… I want to thank my colleagues for the support I received from them. 
There were times in which I was on the verge of not participating any more 
because I felt embarrassed by the questions I asked, but there was always 
somebody who was friendly and helped me... On the other hand, my students are 
leaving me behind… they have been able to solve problems that I did not 
understand… Sometimes I did not have a way to tell them if what they had done 
was correct or not. My students did not realize this because they were the ones 
who showed me their solutions and explained them to me. Finally I decided to tell 
my students that all of us in the class, including me, were learning, that sometimes 
I was ahead of them, but other times they were in the lead… and that I wanted all 
of us to learn together, to provide support for each other. I know that I still have 
much to learn. So far I can say that I have already learned that what I will never 
do again is ask them to give me the solution to a problem… When something gets 
too complicated for me I will ask for clues… If I want to advance I must solve the 
problems by myself… It does not matter if it takes me a long time to do it”. 

� The empirical evidence we gathered suggests that teachers assign almost no value to 
successful teaching experiments done somewhere else; that is, in school contexts 
different from the ones in which they work.  In contrast, the teachers react positively 
to teaching experiments carried out in their work places under the conditions in 
which they work. This data resonates with the research of Cobb & McClain (2001). 
In contrast, the teachers assigned an important value to the experience they had in 
joint meetings with colleagues from other schools. Our explanation for this apparent 
paradox is that in the joint meetings our discussion topic was the learning 
opportunities that arose for them in their classrooms.  

� We found that if teachers witness someone else helping their students learn and 
progress, then those teachers may be more proactive in regards to changing their 
practices and refreshing their mathematical content knowledge. Later on they are 
more likely to evidence that they have changed.  

� The data we collected indicates that the process of helping teachers change takes 
time. The first evidences of change were observed after one year of continuous work. 
The most evident changes took place after three years. 

The Present Study 
The report we are presenting here corresponds to the implementation of the Mathematics 

Teaching Program, which is one of three component programs constituting the Inter-American 
Program for Middle School Teachers and Teacher’s Educators Professional Development. The 
other two programs address the teaching of the sciences and of the Spanish language.  The whole 
program is funded by the Inter-American Development Bank and supported by the Mexican 
Ministry of Education, the Latin-American Institute for Educational Communication, and the 
National Pedagogical University. The program consists of two stages: the first (2003-2006) 
corresponds to its implementation in Mexico; in the second stage (2006-2009) the program will 
be extended to other Latin-American countries and include teacher’s educators. Currently the 
program is finishing its first stage. 
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The major aim of the Mathematics Teaching Program is to strengthen the mathematical and 
pedagogical content knowledge of in-service middle school mathematics teachers and teacher’s 
educators. Specific goals were to provide teachers with experiences that strengthen their 
knowledge about student thinking, and to create opportunities for teachers to explore how they 
might use their knowledge of students’ thinking for instruction. The underlying hypothesis in this 
program is that an improvement in the quality of teaching might have positive effects in 
students’ learning and competencies. We also assume that knowledge about students’ 
mathematical thinking provides teachers with a strong basis for their instruction and also for their 
own continued learning (Carpenter & Fennema, 1989). The professional development program 
was accompanied by a research project aimed at gathering data to assess its effects. 

Research Questions 
The following research questions guided this study: 

� When teachers and students are presented with the same set of mathematical problem 
situations, what are the effects of making teachers contrast their reasoning with the 
strategies used by 8th grade students?  

� In regards to teachers’ mathematical and pedagogical content knowledge, what are 
the effects of making teachers observe mathematics classes in which an instructor 
frames classroom events following the students’ ways of reasoning?  

Method 
We attempted to achieve our goal (i.e. strengthening teachers’ mathematical and pedagogical 

content knowledge) by adopting what proved to be the most successful strategies in the 
implementation of the symbolic calculators’ project described above. To this end, we decided to 
again take the didactical approach based on framing the classroom events according to students’ 
ways of reasoning and tested various ways to take advantage of what we observed as the positive 
impact of students’ achievements on making teachers reflect on their practices and eventually 
make favorable changes in their mathematical and pedagogical content knowledge.  

The ways in which we used these strategies needed to be reshaped because CAS technology 
is not included in the Inter-American Program and because it is aimed at middle school teachers 
and Teacher’s Educators. To this end, we constructed the program model by adapting and 
refining the aforementioned didactical approach to the facilitation of classroom sessions with 8th 
grade students. These sessions were videotaped in order to make their use possible in as many 
locations as needed. Designing workshops in which the teachers would confront the same 
problems that students faced meant that the problem situations faced by both would be the means 
that allowed us take advantage of the potential impact of students’ achievements. The workshops 
with teachers were videotaped; these videos were the main data sources for the research project 
and will be used when working with mathematics teachers’ educators. We assumed that this 
strategy might provide a valuable opportunity for the teachers to learn from students and for the 
teachers’ educators to learn from in-service teachers. 

Classroom Sessions  
In order to choose the mathematical content of the classroom sessions, both the research 

literature and the official mathematics curriculum in the Latin-American countries participating 
in the project needed to be reviewed. The information gathered in this review allowed us to 
identify those mathematical topics that are considered pertinent in the curriculums of Latin-
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American countries and that have been the object of research due to their relevance, whether as 
difficult themes for teaching and learning or for their role as crucial antecedents for subsequent 
topics in higher mathematics education.  

Additionally, the financial constraints and time allowed for the project were also considered. 
This led us to select the three curricular areas and ten themes that are described in the table 
below.  

Arithmetic Algebra and Prealgebra Geometry 
Multiples and 

divisors. 
Number patterns and 

generalization. 
Measurement and similar 

triangles. 
Maximum common 

divisor 
Games and algebraic 

regularities. 
Areas and the Pythagorean 

Theorem. 
Minimum common 

multiple. 
First grade equations. Measurement and 

trigonometric ratios. 
 Reading and making 

Cartesian graphs. 
 

Two classroom sessions of 50 minutes each were assigned to tackle each topic; thus, we 
conducted and videotaped a total of 20 classroom sessions. The classroom sessions were carried 
out in two public middle schools located in Mexico City that agreed to take part in the project. 
The respective school boards permitted us to intervene in the school as long as the project 
activities did not disturb school work; this allowed us to work with different school groups 
within their regular school schedule. This fact represented a valuable profit for the project in 
terms of the freshness and spontaneity of the students’ approach to the work methods required by 
the project’s goals. Another advantage of the situation was that the students taking part in the 
videos were not selected in any way, neither by the school principal nor by the project staff. 
They were simply the students available at the time and date in which the classroom sessions 
were programmed; this schedule was almost always determined by the available time of the 
professional TV staff that videotaped the classroom sessions.  

The teachers who conducted the sessions were not part of the school staff. Three university 
researchers who are part of the project staff were deliberately put in charge of taking the role of 
the teacher in the classroom sessions. This made it possible to have intensive meetings with the 
project academic staff to prepare the classroom sessions, pilot them, and hold the tested 
approaches to a continuing process of refining until we were satisfied with the results. The pilot 
stage was done in schools that did not participate in the main stage. 

As mentioned earlier, according to the didactic approach adopted, the chosen topics for 
classroom sessions should be formulated in a series of articulated problem situations and the 
teacher’s actions should be guided by the multiple chess game metaphor. This metaphor entails 
an instructional approach that is similar to the teaching cycle as proposed by Simon (1995) and 
the concept of instructional sequences put forward by Cobb & McClain (2001). Simon describes 
the teaching cycle with the metaphor of undertaking a long journey, such as sailing around the 
world. This metaphor implies that “at any point the teacher has a pedagogical agenda and thus a 
sense of direction. However, this agenda is itself subject to continual modification in the act of 
teaching… This way of acting in the classroom involves both a sense of purpose and an openness 
towards the possibilities offered by students’ solutions to instructional activities” (Cobb & 
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McClain, 2001, p. 215). It is worth emphasizing that this didactical stance does not suggest in 
any way that the instructional activities should go on aimlessly; at any point in the classroom 
session the teacher has to have in mind a major instructional goal and figure out the means of 
achieving it. 

Another methodological issue we had to attend to was the selection of problems so that they 
were challenging enough both for students and teachers. Since these problems had to be tied to 
curricular topics, the criterion we used for picking the problems was to select those that allowed 
us to treat the topics in unconventional ways.  

In the case of arithmetic, the central theme we chose was divisibility. According to the 
review we made of the mathematics curricula in Latin-American countries, divisibility is 
approached by introducing the formal definitions of divisor, factor, multiples and prime 
numbers. This is followed by a series of practices to reinforce understanding of these definitions. 
Thus, to approach the topic of multiples and divisors we decided to use a set of questions aimed 
at encouraging students to engage in mathematical inquiry and to uncover relationships between 
these concepts; this may lead students to put forward generalizations by observing numerical 
regularities and finally to express and justify these generalizations by using the algebraic code. 
The students were allowed to work cooperatively in small groups if they wanted to do so.  

Next we will describe the problem situations we used for each topic. According to the aims 
and extent of this paper we will describe in detail the ways in which some topics were treated 
and give a general description of the others.  

The topic of multiples and divisors was treated on the basis of the students’ responses to the 
following questions:  

� Can you find numbers that have exactly two divisors? In the next four minutes list as 
many of these numbers as you can. The challenge is that your list cannot include any 
number not fulfilling the given condition. 

� Can you find numbers that have exactly three divisors? Can you show a rule that 
allows us to construct many numbers having exactly three divisors? Is there more 
than one rule that allows us to do that? 

� Can you find numbers that have exactly four divisors? Can you show a rule that 
allows us to construct many numbers having exactly four divisors? Is there more than 
one rule that allows us to do that? 

� Can you find numbers that have exactly n divisors? Can you show a rule that allows 
us to construct many numbers having exactly n divisors? Is there more than one rule 
that allows us to do that? 

� Can you find a natural number different from 1 that you cannot factor using 
exclusively prime numbers as factors?  

The topic of maximum common divisor was approached using a known problem that 
involves three liquid containers, none of which is graduated, and whose capacity is known. The 
first and the second containers have capacities that may be different. The third container is larger 
that the other two. The problem consists in deducing a general rule that allows one to know the 
number of liters that can be obtained given the capacity of the first two containers. The solution 
relies on the concept of maximum common divisor. This problem is rarely used by teachers in 
most Latin-American countries, so we can assume that the students have never seen it before. 
We used this problem in order to allow students to recreate their notions of the maximum 
common divisor concept and to encourage them to find numerical regularities that eventually 



Vol.1-58  PME-NA 2006 Proceedings 

 

lead them to put forward general solutions. The problem was extended to empirically approach 
Diophantine equations. The specific questions and sequence in which the questions were posed 
to the students are described below: 

� You have three jars: one has a capacity of 3 liters; the second a capacity of 5 liters. 
The third jar is used to hold a certain amount of liquid larger than 8 liters. Can you 
get 4 liters passing liquid from one jar to the other? Can you find a way to record the 
sequence of movements you made from one jar to the other so that you convince us 
that your answer is correct? 

� Consider the same conditions as the problem before, but now you have one 2-liter jar 
and one 4-liter jar. Can you get 1 liter passing liquid from one jar to the other? Can 
you find a way to record the sequence of movements you made from one jar to the 
other so that you convince us that your answer is correct? 

� Now you have one 6-liter jar and one 9-liter jar. Can you get 1 liter passing liquid 
from one jar to the other? Can you find a way to record the sequence of movements 
you made from one jar to the other so that you convince us that your answer is 
correct? Can you get any integer amount of liters passing liquid from the 6-liter jar to 
the 9-liter jar? Can you make a list with the different amount of liters you can get 
passing liquid from the 6-liter jar to the 9-litter jar? 

� Now you have one 7-liter jar and one 10-liter jar. Can you get 1 liter passing liquid 
from one jar to the other? Can you find a way to record the sequence of movements 
you made from one jar to the other so that you convince us that your answer is 
correct? Can you get any given amount of liquid passing liquid from the 7-liter jar to 
the 10-liter jar? Can you make a list with the different amounts of liters you can get 
passing liquid from the 7-liter jar to the 10-litter jar? 

� Look carefully at the lists you made with the different amounts of liters you can get 
passing liquid from one jar to another. Do you notice some regularity fulfilled by 
these numbers? Can you find a general strategy that allows you to know whether you 
can or cannot get a given amount of liquid just knowing the capacity of each jar? 

The topic of minimum common multiple was approached using the gears problem. The 
version of the problem we posed to students involves two gears as shown in the figure below; the 
number of “teeth” in each gear can be different. Students were asked to find how many turns the 
gears have to make so that they will coincide again at the point the turning commenced. This 
problem was extended to include the case of more than two gears and to include word problems 
like “a friend of mine bought apples and oranges. For each apple she paid 5 pesos and for each 
orange 3 pesos. She paid the same for the apples as for the oranges. How many of each did she 
buy?  

A

GIRAS

Giro

 

Fig. 1. The gears problem 

In the case of pre-algebra and algebra we included four topics, two of them approaching the 
use of algebraic code to express and justify generalizations (number patterns, games and 
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algebraic regularities). The topic of number patterns and generalization was addressed mainly on 
the basis of finding a function that fulfills the number relationship suggested by a sequence like 
the one shown in the figure below. To help the students do so, we gave them a series of questions 
such as the following: How many squares would the fourth figure have? How many squares 
would the tenth figure have? If a figure in this sequence has 225 squares, which place in the 
sequence does this figure have? Can you express the rule you used to answer the above questions 
using algebraic language?  

 

Fig. 2. The squares problem 

Another problem situation used in this section was of the type “think of a number”. For 
example: Think of an integer between 0 and 10. Add 10 to the number you thought of and keep 
the result. Now take away the number you thought of from 10 and keep the result. Add up the 
two results you kept. May I guess the final result you have? It is 20. Am I correct? Why could I 
do this? Find an explanation. Could I guess the number you thought of if it were greater than 10? 
Could I guess the number you thought if it were less than 0? Could I guess the number you 
thought of if it were a non-integer? Why? 

The topic Games and Algebraic Regularities was treated by the Hanoi Towers problem. This 
problem requires students to find the rule of correspondence of an exponential function. The 
students were invited to play the game by using either a physical material or a piece of software 
that simulates the movements of the disks from one tower to another. 

 

Fig. 3. The Hanoi Towers problem 

The Hanoi Towers game began when students were asked to move three disks from one 
tower to the other. Questions such as the following were presented to students: What is the 
minimum number of plays you can make to move the three disks from one tower to another? If 
the disks were in tower A, which tower must you make the first move to? How many moves are 
necessary to pass the three disks from one tower to another? The game increases in complexity 
when more disks are used. The overall question was: If we assumed that moving one disk from 
one tower to another takes 1 second, how long will it take to move 64 disks from one tower to 
another? 
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The topic of first grade equations was approached by asking the students to find the missing 
number in a given equation. The students had not had any instruction about conventional 
methods for solving equations at the time this session was implemented. The activity gradually 
increased in complexity until equations containing brackets and division bars as grouping 
symbols were posed. Another type of activity posed in this session was to ask the students to 
create a word problem situation that can be solved by a given equation and vice versa. 

The topic of reading and constructing Cartesian graphs focused on asking the students to 
create stories corresponding to the information shown by time-position graphs and vice versa 
(see the graph in the figure below). Another type of activity used in these classroom sessions was 
that of finding the rule of correspondence of a function from the information provided by a linear 
graph. 

 

Fig. 4. The car problem 

The classroom sessions on geometry focused on measurement. Triangle similarity, the 
Pythagorean Theorem, and trigonometric ratios in right triangles were approached as 
measurement tools. These topics are not included in the 8th grade syllabi, thus the students had 
their first encounter with them in the project’s classroom sessions. The students were introduced 
to the topics using an inquiry strategy intended to make them encounter the central concepts 
involved through discovery, similar to the method used in a Sciences laboratory. To support this 
kind of activity the classroom was equipped with computer based geo boards, dynamic geometry 
software and scientific calculators. For example, to approach the topic of trigonometric ratios, 
the students were asked to draw a right triangle given the measurements of its interior angles.  
They then calculated the quotients by taking the lengths of the sides of the triangle in pairs and 
compared their results with the ones obtained by their fellow students. The dynamic geometry 
software let them do this rapidly and try with as many particular cases as they needed before 
drawing a set of conclusions. The use of scientific calculators allowed them to confirm their 
results, and they knew the mathematical names assigned to the quotients they performed. Having 
done this, the students were asked to provide mathematical arguments that might explain the 
number regularities they had observed. To close the session the students were asked to work on 
word problems whose solution required finding some length or angle measurements of a right 
triangle. This work was completed by the students in two classroom sessions of 50 minutes each. 
A similar approach was used to treat the topics of triangle similarity and the Pythagorean 
Theorem. 

The students’ responses to the activities described above will be interwoven when discussing 
the teachers’ reactions in the results section. 
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Workshops with teachers 
Ten monthly workshops of five hours each were carried out in the time period of February-

November, 2005. A group of 25 in-service mathematics teachers volunteered to take part in the 
workshops and accepted to be videotaped. As we said before, the same activities and problem 
situations used with students were given to the teachers. In the workshops the teachers worked in 
small groups, carrying out mathematical explorations from an activity sheet and sharing 
discoveries. 

The workshops were structured as follows: the teachers had one hour to deal with the 
problem situations and to discuss this experience amongst themselves and with the instructor. 
The next two hours were devoted to watching the videos of the two classroom sessions with 
students; before watching the videos the teachers were asked if they thought that 8th grade 
students would be able to deal with the problem situations they had just faced.  If yes, to what 
extent? How? Why? The last two hours were allocated to discussion:  teachers talked about what 
they had done in the context of what they observed in the videos. 

As an attempt to focus the teachers’ attention while they watched the videos, we asked them 
to particularly observe and make notes about the following issues: 

� Students’ unexpected strategies. 
� The most influencing factors in students’ success in solving the problems. 
� The most influencing factors leading students to become confused or to produce 

unclear answers. 
� Students’ ways of reasoning that differed from the ones s/he as a teacher would most 

likely use to confront the same problem situation. 
� Students’ ways of reasoning that were similar to the ones s/he as a teacher would 

most likely use to confront the same problem situation. 
� Other classroom events they thought were important to discuss. 

The teachers taking part in the workshops work in public middle schools in Mexico City. The 
most experienced teacher in this group has been teaching mathematics for 20 years, and the least 
experienced has 2 years teaching. Two of these teachers work in the schools where the classroom 
sessions with students were held. This circumstance, unplanned though it were, had a favorable 
influence on teachers’ views of the project; in particular it added a factor of credibility. 

Results 
Once we analyzed the data from the videos and the worksheets completed by the teachers, we 

found it difficult to disaggregate the teachers' reactions and the teaching and learning episodes 
into separate themes. Their interventions necessarily interweave reflections on mathematical 
content, pedagogical and mathematical content knowledge and students’ abilities. Taking into 
account these constraints, we attempted to organize the presentation of results in the following 
sections: Teachers’ expectations of students’ capabilities, and Teachers’ reflections on their own 
practice. 

Teachers’ expectations of students’ capabilities 
The fact that teachers and students had faced the same problem situations provided relevant 

data about the teachers’ expectations about students’ capabilities. The data we gathered indicates 
that the teachers center their appraisal of students’ learning and competencies on their own 
teaching abilities. As mentioned earlier, before viewing the video of the classroom sessions the 
teachers were asked if they thought that the students would be able to solve the problem 
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situations. The first time the teachers answered this question, they emphatically said that they did 
not think the students could deal with the problem situations, particularly those questions that 
require finding a general rule to construct natural numbers with a given number of divisors. They 
argued that for the students to achieve such an ambitious goal it was first necessary to at least 
teach them divisibility rules, a method to pick up prime numbers and specific algebra instruction 
to deal with generalized numbers. They thought the questions requiring algebra were completely 
out of the students’ reach because the students did not yet know enough about the topic. They 
said they were sure that what they had foreseen would be confirmed by the videos that they 
watched.  

Once the teachers saw how the students managed to deal with the problems using the 
elementary mathematical tools they had, they began a discussion in which they looked for 
explanations as to why their perception of students’ capabilities was so far from what the 
students were able to do. They found it particularly hard to believe that the students had been 
able to analyze the factors of a given number using algebraic code. In regards to this point, they 
referred to cases such as the student who went to the blackboard to explain his group’s finding: 
“say p is a prime number… any number as p4 has exactly five divisors because p4÷1=p4; 
p4÷p=p3; p4÷p2=p2; p4÷p3=p and p4÷p4=1…  We tried this with many numbers and it worked, 
then we tried with letters and realized it is easier with letters than with numbers”. 

This kind of evidence made the teachers seek explanations; they came to the conclusion that 
it was the ways in which the instructor guided the students’ arithmetical-based reasoning that 
allowed them to gain self-confidence and “this encouraged the students to start producing 
powerful ideas by analyzing particular cases that finally led them to see possible 
generalizations”. For example, one of teachers offered the following as a concluding remark:  

“See, the teacher (project instructor) never said no to any student, he was 
always patient…If a student said something wrong the teacher asked the group if 
they agreed with the answer that student was giving… He (the teacher) behaved 
this way even when a student was proposing a brilliant idea. In that way the 
teacher gave the students many opportunities to correct or validate their answers 
on their own… This teacher’s attitude gives the students an opportunity to learn 
more… In that way students are enabled to elaborate arguments that reject or 
accept the solutions that they themselves propose. 

The group of teachers concluded that they had thought that students would not be able to 
successfully face the problems presented because they had taken as their reference point their 
own experience when teaching these topics. They said they had been sure that the instructional 
sequences they used to teach were the good ones; thus, if the students had to confront the 
problems in the same way we posed them to the teachers, they found it almost impossible to 
believe that the students would be able to cope. The following excerpt of a teacher’s remark 
illustrates this point:  

“It is the way we teach that led us to think that the students would not be 
able to provide correct answers to such complex questions… When I teach these 
topics I start by giving the students the necessary procedures and concept 
definitions about the content I want them to work with… Then I show a good 
number of examples trying to reinforce their understanding. They need the 
divisibility rules in order to be able to find factors, so I teach these rules to 
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them… When you said the students would be given these tasks in the same way 
they were given to us, it was hard for us to think that the students would do well”. 

We expected that the teachers’ view about the students’ capabilities in the first workshop 
session would change in the next workshop, but it did not. The only change we observed was 
that the teachers took longer before answering what they thought would happen in the class 
session in which students faced the “jars problem” described earlier. Some of the teachers were 
not quite sure about the students’ success. We pushed them to give a more precise answer:  they 
finally agreed that they did not think the students would be able to solve the problem 
successfully because they knew too little “about the maximum common divisor” and the activity 
required not only the definition of this concept but also finding number relationships involving 
the concept. Once again, the achievements of the students that they observed in the videos 
seriously contradicted their view. 

By the end of the study, 9 out of the 25 teachers taking part in the workshops shared with the 
group that they had begun to try a different teaching approach. One of the main obstacles 
mentioned was that preparing and carrying out a class similar to the sessions given by project 
instructors is quite time consuming; another difficulty centered around the mathematical content 
knowledge needed in order to properly respond to students’ questions and answers in a way that 
his/her interventions might help students strengthen their mathematical thinking. “… With time, 
when we have tried the same class session several times, we can do it”. 

The teachers that did not try to put into practice a new teaching approach argued that 
although the project’s teaching strategy and the students’ achievements proved to be positive, a 
program like the one we propose is not viable for them because the level of organization in their 
schools is not yet sufficient to enable them to carry out a program like this one. Other teachers 
argued that they do not feel confident enough to explain to and discuss with their principal and 
school supervisor how this approach meets the topics and goals of the official school curriculum. 
Our data suggest that this lack of confidence is related to a weak command of mathematical and 
pedagogical knowledge. 

The following comment illustrates the aforementioned point:  
“I am impressed by the students’ achievements that I witnessed; I also see 

many favorable features of the way in which instructors conducted the class, how 
they manage the mathematical content and can adjust their responses in the 
moment to nicely meet the ways in which students perform. But I do not think 
that I can do this; the school I work in is not as well organized as the schools in 
which the videos were taken—I know those schools pretty well. My students do 
not behave like the students we saw in the videos; it is really difficult for me to 
keep them working and I am sure it has to do with the way in which the school’s 
principal acts. I have said before that I liked very much several of the classes we 
watched in the videos; I particularly liked the class about the Hanoi Towers and 
tried to work the problem out with my students. That day the school principal 
unexpectedly came in to my class and observed it. She reported my work to the 
supervisor and instructed me not to do it again… I was told to constrain my 
teaching to the topics included in the curriculum… I am sure I will try it again 
later on; now I need time to better prepare myself and improve what I know of 
mathematics and mathematics teaching… One thing is to play the Hanoi Towers 
game and another very different one is to draw out the mathematics involved in 
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the game so as to arrange the classroom activity sequence so that middle school 
students might play the game mathematically. It requires the teacher to have both 
good teaching skills and a good command of mathematics. The problem I see is 
that my workload is really heavy, as it is for most of us; anyway… I will try to 
organize myself in order to do this and will volunteer again to participate in this 
kind of program any time I have a chance.” 

Teachers’ reflections on their practice 
The teachers’ comments during the workshops suggest that the students’ achievements were 

a relevant factor in motivating them to critically reflect on their pedagogical and mathematical 
content knowledge. This finding confirms the central assumption we took to design the present 
study. As reported above, by the end of the workshop sessions (one year of work) some of the 
teachers engaged in trying a different teaching approach from the one they had been using 
before, as a direct result of the analysis and discussions of the teaching approach used in this 
study. Even those teachers who did not manifest a clear intention to change made reference to 
the ways in which observing the students’ achievements made them review their teaching 
strategies. It seems that an important factor in encouraging them to try different teaching 
approaches is the attitude change they observed in students when a teacher gives them an 
opportunity to explore, to make mistakes, and to go back and forth feeling secure because they 
know the teacher is there to help them.  One of the teachers explained the students’ positive 
attitude as follows: “I think that students’ favorable attitudes are related to their mathematical 
achievements… We saw how students gained self-esteem as the rest of the group accepted their 
thoughts; this was evident from the ways in which they willingly participated giving ideas and 
taking part in warm discussions with their fellow students and the teacher. The students we saw 
in the videos seemed to be happy in the mathematics classroom, now I am wondering why my 
students rarely show the same reaction. I am impressed by how far the students’ learning can go 
when the teacher guides them as we saw in the videos… I would like my students to behave in 
that way and I am convinced that much depends on me”. 

The teachers’ reactions indicate that their attention was primarily focused on the students’ 
responses to the activities, but they soon turned to analyze how students’ reasoning led them to 
elaborate their responses and finally came to discuss the ways in which the teacher conducted the 
class. In most of the sessions the teachers engaged in discussions to find plausible reasons to 
explain why the students were able to produce mathematical solutions to non-trivial problem 
situations. Our data shows that this kind of teachers’ inquiry led them to reflect on their own 
teaching styles. For instance, they noticed that the teacher in the video refrained from giving the 
students answers and instead, responded with a new question “attempting to make the students 
see by themselves what their mistake is”. Our analysis suggests that the teachers noticed such 
events because they do not act in the same way as the teacher in the video. 

One of the most frequently mentioned points in teachers’ discussions was their analysis of 
the feasibility of their putting into practice a teaching strategy similar to the one they observed in 
the videos. They could not help accepting that the students taking part in the videos are not so 
different from the students with whom they work. This type of discussion led them to conclude 
that it was not only the teacher’s pedagogical skills that mattered in making a classroom activity 
develop so fruitfully; but also other important factors such as the type of materials the teacher 
used to support the activity, the criteria the teacher used to design the problem situation, the way 
in which the class was planned, and how this way of structuring the class helped the teacher 
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anticipate what type of responses the students can produce. The following teacher’s remarks 
illustrate this point:  

“After having discussed these topics I realized the importance of carefully 
preparing the class. I came to the conclusion that planning a class consists in 
putting together all my mathematical and pedagogical knowledge in order to help 
the students learn more meaningfully… I mean, planning a class requires the 
teacher to translate her mathematical knowledge into a teaching situation; it is not 
only mathematics, the crucial point is to situate that mathematical knowledge in 
the context of a teaching and learning situation”.   

Final Remarks 
Our study was influenced by the work done in earlier professional development programs for 

teachers that were based on the assumption that reflection on solving challenging problems may 
have positive effects on teachers’ pedagogical and mathematical content knowledge. The results 
found in these studies highlight the importance of these types of mathematical tasks for teachers 
because they can empower their practices (Zaslavky et al., 2003; Murray, Olivier & Human, 
1995; Schifter, 1993). Our results also confirm previous findings about the role played by 
challenging mathematical tasks as means to make teachers reflect on their practices and 
eventually improve them. Another source of important influence for the present study was the 
research by Carpenter and Fennema (1989); their work, as ours, assumes that knowledge of 
students’ mathematical thinking provides teachers with a basis for their instruction and also for 
their professional development.  

An underlying assumption in the present study is that we think it is critical that teachers learn 
mathematics in the same way as they are expected to teach it. Given that our study was aimed at 
in-service mathematics teachers, we had to attempt an approach that permitted us to provide an 
opportunity for teachers to learn mathematics in the same way we expect them to teach. The 
challenge for us was that the subjects we worked with were already teaching. The act of putting 
teachers in a situation in which their knowledge confronted the students’ knowledge led them to 
analyze their teaching within the framework of how students were being taught in the project 
sessions. The findings of the present study strongly suggest that  teachers' mathematical 
background is a relevant component of their professional development as long as it is situated in 
their practice. The results of the present project indicate that a solid understanding of the 
mathematical content knowledge is needed for teachers to be able to propose mathematical 
activities that provide opportunities for their students to learn mathematics in a more meaningful 
way. 

Our data provide evidence showing that affecting teacher practice through involving them in 
proposals that produce tangible results in student performance is a promising alternative if we 
want to improve the mathematical and pedagogical knowledge of in-service teachers. 

The results of this study confirm that change is not an event but a process. After one year of 
working with in-service teachers we have evidence of incipient changes in their practices and 
conceptions. However, the data we have clearly indicate that the monthly meetings with teachers 
proved to be a favorable environment for all of us to learn from each other. This experience 
highlights the need to continue encouraging the creation of professional teaching communities; 
however, this implies an even greater challenge given that Mexican teachers usually work in 
relative isolation. 



Vol.1-66  PME-NA 2006 Proceedings 

 

References 
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection 

about instrumentation and the dialectics between technical and conceptual work. 
International Journal of Computers for Mathematical Learning, 7(3), 245–274.  

Carpenter, T. P., & Fennema, E. (1989). Building on the knowledge of students and teachers. In 
G. Vergnaud, J. Rogalski, & M. Artigue (Eds.), Proceedings of the 13th PME International 
Conference, 1, 34–45.  

Cedillo, T. (2001). Toward an Algebra Acquisition Support System: A study based on using 
graphic calculators in the classroom. Mathematical Thinking and Learning. An International 
Journal, 3, (4), 221-260. Lawrence Erlbaum Associates Publishers, London. 

Cedillo, T., & Kieran, C. (2003). Initiating students into algebra with symbol-manipulating 
calculators. In J. T. Fey (Ed.), Computer algebra systems in secondary school mathematics 
education (pp. 219– 239). Reston, USA: NCTM. 

Cedillo, T., 2006. La enseñanza de las matemáticas en la escuela secundaria: Los sistemas 
algebraicos compuratizados. Revista Mexicana de Investigación Educativa, 11 (28), 129-154. 
Consejo Mexicano de Investigación Educativa, México. 

Cobb, P. & McClain, K. (2001). An approach for supporting teachers’ learning in social context. 
In F.-L. Lin & T. J. Cooney (Eds.) Making Sense of Mathematics Teacher Education, 207-
231. Kluwer Academic Publishers. Printed in the Netherlands. 

Cobb, P., Wood, T., Yackel, E. (1990). Classroom as learning environments for teachers and 
researchers. In R. Davis, C. Maher, & N. Noddings (Eds.), Constructivist views on the 
teaching and learning of mathematics. Journal for Research in Mathematics Education 
Monograph, 4, 125-146. 

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical 
instruments: The case of calculators. International Journal of Computers for Mathematical 
Learning, 3(3), 195–227.  

Kilpatrick, J. (1992). A History of Research in Mathematics Education. En Grouws, D. A., (Ed), 
Handbook of Research on Mathematics Teaching and Learning. National Council of Teachers 
of Mathematics. Macmillan Library Reference, Simon & Schuster Macmillan, Part I, 3-38. 
New York, USA. 

Krainer, K. (2004). On Giving Priority to Learners’ prior Knowledge and Our Need to 
Understand Their Thinking. Journal of Mathematics Teacher Education 7:87–90, Kluwer 
Academic Publishers. Printed in the Netherlands. 

Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and math 
education: A multidimensional overview of recent research and innovation. In J. Bishop, K. 
Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of 
mathematics education (pp. 237– 270). Dordrecht, The Netherlands: Kluwer.  

Llinares, S. & Krainer, K. (2006). Mathematics (Student) Teachers and Teacher Educators as 
Learners. In A. Gutiérrez & P. Boero (Eds.), Handbook of Research on the Psychology of 
Mathematics Education. Past, Present and Future (pp. 429-460). Sense Publishers, 
Rotterdam/Taipei. 

Murray, H., Olivier, A., & Human, P. (1995). Teachers’ mathematical experiences as links to 
children’s needs. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th PME 
International Conference, 3, 312–319.  

Schifter, D. (1993). Mathematics process as mathematic content. A course for teachers. Journal 



Plenary Sessions  Vol.1-67 

 

of Mathematical Behavior, 12(3), 271–283. 
Simon, M.A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 

Journal for Research in Mathematics Education, 26, 114-145. 
Thompson, A. (1992). Teacher’s believes and conceptions: A Synthesis of the Research. In 

Handbook of Research on Mathematics Teaching and Learning, D. A. Grows (Ed.). National 
Council of Teachers of Mathematics. Reston, VA. 

Zaslavsky, O., Chapman, O., & Leikin, R. (2003). Professional development in mathematics 
education: Trends and tasks. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. 
S. Leung (Eds.), Second international handbook of mathematics education (2, pp. 877–915). 
Dordrecht, The Netherlands: Kluwer.  

 



Vol.1-68 

 
 
 

WORKING GROUPS 



Working Groups  Vol.1-69 

 

WORKING GROUP  

WORKING GROUP FOR THE COMPLEXITY OF LEARNING TO REA SON 
PROBABILISTICALLY 

Arthur B. Powell 
Rutgers University  

abpowell@andromeda.rutgers.edu 

Jesse L. M. Wilkins 
Virginia Tech 

wilkins@vt.edu  

Recent foci in the Working Group have been to understand: (1) students’ and teachers’ 
reasoning when simulating probability experiments with hands-on materials and computer tools, 
and (2) connections between probability and statistical concepts such as inference and 
variability. At PME-NA 28 in Mérida, Yucatán, Mexico, the group will build on the research 
agenda that it began at PME-NA 26 in Toronto and expanded at PME-NA 27 in Roanoke. Group 
members will revisit previously posed research questions follow-up on preliminary designs for 
cross-national, collaborative research to be conducted in 2006. Emerging research from 
Working Group members will lead to a set of papers that could comprise a monograph, journal 
special issue, and/or joint presentations at future conferences. 

Nature and topic of the working group 
This Working Group was formed at PME-NA 20 (Maher, Speiser, Friel, & Konold, 1998) 

and has convened annually at PME-NA each of the past seven years. During the joint meeting of 
PME-NA 25 and PME 27 in 2003 (Hawaii, USA), at PME-NA 26 in Toronto, Canada, and 
PME-NA 27 in Roanoke, Virginia, we expanded our working group to include many more 
international researchers across 12 different countries. Through shared research, rich and 
engaging conversations, and analysis of instructional tasks, we continually seek to understand 
how students learn to reason probabilistically. 

Aims of the working session 
There are several critical aims that guide our work together. In particular, we are examining: 

(1) mathematical and psychological underpinnings that foster or hinder students' probabilistic 
reasoning, (2) the influence of experiments and simulations in the building of ideas by learners, 
particularly with emerging technology tools, (3) learners’ interactions with and reasoning about 
data-based tasks, representations, models, socially situated arguments and generalizations, (4) the 
development of reasoning across grades, with learners of different cultures, ages, and social 
backgrounds, and (5) the interplay of statistical and probabilistic reasoning and the complex role 
of key concepts such as sample spaces and data distributions. Through our work, we have 
stimulated collaborations across universities and plan to engage in and support additional 
research related to the complexity of learning to reason probabilistically. Future research will 
seek to understand how the use of simulations can help students make sense of empirical and 
theoretical aspects of probability. In turn, it will help the group collaboratively conduct research 
that can inform the development of a conceptual framework to describe the critical aspects of 
students’ understanding. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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Background on probabilistic reasoning 
The ways in which students reason about the likelihood of an event can be considered in 

terms of an objective or subjective view of probability (e.g., see Batanero, Henry, & Parzysz, 
2005; Borovcnik, Bentz, & Kapadia, 1991). In an objectivist perspective, probability is viewed 
as an inherent property of the event and can be well estimated either through a classical or 
frequentist approach. A repeated finite set of trials would most likely yield a different 
experimental estimate of the actual probability and may in fact allow one to change the estimate 
of the probability based on new data. In a subjectivist perspective, probability is viewed as a 
condition of the information known to the individual assigning the probability and not an 
objective property of the given event. Thus, two people may assign different probabilities to the 
same event based on different a priori information, even after they observe the same empirical 
data a posteriori trials being conducted. The law of large numbers is used to interpret empirical 
results in relation to theoretical probabilities and, thus supports the viability that an estimated 
probability from a frequentist approach will be reasonably close to the theoretical probability. 
This principle states that the probability of a large difference between the relative frequency of 
an outcome and the theoretical probability limits to zero as more trials are collected. 

A frequentist approach to probability, grounded in the law of large numbers, has only 
recently made its way into curricular aims in schools (Jones, 2005). Teachers are encouraged to 
use an empirical introduction to probability by allowing students to experience repeated trials of 
the same event, either with concrete materials or through computer simulations (e.g., Batanero, 
Henry, & Parzysz, 2005; National Council of Teachers of Mathematics [NCTM], 2000; Parzysz, 
2003). In these types of curricula, a theoretical model of probability based on a classical 
approach is not the starting point. Rather, a theoretical model is constructed based on observing 
that the relative frequencies of an event from a repeated random experiment stabilize as the 
number of trials or sets of trials (different samples) increases. However, there is general 
agreement that research on students’ probabilistic reasoning has been lacking sufficient study of 
students’ understanding of the connection between observations from empirical data and a 
theoretical model of probability (e.g., Jones, 2005; Parzysz, 2003). 

Summary of activities from 2005 
Eighteen researchers (faculty and graduate students) from the United States, Canada, and 

Mexico met During PME-NA 27 in Roanoke (see Lee, Tarr, & Powell, 2005). After analyzing a 
video of students’ work on a computer-based simulation task (Schoolopoly task, see Tarr, Lee, & 
Rider, 2006), the group discussed how tasks can be interpreted differently by students and 
teachers. Moreover, discussions focused on issues students face in trying to generate and analyze 
empirical data to make inferences about an unknown probability distribution. These discussions 
led to different participants expressing interest in conducting various pilot research studies in 
2006. Some of the ideas for follow-up research included: 

� What are students' intuitions regarding whether real-world phenomena can or cannot 
be simulated? Are there differences between simulations and modeling tools? 

� How do students (and teachers) relate technology simulation models to real-world 
phenomena? 

� How do learners move between empirical data and theoretical models of probability? 
To what extent do students attend to issues of sample size, variation, sampling 
distributions, and data collection? 
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� What metaphors emerge as students engage in probability tasks, and how do these 
support or hinder the development of probabilistic reasoning? 

� What role does agency play in the development of students’ probabilistic reasoning, 
and how does technology influence such development? 

� What are the key issues in the design of probability tasks in order to promote 
connections between theoretical and empirical probabilities? What issues do teachers 
face in implementing such tasks? 

Planned activities for the 2006 meeting 
At PME-NA 28 in Mérida, Yucatán, Mexico, the group will build on the research agenda that 

it began at PME-NA 26 in Toronto and expanded at PME-NA 27 in Roanoke. We will revisit 
previously posed research questions follow-up on preliminary designs for cross-national, 
collaborative research to be conducted in 2006. Emerging research from Working Group 
members will lead to a set of papers that could comprise a monograph, journal special issue, 
and/or joint presentations at future conferences. Clearly our proposed activities are closely 
aligned with Goals of PME-NA, namely “to promote international contacts and the exchange of 
scientific information in the psychology of mathematics education,” “to promote and stimulate 
interdisciplinary research...,” and “to further a deeper and better understanding of the 
psychological aspects of teaching and learning mathematics and the implications thereof.” 
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The Gender and Mathematics Working Group has been an active participant of PME-NA since 
1998. This working group’s history, in brief, is included in this proceedings paper. The most 
recent work of the group has included a monograph project, now in revision, followed by a self-
analysis of our work that has brought us to discussion and investigation of new topics. Those 
topics include: 1) Investigating research and teaching paradigms that develop new 
understandings of the relationship between gender and mathematics education; 2) Questioning 
the nature of school mathematics; 3) Problemetizing a (re)definition of the field of gender and 
mathematics; and 4) Establishing connections across technology, gender, and mathematics. A 
common theme emerging from our collective work on these topics is that social agency is a 
central element of the range of work we do, and of the decisions made in both mathematics 
classrooms and career decisions. Thus, the GMWG has begun and continues in this year’s 
sessions, discussion and planning for a series of empirical and theoretical investigations around 
the role of social agency for women/girls who are students, teachers and researchers in 
mathematics education. It is this topic that will frame our work at the PME-NA XXVIII Gender 
and Mathematics Working Group sessions in Mérida, Yucatán, Mexico, November, 2006. 

Introduction 
In this year’s PME-NA XXVIII meeting members of the Gender and Mathematics Working 

Group examine a framework for the diverse collection of works coming out of our members. The 
PME-NA XXVII Gender and Mathematics Working Group members in attendance in Roanoke 
began this discussion, and an initiative to develop a framework that employs the use of the 
concept of women and girls’ social agency as a unifying factor in our collective work. In this 
paper, I review the history of the Gender and Mathematics Working Group and then outline 
some of the work of group members since the Roanoke sessions in the section entitled “In the 
Interim – Work Between Sessions.” Finally, in the section entitled “The Gender and 
Mathematics Working Group and Its Relationship to PME-NA” I describe the relationship of our 
work to the PME-NA goals and to previous Gender and Mathematics Working Group endeavors; 
and I introduce the work under discussion at the 2006 meeting of the Gender and Mathematics 
Working Group.  

History of the PME-NA Gender and Mathematics Working Group 
The Gender and Mathematics Working Group has met annually at PME-NA since 1998 

(Raleigh, NC), except for the year of the joint meeting with the International Group for the 
Psychology of Mathematics Education in 2003. At our first meeting, the work of the group began 
with reviews of gender and mathematics scholarship, and sought to identify absences from the 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A. (Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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research strands reviewed. Committing to an integration of our collective scholarship on gender 
and mathematics, we defined future directions for research and for the working group.  An early 
result was a visual representation, a graphic, of our conception of the field of gender and 
mathematics, and the complexity of the elements with(in) which we work  (Damarin & Erchick, 
1999; Erchick, Condron & Appelbaum, 2000). 

After the first meeting of the Gender and Mathematics Working Group, we continued to 
gather together at each PME-NA meeting, sharing our scholarship on gender and mathematics, 
redefining our direction and purpose, seeking feedback from the membership at large in PME-
NA discussion groups and fine-tuning the focus of our work. Forming peer groups of individuals 
with common interests and related research efforts, we reviewed, critiqued, and discussed the 
body of scholarship we were engaged in, including research into both theory and practice. A 
guiding project of the working group was the creation of a gender and mathematics monograph.   

At the 2004 PME-NA XXVI sessions in Toronto, the Gender and Mathematics Working 
Group members began moving our work into new spaces. In these sessions we explored ways in 
which we can more deeply examine the relationship between gender and mathematics in our 
work, and did so with reflection upon international perspectives and critical theory, connected 
work in gender and technology, and critical perspectives on pervasive, recurring questions about 
the place for gender work in mathematics education (Erchick, Applebaum, Becker, & Damarin, 
2004). Finally, in the 2005 PME-NA XXVII sessions in Roanoke, as we discussed topics across 
the range of the work being completed by members of the group, we found that a unifying 
framework on the role and development of social agency in women and girls’ experience as 
students, teachers, and researchers in mathematics education was emerging in our inquiry.  

In the Interim – Work Between Sessions 
The following work continued in the interim between the PME-NA XXVII sessions in 

Roanoke and the time of this proposal: 
� Continuing work on an the ongoing monograph project ensued in the interim 

between the 2005 GMWG session’s at PME-NA XXVII in Roanoke, Virginia and 
the 2006, PME-NA XXVIII in Mérida, Yucatán, Mexico. 

� Members continued planning collaborative work, discussing the creation of proposals 
and individual papers on the social agency framework that emerged in the Roanoke 
sessions. 

� Several individual members are pursing both empirical and theoretical inquiries 
addressing social agency and its role in women and girls’ learning, teaching and 
researching in mathematics education. Both social and psychological perspectives 
will be pursued. 

� Introduced at PMENA in Roanoke was the new logo of the group, available for 
viewing at the Gender and Mathematics Working Group of PMENA website 
http://www.newark.osu.edu/derchick/pmena.htm. 

The Gender and Mathematics Working Group and Its Relationship to PME-NA 

Our Work and the Goals of PME-NA 
Since its inception, the GMWG has had a goal of impacting classroom practice in positive 

ways. This goal is directly related to the PME goals to further a deeper and better understanding 
of the psychological aspects of teaching and learning mathematics and the implications thereof; 



Working Groups  Vol.1-75 

 

and to promote and stimulate interdisciplinary research, with the cooperation of psychologists, 
mathematicians, and mathematics teachers. Also, technology-related issues are embedded in our 
work. Technology is an increasingly present and important component of the mathematics 
classroom. Thus, research on gender and technology informs and contributes to our work in 
exciting and meaningful ways.     

We also are committed to another goal of PME, that of promoting international contact and 
exchange of scientific information in the psychology of mathematics education.  In terms of 
further and broadening growth and exchange of ideas, inclusion of international perspectives of 
gender and mathematics is crucial, and participation of international colleagues is not only 
welcome, but essential.  We address this goal in this year’s GMWG agenda with the expectation 
of developing collegial relationships, integrating diverse perspectives into our research agendas 
and continuing new relationships forged around the inquiry of the role of social agency in 
women and girls' experiences with mathematics. 

Our work is also further connected to the PMENA XXVIII conference theme of  "Focus on 
learners, focus on teachers" with the emerging framework addressing the development of 
learners' and teachers' agency in mathematics teaching and learning. 

A Few Words About Agency 
In the Gender and Mathematics Working Group's developing work, we investigate the 

concept of agency as central to women's relationships with mathematics. We define agency as 
assertive decision-making, choices made regarding one's life and being. We recognize the agent 
as Phyllis Curtis-Tweed describes in discussing the work of William James, where she sees "the 
self as an active agent, ever experiencing, learning from and shaping experience, even though 
behavioural choices may result in passivity or activity" (2003, p 397). We consider agency in the 
case or our mathematics education work not as a moral concept, but as a cognitive one, and one 
that carries with it, for the purposes of this work about gender and mathematics, some basic 
premises.  

One of those premises is that the women and girls who are subjects of discussion in our work 
are recognized by the scholars to be agents in their mathematical lives, to have and exhibit 
agency, to not need to be given agency. The perspective is akin to that of Mollie Blackburn 
(2004) as she writes of the agency of gay, lesbian, bisexual, transgender and questioning school 
students. That is, agency is not something we increase in others, either the oppressed youth in her 
work, or the women and girls who are the focus of our working group projects. Just like the 
young people in Blackburn's study, women and girls in mathematics are agents, "with or without 
us" (p. 110).  

A second premise of agency as it is a part of our Gender and Mathematics Working Group  
work is that agency is not always explicitly visible. The choices one makes, as in the case of this 
year's presented works with respect to studying mathematics and developing relationships with 
mathematics, may not always appear as indications of cognitive agency. Choices to not 
participate, to resist, to speak out against or to remain silent are all choices nonetheless, and 
indicative of a sense of agency. Again from Blackburn, "resistance is not a failure to assert 
agency; rather it is a move, perhaps even an aggressive move, to assert agency for a purpose that 
is in conflict with the dominant person or institution" (2004, p. 109). 

A third premise of agency in our work centers on power and freedom. Knowing that a 
dictionary definition of agency is that it is an "active force; action; power", the choices women 
and girls make to participate – or not – indeed are acts of power. The scholars presenting in the 
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Gender and Mathematics Working Group, although not necessarily explicitly claiming so, 
implicitly recognize as powerful the choices women and girls make with respect to their 
experiences with mathematics. However, we do not claim that these scholars are working for 
power itself but, rather, for the access to knowledge construction that mathematics educators and 
mathematics teacher educators can provide for women and girls. The field can and should work 
toward understanding and perhaps removing barriers of access to opportunities for knowledge 
construction. After all, "[k]nowledge construction permits considerable freedom…And 
knowledge has political consequences: 'truths' have implications; they do not pertain in isolation" 
(Code, 1993, p. 72). Why would we not want all to have that freedom? 

Finally, although agency requires autonomy, we do assert that in this work the autonomy that 
is necessary for agency is not one likened to the autonomous human agent of philosophical and 
moral discourse. That agent is rational, self-conscious, individual and self-sufficient. In the 
Gender and Mathematics Working Group's work, agency and its autonomy are not solely about 
being rational. The self is recognized as wise, intuitive and emotive. How a woman or girl feels 
about the mathematics is important and telling in efforts to understand her choices. For us, 
autonomy is not about the isolation of self-consciousness, individualization, and self-sufficiency. 
For a number of its members, the Gender and Mathematics Working Group has become a 
community centered on gender and mathematics and like that environment, our work is about 
women and girls in cultural contexts, about decisions in classrooms and university programs, 
about intersections between the lives of women and girls and the worlds in which they live. 

Plan for Active Engagement of Participants 
As has always been the case with our Gender and Mathematics Working Group, the sessions 

we conduct this year are intended to be active with discussion, decision-making, and work 
activities. As a group we remain committed to an initiative that depends upon participant voices 
for direction and support. In this year's sessions, we begin with introductions, a short synthesis of 
the work to date, and updates on current projects and recent presentations of participants. 

The major component of the GMWG sessions this year is participant feedback on ongoing 
projects centered on women and girls’ agency in mathematics. Following are introductions to the 
work to be shared this year by: 

� Lynda Wiest, University of Nevada, Reno who shares her work with a mathematics 
and technology intervention program for girls;  

� Katrina Piatek-Jimenez, Central Michigan University, who solicits feedback from the 
group on her new work on the influences on career choice of women mathematics 
students;  

� Abbe H. Herzig, University at Albany, State University of New York, who raises 
questions about the purpose of mathematics in the school curriculum; 

� Markku Hannula, University of Helsinki, Finland & Tallinn University sharing 
findings from a review of the Finnish educational system;  

� N. Kathryn Essex, Indiana University, introducing her project with 5th grade 
children; and  

� Diana Erchick, Ohio State University at Newark, who solicits feedback from the 
group on a current teacher development project. 

The sharing of work is brief, interactive, and introduces questions to the whole group for 
further discussion. Following the brief introductions of the work, the participants in attendance at 
the Gender and Mathematics Working Group participate in an activity to create connections 
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across the shared work and suggest common themes. This activity provides the presenters with 
feedback on their individual directions, suggestion as to the relevance of agency in the collective 
work, and information for the presenters to use to co-construct the activities of day two's working 
group sessions. In the time between the two working group sessions, the presenters plan the 
interactive sessions of day two, focused on small group discussions around collective works and 
the further development of the conceptual framework around women's agency in mathematics 
and mathematics education. 

Introduction of the Shared Work 
Lynda Wiest, University of Nevada, Reno, shares work on "The Role of an Intervention 

Program in Supporting Girls in Mathematics and Computer Science." The purpose of this 
research was to investigate the impact and critical program elements of a mathematics and 
technology intervention program on middle school girls' knowledge, skills, and dispositions 
toward, as well as participation in, mathematics and computer science. First-time participants 
(N=201) in Northern Nevada's Girls Math & Technology Program across four years completed 
the Modified Fennema-Sherman Mathematics Attitude Scale upon entry into a one-week, 
residential summer camp and again three and one-half months later. Program participants and 
their parents also completed a survey. 

Participants and their parents rated the program highly in terms of overall satisfaction. 
Participants showed significantly improved attitudes toward mathematics, increased interest in 
computers, and greater participation in both. Overall, higher scores were attained on the 
attitudinal measures by younger, White, and higher-SES participants. Girls of color showed 
greater attitudinal improvement across the two data-collection points in comparison with White 
participants. 

On open-ended survey questions, both the girls and their parents focused mainly on the 
program's academic content as their most valued program features, with strong mention of 
computer use by the girls. The residential aspect of the summer camp was another high priority 
for the girls, and the social aspect was important to both the girls and their parents. Both the girls 
and their parents noted that the Girls Math & Technology Program offered resources, computer 
opportunities in particular, that the girls lacked at school. They also stated that "math camp" 
instructors used different teaching methods, especially more hands-on activities and group work, 
in comparison with teachers at school. Both the girls and their parents indicated that the girls had 
pursued additional or advanced mathematics (and to some degree, computer science) by having 
participated in this program. 

Questions for discussion include: 
� What is the value of an intervention program for girls in mathematics? For which 

type(s) of girls might this be more important? 
� What might the different findings by race tell us about the needs of the girls in these 

groups? 
� How might concepts such as mathematical voice and girls' agency play a role in these 

differences? 
� What role might computers play in increasing females‚ interest and knowledge in 

mathematics? 
Katrina Piatek-Jimenez, Central Michigan University, presents her work conducted with 

collaborator Sraboni Ghosh from North Georgia College and State University. The work is 
entitled "Influences on Career Choice: A Study of Women Mathematics Students." Piatek-
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Jimenez explains that even though current statistics show that nearly half of the mathematics 
majors in the U.S. are women, women earn a much smaller percentage of advanced degrees in 
mathematics and women do not enter mathematical careers at the same rate as men. Due to this 
noted decline in mathematics participation after the undergraduate level, these scholars believe 
that it is critical to examine the factors motivating these women, who have chosen to earn 
degrees in mathematics, to leave the field.   

During the working group session, Piatek-Jimenez describes her study being conducted  with 
Ghosh. The study is designed to investigate why women mathematics majors choose to study 
mathematics at the undergraduate level and what factors influence their decision whether or not 
to continue with a career in this field. Piatek-Jimenez shares some preliminary results and solicits 
feedback from the group on this developing work.  

Preliminary results raise questions about the validity of the statistics quoted above. Are 
women really leaving the field after earning degrees in mathematics or are these statistics a 
product of the way in which our society defines mathematical careers? 

Questions for discussion include: 
� What constitutes a "mathematical career"? 
� How does the pedagogy of mathematics inform society's beliefs about the nature of 

"mathematical careers"? 
� How would redefining what constitutes a "mathematical career" impact the research 

agenda of scholars interested in the field of gender and mathematics participation? 
Abbe H. Herzig, University at Albany, State University of New York, examines "The 

purposes of Mathematics in Education." She explains that, for the past several years, she has 
struggled  to define and understand the purposes of mathematics in education. She uses the term 
mathematics in education, instead of the more traditional mathematics education, in order to 
draw attention to the ways that the particular version of mathematics that has been constructed 
for educational purposes is distinct from other things that are also called mathematics.  

In the work she shares with the Gender and Mathematics Working Group, Herzig explores 
the potentially exclusionary aspects of mathematics itself as it is constructed through pedagogy. 
This exploration is motivated by three observations about mathematics in education. The first 
observation is that mathematics in education is distinct from mathematics used outside of 
schools. Mathematics in education does not seem to prepare students to use mathematics outside 
of school, nor does it represent mathematics as mathematicians use it. So what purpose does 
mathematics in education serve? 

The second observation concerns the view that mathematics in education is similar to other 
liberal arts studies, and that through mathematics, students develop important quantitative, 
critical thinking, and logical reasoning skills. However, there have been mounting concerns 
about whether students actually attain these skills through their school mathematics experiences.  

The third, and most important, observation is that mathematics in education serves as a filter, 
qualifying some students for higher study in mathematics and in a host of other disciplines, and 
for a variety of vocations, and disqualifying many other students from those same opportunities.  
Further, mathematics as a filtering device has disparate outcomes for students of different races, 
ethnicities, genders, and social classes, making consideration of the racialized, gendered, and 
classed aspects of mathematics in education imperative. In order to deconstruct this filter and 
build a more equitable and just educational context, Herzig argues that the mathematics 
education community needs a clearer vision of the purposes of mathematics in education.   
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Questions to guide discussion are: 
� Is mathematics really is an essential field of study for all students? 
� Which mathematics is important for students to learn? 
� How can the goals, curriculum, and pedagogy of mathematics in education be 

structured to be meaningful, inclusive, and equitable? 
� How can such an exploration be brought to policy makers in education? 

Markku Hannula, University of Helsinki, Finland & Tallinn University, presents for 
discussion his work with collaborator Kalle Juuti, University of Helsinki. He introduces their on-
going project conducting "A Review of Gender Issues in Finnish Mathematics Education" and 
explains how Finland has a long tradition of striving towards gender equity in society and 
education. The Comprehensive school act from 1983 states promotion of equality between sexes 
as one aim of Comprehensive School. This aim has since been specified in curriculum 
documents, such as the Framework curriculum for the comprehensive school in 1994: "The 
equality of the sexes is an important part of the value basis for the school. This equality of the 
sexes as an educational objective means that both boys and girls are equally equipped to function 
with equal rights and responsibilities in family life, in working life, and in society" (NBE, 1994, 
p. 17). 

The equity situation in Finland is good in international comparison, but the labour market is 
still gender segregated, and there are some gender differences in the educational outcome. In 
international comparative studies the gender difference in mathematics achievement among 15-
year olds has disappeared in many countries, Finland being one of those countries. 

However, there are still robust gender differences in students' affect towards mathematics. 
When attitude towards mathematics has been constructed as a single variable, studies generally 
have found boys to hold a more positive attitude towards mathematics. However, when different 
dimensions of attitude have been separated, interesting variations have been found. For example, 
all studies have not found gender differences in 'liking of mathematics.' Gender difference has 
been more clear in how difficult mathematics is seen to be and robust in students' self-confidence 
in mathematics. Lower self-confidence among female students has been found even on level of 
individual tasks, in the cases of both correct and incorrect answers. These gender differences are 
likely to contribute to the differential career choices as soon as mathematics is no longer 
compulsory.  

Although the curriculum takes gender perspective seriously, most teachers seem to be gender 
blind and involuntarily strengthen the stereotypical attitudes among students. Hannula and Juuti 
argue a need for gender sensitivity in mathematics teaching and discuss some approaches 
towards this direction. 

� Questions for discussion include: 
� Why do many equity-minded teachers strengthen their students’ stereotypical views? 
� Does equity policy from a curriculum document influence practice in the classroom?   
� Assuming equity has some influence in the classroom, either direct or indirect, what 

are the ways in which it does so? 
� Why does equal performance not lead to equal self-confidence? 

N. Kathryn Essex, Indiana University, seeks feedback and discussion on questions related to 
a study centered on students participating in curriculum evaluation projects. She conducted task-
based interviews with 54 fifth graders from a large, urban, school district in the Midwest during 
December 2005. The population of this district is diverse with approximately 27% of the 
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students being African American, 24% Latina/Latino, and 27% Caucasian. The majority of 
students receive free or reduced lunches. With the students' involvement in the larger curriculum 
evaluation project, they already have taken two written tests, one in third grade and one in fourth 
grade. A preliminary look at the existing data has found few, if any, gender differences in the 
students’ achievement and in their solution strategies. 

Responses and work done on tasks were analyzed to look for gender differences in 
correctness of responses, making sense of the tasks and methods used to solve them, errors in the 
strategies and procedures used, and which tasks might favor girls or boys. Few gender 
differences were found, and these few will be discussed. Several questions emerge from this 
research, and are presented for discussion in the Gender and Mathematics Working Group: 

Are there really gender differences in the ways girls and boys do mathematics? 
� If so, what might explain the lack of differences found in this study, compared with 

results found in other studies? 
� In what ways might culture and Socioeconomic Status be influential? 
� What might we learn from this about boys’ and girls’ mathematical voices? 

Diana B. Erchick, Ohio State University at Newark, raises questions about how to connect 
conceptual frameworks, such as one grounded in agency, to the mathematics education work we 
do with teachers, students and schools. She embeds her discussion in preliminary data from a 
state-funded professional development project, the K-6 Mathematics Coaches Project. The 
project includes designing, delivering and evaluating a mathematics coaching professional 
development program in 34 low-achieving rural and urban elementary schools. Given that the 
percentage of elementary teachers who are women is quite high, it may not be surprising that all 
34 coaches in this project are women; however, they are in leadership positions and leadership in 
schools has not been dominated by women.  

The shared data are qualitative in nature, and are drawn from coach pre- and post- tests on 
content and pedagogy in year one of the project. The focus of the shared data is the qualitative 
change in the coaches' content and pedagogical content knowledge and discussion questions 
presented to the group include: 

� What might we learn about the role of mathematics content knowledge in women's 
agency in mathematics education contexts? 

� How do mathematics content knowledge and "knowing mathematics for teaching" 
(Ball, 2005) different and does their difference impact women's agency?  

� What might we learn about the role of mathematics pedagogical content knowledge 
in women's agency in mathematics education contexts? 

� How does mathematical voice play a role in this work? 
� How can we frame the discussion of women's agency in program contexts such as the 

mathematics coaching program? 

Closing 
In pursuing inquiry around Gender and Mathematics, the PME-NA Gender and Mathematics 

Working Group participants have committed themselves to an interpretation of the field of 
gender and mathematics as complex and nonlinear. We have also chosen to investigate the 
absences we encounter with a respect for the reflective voices of the researchers, teachers, 
students, women and girls who contribute to the work. In the papers and processes of this 
project, we work consistently to respect the structure and voices that emerge. Original absences 
apparent in 1998 have grounded our work since then. Newly apparent absences now ground our 
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new directions, and our commitment to addressing absences in the field continues. In particular, 
as in this year's working group, the current investigations and questionings bring to the 
discussion issues such as influences on girls' and women's agency in choices they make about 
their relationships with mathematics; the role mathematics plays and how important it is or is 
not; what elements of the various contexts, from elementary school to university, across the 
continent, in relationship with other contexts such as technological environments are contributing 
not-so subtle influences on women's and girls' choices and relationships with mathematics. 
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WORKING GROUP 

STUDYING TEACHER LEARNING: 

THE WORKING GROUP ON INSERVICE TEACHER EDUCATION 

Fran Arbaugh, Session Organizer 
University of Missouri  

arbaughe@missouri.edu 

The focus for this working group is setting goals for the upcoming years in four sub-areas: 
studying teacher learning of mathematics; studying teacher development of PCK; studying 
mechanisms for teacher learning; and studying how teachers learn from their everyday 
classroom work. This goal-setting builds on work done by the PD discussion groups at past 
PME-NA meetings. 

A Brief History of the Group 
At the 2001 NCTM Research Presession, the facilitators of the proposed working group led a 

session titled “Studying Professional Development is Messy Work. What are the research 
issues?” Approximately 50 people attended. At the 2002 PME-NA meeting in Georgia, the same 
facilitators began a PME-NA-based discussion group to address continued interest in the issues 
surrounding research on professional development for teachers of mathematics (Arbaugh, 
Brown, & McGraw, 2002). Approximately 70 people attended the discussion group, which met 
twice during the conference. 

The 2003 PME/PME-NA (Arbaugh, Brown, & McGraw, 2003) and the 2005 PME-NA 
(Arbaugh, 2005) discussions groups continued the work begun in Georgia in 2002. At the end of 
the 2005 meeting, interest remained high for continuing this group as a Working Group at the 
2006 meeting in Merida. 

Focus for Proposed PME-NA 28 Working Group:  
Setting the Agenda for Work in the Coming Years 

Building on the work begun in prior discussion groups, the focus of this proposed working 
group is on setting the work of the Working Group over the next few years. Over the course of 
the meeting, we intend to set working agendas in the following areas: 

1. Studying teacher learning of mathematics. 
2. Studying teacher development of PCK. 
3. Studying mechanisms for teacher learning (professional development models). 
4. Studying how teachers learn from their everyday classroom work. 

In addition to laying out an agenda for each subgroup over the next few years, participants in 
each subgroup will design a hypothetical study, present that study to the larger group, and 
receive feedback. 

At the end of the PME-NA 27 working group session, we will spend time planning for future 
working groups. This work includes: 

1. Setting goals for future meetings. 
2. Generating possible products that can come from our work. 
3. Committing to participation at future meetings. 

_____________________________ 
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An important long-term goal for the working group will be to develop and support leadership 
in the area of research on teacher learning. Individuals who are beginning work in this field 
should benefit from engaging with a community of researchers and examining and discussing the 
usefulness and limitations of various frameworks and research methods. In addition, this working 
group will provide a much-needed arena for cross-pollination of ideas among both senior and 
junior researchers and encourage movement toward a coherent and conceptually rich research 
base in mathematics teacher learning. 
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WORKING GROUP 

WORKING GROUP ON MATHEMATICS CLASSROOM DISCOURSE 

David Wagner 
University of New Brunswick 

dwagner@unb.ca 

Jeffrey Choppin 
University of Rochester 
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David Pimm (presenter) 
University of Alberta 
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Megan Staples (discussant) 
University of Connecticut 
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This working group on mathematics classroom discourse will focus attention on the specifically 
mathematical characteristics of discourse in mathematics classrooms. Participants will work 
together in small groups to respond to various artifacts from mathematics classroom discourse. 
In large-group discussion, we will hear from the small groups and work together to find some 
common ground. 

Recap of First Meeting, Roanoke, 2005 
Last year’s discussion group on mathematics classroom discourse (Choppin et al., 2005) was 

structured around three guiding questions: 
1. What theoretical frameworks might be used to study classroom discourse in 

demographically diverse settings? 
2. What are the specific mathematical characteristics of discourse, and how do our analytic 

techniques account for these characteristics? 
3. How can the study of discourse help us understand and transform the teaching and 

learning of mathematics? 
Participants in this discussion group began to investigate the nature and role of discourse in 

mathematics classrooms. The 40 participants were introduced to three theoretical frameworks as 
examples of a range of frameworks for analyzing the discourse. Participants analyzed and 
interrogated these frameworks for researching the nature and impact of discourse practices in 
terms of both social and mathematical aspects. Furthermore, methodological and analytical 
challenges were considered. 

Format for Working Group, Mérida 2006 
Continuing the conversation from last year’s discussion group, this working group will 

continue to be structured by the above three guiding questions. While our discussions last year 
primarily focused on question one, this year’s working group will focus on the second of these 
three questions, and will depend more heavily on the participation of the assembled group. 

The sessions will be centered on the consideration of mathematics classroom artifacts. In the 
first session, David Pimm will use one artifact to lead the group in a discussion about the 
mathematics register and its implications for classroom discourse. This discussion, which relates 
closely to this year’s focus question on mathematical characteristics of classroom discourse, will 
underpin small-group discussions about other artifacts. 

Participants in this working group will work together in small groups to respond to 
mathematics classroom artifacts that may include: 

• video excerpts, drawn from the TIMMS video study model lessons (RBS, 2003) 
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• audio excerpts 
• transcripts 
• student writing 
• textbooks 
• technological tools (e.g. graphing calculator) 
• assessment instruments 

The range of theoretical and methodological perspectives that participants bring to this 
working group, together with the focus on unique characteristics of mathematics classrooms, will 
provide rich ground for small-group discussion. Groups will be given artifacts to study and will 
be asked to address prompts such as the following: 

• What features of the discourse do you see represented in your artifact? 
• Relate these features to characteristics of classroom discourse that are unique to 

mathematics classrooms. 
• Consider alternatives to the classroom discourses you see represented in your artifact. 
• Identify constraints and affordances experienced by teachers interested in implementing 

alternatives to these discourses. 
• What is the impact of your theoretical and/or methodological perspectives on your 

responses to the above prompts?  
After groups will have had sufficient time to work on their artifacts the larger group will be 

convened for the small groups to share their findings. We hope that each group will have a 
chance to study more than one artifact. At the end of the last session there will be some 
discussion about future directions for the working group and potential writing projects.   

Rationale for Work on Mathematics Classroom Discourse 

Theoretical Frameworks 
The word discourse can mean various things. A range of analytical tools has been used to 

study mathematics classroom discourse. Each analytical tool foregrounds its own aspects of 
discourse. In addition to the various scholarly approaches to discourse, the term has wide 
currency in professional literature. For example, the NCTM Standards documents (1991, 2000) 
stress the role of discourse in the learning and teaching of mathematics, and promote particular 
forms of discourse in an attempt to normalize certain classroom practices. 

In this context, in which various educators refer to different aspects of discourse and even use 
some of the same words in differing ways, there is value in bringing people with different 
perspectives together. We can understand our own perspectives better when we listen to others 
describe their perspectives. We can work together toward common goals, complementing each 
other’s foci. 

The Mathematics in “Mathematics Classroom Discourse” 
Studies focusing on features of discourse that are uniquely mathematical include 

investigations of argumentation (e.g., Lampert, Rittenhouse, & Crumbaugh, 1996), hidden 
regularities in interaction patterns (e.g., Voigt, 1995), the mathematical register (Pimm, 1987), 
metacommenting used by mathematics teachers (Pimm, 1994), and the triadic dialog (i.e., the 
IRF sequence) and its relationship to forms of habitus (Zevenbergen, 2001).  
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In addition to the need for extending present scholarship relating to mathematics classroom 
discourse, we need to consider carefully the relationships between characteristics of mathematics 
and the already-identified features of mathematics classroom discourse. There is also a need to 
develop more analytic tools that are specifically geared toward mathematics classrooms. While 
we can learn much about the social order of mathematics classrooms using tools developed by 
discourse analysts, these tools do not often take into consideration the specific mathematical 
content of the conversations taking place (Steinbring et al., 1998).  

Though the characteristic abstraction and generalization associated with mathematics often 
directs attention away from critical socio-cultural issues such as social class, gender, and race, a 
focus on aspects of classroom discourse that are particular to mathematics classrooms can 
uncover such issues. However, these issues are rarely examined in discourse studies in 
mathematics classrooms. Focusing discourse studies on inequities can help us understand the 
range of language use and interaction patterns students bring to mathematics learning and 
illuminate issues of authority and power (Atweh, Bleicher, & Cooper, 1998; Herbel-Eisenmann, 
2003; Herbst, 1997; Zevenbergen, 2001). Though significant work toward understanding 
mathematics classroom discourse has been done, the research community still has far to go in its 
attempt to understand many aspects of discourse (Steinbring et al., 1998). 

Practical Implications of this Work 
There is evidence that discourse practices have not changed much in the last two decades 

(Spillane & Zeuli, 1999; Stigler & Hiebert, 1999) and there is little evidence of the connection 
between the nature of discourse practices and mathematics achievement (Steinbring et al., 1998). 
From a practical perspective, it has been shown that mathematics teachers’ discourse patterns are 
quite traditional, including those of teachers who are attempting to change their classroom 
practices (Cohen, 1990; Herbel-Eisenmann, Lubienski, & Id Deen, 2004; Spillane & Zeuli, 
1999) and a broader sample of mathematics teachers in the US (Stigler & Hiebert, 1999). This is 
important given that the reform movement in North American mathematics education has made 
some particular demands on teachers.  

Most of the scant literature where teachers have been involved in examining their own 
classroom discourse has focused on teachers in unusual situations, for example, teacher 
development experiments (e.g., Cobb, Yackel, & Wood, 1993) or teachers who are considered 
experts in mathematics education (e.g., Lampert & Blunk, 1998). Only recently have researchers 
used the tools and concepts of discourse analysis with teachers as they teach in their ordinary 
classrooms (e.g., Rowland, 2000).  
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Teaching assistants (TAs) play vital roles in the mathematics education of undergraduates and 
may go on to become professors of mathematics. The K-12 literature on teacher practice delves 
both into professional development activities and their assessment as well as into (pre-service) 
teachers’ beliefs about mathematics teaching and learning. Here we document an emerging body 
of scholarly inquiry into the graduate student TA experience and the professional development 
needs of TAs that is beginning to replicate, expand on, and apply ideas from these existing lines 
of inquiry. Topics of projects to be discussed during this session include: use of design-based 
research to create professional development materials, statistics TAs’ knowledge of the topic of 
statistical sampling, and packaging research findings to inform the pedagogical content 
knowledge of TAs. 

The working group fosters collaboration in framing and carrying out this research. Meeting 
time is devoted to discussion of participants’ research projects at various stages of development 
(planning, data collection, analysis, and reporting). Participants provide feedback and 
discussions serve as the basis for the group’s goals of building a community of researchers 
interested in TA issues, the analysis of similarities and differences with K-12 mathematics 
education, and the development of an agenda for continued work. 

Interest in and awareness of mathematics graduate student teaching assistant (TA) 
professional development (PD) needs continues to increase in the mathematics community. The 
Mathematics Teaching Assistant Preparation and Development Research Working Group of 
PME-NA emerged in 2002 as a forum specifically for research in the area. Since that time the 
group has worked to be a community site where mathematics educators can connect, collaborate, 
receive critical feedback, and organize an agenda of relevant, common concerns. There have 
been significant recent developments in the field including increased interest by mathematics 
education graduate students, increased efforts to connect new results about TAs to the existing 
body of results and theory in the K-12 literature, and a general increase in the variety and 
richness of projects being disseminated. In this paper we note recent growth in the field and 
discuss developments in both “applied” and “basic” categories of work. 

Activities of working group members have generated publications in addition to the PME-
NA working group proceedings. For example, the organizers expanded on and published a paper 
from the 2002 conference proceedings in College Teaching (Speer, Gutmann, & Murphy, 2005). 
Projects that were initially presented during the working group sessions have also developed into 
PME-NA presentations at subsequent conferences (Speer, Strickland, & Johnson, 2005; Kung & 
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Speer, 2006b). In addition, group members have given presentations on their working group-
related activities in other venues, including invited talks and research conference sessions 
(Gutmann, 2005; Kung & Speer, 2006b; Speer 2005). An email listserv and a wiki web site 
(http://betterfilecabinet.com/cgi-bin/ta/index.cgi) have been developed to encourage awareness 
and collaboration in the field. The web site includes a “virtual research group” area where 
members of the working group share works-in-progress and receive feedback throughout the 
year.  

Categorizing Research in the Field 
In a broad sense, research work in the field can be categorized into two areas: applied and 

basic. The “applied” area is focused on the development and use of PD materials along with 
investigations into how existing research can inform the design of these materials and how TAs 
learn from planned PD experiences. The “basic” area is focused on advancing theory to 
understand who TAs are, how they think about what mathematics is and how it is learned, and 
how their communities help them define themselves and their profession. 

While the research discussed here focuses on the general topic of teacher development and 
practice, its focus on mathematics graduate student teaching assistants means there are special 
issues that receive increased attention. In this world we take somewhat for granted that TAs have 
rich understandings of mathematics, but ask new questions about how this translates into or 
informs pedagogical content knowledge (Shulman, 1986) and classroom practice, topics 
extensively investigated in the K-12 literature. Group members bring several theoretical and 
methodological perspectives to their research. These include socio-cultural, deisgn-based, and 
cognitive lenses. This aids the group in pursuing one of its central goals: understanding how 
results from existing mathematics education research on K-12 mathematics teaching and learning 
apply to, and fail to apply to, the special world of TAs.  

Applied research  
In the context of this paper, applied research refers most often to the design of PD activities 

or materials. Here researchers question the needs of TAs in terms of knowledge about the 
classroom and pedagogical content knowledge. Materials are designed to meet these needs in the 
special context of TA professional lives that often includes being in the classroom from the start 
of the first semester of a graduate program, before any formal PD activities are available. Several 
such projects were presented at the 2005 PME-NA meetings and summarized in the 2005 
proceedings paper for the working group (Gutmann, Speer, & Murphy, 2005). Hauk et al (Video 
cases for novice college mathematics teacher development) presented plans to create factual and 
manufactured classroom vignettes designed to help TAs confront and think through a variety of 
pedagogical issues. Noll (Using a CGI professional development framework for improving 
statistics TAs’ pedagogical content knowledge) begins to ask specialized questions about the 
pedagogical content knowledge required for teaching statistics and considers how a Cognitively 
Guided Instruction (CGI) framework can be used to provide PD for statistics TAs. Noll’s 
conference presentation asked participants to consider how TAs might think about mathematics 
and statistics differently and how this might influence their teaching practice.  

Basic research 
Some researchers in the field focus their investigations on fundamental issues in mathematics 

education that connect to and/or support the applied research described above. In an early entry, 



Working Groups  Vol.1-85 b 

 

Carlson (1999) investigated a group of TAs and attempted to describe them as mathematicians 
and to explain the habits of mind that have made them successful. Herzig’s (2002, 2004) similar 
line of inquiry discusses female graduate students as women and how the mathematics 
community is dysfunctional in its integration of them. Facilitated by the working group, four 
authors presented basic research at the 2005 meeting. Meel continued the theme of understanding 
who graduate students are and their needs in Exploring first-year TA experiences through weekly 
reflective writing assignments. Considering how graduate students acquire the knowledge needed 
for teaching, especially knowledge about student thinking, Kung focused on calculus TAs in 
Teaching assistants learning how students think. Extending the literature base on K-12 teacher 
planning Speer, Strickland, and Johnson (Influences of college mathematics teachers’ knowledge 
and beliefs about student understanding on their plans for instruction) and Winter (Lesson 
planning practices of graduate student instructors in mathematics) each examined TAs’ 
planning processes and the ways in which knowledge and beliefs about learning influence their 
choices of classroom activities. These titles are abstracted in the 2005 proceedings paper 
(Gutmann, Speer, & Murphy, 2005). 

Current Working Group Projects 
Members have contributed synopses of three projects to be discussed during the group 

meeting time. Using the categorization above, the first of these projects is applied—Belnap and 
Winter’s design-based research approach to creating professional development experiences. The 
second represents basic research: Noll’s inquiry into graduate students knowledge of statistics for 
teaching. The third (Kung and Speer) is a plan for a publication that will organize findings from 
research on teaching and learning in a format specifically useful for educators working with TAs 
and other new mathematics instructors and/or planning professional development for them. 

During the group meeting researchers will share their projects as described below and solicit 
feedback. In each project synopsis, the researchers describe the work, indicate what “stage” of 
development the project is in (planning, data analysis, reporting, etc.), and set out how they 
intend to structure their portion of time during the working group meeting.  

Mathematics teaching assistants: Video observation with peer-feedback sessions as 
professional development 

Jason K. Belnap and Karen Winter 

Extensive, nation-wide survey research by Allred & Belnap (2006a; 2006b) into the ways in 
which mathematics departments use TAs and the kinds of professional development provided to 
TAs reveals that in the United States, it has become common for departments to involve TAs in 
college mathematics instruction. In fact, most of these TAs are employed as instructors, having 
sole responsibility for their classes. Many mathematics departments provide extensive 
preparation for their TAs and these departments use systems of preparation involving a 
combination of programs that provide not only initial preparation prior to teaching 
responsibilities, but sustained support throughout their teaching experiences. In spite of this, 
most existing preparation programs are developed, not from research literature, but by word-of-
mouth connections and information provided by the national mathematics organizations. 
Furthermore, most departments are only moderately satisfied with their preparation programs 
and have many questions for researchers. The topics they feel researchers need to address 
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include: how to motivate teacher change in TAs; the benefits or impacts of preparation programs; 
what types of preparation are best; and what content/methodology is needed.  

Researchers of TA development programs must address these needs by studying not only the 
TA experience, but also the impacts and design of the different types of preparation programs 
that exist. We need to determine how different contexts and elements in those contexts shape the 
impact and implementation of various preparation programs and how program designs affect 
TAs’ teaching development.  

One way that researchers can do this is through design-based research. This type of research 
revolves around the development and refinement of an intervention, a TA preparation program, 
for instance. In a cyclical process of development, a preparation program is studied and refined 
over time to become more effective and to better meet the desired goals. If this were it, however, 
these methods would add nothing more to how some departments are already producing their 
preparation programs.  

Design-based research is more than this, though. Although the intervention is a central item 
and product of the research, it is not the primary goal and focus of the research. The main goal is 
to understand the design of the intervention, its impact on and interaction with the context.  This 
includes identifying important aspects of both the intervention and the situation that play key 
roles in how the it unfolds. It provides a level of understanding that can help with study 
generalization and with off-site implementation.  

Working group plans.  
This workgroup presentation will focus on the role that design-based research can play in our 

research on TA preparation and development. Using our current research study as an illustration, 
we will present and discuss how design-based research can be incorporated into TA preparation 
research. Group discussion will focus both on the use of design-based research, as well as on the 
goals, structure, and nature of our current research project, a first attempt on our part to 
implement this type of research.  

We would welcome feedback from both those experienced with this type of research and 
those new to it. Those who are experienced with these methods will be able to share their 
expertise and feedback both on these methods in general and on the current study design in 
particular. Those new to these methods can learn how it can be incorporated to further research 
on TA preparation and even other fields of study. We also seek feedback from those interested in 
research on TAs’ development of social teaching networks since this is a conceptual focus of the 
current study.  

Graduate teaching assistants’ statistical knowledge for teaching in sampling situations 
Jennifer Noll 

During the past decade, the mathematics education community has been engaging in research 
on the teaching and learning of probability and statistics at both K-12 and college levels (Ben-
Zvi & Garfield, 2004; National Council of Teachers of Mathematics, 2000). As graduate TAs 
teach the bulk of introductory statistics courses at many universities (Luzter, Maxwell, & Rodi, 
2000), they have the potential to play a vital role in undergraduate statistics education and in the 
promotion of statistical literacy among college students. The overarching goal of my project is to 
broaden the developing base of research concerning TAs by initiating research on TAs’ 
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statistical knowledge for teaching. In particular, I plan to investigate the following research 
questions: 

1. How do TAs understand the ideas of sampling? In particular, 
a. How do TAs conceptualize samples, the act of sampling and sampling 

distributions? 
b. How do TAs conceptualize the connections between sampling and statistical 

inference? 
2. What statistical knowledge for teaching do TAs possess?  In particular, 
a. How will TAs respond to scenarios of student responses to a variety of 

sampling tasks? 
b. What knowledge of student solution strategies and/or common conceptual 

difficulties do TAs posses? 

Status  
In the fall of 2006 I will collect web-based survey data from approximately 50 TAs from a 

convenience sample of six universities across the country. Following the surveys I will select a 
convenience sample of four local TAs for subsequent interviews. Survey and interview tasks will 
assess TAs’ content knowledge of sampling, as well as their knowledge of students’ statistical 
thinking within sampling. The selection of survey and interview tasks which address TAs’ 
content knowledge and knowledge of students’ statistical thinking are drawn from tasks used in 
recent research on K-12 and college students’ reasoning in sampling contexts (c.f., Chance, 
delMas & Garfield, 2004; Reading & Shaughnessy, 2004; Watson, 2004). In order to assess 
TAs’ knowledge of students’ statistical thinking, I developed extension questions that ask TAs to 
respond to scenarios of student responses to the sampling tasks. I plan to use the conceptual 
framework developed by Shaughnessy et al. (2004) for my initial analysis of TAs’ content 
knowledge by classifying responses into the broad categories of additive, proportional and 
distributional reasoning.  

Working group plans 
During the working group session I would like feedback on methods for analyzing and 

interpreting the survey and interview data. In particular, I would like feedback on my use of 
Shaughnessy’s framework, and the ways I can refine his framework for a stronger 
characterization of TA content knowledge. Additionally, I would like feedback on developing a 
framework for TAs’ knowledge of students’ statistical thinking. 

Transforming research findings into pedagogically useful resources for college mathematics 
teachers 

David Kung and Natasha Speer 

We have submitted a prospectus to the MAA for a volume that would make research on 
undergraduate mathematics learning accessible to mathematicians and mathematics graduate 
students. Each chapter in the volume would focus on a particular topic from undergraduate 
mathematics, from College Algebra through Calculus to the upper-level courses. The tentative 
title for the volume is What Could They Possibly Have Been Thinking?!? Understanding Your 
College Mathematics Students.  
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This volume is intended for use in professional development programs for graduate students 
and other new instructors; it would also be useful as a reference for people new to teaching at the 
college level or experienced college instructors who are teaching new topics for the first time. 
The information about the nature of student understanding and learning will be presented in a 
format that is accessible to people who are not knowledgeable about mathematics education 
research. Readers will be drawn in by beginning each topic with concrete examples of student 
work before moving into a discussion of how those examples illustrate general patterns of 
student thinking. The order of the chapters will make it easy for readers to select portions of the 
volume that are most relevant to their current needs and interests. Unlike other reports or 
syntheses of research, these chapters will provide specific examples of students’ work that 
teachers might actually encounter on exams or during class and an analysis of the thinking 
behind that work based on findings from research. The examples of student work (both correct 
and incorrect) will illustrate the difficulties students have and the types of problematic thinking 
typical in that topic. This work will bridge the gap between research and practice by providing 
access to important information that can help these teachers understand their students’ work and 
contribute to their improved teaching practices. 

Research on K-12 teaching and professional development shows that experienced teachers 
have far more “pedagogical content knowledge” (Shulman, 1985) than their novice counterparts. 
PCK describes knowledge teachers have, distinct from knowledge of content or knowledge of 
general pedagogy, and includes knowledge of how student think, challenges they encounter, and 
strategies for helping them overcome those challenges. Thus PCK is precisely the mathematical 
knowledge needed to do the work of teaching. K-12 teachers have the added experience of 
methods courses and textbooks that contain a significant amount of PCK-related information. 
Teachers at the college level acquire such knowledge in a variety of ways including examining 
their own learning experiences, grading homework and exams, and interacting with students. 
What little professional development they receive is, however, unlikely to concentrate on PCK; 
hence the impetus for our project. 

Working group plans 
We have a draft chapter (about limits) and would like to get feedback from the working 

group members on the format of the chapter, the particular student work/thinking examples 
selected, and the aspects of the research literature we have chosen to illustrate. We want to 
ensure that the information is presented in a manner that is useful and appealing to the intended 
audience and want to be certain that we are representing the research findings in as 
comprehensive a way as possible. 

Conclusion 
Since the formation of the working group, the number of educators interested in and actively 

conducting research related to TAs has increased greatly. As this has happened, the working 
group has identified several important concerns that should inform a future research agenda. In 
keeping with the theme of this paper, they are roughly grouped into applied and basic areas. 

Applied concerns 
These relate to the topics PD should address and the forms of PD experiences that will be 

most effective.  
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1. We frequently assume TAs have a strong understanding of the mathematics they 
teach.  Considering the difference among knowledge of the subject, pedagogical 
content knowledge (PCK), and mathematical knowledge for teaching, is this 
assumption warranted? On a related note, as an increasing number of students 
enter college needing to take courses such as College Algebra and Precalculus, the 
jobs of TAs are likely to change. They may be spending more and more time 
working with students who have weak mathematics preparation and/or significant 
mathematics anxiety issues.  Moreover, the topics TA are responsible for helping 
students learn may be even further removed from their own studies than they are 
now. Thus, there is a need to reconsider the PCK needs of TAs and to utilize the 
K-12 literature about PCK specific to the content domains that new college 
students may be learning. 

2. Since TAs’ jobs involve many responsibilities, models of professional 
development that have been tested with school teachers (e.g., workshops, 
mentoring, lesson study) may need to be modified in various ways to fit into TAs’ 
lives. 

3. Many mathematics departments provide PD for their TAs, but until now there has 
been no real research base for them to build their programs around. The 
community needs to consider how research findings related to TAs can best be 
disseminated. Further, thought should be given to how to encourage departments to 
develop and update PD programs. 

4. As new PD programs are created, assessment of research-based PD is becoming 
possible and necessary. PD programs will need to be targeted at needs identified by 
research and will need to be created to admit assessment of their effectiveness. 

Basic concerns.  
These relate most directly to understanding who TAs are, what they bring to their jobs, and 

how they function and learn in their social environment. 
1. TAs lead complex lives in which they are professionals, yet often seen as pre-

professionals. They are both students and teachers and many have families and 
heavy responsibilities outside the university. We need to understand more about 
how these people learn to value and balance their different responsibilities. 
Analysis should extend beyond the TA as an individual to include examination of 
TA communities, how these communities organize and pass on information and 
determine norms and values. 

2. International TAs have special needs in US classrooms. Their lack of familiarity 
with US student cultural norms means they may feel uncomfortable responding to 
a variety of classroom occurrences. They may also have difficulty integrating with 
their TA community. Researchers should be sensitive to these special concerns and 
include them in their inquiry into the TA experience. 

3. Not all TAs intend to complete Ph.D.s and pursue careers in academics. A greater 
understanding of the variety of professional motivations and goals of TAs is 
needed, both to understand the TA experience in general, and to make specialized 
recommendations about PD. 

At each working group meeting the group has attempted to refine a big picture of the field 
and to make suggestions relevant to a research agenda for the field. An important development 



Vol.1-90 b  PME-NA 2006 Proceedings 

 

has been an increased attempt to apply and adapt findings in the K-12 literature to the TA 
experience. In 2005 and at the upcoming 2006 conference familiar domains such as pedagogical 
content knowledge and communities of practice represent  valuable steps in this direction. The 
working group session promises to proceed productively on well-developed ideas. 
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The Models and Modeling Working Group at PME-NA has successfully continued its work 
since 1999. The purpose of this Working Group is to discuss and enrich different views in which 
models are used in the learning of mathematics and applied science. That is, models are 
considered conceptual and representational tools that allow us to better understand how students, 
teachers, researchers, and other educators learn, develop, and apply relevant mathematical 
concepts (Lesh & Doerr, 2003; Lesh, Doerr, Carmona, & Hjalmarson, 2003). To this workshop 
we would like to invite participants to begin or continue the development of the greatly needed 
communities of researchers and practitioners to expand our focus of research on the ways in 
which models are used in Problem Solving, Curriculum Development, Student Development, 
and Teacher Development. This year, a special focus will also be given to Models and Modeling 
as it applies to Assessment and Research Design, and its relation to Complexity Theory. 

In this workshop, we will continue to reflect on a Models and Modeling Perspective to 
understand how students and teachers learn and reason about real life situations encountered in a 
mathematics classroom. We will discuss the idea of a model as a conceptual system that is 
expressed by using external representational media, and that is used to construct, describe, or 
explain the behaviors of other systems. We will reflect on the characteristics that are elicited, 
including the complexity, dynamic, and iterative features of model-development. We will 
consider the types of models that students, teachers, and researchers develop (explicitly) to 
construct, describe, or explain mathematically significant systems that they encounter in their 
everyday experiences, as these models are elicited through the use of model-eliciting activities 
(Lesh, Hoover, Hole, Kelly, & Post, 2000). During the workshop we will continue to explore 
these aspects of learning, teaching, and research by continuing our work in panels and smaller 
groups focusing in: Student Development, Teacher Development, Curriculum Development, 
Problem Solving, and a strong emphasis on Research and Assessment Design, and Complexity 
Theory.  

A models and modeling perspective has proven to be a rich context for research and 
development. During past workshops, we have discussed and continued to work on innovative 
designs for research and assessment that can help answer questions involving the understanding 
of complex situations that are dynamic and iterative. There are several characteristics that need 
to be sustained by the types of research design needed. These include: 

First, it is important to radically increase the relevance of research to practice, involving 
many levels and types of participants (students, teachers, researchers, curriculum designers, 
policy makers, and others) (Lesh & Kelly, 2000). Second, it is necessary to understand that the 
educational phenomena that are researched are complex systems, in the sense that they are 
dynamic, interacting, self-regulating, and continually adapting. Third, it is necessary for 
educational decision-makers to rely on reports that involve more than simple-minded uni-
dimensional reductions of the complex systems that characterize the thinking of students, 
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teachers, and researchers. Recent advances in mathematics and other scientific fields have made 
available the use of technologies that are capable of using graphic, dynamic, and interactive 
multimedia displays to generate simple (but not simple minded) descriptions of complex systems 
(for example, weather, systems, traffic patterns, biological systems, dynamic and rapidly 
evolving economic systems) (Lesh & Lamon, 1993). And fourth, research is about knowledge 
development; and not all knowledge is reducible to a list of tested hypotheses and answered 
questions. In particular, in mathematics and science education, the outcome products that are 
needed from our research often focus on the development of models (or other types of 
conceptual tools) for construction, description, or explanation of complex systems. Thus, 
distinctions need to be made between: (a) model development studies and model testing studies; 
(b) hypothesis generating studies and hypothesis testing studies; and (c) studies aimed at 
identifying productive questions versus those aimed at answering questions that practitioners 
already consider to be priorities. 

From these assumptions, many participants from the Models and Modeling Working Group 
have been working on a research design first described by Collins (1990) and Brown (1992) 
called Design Studies. This type of research design explicitly focuses on the development of 
constructs and conceptual systems used by students, teachers, researchers, and other educators. 
Principles applying to Design Research, the types of research questions it allows to answer, 
appropriate methodologies involved in the design of these types of studies, and examples of 
Design Research Studies are some of the discussion topics that will be considered in our working 
sessions. 

The Models and Modeling Working Group at PME-NA Mérida 
The Models and Modeling Working Group at PME-NA XVIII has the following goals: 
� To disseminate and contribute to the research on the use of models and modeling in 

school mathematics, with a focus on students, teachers, researchers, and policy makers. 
� To create and support collaborations among researchers to build international 

communities of practice.  
� To extend the field of mathematics education towards new directions on assessment, 

problem solving, research design, learning environments and complexity; as it relates to 
the use of models and modeling in school mathematics. 

For the PME-NA XXVII Models and Modeling Working Group, several sessions will be 
organized throughout the Conference. In particular, there will be two main working group 
sessions. For each session, after a general introduction on different topics is provided, 
participants will be invited to select one, and smaller groups will be formed. Each sub-group will 
have a panel of discussants, and a discussion leader, who will approach the selected theme. In 
addition, participants will be encouraged to attend to other sessions that will be offered 
throughout the Conference, and that will further support and enrich the discussion that will take 
place during the two Working Group sessions. 

These panels and smaller groups will be guided by topics related to models and modeling 
and: Student Development, Teacher Development, Curriculum Development, and Problem Solving. 
More particularly, for this year we would like to extend our work by placing an emphasis on Design 
Research Studies (Collins, 1990; Brown, 1992) as a framework for Research and Assessment Design, and 
Complexity (Hills, Hurford, Stroup, & Lesh, in press; Lesh & Yoon, 2004).  
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Participants will participate in the sessions according to their interests to discuss these issues 
more in depth, as well as to outline a plan of action for future collaboration for those who are 
interested in continuing their work through out the year. 

Some accomplishments of the Models and Modeling Working Group 
Some of the publications and other accomplishments of the participants of this working 

group. The Handbook of Research Design in Mathematics and Science Education (Kelly & 
Lesh, 2000) describes a variety of innovative research designs that have been developed by 
mathematics and science educators to investigate interactions among the developing knowledge 
and abilities of students, teachers, and others who influence activities in mathematics and science 
classrooms. The book Beyond Constructivist: A Models & Modeling Perspective on Mathematics 
Teaching, Learning, and Problems Solving (Lesh & Doerr, 2003) includes chapters written by 
many of the participants of this working group, where the authors give a fuller description of a 
Models and Modeling Perspective. 

A special issue on Mathematical Thinking and Learning: An International Journal edited by 
Lyn English explicitly dedicated to a Models and Modeling Perspective, as a theoretical 
perspective (Lesh & Lehrer, 2003; Lesh, Doerr, Carmona, & Hjalmarson, 2003), and how it 
applies to student (Petrosino, Lehrer, & Schauble, 2003), teacher (Schorr & Koellner-Clark, 
2003) and problem solving (Lesh & Harel, 2003). 

A Models and Modeling perspective has proven to be rich context for research and 
development. Nevertheless, we have found the need to innovative research designs that can 
better help us answer the types of questions we are mostly interested in. A research design that 
has proven to be very useful for conducting research from a Models and Modeling Perspective 
are design experiments or design research studies (Collins, 1990; Brown, 1992). One of the 
works in progress of many participants of this working group is the development of a book on 
this type of research design, and how it can be used to conduct useful research to better 
understand students’, teachers’, researchers’, and other educators’ development of relevant 
mathematical ideas. Not only will the new book focus on design research methodologies, but it 
will also describe on new types of dynamic and iterative assessments that are especially useful in 
design research –where rapid multi-dimensional feedback is needed about the behaviors of 
complex, dynamic, interacting, and continually adapting systems. 

Finally, a new publication is soon to be released, focusing on Real-World Models and 
Modeling as a Foundation for the Future of Mathematics Education. Some of the questions that 
are answered in this book, and that will also be a focus for discussion during our working group 
include: How can research investigate systems of interacting systems –in situations where 
students interact with one another, students interact with teachers and students, teachers interact 
within continually evolving learning communities, and the learning activities are themselves 
continually evolving situations? What steps can be taken to develop a research community that is 
more than just a community of isolated individuals? 
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The Lesson Study discussion group will explore current and needed research agendas for lesson 
study, such as the culture of schools, content knowledge of teachers, teachers’ attention to 
students’ mathematical thinking, beliefs and practices of participants, the role of outside experts 
and impact on student learning. An edited book is a possible outcome. 

Research from cognitive science has precipitated enormous reform efforts in mathematics 
education in the United States focused on changing the way mathematics teachers practice their 
profession in K-12 classrooms to align with what we know about learning. A considerable 
amount of research has been conducted on the process and factors that influence teacher change. 
Yet many mathematics classrooms remain numbingly the same. Teacher-directed activities and 
lecture are frequently the primary delivery models for instruction. As a result, researchers 
continue to search for better understanding of the process of change and for models that support 
significant and lasting change in teacher behavior.  

After results of the Third International Mathematics and Science Study (TIMSS, 1999) found 
Japanese students better prepared in mathematics than students in the United States, researchers 
in the U.S. turned to the Japanese educational process for answers. Of particular interest was the 
process for inservice teacher education that is the major form of professional learning for 
Japanese teachers. The process is called Lesson Study. 

In a study of initial implementation of the Lesson Study process in an urban school in New 
Jersey, Fernandez, Cannon and Chokshi (2003) concluded that "those interested in implementing 
lesson study in the US cannot overlook the substantial challenges that must be overcome to make 
this practice purposeful and powerful . . . powerful lesson study practice will depend on what 
teachers bring to this activity . . . lesson study must include room for knowledgeable coaches 
who can stimulate the thinking of groups so they can rise above their own limitations." (181-182) 

This and other research suggest that there is much to be learned about Lesson Study as a 
viable model for teacher change. Factors such as culture of the schools, content knowledge of the 
teachers, teachers’ attention to their students’ mathematical thinking, beliefs and practices of 
participants, role of the outside experts and impact on student learning are all important objects 
of investigation for researchers interested in studying implementation of Lesson Study. 

In the past few years at PME/NA there have been an increasing number of research projects 
looking at Lesson Study. The researchers proposing this discussion group believe there is 
sufficient interest to warrant convening a discussion group to share our research, explore the 
possibility of collaborative research and determine if there is adequate interest in compiling an 
edited book that pulls together research on efforts to implement Lesson Study. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 



Vol.1-98  PME-NA 2006 Proceedings 

 

References 

Fernandez, C., Cannon, J. & Chokshi, S. (2003). A US–Japan lesson study collaboration reveals 
critical lenses for examining practice. Teaching and teacher education, 19, 171-185. 



Discussion Groups  Vol.1-99 
 

 

DISCUSSION GROUP  

TRANSNATIONAL AND BORDERLAND RESEARCH STUDIES  
IN MATHEMATICS EDUCATION 

Richard Kitchen, Chair 
The University of New Mexico 

kitchen@unm.edu 
 

Panelists: 
Jesús Acosta 

The University of Arizona 
jjesuss@email.arizona.edu 

Marta Civil 
The University of Arizona 
civil@math.arizona.edu 

Rochelle Gutiérrez 
University of Illinois at 
Urbana-Champaign 

rgutirrz@uiuc.edu 

Mary Marshall 
The University of New Mexico 

mary_pres@yahoo.com 

Rebeca Mejia-Arauz 
rebmejia@iteso.mx 

 
 

Discussants: 
Judit Moschkovich 

University of California at Santa Cruz 
jmoschko@ucsc.edu 

Eduardo Mancera  
Universidad Iberoamericana, Mexico D.F. 

campumance@compuserve.com.mx 

This Discussion Group will focus on transnational and borderland research studies across 
sending and receiving communities in Mexico and the U.S to move transnational research 
agendas forward. Participants will consider multiple aspects of children’s experiences with 
mathematics, including curriculum, classroom participation structures, mathematical reasoning 
and discourse (both in and out of school), and parents’ perceptions and beliefs about 
mathematics instruction. 

Focus and Aims of the Discussion Group 
During this Discussion Group, researchers from several universities will present and discuss 

summaries of their current research projects examining mathematics curriculum and instruction 
in both Mexican and U.S. schools, out of school mathematical activities in both countries, and 
Latino parent beliefs about mathematics instruction. Through these discussions we hope to bring 
together researchers on both sides of the border, to foster and support an interest in pursuing 
these issues further, and to create a group of researchers who will work on these topics by 
organizing a Working Group around this theme for subsequent meetings. 

For the past several decades there has been a large influx of immigrants in the United States, 
particularly from Asia and Latin America. These immigrants are a heterogeneous group that 
challenges simple generalizations. They include “highly educated, highly skilled workers... and 
large numbers of poorly schooled, semiskilled, or unskilled workers, many of whom are in the 
United States without proper documentation” (Suárez-Orozco, 2001, p. 350-1). According to the 
U.S. Census Bureau (March, 2000), over 50% of all immigrants in the U.S. are from a Latin 
American country, and the majority of these immigrants are from Mexico. Across the U.S., 
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significant numbers of immigrant children from Latin America, particularly from Mexico, are 
entering U.S. classrooms. Needless to say, mathematics teachers in the U.S. are struggling to 
understand and meet the needs of these students.   

Transnational and borderland research studies across sending and receiving communities in 
Mexico and the U.S. are important to pursue for several reasons. First, many children experience 
the transition between Mexican and U.S. mathematics classrooms as disruptions in their 
mathematics learning trajectories. It is crucial to examine this transition in order to be able to 
better support recent immigrant children in learning mathematics in the U.S. (Abreu, Bishop, & 
Presmeg, 2002). Second, many families and children cross these borders more than once in their 
lives and belong to communities on both sides of the national border, so that their lived 
experience is not neatly separated into “here” and “there” (Suárez-Orozco & Suárez-Orozco, 
2001). Therefore, it is important to examine the mathematical aspects of this population’s 
experiences across two countries, rather than separately in each country (Civil & Andrade, 
2002). Third, it is important to understand immigrant parents’ perceptions of their children’s 
educational experiences in both Mexico and the U.S. As Suárez-Orozco & Suárez-Orozco (2001) 
write, “immigrant parents walk a tightrope; they encourage their children to develop the 
competencies necessary to function in the new culture, all the while maintaining the traditions 
and (in many cases) language of home” (p. 89). This tightrope feeling extends to the 
mathematics education of their children, as parents try to make sense of approaches to 
mathematics teaching that are often different from what they were expecting or had experienced 
themselves. We argue that how parents perceive and value these different approaches may affect 
their children’s learning opportunities (Abreu & Cline, 2005; Bratton, Quintos, & Civil, 2004; 
Civil, Planas, & Quintos, 2005; O’Toole & Abreu, 2005). 

The discussion group will consider multiple aspects of children’s experiences with 
mathematics, including curriculum, classroom participation structures, mathematical reasoning 
and discourse (both in and out of school), and parents’ perceptions and beliefs about 
mathematics instruction. The aim of this Discussion Group is to present and discuss several 
research projects that involve transnational and borderland comparisons in order to develop new 
research questions, refine data analyses, and move transnational research agendas forward. Some 
of the research questions that Discussion Group panelists plan to address include: 

1)  How do Mexican immigrant parents in the U.S. view the mathematics teaching and 
learning that their children are experiencing in the receiving communities in the U.S., 
particularly in relation to their experiences in classrooms in sending communities in Mexico?   

2)  How are mathematics classroom participation structures in receiving communities in the 
U.S. and in sending communities in Mexico alike and how do they differ? 

3)  How do mathematics curricula and instruction in sending communities in Mexico and 
receiving communities in the U.S. compare with regards to depth (over mere coverage), 
analytic reasoning (over mere memorization), the construction of value (over doing tasks 
as ends in themselves), and engagement in learning?  

4)  How are teachers’ views on the practice of teaching, especially with respect to 
opportunities to learn from each other, similar and different in Mexico and the U.S.?  

Discussion Group Goals 
The central goals of the Discussion Group are to: 
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1)  Develop a shared understanding of the research questions, issues, challenges, and 
contributions that transnational research studies can make to research in mathematics 
education; 

2)  Develop a plan for supporting further connections among transnational projects in the 
future. 

During the two sessions, participants will examine and discuss the design of several 
transnational research studies, analyze sample data collected in at least one of these studies, and 
discuss future plans for the Group. These activities are intended to support participants in a) 
clarifying research questions, b) refining research tools, methods, and analyses, c) exploring 
connections among different projects and studies, and d) discussing further transnational 
collaborations and research on learning and teaching mathematics across the U.S./Mexico 
border.  

The planned activities will support these goals in several ways and be grounded in 
discussions of sample research designs, data sampling, and sample curricula. The anticipated 
follow-up activities for this Discussion Group include planning for a continuation of the Group 
as a Working Group for PME-NA 2007 and at PME-International in 2008 and ultimately 
organizing a collaborative writing project on this topic. 

Overview of Proposed Discussion Group Sessions 

Session 1: 
1)  Introduction and overview of the Discussion Group. 
2)  Brief (10 minutes each) presentations by panel members providing overviews of research 

projects with specific examples of how researchers have designed transnational studies. 
The purpose for these short presentations is to provide examples of transnational research 
projects and to summarize several different studies in a structured way.  

3) In small groups, participants will analyze and discuss sample data from at least one of the 
studies presented.  This will give participants an opportunity to share their own 
experiences in designing research studies, collecting data, and analyzing data. 

4) Distribution of one or two readings for the next session (e.g., Abreu & Cline, 2005; Civil, 
Planas, & Quintos, 2005; Padilla & Gonzalez, 2001).  

Session 2: 
1) Discussion in small groups of the selected reading(s).  
2) Brief (10 minutes each) presentations by the discussants that highlight key ideas using the 

questions listed below as a guideline. 
3) Discussion in small groups in which participants have opportunities to both talk about 

panelists’ responses to questions above and frame new questions for panelists. 
4) Whole group discussion: synthesis of main ideas and future directions. 

Suggested questions to be addressed by Discussion Group Presenters across the two sessions: 
1) What theories and theoretical frameworks have informed the design of your research 

project(s)? 
2) How might your work inform theory in mathematics learning and teaching?  How can 

transnational comparisons expand our theoretical lenses? 
3) What issues and challenges have you faced in designing transnational studies? 
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4) How have you approached defining the research questions for transnational studies? 
5) How have you approached data analysis for transnational studies?  
6) What specific comparisons have you focused on and why? 
7) What aspects of your research do you expect will be most useful to informing practice 

(curriculum development, teacher professional development, work with parents, etc.)? 
8) How might your work inform not only instructional practices for this population but also 

instructional practices for other populations?  
9) Which aspects of transnational studies do you find most puzzling? Most useful? Most 

misunderstood? 
10) How might other researchers pursue transnational research projects and what can they learn 

from the work done so far? 
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The current study took place in the context of a mathematics-content course designed to engage 
prospective secondary mathematics teachers (PSMTs) in work with the concept of function. The 
data are derived from a task-based interview conducted with eight junior or senior PSMTs. In 
the interview, the Bottle Problem was selected to engage PSMT in graphing a complex 
relationship (in this case involving rate of change in an applied situation). Our analyses suggest 
that PSMT ranged in their abilities to hold onto the meaning of the mathematical entities with 
which they were working, in their abilities to coordinate those entities, in their abilities to 
recognize the relationships between different representations of the same entity, and in their 
coordination of macro- and micro-perspectives. Based on these analyses, we developed 
characterizations of how PSMTs deal with describing and graphing complex relationships. 

Dealing with complexity is essential to the success of secondary mathematics teachers 
(Henningsen & Stein, 1997), and one of the most complex concepts with which they deal is that 
of rate of change (Thompson, 1994), particularly rate of change in an applied setting. This study 
investigated how prospective secondary mathematics teachers dealt with complexity in the 
context of an applied setting whose mathematical relationships centered on the concept of rate of 
change. 

Complexity 
To deal with the complexity of a quantitative situation one needs to understand mathematical 

entities (e.g. function, derivative, etc.) and to be able to use that understanding in reasoning about 
the entities and their characteristics. When reasoning about several entities, one also needs to 
understand the relationships among entities, and be able to coordinate the characteristics of one 
entity with characteristics of the others. In the case of real-world situations, one also needs to be 
able to map entities, characteristics, and their relationships to the real-world situation as well as 
to related representations. One needs to be able to move freely between a mathematical feature of 
the situation and its counterpart in the real world. As one reasons about quantitative situations, 
one needs to hold onto the meaning of the mathematical entities, their characteristics, and 
relationships among them. Holding onto meaning is increasingly difficult in complex 
relationships because dealing with such relationships requires a coordination of all of the 
aforementioned components. As we studied how these individuals reasoned about a complex 
situation, we noted ways to think about how any or all of these essential components of 
understanding play out. 

Complexity in a Specific Example 
A specific example of a problem requiring dealing with the complexity of the 

interrelationship between mathematical entities (in this case, accumulation and rate of change) is 
the “Bottle Problem” (Shell Centre, 1999; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). Our 
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research centered on characterizing the ways that prospective secondary mathematics teachers in 
our study dealt with the complexity of rate of change in the context of the Bottle Problem. 

The Bottle Problem 
Imagine a bottle filling with water. Sketch a graph of the 
height of the water as a function of the amount of water 
that is in the bottle. 

 
The complexity of the Bottle Problem is related to the nature of the relationships between the 

variables in the problem. The non-linear constantly changing relationship between accumulation 
and rate of change in this setting is at the heart of the complexity. The context (mention of 
“filling”) and structure (non-traditional assignment of the independent and dependent variables) 
of the task also complexify the problem. 

The diagram of the bottle can be used to visualize how the bottle fills with water and the 
resulting relationship between the height of the water and the amount of water in the bottle. The 
variables are given in dependent and independent roles, although the reference in the instructions 
to “filling” conjures up an image that is time-dependent. An implicit or explicit parameterization 
of height and amount as functions of time may then confound the dependent/independent 
relationship of the height and amount. 

An additional complication in this problem is that the instantaneous rate of change of height 
is always changing as water “fills” the lower portion of the bottle and depends on the width of 
the cross-section at any specific height. Average rates of change of the height, corresponding to 
the cross-sectional width, can be estimated for uniform increments of change in the amount of 
water (Carlson, et. al, 2002, p. 357). Here, the identity of the independent and dependent 
variables complicates the task in that students are more likely to be asked to generate uniform 
increments in height than uniform increments in volume. The average rate of change of the 
height results in an accrual of height for uniform increments of change in the amount of water. 
This accrual, and the resultant accumulation, can be used to construct a graph of the 
covariational relationship. Adding to this difficulty of the task is the fact that uniform increments 
of volume are constantly changing, requiring a perspective that accounts for the limiting values 
of the rates of change that define the curve. 

Using the Bottle Problem as a focal interview question, we were able to examine ways that 
prospective teachers deal with mathematical complexity in somewhat familiar settings. 

The Study 
Our study took place in the context of a mathematics-content course designed to engage 

prospective secondary mathematics teachers in work with the concept of function. The data we 
analyzed were taken from an interview conducted with the teachers at the beginning of the 
semester. The goal of the interview was to investigate students’ pre-course understanding of 
function, a concept students would have encountered in their previous three semesters of 
calculus, in their discrete mathematics and matrices courses, and in additional upper-level 
mathematics courses. The Bottle Problem was selected to engage students in a discussion of rate 
of change in an applied situation that we expected would be unfamiliar to students. 

Eight prospective secondary mathematics teachers took part in our study. These students 
(with pseudonyms of Bob, Jen, Jim, Lindsey, Maria, Ned, Tim, and Violet) were juniors and 
seniors in a secondary mathematics teacher certification program. A series of three task-based 
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interviews on students’ understanding of functions was conducted with each of the study 
participants. Interviews were transcribed, annotated, and analyzed for understanding of work on 
the Bottle Problem. 

Data Analysis 
During the analysis, video recordings and verbatim, annotated transcripts of those interviews 

during which participants engaged in the Bottle Problem for the first time were closely 
examined. We interpreted students’ reasoning using line-by-line analyses of the data and a range 
of lenses. 

The analysis process started with the use of the Carlson framework (Carlson et al., 2002) as a 
lens to look into participants’ mental actions and reasoning. In so doing, we tried to match each 
student’s mental actions and reasoning with levels defined in the framework. Although we found 
examples that fit each level of the framework, the levels did not seem to capture features of 
students’ reasoning that seemed essential for our purposes. We recognized a complexity in what 
the students were attempting that the framework was not designed to capture. 

There was a significant difference among students in the extent to which their thinking 
seemed to be operational or structural, yet those categories also fell short of capturing the 
complexity. Our subsequent analysis tried to characterize the ways that operational and structural 
perspectives came into play in how they offer different affordances and constraints to individuals 
as they dealt with complexity. Following such a route helped us to characterize students’ 
thinking in general to some extent but it did not generate a detailed description and analysis of 
what it means to deal with complexity in a situation that embeds a plethora of ideas related to 
concept of rate of change and function. 

As a next step, based on our observations and literature in this area (e.g., Funke, 1991) we 
investigated the students’ handling of complexity in the following three categories: coordination 
of features, their identification and understanding of the nature of variables, and the connectivity 
they demonstrated among the variables in this complex problem. As we examined students’ work 
in these categories, we recognized two interrelated themes that helped explain the structure of 
dealing with complexity: use and coordination of macro-perspective and micro-perspective; and 
coordination of mathematical entities and their features. 

Essential understandings and mental actions required in reasoning about the Bottle Problem 
include the understanding of the concepts of variable, function, and rate of change, and the 
coordination of the representations of those concepts in this setting. It is through coordinating the 
complex interrelationships of these concepts that the solution to the problem emerges. In order to 
coordinate these concepts, one needs to hold onto the meaning of each of the concepts as well as 
their relationships to each other. The meaning of concepts can be held in their representations, 
and the extent to which students succeed in dealing with the complexity of this problem is 
partially a function of their ability to make solid connections among different representations of 
the same object. Success in dealing with the Bottle Problem also requires students to control the 
times at which they focus on the details of the problem and the times at which they focus on the 
larger structure of the problem. We have termed this type of control as their macro- /micro-
perspective. 

Students ranged in their abilities to hold onto the meaning of the mathematical entities with 
which they were working, in their abilities to coordinate those entities, in their abilities to 
recognize the relationships between different representations of the same entity, and in the extent 
to which they were in control of their macro- /micro-perspectives. In observing students working 
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on the Bottle Problem, we developed characterizations of how they dealt with complexity. 
Although our observations are in the context of a few students’ work on a single problem, we see 
our observations as a consistent explanation of issues involved in dealing with complex problems 
and suggest our conclusions as hypotheses about ways in which prospective secondary 
mathematics teachers deal with describing complex relationships that involve several variables. 

Macro-Perspective and Micro-Perspective 
An overarching theme that arose in our analysis is that of macro-perspective and micro-

perspective. Key to the ability to deal with complexity and to think about relationships among 
entities and their characteristics is the ability to control the lens through which one is looking. At 
times, one needs to look at the overall problem (a macro-perspective) and at other times one 
needs to focus on the details of a smaller part of the problem (a micro-perspective). Moreover, 
one needs to control movement between the macro-perspective and the micro-perspective, being 
ever conscious of where one is in the process. The ability to move back and forth between 
perspectives is influenced by the conceptual tools and representations one brings to bear on the 
situation. It is also influenced by the ways in which one holds onto the meaning of the 
mathematical entities as one moves between perspectives. 

Students’ macro- and micro-perspectives sometimes offer affordances and sometimes present 
constraints to creating a graph of the covariant relationship of height and volume. The concepts 
of macro- and micro-perspectives seemed to apply both to students’ work with the physical 
situation and to their work with mathematical entities. Students’ perspectives are sometimes 
narrowly focused without a larger view, sometimes largely focused without a narrow view, 
sometimes combine both views, and sometimes are just inaccurate. Of course, the terms macro 
and micro are relative, but the context of the students’ work usually made the distinction 
discernible. 

Ned and Jim exhibit both macro- and micro-perspectives and a close connection between the 
two. These perspectives offer them strong affordances to completing the task. They identify 
critical points and regions of similar behavior to successfully analyze the covariational 
relationship throughout the entire bottle. (Jim does so using an inverse relationship, volume as a 
function of height.) In the collective work of Ned and Jim, notable points in the bottle, such as 
the middle of the globe and the beginning of the neck are identified. Each of three regions (lower 
part of globe, upper part of globe, and the entire neck) is identified as having a unique behavior. 
The symmetrical relationship between the lower and upper parts of the globe is also noted. These 
micro- and macro-perspectives of the physical situation are related to appropriate perspectives of 
corresponding mathematical objects. Then all of these perspectives are combined to view the 
physical and mathematical wholes. Ned and Jim not only coordinated the macro- and micro-
perspective in both the physical and mathematical situations but also appropriately mapped the 
physical macro to the mathematical macro and the physical micro to the mathematical micro-
perspective. 

Violet has both macro- and micro-perspectives but these perspectives do not seem to be as 
closely related to each other as Ned’s or Jim’s. Ned and Jim seem able to hold both perspectives 
in mind simultaneously and move back and forth between them effortlessly. Violet’s movement 
between macro- and micro-perspectives, while accurate, is slow and deliberate, making her use 
of the perspectives appear separate and in isolation. She is able to use her micro-perspective to 
determine that her linear graph cannot be correct, but only after she has actually constructed the 
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inappropriate linear graph. Violet’s macro-perspective seems less helpful than those of Ned and 
Jim due to the tenuous connection between it and her micro-perspective. 

Lindsey exhibits a strong micro-perspective when comparing rates of change of height with 
respect to volume at two points in the lower portion of the bottle and at a point in the neck. Her 
macro-perspective is weaker. Although Lindsey notes that the lower part of the globe “could be 
considered at different points” (280-281) in addition to the two she has already considered, she 
says, “that would take a lot more effort than just considering it as two parts” (281-282), and 
submits the graph (see Figure 2) of a piecewise linear function (of two pieces, corresponding to 
the globe and the neck). 

Maria exhibits a one-dimensional macro-perspective, focusing on a single attribute which she 
treats as global. She notes that the function is increasing, saying, “as the height increases so will 
the volume”, and concludes that the function must be linear. 

Bob’s perspectives seem to constrain his problem-solving abilities. Bob uses a micro-
perspective (volume is measured in cubic units) to arrive at a macro conclusion that the function 
of height with respect to volume should be a cubic polynomial. He then identifies micro parts of 
the function and finds micro parts of the physical situation to justify them. 

Coordination of Entities and Their Features 
A second overarching theme is that of the coordination of entities and their features. Even 

though the Bottle Problem was an idealized situation, some of the aspects of modeling reality 
were present in the problem. In the Bottle Problem, students need to identify and account for a 
complete set of relevant characteristics and continually check the match to the situation. Some 
students were able to think through a complex situation like this by identifying the relevant 
characteristics in conjunction with the mathematical entity and coordinating those characteristics. 
Other students had difficulty in coordinating features. Some of the ways this difficulty was 
revealed was that (1) students focused on specific features without coordinating them with other 
relevant features, (2) students spoke about features of an object without a clear connection 
between the features and the particular object, and (3) students found prototypes that captured a 
single feature, and then reasoned from the prototype’s other features which were not reflective of 
the represented concept. 

Coordinating an Object and its Relevant Characteristics 
Ned’s work is an example of an adept identification 

and coordination of relevant characteristics. He explained 
the relationship between rate and accumulation before he 
wrote anything on paper. Ned exhibited an easy 
combination of qualitative and quantitative reasoning 
about this problem. He identified and explained critical 
points on the bottle and used them to produce an 
appropriate graph of height as a function of volume. The 
leftmost two sections of Ned’s graph (see Figure 1) refer 
to the globe of the bottle, and the rightmost linear section 
of the graph refers to the neck of the bottle. The second 
line segment (the uppermost) for the neck is a correction 
Ned made when he compared the rate of change of height 
at the neck to that of the globe. 
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Figure 1. Ned’s diagram 

Focus on Essential Features without Coordinating Important Facets 
Lindsey focused on essential features without coordinating important facets. She recognized 

the complexity of the problem and identified the fact that the rate of change of height would be 
different at varying heights of the bottle. But she examined only two slices of the bottle, so when 
she produced the graph (see Figure 2) she missed the global feature of continuously changing 
rate of change and produced two line segments representing the relationship between height and 
volume at points in her two slices of the bottle (section “a” refers to the incremental increase in 
height for one slice in the globe of the bottle and section “b” refers to the incremental increase in 
height for an equal-volume slice of the neck of the bottle). She said, “I know since the bottle is 
wider at this point (referring to the globe of the bottle) that the height would be slower, it would 
raise at a slower constant than the volume would…The height would raise faster up here 
(referring to the neck)…because it’s smaller.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Lindsey’s graph 

Evaluating Features apart from the Object 
Tim treated the features of “increasing” and “decreasing” as separate from the mathematical 

objects having those features. Prior to the following incident, Tim had identified “increasing” 
and “decreasing” as features of interest. Moreover, although he was asked to graph height as a 
function of volume, he seemed to be thinking of volume as a function of height and reversing the 
usual position of the axes for independent and dependent variables. 

As shown in Figure 3, Tim floated from graphing the volume (on the horizontal axis) as 
increasing to graphing the rate of change in volume (also on the horizontal axes) as decreasing. 
In the following quote, Tim referred to the volume as increasing but then said “it” -- now 
referring to the rate of change in volume “is decreasing.” Tim said “For every inch there is going 
to be a constant increasing in the volume because the bottom portion of this is getting wider as 
it’s going up...but then…as it starts to come back into the top it’s going to go back down again. 

Height 
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And then the neck of the bottle, once you get to there it is definitely going to be a constant 
increase….” At one point Tim realized the volume was going to keep increasing and said, “I’m 
not clear as to whether we’re charting the change in volume or whether we’re charting the 
overall volume of the container.” 

 

 

 

 

 

 

 

 

 

 

 

Finding Prototypes that Captured a Single Feature 
Maria focused on the fact that both height and volume are increasing over time. She claimed 

that the graph of height as a function of volume would be a positively sloped line. Maria said, “as 
more water goes into the bottle, obviously, the volume goes up and so will…actually the height 
of the water will eventually raise to the top. So…I’m thinking both of them, as the height 
increases so will the volume. So I’m thinking of some type of linear type of graph.” She also 
claimed the graph would be the same regardless of the shape of the bottle–a conclusion that 
would be consistent with Maria’s singular observation that height increased as volume increased. 

Conclusion 
We have observed general ways in which the degree and nature of coordination of 

mathematical perspectives (micro and macro) or entities (a mathematical object and its features) 
affected how students deal with complexity. 

We have observed how students control and use macro- and micro-perspectives as they 
proactively manage mathematical complexity in somewhat familiar settings. The ability to use 
both perspectives and to move fluently between them seems strongly related to students’ ability 
to graph the complex relationship in the Bottle Problem. The quality of this ability may be 
related to the relative strengths of students’ perspectives as well as to the specificity with which 
they can apply each perspective. 

We also observed the strength and fluidity of the connections students have between 
mathematical entities and their features. Students run into difficulty when they think about 
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features separately from the mathematical entities they are describing, when they overgeneralize 
the features of prototypes, and when they focus on essential features without coordinating them. 
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The purpose of this research report is to document and characterize a conservation phenomenon 
which comes up spontaneously in the solution of geometrical optimization problems: Students 
think that two quantities x, y, varying in opposite directions, cancel their effect over z, a quantity 
related to them, keeping it fixed. The findings suggest that this phenomenon affects mainly the 
typical optimization variables and that it’s more subtle and persistent than it appears. The roots 
of this “logic” might be found in what Piaget (1981) calls the three basic aspects of reasoning 
developed by children to solve conservation problems. Using these concepts together with the 
mental actions from the covariational reasoning framework of Carlson et al. (2002), we propose 
an explanation of the conservation phenomenon and characterize it as a kind of “linear” 
relation between x, y, and z. We present the results of a case study with two high school students 
(K-11) 

Introduction and theoretical framework 
In several geometrical optimization problems we observed consistently and spontaneously 

the aforementioned conservation phenomenon, i. e.: The “volume” of a right circular cylinder 
whose diagonal remains fixed while diameter and height vary; the “area” of a rectangle whose 
diagonal remains fixed while base and height change; the “volume” of boxes made by cutting 
equal-size squares from each corner of a cardboard; and the “length” of a not straight path. 
Piaget (1981, pp. 11-15) describes three basic aspects of conservation reasoning that most of the 
children progressively develop as they reason about their world: Identity, Reversibility and 
Compensation. The last of these aspects is not found until the age of 12 or 13, when students 
realize that changes in one dimension can be offset by changes in another direction. We believe 
that high school students apply compensation reasoning when faced with the geometrical 
situations previously mentioned. Carlson et al. (2002) developed the notion of covariational 
reasoning and proposed a framework for describing the mental actions involved when 
interpreting and representing dynamic function events. The first three mental actions are MA1) 
An image of two variables changing simultaneously; MA2) A loosely coordinated image of how 
the variables are changing with respect to each other; and MA3) An image of an amount of 
change of the output variable while considering changes in fixed amounts of the function’s 
domain. By using MA1, MA2 and MA3 we designed the investigation protocols and explain the 
way students mentally transform the geometrical system under study. 

Methods 
The data comes from two high school students (Lothorien from now on) who had 

successfully completed a course of Analytic Geometry (K-11). From three typical calculus 
optimization problems, we designed three protocols that consisted basically in a short description 
of a physical situation represented geometrically on a sheet of paper. Without any previous 
instruction Lothorien was asked to mentally transform the situation through the dragging of one 
geometrical element (usually a point). Confronted with this scenario Lothorien was prompted to 
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draw three or four snapshots of the continuous transformation process then answer two basic 
questions: What changes? and What doesn’t change? The second part of the protocols consisted 
of a simulation of the situation in Dynamic Geometry and the objective was to obtain the 
analytical (algebraic) function between two of the variables of the first part, through a 
covariational approach (see Geometrical Optimization Problems: A Covariational Approach, this 
volume). Collected information consisted of written answers and video-taped films. Finally, 
Lothorien had no time limitations and one of the researchers was always present during the 
sessions. 

Results 
First protocol: A ladder AB (see Figure 1) leaning against the wall in an upright position (a 

modification of a problem reported in Monk (1992)). Dragging element: The bottom B of the 
ladder. Optimization variables: Area and perimeter of the triangles formed by the wall, the floor 
and the ladder.  

 

Figure 1. Sliding ladder. 

While drawing the snapshots A3B3, A4B4, etc. (A1B1, A2B2 were given) the following dialog 
occurred between Student A and Student B (time elapsed: 2 and one-half minutes): 

Student A: You know what I think?  
Student B: What?  
Student A: All [triangles] have the same area.  
Student B: Surely.  
Student A: Because the hypotenuse doesn’t change.  
In their answers to what changes and what doesn’t change, area and perimeter don’t appear 

as either variables or as constants. Later on, simulating the situation and watching the perimeter 
values in real time, one of the students exclaimed: 

Student A: Ah! yes, yes, yes, yes, yes, it’s changing. Why does it change? I don’t understand. 
Researcher:  Why?  
Student A: In my opinion, the perimeter wouldn’t have to change because the hypotenuse is 

always the same one and as we drag the bottom, whatever is reduced of height, 
increases the base. 

The researcher asked the students whether or not they trusted the values given by the 
program. They both answered: “no”. He suggested then (resorting to external reinforcement), to 
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work on the triangles drawn. With a ruler Student A measured the legs of two of the triangles 
and calculated their perimeters, obtaining different values (see evaluations in Figure 1). Then, 
Student A says: “Ah! It varies, but why? It did vary.” The student returns to check the 
measurements and when finding no errors, calculates the reduction of height and the increase of 
the base from one triangle to another and finds that they are not the same.  Right after this, 
Student B chances a guess. 

Student B: A3B3O is the biggest one. The greater perimeter is the one in the middle.   
Student A: The one that has 450 and 450 on both sides [angles] … Ah! I already see where all 

this goes. 
Once they had obtained the analytical relation of the perimeter in terms of the height, they 

were asked to write relevant situations of the problem. One of them was: “In this problem, 
although the hypotenuse doesn’t vary and despite the fact that the base increases as the height 
diminishes, the perimeter varies.” 

Second protocol: Shot angle of a soccer player (angle formed by the position of a player and 
the two goal posts, see Figure 2). Dragging element: Position of the player on the side line of the 
field. Restriction: The player runs along the side line. Optimization variable: Shot angle.  

Lothorien starts making some marks on the side line, but don’t draw the corresponding shot 
angles (angle with vertex P1 was given). They go on to the basic questions and Student B writes 
down as first variable the position of the player and then says (time elapsed: two minutes):   

Student B:  Do you think the angle changes?  
Student A: Let me see [draws a shot angle using as vertex one of the marks] 
Student B: I don’t think it does. 
Student A: Don’t you think it does?  
Student B: No, because the distance between the two goal posts is always the same [points 

out with two fingers the two posts]. 
Student A: Let’s find out [draws another shot angle and measures two angles using a 

protractor]. One is 100 and the other one is much less than 100. 
Student B: Ah! then it changes. 

 

Figure 2. Shot angle. 
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They finish this part adding a third variable: the distance from the position of the player to 
the goal. 

Third protocol: A polygonal path DEF (see Figure 3). Dragging element: Point E. 
Restrictions: Point E moves along the line AB

suur

; segments DC  and FG  are fixed and 

perpendicular to AB
suur

. Optimization variable: Path DEF.  

. 

Figure 3. Polygonal path. 

Lothorien is asked to visualize point E moving freely on line AB
suur

 but no drawings of 
snapshots were given or requested. For the basic questions the students wrote down as variables 
“Point E; the angles in E” and four different segments, two of which are segment DE  and 
segment EF . From our previous experiences, we didn’t expect Lothorien to consider path DEF 
as a variable, so there was already a question in the protocol about the nature of DEF (variable or 
parameter). The students began asking each other whether the path DEF is a variable or a 
parameter; Student A thinks it’s a variable but Student B disagrees, so Student A suggests:  

Student A: Do we test it?  
Student B: If you want to, because as this one shortens [points out to EF], this one extends 

[points out to DE]. 
Later on, in order to describe verbally path DEF (one of the tasks of the second part of the 

protocols), Lothorien explores the values in real time and Student A becomes aware of a 
minimum in between point C and point G. She thought it was a decreasing variable. These 
stimulate them to see the values of path in point C and point G, finding out that there is a 
“maximum” in C; even more, they drag point E away from C and G, deciding, finally, to give a 
description of path DEF, just in [C, G].  

Conclusions 
Lothorien showed a misuse of compensation reasoning in protocols 1 and 3. This can be 

explained in terms of covariational reasoning by MA3: They coordinate the amount of change of 
one variable, ,x∆  with changes in the other variable, ,y∆ in such a way that, ,yx ∆−=∆  resulting 
in a lineal model between the variables: yxz += , where z stands for the optimization variable. 
In protocol 2, Lothorien demonstrates another form of conservation: one of the parameters, the 
distance between the goal posts, captures their attention impeding them from seeing the 
progression of the shot angle as the position of the player varies. In this case the proposed model 
is the constant function: ),( parameterfz = where z is the optimization variable and depends 
only on the parameter. 

External reinforcement may help students to accept the fact that certain quantities really 
change but not to comprehend why (Piaget, 1981, pp. 15-16). The mere fact of accepting that a 
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variable changes drew on some guesses about the possible optimum of the situation and made it 
something worthy of interest (protocol 1); however, in protocol 3 this was not enough and it was 
not until exploration in real time that they detected the optima. Our claim is that perception of 
change of a quantity and discovering their optima must not be taken for granted when solving 
optimization problems. To ignore or underestimate these may have the students working 
mechanically and without meaning. Perhaps, the solution of optimization problems could be seen 
also as a way to help students comprehend the changes that occur in continuous processes. 
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A FRAMEWORK TO EXAMINE DEFINITION USE IN PROOF 
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Mathematicians view a definition as having very specific characteristics. Besides defining 
mathematical objects, definitions give both structure to a proof in a global sense as well as 
warrants to logical implications in a local argument. Thus definitions play a central role in many 
proving tasks. Students are required to be able to create and interact with proofs and definitions 
in a variety of ways. Students are expected not only to produce proofs in homework, but also 
textbooks and lectures are written with the expectation that students can read and understand 
proofs and formal definitions.  In this talk I propose a framework with which to examine 
students’ uses of definitions and theorems in proving. The framework is a synthesis of previous 
literature and research results. I will also seek to illustrate the aspects of the framework using 
student data from a workshop in advanced calculus. 

Language is a basis for several difficulties students have in proving (Dreyfus, 1999; Finlow-
Bates Keir, Lerman, & Morgan, 1993; Moore, 1994; Zaslavsky & Shir, 2005). Students lack 
either the language skills or cultural understanding to communicate mathematics. Moore found 
language to be a difficulty for students along with their use of definitions and their abilities 
related to the specific concepts. He found students consistently exhibited the following seven 
difficulties: 

� D1: The students did not know the definitions.  That is, they were unable to state the 
definitions. 

� D2: The students had little intuitive understanding of the concepts. 
� D3: The students’ concept images were inadequate for doing the proofs. 
� D4: The students were unable, or unwilling, to generate and use their own examples. 
� D5: The students did not know how to use definitions to obtain the overall structure 

of proofs. 
� D6: The students were unable to understand and use mathematical language and 

notation. 
� D7: The students did not know how to begin proofs.  (Moore, 1994, p.251-252) 

Notice six of his seven errors (D1-D6) are concerned in some part with the students’ 
knowledge or use of definitions.  

Berger (2004) defined two types of understanding with regards to mathematical artifacts: 
culturally meaningful and personally meaningful. A student is said to use an artifact, in the case 
of the current study a definition, in a culturally meaningful way when the usage is consistent 
with the mathematical community. A student is said to have a personally meaningful 
understanding when the student believes he understands the artifact regardless of whether this 
meaning coincides with the accepted cultural meaning. When a student’s understanding is both 
culturally meaningful and personally meaningful, it indicates the learner has grasped the 
mathematical definition, similar to the student’s concept definition and concept image coinciding 
as defined by Tall and Vinner (1981). This is also defined by Wertsch and Rupert (1993) as 
appropriating the artifact, or definition. As Weber (2001) and Hart (1994) noted, knowing a 

_____________________________ 
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definition is just the first part of being able to appropriate it. 
Beyond knowing a definition, the literature indicates that students need a set of heuristics 

which might include how to use or when to use specific definitions called strategic knowledge 
(Weber, 2001). Students need to be able to determine which theorems and definitions are 
important and when are they useful. They must be able to determine when and when not to use 
“syntactic” strategies, defined as procedural or symbolic manipulation (Hart, 1994). Edwards and 
Ward (2004) found that students had difficulty understanding the role that specific definitions 
played in a proof.  

Zaslavsky and Shir (2005) recognized students used either example based reasoning or 
definition based reasoning when arguing about geometric and analytic concepts from given 
definitions. Students used their understanding about the role of definitions or their notion of the 
required features of a definition to justify their claims.  In this paper I propose a framework with 
which to examine how students use definitions while proving in an advanced calculus course.  
The framework is consistent with a synthesis of the literature characterizing the use of definitions 
and was developed through the course of this study.  

Methods 
The data in this study comes from a semester-long one-unit workshop for mathematics 

majors in topics of beginning real analysis. The workshop was listed as a companion course for 
students concurrently enrolled in advanced calculus.  The students had taken or were 
concurrently enrolled in a course in proof writing. Ten students, predominately juniors and 
seniors, met one hour each week to work on given tasks, which usually involved proving a 
statement. Groups of three to four students worked together on each task with some input from 
either a Teaching Assistant or the researcher. Students also wrote reflective e-mails weekly on 
their work.   

Three key insights were highlighted during the data analysis which led to the development of 
the framework.  The first of these insights was a product of the task analysis in the designing of 
the tasks for the workshop.  The insight was into the vital role definitions played in the advanced 
calculus content.  Definitions are the foundation and structure of many of the proof tasks in 
beginning analysis.  The second and third insights were products of examining student errors 
from the data.  Students who knew definitions did not correctly use them in their proofs.  
Likewise although one student spent significant time learning definitions, he was not successful 
at proving.  These insights and the analysis of the tasks and student work led to the development 
of a framework given below which describes student uses of definitions while proving.   

The Framework 
In order to use a definition in a proving task, students must learn the definition, be able to 

know when it should be used and how to use it. These three skills form the structure of the 
framework.  There are several sub-skills particular to the proving process (see Figure 1). These 
skills are not meant to be seen as a trajectory or hierarchical in anyway. Instead it is likely that 
students develop some of the skills concurrently and move throughout the framework. In the 
following sections I will define each skill and sub-skill and will illustrate an aspect of the skill 
with student data. 
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Figure 1. Definition Use Framework 

Skill 1—Knowing a Definition 
Mathematical definitions are generally provided to students as a formal definition, in the 

sense of Vygotsky’s scientific concept (Vygotsky, 1987). Thus in order to know a definition, 
students must first be able to state the formal definition, in a type of ventriloquation (Bakhtin, 
1986).  Ventriloquation is the voicing of or use of the definition in someone else’s words without 
a full underlying understanding of the meaning.  In the seventh week of the semester a group of 
students were working to prove that a convergent sequence is Cauchy.  They began writing on 
their white board with the following discussion.     

Mark: Then we’re going to choose epsilon greater than zero.   
Dustin: So we need to... 
Lynn: Um. Am I writing it for all... do I need to?  
Mark: Epsilon greater...choose epsilon greater than zero.  
Dustin: Yeah for all epsilon greater than zero there exists an n such that |an – A| 

[mumbles]. 
Mark: Positive integers, that implies hmm... How’d they get epsilon over two?  
Dustin: For all... 
Lynn: Writing for all not choose?  
Mark: Okay.  
Lynn: Or let epsilon be... 
Mark: Oh no, we’re...she’s.... 
Dustin: Okay just do uh, for all epsilon greater than zero... 
Lynn: for all? 
Dustin: Sure. For all 
Mark: Whatever, choose.  
Dustin: It doesn’t matter.  
In this episode, the students are looking to recall the proof as it looked in class or in the 

textbook.  While they may be able to work with the definition of a convergent sequence in other 
contexts, in this context they are not using the definition on their own, but instead their use is 
mimicking that of the professor’s.  This is evidenced by their discussion about how to write the 
first two lines of the proof – should they write “choose epsilon” or “let epsilon” or “for all 
epsilon.”  Although they determine that it doesn’t matter which phrase they write, there is a sense 
in the Group that this phrase is on their whiteboard without the underlying understanding of what 
it means, thus their use of the definition is a ventriloquation.   

With further use, students should move from ventriloquation to being able to appropriate the 
definition (Wertsch, 1991). Appropriation is the students’ ability to use the definition for their 
own purposes in their own problem situations.  The transition from ventriloquation to 
appropriation is founded in the students’ using their own voice.  During the tenth week of the 

Skill 1 Knowing  Skill 2 Knowing Which Skill 3 Knowing How  

1.1 Ventriloquating 2.1 Which concepts to define? 3.1 Orient the problem 

1.2 Appropriating 2.2 Which definition to use? 3.2 Move a logical step 

    2.3 Which aspect to use? 3.3 Structure a proof 
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workshop, the students examined the definition of a Lipschitz function.  They looked for 
examples, non-examples and similar concepts, like uniform continuity.  The following week, 
Doug came to class and sketched an example of a Lipschitz function explaining it in his own 
words.  “You know what I think a Lipschitz is? … Here. [begins drawing] Alright you’ve got 
some slope right? And your Lipschitz function is a function that’s gonna remain on one side 
beneath, it’s gonna be bounded with in some area of the graph of the real lines.”  Although his 
initial description was slightly faulty, the sketch he drew and the example he gave were correct 
indicating that Doug had appropriated some of the definition.   

Appropriating the definition requires students’ personally meaningful understanding to match 
the culturally meaningful understanding as described by Berger (2004).  Through the trajectory 
of ventriloquation and appropriation students come to know a definition.  Students who know a 
definition should be able to give examples of the concept, non-examples of the concept and 
define the term in their own words. Notice this encompasses D1-D4 of Moore’s student errors 
(Moore, 1994).   

Skill 2 – Knowing Which Definition to Use 
“Knowing which” is the skill of being able to determine which definitions and which aspects 

of those definitions are useful in the proving process.  A student must be able to determine which 
particular concept definitions are applicable to the situation (Skill 2.1), which definition is most 
useful when there is more than one equivalent definition (Skill 2.2), and which aspect of a 
particular definition is useful for the proof (Skill 2.3).  Determining if a definition is helpful 
means the student is able to figure out which concepts in the theorem should be defined as well 
as knowing which definitions not stated might be useful. 

Consider the statement “A bounded and monotone sequence is convergent.”  All three sub-
skills from Skill 2 can be described by examining this statement.  In the proving process there are 
several concepts which are apparent in the statement.  There are also related concepts which are 
not apparent in the statement.  Some of the definitions related to these concepts are vital to the 
proving process, while others are not necessary.  In the proof of the given statement it is 
necessary to use the definition of a least upper bound.  Since this term does not occur in the 
statement itself, it is not readily apparent to the students that it is necessary.  Skill 2.1 is the 
students’ ability to recognize the need for the least upper bound. 

Once it is determined which concepts should be defined, it must be determined which 
definitions of those concepts are most useful.  There are often multiple equivalent definitions for 
a single concept.  In some instances, all of the definitions are formal equivalent definitions.  In 
other cases, students hold an intuitive notion or informal definition along with the formal 
definition.  Each definition has particular affordances or purposes.  Skill 2.2 identifies the 
students’ ability to choose the best definition from a set of equivalent definitions.  In the example 
statement, the students had access to two equivalent definitions of the least upper bound.  The 
students had to choose which definition was most useful for their purposes. 

Once the choice of definition has been made, the particular aspect of the definition must be 
used.  This choice may be in conjunction with the choice of which definition to use from Skill 
2.2.  In the following example the students had decided to use the least upper bound for their 
proof, but Dustin was working backwards from the definition of convergence in order to find the 
key to put the proof together.  The following conversation ensued. 
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Dustin: Right. Okay, but didn’t we prove that if we take the s – ε that’s like an or that it’s 
like between... there has to be some element of the sequence between s – ε and s 
and s is the least upper bound. Did we re.... 

Lynn: Say that again?  
Dustin: Did we say that there has to be an element between s – ε and s, and s is the least 

upper bound?  
Dustin was searching for a particular aspect of the definition of least upper bound.  Once the 

group determined this aspect was part of one of the definitions they had, then they used this 
definition and finished their proof.  Notice that in order to facilitate knowing which definition 
will be most helpful (Skill 2.2) and knowing which aspect of the definition to attend (Skill 2.3) it 
is vital to have some knowledge about the proof, goals, or purposes in the use of the definition. 

The essence of Skill 2 is the determination of which definitions will be most helpful in the 
proving process.  Knowing which concepts need to be defined allows the prover to bring to the 
table the necessary definitions, and avoid cluttering the table with unnecessary definitions.  

Skill 3 – Knowing How to Use a Definition 
Weber (2001) indicated students need strategic knowledge to be successful at proving.  With 

respect to the use of definitions, this strategic knowledge is knowing how to use the definition.  
Definitions are used in many different ways, in proving they are predominately used to orient 
oneself to the theorem statement (Skill 3.1), move one logical step in the proof (Skill 3.2), or 
structure the proof (Skill 3.3).  Knowing how to use a definition encompasses all three of these 
skills.  I will illustrate the first two of these sub-skills from an episode in the seventh week of 
class, where the students were proving the statement, “A sequence is convergent iff it is 
Cauchy.” 

The first sub-skill, using a definition to orient oneself to the problem, might be exhibited in 
several instances.  The students in this study drew pictures, or generated examples based on the 
definition.  They also looked for non-examples.  When proving the example statement, some of 
the students had not yet seen Cauchy sequences.  Doug and Molly used the definition of Cauchy 
to help explain the concept to Ben and Jane.  In this way they were orienting the Group as a 
whole to the concept of Cauchy convergence in the proving process. 

 Doug: Alright. Definition of a Cauchy sequence is basically a sequence, oh okay. 
Basically you have two sequences, an, am Uh... Let a quantity be greater than…  

Molly: Well they’re both different elements of the same sequence.  
Doug: Yeah. Let ε > 0, such that.... 
Molly: There exists a εNn ≥  based on your epsilon such that a to the... the ε<− || mn aa .  

Ben: So it’s the idea that sub sequence is convergent?  
Molly: εNmn >∀ , , right?  

Jane: Well it’s just that as the sequence elements get closer and closer together.  
Molly: Yeah.  
While each of the students’ comments contained an error, the overall idea conveyed to the 

group concerning the concept of Cauchy convergence was correct.  Thus the students had used 
the different aspects of the definition of Cauchy to orient their groupmates to the statement of the 
theorem illustrating Skill 3.1. 

Due to the nature of logical proofs, each line of the proof must follow in a logical progression 
from the last.  In many cases the mathematical tool which allows one to move from one line to 
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the next in a proof is a definition (Skill 3.2).  In the following example, the students were 
proving the given statement. The first two lines the Group wrote on their white board each 
depended on the definition of convergence (see Figure 2)  

 

 

 

 

Figure 2: Group 1’s initial white board notes  

Although the Group had not explicitly written that each line on their white board was 
dependent on the definition of convergence; the statements they made are only true because the 
sequence they have defined is convergent.  The Group did recognize this was the case as 
evidenced by the statement made by Dustin later in the discussion.  Dustin explained, “Well yeah 
the whole reason that this is true [pointing to the two lines on the white board] is because we 
know that an converges.”  Thus the group exhibited Skill 3.2. 

In Skill 3.3, students need to know how to use a definition to structure a proof. This skill is 
akin to the definition based reasoning reported by Zaslavsky and Shir (2005). This skill is 
evident in many analysis proving tasks, including the existence of a limit, the continuity of a 
function, or the convergence of a sequence. As we will see this was a source of student error. In 
the eighth week of the semester, a group was determining the existence of the limit at x=0, of the 
piecewise function defined as s(x) = x+1, if x is rational; 1, if x is irrational. They correctly began 
their discussion looking for a delta, but turned to define an epsilon.  

Jane  It seems to me that you could always find an epsilon where because this thing is 
just going back and forth [makes motions with her hand] like that, you could find 
an epsilon that’s – Where you could --  

Molly If we choose ε =δ, we’ve got it. 
Kelly What? 
TA We need some explanation. That came out of nowhere. 
Molly  Okay if f(x)=1, if x is not an element of the rational numbers. Okay so we take the 

|f(x)-1|=|1-1|. Cause we are assuming the limit is one by the diagram. So 0<ε, for 
all epsilon. Okay so f(x)=x+1, when x is an element of the rational numbers. So 
|f(x)-1|=|x+1-1|. So we get |x|<ε. But if we’re taking 0<|x-a|<δ. So if we pick 
ourε =δ then it works. 

This group does not realize the definition of limit, “given ε> 0 there exists a delta…” requires 
their proof define a delta to prove the limit exists: this is the issue for Skill 3.3. Both groups 
working on this task made this mistake. Although both groups were able to produce a correct 
proof by the end of the session; neither group initially considered the definition of limit correctly.  
Understanding how students need to use definitions in proof writing gives insight to the skills 
concerning definitions which must be developed by students in proof writing courses.   

Conclusion 
As defined, Skill 1 is the compilation of the issues involved in learning the definition 

described by Vygotsky (1987), Bakhtin (1986), Wertsch (1991), Moore (1994) and Berger 
(2004).  Skill 2 is knowing when to use a definition, and this skill is a part of the strategic 

Let ∞
=0}{ nna be convergent to A.  εε <−→≥∃>∀ ||:0 AaNnN n  

Let Nmn ≥,  
2
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knowledge defined by Weber (2001).  It is also categorized by Moore as D5 in student errors 
(Moore, 1994).  In some sense, Skill 3 is the culmination of the first two skills.  In order to use 
the definition, one must know the definition. As students appropriate a deeper understanding of 
the definition, they are likely to use it in many more ways.  Likewise, knowing which definition 
to use and which aspect of that definition to use are vital to the use of the definition.  If students 
were unable to evoke a definition, then they would be unable to use it.  Thus, Skill 3 is dependent 
on students learning the first two. 

The proposed framework is not meant to be viewed as a learning trajectory; students can be 
engaged in learning these different skills concurrently.  The framework does offer educators an 
overview of different skills which are needed by students in a proof writing setting.  It appeared 
that many of the student errors in proving were related to each of the skills described.  Therefore, 
the framework offers insight into particular errors students make when using definitions. This 
framework might also be useful for students as a tool to open the discussion concerning the 
different roles of definitions in proofs. In this way it might help to address the deficiency 
described by Edwards and Ward (2004).  It may also illuminate areas of difficulty students are 
likely to encounter as they learn to use definitions as tools for proving. 
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This study intends to contribute to better understand students’ difficulties with transformations of 
functions. Students were interviewed while solving problems involving transformations of 
functions. Results were analyzed using APOS theory (Asiala, et al., 1996). They show that few 
students can work confidently with these problems because they do not seem to have interiorized 
the processes involved in transformations, or encapsulated those processes into objects. 

The study of families of functions and transformations on them (such as translations, 
reflections and stretches) has become important in pre-calculus courses at universities. 
Transformations give students new opportunities to use and reflect on the concept of function, 
and they can become a useful tool in more advanced topics of mathematics. 

Research on students’ understanding of transformations of functions is important not only 
because it is a topic in many pre-calculus courses, but also because it provides an opportunity to 
analyze students’ ideas on functions and variables. It also permits to study students’ flexibility 
with the use of different representations of function. All this information can be used as a guide 
in the design of teaching materials and class strategies with the purpose of trying to foster 
students’ understanding of both functions and transformations of functions.  

Antecedents 
Some researchers have worked on the concept of transformations of functions (Baker, et al., 

2001a; Baker, et al.; Bloch, 2000; Cuoco, 1994; Eisenberg & Dreyfuss, 1994; Quiroz, 1990; 
Goldenberg, 1988; Zazkis, 2003). They have found specific difficulties students have when 
working with a few particular problems where transformations are involved. Research focusing 
on a wider variety of situations is needed to further analyze how students work with situations 
involving transformations of functions and how their understanding of this concept relates to 
their concept of function. 

This study focuses on the concept of transformations, using APOS theory (Asiala, et al., 
1996) as a theoretical framework. A genetic decomposition for the concept of transformations of 
functions developed in previous research, was refined to analyze students’ work and to find 
possible causes for their difficulties. (Baker, et al. 2001a).   

The purposes were to investigate how students use transformations of functions once they 
have finished a pre-calculus course, to find out what their main difficulties when using them are, 
and determining the conditions that identify those tasks where they are able to succeed.  

Research Questions 
This study intends to respond the following research questions: 
• Are students able to indentify when a given function can be described in terms of a basic 

transformed function? 

_____________________________ 
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� What are the specific difficulties that students face when they work with transformations of 
functions? Which of those difficulties are related with the use of different representational 
contexts? 

� What can be said about students’ understanding of the concept of function from their work 
with transformations of functions? 

Theoretical Framework 
The theoretical framework used for this study is APOS (action, process, object, schema) 

theory (Asiala et al., 1996). The genetic decomposition of the concept of transformation of 
functions used was a refinement of that developed by Baker and her collaborators (Baker, et al., 
2001a) with the purpose of analyzing the data obtained in this study. The genetic decomposition 
used for the analysis of the data follows: 

Students who act at an action conception of transformation of functions can perform 
operations on functions and variables step by step, and these operations can be applied either in 
the analytical or graphical representation context; rely on memorized facts or external signs, as 
for example the exponents in  the expressions or the apparent form of the graph; recognize 
differences between a function and its transformations only in terms of the syntax of the rule that 
defines the function, and recognize similarities between a function and its transformations, or 
between transformations, only in terms of some global property of the graph. When these actions 
are repeated on the analytical or graphical representation of a function, and students reflect upon 
them, they interiorize the actions into a process.  

Students who act at a process level are able to describe changes in the basic functions as a 
consequence of the application of the transformation without the need to perform each step of the 
transformation or move the graph of a function step by step. They are able to look at the graph of 
the transformed function and describe the changes that result from the transformation. These 
students are also able to reverse the process to identify the function on which a set of 
transformations was applied. Students at this level show, however, difficulties in coordinating 
the information obtained from different representational contexts, and in flexibly translating 
information from one representational context to another.  

When students reflect on all of these processes, and are able to think of them as a whole, in 
any representational context, working flexibly in different representational contexts as well, it is 
considered that they have encapsulated the process of applying a transformation to any function 
into an object. It is considered that students have an object conception of transformation, if they 
are able to apply actions on transformed functions and coordinate their properties in terms of 
possible changes in the original function, At this level, students are able to de-encapsulate any 
transformed function object into the process involved in its construction, and they are able to 
identify the basic function on which it is based and compare different transformed functions in 
terms of their properties in any representational context.  

Schema conceptions are formed by the interconnection of several actions, processes, objects 
and other previously constructed schema, and the relationship between them. One possible 
example for a transformation of functions schema would include the schema for function, the 
transformation of functions object, and actions and processes on transformed functions to 
determine their properties or to classify them, for example into rigid or non-rigid 
transformations. Since students in this project had only taken one course related to the notion of 
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transformation, it was decided by the researchers to use solely the concepts of action, process, 
and object from APOS in the analysis of students’ responses and work. 

Methodology 
The genetic decomposition outlined above was used to design and analyze the actions 

processes and objects the researchers considered were required in the responses to the questions 
from an instrument designed to diagnose students’ understanding of the concept of 
transformations of functions. This instrument was used as a questionnaire that was solved by 158 
students registered in pre-calculus courses and calculus courses at a small private university in 
México City. The questionnaire included eleven questions where students had to work with 
transformations of functions using both, analytical and geometrical representations. Students’ 
work was then analyzed comparing the constructions they showed in their answers, with those 
predicted by the genetic decomposition. From the analysis of students’ answers to the 
questionnaire, 16 students were selected to be interviewed. Half of them had finished a pre-
calculus course based on transformations of functions and the rest had finished a calculus course. 
The selection was based on students’ responses to the questionnaire and the overall tendency 
found in their responses, in order to end up with an even number of students classified at each 
level according to APOS theory.  

The same instrument was then used during the semi structured interviews with the purpose of 
conducting a more in depth investigation of their understanding of transformations of functions 
and to uncover the strategies they used while working with different issues related to this 
concept. The interview included an extra question which could only be solved in a geometrical 
context, and where students were expected to apply their knowledge about transformations of 
functions to solve an inequality. Interviews were audio taped, transcribed and analyzed 
qualitatively, using the criteria derived from the genetic decomposition of the concept. The 
analysis was done separately by two researchers. Discrepancies in the analysis were negotiated 
after another round of analysis by the same two researchers.  

The questions of the interview were classified in four groups, according to their main global 
purpose. These four groups were: Identification of transformations, graphing transformed 
functions, using transformations of functions to perform some other actions or processes, and 
finding the domain and range of transformed functions. Students’ difficulties were associated 
with these four groups in order to determine those characteristics of problems that appeared to 
make them troublesome for students. On the other hand, students were grouped according to 
their difficulties and strategies of solution, and to the actions, processes and objects they showed 
a tendency to use while working on all the questions. It is important to note that these terms are 
only used here for classification purposes, since it is acknowledged that the same student can 
perform at an action level in some question, and at a process or object level on others, depending 
on both, his or her cognitive constructions and the requirements of the question. 

Results 
The classification of students resulted in 7 students working at an action level, 5 students 

working at a process level and 4 students at an object level.  
The data obtained for the group of questions related to the identification of transformations 

show that when a problem involves a function which can be the result of the application of a set 
of transformations on a basic function, students are generally able to identify some of the 
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transformations that have been applied. Students who had difficulties with this type of tasks 
found troublesome to associate a function represented graphically with its corresponding 
analytical representation. They showed a tendency to use memorized facts or to make a table of 
data in order to succeed in these tasks. For example to a question showing the graph of a 
parabola which asked, a) find the values of a and b in f(x)=(x-b)2 + a  and, b) what would happen 
for different values of a and b, a student at an action level responded “I know a moves it up and 
down… the other, when it is inside… I cannot remember…I would have to make a table with 
values and see…”and he proceeded to make a table, but had difficulties to infer the values from 
it. A smaller group of students showed a tendency to generalize the conservation of distance 
property, which is valid for rigid transformations, to non-rigid transformations, demonstrating 
that they apply actions or processes to the graph of the function as if it   was a rigid object, with 
no reflection on what the result of those actions would be for each particular point on the domain 
of the function. The following is a response given by a student working at an action level: “…I 
know that multiplying by 3 makes the graph narrower, it moves this way, closer to the Y axis…so 

f(x) = 3 2−x  the graph will be like…more stretched than the original…”. In questions related 
to rigid transformations, students had more difficulties recognizing a horizontal translation than a 
vertical translation. This seems to be due to the fact that students memorize the rules for 
transformations and their corresponding effect on the function. When remembering this 
information students often associate the incorrect direction to the translation. The most difficult 
question in this group was related to the identification of similarities and differences between 
functions where the same set of transformations had been applied. This question was taken from 
Baker et al. (2001a). A student working at a process level showed that she had interiorized the 
result of applying different transformations to a well known function, but she did not recognize 
the similarities in terms of the transformations applied to both curves: “I can see this is a 
parabola that has been moved 3 units up and 5 to the right, and it is stretched by a factor of 2…, 
the differences,… the other is a hyperbola not a parabola and has asymptotes …they don’t 
touch.”. Students who worked at an action level on this group of tasks based their explanations 
on the differences they perceived in the algebraic formula for the function. Students who worked 
at a process level were able to work with functions in different representational contexts, and 
referred, in their explanations, to the process involved in the transformation. Students working at 
an object level were able to identify families of functions in any representational context, could 
relate graphs with their analytic representation and vice versa, could explain which 
characteristics of a function are conserved, and which are not, when a set of transformations is 
applied, and identified similarities and differences when comparing transformed functions. 

Questions related to graphing transformations included questions where students had to 
graph a given function and questions where transformations had to be applied to a function in a 
graphical context. Students were, in general, able to apply or graph transformed functions only 
when one transformation had been applied, or when the basic function was very familiar to them. 
But, again, as in the case of identification of transformations, they had more difficulties when the 
transformation involved was a horizontal translation. When a stretch transformation was applied, 
many students referred to the graph of the function as being narrower or wider, depending of the 
factor of the stretch, but they were not able to explain changes to the original function beyond 
those they remembered from memorized rules. These students worked at an action level and 
were not able to realize that the rate of change of the function changed due to the transformation 
applied. They seemed to consider the curve as a “wire” that can be bended without changing the 
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relative distance between its different points. A typical response given by some students working 
at an action or process level when asked to graph and describe the function f(x)= [2/(x-3)] – 5 
was “…as it is multiplied by 2, it is narrower. I: What do you mean by narrower? S: its graph is 
not as spread out as without the 2. I: is that true for any point in the domain of the function? 
S:…mmm, yes, it always does  the same”. Most students found it difficult to reflect the graph of a 
function over the Y axis, and even more when the transformation applied contained an absolute 
value, as was the case for a function given in graphical representation,  where it was needed to 
find f(-x). Even students working at a process level, for example, interpreted the transformation 
as a reflection over the X axis, instead of reflecting over the Y axis: “I: how do you know it goes 
that way? S: because this minus 1 means that all the points have to be moved to the other side, 
down here...it is minus x”. In this last question, the “form” of the curve changes under the 
transformation, but only students who showed to be working at an object level could explain the 
result of the transformation. For students working at an action level, applying transformations to 
functions presented in a graphical representation was almost impossible. They showed strong 
difficulties with the concept of function itself. They tried to find a “formula” for the curves and 
then tried to plot that function point by point. They rarely referred to transformations of 
functions; they did so only when the examples were familiar to them, and they had probably 
memorized the effects of each transformation. Students working at a process level could graph 
transformed functions if the transformations that were applied to the original function were rigid. 
They struggled with other transformations, but consistently explained using transformations the 
changes of the basic function. Students working at an object level were able to respond correctly 
and to explain most of the questions in this group. They could graph the transformed functions 
explaining which transformations could be used, and they were able to recognize the function on 
which the transformations were applied. They were also able to identify properties of the 
families of transformed functions.  

Questions related to the use of transformations of functions were those where 
transformations of functions are a basic tool to solve a particular problem. For example, students 
had to relate a graph from an unfamiliar function to its analytical representation they also had to 
explain how to transform one function into another when both graphical representations were 
provided, and finally, they had to solve a difficult inequality using transformations. Those 
students who were found to work at an action level could not solve this group of questions. 
Students working at a process level demonstrated they had interiorized the actions involved in 
transforming a function but presented difficulties when working with trigonometric functions or 
with functions they could not recognize. Students working at an object level could solve these 
questions even though they struggled and had to reconsider their work in several occasions. On 
the following excerpts we present examples of answers provided by three different students each 
working at a different level. These examples show the different approaches they used when they 
were asked to solve  ( ) 62
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Carlos, an action level student said “I have to solve first the squared part, and develop the 
expressions to leave x on one side and numbers at the other…” he tried unsuccessfully to achieve 
this, then the interviewer suggested “Can you use graphs of both functions to help you solve the 
question? S: Well…I would need to…make a table here…but, not really, I don’t think I can 
graph them, this is a parabola, it is squared here, but I don’t know… I am not too good at 
graphing difficult functions…” 
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Tania, a process level student, said “…The way I would solve that is by finding the graphs of 
the functions…I first thought to use algebra, but then I realized it is easier to graph… the first 
part, the function is a hyperbola the other a parabola….they would be like that… then…I need 
to…find when the first is less or equal than the second… and this happens here, from about 0,5 
to infinity”. This student could use the transformations to graph both functions but her drawing 
was not completely correct because she considered that multiplying the parabola by ½ made it 
narrower, and then did not interpret correctly the intervals. Lucía, a student classified at an object 
level, replied: “I will try to do it graphically…graph the function 1/x-1 + 4, and also –1/2(x-2)2+ 
6…two functions… the first is not defined at x=1, it is moved 4 units up, it is like 1/x, a 
hyperbola, it is also moved 1 to the right… the other is squared, it is a parabola,… it opens 
down, its vertex is at (2,6), it is wide because of this ½, it grows more slowly than x2 …now 
looking at this graph I want f(x) to be less than or equal to g(x)…so…the solution is x from more 
or less –1 to 1 union from 1.5 to 4 more or less…”. This student was able to use transformations 
in the solution of a new problem. She was able to identify the type of transformations, graph the 
transformed functions, and interpret the result in terms of the situation she was trying to solve.  

Students’ strategies to transform a function and to explain how it could be transformed 
reflected the same mentioned difficulties. We can conclude from their work that students worked 
with ease only when vertical translations were applied. When the information was provided in a 
graphical context, students showed difficulties to identify each transformation, or to predict its 
effect. Finally, students could use transformations with more ease when they were already 
familiar with the basic function. The last group of questions involved those where students 
needed to determine some properties of a family of functions, such as domain and range, or 
simply predict changes in the domain and range when a function goes through a set of 
transformations. Students working at an action level could determine some domains based on 
memorized facts, but were in general unable to determine the range of functions. They could 
only determine domain and range with ease for graphical representations of frequently used 
functions. Students working at a process level could find domains of almost all the functions that 
were presented to them. However, they had more difficulties when they had to find the range of 
those same functions. They often relied on drawing the graph of the function and, as we have 
already mentioned, they showed some problems to draw them correctly. Students working at an 
object level were able to determine domain and range of all the functions. 

Discussion 
Results of this study are consistent and also complement those found in previous research. 

They show that students’ difficulties with the concept of transformation of functions are strongly 
related to their understanding of the concept of function. It was found that students who were 
classified at an action level show a weak understanding of the concept of function even though, 
in some cases, they have already taken a Calculus course. In particular, these students showed 
conceptual problems when discussing the graphical representation of functions and when looking 
for their domain and range. Although transformations of functions can be used in the solution of 
many problems, some students in this sample were not able to use them even in the case of 
problems that were similar to those studied in the pre-calculus course they had already taken. 
This situation is probably due to their point by point strategies to graph functions and their 
reliance on memorized facts. These students’ knowledge about functions was not enough to 
interpret and work with transformations. Only a few of the students of this sample were capable 
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to flexibly use those functions that were presented in a graphical context. Students showed a little 
more fluency when the function was presented in an analytical representation, that is, when it 
was presented in terms of a formula for the function; but, even in these cases, students showed 
lots of difficulties when they were asked about the properties of functions and to predict the 
properties of functions that change when a transformation is applied.  

Even though we would expect that students who had taken a Calculus course would have a 
better understanding of the concept of transformation of functions, this was not found to be true. 
There were almost the same number of pre-calculus and calculus students working at the levels 
of action and process. However, it was found that all the students but one at the object level had 
already finished a Calculus course. 

Transformations of functions can be classified according to the difficulty they present to 
students. Rigid transformations were easier for students. Students’ solution strategies when 
applying transformations focused on what happened to the function as a whole and not on what 
happened to each of the points in the domain of the function. Dynamical transformations, that is, 
transformations where functions are “deformed” presented more problems to students. Their 
work demonstrated that they had not interiorized the effects of transformations on functions 
when it was needed to think in terms of co-variation of the dependent and independent variables 
of the function. Students had troubles when they had to identify which transformation had been 
applied to a particular basic function. When a transformation was given, they had problems 
finding its properties. All these difficulties were more apparent when the representation used in 
the question was graphical.  

The results of this study demonstrate that when teaching transformations it is important to 
consider a wider variety of functions and to explicitly demonstrate the result of applying a 
transformation both at the level of what happens to the function in general, and what happens to 
different points in its domain.  Many research studies have stressed the need to attain flexibility 
with the use of different representations in order to understand a variety of concepts. Results of 
this study show that this is also the case when teaching transformations of functions. 
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One mathematical task is getting the algebraic function in maxima and minima problems. The 
authors use a covariational approach, based on the first three mental actions (MA) of a 
covariational frame (Carlson et al. 2002). These are MA1) An image of two variables changing 
simultaneously; MA2) A loosely coordinated image of how the variables are changing with 
respect to each other; and MA3) An image of an amount of change of the output variable while 
considering changes in fixed amounts of the function’s domain. The authors claim, “Our 
approach seems to help students create mental images of a physical situation and transform the 
physical objects (represented geometrically) so they can obtain an appropriate functional 
model”. Data comes from a case study with two high school students (K-11).  

Theoretical background 
Several studies report student difficulties in representing and modeling a system that involves 

two quantities that change in tandem (Carlson, 2002; Monk, 1992; Monk & Nemirovsky, 1994; 
Thompson, 1994a; Kaput, 1994). Such difficulties are, in part, related to the concept of function 
generally applied: the correspondence concept or Dirichlet- Bourbaki definition of function, 
which usually leads to a strong dependence on algebraic representations (y = f(x)) and to a static 
idea of the concept (Kaput, 1994). A more intuitive approach which rests on dynamic aspects of 
functions is the covariational approach (Confrey & Smith, 1994, 1995; Thompson, 1994 b). 
Central to this concept is the coordination between two varying quantities and the development 
of images of covariation (Saldanha & Thompson, 1998; Thompson, 1994b). Carlson et al. (2002) 
developed the notion of covariational reasoning and proposed a framework for describing the 
mental actions involved when interpreting and representing dynamic function events. Using the 
first three mental actions described above, the authors designed a methodology to deal with 
optimization problems. 

Methodology 
The data comes from a case study with two high school students who had successfully 

completed a course of Analytic Geometry (K-11). From typical Calculus problems and using 
their methodology, the authors developed the protocols applied to the students. Such protocols 
consisted of two interdependent parts: perception of change and covariation.  

Perception of change. It starts with a brief description of a physical or a geometrical system, 
represented in static means (usually a sheet of paper.) Next, the students are asked to mentally 
transform the system by “dragging” one of the geometrical elements (regularly a point), and to 
draw some snapshots. Answering two basic questions: What changes? and What doesn’t 
change?, it would provide them a set of  constants and variables and likely to enhance problem 
understanding. 

Covariation. This part uses a Dynamic Geometry program. The objective is the 
representation and interpretation of the system through two of the quantities changing in tandem 
(selected by the students from the first part). The activities were planned to go progressively to 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
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more abstract representational contexts: from verbal descriptions to graphical, tabular, and 
finally to formulae representation.  

There was no previous instruction or curricular interventions; furthermore, the students were 
not aware of the type of problems they were working on and had no time limitations. Collected 
information consisted of written answers and of video-taped films. 

Results 
We present some excerpts of three of the four protocols applied. 
First  protocol. The students were given a point A and an oblique line l (see Figure 1); then 

they were asked to put a point P in l and to join P and A with a segment of line. Next they would 
visualize P moving freely in l and draw some snapshots.  

 

 

Figure 1. 

When answering the basic questions they just gave as variables: “The distance from A to P 
and the location of point P.” The constants were “There’s going to be angles formed all the time; 
point A; it will be always the distance from A to P; and the distance will never be less than 5.5 
cm [shortest distance].” Description of constants and variables is rather colloquial; let’s see the 
following dialog in the middle of the task: 

Student A: Could it be considered as constant “never”?     
Student B: Yes, of course. 
Covariation. After simulating and exploring the situation through several activities, the 

students are asked to incorporate a Cartesian system (using one of the options of the program) 
and obtain the equation of line l by themselves (not by the program). This was followed by the 
task of getting a formula or function to calculate the distance from point A to any point P in line 
l. The answer was elaborated in the following way. 

Student A: Let’s see: Get a formula or function [reads aloud the instruction] …  
Student B: But, which one is point P? 
Student A: Anyone. 
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Student B: Which one we take? This one for example [marks one in line l.] It would be 
necessary to calculate from here to here [places a finger in point A and another 
finger in the point marked in l]. 

 They look up in their notes and write down the formula: 2
12

2
12 )()( yyxxdist −+−= . 

Student B wants to make the calculations [replace in the formula the coordinates of point A and 
the coordinates of the alleged point “P”]. Student A reads to Student B the instructions, 
emphasizing the words any point. Student B replies “So which one?” Student A says that point P 
is any one and that it can be regarded as x, y; that they can only substitute the coordinates of 
point A in the formula and that P is an unknown. The students keep discussing for several 

minutes and end up writing 22 )3()4( yxdist −+−−= . Later on, the students fulfilled the task 

ending with a function of just one variable. 
At the end of the protocols the students are invited to reflect about their work through some 

questions. One of them was: Do you see any difference between the formula for the distance 
between two points and the formula from point A and a point P in line l? Student A, replies: 
“There’s of course a difference, because in one of them there are two fixed points and on the 
other one there’s a movable point … I would say there’s a difference because in one, the formula 
for the distance between two points, you don’t have any unknown. In the other one you have an 
unknown; since they are fixed you can express with a number, with a constant, and in this one, as 
the point is movable you don’t know where it is.” Their written answer was: “It changes, because 
in the formula between two points, we are going to get constants (numerical values) and in the 
other formula we are going to get constants (from the point A) and variables (movable point P).” 

Third protocol. This time, the students have a drawing of a “soccer field” (see Figure 2) and 
a written description: “A player at P1 gets the ball and starts to run along the side line towards 
the goal.” The shot angle at P1 is shown. 

 

Figure 2. 

Perception of change. After visualizing the player running and drawing some snapshots, the 
students decide to analyze two of their variables changing in tandem: shot angle and position of 
the player. 

Covariation. One of the main activities of this part was based on tables; hence, in this 
protocol, the students are instructed to make a table (using the software), suggesting them that 
one of the variables should be regularly spaced. On a third column, they should calculate the 



Vol.2-34  PME-NA 2006 Proceedings 

 

differences of the non regularly spaced variable. The result is Table 1 (look at the order of the 
variables). 

 
Next, the students have to analyze the differences based on sign and an alleged value of zero. 

This assignment prompted the students to explore in real time and to notice that “positive 
differences indicated an increasing or opening Angle, while negative differences indicated a 
decreasing or closing Angle.” When facing a zero value, they assume continuity and think “there 
must be a zero difference between 1.86 and -1.03.” Furthermore, they guess such a point should 
be a transition point “the angle stops opening to start decreasing.” Afterwards, they go on and 
drag P carefully, coordinating the values of P and Angle, finding out a “small” interval for P 
where Angle doesn’t change (see last two rows in Table 1). Consequently they report that “a zero 
difference means the Angle remains the same.” 

The following task was to mentally visualize a horizontal line, moving up and down over 
their previous graphic describing the behavior of variables P and Angle. The questions related 
were: What’s the meaning of the intersection points? The students visualize, do some hand 
movements and draw some snapshots, writing as answers: “Two crossing points mean they have 
the same Angle but in different positions of P and uniqueness of P for a single crossing point.” 

Fourth protocol: Given Figure 3 below, the students were prompted to drag point E. 

 

Figure 3.  
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 Perception of change: From the very beginning there is an intense use of dynamic imagery to 
transform the system (no software program yet). The students drag point E on line AB

suur
, 

particularly on the interval [C, G] and for “curiosity” outside of it. Contrary to the previous 
problems, they move point E in the neighborhoods of C and G and discuss the possibilities and 
consequences of putting it on C and G: According to Student B “the triangles DCE and FGE 
disappear and so the angle FEG can be very close to 900 but not exactly 900 [not even when E is 
on G, answering back to student A, who thinks it is 900].” We can see here MA1 and MA2 
between several sets of variables changing in tandem and, something crucial to the second part, 
the visualization of a continuum of right triangles. The variables reported were: “Point E; angles 
of E [FEB and DEA]; distances from D to E and from E to F (but not path DEF); distances from 
C to E and from E to G.” The constants were: “The points D, C, F, G; distances DC and FG; DC 
and FG are perpendiculars [to AB].” The students showed certain compensation reasoning in two 
previous protocols about the optimization variables (see Compensation Reasoning in 
Optimization Problems, this volume). In this case it was expected to happen in the path DEF so 
there was already a question in the protocol about the nature of path DEF (variable or 
parameter). Student B thinks it’s a parameter “because as this one shortens [points to EF], this 
one extends [points to DE].” Student A thinks it’s a variable so they agree to calculate, by the 
Pythagorean theorem, the hypotenuses of another particular case, resulting in 12.5cm, quite close 
to the 13 cm (see Figure 3). On arguing her point Student A moves point E to several positions 
(with two fingers Student A moves a virtual point right and left), convincing Student B. They 
now have their problem: an intriguing variable, path DEF, and of course the position of point E. 

Covariation: For the algebraic function Student A writes “path =” and then goes to their set 
of variables and constants, which must undergo a conceptual and symbolic process of 
transformations, i.e.: point E (the independent variable) is substituted for variables CE and EG 
(they have in mind two dynamic triangles) and so they continue writing 

“ 22 416 EGCEpath +++= ”. In a further step, using the fact that C and G are fixed 
(constants) they express CE in terms of EG. Then they label segment CE as x (the geometric 
element is converted into an algebraic sign) getting the algebraic function. (It was normal for the 
students to cheerfully celebrate new findings, but this time was special). 

Conclusions 
Analysis of the protocols showed reported student’s misconceptions about variables, 

constants and formulas (Sierpinska, 1992; Carlson et al., 2002). The students also displayed 
weak covariational reasoning abilities, even in MA1 (they don’t distinguish the order of variables 
in labeling the axes or in making tables), and MA2 (describing direction of change, taking, let’s 
say x, from left to right and vice versa). Through the 4 protocols, their verbal descriptions of two 
variables changing in tandem always followed the same pattern: As one of the geometrical 
variables increases, the other variable goes up (down) until a certain “value” is reached, before 
then going down (up). The pattern didn’t change even after exploring with a program and 
observing in real time the values of the variables. The corresponding graphics also showed 
certain symmetry around the optimal points, reflecting a “parabolic equation” model. The MA3 
planned activities let the students discover and express growth and decrease of y in terms of the 
sign of the differences and the decrease (in absolute value) of the differences in the 
neighborhoods of the optimal points. However, this was of no use when comparing the graphic 
of the algebraic function and their initial model. Nevertheless, positive shifts occurred 



Vol.2-36  PME-NA 2006 Proceedings 

 

progressively. The students gradually transformed their “static” ideas of variable, constant and 
formula through the four problems: From given and unknown, they go effectively to constants 
and variables; and from geometric or algebraic formulas, where the elements on the right side are 
given values and unknown quantities which must be found (both) and substituted to get values 
for the left side, they go to dynamic functions where they get to distinguish variables on both 
sides of the expressions. Mental action MA3 must be reinforced, for example, with second order 
differences and work concavity, and changes of concavity and point of inflection aspects. This 
would let the students shape their original graphics and lead them to see the variations of change. 
Of course, activities based on MA5 (images of continuous changes in one of the variables for the 
entire domain of the other variable) would probably help to fulfill this. 

Finally, it’s the authors claim that optimization problems can be set out in Precalculus 
courses. A covariational approach to them would give chance to those students who won’t take 
calculus courses to see a way to deal with problems of change, to model them in several 
representational contexts (including the algebraic one); and discuss intuitively, continuity and 
limit ideas. For those students who will take calculus, perhaps this approach would let them to 
appreciate the power and simplification of the derivative. 
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This paper reports on student proofs for the shapes of graphs of solutions in the phase plane for 
systems of two linear homogenous differential equations with constant coefficients. We define 
proof as a convincing argument that answers the question why. By an argument, we draw on the 
work of Krummheuer (1995), who defines argumentation as the “interactions in the observed 
classroom that have to do with the intentional explication of the reasoning of a solution during 
its development, or after it” (p. 231). Findings from our research contribute to contemporary 
characterizations of proof as co-constructed and offer teachers useful insights into the types of 
student generated algebraic and geometric arguments they find convincing and the 
corresponding conceptual issues students encounter. 

This paper reports on student proofs for the shapes of graphs of solutions in the phase plane 
for systems of two linear homogenous differential equations with constant coefficients. Although 
such systems might appear to be overly constrained, these systems are building blocks for more 
complicated nonlinear systems and therefore it is mathematically significant to investigate 
student reasoning with linear systems. Moreover, beginning with Poincare’s pioneering 
geometric view of dynamical systems, phase planes have become an indispensable tool for 
interpreting and justifying the evolution of solutions to systems of differential equations. Little 
research, however, has been conducted in this important content area, and even less research 
documents student’s proofs in which the phase plane figures prominently.   

Following Henderson (2001) we define proof as a convincing argument that answers the 
question why. By an argument, we draw on the work of Krummheuer (1995), who defines 
argumentation as the “interactions in the observed classroom that have to do with the intentional 
explication of the reasoning of a solution during its development, or after it” (p. 231). Findings 
from our research contribute to contemporary characterizations of proof as a co-constructed 
process and offer teachers useful insights into the types of student generated algebraic and 
geometric justifications and the corresponding conceptual issues that students encounter.  

Characterization of students’ justifications leads to the second purpose this study, namely, 
what challenges and difficulties do students encounter as they attempt to justify the shape of 
solution graphs in the phase plane. In identifying salient difficulties among students, we also 
posit possible accounts for these difficulties. Taken together, the analysis offers a comprehensive 
account of student learning that will inform future instruction and curriculum design. 

Prior research in the domain of systems of differential equations (e.g., Trigueros, 2000; 
Whitehead & Rasmussen, 2003) characterized students’ mental schemes and offer important 
insights into student conceptions of rate and parametric equations, for example. Our research 
complements this more cognitively oriented work by foregrounding students’ proofs within a 
mathematical community of inquiry. We view student learning as participation in mathematical 
activity (Lave & Wenger, 1991; Krummheuer, 1995). While engaging in whole-class and small 
group discussions, students frequently develop conjectures for the shape of graphs in the phase 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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plane and justifications in support or in refutation of these conjectures. As such, we view 
learning as proceeding by engaging in argumentation (Yackel & Hanna, 2003). 

Background 
The instructional materials utilized in the classroom under study were, in part, inspired by the 

instructional design theory of Realistic Mathematics Education (RME) (Freudenthal, 1973; 
Gravemeijer, 1994).  Key heuristics of RME are guided reinvention and emergent models. 
Corresponding instructional material provides opportunities for students to organize informal or 
intuitive notions into more conventional mathematical statements and findings (e.g., see 
Rasmussen & Keynes, 2003). In this process students gain ownership of the mathematical 
material, which facilitates their ability to manipulate symbols, perform algorithms, and create 
and use definitions. Students’ mathematizing activity is facilitated by the teacher, who is 
proactive in supporting students’ reinvention of ideas and methods for solving problems 
(Rasmussen & Marrongelle, in press).  

In addition to the implementation of innovative teaching materials, special attention was also 
focused on the classroom learning environment. In order to promote productive small group and 
whole class discussions, the teacher continually fostered particular social and socio-mathematical 
norms regarding argumentation (Yackel & Cobb, 1996). Social norms are what characterize 
patterns of participation that are interactively constituted in the classroom by its participants, 
both students and teacher.  Examples of social norms from this class include: students’ routinely 
give explanations, indications of agreement or disagreement with other students’ explanations, 
and students’ explanations of other students’ arguments. One should note that such norms might 
also characterize a history class, or an English class, for example. Socio-mathematical norms, on 
the other hand, are specific to mathematics, and are criteria that characterize acceptable, 
different, sophisticated, or elegant mathematical arguments. Thus, paying careful attention to the 
negotiation of social and socio-mathematical norms throughout the semester, coupled with the 
use of RME inspired instructional materials, the teacher created a classroom environment where 
students routinely offered mathematical arguments. The classroom data therefore provided a rich 
source of information about student reasoning regarding the shapes of graphs of solutions in the 
phase plane. 

Methods 
Data for this analysis comes from four class sessions of an eight-week classroom teaching 

experiment (see Cobb, 2000 for additional details of the teaching experiment methodology) 
conducted in an undergraduate differential equations course in a large southwestern university. 
Data sources consisted of video recordings of whole class and small group discussions, 
researcher field notes, and copies of student work. The classroom teaching experiment was 
conducted as part of a larger research program aimed at developing an inquiry-oriented, 
research-based instructional approach in undergraduate mathematics.  

We began the data analysis by transcribing the four classroom sessions in which students 
developed argumentations for the shape of graphs in the phase plane. A coding scheme was then 
developed as we observed video and simultaneously highlighted arguments in the transcripts. We 
used problematic or especially interesting episodes to sharpen and refine the coding scheme. This 
collaborative coding process provided multiple occasions to share and defend interpretations of 
the video and corresponding transcripts, thereby minimizing individual bias by each researcher 
and eliminating interpretations not grounded in the video (Jordan & Henderson, 1995).  
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Because student argumentation was our primary research goal, we utilized Toulmin’s (1969) 
definition of the anatomy of the core an argument as an analytic lens for interpreting and 
classifying students’ proofs. According to Toulmin there are three parts to the core of an 
argument: data, claim and warrant. In this characterization, the data is what supports the claim or 
conclusion that is made. As it is not always explicitly apparent how the data might lead to a 
given claim, one might provide a warrant to clarify how the claim follows from the given data. 
Coding was a collaborative effort that involved multiple iterations of a coding scheme. All 
coding was organized and compiled in an excel spreadsheet in order to facilitate subsequent 
analysis. In this way, the table could easily be sorted so that one may view what types of claims 
were made for specific data, and conversely, what types of data were used to make a specific 
claim. Also, one may easily obtain the frequency of the occurrences of each claim made, and 
each type of data used.  

Results 
In the four class sessions analyzed for this report we coded 68 mathematical arguments, 61 of 

which were student generated, as shown in Table 1. The high ratio of student to teacher 
arguments reflects a classroom learning environment with social norms characterized by routine 
student involvement in explanation and justification. 

Date # of Student Arguments # of Teacher Arguments Total # of Arguments 
4-18 11 1 12 
4-20 6 0 6 
4-22 15 2 17 
4-25 29 4 33 
Total 61 7 68 

Table 1. Number of arguments 

Further analysis revealed that students’ proofs relied on six sources (data) for the basis of 
their claims. The six data sources that students used to make deductive claims were (1) 
previously proven results, (2) equilibrium solution type, (3) vectors, (4) an assumed 
characteristic property of the straight-line solutions, (5) the general analytic solution for the 
given system, and (6) the ratio of y(t)/x(t), where x(t) and y(t) are components of the general 
solution. Each of these six sources of data for students’ arguments then had from two to four 
subcategories. In this report we elaborate the most prominent data sources used by students. In 
particular, we illustrate data sources of previously proven result, vectors, the ratio of y(t)/x(t), 
and the general analytic solution. Further elaboration of all data sources and subcategories can be 
found in Rhodehamel (2006). 

Data Source – Previously Proven Result 
In a previous class students had created an algebraic method for finding the x(t) and y(t) 

equations for the straight line solutions to the system dx/dt = y, and dy/dt  = 2x-3y. That is, 
students had essentially reinvented the eigensolutions to this system (Rasmussen & Keynes, 
2003). As a move toward creating the general solution, students were next asked to determine the 
shape of the phase plane graph for an initial condition between the two straight lines. Based on 
visual inspection of the vector field one might conclude that this graph is also a straight line. 
However, several students proved that this conclusion is incorrect using an argument by 
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contradiction. The following argument by Sadie (all names are pseudonyms) exemplifies this 
proof.  

Sadie: When we tried to find the slope of the straight line solutions we only found two 
slopes. So in order for there to be another straight line, we would have to find one of two slopes. 

In other words, Sadie argues that because they had previously proved that this system had 
only two straight line solutions, the graph of the solution with initial conditions between the two 
straight line solutions could not also be on a straight line as this would contradict their earlier 
finding.  

Data Source - Vector 
In the following argument the data source is vector, and the claim is that solution graphs will 

curve towards the straight line solution y = -x heading towards the origin. In this data category 
students use an electronically generated vector field to make claims. 

Emile: I just want to see where it goes.  
Mario: Where what goes? 
Emile: Where the solutions to any point goes. My thought was that they all come to y = -

x [one of the two locations of straight line solutions]. 
Mario: They’re going to zero anyway. 
Emile:  Yeah, they come to y = -x and then come to zero. Or infinitely close to zero, 

whichever it may be. Because just testing points inside like our initial point (-4,6) and (-3,5) 
plotting them on the vector field, they all come down to y = -x. And then you can see that any 
vector field below y = -x comes up and then goes to y = -x such that the same would happen for 
ones outside y = -2x. They’d be close to it but they would come down through the origin and 
they would sneak up right behind them, y = -x.  I want to see if you can do something with these 
equations or these solutions to prove that. To prove that the graphical conjectures actually do go 
to y = -x. 

In Emile’s argument we can see the power of the vector field, but also the limitations of it. 
Emile began by plotting the vector for the initial condition (-4,6), and then continued to plot 
other vectors in order to make broader claims about the entire family of solution functions. Thus, 
the vector field allowed the students to make powerful visual observations about the entire 
solution space, but as Emile stated, “I want to see if you can do something with these equations 
or these solutions to prove that. To prove that the graphical conjectures actually do go to y = -x.”, 
these empirical observations lack the formality that analytic reasoning may provide. This 
statement by Emile also suggests that the sociomathematical norm of what counts as a legitimate 
mathematical proof was progressively evolving and coming to fruition.  

Data Source – Ratio of y(t)/x(t) 
The following example illustrates a student’s use of the data source, the limit of the ratio 

y(t)/x(t), where x(t) and y(t) are components of the general solution, to arrive at a mathematically 
incorrect conclusion. The problem was such that there were two positive, distinct eigenvalues 
with eigenvectors (1, 1) and (1, -1/2). The direction and location of the corresponding straight 
line solutions is shown in Figure 1. The student had previously determined the correct general 
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, correctly graphed the straight line solutions, and had 
correctly found that the limit of y/x as t goes to infinity to be 1 for the solution with initial 
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condition (1,0). However, he interprets this limiting value to mean that the graph of the solution 
with initial condition (1,0) would, in his words, “spear into the line y = x,” as illustrated in Figure 
1. Other students had similar claims. 

This example, in addition to illustrating the use of the limit of y/x as data for an argument, 
illustrates one of the salient conceptual difficulties that students encountered when justifying the 
shapes of graphs in the phase plane, namely the incorrect interpretation of a limiting slope. In 
this particular example the student is able to correctly find the limit of y/x as time approaches 
infinity, but he is unable to correctly interpret what this means graphically. The correct 
interpretation of the limit would yield that the graph should ultimately achieve a slope of 1 as 
time approaches infinity, whereas in this case, the student has interpreted the limiting slope of 1 
as signifying that the graph should physically approach the line y = x.  
 
 

 
 
 
 
 
 

Figure 1. Student sketch of graph in the phase plane 

We conjecture that students’ tendencies to interpret the limiting slope in this manner are 
grounded in their experience with limits in calculus. For example, when taking the limit of f(x) = 
1/x as x approaches infinity, the correct solution yields f(x) tending to 0. In this context, one then 
concludes that the graph is going to physically approach the line f(x) = 0, rather than the slope of 
the line approaching zero as it does in the limiting slope. This stands in contrast to the way in 
which one needs to interpret the result of the limit of y(t)/x(t). 

Data Source – General Solution 
The following argument illustrates students’ use of the data source, general solution, and also 

illustrates another conceptual difficulty that students often encounter. As we argued in the 
previous section, some students were inclined to incorrectly assert that solution graphs will 
“spear in” towards the straight line solution with greater eigenvalue. Some students also arrived 
at this same conclusion using the general solution as a data source. In the example that follows, 
we refer to the way in which students use the general solution as general solution with 
subcategory quantitative, because of their focus on the magnitude of the two components of the 
general solution.  

Brent: Okay, I just looked at what happened when t got really big. This one goes to -2t and 
this one is just –t [referring to the components of the general solution], so this one goes to zero a 
lot faster [pointing to e-2t], so as your t increases, this one [e-2t] starts to go away [that is, go to 
zero] and your left with only this one [e-t], that’s the -1 line [the straight line solution with slope 
-1, y = -x]. So, as you increase t, it starts to look more like that one [point to the straight line 
solution along y = -x in the graph of the phase plane], so I said it went down towards that one 
[the straight line solution along y = -x]. 

Anna: [recasts Brent’s argument] I guess it [the straight line solution along y = -x] would 
pull. 

x

y 

Graph 
of solution 
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In this argument Brent realizes that the exponent, -2t, will decrease much faster than –t as 
time values increase. As a result, he concludes that the straight line solution that corresponds to 
the component e-2t will have less of an influence on the solution graph. After Brent finished 
giving his argument the teacher asked if other students could revoice his argument. Anna 
volunteered, closely following the wording of Brent’s argument, but at the end she mentioned, “I 
guess it would pull,” referring to the straight line solution. This language of “pulling” was first 
introduced in a previous class session when Ray [incorrectly] suggested that straight line 
solutions might act as attractors, similar to the way in which equilibrium solutions for first order 
differential equations behaved.  The intuitive appealof the the notion that a straight line solution 
might act as an attractor, and corresponding language of “pulling” was present in other general 
solution arguments as well as in ratio arguments. 

On the last day of discussion, in which determining and offering justifications for the shapes 
of graphs in the phase plane culminated, we begin to see a shift in the way in which the students 
reasoned with the general solution. In the following argument Anna begins by stating why she 
initially thought that the graph would spear-in towards the straight line solution with greater 
eigenvalue.  

Anna: My initial thought was that this [graph similar to that in Figure ] is probably correct. I 
was thinking in a way well, since this function [e4t] grows faster with a t increasing then um, I 
was saying that this function would pull our solution to itself.  

When Anna makes the claim that the graph will be “pulled” into the straight line solution she 
notes that the magnitude of the exponent corresponding to the straight line solution that lies 
along y = x is much larger, so she only attends to the “pull” of that component and the “pull” of 
the other component (the component corresponding to the straight line solution y = -1/2x) fades 
into the background. In this sense, her reasoning might be characterized as univariate. That is, 
she focuses on one of the two quantities (or components) of the general solution to the exclusion 
of the other quantity.  Anna goes on, however, to explain why she now sees this as incorrect and 
gives a justification for the correct shape of the graph. 

Anna: Then the question, or, then was said, well, we still have this function [the component 
of the general solution with smaller eigenvalue] as well. And we concluded that this more, less 
curvey, more smooth curve I guess, would be the correct answer because there is two reason to 
it. The first one is that even though um, this grows faster, we still have this [the “pull” of the 
straight line solution along the line y = -1/2x], so it kind of like pulls this function, so it kind of 
like pulls this function towards itself as well. Um, although the slope of this graph looks more 
like this [see Figure 2]. 
 
 

 
 
 
 

 

Figure 2. Anna’s revised graph 

There is an important difference to note between the two arguments that Anna generated in 
the last example. In the second argument, Anna correctly attends to the pull of both quantities, 
recognizing that however miniscule the contribution of a component, it will still exert some force 

x 

y 
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on the solution graph. We characterize this latter type of reasoning as bivariate because she 
attends to both components (or quantities) in the general solution for all time, and we have found 
that such reasoning represents a significant conceptual shift for students. Indeed, reasoning that 
coordinates multiple quantities at once is known to be a challenge for many K-12 students. Our 
research indicates that this complexity continues to be a challenge for advanced undergraduates. 

Conclusion 
The goal of this report was to document students’ arguments and the associated conceptual 

issues that arose for students. In doing so, we extend the currently limited amount of literature 
pertaining to students’ understanding and difficulties in working with systems of differential 
equations. The significance of this report is two fold. First, documentation of students’ 
arguments will allow other teachers of differential equations valuable access to the types of 
arguments that students might provide, thereby expanding the teachers’ pedagogical content 
knowledge (Shulman, 1986) in this particular domain. Second, we contribute to the 
characterization of proof (a convincing argument that answers the question why) as a co-
constructed, social process. As Krummheuer’s definition of argumentation suggests, 
participation in argumentation means participation in classroom activity. We therefore fore 
grounded the notion that learning is participation in increasingly sophisticated mathematical 
argumentation. The example we tendered of Anna’s shift in univariate argumentation to bivariate 
argumentation exemplifies productive advances in student participation in justification.  

Consistent with the perspective that proof is a co-constructed process, the work reported here 
included analysis of both students and the teacher. However, we intentionally choose to highlight 
the contributions of the students in order to better understand the conceptual issues that enabled 
and constrained student arguments. In ongoing work we are reanalyzing this same data, 
highlighting the role of the teacher in the argumentation process. 
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A teaching experiment was conducted in a calculus class to determine what it means to 
understand definite integrals.  One interesting result was based on students' use of area under a 
curve as a tool for computing definite integrals.  Results show that in the problems presented in 
this study, students’ use of area under a curve was helpful in problem solving only when a 
deeper understanding of the structure behind the definite integral was present.   

The purpose of this research was to examine student understanding of Riemann sums and 
definite integrals.  These concepts are imperative for students to understand for three main 
reasons.  First, many real world applications involve functions that do not have an antiderivative 
that can be expressed in terms of elementary functions.  For example, the antiderivative of the 

function 
2

)( xexf = cannot be expressed in terms of elementary functions.  Thus, the 
Fundamental Theorem of Calculus could not be applied, and other methods for evaluating the 
definite integral, such as Riemann sums would be needed.   

This leads to the second reason that students need to have an understanding of the structure 
of Riemann sums.  While Riemann sums may not be the most efficient method for 
approximating a definite integral, other methods, such as the trapezoid rule, midpoint rule, or 
Simpson’s method are based on the structure of the Riemann sum.  Thus, an understanding of the 
structure of Riemann sums will help students to understand these other methods as well. 

Finally, I hypothesize that an understanding of Riemann sums is needed even when a 
function has an antiderivative that can be expressed in terms of elementary functions.  Setting up 
the appropriate definite integral requires the student to know what to integrate, and an 
understanding of the structure of the Riemann sum will give the student the tools he/she needs.  
In all cases, it is possible to imagine the definite integral being represented by the area under a 
curve.  This research begins to examine what is necessary for students to be able to use area 
under a curve as a powerful tool for solving problems that involve definite integrals. 

Background 
There are several pieces of literature that focus on mathematical topics that build the definite 

integral: ∑
=∞→

∆
n

i
i

n
xxf

1

)(lim .  Multiplication, rate of change, sequences and series, limits, and 

functions are all incorporated into the definite integral, and several research studies have been 
done to understand these topics.  In addition, there are two pieces of literature that focus on the 
concept of integration.  Orton (1983) mainly focuses on methods of evaluating definite integrals.  
As is common in many calculus classes, many of the definite integral problems in Orton’s study 
involve finding the area under the curve.  He discusses the structural and calculational/executive 
errors that students made when finding the area under the curve in several situations.  Artigue 
(1991) discussed Orton’s studies of calculus students’ understanding of differentiation and 
integration.  The study found that many students could perform routine procedures for finding 
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the area under a curve, but the students rarely could explain their procedures, and some even 
admitted that they “didn’t really know why they were doing it” (Artigue, 1991).  Orton’s study 
does not attend to understanding why area under a curve is equal to the definite integral of a 
function.  My research will provide data that shows that when solving real world problems, 
students need to understand why this relationship between area and the definite integral holds.  
“For students to see “area under a curve” as representing a quantity other than area [i.e. velocity], 
it is imperative that they understand how the quantities being accumulated are created” (P. 
Thompson & Silverman, 2006).   

Thompson’s (1994) study focuses on student understanding of the Fundamental Theorem of 
Calculus.  As part of his teaching experiment, he developed and implemented a module to help 
students understand Riemann sums in a way that develops the Fundamental Theorem.  
Thompson noted a distinction between accumulation and accumulating, and stressed the idea of 
quantities accumulating for his work.  Thompson also describes a younger student, Sue, who is 
able to construct a Riemann sum to approximate distance traveled.  Sue was also able to explain 
that she could get better approximations by using smaller time intervals.   

For Orton’s study, students were given a definite integral and asked to evaluate it or were 
given a graph and asked to determine the function’s definite integral by finding the area under 
the curve.  In Thompson’s study, students were asked to examine aspects of the definite integral 
that related to the Fundamental Theorem of Calculus.  My study focuses on a different aspect of 
the definite integral.  Specifically, my students were asked to look at problems where they either 
needed to set up a definite integral or use Riemann sums to approximate a total accumulation 

Theoretical Perspective 
The theoretical perspective that I have used to analyze the data is taken from the work of 

Piaget (1970, 1975).  The basic idea is a type of constructivism with the premise that we 
construct not at free will, but within certain constraints.  The system in which we construct is 
subject to certain laws, specifically reversibility, wholeness, transformation, and self-regulation 
(Piaget, 1970).   

Possibly the most important aspect of Piaget’s constructivism, structuralism, is the concept of 
reflective abstraction.  Abstraction “in the ordinary sense of the word” refers to something being 
“ ΄drawn out’ from things which have that property” (Piaget, 1970).  For example, a child learns 
what “red” is by seeing lots of objects that are red.  The child may be shown a red ball, a red 
crayon, a red shirt, and a red block and the child eventually learns the meaning of “red”.  
Reflective abstraction is a type of abstraction that comes from “acting on things” and ways in 
which we coordinate actions.  Reflective abstraction deals with the elements and the operations 
we perform on them.  Specifically with the definite integral, students cannot understand definite 
integrals simply by looking at a lot of them.  Instead, the students need to do something with the 
components of definite integrals to be able to reflectively abstract and understand the structure of 
the definite integral. 

Piaget’s structuralism is a response to both Platonic and atomistic views.  Within the Platonic 
view, knowledge is something that already exists (Piaget, 1975), and learners simply 
“remember” or “acquire” the information.  Per Sfard’s (1998) acquisition metaphor, students do 
not actively participate in developing the structure, but acquire the knowledge of the structure 
instead.  A common example is based on the Gestalt perspective.   When we see a person, we do 
not need to look at the eyes, and then the ears, and then nose, and so on before we can recognize 
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the person.  Instead, we can simply look at the face as a whole to identify the person.  The idea of 
ungenerated wholes is central to the Gestalt perspective. 

One portion of the definite integral that could be considered a Gestalt aspect is seeing the 
definite integral as the area under a curve, without constructing it from the structure of the limit 
of Riemann sums.  Thus, the definite integral would not be a well-developed object, but instead 
would be only a pseudo-object (Sfard, 1991).  This will be discussed in more detail in the data 
analysis section.  Viewing the definite integral as the area under a curve is certainly something 
that we want our students to be able to do, but we also want them to be able to generate the 
structure of a Riemann sum in order to have a better conceptual understanding of the definite 
integral.   

On the opposite side of the spectrum is the atomistic view that sees only a collection of 
individual elements which Piaget calls aggregates (1970).  Within this view, the student does not 
see any of the relationships between the individual elements, nor does the student consider any of 
the operations that are performed on the elements.  An example of this from Riemann sums 
could be a student looking at a collection of rectangles, without considering the area of the 
rectangles, or an example could be a student who can see the area of n rectangles, but cannot 
imagine the number of rectangles increasing infinitely to form the definite integral.   

Clearly, there are ideas about the definite integral that fit into the Gestalt view or the 
atomistic view, but neither of these views allows us to have a fully developed concept of all that 
is involved in conceptualizing a definite integral.  Piaget claims that structuralism is the solution 
(1970).  Within structuralism, Piaget claims that students do construct knowledge, but the 
construction of knowledge takes place within a system that has its own laws (Piaget, 1970).   A 
structure consists not only of elements or aggregates, but the structure also consists of the 
operations on these elements and the relationships between these elements.  Specifically, 
structures are self-regulating and are subject to the laws of reversibility, transformation, and 
wholeness.   

Methods/Subjects 
This research was designed using a teaching experiment methodology (Simon, 1995).  Thus, 

a hypothetical learning trajectory was created.  Participants in the study were students in a 
calculus workshop in which the author was one of two research assistants.  Students enrolled in 
the calculus workshop were concurrently enrolled in a traditional first semester college calculus 
class, and students generally reported one of two reasons for enrolling in the extra workshop.  
Approximately half of the students claimed they were not good at math and wanted extra help 
with their calculus class, and the other half reported that they loved math, and simply wanted to 
take another math class.   

Students were videotaped as they worked in groups on activities relating to definite integrals 
(see Table 1), although the phrases “definite integral” and “Riemann sum” were not used by the 
instructors until after the activities were completed, or until the students introduced the terms 
themselves.  All students were very familiar with Oehrtman’s (2004) approximation framework 
and had worked in several contexts where they were required to find approximations, both 
overestimates and underestimates, determine a bound for their error, and find approximations 
that were accurate to within a predetermined bound, epsilon.  The problem solving sessions 
extended over two and a half one-hour class periods. 
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Water 
Problem 
 
Group 1A 
 

A uniform pressure P applied across a surface area A creates a total force of 
F=PA.  The density of water is 62 lb per cubic foot, so that under water the 
pressure varies according to depth, d, as P=62d.   
a) Draw and label a large picture of a dam 100 feet wide and extending 

50 feet under water. 
b) Approximate the total force of the water exerted on this dam. 
c) Find an approximation accurate to within 1000 pounds. 
d) Write a formula indicating how to find an approximation with any pre-

determined accuracy, ε. 
Spring 
Problem 
 
Group 1B 
 

For a constant force F to move an object a distance d requires an amount of 
energy equal to FdE = .  Hooke’s Law says that the force exerted by a spring 
displaced by a distance x from its resting length is equal to kxF = , where k is 
a constant that depends on the particular spring. 
a) Draw and label a large picture of a spring initially displaced 5 cm from its 

natural length then stretched to a displacement of 10 cm. 
b) Approximate the energy required to do this if the spring constant is k = 

.155 N/cm. 
c) Find an approximation accurate to within 1000 ergs (1 erg = 10-5 N·cm). 
d) Write a formula indicating how to find an approximation with any pre-

determined accuracy, ε . 

Table 1 

Data Analysis 
Near the beginning of the problem solving session, both groups attempted to set up a definite 

integral, but were unable to do so.  When the students in group 1A initially wanted to use an 
integral, they were discouraged to do so by the professor.  Instead they were asked to use the 
ideas of the approximation framework.  Thus, they approximated the force using the average 
pressure on the dam and the entire area.  After computing this approximation, the students 
decided to set up an integral to check their approximation.  However, they were unsure of how to 

set up the appropriate integral.  At first they set up the integral ∫ ⋅
50

0

625000 d .  They did not 

include the dd (or “dx” ), and did not discuss this.  Much more importantly, they use 5000 as the 
area, which is the area of the entire dam.  Instead, they needed to have the area of one strip with a 
width of 100 and an infinitely small height.   

1A Student A: [writes ∫
50

0

].  Let’s do this real quick.  So P times A is just…it’s just this 

[points to 2500050100 ftAcontact =⋅= on whiteboard] times 62d, right?  A 

constant…times d? 
1A Student B: 62 d A, isn’t it? 
1A Student A: But A is…oh yeah. 
1A Student B: Oh yeah. 
1A Student A: Isn’t A constant?   
1A Student B: A is constant.  So it’s 5000 times 62 d. 
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1A Student A: [continues writing.  Now has ∫ ⋅
50

0

625000 d ] 

Since they had difficulty constructing an appropriate integral, it seems likely that they chose 
this method because the problem was similar to those they solved in their calculus classes using 
integrals, and not because they understood (at that point) the structure of accumulation and 
definite integrals.  These students recognized that the solution included a product of two terms, 
but one of the terms in their product was incorrect.  The students compared their answer with the 
approximation they found earlier using average force and realized that one of the two solutions 
must have been incorrect. 

1A Student B: Ok, that’s nothing close to what— 
1A Student A: we have written down.  That’s sad. 
1A Student B: That’s the answer. 
1A Student A: Maybe we did it wrong.  Maybe we set up the integral wrong 
1A Student B: yeah, that’s a possibility 
1A Student A: Maybe the area.  Cause we’re (inaudible) it at each level [draws a thin 

horizontal strip on whiteboard] and the area eventually goes to zero. 
1A Student B: It’s very upsetting that we’re wrong 
1A Student A: (laughs)  It’s very sad. 
Notice in the above excerpt, student A begins to discuss a necessary part of the Riemann 

sum, but at this point, her thoughts are not well developed enough, indicating gaps in her 
understanding of the structure of the definite integral.  Eventually, the group computed an 
approximation based on the structure of a Riemann sum, allowing the students to approach the 
problem from a more conceptual basis, describing the underlying product structure of the definite 
integral to determine the appropriate integrand.  The important thing to note here is that the 
students could only set up the integral after they had explored the problem using Riemann sums, 
and developed an understanding of the underlying structure.  The following paragraphs discuss 
their actions when computing an approximation based on the structure of a Riemann sum. 

1A Student B: couldn’t you do a summation?  
1A Student A: yeah, we could do a summation of them.   
1A Student B: Like do like 10 intervals and do a summation of them. 
Next, the students determined which terms to use for the product.  Also, note that the idea of 

breaking the dam into pieces and then adding the force on each piece does not seem to be a 
conceptual obstacle for the students in any way.  The students computed two approximations 
using 50 subintervals.  One approximation was an overestimate (using the pressure at the bottom 
of each slice) and the other approximation was an underestimate (using the pressure at the top of 
each slice).  The students recognized that both an overestimate and an underestimate would be 
needed in order to be able to bound the error.  Next, the students needed to find a way to make 
their approximation more accurate and quickly decided to use more subintervals on the dam, 
making their d∆ smaller.  Although the students did not mention the word limit, the students 
discussed that their approximation could be accurate to within any predetermined accuracy if 
they used small enough intervals.   

Group 1B also attempted to initially set up an integral to solve the problem, but they were 
also unsuccessful.  In this case, the students were unsure if they function they should integrate 
should be the formula for force, F = kx, or the formula for energy, E = Fd. 
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1B Student A: That’s what it’s supposed to be [pointing to E = Fd].  Or is it this one?  
[pointing to F = kx]  Is it this one [pointing to energy formula], or this 
one [pointing to force formula]? 

1B Student B: it’s of energy 
1B Student A: It’s of energy, so it’s the integral of force times distance.   
RA 2: But you’re not using integrals. 
1B Student A: yeah, I know.  I’m just trying to remember which one that it is that you 

use. 
1B Student B: You’re trying to find energy.   
1B Student A: But in the equation… 
1B Student C: You need the force. 
Student B thought the formula should be the one for energy, but student C thought it should 

be force.  Although student C’s method would have led to a correct answer, he was never able to 
justify why this was the correct method.  Instead, he often said, “that’s just what it is”.   

The primary difference between groups 1A and 1B was the aspect of the problem on which 
each group focused.  Group 1A focused mainly on the problem within its context (water pressure 
on a dam), while group 1B rarely discussed their context (force of a spring).  Instead, pilot group 
1B drew a graph and talked mainly of area under the curve.  When they abandoned their efforts 
to set up an integral, they moved on to area.  The students graphed the force, xF 155.= and 
discussed the energy in terms of area under this curve.   

1B Student C: That’s what we were figuring out, it’s force with respect to distance and 
the area under this is energy. 

When I asked the students to explain to me why area under the curve was equal to energy, 
they could not explain, and were never confident that they were correct in graphing force, instead 
of energy.  Their only justification was that they had gotten confirmation from one of the 
research assistants that this was an acceptable method.  When I pushed them to explain why this 
was an appropriate method, they were unable to do so.   

I hypothesize that one of the reasons the students struggled with explaining area is because 
they did not understand the structure of the Riemann sum.  Several times throughout the video, 
the students in this group incorrectly said that the “summation of forces equals energy”.  It is not 
just the summation of forces that equals energy, but it is the summation of the products of force 
and distance that equals energy.  The students were attending to the summation layer of the 
definite integral, but did not include the product layer.  The following excerpt indicates that the 
statement made by the students is not a case of metonymy, but in fact a conceptual error.  The 
excerpt below also illustrates Oehrtman’s (2002)  collapse metaphor.  The student seems to be 
visualizing one dimensional lines as the area under the curve, instead of two dimensional 
rectangles.   

1B Student E: That the summation of the forces equal energy. 
1B Student B:  There, the answer is true. 
1B Student E: That’s how I found that. I don’t know if it was right or not. All I know is 

that’s what I found. 
RA 2:  Is it the sum of just the force? 
1B Student E: Yeah, ‘cause if you sum all the forces up underneath the graph… like the 

integral… you should get the energy. 
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As discussed earlier, group 1A focused on the context of the problem (water pressure on a 
dam) and did not graph a function or consider area under a curve.  One reason for this may be the 
nature of their activity.  The first question asked the students to draw and label a large picture of 
a dam.  This picture seems to be more helpful for reasoning about the problem than in the 
context of the spring.  To solve the problem, the students broke the dam into horizontal slices, 
and calculated the area of each section and an approximate pressure on each section.  The picture 
of the dam is a nice representation of the area of each strip.  Also, since the pressure depends on 
depth, the picture was helpful in determining the pressure on each strip.   

Conclusion 
Although the title “Riemann sums” was not stressed by the professor or any of the research 

assistants in the class, the students in group 1A seemed to have a good understanding of the 
concepts involved.  The understanding of Riemann sums held by group 1B is questionable.  
Since they only referred to their problem in terms of area under a curve, it is unclear of their 
knowledge of Riemann sums.  Of course, area under a curve and Riemann sums are 
mathematically equivalent, but it is appears that the students in pilot group 1B had only a 
pseudo-structural understanding.  They may be proficient in dealing with area under a curve, but 
may not be able to solve other accumulation problems without thinking about area under a curve, 
or may not be able to relate the area under a curve to the structure of a Riemann sum.   

In particular, context 1A (the water problem) proves much more difficult when trying to use 
area under a curve as a tool for solving the problem.  The formulas shown in the description of 
the problem are P=62d and F=PA, but the function that would need to be graphed in order to 
apply area under a curve is ddf 10062)( ⋅= .  In contrast, the formula that would need to be 
graphed for problem 1B (the spring problem) in order to correctly use area under a curve as a 
tool is kxF = , which is the formula for force that is given in the statement of the problem.   

I do not in any way claim that area under a curve is a bad representation or that it should not 
be taught.  Instead, I claim that area under a curve is not sufficient for understanding the definite 
integral.  It can be a powerful tool when the underlying structure of the definite integral is 
present, but the above example of group 1B illustrates what can happen when this structure is 
missing. 
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The guiding theoretical principle in this study is the notion that the process of producing a 
mathematical proof can be viewed as similar to the process of solving a mathematical problem. 
Undergraduate students with different proof schemes were interviewed while attempting to 
construct proofs and their protocols were analyzed to identify patterns in problem solving and 
possible relationships among students’ proof schemes and these patterns. Our findings suggest 
that students within each proof scheme do follow some similar patterns in their attempts to 
construct proofs and these patterns impact their proof performance. 

Proof as a logical argument that one makes to justify a claim and to convince oneself and 
others assumes a central role in mathematics. As such there has been a growing research and 
policy effort to make proof central to school mathematics as well. To inform this interest in the 
teaching and learning of proof and mathematics, there is a substantial research base, mostly 
focusing on the difficulties students face when attempting to read and write proofs. (e.g., 
Balacheff, 1988; Chazan, 1993; Coe & Ruthven, 1994; Knuth, et al., 2002; Porteous, 1986). 
Several researchers have attempted to understand students’ approach to mathematical proof by 
classifying these approaches along several dimensions – an approach currently proving fruitful in 
understanding students’ difficulties (e.g., Balacheff, 1988; Harel & Sowder, 1998; van 
Dormolen, 1977). The study reported here was designed to add to this body of research on our 
understanding of students’ approaches to proof. Our main goal was to explore further the 
patterns of problem-solving in building mathematical “proofs” by students at different levels in 
their ability to construct proofs.  

Theoretical Perspective 

1. Proof Schemes 
Harel and Sowder (1998) argue that proving or justifying a mathematical conjecture involves 

ascertaining (convincing oneself) and persuading (convincing others). An individual’s “proof 
scheme” consists of what constitutes ascertaining and persuading for that person. Harel and 
Sowder made the first step towards mapping students’ cognitive schemes of mathematical proof 
and providing a framework for evaluating students’ justifications. In particular, they proposed 
three levels of student proof schemes: (1) externally based proof schemes; (2) empirical proof 
schemes; and (3) analytical proof schemes.  

External conviction proof schemes are ones in which students build arguments or accept the 
validity of an argument based on (a) the ritual or the form of the appearance of the argument, not 
its content – the ritual proof scheme, (b) the word of an authority, such as a textbook or a teacher 
– the authoritarian proof scheme, and (c) some symbolic manipulation often without reference to 
the symbols’ meaning – the symbolic proof scheme. In all three cases, students convince 
themselves and others by referring to external sources. 
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Empirical proof schemes can be either inductive or perceptual. When a student attempts to 
remove doubt about the truth of a conjecture by using quantitative evaluations (using examples 
or specific cases) he/she is considered to have an inductive proof scheme. In a perceptual proof 
scheme, a conjecture is validated via rudimentary mental images, that is, “images that consist of 
perceptions and a coordination of perceptions but lack the ability to transform or to anticipate the 
results of a transformation” (Harel & Sowder, 1998, p. 255). 

A proof scheme is characterized as analytical when the validation of conjectures is obtained 
via the use of logical deduction. Analytical proof schemes can be either transformational or 
axiomatic. A transformational proof scheme involves goal-oriented operations on objects. The 
student operates with a deductive process in which she considers generality aspects, applies goal-
oriented and anticipatory mental operations, and transforms images. An axiomatic proof scheme 
goes beyond a transformational one, in that the student also recognizes that mathematical 
systems rest on (possibly arbitrary) statements that are accepted without proof.  

2. Problem solving  
Educators and psychologists have attempted to gain insights into student reasoning by 

analyzing students’ utterances and arguments during problem solving. In his seminal work on 
problem solving, Schoenfeld (1985) suggests that due to the complex nature of this activity, it is 
necessary to study and analyze in detail the verbal protocols of students engaging in problem 
solving. He further suggests that protocols could be partitioned into segments relating to different 
aspects of the problem-solving process, offering a way to examine qualitative differences and 
similarities in the reasoning of individuals at different levels of performance. Elsewhere, Chi and 
her colleagues (1989) studied students’ arguments while solving physics problems as a way to 
gain insights into the mechanisms underlying successful problem solving. They concluded that 
successful problem-solvers were the ones that were able to draw conclusions and make 
inferences from the given information, as well as provide explanations underlying the actions 
they were taking. Overall, a careful analysis of students’ verbal protocols and arguments while 
solving problems has the potential for revealing some of the underlying reasons for their actions 
and choices they make in their solution paths.  

3. Proof schemes and problem solving 
The notion that the process of producing a mathematical proof can be viewed as similar to 

the process of solving a mathematical problem constitutes the guiding theoretical principle in the 
study we present here on the development of undergraduate students' understanding of 
mathematical proof. Indeed, Harel (in press) suggests that proving and problem solving are both 
mental acts that characterize an individual’s “way of thinking” and, hence, the study of the two 
can inform one another. We suggest that using students’ interview protocols during their 
attempts to write proofs may help us gain further insights into students’ proof conceptions. 

The baseline in our examination of students’ understanding of proof was each student’s 
identified proof scheme. However, within each proof scheme we sought to identify patterns in 
problem solving, and to identify possible relationships among students’ proof schemes and these 
patterns. 

In particular, in the current study we examined the following questions: 
� What proof schemes are exhibited by undergraduate students during their early 

coursework in mathematics? 
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� What patterns of problem solving can be observed among the proof schemes 
expressed by these students? 

� What are the relationships between the proof schemes and these patterns? 

Methods 
The 34 participants for the study were undergraduate mathematics students enrolled in a 

first-year discrete mathematics course emphasizing mathematical argumentation and proof. At 
the beginning of the semester, all students in the course were invited to participate in the study. 
Each student was asked to solve 3 mathematics problems (Table 1) during a 30-minute clinical 
interview. Interviews were audiotaped and protocols were transcribed.  

What happens when you add an even number and odd number? 
Prove that your conjecture will always hold. 

Prove that for every integer n, n2+n is even 

Prove that for all irrational numbers x, x-8 is irrational. 

Table 1: Interview tasks 

Each argument was first coded with respect to student’s proof scheme (Harel & Sowder, 
1998). Subsequently, we analyzed students’ work within each of the three levels of proof 
schemes (external, empirical and analytical) using a qualitative methodology. Hence, the verbal 
protocols were analyzed using a problem-solving perspective (Schoenfeld, 1985). Each protocol 
was partitioned into segments (macroscopic chunks of consistent behavior) including reading, 
analysis, exploration, planning, implementation, and verification with transitions between 
segments (ibid). Subsequently, the method of analysis involved inductively deriving the 
descriptions and explanations of how students proceeded in their proofs. For this analysis, each 
subject’s think-aloud protocols were first coded to determine actions. We then classified each 
protocol line within a topic segment (i.e., as either analysis, exploration, and so forth), 
eliminating those lines representing either a reading of a problem or conversation carried on with 
the interviewer that did not refer to the subject matter (e.g., “So, so, OK, I read it. Do you want 
me to solve it?” or “Can I use a graphing calculator?”).  We then wrote descriptions of the 
students’ actions and categorized the structure of these actions. These descriptions formed the 
findings of the study described here. 

Results 
Examining the proof schemes exhibited by students was the first goal of our analysis. We 

used the framework proposed by Harel and Sowder (1998) to identify evidence as to which of 
three main proof schemes (external, empirical, and analytical) could be used to classify each of 
the student solutions. Both the written work and the transcribed oral remarks that students made 
while solving each problem were used towards this classification. As shown on Table 2, the 
majority of the study participants’ solutions were classified under the empirical proof scheme. 
Hence, we chose to use only a subset of the students who exhibited empirical proof schemes for 
subsequent analysis. Additionally, about one third of the study participants were unable to 
respond to the third task. 
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 External Empirical Analytical Total 
Task 1 12 18 4 34 

Task 2 7 27 0 34 

Task 3 7 7 7 21 

Table 2: Students’ proof schemes 

The verbal protocols were further analyzed using Schoenfeld’s (1985) problem solving 
perspective. That is, each protocol was portioned into macroscopic segments and our goal was to 
examine each of these segments as a way to gain insights into students’ approach to proof. Our 
guiding question was with respect to the nature of students’ actions (e.g., use of representations, 
definitions, justifications, or explorations of existing objects). What actions do students of 
different proof schemes take during the various phases of their proof process and how do these 
actions impact their proof process? 

Following the reading of each problem, all subjects attempted to construct a proof while 
going through steps of analysis and exploration. Yet, despite this surface similarity, the 
qualitative analysis of students’ protocols revealed differences with respect to the content and 
intent of these segments.  Descriptions of the problem-solving paths followed by subjects with 
different proof schemes are shown in Figure 1. 

External Schemes 
Students with external proof schemes often followed a pattern of introducing a segment of 

analysis following the reading of the problem statement. That is, students made an attempt to 
understand the problem and to select an appropriate perspective for approaching it. During this 
time, students tended to introduce a definition of the terms included in the problem (e.g., even 
number, irrational number), as they remembered reading it in a textbook or from past classroom 
experiences. There seemed to be no further explanation or discussion of this definition and how 
it fit either the current problem situation, or how they understood this definition. Hence, students 
did not attempt to infer any additional information or implications that could be used in the 
problem and appeared to be reaching an impasse. No new information was introduced and 
students often appeared to be expecting that the proof should follow from this definition without 
any further exploration or inquiry. Similarly, students who introduced a symbolic representation 
of the problem situation or the definition, were not able to use this representation as a way to 
gain more meaning.  

The exploration segment involved, primarily, a ritual manipulation of the symbols, that, 
once again, did not lead to a proof. In a few cases, students introduced a numerical example of 
the problem. The main characteristic of this action was the use of this example as a confirmation 
of the given statement and not as an exploration tool towards an inductive conjecture, or as a way 
to gain further meaning into the problem. Little attempt was made to link these examples to 
either the definitions or symbolic representations that were introduced during the analysis 
segment. 
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Figure 1: Problem-solving paths 

Empirical Schemes 
Students with empirical proof schemes differed markedly in their problem solving behavior 

from students with external conviction proof schemes. Following the reading of the problem, 
students with empirical proof schemes tended to introduce an exploration segment. During this 
time they tried several numerical examples until they convinced themselves (and hoped that 
these would also convince the interviewer) that they had a pattern that would always hold true. 
Their examples varied, from a structured exploration to random use of numbers, but all searched 
for a convincing pattern which they used as a basis for their conclusion. Rarely did students in 
this group introduce definitions or symbolic representations of the problem.  

Analytical Schemes 
Similar to students with external proof schemes, students with analytical proof schemes 

tended to introduce a segment of analysis following the reading of the problem statement. During 
this time, students introduced a relevant definition. Our subsequent analysis, though, suggested 
that the similarities among the three groups stopped here. Students with analytical proof schemes 
often produced longer segments of analysis, during which they engaged in four types of 
activities: (a) set a goal for their subsequent activities (often attempting to decide how they 
would proceed to use the definition), (b) symbolize the definition, (c) explore the definition and 
attempt to gain additional insights into the problem situation, and, (d) link the new information to 
the initial problem.  
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The important difference we observed between students in this group and students with 
external conviction schemes is the attempt made by the students with analytical proof schemes to 
explore their definitions and gain further information that would advance their proof. Further, 
throughout their proving processes, students with analytical proof schemes tended to keep goals 
and monitor their actions to ensure that they remained within their goals.  

Discussion 
To date, very little research has been done to investigate possible relationships among 

students’ proof schemes and their problem solving strategies. In our study, we have identified 
some patterns that existed among our students. These led to some interesting questions for 
further investigation: For example, would instruction on problem solving help students advance 
in their proof schemes (or vice versa)? Do problem-solving strategies inhibit student progress in 
proving? Investigating these questions would be helpful both for researchers and teachers.  

Endnotes 
The research reported here was supported in part by the National Science Foundation under 

Grant #REC-0337703. Any opinions, findings, and conclusions or recommendations expressed 
in this material are those of the authors and do not necessarily reflect the views of the National 
Science Foundation. 
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The graphing component of the unified representation of function will be presented which 
utilizes a computational arrow in all three representations of function to emphasize the 
transformational nature of functions. Examined through the lens of APOS theory, results suggest 
this approach helps students develop a more accurate action conception which should ease the 
transition to a process conception of function. 

The function concept is often introduced to students in elementary school but still presents a 
conceptual challenge for some university students at the College Algebra level. This study 
presents an innovation in teaching functions that unifies the algebraic, graphical, and tabular 
representations. The graphical aspect of this approach will be presented in this report.  

In the terminology of action-process-object, (based on APOS theory), the researchers believe 
that many students face difficulties when moving from an action concept to a process concept 
because these students have constructed incorrect or ineffective action concepts of function. The 
researchers used a theoretical model of the mental constructions used to develop the concept of 
function in designing this new approach. Since the same notation and techniques are used in all 
three representations, the arrow provides a unifying tool to aid students’ understanding.  

The conceptual arrow is used as a computational tool throughout the graphical, algebraic, and 
tabular representations and emphasizes the transformational nature of functions. By making 
students utilize this notation directly in working with graphs, tables, and symbols, students are 
more likely to interiorize the concept of function as a connection between input and output. By 
helping students develop a more accurate action concept of function, the transition to a process 
concept should be eased.  

Using the traditional families of functions approach found in many texts, students have 
difficulty interpreting information both when working with a specific representation and when 
attempting to translate information from one representation to another. Based on a review of the 
literature and the researchers' experiences with teaching students at this level, the new approach 
was developed to help bridge the gap between the three traditional representations. The study 
presents the results from a small pilot study and two semesters of class testing of the materials 
developed using this new approach to teach the concept of function.  

This report will focus on the use of the unified representation of function in graphing.  Rather 
than considering how a function graph undergoing one or more transformations “moves” and/or 
“changes shape” on the Cartesian plane, this approach focuses on how the axes and their 
orientation are shifted by the transformation(s). The paper will include student interview 
responses, and some quantitative data supporting the effectiveness of this work to foster student 
understanding of function. The initial results from this study are encouraging, and detailed 
analysis is ongoing of the interview transcripts.  

_____________________________ 
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MANIFOLD NATURE OF LOGARITHMS: NUMBERS, OPERATIONS AND 
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This study addresses the understanding of logarithms and common difficulties students 
encounter as they study this topic. The study focuses on different tasks: some standard and others 
non-standard that involve logarithmic expressions or require the use of logarithms in a solution 
or explanations. Results indicate students’ disposition towards a procedural approach and 
reliance on rules, rather than on the meaning of concepts. 

Objectives 
The miraculous powers of modern calculations are due to three inventions: Arabic Notation, 

Decimal Fractions and Logarithms (Cajori, 1919). However, while the first two of these 
inventions have been investigated in great detail by researchers in mathematics education, 
logarithms have received almost no attention. The mathematical concept of a logarithm plays a 
crucial role in advanced mathematics courses, including calculus, differential equations, number 
theory, and complex analysis.  

This study addresses the understanding of logarithms and common difficulties which high 
school students encounter as they study this topic. The study focuses on the different tasks: some 
standard and others non-standard, that involve logarithmic expressions or require the use of 
logarithms in a solution or explanation. For the purpose of analysis we have modified the 
interpretive frameworks developed by Confrey in her study of exponents and exponential 
expressions, to the study of logarithms. The results indicate students’ disposition towards a 
procedural approach and reliance on rules, rather than on the meaning of concepts. The paper 
concludes with pedagogical considerations. 

Theoretical Frameworks 
Understanding the concept of a logarithm builds on the relationship between the additive and 

multiplicative structure of numbers. The importance of logarithms lies in converting a product 
into a sum and thereby translating a multiplication problem into an addition problem; that is, the 
computational power of logarithms relies on the relationship between multiplication and 
addition. In the mathematics education literature, there is abundant research on students’ learning 
and understanding of arithmetic operations of addition and multiplication. However, little 
attention has been devoted to the connection between the two.  

Related to logarithms, Confrey and Smith (1994, 1995) conducted analyses of the concept of 
exponential function, noting the consistency in the development of students’ actions while they 
learn about this function. To explain students’ actions, Smith and Conferey (1994) investigated 
the historical development of logarithms, as the development of logarithmic function followed 
the development of exponential function. They suggested that strengthening students’ knowledge 
of multiplicative structures may facilitate their understanding of exponents and logarithms. 
However, their work didn’t follow its natural extension to the investigation of students’ 
understanding of logarithms and logarithmic functions. That is where the present study is 

_____________________________ 
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focused.  
Two general theoretical ideas guide presented investigation: mathematical understanding and 

obstacles (cognitive obstacles and epistemological obstacles). When examine several theories of 
understanding, the study focuses on the notion explored by Sierspinska (1994), where to 
understand something means to overcome an obstacle. More specifically, the interpretive 
frameworks presented by Confrey and Smith (1994, 1995) in their exploration of students’ 
understanding of exponential function were refined and adjusted appropriately for investigation 
of students’ understanding of logarithms. As a result, in this research the following system of 
three frameworks was developed and used: 

• Framework A: Logarithms and Logarithmic Expressions as Numbers  
• Framework B: Operational Meaning of Logarithms  
• Framework C: Logarithms as Functions. 

Methods or Modes of Inquiry / Data Sources or evidence 
Participants in this research were students enrolled in the Principles of Mathematics 12 

course. Data collection relied on two main sources: written questionnaires and in-class 
discussions. The written questionnaires were administered to the participants during and upon 
completion of their study of the unit on logarithms. Data selected for the analysis consisted of a 
subset of the following six tasks: 

1. Simplify the following expression: 4log8log54log 333 +− . 

2. Solve: ( ) ( ) 12log3log 1212 =−+− xx . 

3. Which number is larger 62525  or 62026 ? Explain. 
4. Give the domain of the relation )4(log)2(log xy xx −=− . 

5. In short essay format, the students were asked to explain to younger schoolmates  
"What is a Logarithm?" 
6. In-class discussion of the question: find the exact value of 9log5 3 .  

The in-class discussions were intended to probe further ideas and beliefs that participants 
express in their written responses.  

Results, Conclusions 
The study provides a system of three interpretive frameworks, which were used to model the 

students’ understanding of logarithms. The results present a description of students’ difficulties 
with logarithms, and also suggest possible explanations of the sources of these difficulties. As 
such, this study lays a foundation for future research on this topic. It presents students’ 
difficulties as they can be attributed to the conceptual-epistemological obstacle. Among the few 
implications for teaching practice that were developed in this study, the focus here is on the 
initial introduction of the concept. In the traditional curriculum the logarithm is introduced and 
defined as an exponent. However, historically logarithms were developed completely 
independently from exponents. Emphasis on the historical development could be a beneficial 
teaching practice. Further research will investigate the feasibility and the benefits of this 
approach.   



Vol.2-64  PME-NA 2006 Proceedings 

 

Relationship of paper to the goals of PME-NA 
Our research provides a better understanding of students' difficulties involved in acquiring an 

important mathematical concept of a logarithm. It is a novel study on a concept that has not yet 
received significant attention in mathematics education research. It paves the path to future 
research and development of pedagogy. In such, it is closely related to the goals of PME-NA. 
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Some would argue that gifted mathematics students are the most neglected group in terms of not 
meeting their full potential. Project M3: Mentoring Mathematical Minds is a series being 
developed to encourage gifted students to engage with in-depth and advanced math content and 
in high-level discourse. Teachers piloting the series received extensive professional development. 
This session provides an overview of Project M3 and grade 4 student research results. 

Overview of Project M3 
Project M3, currently in its fifth and final year, is a $3,000,000 national curriculum and 

research study funded by the U.S. Department of Education Jacob K. Javits Gifted and Talented 
Students Education Act with the aim of nurturing math talent in grade 3-5 students. Ten urban 
and suburban schools in Connecticut and Kentucky are participating in the project. Some of the 
project goals include creating challenging and motivational curriculum units; increasing math 
achievement; and providing on-going professional development for teachers. 

The NCTM (2000) Standards served as a guide for developing the Project M3 series. Each 
unit focuses on a content standard: algebra, data analysis and probability, geometry or 
measurement, and number and operations. The process standards, including communication, 
connections, problem solving, reasoning and proof, and representation, also are emphasized in all 
units. Exemplary gifted and talented practices that include investigating core concepts, studying 
concepts in depth, engaging in the complexity of the field, and personifying the characteristics of 
practicing professionals further reinforce the mathematical content and processes. 

The communication standard is a highlight of the series. Teachers facilitate the verbal 
discourse using talk moves (Chapin, O’Connor, & Anderson, 2003) that include revoice (the 
teacher restates a student’s idea), repeat/rephrase (a student restates another student’s idea), 
agree/disagree and why (judging the mathematical validity of an idea), adding on (extending an 
idea), and wait time (waiting to call on students and giving a student who has been called on time 
to respond). Students also write responses to questions from each lesson focused on a core 
mathematical concept, which requires them to reason and justify their thoughts. 

Teachers participated in a two-week in-depth summer training session and five training 
sessions prior to teaching each unit. Individualized professional development was provided every 
week to address the mathematics, lesson planning, discourse, and student learning. 

Methodology 

Students 
Multiple means of assessment, including a non-verbal test, a mathematics ability scale, and 

teacher feedback, were utilized to identify all participants. The intervention group participated in 
the grade 4 number, algebra, and geometry Project M3 units taught in 2004-05. 

_____________________________ 
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Data Collection 
The intervention group completed pre and post Project M3 unit tests. Pre- and post-project 

data were collected in the fall and spring of 2004-05 from the intervention group and in the 
spring from the comparison group. The math subsections of the Iowa Tests of Basic Skills 
(ITBS) and open-response questions based on items from the National Assessment of 
Educational Progress and the Trends in International Mathematics and Science Study were used.  

Data Analysis 
Correlated t-tests were performed to determine pre and post changes for the intervention 

group on Project M3 units, the ITBS, and open-response questions. Independent sample t-tests 
were performed to determine differences between the intervention and comparison groups. 

Research Findings 
The research findings indicated highly significant (p < .01) differences between pre- and 

post-Project M3 unit scores (see Table 1), pre- and post-ITBS scores (see Table 2), and all 
questions on the pre- and post-open-response tests for the intervention group. As indicated in 
Table 3, highly significant differences were found on the Concepts and Estimation ITBS subtest 
and significant differences (p < 0.5) were found on the Problem Solving ITBS subtest between 
the comparison and intervention groups. No significance was found between scores comparing 
the comparison and intervention groups on the Computation ITBS subtest. Highly significant 
differences also were found between both groups on all questions of the open-response test. 

 

Table 1 Comparison of Pre to Post Project M3 Unit Scores for the Intervention Group 

Unit 
Pre 

mean 
Post 

mean 
Mean 

difference 
t-value Df p 

Number2 2.77 10.47 7.70 27.05 185 ** 
Algebrab 2.74 13.71 10.97 38.83 181 ** 

Geometryc 3.56 14.53 10.97 42.43 178 ** 
an =186. bn = 185. cn = 179. 
** p < .01 

Table 2 Comparison of Pre to Post ITBS Scores for the Intervention Group (n = 179) 

Subtest Pre mean 
(SD) 

Post 
mean 
(SD) 

t-
value 

df p 

Concepts and 
Estimation 

210 (20) 226 
(20) 

14.09 177 **  

Problem Solving 215 (23) 232 
(26) 

11.32 177 **  

Computation 188 (19) 202 
(18) 

9.40 177 **  

** p < .01 
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Table 3 Comparison of ITBS Scores Between the Interventiona and Comparisonb 
Groups 

Test Comparison 
mean (SD) 

Intervention 
mean (SD) 

t-value df P 

ITBS-Concepts 
and Estimation 

214 (21) 226 (21) 5.53 356 ** 

ITBS-Problem 
Solving 

225 (24) 232 (27) 2.60 353 * 

ITBS-
Computation 

201 (19) 202 (18) 0.67 356 NS 

an = 179. bn = 180. 
*p < .05. **p < .01.  NS = Not statistically significant. 

Discussion and Conclusions 
Results indicated that students participating in Project M3 appear to be benefiting from their 

participation in the study. Even though Project M3 does not focus on computation, there were no 
statistical differences between the intervention and comparison groups on the ITBS Computation 
subtest (see Table 3). Further investigation of whether students with math potential engaged with 
curriculum not focused on operations for most of the year should be addressed. 
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Researchers investigating students’ understanding of functions have found that many students 
have a limited understanding of functions.  While much research has been conducted on 
students’ understanding of functions, little attention has been paid to students’ understanding of 
function transformations, function inverse, function composition and how these three concepts 
are related. In this study, we investigated eight calculus students’ flexibility among these three 
concepts through task-based interviews. We used an object/process view of a function and a 
flexibility model to analyze the data. The data showed that the participants used varied yet 
limited approaches to respond to tasks involving function transformations, function inverse, 
function transformation and the relationship among the three concepts. 

Introduction and Background 
The concept of a function is fundamental in the learning of mathematics where a good 

understanding equips a student with more ways of problem solving.  In the last twenty years, 
many researchers have investigated students’ understanding (and misunderstanding) of the 
concept of a function (Leinhardt et al., 1990). These studies have found that many students  have 
a limited understanding of functions (Schroeder et al., 2002). Many students still hold primitive 
understandings of functions, and firmly rooted misconceptions that have ties to historic views of 
functions, which described functions as formulaic rules composed of variables. They [students] 
understand a function to be a formula and thus connect it with actions of substitution (Meel, 
2003). Students with this limited view of a function are likely to struggle specifically with 
processes that involve acting on a function such as transformation of functions, composition of 
functions, and inverting functions.  

These three concepts—transformation of functions, function composition, and function 
inverse—are related ways of acting on a function. A transformation is any rule that takes every 
point of the original set and maps it to another point in the same space e.g. any function from 
R1 to R1  is a transformation (e.g., f (x) = x + 3 ). A transformation could also be a mapping from 
sayR2  to R3  (e.g., F(x,y) = (x + y,x − y,2y) . Using this definition, any function is a 
transformation. A composition of two (or more) functions is a function and hence a 
transformation. Conversely, any function is a composition (at least with the identity function). 
Thus, transformations and compositions can be used interchangeably. An inverse function is a 
linear transformation [recall linear transformations have the general form 
F(x,y) = (ax+ by,cx+ dy) ]. If a = 0,b = 1, c = 1  and d = 0 then the linear transformation defines 
the inverse of a function. Thus, inverse functions form a subset of transformations/compositions.  

In this study, we examined calculus students' flexibility in moving among the concepts of 
function transformation, function composition, and function inverse.  More specifically, we 
sought to answer the following research questions: 
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1. Do calculus students display versatility with regard to moving among the concepts of 
function transformation, function composition, and function inverse? 

2. Do calculus students display adaptability with regard to moving among the concepts 
of function transformation, function composition, and function inverse? 

We only focused on transformations from 2R to 2R , since that is what calculus students know 
as transformations.  

Methodology and Data Collection 
Eight calculus students in beginning calculus courses (Calculus 1 or Engineering Calculus 1) 

at a two-year college in the northeastern part of the United States were asked to complete a set of 
tasks during individual task-based interviews, which helped reveal their understandings of 
function transformation, function composition and function inverse, and their ability to show 
flexibility amongst these concepts. We audio taped the interviews and transcribed them for 
analysis.  The task-based interviews were conducted to allow us gain insight into each 
respondent’s thinking, versatility and adaptability. We analyzed the participants' responses 
inductively using a framework of flexibility.  We followed Schroeder et al.’s (2002) format in 
using first a lens of a process/object view of function, and then using the definition of flexibility. 

Discussion and Conclusion 
The results from this study illustrate that the calculus students in the study used varied, yet 

limited approaches to respond to tasks involving function transformations, function composition 
and the inverse of a function. Four major themes emerged in the process of coding: procedural 
vs. conceptual understanding, flexibility, algebra sophistication/struggle, and ways of convincing 
self/me. The study did not yield strong evidence indicating that participants have flexibility in 
their forms of function representation, or function view. On the contrary, the findings pointed to 
a univalent dependence on the equation representation of a function with some cases in which 
the participants would not continue without knowing the equation of the given function.  

The participants exhibited a strong dependence on a graphing calculator to respond to 
questions involving function transformations. They mostly used a guess and check (using a 
graphing calculator) approach. We cannot help to wonder how the study results would differ if 
the participants were not allowed to use a graphing calculator. The response of a question such 
as: “Are you convinced?” would take a whole different meaning. Two participants used a 
transformation argument (reflection over the liney x= ), to talk about the inverse relationship of 
two given functions without our initiation. There was no evidence that the participants thought of 
using a transformations approach to another task in which we asked them to sketch the graph 
of )()( xgf o , We interpreted their ability to correctly identify the transformation that emerged 
from the composition (and the ability of Russell to identify that the problem would have been “a 
whole heck easier” if he had used a transformation approach) as an indication that they had some 
degree of flexibility in their view of function compositions and the transformation of a function. 
They however showed no versatility in their approach (also evidenced by their dependence on 
equation representation of a function). It is not surprising that the participants did not think of 
using a transformations approach since the three concepts of transformation, composition and 
inverse are often covered independently in pre-calculus textbooks.  

Some questions for further study are: How much does the pre-calculus curricula prepare 
students to have flexibility among the three concepts? What would a review of commonly used 
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textbooks reveal about opportunities given to pre-calculus students to develop their flexibility? 
What does flexibility among the three concepts add for a student? 
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This study explored the decisions students make when they select a grade 10 mathematics course 
and in how they choose to succeed within a mathematics course. Quantitative data was analyzed 
from a population of 400 students, while interviews conducted with a subset yielded to 
phenomenographic interpretation. Identity formation was central to students’ choice of 
academic or non-academic mathematics courses, while keeping the credentialing of courses in 
view. Student intentions within a course generally fell into two categories: studenting and 
learning.  In conversation with students, we discovered a need to distinguish between learning 
mathematics and learning to learn mathematics. 

Because mathematics achievement is used as a critical filter for further learning 
opportunities, efforts to reform high school mathematics must address the wide variation in 
achievement among students receiving similar instruction. Attributions of the variation to ability 
differences or differences in prior learning fail to provide strong starting points for affecting that 
variation in achievement, because neither can be changed by high school students or their 
teachers. This paper explores the dimension of student intentionality as an explanatory construct 
and as a focus of attention for those interested in influencing student success in high school 
mathematics. 

A focus on student intentions in mathematics relates to other aspects of student motivation. 
The classic distinction between intrinsic and extrinsic motivation (Hidi & Harackiewicz, 2000) 
offers a starting point, suggesting that the reasons for student actions matter. Bereiter’s 
distinction (1990) between intentional-learning and schoolwork modules suggests that students 
may engage similarly in assigned tasks, but be motivated differently – to learn or simply to 
complete the assignment. Skemp’s distinction (1987) of relational and instrumental learning 
addresses differences in students’ sense of what it means to learn mathematics. Similarly, 
Flewelling and Vernay’s constructs (2005) of sense-making game and knowledge game, suggests 
that some students want to know information (facts and skills to answer mathematics questions), 
while others want to know how and why the facts and skills work and fit together. If there are 
differences of this kind in high school students’ intentions in mathematics, then those differences 
could help explain the variation in student success. Better still, it could be that students’ 
intentions could be renegotiated in ways that could affect student outcomes. 

Research Context and Method 
The study occurred in a large urban high school in Manitoba, Canada. Student intentions 

were pursued in relation to two kinds of decisions: the selection of a grade 10 mathematics 
course, and the choices the students made to succeed within their courses. School records for all 
400 students (demographics and achievement) provided data for whole-population quantitative 
analysis. As well, a subset of 25 students participated in three on-line surveys and interviews 
during their grade 10 mathematics course. Students were invited to describe how and why they 
made the choices they did, not only of which mathematics course they selected but how and why 
they engaged with the learning opportunities provided by the course they selected. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Vol.2-72  PME-NA 2006 Proceedings 

 

Phenomenographic interpretation analyzed the full range of student intentionality portrayed by 
the data. Students in the school typically take one of five different mathematics courses in grade 
10 (after a single mathematics course for all students in grade 9). More than three-quarters of the 
students take an academic course (in order of increasing value as an academic credential: 
Applied, Pre-Calculus, Honors). The two non-academic courses are Consumer Mathematics and 
Grade 9 Repeat Mathematics. 

Intentionality of Students in Mathematics 
As students made their choices of mathematics course, they were clearly concerned with the 

power of the different courses as credentials for further study, more than they were with the 
differences in content or approach among the courses. Yet few students had a focused image of 
what they were going to do four years later when they finished high school or of what they 
wanted to do as adults. As a consequence, students did not bother with facts about which 
mathematics courses were sufficient for which particular courses of post-secondary study. The 
students clearly saw the choice of courses more as a decision point in their personal decisions 
about who they were becoming. Students had to decide by making the choice of mathematics 
course how much they wanted school to be central to their life as adolescents – how they wanted 
to prioritize among social, recreational, and credentialing goals. They wanted to achieve a fit 
between their current capabilities and the mathematics course they would take. It was a present-
tense matter, not the future-tense credentialing matter that the adults presumed it to be. When 
viewed in this way, it is possible to make sense of students’ reliance on the opinions of friends 
and the recent experiences of relatives. It also makes sense of many students to discount their 
limited achievement in grade 9 mathematics in their course selection, to the extent that they saw 
themselves as being able to develop more mature approaches to mathematics when necessary.  

The study made clear that the intentions of students in grade 10 mathematics varied in more 
ways than just the kind of motivation. The variations extended beyond how much they were 
willing to work, to reasons for participating in classroom activity, for doing the work assigned, 
and for preparing for tests. It is clear that some students wanted to understand the mathematics, 
while others wanted only to know how to do the questions in the practice work that would 
reappear on the tests. As well, many students expressed their intentions not in terms of learning, 
knowing or understanding, but in terms of their willingness to do what was expected of them.  

For student intentionality to become more central to what mathematics students and teachers 
address, some working constructs are needed. We found that to make sense of the students’ 
intentions in this study, we must separate intentions for studenting (succeeding as participants in 
school at achievement, behavior, submission) from learning (intentions for succeeding as 
learners). As well, to help students perceive both their current approaches and their current skills 
as learners as something that can be developed, we need to distinguish learning mathematics 
from learning to learn mathematics. We believe that both the salient details of these distinctions 
should develop within the discourse of teachers and students, rather than be adopted from the 
theoretical literature that has guided this work. We anticipate that attending to these distinctions 
around student intentions can help achieve more meaningful success for all students in high 
school mathematics. 
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This research explored development of college students’ understanding of limits of sequence 
through a specially designed activity, named the ε-strip activity. This study addresses how the ε-
strip activity plays roles in development of students’ understanding of limits of sequences.  

One of the difficulties broadly experienced in understanding the definition of limits of 
sequences is caused by conceptualizing the idea of limits by the same order as reading the limit 
symbol. To be precise, students who start to learn the limit of a sequence are taught the limit of a 
sequence as a certain value which, as the index goes to infinity, each term of the sequence is 
approaching or getting close to. It should be noted that, in the ε–N definition of limit, an index 
number N is properly chosen after the error bound ε is determined. In contrast, such students first 
choose an index number and next try to determine how close the term corresponding to the index 
is to the limit value (Courant & Robbins, 1963; Fischbein, 1994; Kidron & Zehavi, 2002; Pinto 
& Tall, 2002; Roh, 2005). Comparing the process of students’ thinking (for a given index N, see 
what is the corresponding error ε) with that of the ε-N definition (for a given error ε, find the 
corresponding index N), one see that the order of finding the error bound and the index is 
reversed. In line with viewpoint, in this study, the process of thinking implied in the ε–N 
definition of limits is called the reverse thinking process; in addition, reversibility means the 
ability to understand such a relation between ε and N.  

The research design of this study is in the category of a Soviet-style teaching experiment 
(Kruteskii, 1969), in which the investigator engages students in instructional activities that also 
serves tasks to gauge their conceptual understanding. Eleven students in calculus courses at a 
Midwestern university with a fairly diverse department of mathematics completed a series of 1-
hour semi-structured, task-based interviews once a week for 5 weeks. Monotone bounded, 
unbounded, constant, oscillating convergent, and oscillating divergent sequences were suggested 
in the interview. The task-based interviews included the ε-strip activity. This study addresses 
how students’ reversibility could be developed through an activity, named the ε-strip activity, 
described as follows. 

The ε-strip Activity 
The ε–strip activity was specially designed to foster an environment for students to develop 

their understanding of the relation between ε and N appeared in the definition of limits of 
sequences. Each ε–strip was made of translucent paper so that students could observe the graph 
of a sequence through the ε–strip. In addition, each ε–strip had constant width, and its center was 
marked with a red line so as to examine limits of sequences with a graphical version of ε–N 
definition. The following list summarizes the ε–strip activity:  

(1) Represent the sequence numerically and then determine its convergence/divergence.  
(2) Represent the sequence graphically and then determine its convergence/divergence. 
(3) Observe how many points are inside and outside the given ε–strip. Describe distribution 

of points inside and outside the ε–strip as the value of ε is getting smaller and smaller.  
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(4) Evaluate the validity of the following ε–strip definitions A and B:  
ε–strip definition A: A certain value L is a limit of a sequence when infinitely many 

points on the graph of the sequence are covered by any ε–strip as 
long as the ε–strip covers L. 

ε–strip definition B: A certain value L is a limit of a sequence when only finitely many 
points on the graph of the sequence are NOT covered by any ε–
strip as long as the ε–strip covers L. 

(5) Compare ε–strip definitions with your own understanding of limits of sequences.  

Results 
It was found that the ε–strip activity played important roles of an effective learning 

environment for students to build up their reversibility, which is compatible with the ε–N 
definition of limits of sequences. First of all, throughout the ε–strip activity, students could not 
only verbalize such confusion but also gradually modify their conception of limits of sequences. 
Indeed, various types of sequences used in this study, some of which might be unfamiliar to 
students, caused their cognitive dissonance, especially when students found that the result from 
their own conception of limits was different from that of the ε–strip definitions. While students 
proceeded with the ε–strip activity, they could clearly recognize circumstance of such cognitive 
dissonance.  

Furthermore, the ε–strip activity provided a tool for students to bear in mind appropriate 
pictorial images to the definition of limits of sequences. Actually, before carrying out the ε–strip 
activity, students experienced difficulty in explaining why and how a given sequence was 
convergent. In view of this difficulty, the ε–strip activity was effective for internalization of the 
concept of limit by transferring it from one mode of representation to another. In particular, by 
conceptualizing the reverse relation between ε and N in the iconic mode of the ε–strip activity, 
students could more easily grasp the reverse relation between ε and N in the symbolic mode of 
the ε–N definition, which is the final mode of representation suggested by Bruner for 
internalization of mathematical concepts (Bruner, 1960).  

It should also be noted that there was improvement in students’ reversibility through the ε–
strip activities even though there was no procedure for indicating students’ errors, correcting 
their misconceptions about limit, or confirming the propriety of the ε–strip definitions during the 
activities. In this point of view, the ε–strip activity can be regarded as an effective instructional 
method in teaching the limit of a sequence.  
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The use of student writing activities as a part of mathematical learning has been the focus of 
much research. Although there are some studies indicating that writing in mathematics has a 
positive effect on understanding (Countryman, 1992), there are also studies showed that journal 
writing has no effect on learning mathematics (Croxton and Berger, 2003). 

Individual differences have been seen to play an important role in students’ successes and 
failures. Because of that, before implementing a new technique or activity, it would be better to 
find out the learning styles, which are the individual’s characteristic way of processing 
information, feeling and behaving in learning situations, of students (Andrew, Green, Holley and 
Pheiffer, 2002).    

The main purpose of this study was to answer the following research questions:  
Is there a significant difference in the performance scores of students on integral that can be 

attributed to: (i) treatment, (ii) learning style, and (iii) interaction of treatment and learning style? 
What are the students’ opinions about the journal writing activities, grading and feedback on 
them? 

The study was carried out with 87 first year engineering students in a private university from 
three classes. Two groups were assigned as experimental groups (EG1 and EG2) and one group 
was assigned as the control group (CG). Students in all groups received the same instruction on 
integral. Experimental groups (EG1 and EG2) also engaged in journal writing activities besides 
lectures. Fourteen journal writings were developed to allow students to communicate their 
knowledge about mathematics, their thoughts and feelings about the components of the 
mathematics classroom and their difficulties related with integral.  

Two open-ended achievement tests on integral were developed to be used as pre-test and 
post-test. In addition to thosetests, Kolb’s Learning Style Inventory was also administered as pre-
test. Follow-up interviews were conducted with ten students from EG1 and EG2 in order to 
investigate the students’ opinions about journal writing activities, grading journal writings and 
giving feedback. Additionally, classrooms were observed during the treatment.  

Although the results of the ANCOVA suggest that neither the groups’ achievement nor the 
achievement of the students having different learning styles in each group differ significantly on 
integral, there was slightly better improvement in experimental groups according to descriptive 
statistics. Moreover, the results of the interviews showed that students found journal writing 
activities as an effective teaching method and wanted to be engaged in the activity for the future.  
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When students approach a mathematics problem, in any context, they rely on their past 
experiences and intuitions in order to build meaning of the problem situation that might help 
them solve the problem. These past experiences and intuitions could form what we call a context 
for the problem. Langer (1989, p. 37) describes a context as, “a mindset, a premature cognitive 
commitment.” Thus, a mindset might provide affordances or set up obstacles for thinking about a 
particular problem. Freudenthal (1991) draws the distinction between what he identifies as rich 
and poor (abstract) mathematical structures. He also discusses (1973) how it is that students 
come to understand abstract mathematics. He describes this as “[doing] away with the brackets 
protecting pure mathematics” (p. 153). Speiser and Walter (2006) suggest that “the construction 
of one or more presentations of the problem situation, [lead to] solutions … through reasoning 
based on the way the given presentations have been structured.” 

The purpose of this project is to analyze the decisions, choices, and reasoning made by a 
group of students in both a rich context and a poor context. In the rich context, the problem is 
stated as follows: 

At a party with five married couples, no person shakes hands with his or her spouse. Of 
the nine people other than the host, no two shake hands with the same number of people. With 
how many people does the hostess shake hands? 

In this context their intuitions, based on significant experiences, allowed them to focus on 
how they might work toward a solution. In the poorer context, given a few months after the rich 
problem, the same problem was given but cast in pure set theoretic terms that included 
cardinalities, cross products, symmetry and reflexivity. In this version of the problem, students 
had minimal experience with the notation used to describe the problem and hence had very little, 
if any, intuition about how to proceed toward a solution. 

The analysis of the student work in these two contexts shows that the students made use of 
various presentations (representations) from which they were able to build and reason from 
structures for, what for them, were two problems. Although the structure of their presentations 
was very similar in both cases, the students’ purposes in building the two structures were very 
different. In the first context (rich), the conditions of the problem and the question to be 
answered were seen as clear. Therefore, their work was mainly focused on developing structures 
that might lead directly to a solution to the problem. For example, when they built structures for 
presenting the conditions of the problem, they attended to what handshakes might be possible. In 
contrast, in the second context their guiding purposes were first and foremost to clarify the 
conditions of the problem. Because they were not familiar with this context, their work mainly 
focused on the need to construct a context in which the conditions of the problem would have 
meaning. For example, they chose to build a structure to present the conditions by focusing on 
what possibilities those conditions eliminated rather than included. 

In the end, however, these students recognized that they were working on two versions of the 
same problem. The analysis shows that even though the structures that they built were essentially 
the same in both contexts, it was not until the students saw how a solution was emerging from 
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the second context that they recognized an identical pattern of thinking to the first context and 
then established a detailed isomorphism between the two versions.   
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As a discursive form, community of inquiry (CI) pedagogy is distinguished from traditional 
practice by its multilogical as opposed to monological style and character. Since everyone in the 
system of CI can exercise control to some degree, and every characteristic of the system--
whether social, psychological, logical, conceptual, linguistic or some other—can influence every 
other, the system undergoes a continual dialectical process of deconstruction and reconstruction 
(Kennedy, 2005).  This identifies it as an open, emergent system, which in turn describes it as a 
system in continual transition, over which no one can exercise anything but what Lushyn and 
Kennedy (2000) call “ambiguous control.” Thus construed, the process of teaching/learning in a 
community of inquiry is implicitly understood as a developmental and a dialectical process often 
marked by uncertainty and lack of clarity, and is associated with the emergence of new forms of 
knowledge—which, in turn, implies a greater-than-usual degree of predictive uncertainty about 
the system and the role of the facilitator in this system.  

The role of a facilitator in such a system is ambiguous, since she has, if necessary, to 
encourage the scaffolding process without providing direct answers or authoritative perspectives, 
—that is, through provocative questioning, reformulation, and the offering of counter-examples 
and counter-perspectives. The facilitator’s role itself may be described as paradoxical, in that she 
is expected to help direct the inquiry by not actually directing it. On a practical level alone the 
role of the facilitator in a community of mathematical community of inquiry is far more complex 
than the traditional teacher’s, requiring as it does sensitivity, flexibility and creativity in the 
organization and planning of content and activities, the courage to take risks and to endure 
suspense in the facilitation and scaffolding of the inquiry.  

Since the ultimate goal of a community of inquiry is in fact increased levels of cognitive, 
behavioural and motivational self-regulation, the facilitator’s long-term objective is the 
distribution of her own function among the members of the inquiring system, a prospect that 
tends to subvert the traditional construction of pedagogical power. Her short term goal is to 
initiate students into the learning task, and to provide the opportunity for the sharing of 
ownership of the activity, on the assumption that ownership is a sine qua non of success or even 
survival of the inquiring system. Between the short and the long term goals is a continual process 
of both incisive intervention and sensitive adaptation. Community of inquiry demands, in brief, a 
form of practice and reflection, which unites theory and practice, philosophy and application, 
argumentation and calculation in the concrete, problem-based context of the classroom.  Given 
both the nature of the discipline and the pedagogical traditions which still dominate it, the 
application of this pedagogical model to mathematics education poses a profound challenge to 
the teacher in her new role as facilitator of a teaching and learning process which is an emergent 
and a group-specific one and thus marked by uniqueness and insecurity. But it also offers the 
promise of the transformation of mathematics teaching and learning from a rigid, transmissional 
model to one which is student-centered, self-regulatory, and inquiry-driven.  
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Introduction 
This project reflects the development and implementation of an innovative course in Linear 

Algebra. Dual parallel courses were developed: a Topics in Linear Algebra course and a 
Learning of Linear Algebra course. The courses were designed to complement one another and 
are particularly aimed at college students preparing to be high school teachers of mathematics. 

Motivation for the Study and Theoretical Framework 
Research at the National Center for Research in Teacher Education found that teachers who 

majored in the subject they taught often were not able to explain fundamental concepts in their 
discipline more clearly than other teachers. (McDiarmid & Wilson, 1991, p.i). Further research 
shows that in addition to knowledge of advanced math, effective teachers need math knowledge 
organized for teaching-deep understanding of the subject; awareness of conceptual barriers to 
learning; and knowledge of the historical, cultural, and scientific roots of math ideas and 
techniques (Ma, 1999). The parallel courses developed in this study aim to bridge this gap 
between the technical “know how” of the mathematics and “know why” need as a foundation for 
the building of pedagogical content knowledge. 

The Learning of Linear Algebra course is a constructivist-based education course which 
employs the Action-Process-Object-Schema (APOS) theory of learning collegiate math. APOS 
theory represents an extension of Piagetian theories on children’s reflective learning to the realm 
of higher level abstract mathematics. Analysing mathematics from the APOS standpoint allows 
for the development of ways of thinking about how abstract mathematics can be assimilated and 
learned and, therefore, provides a powerful tool for the students in the course to think about what 
it means to learn, and how that knowledge can inform teaching approaches and strategies. The 
Topics in Linear Algebra course is designed to highlight connections between collegiate linear 
algebra and secondary math from an advanced standpoint. 

Design of the Study, Methods, and Results 
The primary data for the study consists of the course materials and syllabi developed before 

and during the first semester of teaching the parallel courses. Supplemental data includes student 
work from the courses such as concept maps of key ideas such as vector constructed ay various 
stages and reflective papers written by the students about their growing understanding of how 
people learn. 

The initial findings of the project are that students benefit from the linking of learning theory 
with their own learning of algebra. They also show an increased sophistication in their ability to 
link concepts together and their ability to articulate their own experiences of learning. 

_____________________________ 
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In this paper we present different approaches and outcomes of two grade 4 students who were 
participants in an intervention study for the development of an understanding of functions 
through patterns.  We contrast one student who used multiple representations (visual, narrative, 
graphic and numeric) to another who relied exclusively on numeric tables in order to reveal the 
affordances and limitations of these approaches. 

Theoretical Framework and Research Project 
Patterning problems are presented in a variety of contexts - geometric, tabular, and narrative 

with the idea that students will gain an understanding of covariational functional relationships 
(Schliemann et al, 2001; Warren, 2000).  However, in practice, most instruction prioritizes the 
numeric aspect of patterning (Noss et al., 1996; 1997), which Bednarz, Kieran and Lee (1996) 
note reduces these lessons to data-driven, pattern-spotting activities in which tables of numeric 
data are constructed and a closed form formula is extracted and checked with only one or two 
examples. The context and meaning of the variables thus become obscured, which severely 
limits students’ ability to conceptualize the functional relationship between variables, explain 
and justify the rules that they find (Stacey, 1989), and use the rules in a meaningful way for 
problem solving. This is a missed opportunity for learning as a number of researchers note that 
when visual representations are prioritized and students are able to make connections between 
visual and numeric patterns, they are also more able to find, express and justify functional rules 
(Healy & Hoyles, 1999).  

For the last three years we have been working on a research project with elementary students 
(e.g. Moss et al., 2005) to address the issues  noted in the literature regarding students work with 
patterns.  Based on our theoretical views we have been implementing and assessing experimental 
interventions in which we provide opportunities for students to integrate their understanding of 
numeric and visual growing patterns in the context of generalizing problems. (Moss 2005; 1996; 
Healy & Hoyles, 1999; Moss & Case, 1999). 

Research Design 
 The design of our overall study is modeled on principles of design research (Lesh, 2002) in 

that the results of each iteration inform future studies. The data sources and general research 
methods are similar across all studies: Pretests and posttests are conducted, classroom lessons are 
videotaped and transcribed and artifacts are collected. Finally, detailed interviews are conducted 
at 3 time periods with six students of high-, medium- and low mathematics achievement. Thus, 
we are able to capture not only overall changes in student learning, but also to look closely at 
students’ strategies and to track the development of individual students learning.   

The impetus for the present study came from trends that were revealed in students’ strategies 
based on written tests and also on interviews. Specifically, we noticed that there were students in 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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our studies whose primary approach to problem solving was to reason using numeric strategies 
regardless of the kind of challenges they were attempting. This numeric orientation was in 
contrast to that of other students in our experimental classrooms who used the multiple 
representations that were offered as a context to understand and find rules for generalizing 
problems.  Our instructional approach was specifically designed to focus on connections among 
multiple representations, with an emphasis on visual representations, in contrast to a more 
numeric approach, which typifies traditional instruction (Kalchman & Fuson, 2001). Thus we 
wanted to learn more about the differences in these types of problem solvers.  

Methods 

Participant  
The data for this study come from our Year 2 study of Grade 4 students, and the follow-up 

Year 3 study of Grade 5 students. The former study conducted over 3 month period in 2005 
involved 51 Grade 4 students from 3 classrooms; 2 classrooms in an inner-city public school and 
a third from a university lab school. The Year 3 study in 2006 involved 57 Grade 5 students from 
4 intact classrooms. Of note is the fact that 31 of our 51 participants in Year 2 took part in the 
Grade 5 study in Year 3.  

Instruction 
The instructional sequence in all classrooms began with “Guess My Rule” activities  (e.g. 

Willouby, 1997; Carraher and Earnest, 2003) used to introduce students to rule finding for 
composite linear functions. The next set of activities involved students in building geometric 
growing patterns using position cards and pattern blocks.  Incorporating the position cards served 
to help students understand the functional relationship between one data set or independent 
variable (i.e. the position number represented by number cards) and another data set or 
dependent variable (i.e. the number of blocks used in that position). In these lessons students 
were asked to think beyond “what comes next” to “what is the [functional] rule for this pattern”. 
The final component of the lesson sequence involved students in working on a series of word 
problems, designed to allow students an opportunity to further contextualize their understanding 
of the two components of a composite function (coefficient and constant). The Grade 5 
curriculum also incorporated a graphing component. Students built composite geometric patterns 
and graphed them in order to gain an understanding of slope (coefficient) and intercept 
(constant). Activities included creating graphs from patterns, building patterns from graphs, and 
interpreting graphs in “real world” contexts through story problems.  

Data collection and analyses 
The data collection and analyses relevant to the present study included a pre and posttest as 

well as a retention test given 7 months after the posttest.  Six students from each class 
representing different levels of mathematical achievement participated in videotaped interviews 
that we transcribed and coded. All data were analyzed as a function of students’ demonstrated 
level of mathematical achievement (based on teacher’s ratings of level of exhibited math 
achievement and report card marks in math). In addition students were assigned to one of two 
groups that characterized their approach to problem solving: Context, those that used the 
representational context as the site for problem solving, and Numeric, students who consistently 
created an ordered table of values, identified differences in the dependent variable data set, then 
used that to determine the composite linear function.   
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Results 
Statistical analyses of pre/post test score means of the experimental group as a whole 

revealed that students made significant gains. When repeated measure ANOVAs were conducted 
it was revealed that when the students were divided in three math achievement levels, H=14, 
M=24, L=18, that there was no interaction of group by time, indicating that the intervention had 
been successful for students in each of the ability levels. As noted above we were also interested 
in performance of students identified as Numeric or Context. When we analyzed gains from pre 
to post as a function of orientation we discovered that, while there was a slight difference in 
favor of the context group at both pre and post, these were not significant.  It was only when we 
conducted an additional analysis (including a retention test) with the 31 students who were still 
available to be part of the research in grade 5 that significant differences appeared. Of these 31 
students, 16 were designated as Context and 15 Numeric. While a multivariate repeated measures 
ANOVA with three time intervals as repeated factor, (Time 1 Pretest, and 2 and 3 as Posttest and 

Retention test respectively) confirmed that there was no effect 
of problem orientation between pre and posttest, this new 
analysis revealed a strong main effect of context in favour of 
the Context group when the retention scores were added. 
Figure 1 shows this interaction. It must be emphasized that 
there were similar proportions of high medium and low 
achieving students in both the Context and Numeric groups.  

To understand more about these two orientations to 
problem solving we conducted extensive qualitative analyses 
to define differentiating profiles of students in each of these 

two groups.  In this paper we elaborate on the different approaches of students in our research 
program—students who developed the ability to move between visual, narrative, numeric and 
graphic representations and those who relied almost exclusively on generating numeric function 
tables—by presenting 2 case studies of students, one from each group.  

The Case study of SH and MK 
SH (Numeric) and MK (Context), were students in the same Grade 4 classroom of an inner-

city public school. We selected these students for our study as both were rated as high in 
mathematical ability by their teacher, were competent and keen math students, and took part in 
Years 2 and 3 of our study.  Furthermore, quantitative analyses at the end of the Grade 4 study 
indicated that both students showed equivalent gain scores on a pre/post test of functional 
understanding. However, when they were tested 7 months later, there was a significant difference 
in their retention scores - MK scored 100%  correct and SH scored 69%. While the results of the 
posttest indicated that both students had developed the ability to determine functional rules of 
problems presented in visual, narrative and numeric contexts, the retention test results indicated 
that this understanding was less robust for SH, who was unable to answer a number of questions 
even though the problems on the retention test were similar to the types of problems she had 
encountered during the previous year’s intervention. 

SH and the Moonbat Problem Grade 4 lesson 7 
As part of the lesson sequence of our study, students were presented with function problems 

embedded in narrative contexts, which they enjoyed and found appealing.  In one problem, the 
“Moonbat Problem”, students were asked to consider the functional relationship between the age 
and height of fictional moonbats.  In this problem, the students were given an unordered series of 
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ages and heights and challenged to discover the underlying functional rule height=age x6+2. SH 
solved the problem using a “guess and check” strategy. “I think the rule is times six plus two, 
and I made a t-table to figure out to the moonbat at age 100. So the moonbat would be 602cm.”  
While this procedure allowed her to find and apply the rule, when asked two extension questions, 
“How tall is a moonbat when it is first born?”  and,  “How many cm does a moonbat grow each 
year?”, her incorrect answers revealed a limited understanding.  “The moonbat is times six plus 
two when it is born.  The moonbat grows times six plus two every year.”  While SH was able to 
use the operations of the rule to calculate independent variable values, she did not understand the 
components of what the relationship meant in terms of the two data sets given. This numeric 
focus is further revealed in the next example that we present that was part of an interview that 
she participated in towards the end of the Grade 4 experimental lessons. 

Hexagon flowers interview  
 As mentioned, six targeted students were selected to participate in a series of interviews 

during the course of the intervention.  Below we present excerpts from an 
interview that one of the authors conducted. As will be seen in the 
verbatim protocol that follows SH has refined her method of finding a rule but still appeared to 
have a limited understanding of functions. The interview began with the researcher presenting a 
card with this picture. 
SH:  I’m gonna make a t-table. It’s easier. [SH constructed an ordered t-table with input 

 numbers from 1 to 4]. I know the rule.  It’s times four plus  two. 
I:   How do you know?  
SH:  I counted them – so for 1 (flower) there’s 6 (hexagons), and for 2 there’s 10, for 3 there’s 

14, for 4 there’s 18, and if you count the differences [pointing to the output column], 
they’re all 4. So, the rule has something to do with the number 4. And if you do 1 times 4 
it’s 4, but then you have to add 2, so it’s times four plus two. 

I:   Good job.  What part of the pattern shows the “plus two” ? 
SH:   [pointing to successive pairs of hexagons] “There’s two, and then two and then two. 

 There’s three sets of two, so six altogether.  Six or eight, depends if there’s another one 
 here.”   
For SH the constant was not constant, but increased in number for each successive visual 

representation. Thus we can see that in these first two examples SH has found a useful procedure 
to find rules, however we can also see that she has difficulty contextualizing her conjectures of 
rules in terms of the representation in which it is embedded, whether narrative or visual, and has 
a limited understanding of the nature of composite linear functional relationships.   

In the example that follows, from a retention test administered 7 months after the 
intervention was completed, we can see that the procedures that she relied on were forgotten.    

Tables and chairs: Grade 5 pretest (retention test item)  
One of the problems that we included on the retention test, the “tables and chairs problem” is 

well known in the literature on generalizing problems.  Students are presented with the first three 
positions of a pattern and asked to find a functional rule that will allow them to predict the 
number of chairs that will fit around any number of tables.                  

Although SH had done many problems of this kind during the Grade 4 intervention, and 
indeed could solve a more difficult variation of this problem 7 months earlier on the posttest of 
the Grade 4 intervention, the difficulty she had in attempting this problem in the retention test 
revealed how tenuous her initial understanding had been. First she attempted to use her 
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procedure of generating an ordered table of values to determine the recursive relationship of the 
chairs (“plus 2 each time”), but rather than finding the constant through a second differencing 
strategy, which she had typically done in Grade 4, she instead looked for a numeric pattern and 
expressed this relationship as “input number plus next input number plus 1.”  When she 
attempted to answer the question of why this rule worked, SH was unable to relate her rule to the 
problem. For the extension questions, SH was unable to use her rule to predict how many chairs 
could fit around 100 tables. And, when asked to use her rule to figure out the number of tables 
for a given number of chairs, she was unable to understand the underlying reversal of thinking 
necessary to derive the independent variable from a given dependent variable.  

MK a visual contextual reasoner: 
SH’s numeric approach will be familiar to teachers or researchers who have worked with 

students on these kinds of generalizing activities.  The students whose orientation was more 
contextual approached these problems differently, as exemplified by the reasoning of MK.  In 
our view, as MK participated in the experimental lessons he appeared to develop a more robust 
understanding of functions, which was manifest in his fluent use of different representations both 
for problem solving and as the basis for explanations and justifications for his answers.  For 
instance, on MK’s retention test he not only provided an algebraic rule for the tables and chairs 
problem, but also illustrated the rule by drawing a diagram of the tables and chairs, and labeling 
the top and bottom chairs as the “multiplicative part” (the coefficient) of the composite rule (x2), 
and the end chairs as the constant (+2).  Furthermore, MK articulated a generalized 
understanding that he would be able to find the number of chairs needed for any number of 
tables. He was also able to reverse the operations of the rule in order to calculate the number of 
tables, (independent variable) when given the number of chairs (dependent variable). Certainly 
this kind of thinking was in direct contrast to the limited grasp of the problem demonstrated by 
SH.   

MK’s problem solving for the narrative moonbat problem (for which students were asked to 
find the functional relationship between the age and height of moonbats) also revealed this more 
robust understanding of functions. Like SH,  MK  was able to find the correct rule (y = 6x+2).  
However, MK was also able to explain the rule in relation to the problem, something that 
students with a purely numeric approach, such as SH, were unable to do.  As he explained. “A 
moonbat is 2cm tall when it’s born and grows 6 cm every year.” His explanation clearly showed 
an understanding of the components of a composite function in a narrative context. 

The flower problem and structural similarities 
While the two examples above indicate MK’s ability to understand functional rules in 

different contexts (narrative/visual and narrative) the next example of his reasoning demonstrates 
his ability to discern functions in a purely visual context.  

“It’s times four plus two. Here it goes like a C, so there was a C and a C 
and a C and a C [MH used his finger to point out the C shapes left to right] 
and then these two remaining – and then it worked going this way [MH used 

his finger to show the C shapes going from right to left], and I knew there were four blocks in 
each C so it was times four, and there were four Cs so it was the fourth position.” MK was able 
to articulate his multiple ways of seeing the pattern, and connected this to his understanding of 
position number to generate a rule which he explained using the visual configuration of the 
pattern.  Impressively MK was also able to relate his reasoning to similarly structured patterns he 
had worked on. “It’s like the Toothpick Problem when you start with one toothpick on the end 
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and keep adding a box made of three toothpicks, so times 3 plus 1.”  These kinds of connections 
were also typical of many of the other students in this project.   

Graphing:  Moving to Grade 5 
For a final example of the differences in the two approaches to problem solving we present 

data captured when the students were interviewed at the end of the Grade 5 intervention.  Graphs 
were introduced in the Grade 5 experimental curriculum  as a new representation of functions 
with the anticipation that this visual representation would bring out different kinds of reasoning 
in the students.  However, as will be seen in the following excerpts from the interviews, while 
MK was able to look at graphs as another representation of a function, SH viewed them as a 
record of input and output numbers.  

  In the interviews students were presented with a graph showing the function y=6x+2. 
Within seconds of seeing the graph MK asserted that it was “times 6 plus 2”. “You find out the 
constant by looking at the zeroth position [y axis] so that’s how I found out that the constant was 
2.  So then I …found out the difference which is 6, so yeah, and it grows by 6 each time so that’s 
the multiplicative [coefficient] so its times 6 plus 2.”  MK was then easily able to think of a 
function that would create a parallel slope on the graph.  “Times 6 plus 4 because in order to get 
a parallel line you need to have a different constant but you need to have the same multiplicative 
to get a parallel line. I mean all you do is start at a different point and then it just goes up by the 
same….by 6.” His use of the terms “start out” and “goes up by” indicates that MK saw the graph 
not just as a series of static points, but as a representation of linear growth. This was also 
apparent in his explanation when he was asked to find a function that would produce a slope that 
intersects with the one given: “Wait, let me try times 2 plus 8. Because, in order to have an 
intersecting line you need to have a different multiplicative and different constant. Because it 
starts at a different point and it goes up by a different amount. So it crosses here.”  

When SH was asked to find the function the graph was showing, she did so by constructing 
an ordered table of values. While this strategy enabled her to find the function, she could not 
answer any of the extension questions. When trying to think of a function that would produce a 
parallel slope, it was apparent that for her the graph was a collection of static points, not a 
representation of linear growth.  Her strategy was to try out combinations of ordered pairs that 
would yield a series of points that were parallel to those given. She understandably gave up in 
frustration. When asked how graphs related to patterns, it was clear that SH saw a graph not as a 
way of representing a generalized rule of linear growth as MK did, but rather saw it as an 
organization of specific points similar to (but less convenient than) a table of values. “On a t-
table it’s easier to count the numbers [going to the t-chart she created and pointing quickly across 
from input to output column with her pencil] like 0, 2 and 1 and 8.  Here [touching the graph] 
you have to go like this [pointing to the last value, 10,on the x axis]. If it’s 10 you have to go all 
the way up [tracing up from the 10 on the x axis] and you have to go like this [tracing over 
towards the 62 on the y axis] and you might lose your place and you have to go like that and then 
it’s like “oh it’s 62” [reaching the value on the y axis].  That takes such a long time. And here 
[on the t-chart] you can just say 10 [writing in the input column] equals 62 [writing in the output 
column]. That’s a lot easier!”  

Discussion 
While this paper deals primarily with the reasoning of two students, our goal is to contribute 

to a growing literature that looks at the potential of multiple representations in function learning. 
For instance, in their study of children’s abilities to solve generalizing problems, Steele and 
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Johanning (2004) found that students who based their reasoning on the physical structure—the 
diagrams they drew—rather than only reasoning about numeric patterns were better able to 
interpret the relationship between quantities in the problem and represent their thinking with 
symbolic algebraic generalizations. Swafford and Langrall (2000) emphasize the importance of 
investigating the most effective use of tables and other representations in supporting 
generalizations. In this study, our findings suggest that it is crucial that students in Grades 4 and 
5 be given opportunities to develop an understanding of functions in multiple representations. 
Children in our study who understood functions in multiple contexts went beyond pattern 
spotting to an understanding that the rules they found were generalizations of the specific cases 
given, as was evidenced in their explanations. Furthermore, their explanations also revealed an 
understanding of how the components of the function related to the functional relationships of 
the variables given in the problems. An implication of understanding functions through multiple 
representations concerns the distinction between students perceiving rules as mathematical 
objects rather than simply as actions (Kieran 1979). Students who were able to use the given 
context of a problem to find the rule were then able to describe the underlying structure of the 
given pattern. For these students, the rule e.g. “x6+2” became an object which could then be 
reflected upon in the multiple contexts in which the children worked, and could be used as a 
basis for generalizations. In contrast, students who used tables of values interpreted the rule as an 
action (multiply by six and add two) to be performed on specific numbers in input columns to 
generate numbers in output columns. In our future iterations of our research we will continue to 
explore multi representational approached to problem solving.  
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This study reports on findings we obtained from pre- and post-interviews of twelve 6th grade 
students. We address the following questions: What abilities do they have that influence the 
manner in which they express and justify generalizations in algebra? How, and to what extent, 
are they capable of extending finite samples of objects in a larger and general context? How do 
they justify their generalizations? How far are they capable in developing multiple 
representations of the same pattern and ways to assess them for equivalence? What methods do 
they employ in situations that involve reverse operations? 

Background, Purpose, and Research Questions 
From 2000 to 2005, close to 70,000 students in the US Bay area participated in open-ended 

assessment that involved generalizing linear patterns. Five years of data collection and analysis 
of 8th grade students’ work have shown that while 72% of those tested could successfully deal 
with particular cases of linear patterns in visual and tabular form, less than 18% of them could 
use algebra to express correct relationships or to generalize to an explicit, closed formula (Rivera 
& Becker, 2005). This result is particularly troubling for us because too many 8th grade students 
complete a middle school mathematics curriculum unable to fully accomplish such a basic task 
in algebra. That is to say, while students on the surface appear to be computationally proficient 
on near and far generalization tasks, a closer inspection shows an inability to perform 
generalization correctly and completely by the gauge of conventional mathematical practices.   

Further, there is little evidence-based knowledge in the current research literature base in the 
USA concerning how middle school children develop their ability to generalize, including 
reliable mathematical knowledge for teaching generalization that can assist them to succeed in 
related tasks. As the RAND Mathematics Study Panel (2003) astutely points out, “because most 
studies have focused on algebra at the high school level, we know little about younger students’ 
learning of algebraic ideas and skills” (p. 48). Being able to successfully generalize is the hard 
kernel of algebraic reasoning. It is a powerful algebraic “procept” – that is, it can be viewed as 
both a process and a concept – and suffice it to say is absolutely essential in mathematical 
modeling, is a desideratum in problem solving, and is an indispensable tool in representing 
quantitative relationships symbolically.  

Thus, in this research report, we take to task the following basic research question: What 
abilities do 6th grade students have that influence the manner in which they express and justify 
generalizations in algebra? In particular, we are interested in the following aspects of algebraic 
generalization that we consider to be appropriate to ask at the middle-grades level: How, and to 
what extent, are 6th grade students capable of extending a particular finite sample of objects in a 
larger and general context by way of deriving, inducing, or inferring principles, identifying 
common features, and expanding domains of validity over large classes of cases? How do they 
justify their generalizations? Further, how far are they capable in developing multiple 
representations of the same pattern, including ways to assess them for equivalence? What 
methods do they employ in situations that involve reverse operations?  

_____________________________ 
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Conceptual Framework 
An Operational Theory of Knowledge With Respect to Generalization. Fundamental to our 

framework for understanding students' abilities to perform generalization in algebra is a theory of 
knowledge that we have drawn from earlier qualitative studies we conducted with different 
groups of individuals. In all these investigations, we demonstrated how individuals tend to 
exhibit two different modes for expressing generality, namely: figural and numerical. To 
summarize, we have argued elsewhere that: 

Those students who are predominantly numerical usually employ trial-and-error and finite 
differences as strategies for developing closed forms or partially correct recurrence relations with 
hardly any sense of what the coefficient and the constant in the linear pattern represent. They see 
variables as mere placeholders and as generators for linear sequences of numbers. Those who are 
predominantly figural employ visual strategies in which the focus is on identifying invariant 
relationships from among the figural cues given. For them, variables move beyond their 
placeholder function as they are interpreted within the context of a functional relationship. 
(Rivera & Becker, 2005, p. 202, italics added)  

A Compatible Theory of Instruction. Considering the above evidence, we then sought out a 
compatible instructional theory that would allow us to develop classroom  teaching experiments 
in which our participating students could express generality in their own terms. Based on an 
informal analysis of the different current reform-based middle school mathematics curricula, we 
decided to use the three introductory algebra units from the Mathematics in Context (MiC) 
curriculum, namely: Operations, Expressions and Formulas, and Building Formulas. The 
instructional theory behind the MiC curriculum is Realistic Mathematics Education (RME), and 
RME foregrounds the Freudenthal standpoint that a truly authentic account of the manner in 
which children learn generalization begins by assisting them to obtain a model of their own 
informal activity that would later evolve as their model for more formal processes. RME focuses 
on how learners' models of their informal mathematical processes could be maximized so as to 
enable the shift to more formal processes. Further, general mathematical knowledge evolves 
from a series of horizontal and vertical mathematization activities, and that the starting point of 
mathematical activity is usually drawn from interesting real life situations or mathematical 
problems that are experientially real to students. In a MiC unit, students first explore activities 
that target horizontal mathematization such as schematizing, discovering relations and patterns in 
order to build an informal mathematical model. Then, they engage in activities that focus on 
vertical mathematization such as generalizing.   

Method (Participants, Design, and Procedure) 
We worked with 29 sixth-grade students (12 boys, 17 girls, mean age of 11) in an urban 

school in Northern California. The students in the class were predominantly Asians (81%), while 
the remaining students were Hispanics, Caucasians, and African American. At the beginning of 
the Fall 2005 semester, all 29 students were pre-interviewed on five algebra tasks that involve 
patterns (see Figure 1 for a sample task). Initial results of the pre-interview, including a 
departmental pretest that the school implements at the beginning of each year to all students by 
grade level, became the basis for redesigning topics in the algebra MiC units. We then identified 
twelve students at differing levels of ability in generalizing whose work we investigated in some 
detail. Classroom activities included whole group discussions and group work. The second 
author met with the classroom teacher once each week, and together they developed anticipatory 
thought experiments that involved envisioning how mathematical activity and classroom 
communication and interaction might evolve from a target activity in the MiC unit. Two 
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consecutive sequences of classroom teaching experiments were implemented over the course of 
Fall 2005; each sequence lasted about six weeks and targeted an MiC unit. The class met once 
daily for five days per week, and each session was 55 minutes long. Every teaching experiment 
would 

Consider the sequence of figures below. 

 

 

 

 Figure 1  Figure 2  Figure 3  Figure 4 

A.  How many circles would figure number 10 have in total? Explain. 

B.  How many circles would figure number 100 have in total?  Explain. 

C.  You are now going to write a message to an imaginary Grade 6 student clearly explaining what 
s/he must do in order to find out how many circles there are in any given figure of the sequence. 
Message: 

D.  Find a formula to calculate the number of circles in the figure number “n.” 

Figure 1. The Circles Problem (Radford, 2003) 

begin with the teacher involving her class in a story problem from the appropriate MiC unit 
that the class needed to think about and to solve. Group work oftentimes followed a whole-group 
discussion as students would usually work on additional problems. When this took place, a 
whole group session was then conducted for closure and to enable the construction of shared 
strategies among groups. By the closing of the Fall 2005 semester, 11 out of the 12 students we 
have chosen to study in detail participated in a post-interview of five algebra tasks analogous to 
the ones given in the pre-interview (see Figure 2). Note that all classroom episodes, including the 
pre-interviews and post-interviews, have been videotaped. All students’ written work have been 
collected as well.      

Results 
The results that are reported below have been obtained from the pre- and post-interview data 

of the twelve students whose work were closely monitored over the course of three months. Note 
that the tasks in the pre- and the post-interviews were stated in decontextualized form, that is, 
they looked different from problems that the students have been exposed to in the MiC units. The 
tasks have been purposefully designed in that manner because we were primarily interested in 
documenting the students' ability to perform generalization at the level of vertical 
mathematization. Note that a separate report addresses how the instructional theory of RME 
assisted in the formation of algebraic generalization among the students.   

Preinterview Results 
Seeing Patterns Additively. The most frequent mode of establishing growing patterns for all 

the five problem tasks involves seeing pattern sequences (in figural, numerical, and tabular 
forms) additively. For example, in the task given in Figure 1, the students knew that succeeding 
figures after the first involves "adding 2 each time."   
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Handling Near Generalization Tasks Through Listing and Visualizing. In near generalization 
cases such as item A in Figure 1, the most common method for obtaining an answer involves 
listing, that is, extending the last figure number by 

Consider the sequence of figures below. 

 

 

 

 Figure 1  Figure 2  Figure 3  Figure 4 

A.  How many circles would figure number 10 have in total? Explain. 

B.  How many circles would figure number 100 have in total?  Explain. 

C.  Find a direct formula for the number of circles in figure number “n”. Explain how you obtained 
your answer. If the solution has been obtained numerically, respond to the following question: Is there a 
way to explain your formula from the figures? 

D.  Can you think of another way of finding a direct formula? 

E.  Jack’s direct formula is: C = n + (n - 1), where n means figure number and C means total number 
of circles. Is his formula correct? Why or why not?  

     Which formula is correct: Jack’s formula or the formula you obtained in (A) above? Explain.   

F.  Elizabeth has 29 circles that she is going to use to build one of the figures. What figure 
number is she going to build? Explain.  

Figure 2. Modified Circles Problem 

listing successive cases until the desired figure number has been reached. For example, in 
obtaining the number of circles for figure 10 in Figure 1, James said: "Add 2. So figure 4 has 7, 
figure 5 has 9, figure 6 has 11, figure 7 has 13, figure 8 has 15, figure 9 has 17, and figure 10 has 
19." Another near generalization strategy involves visualizing, that is, seeing a visual 
relationship between figure number and figural cue. For example, Mica thought that figure 8 in 
Figure 1 above should have 8 circles horizontally and 7 circles vertically. Hence, figure 10 
should have 19 circles in all since "there should be 10 circles at the bottom and 9 circles across."    

Handling Far Generalization Tasks Visually and Numerically Through Direct Proportion. Far 
generalization tasks such as item B in Figure 1 were difficult for most students. Those students 
who saw patterns visually at the beginning stage of a problem successfully obtained correct 
answers in comparison with those students who transformed the patterns numerically. For 
example, Mica thought that figure 100 in Figure 1 above should have 199 circles altogether since 
she saw figure 100 as consisting of 100 circles horizontally and 99 circles vertically. For more 
complicated growing patterns, some students found it easier to use a multiplicative relationship 
rather than an additive relationship. For example, in determining figure 30 from the sequence in 
Figure 3 below, Mica saw that each of four arms should have 30 squares. Hence, figure 30 
should have "30 times 4 plus 1 square tile." Those who transformed the patterns numerically 
oftentimes used a direct proportion strategy. For example, Tabitha thought that if Pattern 10 had 
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19 circles, then Pattern 100 should have 190: "Since 10 times 10 equals 100, then 19 times 10 
equals 190." This strategy was most prevalent in the task when a table of values 

 
  
 
 
 
 
 

   Picture 1          Picture 2                 Picture 3                  Picture 4              

Figure 3. Square Tiles Pattern (Sasman, Olivier, & Linchevski, 1999) 

was presented without any accompanying figural cues (see Figure 4). For example, James 
found that Shape number 20 needed 55 toothpicks, and to obtain the number of toothpicks for 
Figure 60, he reasoned as follows: "Since 3 times 20 equals 60, so 55 x 3 equals 155." Another 
strategy involves a difference-to-product method. Dung found the value 48 for figure 20 as 
follows: "20 minus 8 equals 12, so 12 times 4 equals 48." 

Toothpicks are used to build shapes to form a pattern. The table below shows the number of 
toothpicks used to build a particular shape. 

Shape number 
1 3 4 5 6 2

0 
6

0 
n 

Number of toothpicks 
3 1

1 
1

5 
1

9 
2

3 
   

Figure 4. Toothpick Problem 

Inability to Come Up with Direct Formulas: None of the students were capable of stating a 
direct formula for any of the sequences.  

Postinterview Results 
Predisposition Towards Generating Formulas. All eleven students interviewed were 

successful in establishing general formulas for all the sequences involving linear patterns. In 
dealing with near and far generalization tasks, at least two students first obtained formulas as a 
way to compute particular values. In establishing formulas, students employed either a numerical 
method or a figural method. A numerical method involves listing several dependent values 
and/or setting up a table, then checking to see if there is a common difference, and finally 
developing a formula. For example, Tabitha initially set up a vertical table of values for the task 
in Figure 2 using two variables n and C. Then she observed that there was a common difference 
of 2, and finally wrote the equation C = n x 2 - 1. She knew the coefficient 2 pertained to the 
common difference and that the constant -1 was an adjustment value that she needed to add so as 
to make the output values match with the entries under the C column.    

Ability to Justify Generalizations. All the students were capable of justifying their 
generalizations. For example, for James, the formula F = n x 2 - 1 for the task in Figure 2 means 
"doubling a row and minusing one chip." For Tabitha, it sufficed that a formula would fit the 
accompanying table of values.   
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Inability to Generate an Alternative Generalization. None of the students could come up with 
other ways of expressing generality for any problem tasks (see item D, Figure 2).  

Assessing for and Justifying Equivalence. The most common method used in evaluating for 
equivalence of one or several direct formulas involves substituting particular cases and checking 
to see if the computed dependent values matched the original values. For example, in item E of 
Figure 2, James verified Jack's formula in the case when n = 2.   

Dealing with Situations Involving Reverse Operations. Item F of Figure 2 asks students to 
determine an input value from an output value. At least three students extended the table and 
stopped as soon as the output value has been obtained. As an additional step, these students then 
used the corresponding formula to check for correctness. Tabitha, employed a guess-and-check 
strategy: First, she divided 29 by 2 and obtained 14 with a remainder of 1. Then she used Jack's 
formula to test two cases of n (14 and 15) and concluded the answer must be figure 15. Mario's 
strategy involved estimation: "How can I get something when multiplied by 2 is close to 29? I 
know 15 + 15 equals 30. So 15 times 2 minus 1 equals 29." A fourth strategy involves an inverse 
strategy. Dung said: "There is a minus 1 at the end. So 29 + 1 = 30. Then 30 divided by 2 equals 
15." 

Discussion 
Students employed either numerical or figural strategies in establishing generalizations. In 

the preinterviews, at least six students operated figurally and generated more factual than 
contextual generalizations. None of the 12 operated at the symbolic level. In the postinterviews, 
10 of the 11 students operated numerically, and all 11 of them generated correct symbolic 
generalizations. Further, a student who was strictly figural in both pre- and post-interviews 
justified his generalizations visually from the available figural cues and did not see the need to 
use tables. Also, 4 students who were figural in the preinterview but switched to numerical in the 
postinterview justified their symbolic generalizations in the postinterview figurally. Students 
who operated numerically in both pre- and post-interviews could not justify their symbolic 
generalizations beyond substitution and checking. 

Those students who employed figural strategies in the pre-interview favored numerical 
strategies in the post-interview. The allure of numerical strategies has to deal with the fact that 
they appear to be very convenient and systematic. In addition, the additive relationship (for 
example, "adding x each time") was always stated at first in the process of generating a formula. 
However, the students transformed the additive relation to a multiplicative one at the symbolic 
level ("multiplying by x is like adding x lots of times").  

We find it interesting that at least 6 of the 11 students in the postinterview preferred to set up 
a general formula for a problem task before dealing with near and far generalization cases. These 
students said that "it's easier [to do] that way [first]."   Also, variable fluency at the level of 
symbolic generalization is necessary in order to express a general formula completely and 
correctly. All 11 students in the postinterview were successful in expressing their formulas using 
two variables.  

While all 11 students were successful in assessing the equivalence of two or more 
generalizations for the same pattern, they were not successful in generating their own equivalent 
generalizations. Further, it seems that successfully justifying equivalent symbolic generalizations 
for the same formula depends on whether a generalization is constructive or deconstructive. 
Jack's formula (see item F on Figure 2) is an example of a constructive generality that involves 
seeing terms in an algebraic formula as representing the non-overlapping parts in a figural cue. A 
formula that involves deconstructive generality consists of terms that refer to the overlapping 
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parts in a figural cue. For example, in Figure 3, the formula T = (n x 2) + 1 + (n x 2 ) + 1 - 1, 
where T represents total number of squares and n means Picture number, involves seeing two 
odd-numbered diagonals that share a center square. Ten out of 11 students in the postinterview 
could justify equivalent constructive generalities, however, none of them could explain 
equivalent deconstructive generalities.     

Endnotes 
1. This paper is based upon work supported by the National Science Foundation under Grant 

No. REC-0448649 awarded to the second author. 
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CHARACTERIZING STUDENTS’ THINKING: ALGEBRAIC, INEQU ALITIES AND 
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This paper presents the findings of a study that explores the viability of using students’ act of 
anticipating as a means to characterize the way students think while solving problems in 
algebra. Two types of anticipating acts were identified: predicting a result and foreseeing an 
action. These acts were characterized using Harel’s framework, which involves the concepts of 
mental act, way of understanding, and way of thinking. Categories for characterizing acts of 
predicting and foreseeing were identified and developed based on thirteen 11th graders’ 
responses to problems involving algebraic inequalities and equations. The quality of students’ 
acts of predicting and foreseeing was found to be related to the quality of their interpretations of 
inequalities and equations. 

Upon seeing a problem, students commonly rush into action without analyzing the problem 
situation. As teachers, we witness some students’ inappropriate use of procedures, what 
Fischbein and Barash (1993) call improper application of algorithmic models. On the other hand, 
we also witness engagement in exploration and analysis of the problem situation among certain 
students. This research seeks to characterize the differences in the manner students solve 
problems involving algebraic inequalities and equations.  

Theoretical Framework 
This research combines multiple perspectives: Piaget’s (1967/1971) notion of anticipation, 

von Glasersfeld’s (1998) three general kinds of anticipation, Harel’s (2001, in press) notions of 
way of understanding and way of thinking, and Cobb’s (1985) hierarchical levels of anticipation. 
According to Piaget (1967/1971), anticipation is one of the two functions of knowing; the other 
function being conservation-of-information, an instrument of which is a scheme. The 
anticipation function deals with the application of a scheme to a new situation. It allows us to 
have foresights, strategize and plan, make predictions, formulate conjectures, engage in thought 
experiments, etc. Such foresights and predictions are possible because of our ability to assimilate 
situations into our existing scheme(s); “anticipation is nothing other than a transfer or application 
of the scheme … to a new situation before it actually happens” (p. 195). A scheme, as outlined 
by von Glasersfeld (1995), involves three components: the perceived situation, the activity, and 
the expected result. The expected result component provides the anticipatory feature of a 
scheme. This component constitutes the fundamental difference between a Piagetian scheme and 
a condition-action pair in information processing or a stimulus-response association in 
behaviorism. 

Von Glasersfeld (1998) elaborated on Piaget’s notion of anticipation by pointing to three 
general kinds of anticipation: (a) implicit expectations that are present in our actions, e.g., the 
preparation and control of our movements when we grope in the dark; (b) prediction of an 
outcome, e.g., predicting that it will soon rain upon noticing that the sky is being covered by dark 
clouds; and (c) foresight of a desired event and the means for attaining it, e.g., a child’s 
anticipation of the capitulation of his parent if he were to throw a temper tantrum in public. In 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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my attempt to adapt these three kinds of anticipation to the context of solving problems in 
mathematics, I was not able to infer students’ implicit anticipation from their statements and 
actions. I therefore focused on students’ prediction of a result and foresight of an action. 
Predicting is defined as the act of conceiving an expectation for the result of an event without 
actually performing the operations associated with the event. Foreseeing is defined as the act of 
conceiving an expectation that leads to an action, prior to performing the operations associated 
with the action.  

Harel’s (2006, in press) MA-WoU-WoT framework is suitable for analyzing students’ mental 
acts (MA s) of predicting and foreseeing. Predicting and foreseeing are among the many mental 
acts that one might carry out when one solves a mathematics problem. Other mental acts include 
interpreting, symbolizing, transforming, generalizing, justifying, inferring, etc. Way of 
understanding (WoU) refers to the product of a particular mental act and way of thinking (WoT) 
refers to a character of the mental act. For example, in the act of proving WoU refers to the proof 
a student produces and WoT refers to the proof scheme that underlies the student’s act of 
proving. Harel and Sowder (1998) have developed a taxonomy of students’ proof schemes, 
examples of which are authoritative proof scheme (one derives conviction mainly from the 
authority of the teacher or textbook), empirical proof scheme (one derives conviction from 
empirical evidence or visual perceptions), and deductive proof scheme (one derives conviction 
based on the application of rules of logic). Similarly, for the act of predicting (foreseeing), WoU 
refers to the result (action) a student actually predicts (foresees), whereas WoT characterizes the 
manner in which the student predicts (foresees).  

Cobb (1985) identifies three hierarchical levels of anticipation: beliefs, problem-solving 
heuristics, and conceptual structures. At the most specific level, one’s expressed conceptual 
structure (i.e., evoked scheme) dictates one’s anticipation. An expressed conceptual structure can 
be viewed as a WoU associated with the mental act of interpreting. In the domain of algebraic 
inequalities and equations, the dependence of anticipations on conceptual structures suggests a 
relationship between students’ ways of understanding (WsoU) inequalities and equations and 
their ways of thinking (WsoT) associated with the mental act of anticipating.  

The research, part of which this paper reports, has three objectives: (a) to categorize students’ 
WsoT associated with the mental acts of predicting and foreseeing, (b) to identify the relationship 
between these WsoT and their WsoU algebraic inequalities/equations, and (c) to explore the 
potential for advancing students’ WsoT through a short-term instructional intervention. Figure 1 
provides a schematic representation of the framework for analyzing students’ act of problem-
solving in terms of mental acts of predicting, foreseeing, and interpreting. Each dotted curve 
refers to the relationship between students’ WsoT associated with anticipating (predicting or 
foreseeing) and their interpretations of inequalities/equations. 
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Figure 1: A schematic representation of the framework used in this research method 

Fourteen 11th graders were interviewed, each for approximately 60 minutes. Four of these 
interviewees participated in a one-on-one teaching intervention, which was comprised of five 
problem-solving sessions followed by a post-interview. This research was conducted in a 
university-based charter school in Southern California. This school practices detracking: there is 
only one track for all the students; but different students at a particular grade level may be at 
different stages along the track. 4 interviewees were taking Algebra II, 4 were taking Pre-
calculus, and 6 were taking Calculus. This distribution allowed me to observe a greater variety in 
students’ WsoT.  

The purpose of this research was to study 11th graders’ thinking as they solved non-routine 
problems involving Algebra I concepts. Tasks used in the clinical interviews include: (a) Is there 
a value for x that will make (2x – 6)(x – 3) < 0 true? (b) Given that 5a = b + 5, which is larger: a 
or b? And (c) p and q are odd integers between 20 and 50. For these values, is 5p – q > 2p + 15 
always true, sometimes true or never true?  

These tasks differ from typical tasks in textbooks in that they do not direct students to 
perform a specific task such as “solve for x” or “simplify.” This non-directive feature is found to 
be effective at eliciting a greater variety of anticipatory behaviors. All the tasks were phrased in 
the form of a question to allow students to predict the answer, if they chose to, prior to 
performing any actions.  

All the interviews and problem-solving sessions were videotaped and transcribed. One 
interview was discarded because the interviewee was struggling with her arithmetic. Observation 
concepts (Clement, 2000) for students’ WsoT associated with predicting and foreseeing and 
students’ WsoU inequalities/equations were identified. These categories were derived from the 
data using a constant comparative approach (Glaser & Strauss, 1967), in which categories were 
constantly revised by comparing current data with previously analyzed data. The analysis 
involved identifying instances of the mental acts of predicting and foreseeing (inferred from 
student’s actions and statements), generating, comparing, and refining categories for WsoU and 
WsoT, and consolidating and collapsing some of the categories. The consolidated categories 
were revised and refined in light of new information generated in subsequent phases of the 
analysis (e.g., analysis to account for learners’ improvement).  

Results and Discussion  
This paper reports the research findings for the first two objectives. Excerpts of two 

interviewees’ work are presented to illustrate the viability of using students’ acts of 
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predicting/foreseeing as a means to characterize students’ thinking. Categories for ways of 
thinking (WsoT) associated with predicting/foreseeing will be discussed. The same excerpts are 
also used to highlight the relations between WsoT associated with predicting/foreseeing and 
ways of understanding (WsoU) inequalities/equations. 

Contrasting Two Students’ Work 
Consider two interviewees’ response to this item: “Is there a value for x that will make the 

following statement true? (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6”. Both interviewees, Talia and 
Pham, were 11th graders enrolled in Calculus.  

Excerpt 1: Talia’s initial response 
Talia: Is there a value for x that will make the following statement true? Of course there 

is. Let see, umm. 
Lim: Why did you say “of course, there is”? 
Talia: Because, well, I figure there should be an answer to this problem, and, um, let’s 

see, I was taught to combine like terms. I was taught this (>) is actually an equal 
sign. 

Lim: OK. 
Talia: To solve it like I would solve an equation. … (She obtained -9x + 6 = -9x and 

then wrote 6 > 0.) Umm, that doesn’t [seem] right, because x has canceled out. 
What did I do wrong? … OK. Is there a value for x that will make the following 
statement true? Maybe there isn’t. 

Excerpt 2: Pham’s initial response 
Pham:  OK. Let’s see. The stuffs in the parentheses are the same. Umm, OK, first I guess 

I would combine all like terms. … (He got -9x + 4 > -9x – 2). Umm, now it’s 
asking is there a value for x that will make the following statement true. Umm, let 
me see, I think 4 and -2, so you have a common term (i.e. -9x). OK, so it’s, you 
have a -9, so anything [positive] that you multiply will [make it] a negative 
number, and this (+4) is positive. Let’s see, yes, there is a value because… this, 
this [left] side will be greater. I guess, if it (-9x) was positive then, so is this side 
(-9x). So any negative number would make the statement true. … Umm, I think 
all numbers would make the statement true. 

One difference between these two responses is that Pham arrived at the correct answer but 
Talia did not. Another difference is that Talia’s WoU inequalities is weaker than Pham’s. Talia 
interpreted the inequality as a signal to isolate x and treated it as an “equation,” whereas Pham 
treated the inequality as a comparison of two algebraic expressions. A third difference is the 
manner in which they approach the problem. How can we characterize the thinking that underlies 
the actions they took to solve this problem? 

Categories for Ways of Thinking Associated with Predicting/Foreseeing  
Both Talia and Pham combined like terms. From a Piagetian perspective, action presupposes 

anticipation. So we can assume that Talia and Pham had anticipated the expediency of 
combining like terms. Since a WoU associated with foreseeing refers to the action one actually 
anticipates, both Talia and Pham are said to have the same WoU: combining like terms. Both of 
them were spontaneous in their foresight of combining like terms. However, the spontaneity in 
Talia’s anticipation was characteristically different from that in Pham’s. Upon seeing the 
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problem, Talia immediately thought of what she could do to the inequality, rather than thinking 
about what the question was asking. Her act of anticipating had an element of impulsiveness, 
impulsive in the sense that she had routinized a particular WoU (i.e., combining like terms is a 
routine for her to solve certain inequalities/equations). I categorized her WoT associated with 
foreseeing as impulsive anticipation. This WoT is generally inferred when a student immediately 
applies a procedure without considering its appropriateness.  

Pham, on the other hand, noticed that “the stuffs in the parentheses are the same” and 
combined like terms with the probable intent of obtaining a simpler form. He might have 
predicted in his mind that the left side was always larger than the right side and was confirming 
his prediction. He seemed to have interiorized the usefulness of combining like terms and was 
capitalizing on his understanding that it would be easier to reason with simpler expressions. Thus 
his WoT was coded as interiorized anticipation. By “interiorized”, I mean one has not only 
internalized (i.e. gained the ability to autonomously and spontaneously apply one’s WoU to 
another similar situation) a particular WoU but has also reorganized and abstracted the WoU to a 
higher level of understanding. 

With respect to the mental act of predicting, Talia predicted “of course there is” upon seeing 
the problem. She seemed to have associated her having a procedure for isolating x with the 
inequality having a solution. Because of this, I categorized her WoT characterizing her 
prediction as associated-based prediction. This WoT is inferred when a student predicts by 
merely associating two ideas without establishing the basis for making such an association. 
Talia’s prediction of “maybe there isn’t” upon observing the disappearance of x from the 
inequality is also considered association-based because she associated the disappearance of x 
with the nonexistence of a value for x that would make the inequality true. 

Pham, on the other hand, did not explicitly make a prediction. Instead, he reasoned with 9x + 
4 > 9x – 2. His WoT associated with foreseeing is considered analytic anticipation because he 
identified the goal of determining whether there is a value of x that will make the new inequality 
true, and foresaw the usefulness of reasoning with the common term -9x.  

So far, I have introduced four WsoT associated with foreseeing/predicting: impulsive 
anticipation, interiorized anticipation, analytic anticipation, and association-based prediction. A 
total of five WsoT associated with foreseeing and three WsoT associated with predicting 
emerged from the data. Descriptions for these WsoT are presented in Table 1. These WsoT are 
elaborated in my doctoral dissertation (Lim, 2006). Relations between students’ WsoT and the 
quality of their solutions are also discussed in that manuscript.  

Ways of Thinking Descriptions 

Impulsive 
anticipation 

Spontaneously proceeds with an action that comes to mind 
without analyzing the problem situation and without considering 
the relevance of the anticipated action to the problem situation 

Tenacious 
anticipation 

Maintains and does not re-evaluate one’s way of understanding 
(prediction, problem-solving approach, claim, or conclusion) of 
the problem situation in light of new information 

Explorative 
anticipation 

Explores an idea to gain a better understanding of the problem 
situation 

Analytic 
Anticipation 

Analyzes the problem situation and establishes a goal or a 
criterion to guide one’s actions 
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Interiorized 
anticipation 

Spontaneously proceeds with an action without having to 
analyze the problem situation because one has interiorized the 
relevance of the anticipated action to the situation at hand 

Association-
based prediction 

Predicts by associating two ideas without establishing the basis 
for making such an association 

Comparison-
based prediction 

Predicts by comparing two elements or situations in a static 
manner 

Coordination-
based prediction 

Predicts by coordinating quantities or attending to relationships 
among quantities 

Table 1. Categories for WsoT associated with foreseeing and predicting 

Relations between WsoT associated with Anticipating and WsoU Inequalities/Equations 
In Excerpt 1, Talia seemed to interpret the inequality as a signal to isolate x and treated it as 

an equation within which she could manipulate symbols. Accordingly, her WoU was coded as 
inequality/equation-as-a-signal-for-a-procedure interpretation. This interpretation is inferred 
when a student treats the inequality/equation (I/E) as an object to be worked on and does not 
appear to have other WsoU. Her impulsive anticipation and association-based prediction 
appeared to be a consequence of her interpreting the inequality as a signal to do something. 

In Excerpt 2, Pham’s reasoning with -9x suggests that he was interpreting it as a function 
whose output depends on the input variable x. Thus his WoU was coded as I/E-as-a-comparison-
of-functions interpretation. His analytic anticipation of reasoning with the common term -9x was 
supported by this WoU. 

Three additional WsoU inequalities/equations (I/E) emerged from the data: I/E-as-a-static-
comparison interpretation, I/E-as-a-proposition interpretation, and I/E-as-a-constraint 
interpretation. In general, less sophisticated WsoU were found to be related to less desirable 
WsoT associated with predicting/foreseeing. For example, the I/E-as-a-signal-for-a-procedure 
interpretation tends to lead to impulsive anticipation. Conversely, more sophisticated WsoU are 
related to more desirable WsoT associated with predicting/foreseeing. For example, the I/E-as-a-
constraint interpretation facilitates goal-oriented reasoning, which is an attribute of analytic 
anticipation. As depicted in Table 2 (the entries are based on interviewees’ responses to two 
interview items), 9 of the 13 interviewees exhibited analytic anticipation while interpreting an 
inequality as a constraint. This table demonstrates that significantly more students exhibited a 
more desirable WoT when they showed a more sophisticated WoU, and most of those who 
exhibited a less desirable WoT showed a less sophisticated WoU. 
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Table 2. Number of interviewees exhibiting a particular WoT and a particular WoU  

Conclusion  
One objective of this research was to develop categories for ways of thinking associated with 

the mental acts of foreseeing and predicting. Ways of thinking associated with foreseeing 
provide mathematics educators with the vocabulary to communicate the way students approach a 
problem: whether they (a) hastily apply a procedure, (b) are tenacious in their way of 
understanding, (c) explore different ideas, (d) analyze the problem situation and identify a goal, 
and (e) spontaneously apply their ways of understanding that are pertinent to the problem 
situation. These descriptions correspond to impulsive anticipation, tenacious anticipation, 
explorative anticipation, analytic anticipation, and interiorized anticipation. An awareness of 
these categories can help mathematics teachers to be more explicit about their goal of advancing 
students from being impulsive and tenacious to being analytic and explorative. 

Instruction that leads students to predict can help counteract students’ tendency of rushing to 
apply procedures when they are assigned a problem. Having explicit terms to characterize the 
ways students predict allows teachers to differentiate desirable ways of thinking associated with 
predicting from less desirable ones. For example, coordination-based prediction is desirable 
because it promotes reasoning that involves change and coordination whereas association-based 
prediction is undesirable because it tends to foster the non-referential symbolic way of thinking. 
Having made these distinctions explicit, mathematics educators can design and implement 
instructional activities that aim to help students progress from association-based prediction to 
coordination-based prediction. 

The relationship between the desirability of students’ WsoT associated with 
predicting/foreseeing and the sophistication in their WsoU inequalities/equations suggests that 
we, as teachers, should attend to students’ WsoT associated with predicting/foreseeing while 
helping students to develop sophisticated WsoU inequalities/equations, and vice versa. This 
recommendation is in keeping with Harel’s (2006) call to incorporate desirable WsoT and 
sophisticated WsoU as cognitive objectives for instruction: “In designing, developing, and 
implementing mathematics curricula, ways of thinking and ways of understanding must be the 
ultimate cognitive objectives, and they must be addressed simultaneously, for each affects the 
other.”  

  

More Sophisticated WoU Less Sophisticated WoU  

I/E-as-a- 
Comparison-
of-Functions 

I/E-as-a- 
Constraint 

I/E-as-a- 
Static-

Comparison 

I/E-as-a- 
Signal-for-
a-Procedure 

Interiorized 
Anticipation 4 3   
Analytic 
Anticipation 2 9 1 1 
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Prediction 2 3 2  
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This paper demonstrates how differences in the nature of students' generalizations of their 
learning experiences are related to differences in features of the classroom environment that 
regularly direct students' attention toward certain mathematical properties when a variety of 
features compete for students' attention.  

Transfer is a controversial construct, which faces a number of theoretical and methodological 
challenges. Numerous critiques of transfer (e.g., see Lave, 1988) have contributed to a growing 
acknowledgment that "there is little agreement in the scholarly community about the nature of 
transfer, the extent to which it occurs, and the nature of its underlying mechanisms" (Barnett & 
Ceci, 2002, p. 612). Several alternative models of transfer have emerged in response to critiques 
of the classical transfer approach (see Bransford & Schwarz, 1999; Greeno, Smith, & Moore, 
1993; and Lobato, 2003). As these emergent perspectives mature, they need to move from 
interpretative frameworks to the development of theory, including theory about transfer 
mechanisms.  

The classical transfer approach refers to the family of common elements theories that have 
dominated the 20th century, starting with Thorndike’s (1906) “identical elements” and more 
currently the cognitive instantiation of Thorndike’s approach (see for example, Anderson, 
Corbett, Koedinger, & Pelletier, 1995). In the classical approach, transfer mechanisms are 
typically conceived as identical elements, either common physical features of the environment 
for Thorndike (1906) or overlapping abstract symbolic mental representations for information-
processing theorists. In classical models, transfer mechanisms are factors that can be controlled 
in order to produce transfer. In contrast, Lobato (2006) argued that we need a notion of 
mechanism that refers to an explanation of how social environments afford and constrain the 
generalization of learning, and thus shifts the focus from external factors that can be controlled to 
conceiving of transfer as a constrained socially situated phenomenon. To this end, Lobato, Ellis, 
and Muñoz (2003) have advanced the notion of focusing phenomena to link features of 
instructional environments with the particular ways in which individuals generalize their learning 
experiences. 

Theoretical Framework 
Focusing phenomena are features of the classroom environment that regularly direct students' 

attention toward certain (mathematical) properties or patterns when a variety of features compete 
for students' attention. Drawing upon the distinction between three types of attention (as 
described by Fan, McCandliss, Sommer, Raz, and Posner, 2002), focusing phenomena can be 
described as more than becoming alert or orienting to a task, but rather as involving executive 
attention (i.e., the biasing focus on one of several conflicting sources of information). Focusing 
phenomena emerge not only through the instructor’s behavior but also through co-constructed 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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mathematical language, features of the curricular materials, and the use of artifacts. The resulting 
mathematical object of focus and what students notice mathematically, are co-constituted 
through focusing phenomena and students’ prior knowledge, experiences, and goals.   

This study is grounded in the actor-oriented transfer perspective (Lobato, in press-b). In this 
approach, transfer is treated broadly as the influence of a learner’s prior activities on activity in 
novel situations, which entails any ways in which learning generalizes. While the actor-oriented 
approach has focused on “similarity-making” in the generalizing process, the roles of discerning 
differences and modifying situations have also been analyzed (Lobato & Siebert, 2002). Taking 
an actor-oriented approach often reveals idiosyncratic ways in which learners generalize their 
learning experiences. At first these idiosyncratic forms of transfer may seem random. However, 
the work on focusing phenomena is demonstrating a basis by which actor-oriented transfer is 
constrained.  

Purpose 
This paper compares the focusing phenomena and associated student generalizations across 

two instructional environments: a high school classroom (Study 1) and a follow-up teaching 
experiment involving a sample of eight students from the Study 1 classroom (Study 2). The (new 
and unpublished) results from the analysis of Study 2 are compared with the previously 
published results of Study 1. The instruction in both studies dealt with the same mathematical 
topic of rates of change.  

Methods  
In both studies, data collection methods included the use of traditional transfer tasks in 

clinical interviews. However, once the interview data were collected, the researchers set aside 
their expert frame of reference and took on an actor oriented perspective in order to determine 
the generalizations that the students formed. Analysis of the interview data involved the 
application of the interpretive techniques in which the categories of meaning were induced 
(Strauss & Corbin, 1990).  Analysis of the videotaped instruction was limited to the ways in 
which the instructional environment directed students’ attention toward certain mathematical 
properties over others. Analysis drew on the constant comparative method used in the 
development of grounded theory (Glaser & Strauss, 1967). For more details regarding the 
specific adaptation of these grounded theory methods developed to identify transfer from an 
actor oriented perspective, see Lobato (in press-a).   

Results  

Study 1 
In Study 1, the construct of focusing phenomena emerged from an empirical study conducted 

during a 5-week unit on linear functions in a high school mathematics classroom using a reform 
curriculum (Lobato, Ellis, & Muñoz, 2003). Qualitative evidence revealed that all seven 
interview participants formed generalizations about slope in which the m value in y = b + mx was 
treated as a difference rather than a ratio. Classroom analysis revealed four focusing phenomena, 
which regularly (and unwittingly) directed students’ attention to various sets of differences rather 
than to the coordination of quantities: (a) ambiguous "goes up by” language, (b) the use of 
uniformally-ordered data tables, (c) the ways in which graphing calculators were used, and (d) an 
emphasis on uncoordinated sequences and differences. The identification of the particular ways 
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in which the classroom practices afforded students’ generalizations suggested principled ways in 
which we could make design responses. 

Study 2 
Study 2 entailed a twenty-five hour teaching experiment with eight students drawn from the 

Study 1 classroom. Results demonstrate improved performance on transfer tasks, including 
evidence of the comprehension of co-varying quantities in rate situations rather than a focus on 
differences within a single quantity. Due to space limitations, a case study of a pair of 9th grade 
students, Carissa and Bonita, is presented in this report. Bonita struggled through many the 
sessions and eventually dropped out of the study. Consequently this analysis focuses on Carissa. 

Analysis of the clinical interviews conducted before and after the teaching experiment, 
indicates a dramatic shift in Carissa’s focus, from attending to differences in single quantities to 
attending to co-varying quantities and forming a multiplicative relationship between them.  For 
example, in the pre-interview, Carissa was shown a table of data from a leaky faucet situation 
(Figure 1) and asked, “Is the faucet leaking faster at times, or is it leaking steadily the entire 
time?” Carissa immediately responded, “It's faster at some times.” (In fact, all of the interview 
participants from Study 1 thought the faucet dripped faster at times.) She focused exclusively on 
the numbers in water column, examined the differences between numbers in the water column, 
and reported that the interval with the largest difference was where the faucet was dripping 
fastest. Her work was dominated by attention to one quantity, a focus on differences, and unitary 
reasoning. In another task, Carissa was asked: “Suppose you collected 16 ounces of water over a 
period of 24 minutes from a leaky faucet. How fast is the faucet leaking?” As with the previous 
task, Carissa focused on one quantity and did not appear to have formed a ratio between time and 
amount of water. 

In contrast, her work on the same two items in the post-interview indicates a dramatically 
different comprehension of the leaky faucet situations. When asked whether the table of data 
indicated that the faucet was dripping steadily or faster at times, Carissa: (a) accounted for both 
amount of water dripped and time, (b) used co-variational language, (c) formed a ratio between 
time and water dripped, and (d) iterated and partitioned the composed unit in order to correctly 
solve the problem, and (e) compared dripping rates by fixing one quantity (time).  

 
Cassandra decided to see how fast her bathtub faucet was leaking.  She got a large 
container and put it under her faucet when she got up in the morning, and then checked 
periodically during the day to see how much water was in the container.  She recorded 
the times and the amounts in the table below. 

 

Time Amount of Water 
7:00 a.m. 2 ounces 
8:15 a.m. 12 ounces 
9:45 a.m. 24 ounces 
2:30 p.m. 62 ounces 
5:15 p.m. 84 ounces 

Figure 1. Situation presented in pre- and post-interviews 

A corresponding examination of the instructional environment of Study 2 indicates the 
presence of focusing phenomena of a different nature from those identified in Study 1. These 
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focusing phenomena include (a) language of co-varying quantities; (b) data presented in pairs 
and compared according to an attribute; (c) measurement tasks that focused on an emerging 
attribute; (d) simulations to test quantitative relationships; (e) comparisons of what is the same 
and different across attributes; and (e) prompts to justify. The object of mathematical focus 
appeared to be the formation of the ratio of distance to time in order to measure the attribute of 
motion through space (speed). This is in contrast to the object of mathematical focus on slope as 
a difference that developed in Study 1.  

Due to space limitations, we present only the analysis from Sessions 1 and 2 of the teaching 
experiment. This will provide evidence for three of the focusing phenomena identified above. 
The analysis began by identifying shifts in Carissa’s focus during the teaching experiment 
sessions. Then we identified contingent instructional actions and features, for which a plausible 
conceptual connection to the student’s ideas could be made.   

In Session 1, the students were shown a MathWorlds computer simulation in which two 
characters, Clown and Frog, walked in opposite directions at different constant speeds (Roschelle 
& Kaput, 1996). The students were asked whether the characters walked equally fast or not and 
to design a method to measure how fast the clown walked. 

Focusing phenomena: Nature of task. The nature of this measurement task likely served as a 
focusing phenomena in a very global sense, by directing students’ attention to quantities. By 
quantity, I follow Thompson (1994) to refer to one’s conception of measurable attributes of 
objects, such as height, distance, speed, or steepness. In other words, the focus in Sessions 1 and 
2 was on sorting out the relationships among a large number of measurable attributes: elapsed 
time, number of steps, distance traveled, length of one step, motion through space (speed), and 
leg motion (how fast one’s legs move). This is in stark contrast to the focus on numeric patterns 
in Study 1.  

Shifts in focus. I claim that the mathematical focus inferred from the public displays of the 
two girls (i.e., their talk, representations, and actions) over the first two sessions of the teaching 
experiment, demonstrated a shift in focus: (a) from reasoning with one quantity alone to two 
quantities; (b) from the quantities of number of steps and elapsed time to distance and time; and 
(c) from how fast one’s legs move around to how fast one moves through space.  

At the beginning of Session 1, the girls incorrectly concluded that the frog was faster he “gets 
there first,” (i.e., his time traveled is less). Correspondingly when asked to measure how fast the 
clown walked, both girls suggested timing the clown. This is reasonable if one considers the 
familiar context of racing, where the winner is indeed the one who takes the least time. Distance 
appeared to be implicit for both girls.  

The students continued to focus on measuring a single quantity in their second suggestion of 
counting the number of steps. However, near the end of Session 1, their focus had shifted from 
one quantity to two. They used an on-line digital timer (made available once the girls expressed 
interest in measuring time) to measure the time that each character walked. They also counted 
the number of steps taken by each character. They determined that each character took 7 steps in 
3 s and incorrectly concluded that the characters walked equally fast. It was not until the end of 
Session 2 that their focus shifted from number of steps over time to distance over time. In the 
process, their rationale for the steps over time method became more apparent. They talked about 
how fast the characters legs moved and made reference to the experience of a child walking next 
to a parent. In order to keep up with the parent, “the child would look like she is running.” As 
Session 2 progressed, the students began to shift from a focus on how fast the legs moved to how 
fast the characters moved through space.  
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Focusing phenomenon: Running simulations to test quantitative relationships. Each time the 
girls suggested a quantity to be measured, they conducted a simulation (either by physically 
walking or by using the computer) in order to test their ideas. In the process of rejecting certain 
quantities, their focus appeared to shift to alternative quantities. Thus running simulations served 
to direct attention toward the consideration of new quantities and away from others, and hence 
served as a focusing phenomenon.  

For example, after measuring the number of steps over time for each character the researcher 
devised a physical simulation in which the number of steps could be varied. The girls were asked 
to “program” the researcher to walk fast by telling her a certain number of steps and time. They 
asked her to walk 7 steps in 5 seconds. The researcher took 7 big steps in 5 seconds following by 
7 tiny steps in 5 seconds. The girls were surprised that the researcher was faster in the first 
simulation. Carissa suggested that the researcher walk 7 steps in 3 seconds, in an effort to speed 
her up. But the researcher took baby steps and went very slowly, which produced laughter from 
the girls. During this simulation, a focus on the quantity of distance emerged. Carissa 
commented that the researcher “took small steps so it was a little bit of distance” and went on to 
conclude that “…it has to be like from a distance, like how far you go….you need distance 
because you could just walk 5 steps and not go anywhere.”  

Focusing phenomenon: “Same/different” activities. During the simulations, the students 
sometimes attended to who pulled ahead and other times to whose legs moved faster.  An 
activity in which the girls were asked to compare what was the same and what was different 
about two people (one pretending to be an adult and one pretending to be a child) appeared to 
allow the girls to isolate these two types of “fastness.” Specifically, in Session 2, Bonita’s cousin 
Andrea had been sitting in the room while the girls worked. The researcher asked her to 
participate in a simulation so that both Bonita and Carissa could watch. The researcher and 
Andrea walked together (same speed). When asked if the two people were walking equally fast, 
Carissa responded “yes, because your legs are going the same,” suggesting a focus on leg 
motion. Then Andrea pretended to be a child and bent down. The researcher and Andrea walked 
together (same speed) but Andrea took 2-3 steps for each of the researcher’s. The researcher 
asked Bonita and Carissa to compare what was the same and different about the two walkers. 
Carissa’s difficulty in sorting out these two attributes is evident in her struggle to find 
appropriate words to describe the differences and similarities:  “you’re going the same way… it’s 
hard to say, I don’t know if it’s the same speed, but it’s the same way.” The girls noticed a key 
difference, namely that Andrea took more steps than the researcher, and her legs looked like she 
was running. They also noticed similarities, namely that the researcher and Andrea “had the 
same timing” (meaning they took the same number of seconds), that Andrea was trying to “keep 
up with” the researcher (meaning that they were equally fast moving through space), and that 
they both covered the same distance.  

Once the attribute of “how fast one’s legs moved” seemed to be isolated from “fastness 
through space (keeping up with each other),” the researcher told the girls that she would use the 
term  “same speed” to refer to what they noticed about Andrea “keeping up with” the researcher. 
She acknowledged that Andrea took more steps and that her feet were going around faster than 
her own, but she also pointed out that “how fast your feet are going isn’t speed; it’s a different 
rate.” In subsequent activities, the girls seemed able to focus on speed without bringing up the 
number of steps again. The use of this “same/different” activity appeared to play a role in this 
shift of focus.  
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Summary. In contrast to the instructional environment of Study 1, in which the initial focus in 
the unit was on numerical patterns and differences in y-values of the function, the teaching 
experiment appeared to focus on quantitative relationships (i.e., how measurable attributes in the 
situation are related). A summary of the shifts in focus and the accompanying focusing 
phenomena identified through the analysis are shown in Figure 2.  

Conclusion and Discussion  
The most important finding of this study is that qualitative differences in the nature of the 

individual generalizations between Studies 1 and 2 correspond to significant differences in the 
focusing phenomena that emerged. While all of the interview participants in Study 1 appeared to 
generalize their understanding of slope as a difference, the Study 2 participant treated the same 
situation that she had seen in the Study 1 interview in a dramatically different way after 
participating in the teaching experiment. Specifically, she formed a ratio of two quantities rather 
than attending to differences in one quantity. The significance of this exploratory comparative 
work lies in the ability to link particular instructional treatments (and the associated focusing 
phenomena) with specific student generalizations. By examining how changes in focusing 
phenomena are related to corresponding changes in students' actor-oriented transfer, researchers 
can develop a useful profile of the ways in which students are likely to generalize their learning 
experiences given different types of instructional experiences. This activity will provide a useful 
contrast of the types of foci that are related to productive student generalizations with those that 
unwittingly afford less powerful student generalizations.  
 

 

 

 

 

 

 

Figure 2. Shifts in Focus and Accompanying Focusing Phenomena  

This work can also contribute to the ongoing transfer debate by addressing an area that has 
proved challenging for emerging alternative perspectives, namely that of transfer mechanisms. 
Because alternative perspectives emerged largely in reaction to the sole reliance on the cognitive 
mechanism of abstract mental schemes, tackling the issue of mechanism within these new 
interpretive frameworks has been challenging. Recent work on positioning or framing as a 
socially situated transfer mechanism is promising (Engle, in press). This research report will 
extend those efforts by further developing focusing phenomena as a way to account for many 
social aspects of generalizing activity, while also coordinating these analyses with an 
examination of individuals’ generalizing activity and highlighting the mathematical content.   
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This paper reports on a teaching study in a second grade classroom, in which functional 
relationship was explored through an investigation of growing patterns by explicitly integrating 
visual/spatial and numeric representations of pattern to promote algebraic thinking.  Findings 
focus on three aspects of generalization:  integration of representations, translation and 
application across representations, and generalization as also the abstraction of abstractions. 

Introduction 
The ability to generalize—that is, to distill from a collection of particular instances a 

relational abstraction transferable to new applications—has been ascribed to algebraic thinking, 
itself a term that Kieran (1996) explicitly broadened beyond algebra to “the use of any of a 
variety of representations that handle quantitative situations in a relational way”.  Recent 
research has challenged the assumed hierarchy of representations of mathematical ideas that has 
conventionally ranked numeric over visual/spatial (e.g.Noss & Healy, 1997; Lee, 1996; Mason, 
1996; Nemirovsky, 1996).  Case (e.g. Moss & Case, 1999; Case, 1998; Griffin & Case, 1997; 
Case, 1985) further contended that it is the integration of visual/spatial and numeric schemas 
within a given mathematical domain that allows children to establish what he referred to as a 
new central conceptual structure. 

The study reported here sought to explore the notion that children’s full understanding of and 
ability to engage in mathematical generalization may in fact rely on a critical integration of more 
than one form of representation of a mathematical idea.  This may more specifically be described 
as involving children’s ability to move fluidly and fluently back and forth across multiple 
representations in both interpreting and applying a mathematical generalization.  Further, 
generalization may go beyond the directly experiential quantitative instances described by 
Kieran, to include abstractions as instances themselves where a generalization describes the 
relationship amongst these abstractions; this relies for illumination on Piaget’s (2001[1977]) 
differentiation of empirical abstraction from reflecting abstraction.   An exploration of these 
three aspects of generalization (integration of representations, translation and application across 
representations, and generalization as the abstraction of abstractions) will be the focus of this 
paper, drawn from a teaching study of algebraic thinking about functional relationship in pattern 
work with second grade children. 

Context and Methods 
This classroom teaching intervention took place in an intact second grade classroom of 22 

students at a university laboratory school.  This study is part of an larger ongoing international 
research project exploring algebraic thinking of students in second through sixth grades.    

The twelve research lessons were presented during regularly scheduled math periods as part 
of the normal school day, three times a week over a period of four weeks.  All lessons were 
videotaped and written transcriptions made.  Digital photographs were taken of children’s 

_____________________________ 
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activities and constructions, and their classroom work was collected as artifacts for data 
interpretation.  Field notes were made by the researcher, classroom teacher and research 
assistants. 

Prior to the start of the research lessons, Number Knowledge Task (Case & Okamoto, 1996) 
was administered individually as an assessment of numeracy level.  Pre- and post-assessments of 
nine patterning items in multiple representations were administered in individual interviews. 
Further post-interviews were conducted with pairs of students attempting two standard algebraic 
reasoning tasks; these interviews were video-taped and written transcriptions made. 

The research lessons:  Integration of representations 
The lessons began with visual/spatial representations by presenting the students with a 

sequence of positions in a geometric growing pattern.  These were made of square tiles placed in 
arrays that grew by a constant coefficient. The children were not taught multiplication prior to or 
during this study; however, they “invented” it as needed over the four weeks of research lessons 
(Schliemann, Carrahar & Brizuela, 2001).  To introduce integration of numeric with geometric 
representations, an ordinal position number was placed below the geometric array that 
represented that position of the pattern.  This helped to make clear the functional relationship 
between, for example, the position number 1 and one row of 3 square tiles, and the position 
number 2 and two rows of 3 square tiles each or 6 tiles altogether. 

Numeric representations of functions were then explored using a function machine (Carrahar 
& Earnest, 2003; Rubenstein, 2002; Willoughby, 1997).  Students took turns creating functional 
rules, creating non-sequential examples as clues, to challenge their classmates to “guess my 
rule”.  The children solving the challenge recorded on T-tables the input and output numbers, 
and their conjectures for what the rule might be.  These numeric examples were non-sequential 
to allow a focus on the “across” (on a T-table) or functional rule rather than on the “down” 
pattern or “what comes next” differencing strategy identified as interfering in reaching a 
functional generalization in numeric patterns (Schliemann, Goodrow & Lara-Roth, 2001; Orton 
& Orton, 1998; Orton, Orton & Roper, 1998). 

The students then integrated all aspects of the previous activities, by building non-sequential 
geometric pattern positions from a secret rule (composite function) on a “pattern sidewalk”, a 
large counting line with ordinal position numbers on each section of the sidewalk.  They would 
build, for example, positions 2, 4 and 9; other students would then guess the rule by trying to 
build the pattern correctly on, for instance, position 7. 

Finally, the students in pairs made up their own mystery rules, and built several sequenced 
positions of their own patterns out of a variety of construction materials, for other students to 
guess the rule.  These were photographed and a booklet made; students reasoned in writing about 
what the pattern rules might be, agreeing, disagreeing, or elaborating on one another’s written 
conjectures.  In this activity, an unexpected revelation was the spontaneous introduction by some 
of the students of the “zero” position of the pattern, which they explained was a “big clue” to 
guessing the rule because it isolated the “bump” or the constant. 

Preliminary findings:  Translation and application across representations 
There is some debate in the field regarding whether to use correct mathematical terminology 

right from the start, or to rely on invented informal language with young children.  In this study, 
because the concept of a function was first presented through geometric arrays, the informal term 
“bump” evolved for the constant because it appeared as an incomplete row above the array, that 
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looked like a bump.  The strong visual/spatial reference and experiential grounding that gave rise 
to this term supported the decision to stay with this, and see where it led. 

In post assessments and interviews, all children were able to recognize and describe a 
reasonable general functional rule for the pattern that was presented, and had strategies for 
applying their rule to find extensions of the pattern, in all representations except one:  skip 
counting (by 3s).  This was despite the fact that throughout the intervention many patterns had 
frequently been described by the students as a “counting by [3]s pattern”.  This invites conjecture 
regarding the potential for interference of the conventional rote approach to skip counting done 
from Kindergarten.  Other representations with which the students were more successful 
included arrays, drawings, and T-tables with which they were familiar, as well as narrative, two-
dimensional standard algebraic reasoning task (square tables problem) and three-dimensional 
standard algebraic reasoning task (cube sticker problem) representations with which they were 
not familiar. 

Within the narrative format (which describes a child with $10 saved for a scooter, who walks 
a neighbour’s dog to earn $5 each day), all but two children showed an understanding of the rule 
as being a composite function with some recognition of the constant, so clearly the concept of a 
“bump” had transcended its geometric beginnings. One child explained, “The bumps are the 
extra ones that will always stay there.”  This understanding cut across all numeracy levels as 
determined by the Number Knowledge Task.  However, the children’s strength in applying this 
understanding varied.  Seven children expressed clear correct generalizations, in more and less 
formal language, that identified both the constant and the coefficient.  One of these children, who 
was considered highly distractible and low achieving, responded, “It’s counting by 5s with a 10 
bump,” even though he lost interest in calculating the far transfer positions.  A mid-level child 
responded, “Oh, I get it—it’s a groups of 5 pattern with a 10 bump.”  A highly capable high 
achieving student went on to notice that the constant was larger than the coefficient (not part of 
the original geometric representation): “It’s always the day [ordinal position number] times 5, 
plus 10.  So there’s 10 bumps and 5 normal things, more bumps than normal things—that’s 
weird!”  

A further eight students were able to apply their conceptual understanding of an implicit 
function rule to predict near and far positions, without being able articulate the general rule they 
were nonetheless expressing in working through the particular positions asked for.  The 
remaining five included a constant at first, but “lost sight of” it as the magnitude of the numbers 
they were working with increased (Stacey, 1989), and incorrectly applied a “whole object” 
strategy in doubling the 5th to get the 10th position (Lannin, 2002; Orton & Orton, 1998).   

The two children who did not recognize the constant at any point in this task, explicitly or 
implicitly, were still able to identify the correct coefficient and make the generalization that the 
narrative presented a “counting by 5s” pattern.  They were able to apply their incomplete rule 
correctly to both near and far positions. 

Interviews:  Generalization as the abstraction of abstractions 
The children were interviewed in pairs, and presented with first the square tables problem 

which asks if square tables are arranged in a line, with one chair at each open side of a table, how 
many chairs would there be for increasing numbers of tables.  All pairs of students, organized by 
either same numeracy level or friendships (with the aim of student comfortability to promote 
discussion), were able to articulate a general rule, in informal or more formal language.  Several 
pairs immediately “saw” the pattern; these students were encouraged to consider what would 
happen if the tables were trapezoids instead of squares (this was drawn).  Responses included a 
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surprising sophisticated consideration of multiple ways of expressing the functional rule:  “It 
could be the number [of tables] plus 1 more, then times by 3, but then you have to take away 1,” 
in recognition of the 2 end seats that were 1 seat shy of being the same as an extra table.  

The same pairs were then presented with the cube sticker problem which asks if cubes are 
linked together, and a sticker applied to each cube face that was still showing, how many stickers 
would there be for increasing numbers of cubes.  All pairs were also able to work this out, with 
solutions ranging from linking actual cubes and counting sides, to clear generalizations (“It’s a 
groups of 4, and then 2 at the ends”.  In a very interesting leap to an abstraction of abstractions, 
one child recognized that these problems represented two-dimensional and three-dimensional 
versions of the same type of generalization: “It’s [cubes] like the other one [tables], except times 
4, because there’s 4 sides.” 

Conclusion 
Implications of this study for future work in understanding the role of generalizing and 

algebraic thinking in the mathematics learning of young children are many.  Among them is the 
conceptual illumination of “skip counting” through a three-tiered pattern sidewalk, where the 
functional relationship between the position number and the number of elements in that position 
is made clear through the medium of geometric constructions.  Further, the link between 
repeating and growing patterns has yet to be explicitly explored within the integrative framework 
of this research, where it would seem that repeating patterns can be thought of as more complex 
articulations of growing patterns.  The rich territory of mathematical modeling, largely 
unexplored for elementary mathematics students (e.g. London McNab, Moss, Woodruff & 
Nason, 2004; Van den Heuvel-Panhuizen, 2004; Lesh & Doerr, 2000), is described in many of 
the same ways that help us to understand key aspects of algebraic reasoning; clearly the 
importance of multiple representations stands out.  It seems a natural further direction to consider 
how these two approaches may be merged to the greater benefit of the learner.   

Finally, for reasons that bear further thought, this approach supported engagement in 
activities that the students found “meaningful” by including what Weininger (1981) would 
describe as educational play.  As one child explained, “I don’t really feel like it’s math.  I think it 
kind of feels like it’s some fun stuff.  It’s kind of like you’re half man, half horse; it’s kind of 
like half fun, half math.  It’s like you change the gear into fun!”. 
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We investigate the function of professional development resources in generating substantive 
mathematical discourse among teachers and providing opportunities for teachers to learn 
mathematics.  An analysis of the implementation of a two-day sequence of tasks in an algebra 
content course for practicing K-12 mathematics teachers is presented.  Initially teachers 
engaged in mathematical education discourse.  We define mathematical education discourse to 
include making sense of students’ mathematical discourse, assessing the correctness of students’ 
responses, and making observations about classroom culture and the role of the teacher.  
Teachers eventually engaged in mathematical discourse, which provided opportunities for them 
to learn about isomorphism and closure. 

Introduction 
The purpose of this report is to establish evidence that practice-based professional 

development resources can be used to generate substantive mathematical discourse in classrooms 
between mathematics teacher educators and teachers and provide opportunities for teachers to 
learn mathematics.  An analysis of the implementation of a two-day sequence of tasks in an 
algebra content course for practicing K-12 mathematics teachers1 is presented.  The mathematics 
tasks discussed in this paper were designed around videorecordings of third-grade students 
exploring the concepts of even and odd.  Design of professional development tasks grounded in 
teaching practice is consistent with current thinking about what constitutes effective mathematics 
professional development (Ball, D.L. & Bass, H., 2000; Carpenter, Fennema, Peterson, Chiang, 
& Loef, 1989).  However we know little about whether and how such professional development 
tasks lead to substantive mathematics discourse on the part of participating teachers in such 
courses. This paper contributes to understanding (1) how teacher educators use resources 
grounded in practice (e.g., print and videocases of mathematics teaching; student work samples) 
in the design and implementation of mathematics related tasks to deepen teachers’ mathematical 
content and pedagogical content knowledge and (2) the mathematical discourse that arises from 
the implementation of such tasks.  Such research can inform the design of effective mathematics 
professional development experiences. 

Related Research 
The K-12 mathematics professional development literature suggests that content-focused 

professional development contributes to changes in teachers’ practice, deepens teachers’ content 
and pedagogical content knowledge, and impacts student achievement.  Recent research has 
shown that teachers can and do learn what Ball and her colleagues refer to as ‘mathematical 
knowledge for teaching’ during professional development opportunities (c.f., Hill, Rowan, & 
Ball, 2005).  Calls for grounding professional development experiences in the practice of 
teaching have been plentiful (c.f., Ball, D. L. & Bass, H., 2000; Ball & Cohen, 1999; Kazemi & 
Franke, 2003).  However it is less clear to what extent teachers – the ‘students’ of professional 
development – engage in substantive mathematics discourse as a result of analyzing tasks 
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grounded in practice (student work, case studies, etc.).   Professional development work to date 
has used mathematical tasks to launch discussions about K-12 students’ mathematical thinking 
and learning (c.f., Smith, Silver, & Stein, 2005).  We are interested in exploring whether or not 
these tasks can help generate discourse among teachers about their own mathematical 
knowledge.  In particular, can practice-based professional development tasks be used to generate 
opportunities for teachers to deepen their own knowledge of mathematics?  We explore this 
question by examining teachers’ discourse in a mathematics professional development setting.  
We take the perspective that learning opportunities arise when people consider each others’ ideas 
and engage in argumentation (c.f., Yackel & Cobb, 1996) - that is, when they engage in 
mathematical discourse. 

Setting 
The research reported in this paper is part of a larger design research study (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003) in an algebra course that was part of a three-week long 
mathematics professional development summer institute.  During the algebra course, 
mathematical investigations were often initiated by watching video of K-12 students’ 
mathematical activity and analyzing this activity, or by analyzing K-12 curricular materials. 
These activities led participating teachers’ (heretofore referred to as PTs) into advanced 
explorations of fundamental algebraic concepts such as operations, functions, and the 
commutative and associative properties.  

Method 
As stated earlier, this research is part of a larger, design research study in an algebra course 

for practicing teachers.  Multiple forms of data were collected as part of the design research 
study.  These data include: records of task design, daily class scripts, daily videorecordings of the 
algebra class, and digital copies of PTs’ work.  Daily class scripts – numbered sequences of 
intended class activities including questions and discourse protocols – were written daily prior to 
class and stored electronically.  The daily class scripts serve as a record of the intended actions 
and questions for each class period.  Videorecordings of each class session were captured with 
two cameras and were digitized daily.  Finally, digital photographs of PTs work were taken and 
catalogued.   

The specific tasks analyzed for this paper spanned two class days and involved PTs 
examining a transcript and video of a third-grade class in which the students discussed even and 
odd numbers (Ball, 1993).  The third-grade classroom discussion was focused on a student, 
Sean’s, suggestion that some numbers (like six) were both even and odd because they were 
comprised of an odd number of twos – these numbers were later referred to as Sean numbers.  
After analyzing the discussion presented by Ball (1993), PTs were engaged in exploring whether 
the set of Sean numbers was closed under various arithmetic operations.   

We began data analysis by reviewing the class scripts and identifying the mathematics 
teacher educators’ questions and actions intended to prompt the PTs to investigate mathematical 
ideas in the transcript of the third-grade classroom.  Next we reviewed the videotapes that 
corresponded with the questions and actions identified on the class scripts.  Videotapes of the 
implementation of the class scripts were reviewed to determine to what extent the 
implementation of the mathematical tasks was successful at eliciting discussion about 
mathematics among the PTs.  A mathematical discourse observation protocol (Weaver, Dick, & 
Rigelman, 2005) was used as a basis for assigning codes to instances of mathematical discourse 
in the classroom videotapes.  The discourse observation protocol is a tool for documenting the 
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quantity and quality of mathematical discourse that transpires during mathematics lessons.  We 
were interested in documenting evidence of mathematical discourse that engaged PTs in thinking 
about substantive mathematical ideas.  Two points warrant further elaboration:  First, we were 
looking for evidence of mathematical thinking among PTs and thus coded only the PTs’ 
discourse (not utterances of the mathematics teacher educators).  Second, we made the 
stipulation that the discourse must center on mathematical ideas or procedures.  Thus, 
discussions of pedagogical approaches or strategies were not considered part of mathematical 
discourse.  A sample of the discourse coding scheme is shown in Table 1. 

 
Code Definition Explanation 
S Stating/Sharing PT makes a mathematical statement or assertion without an 

explanation of how or why. 
E Explaining PT explains a mathematical idea or procedure by stating a 

description of what he or she did, but the explanation does not provide 
any justification of the validity of the idea or procedure. 

C Conjecturing PT makes a conjecture based on her/his understanding of the 
mathematics behind the problem. 

J Justifying PT provides a justification for the validity of a mathematical idea or 
procedure. 

G Generalizing PT makes a statement that is evidence of a shift from a specific 
example to a general case. 

Table 1. Example mathematical discourse codes 

 

Results 

Mathematical Education Discourse 
PTs initially focused on the actions of the students and teacher in the transcript, even though 

they were given instructions to reflect and make notes on the mathematical content of the 
discussion. Our coding of the three minute whole class discussion (in which PTs shared 
summaries of their small-group discussions of the transcript) netted only four instances of 
mathematical discourse and only one discourse code (S: Sharing).   

While very little of the small-group and whole class discussion of the transcript initially 
involved mathematical discourse, we noticed that the PT’s discourse focused on understanding 
Sean’s thinking, assessment of Sean’s difficulties, and evaluating Sean’s and other students’ 
mathematical thinking.  In other words, the PTs engaged in discourse about mathematical 
education. Although we were not able to code this mathematical education discourse using the 
mathematical discourse coding scheme described above, we noted three distinct ways in which 
PTs engaged in mathematical education discourse: (1) PTs attempted to make sense of students’ 
mathematical discourse; (2) PTs evaluated students’ responses as correct or incorrect and/or 
assessed students’ difficulties; (3) PTs did not specifically attend to students’ mathematical 
discourse, but commented on the role of the teacher or the culture of the classroom.  We 
juxtapose a sample of discourse from Paula and Sue Ann, whose comments provide examples of 
(1) and (2), respectively.  We remind the reader that Sean called numbers ‘even and odd’ if an 
even number had an odd number of pairs. 

 
 



Vol.2-126  PME-NA 2006 Proceedings 

 

Paula: Basically they’re talking about really interesting concepts.  They went ahead and said 
‘I have three groups of two, so I have an odd number’, so they had taken it an 
additional step.  So that’s kind of how I read it.  So the underlying concept was odd 
and even. 

Sue Ann: I thought it was interesting that Mei [another student in Sean’s class] starts asking 
questions to start Sean thinking.  And so she uses the example of 10, that it can be an 
odd, and it just reinforces the relationship.  And I was thinking that sort-of happens a 
lot in the classroom, um, that he memorized that three and five were odd numbers 
and so he can’t get beyond that understanding…But you get caught up in those 
misunderstandings, you memorize one little piece and can’t get past it. 

 
Paula did not point out shortcoming in Sean’s thinking; rather she attempted to make sense of 

his idea.  She restated Sean’s explanation, “I have three groups of two so I have an odd number” 
and recognized that he made a nonstandard generalization (“they had taken it an additional 
step”).   

In contrast, Sue Ann did not try to figure out why Sean’s idea made sense to him, rather she 
evaluated his answer as right or wrong and offered conjectures about the nature of his 
difficulties.  In particular, Sue Ann hypothesized that Sean memorized three and five were odd 
numbers and that he was inappropriately applying this memorized fact.  

Just as there are different types of mathematical discourse (e.g., justifying or sharing), we 
propose that there are different types of mathematical education discourse.  In the example of 
Paula and Sue Ann’s responses, we found that one PT (Paula) attempted to make sense of Sean’s 
ideas from his point of view. On the other hand, Sue Ann was concerned with assessing Sean’s 
difficulties and evaluating if his response was correct or incorrect.   

We find these differences in mathematical education discourse significant for at least three 
reasons: First, teachers who make sense of students’ ideas (rather than evaluating them as correct 
or incorrect) use mathematical content knowledge in a different (and perhaps deeper) way than 
teachers who only evaluate student responses as right or wrong.  Second, teachers may learn to 
think about mathematical ideas in different ways (ways suggested by their students), thus 
deepening their own mathematical understanding. Third, as teachers try to figure out thinking, 
they may have the opportunity to make connections to mathematics history for themselves and 
for their students.  For example, Euclid also found Sean’s numbers interesting; they appear in 
Book IX (proposition 33) of the Elements (Heath, 1956).  Thus, while the idea of mathematical 
education discourse is under development, we have found it a powerful way to characterize the 
ways teachers engage with student thinking and suspect that such characterizations have 
implications for the development of teachers’ mathematics content knowledge.   

Opportunities for teachers to deepen their mathematical content knowledge 
Following this initial discussion, the PTs engaged in a series of mathematical explorations 

about the mathematical issues raised in the third-grade class. First, PTs were asked to 
characterize the numbers that Sean had in mind.  Next, the PTs were invited to investigate the 
results of combining two “Sean numbers”.  The goal of these investigations was to deepen the 
PT’s knowledge of generalization and justification and support the development of a number of 
algebraic ideas, including closure and the isomorphism2 between the even integers under 
addition and the integers under addition.  Analyses of the class discussion of these two tasks 
showed that teachers engaged in mathematical discourse at the conjecturing, justifying, and 
generalizing levels.  Thus, these two activities served to move teachers to engage in substantive 
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mathematical discourse and provided opportunities for teachers to deepen their knowledge of 
algebra.  

Beginning with the task of characterizing the numbers that Sean had in mind, the PTs were 
engaged in substantive mathematical discourse that created a number of opportunities for them to 
deepen their understanding of mathematics. In particular, a number of mathematical issues came 
to the fore as the PTs considered what happens when two Sean numbers are combined. In each 
small group, the PTs determined that the result of adding two Sean numbers is an even number 
that is not a Sean number (called an even/even by the teachers).  After this small-group 
exploration, the PTs were shown a video of a fourth grade student, Alison, proving that the sum 
of two odd numbers is an even number. The video was intended to function as a catalyst for 
discussion about justification and communication.  After watching this video, the PTs shared 
their results in a whole class discussion. Michelle presented her group’s poster (shown in figure 
1), which was meant to justify that the sum of two Sean numbers is an even/even.  

 

Figure 1. Michelle’s poster showing how her group combined two Sean numbers 

This diagram and proof does not appear to be appropriate because it does not show two Sean 
numbers being added together. Additionally the language suggests that this is a proof that the 
sum of two odds is an even, not a proof that the sum of two Sean numbers is an even/even. 
(There is evidence that Michelle was actually thinking of this picture as showing not 7 +7 but 6 + 
8 with 8 misidentified as a Sean number with 4 as the “odd factor”. However the other PTs and 
the course instructors did not notice this.) Michelle’s poster was immediately challenged by 
another PT, Ann. 
Ann: I don’t understand how this is related to Sean’s numbers 
Michelle: Um, Sean had, uh, let’s see, yeah, that’s a good point, up here, this part is 

related to Sean’s numbers, and this is showing how the odd factors can always 
have, um, the two odd factors, can always have partner, that any time you add 
two odds together … he had the even factors and the odd factors and 
whenever you put two odd factors together then you’re going to have an even 
amount, or a partner, it’s going to even out the partnership. 

Jack: Does each small square there represent two, as a pair? 
Michelle: So let’s say, for example, I had looped these and say Sean’s got, three times 

three, two threes, two sets of three and two sets of four, ok, so if I loop them 
this way, it might show it in a better way, that here’s his set of three, ok, three, 
let’s think of it like, um, if his number was fourteen. [Michelle is grouping to 
show that the two threes form an even number and the two fours form an even 
number.] 
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Instructor 1: Maybe this is something that everybody can continue thinking on 
Instructor 2: So here’s the question, how can you take this diagram and make it look 

directly like putting two Sean numbers together? 
 
As a result of Michelle’s presentation, a number of mathematical issues became salient. 

Perhaps the most significant (aside from numerous issues related to justification) was the 
isomorphism between the even integers under addition and the integers under addition.  

The following day, the PTs were given a chance to read a transcript of the video they had 
watched of Alison proving that the sum of two odd numbers is an even number. This activity 
lead to a discussion of how Michelle’s proof from the previous day (which looked very much 
like Allison’s proof) could be improved. In particular, the PTs were asked if they could modify 
Michelle’s diagram so that it showed two Sean numbers being added together. During the whole-
class discussion that followed Michael shared a way to modify the diagram by changing the odd 
numbers into Sean numbers (implicitly using the isomorphism between the integers and the even 
integers that is provided by doubling). Sandra and Alice both made observations that suggest 
they came to see Sean’s numbers have much the same structure as the odd numbers.  (Note that 
under the isomorphism f(x) = 2x from the integers to the even integers, the odd integers are 
mapped to the Sean numbers.) 

 
Michael: I was thinking that the definition is that it’s any number with an odd amount 

of pairs so the key is to show that these boxes aren’t one number that they’re 
not just one they’re a pair of numbers and so first started just putting little 
dashes in here so here’s a Sean number 6 added to 6 would be 12 so it’s no 
longer a Sean number and maybe we thought it would be easier for maybe 
some people to understand for kids to understand if these boxes were divided 
into two pieces so made a little slash through them but it’s basically the same. 

 … 
Sandra: My paper’s really messy, but I was thinking and scratching I was thinking 

that Sean and Alison are thinking the same way because Alison was telling us 
about odd numbers and that a single is a one and you know an odd number 
has a pair and a single right now and Sean is kinda thinking the same way if 
you take the assumption that two is the one and four is the two [he] just 
doubled it so Sean’s  doing the same pattern but making but you know six ten 
fourteen on and on and on but [he’s] thinking that 2 + 4n is the [Sean]  
numbers… 

Instructor 1:   So you’re seeing a connection between the formula that you showed and in 
the very beginning for odd numbers being 2n +1 and the 4n +2. 

 … 
Alice: I kind of did the opposite because I wrote this is really small I broke the pairs 

down into ones so these this is six and this is six and they’re and they have an 
odd number of pairs so when I squished those together I got an Even/Even 
because it has an even number of sets of two it has six sets of two but then I 
decided that I would look at it as blocks kinda like Michael did and then I 
saw that it did resemble Alison’s tally marks because of those two in the 
middle that will pair up so you know that I was thinking of it at the end more 
like five sets plus five sets is ten sets so an odd plus an odd is an even. 
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As the PTs engaged in substantive mathematical discourse that was situated in these two 
video cases from elementary classrooms, they had a number of opportunities to deepen their own 
content knowledge. The excerpts above illustrate one of these opportunities as the PTs began to 
have a deeper understanding of the number theoretic structure of the integers. This understanding 
included an implicit understanding (made explicit later in the course) of the isomorphism 
between the even integers under addition and the integers under addition. This implicit 
understanding was leveraged as the PTs were able to use their prior understandings of even and 
odd to make sense of a class of integers that was new to them. Other learning opportunities that 
grew out of these practice-based professional development materials involved 1) important 
mathematical processes including defining, generalizing and proving, 2) connections between 
geometry and algebra – as they learned to use diagrams appropriately to prove algebraic 
statements, and 3) other mathematical concepts including the closure of sets under operations.  

Conclusion 
PTs initially engaged in mathematical education discourse, that is, discourse focused on 

students’ thinking and the actions of students and the teacher in the video transcript.  They 
moved to developing and justifying conjectures about the special set of numbers that Sean was 
thinking about; i.e. they engaged in mathematical discourse.  In turn, these activities played a 
significant role in promoting opportunities for the development of teachers’ knowledge of 
algebra concepts such as closure and isomorphism.  This investigation raised a number of 
questions for further inquiry:  What are the consequences of different types of mathematical 
education discourse in terms of providing motivation and opportunities for teachers to learn 
mathematics?  For instance, can teachers learn mathematics by engaging in mathematics 
education discourse that involves making sense of students’ mathematical thinking? What types 
of mathematics education discourse provide the greatest challenge (or opportunity) for 
transitioning to discourse about mathematics?   

Endnotes  
1. The research reported here is funded, in part, by the National Science Foundation (NSF-

HER-0412553).  The views expressed in this paper do not necessarily reflect the views of the 
National Science Foundation. 

2.  The integers form a group under addition and the even integers form a group under 
addition.  The function f(x) = 2x is an isomorphism from the group of integers to the group of 
even integers.   
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This study examines 8th grade students' coordination of quantitative units arising from word 
problems that can be solved via a set of equations that are reducible to a single equation with a 
single unknown. Quantitative unit conservation also emerges as a necessary construct in dealing 
with such problems. We introduce a theoretical framework that encompasses these two 
constructs. Our data consist of videotaped classroom lessons, student interviews and teacher 
interviews. We generated a thematic analysis by undertaking a retrospective analysis, using 
constant comparison methodology. Our first result is about students' coordination of pairs of 
units (e.g. dime standing for the name of the coin and/or the number of dimes, the value of a 
dime being the second unit). Our second result is about students' attempts to balance the two 
sides of an equation by conserving units. 

Theoretical Background 
This study is part of Project CoSTAR (Coordinating Students’ and Teachers’ Algebraic 

Reasoning)1 that has as its main purpose the coordination of research on students’ 
understandings and teachers’ practices and interpretations of students’ actions relative to 
algebraic reasoning. This particular study is informed by recent research that coordinates 
analyses of collective classroom mathematical practices and individual cognition (Lobato, Ellis, 
and Muñoz, 2003), research on knowledge that teachers use as they engage their practice (Ball, 
Lubienski and Mewborn, 2001), and research on students’ understanding of algebraic symbols 
(Kieran and Sfard, 1999), and their construction and coordination of quantitative units (Olive, 
1999; Steffe, 1988, 2002). 

The ability to coordinate different units in a quantitative situation is an important skill for 
students to develop in order to be successful in both representing and solving algebraic word 
problems. Whether this be coordinating different levels of units in a whole number multiplicative 
situation (e.g. Steffe, 1988) or in a fraction situation (e.g. Olive, 1999; Steffe, 2002) or in dealing 
with intensive (e.g. miles per hour) as well as extensive (e.g. number of hours) quantities 
(Schwartz, 1988; Kaput, Schwartz and Poholsky, 1985) the crucial point is to understand what is 
being done with the varying quantities in these situations and how the units involved can be 
related. 

The names of quantities involved in a word problem do not suffice to adequately reflect the 
nature of those quantities. We need to delve further into the nature of these quantities in order to 
uncover the units associated with them. Just as a point on the coordinate plane is associated with 
its x- and y-coordinates, that is coordinated as an ordered pair (x,y), a quantity is born only when 
it is correctly represented as the pair (name, unit), thus coordinated properly. For instance, the 
coordination (dime, number of dimes) is not the same as (dime, value of a dime) or (dimes, value 
per dime).  Schwartz (1988) used the term referent in a way similar to how we are using name 
and called such quantities adjectival quantities (p. 41) He stated that all quantities have referents 
and that the “composing of two mathematical quantities to yield a third derived quantity can take 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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either of two forms, referent preserving composition or referent transforming composition.” (p. 
41) The referent transforming composition, Schwartz claims, forces us to distinguish between 
two different kinds of quantity: extensive quantity and intensive quantity.  An extensive quantity 
can be counted or measured directly, whereas an intensive quantity is derived from the 
multiplication or division of two like or unlike quantities, and is usually recognized by the use of 
“per” in it’s referent unit (e.g. miles per hour, price per pound). 

In word problems involving extensive and intensive quantities, one further step is needed, 
beyond coordination of each one of those quantities. We somehow would need to reconcile all 
these quantities, each of which can be coordinated in the form (name of quantity, unit of the 
quantity). In other words, we not only look at each coordinated quantity separately, but also look 
at all these quantities together as a whole. This coherence of the whole requires that we 
meaningfully combine each coordinated quantity: A coordination of coordinated quantities. We 
refer to this second level of coordination as “quantitative unit conservation” that covers a range 
of mathematical practices (e.g., taking care of priority of operations, using parentheses 
appropriately, and substituting literal expressions for other literal symbols) associated with 
solving word problems. All these mathematical practices serve one crucial idea, and that is to 
maintain the equality of expressions on both sides of an equation (Chazan and Yerulshalmy, 
2003), while being aware of what's happening on both sides: Things we are adding or subtracting 
have to be like terms while those we multiply or divide do not necessarily have to be so.  

In this paper we explore the units coordination arising from situations that can be represented 
by linear equations involving more than one unknown or variable but that can be reduced to an 
equation in a single variable; that is, a system of linear equations that can be solved by 
substitution. Through our analysis of the classroom discussions, students’ explanations and 
responses to interview tasks, along with interviews with the classroom teacher we have come to 
realize that the identification and coordination of the units involved in the problem situation are 
critical aspects of the teaching-learning process.  

Context and Methodology 
This study took place in an 8th-grade classroom in a rural middle school in the southeastern 

United States. The 24 students were between 13 and 14 years old and had been placed in the 
algebra class based on their success in 7th-grade mathematics.  All eight class lessons on a unit 
that focused on writing and solving algebraic equations from word problems were videotaped 
using two cameras, one focused on the teacher and the other on the students. Four students were 
interviewed twice in pairs (a pair of girls and a pair of boys) during the three weeks of the study.  
Ms. Jennings, the classroom teacher was also interviewed twice during the three weeks. All 
interviews were videotaped. Excerpts from the classroom videotapes were used during both 
student and teacher interviews to provoke discussion of the learning that was taking place in the 
classroom. Excerpts from the videotapes of student interviews were also used in the teacher 
interviews.  

This paper focuses on the two class lessons and subsequent student and teacher interviews 
that dealt with the following word problem from Unit 4 of College Preparatory Mathematics 
(CPM) Algebra 1 (2002): 

Ms. Speedi keeps coins for paying the toll crossing on her commute to and 
from work. She presently has three more dimes than nickels and two fewer 
quarters than nickels.  The total value of the coins is $5.40.  Find the number of 
each type of coin she has. (CP-16, p.10) 

Students were challenged to write an equation to represent the problem. 
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In this problem situation, the monetary values of specific coins are intensive quantities (they 
are the values per coin) when trying to calculate the total value of all coins and the numbers of 
each coin are extensive quantities. Distinguishing these two different types of quantities surfaced 
as a problem during the classroom discussions. Associating appropriate units with the different 
quantities and combining unknown quantities emerged as further problems during the student 
interviews. 

Analysis Process 
Each day the classroom video data from the two cameras were viewed and digitally mixed 

using a picture-in-picture technology. A written summary of the lesson with time-stamps for 
video reference was created from the mixed video. This written summary also contained 
comments about any significant events and screen shots from the video when needed for 
clarification or highlight. These written “lesson graphs” were then used to select excerpts from 
the classroom video to be used in the student or teacher interviews, and to plan questions and 
related problems to pose to the interviewees in an effort to understand how the students (and 
teacher) had interpreted the problem and the classroom discussions that followed from different 
students’ attempts to address the problem. 

 After the end of the three weeks of data collection, the corpus of classroom video data were 
reviewed, along with their lesson graphs to generate possible themes for a more detailed analysis.  
All student and teacher interviews were transcribed from audio files created from the videotapes 
of the interviews. A chart of relationships among class lessons, student interviews and teacher 
interviews was then created. A retrospective analysis, using constant comparison methodology, 
was then undertaken during which the classroom video, related student interviews and teacher 
interviews were revisited many times in order to generate a thematic analysis from which the 
following results emerged. 

Results 
A major confusion arose during the first class lesson on 10/27/04 in naming the quantities in 

the situation. Students had chosen the letter N to represent the nickels in the problem, however, it 
became apparent from the discussion that, while N stood for the number of nickels for the 
teacher and for some of the students, for others it either represented the value of the nickels or 
just stood for the coin. When Ms. Jennings asked the students “What are we gonna call dimes?” 
(right after writing “n=nickels” on the classroom board), some students answered “two N”, and 
this could be a corroboration that those students saw N as the value, and not the number of the 
coin under consideration. The following dialogue between Ms. Jennings and a student, Cathy, 
taken from the classroom video illustrates the confusion:  

Protocol I: Student's confusion about naming coins (from classroom video on 10/27/04) 
Ms. Jennings:  We are just naming our variables right now. We haven't begun to make an equation 

yet. We have to know what we are naming, before we put in an equation. 
Cathy: So why can't we just put them all with their first letter? Like n equals nickels, just keep doing, 

d dimes, q quarters. 
Ms. Jennings: Let me ask you this question and see if you can solve it: “n plus d plus q equals 5 

dollars and forty cents. How many of each one do I have?” 
By challenging Cathy with the statement “N plus D plus Q equals five dollars and forty 

cents. How many of each one do I have?” in the above dialogue, Ms. Jennings may have added 
to the confusion (over what the letters the students had decided to use represented in the 
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situation). Ms. Jennings actually wrote on the white-board during the lesson: “n=nickels, 
d=dimes, q=quarters” following Cathy’s suggestion. 

In her interview a few days later, Ms. Jennings commented that students name a coin by its 
first letter to make it easy to identify in the equation but that later confuses them. The source of 
this confusion partly comes from what Ms. Jennings had written on the board: “n=nickels, 
d=dimes, q=quarters”. Ms. Jennings pedagogical approach in the classroom is to accept students’ 
suggestions without evaluation from her, with the intent of having her students evaluate and 
discuss what is said during the lesson. This approach leads to rich discussions and productive 
arguments among the students, but we believe, can also leave some students confused as to what 
is mathematically acceptable and what is not. Ms. Jennings's introductory question “What are we 
gonna call nickels, dimes, quarters?” could have been misleading (as she did not specifically say 
number of nickels, dimes and quarters). 

In the interview with students Pam and Maria on the morning following the classroom 
lesson, the interviewer showed the classroom video episode from Protocol I above:  

Protocol II: Students' interpretation of Cathy's remark (from student interview on 10/28/04) 
Interviewer: Okay.  What do you think Cathy means by N for nickels, D for dimes, and Q for 

quarters? 
Pam: That represents how much you have, that’s what she’s talking about. 
Interviewer: How much? 
Maria: No, she was thinking about the value of each one. 
Interviewer: Oh, rather than what? 
Maria: The number of coins. 
 Later in the same interview, Maria distinguished the differences among three different 

types of quantities: the value of a coin, the number of that coin and the total value of all the coins 
of that type.  She was then able to combine her total values for each type of coin to produce the 
total of all coins ($5.40). 

Protocol III: Unitizing quantities (from student interview on 10/28/04) 
Maria: Yes.  Okay.  Okay, this is the value of the nickel, so it would be… 
Interviewer: What is “this?” 
Maria: .05.   And, in any number, let’s say 5, so it’ll be .05 times 5 will give the amount of nickels  
Interviewer: The amount of nickels? 
Maria: No, the value of the whole nickels that you have. 
Interviewer: Does that make sense? 
Maria: Yeah.  And, then you do the same for D and Q and it comes out to $5.40. 
Interviewer: Do the same for D and Q for me. 
Maria: Okay,  let’s say, 10 dimes.  So, it’ll be 10 times .1 will give you the value and the same for Q.  

If you do times any number, so Q… the letters mean any number you can think of. 
Interviewer: Well, what in the terms of the problem what do those letters stand for? 
Maria: The number of coins you need to get $5.40. 
Maria’s statement “the letters mean any number you can think of” is evidence that she knows 

she is dealing with the quantity “number of a coin”. Moreover, she separately calculates the total 
value for each coin, and this could be seen as her coordination of units before adding them 
together. In fact, during this interview, by explaining this unit coordination, Maria makes sure 
that the “terms” she is adding are like terms, and then she concludes the addition and writes the 
first equation 0.05n+0.1d+0.25q=5.40; and after substitution, the second equation 
0.05n+0.1(n+3)+0.25(n-2)=5.40. 



Algebraic Thinking  Vol.2-135 

 

During the process of obtaining her equivalent form 0.05n+0.1(n+3)+0.25(n-2)=5.40, Maria 
performed several notable mathematical practices: First, her correct substitution of expressions 
for literal symbols, as in this case, n+3 for d, and n-2 for q; second, her placing of parentheses 
around those expressions appropriately. In this way, each product on the left hand side 
represented a composed quantity, and had to possess a unit inherent in its structure. Moreover, 
each product, having the same unit value, was connected meaningfully via the addition 
operation. This was when she identified these products as monetary values. In this whole process 
of obtaining the equivalent form, there is another meaningful mathematical practice, which we 
call quantitative unit conservation: Not only did each product on the left hand side of the 
equation have the same unit as the quantity on the right hand side, but their combination in the 
form of a sum – they could be combined because they were like terms – had the same unit as the 
quantity on the right hand side of the equation. In this way, there is this notion of coherence 
between each term on the left with the term on the right, as well the coherence of the combined 
expression on the left with the expression on the right.  

In contrast, the two boys who were interviewed, while able to make the unit coordination to 
produce the first equation similarly to Maria, were not able to produce the second equation 
through substitution.  The interviewer asked Greg to write down what D equals in terms of “that 
number of nickels” (pointing to the N). Greg wrote the expression: (.05n+3). Commenting on 
what Greg wrote, Ben said that it represents the value of the dimes. Ben's interpretation suggests 
that he was aware of the different types of quantities involved (value and number of coins) but 
may have had problems coordinating the quantitative units meaningfully. Ben was aware that 
0.05n and 3 both must have the same unit, value, in order to be added. There is also the 
possibility that Ben interpreted the statement in the problem “three more dimes than nickels” to 
mean that the value of the dimes was three more than the value of the nickels. This would 
explain the acceptance of 0.05 (5 cents) as the unit value used to find the value of the dimes. 

Upon the interviewer's suggestion, students went through a little experiment to test the truth 
of the expression (.05n+3) and realized that their conjecture must be false. The interviewer then 
shifted the focus back to what D was in terms of N.  Protocol IV begins at this point in the 
interview: 

Protocol IV: Creating Expressions for D and Q (from student interview on 10/29/04) 
Interviewer: But, I don’t want the value, I want D.  What’s D in terms of N? 
Greg: N plus 3. 
Interviewer: Can you write that down?  Put D equals. [Greg writes: D=N+3]   Now, what do you 

know about Q? 
Ben: Q is 2 less then N. 
Interviewer: Yeah.  So, write down the equation for me. 
Ben: N minus 2. [Greg writes Q=N-2] 
Interviewer: Okay.  So, now can you rewrite this equation [pointing to the first equation: (0.05 n) + 

(0.1 d) + (0.25 q) = 5.40] just using N?  Okay, can you do that for me? 
Greg: To get the value? 
Greg started by writing .05n, then put a plus sign, and then put n+3 and stopped. He hesitated 

for a while in this step, and he asked himself “How can you get the value?”. He erased the n+3, 
and replaced it with .1 n + 3, without parentheses. He did the same thing for the last expression 
and wrote .25 n – 2 . His complete expression for the second equation was 0.05n+0.1n+3+0.25n–
2=5.40. Upon the interviewer's question whether he agrees, Ben said that 0.05n was correct. 
They both hesitated for the remaining terms on the left hand side. They tried to compare this 
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expression, namely their second equation with their first equation (0.05 n) + (0.1 d) + (0.25 q) = 
5.40 (note that Ben had placed parentheses around each of the expressions that indicated the 
value of each set of coins in this first equation).  

Greg eventually realized that he needed to add parentheses to produce the second equation: 
.05n+.10(n+3)+.25(n-2)=5.40. The lack of appropriate parentheses in Greg’s first expression for 
D (.05n+3) and in his first attempt at the second equation led to Ben and Greg’s difficulties in 
coordinating units within their quantities and seeing the coherence of the whole equation, namely 
that each product on the left hand side must be consistent in units with the term on the right hand 
side, and that they could then be added because they were in terms of the same unit: monetary 
value.  

The teacher interview on 11/03/04 started with asking Ms. Jennings her perception of what 
was going on with the students. Her initial comments are worth noting:  

Well, my first perception is probably that I jumped it too fast and that they weren’t ready to 
think about three different variables in terms of one. And, also, the fact that with coins we 
have decimals to play with didn’t make the problem any easier for them to think about.  Even 
though they know what value is represented by coins, to multiply that value to a variable that 
they don’t understand yet was a leap.  
Ms. Jennings recognizes the complexity in the coins problem but focuses on there being 

more than one “variable” and the use of decimals rather than the difficulty we perceived as 
distinguishing between names of coins and the different quantitative units. Throughout the class 
lesson Ms. Jennings used the name of the coin, (nickel, dime, quarter) to stand for the number of 
coins. There are several instances from the interview where this issue becomes apparent. For 
instance, her comments “I guess my job is to re-route them into naming a dime in terms of a 
nickel by the information from the problem.” could imply that for the teacher, a dime is a 
variable that can be expressed in terms of the other variable, nickel. She probably used the names 
of coins assuming that number of the coins was to be understood.  

Ms. Jennings’ commented about the boys' construction and confusion over the expression 
(0.05n+3); she said that Ben really knew what he meant, but he was having trouble with how to 
write it as an expression. She thought that if he knew the number of nickels and multiplied by the 
5 cents and then added a 3, he would see his mistake. Ms. Jennings commented, however, that 
Ben would not realize his error without knowing a specific number of coins. In other words, 
when focused on the nature of these quantities, Ms. Jennings realized that the coin must be 
associated with the units inherent in its structure. When questioned about Ben's understanding of 
the role of n in (0.05n+3), she said she does not think Ben sees n + 3 as one number. She added 
“I think he only sees the n as a number and whatever it is, you’re gonna add 3 to it”. Ms. 
Jennings is aware of students’ difficulties with interpreting algebraic expressions as a “process” 
to be carried out rather than as an “object” on which to operate (Tall et al., 2001). In another 
instance from her interview, Ms. Jennings was asked to compare the behavior of the boys with 
that of Maria. She commented that Maria understood that the n + 3 was an expression meaning d 
and that Maria had an understanding of what an expression means: just to rename another thing 
by another name. The boys, however, did not really have that understanding. According to Ms. 
Jennings, Ben and Greg understood how to name the new variable, but they didn’t know how to 
use it to describe an amount of money with an amount of coins.  In other words, they could not 
make the “name-unit” coordination. 
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Summary and Conclusions 
With this study, we tried to bring about a theoretical framework that encompasses a way to 

look at word problems that can be solved via a set of equations that are reducible to a single 
equation with a single unknown. We claim that through this lens, one could interpret all the 
quantities arising from such word problems as not simply ordinary quantities named in the 
problem, but as mathematical referents with associated units. The Coins Problem helped us focus 
on each coin in the problem as an object with a name and the unit associated with the specific 
coin. A dime is not a quantity: Dime is only the name of the coin stated in the problem. Once a 
dime is associated with its value, for instance, that's when a quantity is born. Therefore, with this 
quantitative unit coordination, “value of a dime” or “value per dime” becomes an intensive 
quantity that must be combined with another (extensive) quantity (number of dimes) to find the 
total value of the dimes.  

We relied on evidence of students' judgments concerning this coordination of the quantitative 
referents and their units. Maria’s successful coordination of the quantitative referent and its unit, 
and the difficulties that Ben and Greg experienced in interpreting the various quantitative 
referents and combining them with appropriate units to produce quantities that conserved units 
within an expression, support our theoretical conjectures. We also saw that solving such 
problems requires students to conserve quantitative units. Thus we hypothesize that quantitative 
unit coordination necessitates quantitative unit conservation. 

One other conclusion we draw is that the use of parentheses in these expressions indicates a 
student’s ability to unitize a quantity and see the relation between the different quantities and 
their units. Also, a teacher’s use of her students’ convenient but ambiguous naming of quantities 
(without clarification) can contribute to students’ confusions. 

Endnotes 
(1) CoSTAR is supported by a grant from the National Science Foundation, grant # REC 

0231879. The opinions expressed in this paper are those of the authors and do not 
necessarily reflect the views of NSF. 

(2) All names are pseudonyms. 
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This paper presents a study aimed at describing middle school students’ views of graphical 
representations. From interviews of middle school students solving pattern generalization tasks 
using graphs, both speech and gesture responses were analyzed to determine students’ beliefs 
about graphical representations. Results indicate that a bounded view of graphs, as evident in 
gestures, may influence performance on pattern generalization tasks. 

Background 
There is limited empirically based research in the literature about student reasoning in the 

context of early algebra graphical representations. Zacks and Tversky (1999), using a sample of 
Stanford undergraduates, found that students view graphs as inherently limited by their form. 
Stevens and Hall (1998) showed how a student, involved in a tutoring session using Cartesian 
coordinate graphs, was influenced by the graph’s spatial relation to the grid edges as he predicted 
how an entire function would change in appearance when an equation was transformed. 
Videotaped interview data allows for the collection of multiple modes of response that can be 
analyzed to provide a more accurate and complete account of middle school student thinking.  
Our gesture analysis methodology draws from the established theoretical work by Goldin-
Meadow (2003) and Alibali and Goldin-Meadow (1993). 

Methods 
Thirteen students, in grades 6-8, participated in videotaped interviews. All students were 

from a large urban middle school with a high percentage of non-Caucasian students (91.7%) and 
students in the free/reduced lunch program (86%). Problem 1 asked students to interpret a two-
dimensional, Cartesian coordinate graph with four points plotted along a linear function, y = 3x + 
1. In Problem 1a, a low-complexity FP (far prediction) task, students were asked to determine the 
cost to make 10 copies of a CD using the information shown in the picture. Problem 1b, a high-
complexity FP task, asked students to determine the cost to make 31 copies of a CD, and thereby 
extrapolate beyond the bounds shown in both the x- and y-axes.   

Results 
Students in this study articulated both bounded and unbounded beliefs about the graph. 

Bounded beliefs about a graph are articulated when a student’s speech or gesture response 
demonstrates that the perceived information is constrained by the graph’s physical boundaries.  
Unbounded beliefs about a graph manifest when a student’s speech or gesture response indicates 
reasoning beyond the physical boundaries of the graph.  Since FP tasks are tasks with solutions 
outside of the numerical range shown on one or more axes of the graph, only unbounded verbal 
responses are considered to reveal the novel information about students’ interpretations 
presented through their gestures. Figures 1 and 2 show examples of bounded and unbounded 
verbal and gesture responses from the study: 

_____________________________ 
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Figure 1. Bounded Responses  Figure 2. Unbounded Responses 

For Problem 1a, 46% of the students (N=13) were successful at the low complexity FP task. 
By definition, none of those who expressed a verbally bounded view of the graph were 
successful. Nine out of the 13 students (69%) provided an unbounded verbal response, and 
therefore had some opportunity for success. Of these, 66% were successful, even though 55% 
exhibited a bounded view through their gestures. On the low complexity problem, the nature of 
the boundedness indicated by their gestures did not predict success once students exhibited an 
unbounded view in a verbal form. In the high complexity FP task (Problem 1b), 23% of the 
sample was successful, confirming that this was indeed more difficult for students than Problem 
1a. Of the 13 students, 10 students (77%) gave unbounded verbal responses but only 30% of 
those were successful. For this item, the boundedness of the gestures that accompanied students’ 
speech does appear to be predictive of their FP problem-solving performance. Even with an 
unbounded verbal response, when gestures indicated a bounded view, students were four times 
more likely to miss the FP task. When gestures were unbounded, students were twice as likely to 
produce the correct FP.  

Conclusions 
The evidence suggests that there may be a relationship between gestural unboundedness and 

correct performance on both one-dimensional and two-dimensional far prediction tasks, 
especially for the high-complexity FP task (Problem 1b). The bounded gestures of students may 
indicate a prevailing belief about the bounded nature of the graph. For students exhibiting a 
bounded view, their reasoning may be perceptually constrained by the limits of the graph, thus 
prohibiting them from answering correctly on FP tasks.  Further, this belief may be influencing 
their performance on the task.  In the low-complexity FP task (Problem 1a), students with 
bounded gesture performed better than the students with unbounded gesture.  Preliminary 
analysis of strategy choices reveals that adopting a strategy using a computational method rather 
than utilizing a spatial strategy may help students with a bounded view of the graph obtain a 
correct answer.   
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In this presentation, I will describe the observations of using the CAS like symbolic manipulator 
CAS (Computer Algebra Systems) to solve arithmetic-algebraic word problems. The CAS is used 
as syntactic resolutor (symbolic manipulator) it makes that the student become concentrated in 
the semantic part of the arithmetic-algebraic word problem and meditate about he has in the 
screen of the calculator with CAS, and what brings in it again (formulas, algorithms, etc.) to 
generate and to use algebraic expressions with the purpose of exploring, to discover and to 
manipulate things that he ignored. The observation of the symbolic manipulator's relationship 
(CAS) with the analysis-synthesis process when solving the arithmetic-algebraic word problems, 
and of return, when giving sense to the results that provides the CAS, it corresponds to the study 
in the manner of the students of third grade of secondary school in Mexico, between 13 and 15 
years and with algebra knowledge, they solve such problems. 

Theoretical Model 
The Theoretical Model that was used to approach the investigation was that of “The Local 

Theoretical Models” (Filloy, 1999; Filloy y Rojano, 2001). This Theoretical Model allowed 
analysing to the observations of the phenomena around the resolution of arithmetic-algebraic 
verbal problems (Filloy, Rojano y Rubio.2001; Rojano, 2002) and it allowed knowing to senses 
that the students gave to the use of the CAS like symbolic manipulator with relationship to such 
problems.  

The Observation Moment 
The election of the observation moment consists on finding some point of the curriculum of 

mathematics, in the one, which the students, starting from their school antecedents, require the 
knowledge to teach for, extend their learning of the algebra. In the curriculum of mathematics in 
Mexico, this moment is located after studying the first one and second grades of secondary 
school, after studying pre-algebra and elementary algebra.   

Population 
The study, in which this document is based, was made in a group of 28 students of third 

grade of secondary public school in Mexico, in function of diagnostic questionnaires to verify 
the school antecedents of the students, allowing to classify them in the axes: syntactic, semantic 
and of basic contents (Rojano, 1985; Rubio, 1994) after the work of a school year in Mexico, to 
carried out the clinical interview.   

Observations 
The following ones are some of the observations of the resolution of arithmetic-algebraic 

verbal problems with the use of the CAS like symbolic manipulator:   
1. It exists a to go and to come from the students, of the symbolic manipulator (CAS) to the 

problem and vice versa (the machine guides in the diverse results that finds in the 
_____________________________ 
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synthesis phase, returning to the analysis with new ideas or ways of looking at the 
problem, that is to say, power the analysis when the student is made a more competent 
user of the CAS) what generates a bigger understanding of the problem, of his 
confirmation or rectification, by means of a more appropriate use of the CAS.   

2. With use of the CAS like symbolic manipulator, the students tend to admit the possibility 
to make inferences on something that they ignored in a verbal problem.   

3. When using the CAS in the resolution of arithmetic-algebraic verbal problems, the 
following procedure is observed: analysis of the problem, synthesis of an equation, 
resolution of this with the CAS and confirmation of one or more results.   

4. The quick exploration that allows the CAS to validate numerically the equality among 
algebraic expressions, allows to achieve senses so that they are used in a competent way 
the meanings of the errors that have been able to make when solving an arithmetic-
algebraic verbal problem. For example, if the obtained results, in fact, they verify the 
relationships among the well-known or unknown quantities that it proposes the one 
enunciated of the problem.   

5. The resolution of arithmetic-algebraic verbal problems with the CAS like symbolic 
manipulator, strengthens the relationship between the logical sketch and the analysis of 
the problem since it allows that you can unchain a resolution strategy. In fact the first 
phase of the use of the CAS consists on the reading and understanding of the text of the 
problem, this is carried out by means of a logical sketch of the situation; this involves 
among other things, a representation logical-mental of the problem in which is integrated 
the fundamental information of the problematic situation and where the relationships are 
identified that are central to be able to unchain some resolution strategy.   

References 
Filloy, E. (1999) Aspectos teóricos del álgebra educativa. Grupo Editorial Iberoamericana, 

México. 
Filloy, E. y Rojano, T. (2001) Algebraic Syntax and Word Problems Solution: First Steps. M. van 

den Heuvel-Panhuizen (ed.) Proceedings of the 25th Conference of the International Group 
for the Psychology of Mathematics Education. Vol. 2, pp. 417-424. Utrecht, The Netherlands. 

Filloy, E.; Rojano, T. y Rubio, G. (2001) Propositions Concerning the resolution of 
arithmetical-algebraic problems. Perspectives on School Algebra. Kluwer Academic 
Publishers, pp. 218-222. The Netherlands. 

Rojano, T. (1985) De la aritmética al álgebra. Tesis doctoral, CINVESTAV-IPN, México. 
Rojano, T. (2002) The potential of Spreadsheets in the Learning of Algebra. The International 

Journal of Education Policy Research and Practice. USA. 3(2), pp. 91-106. 
Rubio, G. (1994) Modelos didácticos para resolver problemas verbales aritmético / algebraicos: 

Tesis teóricas y observación empírica. Tesis doctoral, CINVESTAV-IPN, México. 



Vol.2-144  PME-NA 2006 Proceedings 

 

INTER-STUDENT QUESTIONING IN STUDENTS’ INVESTIGATIO NS INTO 
ALGEBRA: A DIALOGUE BETWEEN KIANJA AND JEREL 

F. Frank Lai 
Rutgers, The State University of New Jersey 

fflai@eden.rutgers.edu 

My study investigates mathematical behaviors students engage to decide on the validity of their 
classmates’ ideas and reasoning.  I examine a video clip focusing on Kianja and Jerel, who 
argue about the equations corresponding to points plotted on a Cartesian plane as well as to 
tables of coordinate pairs. The following research question frames my investigation: What are 
the questions that students use to understand each other’s viewpoints and the types of evidence 
they consider to prove or disprove each other’s mathematical statements?  In general, the 
analysis of the data shows how students can use questions and mathematical representations to 
reason about their ideas, and to engage in a mathematical discussion. 

Statement of Problem and Purpose of Study 
I investigate the mathematical behaviors that students engage to decide on the validity of 

their fellow students’ ideas and reasoning.  I analyze an 11-minute video clip of five students, 
focusing on Kianja and Jerel, who argue about the equations corresponding to points plotted on a 
Cartesian plane as well as to tables of coordinate pairs.  These are seventh grade students 
attending a middle school in an economically depressed city in New Jersey.  The data is from an 
Algebra strand used within a larger three-year study supported by the National Science 
Foundation.  This study, which occurs in an after-school mathematics program, investigates the 
development of the mathematical ideas and reasoning of students in algebra, combinatorics, and 
probability. 

Research Questions Addressed 
What are the questions that students use to understand each other’s viewpoints and the types 

of evidence they consider to prove or disprove each other’s mathematical statements?  How does 
Kianja decide the validity of Jerel’s method of finding an equation that corresponds to a set of 
points?  How does Kianja convince Jerel that he is wrong? 

Methodology 
I use a modified version of the methodology outlined in Powell, Francisco, and Maher (2003) 

for studying the development of mathematical ideas using video data, the steps of which are (1) 
Viewing attentively the video data, (2) Observing and wondering, (3) Identifying critical events, 
(4) Transcribing critical events, (5) Coding, (6) Constructing storyline, and (7) Composing 
narrative. 

The codes that I found emerged from the data and not from any source.  The method for 
developing codes is based on grounded theory, which is found in Charmaz and Mitchell (2001).  
From the data, two categories of codes emerged: questions and evidence.  Within the questions 
category, two subcategories surfaced: surface-level questioning and mathematical questioning.  
Under the surface-level questioning subcategory are two codes: (1) QP: questions used to clarify 
certain points, and (2) QR: rhetorical questions.  Under the mathematical questioning 
subcategory are three codes: (1) QF: questions brought about from confusion about another’s 
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viewpoint, (2) QT: questions used to test understanding, and (3) QM: questions used to elicit 
certain responses that inform the answerer of his/her mistake.  Within the evidence category, four 
codes were identified: (1) R: rules, (2) G: graphs, (3) T: tables, and (4) PAS: previous statements 
said by students to explicate their ideas to one another. 

Results or Anticipated Findings and Implications 
Kianja uses various questions and evidence to invalidate Jerel’s conjectured method for 

finding an equation that corresponds to a set of points.  Kianja uses an equation that Jerel has 
presented to point out a contradiction between his equation and his stated method.  Throughout 
this video clip, Kianja and Jerel rely upon evidence provided by rules, graphs, tables, and their 
own previous explications directed at one other to make their presentations and to disprove one 
other’s statements. 

Jerel presents two overhead slides that show how his thinking about equations progresses.  
On his first slide, Jerel infers from a table of coordinate pairs that multiplying the change in y by 
x, and then adding on another number produces the corresponding equation.  Jerel notes that the 
change in y is 2 and writes the rulex × 2+10= y.  On the second slide, Jerel further deduces 
from some points plotted in the Cartesian plane that multiplying the change in y by x and adding 
this to the change in x results in the corresponding equation.  Since his difference in y is 3 and his 
difference in x is 1, Jerel develops the equationx × 3+1= y, which is a special case of his 
conjectured method. 

Kianja takes the lead in trying to show that Jerel’s above method is invalid.  Her technique of 
doing so is to take the graph of his first rule,x × 2+10= y, to show that if his method were true, 
the coordinates would have to go up two (change in x) and over ten (change in y), when in fact, 
they actually go up two and over one. 

Kianja uses rhetorical questioning to move the conversation along and to express skepticism.  
Kianja expresses skepticism when she asks Jerel after his presentation “Is that all I need to 
know?”, and follows that with “If so, can we move on now?”  It seems here that Kianja is 
reluctant to discuss Jerel’s method, but when prompted by the researcher, Kianja immediately 
states that Jerel’s method will not always work. 

In launching into an explanation of why Jerel’s method is not valid, Kianja quotes Jerel’s 
previous statements to validate her own assertions.  Kianja says, “I’m gonna repeat what you 
said.  You said, you went over one and went up three, that’s how you got times three plus one, 
okay?  That’s what you said, right?”  Using Jerel’s statements would seem to strengthen Kianja’s 
arguments.  Since Kianja uses Jerel’s statements and places them in a new context, it would seem 
that Kianja’s argument would reverberate more strongly with Jerel, more so than if she had not 
done so. 

Kianja also asks questions based on her understanding of Jerel’s conjectured method to get 
Jerel to see her viewpoint and his own mistakes.  To relate the other rule, x × 2+10= y to Jerel’s 
conjectured method, Kianja asks Jerel, “What ten do you see on that paper?” while pointing to a 
graph of plotted points, inquiring of Jerel what difference of ten he can see on the paper.  
Presumably, Kianja does this to get Jerel to see the disconnect between his claim that in the 
rulex × 3+1= y, 1 is the change in x, and the fact that 10 is not the change in x in the 
rulex × 2+10= y. 

Kianja uses other questions to engage Jerel in their mathematical conversation.  She 
questions Jerel to determine whether he understands what she is saying.  In general, the analysis 



Vol.2-146  PME-NA 2006 Proceedings 

 

of the data shows how students can use questions and mathematical representations to reason 
about their ideas, and to engage in a mathematical discussion. 
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This paper investigates how a units-coordinating scheme affects a seventh grader’s 
understanding of improper fractions. The study shows that extending the scheme to three levels 
of units may be critical in developing conceptual understanding of improper fractions. This 
conclusion is based on three observations: a student’s difficulty in finding an improper fraction 
equivalent to a mixed number, implicit view of a composite unit through a unit of one, and 
difficulty in making a whole when given an improper fraction. 

This paper concerns how a units-coordinating scheme, which is one of the concepts of 
multiplication in whole number contexts (Steffe, 1994), affects a seventh grader in understanding 
improper fractions. A units-coordinating scheme coordinates two composite units, say a unit of 
five and a unit of seven, by inserting the unit of five into each of the seven units of one to 
produce a composite unit containing seven units of five. Coordinating units in continuous 
contexts is distinguished from doing so in discrete contexts in that partitioning is involved in 
continuous contexts. Starting with a continuous unpartitioned unit, implementing a coordination 
of, say, five and seven means to partition the unit into five parts and then each part into seven 
parts.  

Mike, a seventh grader, provided the data for this study. The data used in this paper is based 
on the examination of 16-videoteaped sessions that took place over one semester period. In each 
session, 20-30 minutes long, Mike was asked to work with computer software called Tools for 
Interactive Mathematical Activity (TIMA) (Olive, 2002). TIMA allows students to make 
rectangular regions called bars and partition the bars into parts, the parts into subparts, etc. 

Close examination of Mike's progress over the one-semester period provides three major 
observations that may answer how a units-coordinating scheme influences the development of 
understanding of improper fractions. The first observation is that Mike had difficulty in finding 
an improper fraction equivalent to a mixed number. When asked to make a bar so that a three-
inch bar is twice as long as the bar, Mike first made a bar and partitioned it into three parts to 
represent the three-inch bar. He then partitioned each of three parts into two parts, pulled one of 
them out and repeated it three times. Mike correctly identified that the result is one and a half 
inches. However, when he was asked to convert the result into a fraction, his answer was three 
sixths with a reasoning that each part in the result indicated one sixth. Even though he was able 
to think the three parts comprising the result was one and a half inches long, he referred to the 
whole of the six-part bar to name the three parts in inches using a fraction. That is, he conflated 
the meaning of the three parts as its length in inches with its meaning as three out of six parts. 
This conflation may result from his inability to maintain a second level of a unit, here, the unit of 
one, in his activity of coordinating a unit of two with a unit of three; he was unaware of the fact 
that he was dealing with a unit of one, not three, as a unit for partitioning to get a half of a unit of 
three. When asked to make a bar so that a five-inch bar is three times longer than the bar, he 
repeated the above procedure. In response to the teacher’s question as to the length of each of the 
five parts in final bar, he said it was one third of one inch. However, it took a long time for him 
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to see that the five parts he just produced indicated five thirds of one inch. 
The second major observation is that Mike implicitly regarded a composite unit in terms of a 

unit of one but wasn't explicitly aware of that. For the question of making a share for one person 
when seven candy bars are shared among nine people, Mike partitioned each of seven bars into 
nine parts and pulled out one part from each partitioned bar. Responding to what fraction a share 
for one person was, he answered one ninth of all the candy bars. He elaborated that each part is 
one ninth of each candy bar, so if he lined them up he would get one ninth of all the candy bars. 
He also said that one share is seven sixty thirds of all the candy bars but never answered on the 
basis of one candy bar such as seven ninths of one candy bar. This indicates that he just 
considered two levels of units and didn’t yet extend to three levels; he thought one part in one 
candy bar (one ninth) and nine parts in seven candy bars (seven sixty thirds), but didn’t think of 
seven parts in one candy bar (seven ninths). It is apparent that Mike came to be able to maintain 
second level of units while coordinating two given units: to consider nine equal shares from 
seven bars, he considered one ninth of seven candy bars through seven one-ninths of one candy 
bar. However, it is not clear whether he could consider seven parts comprising the result in terms 
of third level based on the maintained second level such as seven units of one ninth of a bar for 
one ninth of a unit of seven bars.  

The third observation is that Mike had difficulty in making a bar so that a given bar is an 
improper fraction of the bar. Given the question of making a new bar so that a given bar is seven 
fifths of the new bar, Mike struggled with even restating the question. He rephrased the question 
saying that the new bar is seven fifths of the given bar and then made it by dividing the given 
into five parts and repeating one of them seven times. By coloring the parts in the new bar 
corresponding to the given bar, he realized the given bar is five sevenths, rather than seven fifths. 
He then made a bar with five of the parts resulting from dividing the given bar into seven parts. 
However, it was not easy for him to conceptually produce a mixed number, one and two fifths, 
equivalent to seven fifths; it was evident that his concept of seven fifths remained in two levels 
of units, disregarding the unit of one. It took a long time for him to realize that there is one five-
part and two remaining parts in the seven-part bar, so seven fifths is equal to one and two fifths. 
Based on the understanding of improper fractions through converting them into mixed numbers, 
he was able to make a bar so that a given bar is thirteen sevenths of the bar. When asked to make 
a twenty-five sevenths bar from thirteen sevenths bar, he first made a whole bar using a seventh 
and then a twenty-five sevenths bar by repeating the whole bar three times and adding four 
sevenths to the three wholes. One seventh seems considered as an iterable fractional unit (Steffe, 
2002) but it was not, in that he used one seventh only in order to make a whole and recognize the 
remaining parts with respect to the whole, rather than generate a fraction based on one seventh. 
Such a way of making a fraction reveals that his fractional reasoning was additive rather than 
multiplicative. 

The three observations lead to a conclusion that a seventh grader’s difficulty in working with 
improper fractions is related to his inability in extending a units-coordinating scheme to three 
levels of units. This result indicates that conceptual understanding of improper fractions can be 
better achieved if a student is able to deal with a unit of one comprising a given unit as an 
iterable unit (when given two units), to reconsider another unit in terms of the iterable unit of 
one, and to construct a unit on the basis of the reconsideration. 
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The concept of mathematical fluency was developed, and the four parameters used in foreign 
language learning: reading comprehension, writing, speaking and listening comprehension, 
were employed to measure it. Local fluencies, with mathematical fluency as a global amalgam of 
these, were classified. Interviews, action research and observations of students learning how to 
generate solids of revolution, and to use integral calculus to calculate their volumes, were 
carried out. In depth analysis employing the four parameters of foreign language learning offers 
a methodology for studying student learning and understanding, that can be generalized to other 
mathematical areas, and adapted to quantitative as well as qualitative methods. 

Introduction 
Mathematical fluency, as is defined in this study, includes traditional aspects such as 

accuracy, efficiency and flexibility, but is motivated by fluency as a goal when learning a foreign 
language. To ask “why” fluency is important in mathematics learning is similar to asking “why” 
fluency is important in foreign language learning. If fluency isn’t achieved, learning, when it 
occurs, is fragmented, partial and weak, and almost always ephemeral. How is fluency to be 
measured? This question was what triggered the idea of similarity with fluency in foreign 
language learning. Now, of course, there is no isomorphism between mathematics and language. 
To begin with, no-one is a native mathematics speaker. However, when analyzing the four 
parameters of foreign language learning: speaking, writing, understanding (listening 
comprehension, reading comprehension) it was felt that they could be useful in measuring 
mathematical fluency.    

Mathematical fluency is linked not only to performance, but also to conceptual 
understanding, and employs the four parameters used to evaluate foreign language learning, that 
is, reading comprehension, listening comprehension, speaking and writing as indicators. One of 
the main objectives of this study was to measure what happens when taking into account these 
four parameters, and relating what is called local fluency to the assimilation of new concepts, in 
particular the concepts which are needed to carry out and understand applications of the integral. 
Global fluency is an amalgam of local fluencies. A research design that incorporated the four 
parameters of foreign language learning as a measure of mathematical fluency was developed, 
and the concept of mathematical fluency itself had to be adequately defined. The design was 
developed for qualitative research, but can be extended to large scale quantitative research as 
well. 

Theoretical Framework  
The elements of the theoretical framework provided the language and concepts which 

permitted the detection of mathematical fluency as defined in the present study, and as measured 
by the four parameters of foreign language learning. In particular, the concept of procepts, as 
developed by Tall and Gray (1991) helped to analyze and pinpoint difficulties that the 
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unsuccessful student might show, as the integral symbol is a prototype of the symbols that 
simultaneously represent a process (integration) and a concept (accumulation). 

Extra-mathematical and structural metaphors (Pimm, 1987), the first referring to metaphors 
outside the realm of mathematics (for example, an imaginary number), and the second referring 
to metaphors within the actual language of mathematics (the complex number as a vector), can 
be helpful within a particular context and misleading when transferred to a different one. These 
metaphors were also detected in this research, through the fluency parameters. The presence of 
cognitive obstacles (Brousseau, 1997) was also  explored, in particular the ones defined as 
didactical. 

Mathematical fluency was defined by the researcher of this study as accuracy, efficiency and 
flexibility. Although this definition apparently coincides with the definition of fluency seen in 
other works, the researcher marks certain differences or generalizations when defining the 
components, not accounted for, to her knowledge, in previous studies. The researcher’s 
definition was motivated by fluency as a goal when learning a foreign language. Mathematical 
fluency, as is detected in the context of this study, has the four components of foreign language 
learning: speaking (with coherence and logic, that is, correctly, according to standardized 
norms), listening and reading with understanding (comprehension) and writing. It is important to 
emphasize that the four parameters are considered measures of mathematical fluency. For 
example, speaking mathematics is not considered, in this study, as a method to foment 
mathematical fluency, but an indicator itself of mathematical fluency. 

Methods and Modes of Inquiry 
 The research questions were formulated with respect to mathematical fluency, and with 

respect to the specific mathematical content. The preliminary study, as well as the main study, 
was carried out with a standard second calculus class at a public community college in the 
northeastern United States. The studies were a combination of action research and interviews 
(case studies).  

Results and Implications  
The results of this study showed a definite relation between mathematical fluency as 

measured by the parameters of foreign language learning, and performance in the particular 
aspect of calculus that was researched. The implications for future investigation are multi-fold; 
the use of the four parameters of foreign language learning is not by any means limited to 
research in calculus learning, and can be a tool in doing research at all levels. Testing for fluency 
in foreign language is often on a massive level (the Test of English as a Foreign Language, 
TOEFL, for example), but the parameters of reading comprehension, writing, listening 
comprehension, and recently, speaking, are part of the evaluation process. This means that 
testing for fluency in mathematics, defined with the components of accuracy, efficiency and 
flexibility, can also be designed on a large scale level in which quantitative techniques, if 
necessary, can be used. These designs can be for purposes of research, or also in terms of 
placement or qualifying exams. 
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The paper is based on survey results, and will focus on the development of students’ 
understanding of infinity. The same tasks were answered by different age groups of students: 
grades 5, 7, 11, and teacher students. The results show that most of the students did not have a 
proper view of infinity, even not at the teacher education program. 

Infinity awakes curiosity in children already before they enter school: “Preschool and young 
elementary school children show intuitions of infinity” (Wheeler, 1987). However, this early 
interest is not often met by school mathematics curriculum and not discussed in school, and 
infinity remains mysterious for most students throughout school years. 

Actual and potential infinity 
Consider the sequence of natural numbers 1, 2, 3, … and think of continuing it on and on. 

There is no limit to the process of counting; it has no endpoint. Such ongoing processes without 
an end are usually the first examples of infinity for children; such processes are called potentially 
infinite. In mathematics, such unlimited processes are quite common. However, the interesting 
cases in mathematics are, when infinity is conceptualised as a realised “thing” – the so-called 
actual infinity. It requires us to conceptualise the potentially infinite process as if it was 
somehow finished (Lakoff & Núñez, 2000). The transition from potential to actual infinity 
includes a transition from (an irreversible) process to a mathematical object. In the history of 
mathematics, the exact definition of and dealing with actual infinity is something more than one 
hundred years old (e.g. Boyer, 1985; Moreno & Waldegg, 1991). Infinity has been an inspiring, 
but difficult concept for mathematicians. It is no wonder, that also students have had difficulties 
with it – especially with actual infinity and density. Previous research has identified typical 
problems and constructive teaching approaches to cardinality of infinite sets (e.g. Tsamir & 
Dreyfus, 2002). Fishbein, Tirosh and Hess (1979) inquired students’ view of infinite partitioning 
through using successive halvings of a number segment. They concluded that students on grades 
5–9 seem to have a finitist rather than a nonfinitist or an infinitist point of view in questions of 
infinity. Even at the university level, the concept of infinity of real numbers is not clear for all 
students (cf. Merenluoto & Pehkonen 2002). For example, Wheeler (1987) points out that 
university students distinguished between 0.999… and 1, because “the three dots tell you the first 
number is an infinite decimal”. In this paper we want to find out what is the level of students’ 
understanding on infinity in Finnish schools, and how this understanding develops on different 
levels: grade 5, grade 7, grade 11, and at elementary teacher education. 

Methods 
The paper combines some partial results of two research projects implemented in Finland 

(Hannula et al, in press). In grades 5 and 7 of the Finnish comprehensive school, the 
representative random sample of Finnish students consisted of 1154 fifth-graders (11 to 12 years 
of age) and 1902 seventh-graders (13 to 14 years of age). In the sample of elementary teacher 
students, we had all first-year students (altogether 269) from three Finnish universities (Helsinki, 
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Turku, Lapland). A reference sample from school (grade 11) was selected at random (N=1200). 
In both research projects, there was a questionnaire inquiring students’   mathematical  
understanding,  and  a part of the tasks  singled  out  students’ conceptions and skills in infinity. 
We focus here on the two following infinity tasks. 
� Task A: Write the largest number that exists. How do you know that it is the largest? 
� Task B: How many numbers are there between numbers 0.8 and 1.1? 

About results 
To each question, we can find answers 

that remain on the level of finite numbers, 
answers that describe processes that do not 
end (potential infinity) as well as some 
answers that indicate that the student has an 
understanding of the final state of the infinite 
process (actual infinity). In the fifth grade, 20 
percent of the students have some 
understanding of the infinity of natural 
numbers, but only few have any 
understanding of density of rational numbers. 
The situation improves, as the students get 
older (and selected). Infinity of natural 
numbers is understood earlier than density of 
rational numbers, and potential infinity is 
understood earlier than actual infinity. It is 
somewhat worrying that even in the selected 
group of 11th graders barely half of the 
students understand density of numbers. As 
students get older, the potential infinity 
becomes less frequent; it seems as if it was an 
intermediate stage that leads to an 
understanding of actual infinity (at least in 
these contexts). 
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This qualitative study reports on findings we obtained from pre- and post-interviews of twelve 
6th grade students. We address the basic question: What abilities do they have that influence the 
manner in which they express and justify generalizations in algebra? Results indicate that the 
students established generality figurally and numerically, and that they were are capable of 
symbolic generalization towards the end of three sequences of teaching experiments. 

Objective 
Twenty-nine 6th grade students (12 males, 17 females, mean age of 11) participated in a 

classroom teaching experiment involving the formation and generalization of linear patterns. Our 
basic objective in this research investigation is to provide a descriptive account of elementary 
structures of thinking relevant to expressing generalizations of patterns of figural and/or 
numerical objects in algebra. Such an account has been empirically justified on the basis of 
findings from clinical pre- and post-interviews, with the teaching experiment on generalization 
as providing some level of instructional intervention over the course of five weeks.    

Theoretical Framework 
Our theoretical framework has evolved out of our previous research investigations in the area 

of generalization in algebra at different levels (Rivera & Becker, 2005, 2003; Becker & Rivera, 
2005). We consistently observed the predominance of either figural or numerical modes of 
generalizing that individual interviewees seem to have consistently demonstrated over several 
different problem situations. Those who generalized numerically primarily established their 
formulas from the available numerical cues. They were not consistently capable of justifying 
their generalizations non-inductively or in some other valid way. They also frequently employed 
trial and error as a numerical strategy with no sense of what the parameters in particular formulas 
represent. Some of their numerical methods contained fallacies and contradictions, and they were 
object-oriented in the sense that the formulas they developed were justified solely in terms of 
how well the formulas fit the limited information they examined. Those who generalized 
figurally were capable of justifying their generalizations non-inductively and in other valid ways 
due, in part, to the manner in which they were able to connect their symbols and variables to the 
patterns that generate the figures. They were relation-oriented in the sense that they saw 
sequences of figural cues as possessing invariant structures and thus, were necessarily 
constructed in particular ways. We also note that, while the students who were predominantly 
figural generalizers did not see the need to set up a table of values in order to establish a general 
formula, those who were predominantly numerical generalizers were predisposed to initially 
setting up a table in order to perform a numerical strategy with little regard to how the dependent 
values may be perceived otherwise (for example, figurally). There were a number of numerical 
generalizers who viewed variables as mere placeholders with no meaning except as a generator 
for certain sequences of numbers. With figural generalizers, they saw variables not as mere 
placeholders but within the context of a functional relationship and, thus, were more likely 
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capable of generalizing to an explicit, closed formula. There were cases, too, in which some 
learners manifested pragmatic modes for expressing generality, that is, their generalization 
reflected a capacity for employing both numerical and figural strategies.  

Results 
Figure 1 presents what we refer to as a theory of generalizing types involving figural and/or 

numerical patterns in algebra. The theory is a further refinement of our evolving theoretical 
framework. Drawing on results of our work with the sixth-grade class, we further classified 
figural and numerical modes of generalizing as either additive or multiplicative in character. 
Also, some students have been documented to be using analogical strategies that they would then 
analyze figurally or numerically. In the model, we identify two phases of the generalizing 
process: protorepresentational and representational. The representational level is the domain of 
variable use and fluency. We have found that students with no knowledge of variables were still 
capable of generalizing partially or in a situated manner. We have also found that students with 
some knowledge of variables produced either partial generalizations or full algebraic 
generalizations depending on their competence in understanding variables in a functional 
context. Thus, understanding of variables leads to differing levels of function use (early, situated, 
symbolic) that consequently influence the performance of generalization.    

  

Figure 1. A Theory of Generalizing Types Involving Figural and Numerical Patterns 
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Research provides evidence regarding the genesis of the meanings of variable and function 
concepts as well as to the signification process occurring during the sense production of the 
tabular and algebraic representations for a linear function. Empirical evidences were obtained 
through a study case, where 15-year-old junior high school students were faced to verbal 
problems of continuous variation. It was proved that a rate of change given as datum and a 
solution implying a set of values in problems are central starting points for a student to unchain 
a numerical operational process through which he/she can be detached from the meaning of a 
literal as an unknown value in an equation and pass on to the meaning of a literal as a variable 
in a linear functional relationship expressed as an equation in two variables. 

The study comprised two stages: the stage of teaching and the experimental stage. A teaching 
model based on a numerical approach (see, e.g. Rubio, 2002; Rubio&Valle, 2004) was used 
allowing students to: a) develop their analytical ability; b) give sense to relationships between the 
unknown and known elements of a problem; c) construction of meanings to the algebraic 
representations of the problem (such as 1st grade, 2nd grade equations and systems of 
equations.). The other stage consisted in a case study with four students from three different 
knowledge stratums, selected from a previously stratified school group according to their 
performance in a diagnostic questionnaire and in the teaching stage. Clinical interviews of the 
students-case, which were videotaped, proved that: i) the cognitive tendencies (Filloy, 1991) to 
use numerical quantities to unchain the analysis of problems new to them, where rate of change 
as datum occurs and which solution involves a set of values; ii) students already had an intuitive 
knowledge on the rate of change notion, which they used during the search process of the 
solution by facing the first problems; iii) during the meaning construction process of the 
algebraic representation of a function expressed as an equation in two variables, students 
spontaneously used numbers, but going different ways: some of them achieved it almost directly 
as of the numerical relationships established by them and others after having organized such 
relationships in a table; iv) once giving “sense” (Filloy, 1991) to a literal as a variable in a linear 
functional relationship is achieved, the student is able to give meanings to parameters “m” and 
“b” of the linear functional relationship represented by a general equation in two variables of the 
type: y = mx+b. 

Reference Setting  
Works having used a numerical approach to solve problems and make possible the transition 

of the arithmetic thought to the algebraic one (see, e.g., Bernardz & Janvier, 1994; Kieran, 
Boileau & Garançon, 1996; Rojano & Sutherland, 1993; Rubio, 2002; Rubio & Valle, 2004) are 
part of the reference setting of this research. Studies confirming that the learning of the variable 
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concept is a difficult and slow process (Ursini-Trigueros, 1997). Modeling works having as their 
main aspect the construction of the variable meaning and as a crucial point the establishment of a 
relationship among variables (see, e.g., Janvier, 1996). Researches, such as those by Blanton and 
Kaput, 2004 regarding the origin of the “functional thought” in children and, works on semiotics 
(Eco, 1995) and their relationship with the mathematical education (Puig, 1997; Filloy,1999). 

Conclusions 
The research evidenced that the use of numbers (numerical quantities) instead of literals acts 

as a semantic mediator or bridge between an arithmetic use of the unknown or variable and an 
algebraic use of the same. From interviews can be observed that the use of numerical quantities 
together with the sense they give to the rate of change fosters an operational process and a co-
variation thought (Blanton & Kaput, 2004), where relationships between the variable magnitudes 
of a problem, primarily established with numbers, acquire a meaning for the student, thus 
allowing to produce “senses” for the algebraic representation of the functional relationship 
between variables as of a generalization process of operations carried out with numbers.   

The study showed that the teaching model and the families of word problems used in both 
research stages allowed the students to generate signification processes, which make possible a 
systematic advance in the competence of the mathematical conceptos of the unknown, equation, 
variable and linear function, in more general uses every time. 
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A PSYCHOLINGUISTIC APPROACH TO TEACHING/LEARNING MA THEMATICS 
BASED ON BRAIN PATTERN PROCESSING OPERATIONS 
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The poster presents an emerging framework on teaching/learning mathematics, grounded in a 10-
year project conducted as design-based research and in education-research literature 
(mathematics, Schoenfeld, 1992; 2nd language acquisition, Krashen, 1995), and focusing on the 
mathematical domain of algebra. The project was motivated by my observations as an 
educational practitioner and as founder/director of a natural language school, and bears 
implications for teaching, learning, and design. The framework foregrounds cognitive and 
affective factors contributing to or hindering mathematics learning and connections between 
these factors (see Schoenfeld, 1992). These factors, I demonstrate, can be modeled as cohering 
around the construct ‘pattern’ that undergirds a heuristic model of brain-pattern processing. 

As mathematics is arguably the ‘science of patterns’ (Devlin, 2003, Schoenfeld 1992) with a 
language to deal with them (Esty, 1992), I discern structural, functional, and developmental 
continuity from simple pattern-processing perceptual activity (e.g., recognition, comparison, 
matching) to learning language and basic mathematical skills (Amezcua, 1999). Thus, similar 
pattern-processing cognitive faculties are active in learning languages and mathematics. Much of 
naturalistic learning is the development of ‘equivalence classes’, e.g., ‘table.’ To the extent that 
mathematics-learning shares with language-learning cognitive faculties, students need ample 
opportunity and supportive contexts to recognize and construct equivalences. Algebra, though, is 
particularly demanding, as equivalences, e.g., [123=102+2*10+3] ≡ [x2+2x+3], are stated but not 
initially evident or intuitive to the learner. Abstraction is based on the innate ability to recognize 
equivalent classes, but observation strongly suggests that at its natural level the skill is 
insufficient to deal with mathematics’ requirements. Strengthening this ability allows fluency in 
the mathematical language to emerge making possible the transferring of skills between one area 
to another via the abstraction process.  

The psycholinguistic approach to teaching/learning mathematics that emerged from my study 
offers tools for diagnosing learning problems and for designing strategies for their resolution. 
The framework deals with affective factors metacognitively. Students are lead to recognize and 
assess their hidden beliefs by showing them that their equivalence-class recognitions skills in 
daily activities are the same as those required in mathematical endeavors. Through this, one can 
remove learning blockages by replacing old beliefs with more effective ones. Much of my 
research was done from a qualitative perspective, but I am conducting new quantitative studies in 
rural areas in Mexico where the difficulties are especially challenging to ground the research.  
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The purpose of this paper is to describe software we developed (Balloons and Weights) that 
supports students’ integer understanding and to share results of its use in a fifth grade classroom. 
Integers are an integral part of the middle school curriculum (NCTM Standards, 2000) and mark 
a transition from arithmetic to algebra because of the abstract thinking required when working 
with them (Linchevski & Williams, 1999). Given the abstract nature of integers, it is not 
surprising that students have tremendous difficulty operating on them. Despite the importance of 
understanding integers and the difficulties students have understanding and operating on them, 
relatively little research has been conducted in this area. The development and use of software 
described in this study represents one attempt to address this void. 

A paper-pencil version of the Balloons and Weights software was initially reported by 
Janvier (1983). In our interactive version, balloons and weights can be attached to a basket. 
Helium balloons represent positive integers, whereas weights represent negative integers. One 
balloon raises the basket one unit. One weight lowers the basket one unit. Thus, one balloon and 
one weight cancel each other to create a zero pair. Adding on balloons or weights represents 
addition of integers, whereas removing balloons or weights represents subtraction. The result of 
adding on or removing balloons and weights is represented on a vertical number line. Also, the 
model is set in a context of traveling up and down in a basket with balloons and weights attached 
that is experientially real to students. Because the weights in this model indicate a direction 
(pulling down) and result in a position, the rules associated with their actions are not as arbitrary 
as those for a typical horizontal number line. The software affords animation that can serve to 
support students’ imagery when they make and test conjectures about what will happen when, 
for example, one begins with 4 weights and adds on 7 weights (-4 + -7) or compares beginning 
with 10 weights and removing 3 weights (-10 - -3) with beginning with 10 weights and adding 
on 3 balloons (-10 + 3).  

This software was used in a 5th grade classroom to introduce addition and subtraction of 
integers. The students engaged in a variety of experiences in which they added and removed 
balloons and weights and were asked to describe the outcome of each action and relate that to the 
symbolic notation. By the end of the lessons most students in the class were able to solve 
symbolic integer problems without the explicit use of the software by drawing on the imagery 
supported by the software.  
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Algebra entails various types and levels of understanding that deal with concepts and 
procedures. From previous research on this topic I selected four categories of mathematics 
understanding as a working framework to analyze the mathematics register used to communicate 
algebraic ideas. 
1. Instrumental understanding: Knowing rules of and how to apply and carry out a procedure 

without necessarily understanding the reasoning behind the rules (Skemp, 1982). 
2. Procedural understanding: Knowing "what do and why" (p. 9) and the “ability to deduce 

specific rules or procedures from more general mathematical relationships" (p. 45) 
3. Conceptual understanding: Acquiring "knowledge that is equated with connected networks   

[. . .] knowledge that is rich in relationships" (Hiebert & Carpenter, 1992, p. 78). 
4. Symbolic understanding: "[T]he ability to connect mathematical symbolism and notation 

with relevant mathematical ideas and the ability to combine these ideas into chains of logical 
reasoning." (Skemp, 1982, p. 59). 
Note that the definitions above are not clear-cut, they do not exclude each other, nor do they 

indicate a sequence in which students may acquire a particular type of knowledge. 
 
The following framework defines categories of the algebraic mathematics register which, 

somehow, parallel to the categories of understanding. 
1. Instrumental Register: The Verbs Register. This mathematics register conveys and reflects 

instrumental knowledge. It is mostly formed by verbs to denote actions and sequence of 
actions. Examples: “Add 2, divide by 4, and plug in the value.” 

2. Procedural Register: The Verbs and Logical Connectors Register. This register conveys and 
reflects procedural knowledge. It contains verbs that denote actions or a sequence of actions. 
The difference with the instrumental register is that it also includes logical connectors or 
logical expressions such as: if/then and this/because. Example: “Divide by 2 on both sides of 
the equation because we are applying the inverse operation of multiplication.” 

3. Conceptual Register: The Nouns and Adjectives Register. This register conveys and reflects 
conceptual knowledge. It makes use of nouns to name the concept. Adjectives or adverbs 
may be used to talk about properties of a concept or procedure. Example: a quadrilateral 
(noun/concept) is a four-sided (adjective/description/property) polygon (noun).  

4. The Formal and Symbolic Register. Symbolism is central to algebra. There are symbols for 
concepts (x = variable, m = slope), symbols for procedures or operations (+, -, ( )), symbols 
for relationships (<, >, =, ), and symbols or expressions to denote logical statements (for all 
∀, and, or). Students are expected to perform procedures that require symbolic manipulation. 

5. The "Making Sense" Register. Not necessarily related to the working framework. This 
register is used to explain reasoning and ideas when connecting mathematics to previous 
knowledge and experiences. Example: When asked about the best phone plan (base price and 
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cost per minute) a student expressed “it depends on how much I use my phone.” In algebraic 
notation his statement can be represented as:  “if X <= N (if I use it a little bit) X1 <= Y2 
(then company 1 is cheaper than company 2); if X > N then Y1 > Y2. 
 
This framework can be used as a research tool to explore students’ understanding and as a 

tool for teachers for analyzing their own use of language in the classroom. 
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In a study centered on a class of third-grade students and their work on a variation of the 
Handshake Problem, Blanton and Kaput (2005) consider how teachers can leverage their 
students’ familiar situations and everyday experiences involving number and arithmetic 
operations to support the development of algebraic reasoning. Specifically, the authors consider 
the everyday experiences of shaking hands and knowledge of norms about appropriate 
handshake gestures. They maintain that the task “drew directly on students’ everyday experience 
to make sense of the problem” (p. 226) and that “the opportunity to enact a familiar situation 
facilitated the development of arithmetic models” (p. 226). 

The number of handshakes in a room with n people is equal to the number of edges on a 
complete graph on n vertices. The Complete Graph Problem asks students to determine the 
number of edges on complete graphs of 5, 6, 7, and 20 vertices. By comparing student work on 
the Handshake Problem to work on the Complete Graph Problem, this researcher looked for 
advantages that may be gained by leveraging familiar situations and everyday experiences in the 
development of arithmetic models that support algebraic reasoning. 

The Handshake Problem and the Complete Graph Problem were implemented by this 
researcher in three classrooms of pre-service elementary teachers at a large public university in 
central Texas. Data in this study was collected through field notes, observations, and interviews. 
The data was analyzed by looking for patterns in students’ experiences and in their written work. 
When observations or written artifacts raised questions, they were answered in interviews during 
and following the activity. 

Student comments during work on the Handshake Problem included “you don’t shake hands 
with yourself” and “once I count the handshake I do with you, I can’t count the handshake you 
do with me.” Comments made during work on the Complete Graph Problem included “you can't 
connect a dot to itself” and “you can't connect to a vertex that was already used.” 

Students completing the Handshake Problem recorded the number of handshakes in a room 
of 5, 6, and 7 people and looked for patterns among the differences in the total number of 
handshakes. Similarly, students completing the Complete Graph problem recorded the number of 
edges on complete graphs of 5, 6, and 7 vertices and looked for patterns among the differences in 
the total number of edges. Students used the pattern they had found and extended it to find either 
the number of handshakes in a room of 20 people or the number of edges on a complete graph of 
20 vertices. These findings suggest no advantage in leveraging everyday experiences and 
familiar situation in the development of an arithmetic model to support algebraic reasoning. 
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THE ROLE OF GESTURE AS A FORM OF PARTICIPATION IN N ETWORKED 
CLASSROOMS 
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We have been studying the role of gesture as a mechanism to understand how students make 
sense of mathematical structures (e.g. families of functions) in networked classrooms. We have 
integrated SimCalc software into Algebra High School classrooms. The software works on a TI-
83/84+ and in parallel on a desktop PC, in conjunction with TI-Navigator’s wireless network. 
The software allows students to create functions algebraically or graphically (e.g. dragging 
hotspots) and see dynamic representations of these functions through animations of actors whose 
motion is driven by the defined function. We have created sets of activities that exploit these new 
technological affordances in mathematically meaningful ways. For example, students are in 
groups and are asked to create a function that moves an actor for 6 seconds at a speed equal to 
their group number. So groups 1, 2 and 3 create y=x, y=2x and y=3x respectively for a domain 
[0,6]. Students work is then aggregated into the computer software via the network, and the 
teacher then has control of what is shown, (e.g. the collective motion, the graphs, the algebraic 
expressions) to meet various pedagogical purposes. We have built a hide/show feature to allow 
students to collectively conjecture and make generalizations about how their contributions are 
contextualized within a class set of contributions. In such an activity, the important concept is 
slope as rate (something that underlies the mathematics of change and variation), and the family 
of functions vary via the parameter m, in y=mx, their group number. The parameter is 
identifiable and hence more meaningful for students as their independent contributions create the 
variation. As their collective responses emerge and they are asked what they expect to see, we 
have observed an interesting combination of mathematical speech and gesture as students reason 
and make sense of the family of functions. In this activity, students in various school settings, 
describe the whole set as a “fan” and have used their hands (fingers splayed out) to describe what 
they expect to see before the teacher shows the set of graphs (for example). Our poster will 
describe a set of categories of gesture that relate to our various activities we have used in 
classrooms and describe how gesture is an expressive form of participation and mathematical 
reasoning. The diagram below illustrates screenshots from the calculator to the computer, and a 
student gesturing a “fan”. 
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An analytical framework was developed by comparing conceptual analyses of the equals sign 
(Dienes, 1960; Ferrini-Mundy et al, in press; Usiskin, 1988) with students' conceptions from the 
literature cited above.  Four tasks were developed, and given to two high school students who 
were either enrolled in or had completed pre-calculus.  The students were interviewed and 
audiotaped while working on the tasks.  Transcripts of the recording were coded according to the 
theoretical framework, and cycles of analysis were conducted for confirming and disconfirming 
evidence (Strauss & Corbin, 1990). 

The results suggest that students with strong operational skills in algebra have difficulty 
articulating different meanings for the equals sign.  In addition, a focusing phenomenon (Lobato 
et al, 2003) was discovered: use of hybrid notation in manipulating equations that directs 
attention to "doing the same thing to both sides", while obscuring the use of the distributive 
property to combine like terms. 

Beyond Algebra II, students encounter even more uses if the equals sign, e.g. for functions, 
limits, vectors, and linear transformations, to name but a few.  Students need to develop a sense 
of what "the same" means in these different contexts, but I surmise that many instructors 
overlook this and focus on operations. 

The poster session features task descriptions, the subjects' backgrounds, examples of 
students' work, and more detail about the analysis. 
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While it is often assumed that implementing external accountability (testing, grading, 
disciplinary actions) promotes learners’ responsibility, the authors’ experiences researching 
urban Algebra I (1) classrooms have caused them to confront the reasonableness of this 
assumption, which is rooted in the behaviorist perspective that the most efficient means to 
develop a behavior is to provide or withhold rewards (Spadano et al, 1997).  The authors argue 
that a focus on external accountability in fact weakens responsibility, which requires internal 
accountability. 

The data for this poster was gathered as a part of a larger case study project studying the role 
of content knowledge in urban, algebra I teachers’ instruction.  The authors collectively observed 
three teachers for approximately forty, 90-minute observations; they also conducted four, 1-hour 
interviews per teacher. The teachers that were observed work in a large, urban high school with a 
FARMS (2) rate of 58%; the student body is primarily African American and Hispanic.   

The district, school and teachers are confronting the accountability pressures of the NCLB 
(3) legislation, which emphasizes mastery of skills as opposed to understanding.  The 2005-2006 
freshman class is the first class which must pass the year–end Algebra I High School Assessment 
(HSA) in order to graduate in the state of Maryland.  To attempt to manage this challenge, the 
district has placed ALL incoming freshmen in Algebra I and has implemented a standardized 
algebra curriculum, while the mathematics department has instituted common exams. 

In analyzing the classroom data for the three Algebra I teachers, the work of Joseph Spadano 
et al’s (1997) describes a “Continuum of Educational Orientations”, which extends from social 
behaviorists, with their teacher-centered classrooms, to experientialists, with their learner-
centered classrooms.  We, the authors find that the teachers’ practice can be located in different 
places along the continuum, depending on which lens is used to consider the data (e.g. a learning 
focus versus a student behavior focus), as well as the time of year.   

These differing locations of practice also mirror the teachers’ continued struggle to balance 
accountability with responsibility, which Spadano et al show are emphasized in teacher-centered 
and learner-centered classrooms respectively.  As teachers manage the tensions between these 
two foci, they draw on their perspectives of their own and students’ responsibilities, their 
understanding of the contextual elements of an urban setting, the constraints being imposed by 
the district and NCLB, their knowledge of students, and their own teacher preparation. As 
teachers manage this tension, increasing the focus on accountability is generally at the expense 
of learner responsibility. 

Endnotes 
1. Algebra I includes symbol manipulation, solving of equations and beginning topics in 

data analysis. 
2. Free and Reduced Meals and Services 
3. No Child Left Behind 
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This proposal is an extension of the work we have done to further the understanding of the 
variation and the literal as a variable (Najera, 2004). We take the dynamic geometry 
environments (DG) as an appropriate means to support the construction of meanings in relation 
to the proportional variation (PV), and, as a way to approach lineal functions. 

Here, we are interested in the communication like the chain of meanings or the mediators 
employed by the students to make sense of the variation. According to Dorfler (2000, pp. 99-
100): If we know the meaning of relevant words or sentences, then we are able to understand. If 
we don’t, we are not able to understand. From a semiotic perspective, following Pierce (1960, p. 
228), meaning depends not only on the sign or representation and its referent, the object, but also 
it depends on an interpreter, some kind of representation, an idea about the mediating reality of 
the relationship between referents and signs. Here, the Figures may work as iconic referents of 
the variation, and the comments, labels and legends, annexed to the illustration, as indexes of the 
variation, as antecedents of a semiotic inference, a central element to generate the symbolic 
understanding of the PV.  

Experiment: Students (typical age: 12 ½ years) work in pairs, interact with dynamic 
illustrations like the ones shown below, where, in each case, the point p may be dragged 
generating the variation of the segments and the modification of their values. The values are 
changing, turning this way into indexes of the variation. The students read their results to their 
classmates and discuss what the most adequate way of representing the results is. In this dialogue 
words such as dragging, invariant, variable, dependency, label, variation, slope, etc. have an 
important role in the students’ construction of meanings. 

 

Fig.1   Fig.2   Fig. 3 

We explore the potential of Fig. 2, e. g., to study the notion of constant velocity. Some 
students considered op as time and pq as the traveled distance, then they were able to symbolize 
pq = 1.25op and verbally express: When p is being dragged, the traveled distance depends on 
time, it is proportional to time… the velocity is equal to pq over op and it is invariant; the figure 
1 introduces, simultaneously, the notions of variation and invariant; Figure 3 works with the 
function y = mx + b. Accordingly, the exploration allows to consider that the capacity to 
symbolize, emerges from the inferences done based on perceived data, illustrations shown in the 
screen, and the meanings constructed in the interaction with the computer tools. 
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Recent emphasis in mathematics education has been placed a covariational conception of 
function, but focusing on “quantities varying,” makes evident a subtlety in covariational 
reasoning. This paper will analyze the potential difficulties one encounters when one’s 
understanding of involves a graph constraining the ways in which variables vary, particularly an 
inability to reason about why fairly complex functions behave as they do. 

Introduction and Purpose.  
The predominant conception of function in mathematics today can be described as functions 

as correspondence, or “a rule that assigns each element x in a set A exactly one element, y, called 
f(x), in a set B.” This current definition of function persists despite the fact that many 
mathematicians and mathematics educators (Eisenberg, 1991, Thompson, 1994, Wilder, 1967) 
criticize this conception on pedagogical grounds. In response to the criticisms of the 
correspondence conception of a function, a number of researchers (Carlson, 1998, Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002, Confrey & Smith, 1995, Thompson, 1994, Thompson & 
Thompson, 1994) have proposed a covariational conception of a function. The covariational 
conception of a function is based on Euler’s notion of function: “[when] some quantities depend 
on others in such a way that if the latter are changed the former undergoes changes themselves, 
then the former quantities are called functions of the latter quantities” (Kleiner, 1989). 

It is true that this notion of function is consistent with “reform” mathematics, which calls for 
a shift in attention in the mathematics curriculum from functions as rules and formulas to 
functional relationships in both pure and applied settings, however there are subtleties to the 
current conceptualization and frameworks for understanding and classifying students’ 
understanding of function as covariation of quantities and covariational reasoning. Two strands 
of research which address these issues are the work of Carlson, Jacobs, Coe, Larsen & Hughes 
(Carlson et al., 2002) and APOS (Action-Process-Object-Schema) Theory (Dubinsky & Harel, 
1992). 

Mental Action Description of Mental Action 

Figure 1: Carlson, et al’s (2002) Covariation Framework 

Carlson, et al (2002) present a covariation framework which describes five “mental actions” 
and five coordinated levels of covariational reasoning ability. The covariation framework 
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“contains five distinct developmental levels. … [One’s] covariational reasoning ability has 
reached a given level of development when it supports the mental actions associated with that 
level and the actions associated with all lower levels” (p. 357). The mental action form of their 
covariation framework is shown in Figure 1. 

Covariational reasoning has also been related to the work in APOS theory on functions. 
Thompson (1994) notes that many mathematics students tend to see a function as a “command to 
calculate” and that early algebra students are no more likely to see the expression x (12 (x – 5)) 
as representing a number as elementary students are to see that the expression 4 (12 (4 – 5)) 
represents anything other than something to do. Researchers (Asiala, Brown, DeVries, Dubinsky, 
Mathews, & Thompson, 1996, Dubinsky & Harel, 1992) have labeled this such a conception of a 
mathematical concept as an action conception. A process conception of a function involves the 
learner automating lengthy sequences of operations into an expression that, in his or her image of 
it, “evaluates itself” (Thompson, 1994). When a student possesses a process conception of 
function, he or she can imagine the function as something that performs the sequences of 
operations but no longer needs to actually think about the chain of operations when envisioning 
the result of the evaluation. The development of covariational reasoning is related to the 
progression from an action to a process conception: once a person conceives of a function as the 
covariation of quantities, they “can begin to imagine ‘running through’ a continuum of numbers, 
letting an expression evaluate itself (very rapidly!) at each number” (Thompson, 1994, p. 26) and 
can therefore conceptualize the way in which the quantities covary. 

It is this notion of “quantities varying,” though, that makes evident a subtlety in covariational 
reasoning. Though the varying quantities are a conceptual precursor to a fully-developed 
conception of a function, these variable quantities are often not the focus of instruction or 
analysis of students understanding of functions. Both conceptualizations of understanding the 
concept of function discussed above rely on the underlying notion of an independent variable 
varying and a dependent variable varying accordingly. The way these two variables vary is quite 
different: the independent variable is free to vary, but the dependent variable is “constrained,” in 
that as the independent variable varies, the dependent variable must vary in a particular way. As 
an example, consider a function representing the height of a roller coaster car at any given time 
during the ride. In this example, that constraint on the dependent variable makes sense – why 
would one be concerned with the height of the car in a vacuum? The variation of that quantity 
would give us no useful information about the velocity, acceleration, energy, etc. of the situation. 

In this paper, we will examine a teaching experiment that placed the variability of quantities 
in the foreground and was designed to better understand how students develop covariational 
reasoning abilities that position them to analyze functional relationships. The study was 
grounded in Saldanha & Thompson’s (1998) conceptualization of covariation as (1) an 
understanding of a variable is a measurable quantity (it has a magnitude) whose measure can 
vary; (2) the coordination of two variables, each of which can be envisioned as varying 
independently; (3) envisioning a graph as a collection of points; (4) envisioning the collection of 
points as being generated by keeping track, simultaneously, of two quantities whose values vary; 
and (5) envisioning that every point in a graph represents, at once, simultaneous values of two 
quantities. 

Methods and Data Sources.  
The data for this study was gathered as part of a constructivist teaching experiment (Steffe & 

Thompson, 2000). The analytic tools employed fall under the heading of “grounded theory” 
(Glaser & Strauss, 1967). Analysis involved the development and refinement of hypotheses 



Vol.2-176  PME-NA 2006 Proceedings 

 

through a process of continual review, constant comparison, and revision. The analysis consisted 
of multiple iterations of the generation and refinement of hypotheses, first from a global 
perspective (reviewing the entire data corpus to identify segments of theoretical importance) and 
second from a local perspective (line-by-line coding of the segments identified and continual 
development and refinement of hypotheses). 

Participants for this study were a group of 11 undergraduate mathematics and secondary 
education dual majors at a large, private university in the Southern United States. For this study, 
we focus primarily on four class sessions that took place in the first few weeks of the Fall 
semester. Each class session was videotaped and immediately following the class, was 
transcribed and annotated. All class artifacts are also analyzed as part of this study. 

Results and Conclusion.  
The results to be described in this paper focus on students initial inability to reason 

covariationally about the straightforward, but quite complex question: Explain why the graph of 
f(x) = sin(nx) behaves as it does. Though their explanations would qualify as covariational 
reasoning (and at a minimum) MA1, analysis of students’ initial explanations of the behavior of 
these functions indicate their reliance on graphs as the primary image underlying their 
explanations. Further analysis indicates that their understandings and explanations were 
grounded a more advanced conception of function, but something falling shy of covariation: their 
focus was not on how the quantities covaried but how the graph behaved. For one to explain the 
behavior of these functions, they must keep track of (at least) three quantities: x, nx, and sin(x), 
and only two of these quantities appear in the graph. A conceptual explanation of this problem 
involves an understanding of how the quantities x, nx, and sin(nx) each vary independently, an 
understanding of how x and nx covary, how nx and sin(nx) covary, and finally how x and sin(nx) 
covary. An explanation of this sort enables one to understand why the family of functions 
behaves as it does. The proposed paper will discuss the students’ developing understandings as 
they took part in a course that focused on appropriate images of variables and functions that 
would support covariational reasoning. The affordances of this developing understanding, both 
in the students’ mathematical development and in their pedagogical conceptualizations (all were 
future teachers) will be discussed. 
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One of the most critical variables in determining students’ achievement is opportunity to learn 
(OTL). In this paper we describe low cost methods for studying OTL that enable researchers to 
understand variation in both the implemented and the attained curriculum.  Throughout, we 
draw upon data collected during field-studies of curriculum materials developed by the 
University of Chicago School Mathematics Project.   

Results from international comparisons of mathematics achievement have highlighted the 
importance of both curriculum and teaching in relation to students’ learning (McKnight et al., 
1987; OECD, 2004; Stigler & Hiebert, 1999; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 
2002). In particular, both curriculum materials and teachers’ implementation of the materials 
influence pupils’ opportunity to learn (OTL) mathematics. In fact, OTL is among the most 
reliable predictors of students’ achievement (Burstein, 1993; Hiebert, 1999; Shavelson, 
McDonnell, & Oakes, 1989; Valverde et al., 2002). Thus, one methodological question for 
researchers is “How can one gather evidence in reliable, cost-effective ways about the OTL 
provided by teachers’ use of curriculum materials?”   

In the United States, the report, On evaluating curricular effectiveness (National Research 
Council, 2004), recommends that comparative studies of curricula be conducted to designate a 
curriculum as providing scientific evidence of its effectiveness. However, “How do we compare 
curricula that are aiming at different learning goals? Do we, for example, assess only the goals 
they have in common, thereby failing to address new goals the project has adopted? Or do we 
assess all goals, common or not, thereby asking students to respond to assessment tasks for 
which they have had little or no preparation?” (Kilpatrick, 2003, p. 478). Thus, a second 
methodological question for researchers conducting comparative studies is “How can students’ 
achievement be compared in a manner that is fair to both curricula given the differences in OTL 
in both the intended and implemented curricula?” 

We believe that conceptualization of the construct of OTL and methods for measuring it are 
critical issues for mathematics educators. In this research report, we address the two 
methodological questions by drawing upon data from field-study evaluations of the University of 
Chicago School Mathematics Project (UCSMP) curriculum materials. We use these data to 
illustrate methods for documenting OTL in relation to the implemented curriculum in 
classrooms. We also describe methods for data analysis that control for OTL in relation to 
achievement, and note how different conclusions can be reached when OTL is controlled. We 
hope that other researchers involved in curricular studies will find such methods promising. 

OTL Measures Related to the Implemented Curriculum  
In order to document OTL provided by classroom teachers, researchers sometimes use 

classroom observations supplemented by follow-up interviews or textbook diaries (Stigler & 
Hiebert, 1999; Tarr, Reys, Chavez, & Shih, 2006), possibly audio-taping or video-taping the 
observations. Although such methods provide rich descriptions of classroom discourse, they are 
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costly in money and personnel, particularly if many classrooms over a wide geographic area are 
involved. Hence, they are almost never used to describe what happens in multiple classrooms 
over the course of an entire school year. 

In the evaluation studies of the materials developed by UCSMP, researchers used a 
combination of teachers’ self-reports on curriculum implementation, classroom observations, and 
interviews to document opportunities to learn. During the 2005-2006 school year, field-studies 
were undertaken for Transition Mathematics (Third Edition) and Algebra (Third Edition), 
courses primarily for 7th and 8th/9th grade students, respectively. For each textbook chapter, 
teachers field-testing the UCSMP materials completed a chapter evaluation form on which they 
indicated if a given lesson was taught and identified the problems assigned from that lesson. 
They also rated lessons and problems, documented when and how they supplemented the 
textbook, and answered specific questions about sequence or approaches used in the chapter. The 
chapter evaluation forms were sent electronically to each teacher; the teachers could return them 
either electronically or via paper copy. 

For each UCSMP teacher, the number of lessons that were taught, including end-of-chapter 
summary materials that are an integral part of the text, was noted. In addition, because the 
UCSMP texts are written with the expectation that teachers will assign almost all the problems in 
each lesson, the number of problems assigned in each chapter was also compiled; in this case, the 
review and test problems at the end of the chapter were not included because teachers are 
expected to use these problems based on the needs of students rather than regularly assigning all 
of them. Finally, to understand how the nature of curriculum implementation varied across the 
school year, the percent of lessons taught and the percent of problems assigned were compiled 
for chunks of 4–5 chapters in each book. 

As shown in Tables 1 and 2, for each teacher using the UCSMP Third Edition materials, two 
measures of OTL in relation to implementation of the curriculum are obtained: the percent of 
lessons taught; and the percent of problems assigned.  

 
 

Table 1. Opportunity to Learn UCSMP Transition Mathematics (3rd Ed) by Teacher 

Teacher Percent of Lessons Taught  Percent of Problems Assigned 
 Ch 1-4 Ch 5-8 Ch 9-12 Overall  Ch 1-4 Ch 5-8 Ch 9-12 Overall 
 (n=44) (n=55) (n=42) (n=141)  (n=903) (n=1028) (n=706) (n=2637) 

B 82 75 62 73  73 65 47 63 
C1 98 89 0 65  79 84 0 60 
D 100 91 0 67  73 70 0 52 
E 95 100 40 81  71 73 28 60 
F 100 98 67 89  98 93 55 85 

Overall 95 91 34 75  79 77 26 64 
Note: Based on Thompson & Senk (2006b). 
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Table 2. Opportunity to Learn UCSMP Algebra (3rd Ed) by Teacher  

Teacher Percent of Lessons Taught  Percent of Problems Assigned 
 Ch 1-4 Ch 5-8 Ch 9-13 Overall  Ch 1-4 Ch 5-8 Ch 9-13 Overall 
 (n=39) (n=51) (n=60) (n=150)  (n=707) (n=940) (n=984) (n=2631) 

A 97 98 55 81  95 97 52 80 
C  92 88 37 69  81 79 27 61 
D 97 92 82 89  84 64 62 69 
E 97 88 47 74  96 81 43 71 
F 95 67 3 49  25 24 2 16 

Overall 96 87 45 72  76 69 37 59 
Note: Based on Thompson & Senk (2006a). 

 
From the data in Table 1, we can conclude that these five teachers are roughly similar in their 

implementation of the first two-thirds of the text, although teacher F typically assigns a higher 
percentage of problems than the other four teachers. However, differences appear in the final 
third of the text; in particular, two of the five teachers taught none of the content in the last four 
chapters. Thus, although students in the classes in all five of these schools ostensibly have 
studied the curriculum of Transition Mathematics, there are significant differences in the 
opportunities that students have had to learn the course content. 

Among the five Algebra teachers (see Table 2), there is again dissimilarity in the percent of 
lessons taught in the final third of the book. Further, it is clear that Teacher F assigns a much 
smaller percentage of the problems than the other teachers. The fact that her students did so 
many fewer problems than their peers in other schools raises questions as to whether their 
opportunity to learn is really similar to that of their peers, even when the teacher taught the same 
lessons. 

Across both studies most teachers taught the lessons in order, with the number of lessons 
taught based on how they paced the course. However, Teacher B in the Transition Mathematics 
study was an anomaly, consistently skipping lessons throughout the school year. With respect to 
problems assigned, Teacher F in the Algebra study is an outlier, consistently assigning far fewer 
problems than any of the other teachers in the two studies. Thus, with relatively little expense 
researchers have accurate measures of what aspects of the intended curriculum were actually 
covered; this information can supplement OTL measures related to the assessed curriculum and 
achievement.1 

Limited classroom observations and interviews provide additional data about teachers and 
the classroom context so the researchers can describe factors that influence pacing, selection of 
lessons taught, and percent of problems assigned. These limited observations confirm the 
reliability of the teachers’ self-reports on implementation for the entire school year.  

OTL Measures Related to the Assessed Curriculum 
Comparative studies of curricula often examine issues that arise and outcomes that are 

attained when students use one of two sets of instructional materials, say curriculum A and 
curriculum B. As noted by Kilpatrick (2003, p. 485) and the National Research Council (2004, 
pp. 112-113) the class, not the student, is the most appropriate unit of analysis in such 
comparative studies, and classes should be matched on critical variables as much as possible.  

All of the UCSMP field studies for Transition Mathematics, Algebra, Geometry, and 
Advanced Algebra have used matched-pair designs, with classes in the same school matched on 
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the basis of pretests of relevant prerequisite knowledge. Thus, each field study is a set of small 
studies replicated for each pair of classes. When possible, the pretest has been a standardized 
measure; when a content-specific standardized measure has not been found,  UCSMP researchers 
have created a test of knowledge that students entering the course should have regardless of the 
prior curriculum studied, based on recommendations of professional organizations and existing 
research.  

To examine the effects of the curriculum and teaching on students’ achievement and to 
account for the different goals that curricula and teachers may have, another measure of OTL 
was determined for each teacher. This measure was based on a question adapted from one that 
had originally been used in the Second International Mathematics Study (SIMS) (Schmidt, 
Wolfe, & Kifer, 1992). For each posttest item the teacher was asked, “During this school year, 
did you teach or review the mathematics needed for your average students to answer the item 
correctly?” Teachers were given three choices: (1) Yes, it is part of the text I used; (2) Yes, 
although it is not part of the text I used; (3) No. For each teacher and each posttest, the percent of 
items to which the teacher responded “Yes” was calculated.  

This measure of OTL based on teachers’ responses permits data on students’ achievement to 
be reported in three ways: 

� Overall achievement on the Entire Test, with the OTL percentage reported by class or 
teacher. 

� Achievement at the school level on a subset of items for which both teachers in the 
pair (the teacher using curriculum A or curriculum B) indicated that students had a 
chance to learn the content needed for the item. This test, which varies by pair but which 
controls for OTL at the school level, is called the Fair Test. 

� Achievement for the entire study sample on a subset of items for which all teachers in 
the study (whether teaching curriculum A or B) indicated that students had a chance to 
learn the content needed for the item. This test, which controls for OTL at the study level, 
is called the Conservative Test (Thompson & Senk, 2001). 

A repeated measures t-test on the mean of the pair differences (Gravetter & Wallnau, 1985) 
is then computed to determine if a significant difference in achievement exists between curricula 
on any of the three analyses.  

We illustrate this methodology using results of analyses of students’ achievement on a 36-
item UCSMP-constructed multiple-choice test called the Advanced Algebra Test; these data are 
from the field study of the second edition of Advanced Algebra reported in Thompson and Senk 
(2001) and Thompson, Senk, Witonsky, Usiskin, & Kaeley (2001).2 Table 3 contains the percent 
correct on this test for eight pairs of classes in four schools using the Advanced Algebra (Second 
Edition) UCSMP curriculum or the more traditional curriculum in use in the comparison classes. 
Table 4 provides the summary statistics for the repeated-measures t-test computed for each of 
these three approaches to data analysis. 

In Table 3 the data in the columns labeled OTL indicate that in all schools there are large 
differences in teachers’ reports about their students’ opportunities to learn the content assessed 
on the Advanced Algebra Test. Thus, it is not surprising that when OTL is not controlled (i.e., the 
achievement on the entire test is considered), a significant difference in achievement between 
students using the UCSMP Advanced Algebra or comparison curriculum is observed (see Table 
4), with UCSMP students scoring about 13% higher than comparison students. However, when 
controlling for OTL at the school level, the overall difference in achievement is also significant, 
with UCSMP students scoring about 9% higher on the Fair Tests (see Table 4). When OTL is 
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controlled at the study level on the Conservative Test, the number of items for comparing 
achievement is less than half of the items on the instrument, and no significant difference in 
achievement is observed. Hence, the three analyses illustrate that conclusions about differences 
in achievement are strongly related to teachers’ reports of OTL.  

We have used such analyses of Entire Tests, Fair Tests, and Conservative Tests for various 
instruments in studies of four curricula developed by UCSMP. This methodology allows us to 
conclude when differences in achievement are likely to be an artifact of differences in OTL and 
when they appear to be robust regardless of OTL. In addition, we have observed that generally 
achievement levels are higher for the Fair Tests than for the Entire Test, not unexpected given 
that the Entire Test assesses content that students have not studied. Achievement on the 
Conservative Test often falls between achievement on the Entire Test and the school’s Fair Test.   

Table 3. Mean Percent (Standard Deviation) Correct by Pair for Advanced Algebra 
Achievement Analyzed in Relation to Opportunity-to-Learn 

Entire Test  Fair Tests  Conservative 
Test 

UC  Comparison  UC Comp   UC Comp 

Pair 
ID 

No. of 
students 
in pair 

mean 
(sd) 

OTL  mean 
(sd) 

OTL  mean 
(sd) 

mean 
(sd) 

No         
Items 

 mean 
(sd) 

mean 
(sd) 

J18 18, 14 60.8 
(9.0) 

100  55.2 
(10.2) 

69  63.8 
(10.8) 

61.7 
(9.9) 

25  61.5 
(15.1) 

65.7 
(15.0) 

J19 11, 15 58.8 
(13.5) 

100  53.7 
(11.0) 

69  59.6 
(12.7) 

60.0 
(14.7) 

25  58.2 
(16.4) 

63.6 
(17.6) 

K20 22, 24 63.8* 
(13.0) 

94  45.9 
(10.0) 

72  66.8* 
(12.8)  

53.5 
(12.9) 

26  66.1* 
(15.5) 

54.7 
(14.2) 

K21 16, 23 64.8* 
(14.0) 

94  43.0 
(11.9) 

72  68.3* 
(15.6) 

51.2 
(14.1) 

26  65.0* 
(18.1) 

50.7 
(17.5) 

L22 19, 20 57.6* 
(16.9) 

92  38.8 
(9.1) 

75  61.5* 
(18.0) 

46.5 
(10.8) 

26  55.8 
(22.2) 

48.0 
(15.2) 

L23 13, 15 44.7 
(11.2) 

92  38.3 
(11.0) 

75  50.9 
(11.0) 

45.4 
(14.8) 

26  45.1 
(13.4) 

44.9 
(17.5) 

M24 29, 22 58.4* 
(12.7) 

92  37.8 
(13.8) 

47  59.6* 
(13.6) 

46.0 
(19.6) 

17  58.2* 
(14.6) 

46.1 
(19.6) 

M25 22, 23 39.6* 
(13.5) 

92  30.8 
(9.9) 

47  39.6 
(17.3) 

36.8 
(14.0) 

17  38.5 
(19.0) 

35.1 
(13.8) 

Total 150,156 56.1 
(15.4) 

  42.0 
(13.1) 

      56.1 
(19.0) 

50.0 
(18.4) 

Notes: Because the analysis of the Fair Tests is on a different set of items for each school, no 
overall mean percent correct is possible for this test. *indicates a significant difference in 
the pair means. 
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Table 4. Summary Statistics for Advanced Algebra Analyses Controlling for OTL 

Test No. of Items UCSMP - Comparison p 
  mean % s.d. (in %)  

Entire Test 36 13.125 7.281 0.0014* 
Fair Tests 17-26 8.825 6.833 0.009* 

Conservative Test 15 4.950 7.598 0.108 
* indicates significant difference in achievement among students using the two curricula on a 
repeated measures t-test to determine if the mean (UCSMP-Comparison) is different from 0.  

Discussion 
In this paper, we have illustrated several methods for capturing information about 

opportunities to learn at the classroom level, and several ways to analyze achievement data 
taking OTL into account. We argue that these methods for measuring OTL have much lower 
costs associated with them than classroom observations.   

Data from a questionnaire about the number of lessons taught and number of problems 
assigned allow researchers to obtain profiles of the nature and extent of curriculum 
implementation by the teacher. Data from a questionnaire about the teacher’s perception of the 
extent to which his or her students had the opportunity to learn the content needed to answer 
specific questions allow researchers to investigate the extent to which achievement differences 
between groups are artifacts of OTL or robust even if OTL is controlled. 

Furthermore, analyzing the data from a given instrument in three different ways using 
different sets of items permits maximum data usage while controlling for OTL. For instance, all 
the items on each posttest are used when assessing achievement on the Entire Test. Such an 
analysis assesses achievement on some content that students have not explicitly studied; perhaps 
such analyses assess students’ ability to transfer knowledge to new situations.  

Analyses of data from the Fair Tests address achievement on the common content at the 
school level. The Fair Tests control for the socio-economic context of the school and reflect what 
both teachers in a given school value. Given the high-stakes accountability assessments that 
educators in the U.S. must administer as a result of the No Child Left Behind legislation (2001), 
the Fair Tests might also reflect differences in state frameworks for a given course. Analyses of 
the Fair Tests maximize data at the school level while acknowledging differences that occur 
between schools.  

The Conservative Test is the most restrictive and uses the least amount of available data, 
because it is based on only those items for which all teachers participating in a study, whether at 
high or low performing schools, report that students have had an opportunity to learn the content. 
Such a test might be viewed as core content on which all can agree, regardless of philosophical 
or pedagogical beliefs related to the teaching and learning of mathematics.  

It should also be noted that the instruments used in the studies cited in this manuscript are 
specific to a particular course, rather than general measures of achievement. OTL measures seem 
to be particularly important when using instruments that assess content specific to a given 
course. However, we have found that teachers’ reported OTL varies even on standardized 
measures. 

Although we believe the OTL measures we have used are an important first step in 
addressing this issue, there are other issues related to OTL that need to be considered by the 
research community. For instance, is the simple teacher question on OTL (essentially yes or no 
to student opportunity to learn the content) sufficient? At times, we have evidence that teachers 
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covered the chapter in their book in which an item’s content would be found, but responded no to 
the OTL question (Senk & Thompson, 2006). So, what type of OTL measures might be used to 
determine which aspects of the content are taught (e.g., skill vs. concept vs. application)? How 
might OTL measures for pedagogical approaches be developed that are also low-cost but reliable 
and how might such measures be integrated into interpreting achievement on the assessed 
curriculum?  

Endnotes 
1. Data on students’ achievement from the evaluation studies of the third editions of 

Transition Mathematics and Algebra were not available when this manuscript was submitted. 
2. For copies of the 36 items, see Thompson & Senk (2001) or Thompson, Senk, Witonsky, 

Usiskin, & Kaeley (2001). 
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Inferring student understanding is imperative in mathematics teaching and learning. Methods for 
assessing understanding require constant exploration and evaluation, including open-response 
tasks as tools for gaining insights into student thinking. This detailed analysis of student 
solutions to selected open-response tasks on an exam administered to elementary students 
examines the role of strategy choices as indicators of mathematical understanding and 
proficiency. 

Purpose and Framework 
Inferring student understanding is at the heart of improvement in mathematics learning and 

teaching. Assessment provides valuable information which can be used to “promote growth, 
modify programs, recognize student accomplishments, and improve instruction” (NCTM, 1995, 
p. 27). It is imperative that the methods for assessing student understanding be constantly 
explored and evaluated. Our decision to research the open-response task as an assessment tool 
results from our perspective that students make sense of mathematics by exercising personal 
agency. Personal agency is the freedom and responsibility to choose to act (Walter & Gerson, 
2006). Open-response tasks allow students to exercise personal agency, hence eliciting not only 
what students know, but also how students explore concepts. Open-response tasks require 
“students to explain their thinking and thus allow teachers to gain insights into . . . the ‘holes’ in 
their understanding” (Moon & Schulman, 1995, p.30). How can “holes” in student understanding 
be inferred from analyses of student strategies in solving open-response tasks? Does a student’s 
strategy choice indicate a lack of proficiency or conceptual understanding that may be evidenced 
in alternative strategies?  

Method 
Pre- and post-tests consisting of 12 multiple-choice and 12 open-response questions were 

administered to 774 elementary students. We used a mixed method of qualitative and 
quantitative research procedures to infer student understanding of probability and fractions and 
to analyze students’ strategies on open-response tasks. A detailed analysis was conducted on 2 
open-response and a combination of 13 conceptually related multiple choice and additional open-
response questions on 172 post-tests given to fifth graders at two elementary schools. Each open-
response task was graded individually by two research team members. Discrepancies were 
discussed and resolved before a final score was given. Qualitative analysis was performed by 
assigning strategy codes to all student solutions on open-response tasks. Related questions 
answered incorrectly by each student were quantified. We noted relationships between 
incorrectly answered questions and alternative student strategies.  
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Data and Analysis 
The 172 fifth graders’ exam scores improved significantly (p < .01) from their pretest to their 

post-test performance. We discuss one open-response question here which asks students to 
identify the larger of two fractions (2/3 or 3/2), and use words or pictures to explain their answer. 
Sixty-three students received full credit for this problem. Three strategies received full points. 
Strategy 1 compares 2/3 and 3/2 to one whole by using a picture or explanation (Figure 1), 
strategy 2 compares 2/3 and 3/2 to one whole and represents 3/2 as a mixed number (Figure 2), 
and strategy 3 finds a common denominator (Figures 3 and 4). 

            

        
Thirty-five of the 63 students employed an intuitive strategy (strategy 1). Of these 35 

students, 57% missed two or more related questions involving finding a common denominator 
and 29% of the students missed multiple-choice question number 5 dealing with representing a 
fraction as a mixed number (see Table 1). Twenty-two students (35%) used strategy 2. These 
students performed better on question number 5 than those who used strategy 1.  

Seven students (11%) used a procedural strategy (strategy 3) to compare 2/3 and 3/2. 
However, only two of these students provided evidence that finding a common denominator is 
accomplished by re-unitizing each fraction so that each unit is divided into the same size of 
pieces (see Figure 4). Four of the 7 students who found a common denominator without 
interpreting its meaning missed 2 or more questions dealing with finding a common 
denominator. These four students might lack the intuition of knowing when to use this strategy. 
For example, analysis of Joshua’s exam suggests that when comparing fractions he found a 
common denominator, but when using a common denominator would be most useful for solving 
certain addition or subtraction problems he added or subtracted across the numerators and 
denominators. Five of the seven students missed an intuitive problem. A key finding of this study 
is that two of the seven students who did not miss the intuitive problem and who performed well 
on problems involving finding a common denominator were those two students who 
demonstrated their intuitive and procedural understanding as shown in Figure 4.  

 

 

Table 1 
 
 

Strategy 

Percentage 
of students 
who used 

this strategy 

Missed 2 
or more 
common 

denominator 
questions 

(procedural 
cd) 

Missed 
question 
#5 

(procedural 
mn) 

Missed 
question 
#14 
(intuitive) 

Comparison, 
Picture, Explanation 

(intuitive) 
56% 57% 29% 37% 

Comparison, 
Picture, Explanation,  
with Mixed Number 

(intuitive/procedural 
mn) 

35% 63% 4% 45% 

Common 
Denominator 

(procedural cd) 
11% 57% 14% 71% 

Figure 1 
Figure 2

  

Figure 4 

*As evident in this table, percentages 
are greater for the number of students who 
missed questions assessing understanding of 
those concepts that are evident in alternative 
strategies.  For example, the percentage of 
students that missed question #5 who did not 
include a mixed number in their solution 
(mn) was higher than those who did include 
a mixed number (cd = common 
denominator, mn = mixed number). 

Figure 
3 
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Conclusions 
A careful review of student strategies on open-response tasks warrants a new interpretation 

of the open-response task as an assessment tool. These fifth grade students who worked 
procedurally on open-response problems to find common denominators did not provide evidence 
of intuitive understanding through drawings or explanations. Students who did not employ the 
strategy of finding a common denominator might not be proficient with that procedure.  Students 
may be able to solve open-response problems, such as those involving finding common 
denominators, but when conceptually similar problems are placed in another context, students 
may be unsuccessful in demonstrating their content knowledge or mathematical skills. 
Implications for teaching include assessing whether or not students can flexibly use their 
understanding of fractions in multiple contexts. Open-response tasks provide opportunities for 
teachers to consider how students do not solve problems and encourage their students to develop 
understanding of those concepts addressed by alternative strategies. Through the use of open-
response tasks and analysis of alternative strategies, teachers can gain greater insight into student 
thinking and provide opportunities for their students to learn as they exercise personal agency. 
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The purpose of this proposal is to contribute in three important directions. First, it will 
contribute to pre-service teacher preparation by exposing pre-service teachers to an experiential 
instructional unit on formative assessment through the use of a network-based learning 
environment. Second, it will contribute to the development of evaluation and assessment tools 
that allow for valid, reliable and feasible interpretations of students work on classroom-based 
(performance-based) assessments with the future goal of better linking these formative 
assessments to larger-scale assessments of students’ mathematical knowledge. Third, it will 
contribute to the use of technology, like the network-based calculator system, in the design of 
more participatory learning environments to promote learning.  

Research goals and objectives 
This research study contributes in three important directions: first, to pre-service teacher 

preparation by exposing pre-service teachers to an experiential instructional unit on formative 
assessment; second, to the development of evaluation and assessment tools that allow for 
systematic interpretations of students’ work on performance-based assessments in math; and 
third, to the use of technology, like network-based calculator systems, in the design of more 
participatory learning environments to promote learning. The research questions that guided this 
study are: Can a network-based learning environment be designed to facilitate formative 
assessment in the classroom, by making students’ mathematical understanding observable, and 
allowing the teacher to provide opportunistic and timely feedback of students’ observed 
participation? What do pre-service teachers learn, as part of their teacher preparation program, 
after an instructional unit on formative assessment about this topic and about middle school 
students’ knowledge as elicited on a performance-based assessment in mathematics? 

Theoretical Framework 
This proposal builds on two important research findings about classroom assessment. First, 

that improvement in formative assessment will make a substantial contribution to the 
improvement of student learning (Black & Wiliam, 1998); and second, that more frequent 
classroom assessment of students’ learning yields to better teaching (Bransford, Brown & 
Cocking, 1999; Ball & Cohen, 1999). Some of the difficulties associated with formative 
assessment are that it is time consuming, difficult to implement, and thus, teachers rarely use it in 
their classrooms. The current release of the Texas Instruments Navigator System (TI-Nav) 
provides wireless communication between students’ calculators and the teacher’s PC. Because 
students’ individual input can be aggregated and displayed in a shared space, it is an ideal setting 
that enables real-time opportunistic feedback, self-evaluation, and supports instructional 
strategies (Stroup, Ares & Hurford, 2005). These are all fundamental aspects of formative 
assessment. A professional development unit, beginning in the pre-service teacher preparation 
program, needs to be created for the appropriate implementation of formative assessment and the 
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use of performance-based assessments in the classrooms. This will give future teachers all the 
benefits of observing, assessing and evaluating students’ mathematical knowledge. These skills 
can be applied to reflect on their own teaching and in better identifying math proficient students, 
including those who are thought to be unsuccessful (Wiliam, Lee, Harrison & Black, 2004). 

Research Design and Antecedents 
According to the National Research Council (2001), one of the problems encountered in 

assessment design lies in the tensions among: how students learn math, how their knowledge is 
elicited and documented, and the instruments used to interpret this knowledge. For this study, we 
draw on students’ mathematical knowledge in the form of models that can be observed and 
documented through the implementation of performance-based assessment tasks called model-
eliciting activities (MEAs) (Lesh et al., 2000). MEAs are real-life complex problems that are 
meaningful for students, and in order to be solved, students must develop mathematical models 
that elicit and document their ways of thinking about relevant math ideas. Examples are 
provided: http://128.83.243.140/classes/knl2006fall/MEAwebsite/meas.htm.  

Previous research was conducted where three different MEAs were implemented with 117 
7th grade students in a public Midwestern urban middle school. These activities targeted relevant 
mathematical content in NCTM’s Principles and Standards in School Mathematics (2000). Four 
math educators assessed and evaluated students’ performance on these activities. In conducting 
formative assessment, they defined a pool of descriptors that well-described students’ math 
knowledge as elicited in these tasks. Students’ solutions to these MEAs, and experts’ descriptors 
of students’ math knowledge were used for this study.  

Methodology 
Participants for this study were a purposeful sample of 33 pre-service teachers, obtaining a 

degree in Math or Science, and also enrolled in a recognized teacher preparation program in a 
large higher-education institution in Texas. They were in their 2nd year in the teacher 
preparation program, and had had a year of teaching practicum. The setting for this study was in 
a university classroom. To become familiar with the task, participants were asked to solve a 
MEA that elicited their understanding of math ideas: variation (quadratic, linear, inverse, direct), 
variable identification, algebraic and pre-algebraic notation, patterns, profit, and cost.  

Stage I Each participant was provided with the same 5 examples of 7th grade students’ work 
of the MEA they previously solved. They were given a scoring rubric and asked to provide a 
holistic score to students’ performance on this activity by using the TI-Nav. 

Stage II Each participant was provided with a pool of descriptors that experts identified to 
potentially describe students’ math knowledge as elicited in the given MEA. They were provided 
with a new set of 5 examples of real students’ work on this MEA, and were asked to assess by 
deciding which descriptors best fit the student’s work. Later, they were asked to individually 
score students’ performance using the scoring rubric. All was done with TI-Nav.  

The aggregate of all the descriptors (for each of the 5 examples) was presented in a graphical 
format in the shared space of the TI-Nav. Participants were encouraged to extend their formative 
assessment experience to generalize in: (1) the graphical display as a pictorial descriptor of 
students’ math knowledge elicited on the MEA; (2) what students might know, and what they 
need to know; (3) how might students’ knowledge be extended through instruction; (4) how this 
might relate to students’ performance score; and, (5) how the graphical display might show inter-
rater agreement on the descriptors. Data analysis was conducted focusing on participants’ 
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evaluation of middle school students’ work, their description to students’ work on the MEA, and 
their reflections on the experience of formative assessment.  

Results and Conclusions 
The network-based environment provides a quick and reliable way to pull forward pre-

service teachers’ ideas for discussion, reflecting back to the others the current (and changing) 
ideas about students’ math knowledge. Evidence shows that pre-service teachers benefited from 
being exposed to real students’ work as a way to improve their ability to do formative 
assessment. Pre-service teachers went beyond only assessing whether students obtained the 
correct answer or not by being more aware of the subtleties of what students’ work shows them 
about their math knowledge and how different students have approaches to solving the same 
problem. The descriptors of relevant math knowledge created by experienced teaches helped 
these pre-service teachers scaffold their understanding of formative assessment, and its benefit to 
improve student math learning and monitor student progress. Nevertheless, there was little said 
about the use of formative assessment in informing instructional decisions. Many envisioned the 
use of a similar setting as a process of continuous display of ideas, reflection, and analysis in 
effectively implementing formative assessment in their future math and science classrooms. 
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Values/beliefs in measurement are highly controversial and rarely explored. Yet is a vital part of 
classroom assessment. Based on a quantitative research study, this paper examines mathematics 
teacher’s values in relation to the exams they create. The framework is based on Messick’s four 
faceted model. The results help identify areas of strength and weakness in the quality of teacher 
assessment. 

Values and beliefs play an integral role in teachers’ lives. Teachers determine on a daily basis 
what students should learn, in which way and how to assess learning. This is all accomplished 
while staying within the confines of teachers’ professional ethos and ministry guidelines. This 
paper examines the cohesion of these relationships to analyse the quality of teacher-generated 
assessment.  

Perspective 
Teachers develop final assessments that measure student’s ability within a course. This is 

considered "assessment of learning." The Western and Northern Canadian Protocol [WNCP], 
(2006) state: "The purpose of assessment of learning is to measure, certify, and report the level of 
students’ learning, so that reasonable decisions can be made about students" (p.56). Thus exams, 
which are developed at the end of the year for this purpose, are comprehensive and ought to 
provide testing results, which are generalizable from school to school. 

Teachers are expected to create these exams in relation to the pre-defined set of values set out 
by the Ministry, yet they also have their own personal values to contend with. As a result, a 
struggle may exist between teachers’ internal beliefs and the external values that are determined 
by the central authority (Katz, Earl, & Olson, 2001). Messick (1995) also states: “The 
consequential basis of test interpretation is appraisal of value implications of the construct label 
itself, of the broader ideologies that give theories their perspective and purpose…” (p. 748). 
Thus, a major determinant of the quality of a teacher-constructed assessment is a teacher’s ability 
to remain in line with measuring the intended outcomes. 

As part of a larger research study examining the validity of teacher-generated grade 9 
mathematics exams in Ontario (MPM1D exam); this paper explores quality of assessment as the 
extent to which curriculum, teachers’ belief/value in what is tested is coherent. The paper also 
investigates the extent to which exam content aligns to ministry expectations.  

Method 
The data for this study was collected in the fall of 2005 and analysed in early 2006. MPM1D 

is a mandatory course in all participating schools; students who successfully complete the course 
earn a credit towards graduation. MPM1D is based on four mathematical strands: Number Sense 
and Algebra, Relations, Analytic Geometry and Measurement and Geometry, the strands are also 
subdivided into expectations (Ministry of Education and Training, 2000). 

Two data sets were collected from 7 teachers in 3 independent Ontario schools. Data set A 
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was collected through coding a set of teacher-generated MPM1D exams based on the alignment 
model developed by Porter, Chester, and Schlesinger (2004). Data set B was collected through a 
teacher questionnaire. The instrument for Data set B was developed and field-tested with ten 
mathematics teachers and items are linked to the alignment model. The questionnaire asked 
teachers to identify the percentage of curricular expectations they believed should be on the 
exam by selecting one of 7 percentage intervals (0, 1-5, 5-10, 11-15, 16-20, 21-25, 26-30, 31+) 
for each MPM1D curriculum expectation.  

Descriptive methods were used to illustrate the construction of the exams, questionnaire 
results and ministry expectations. Chi-square goodness of fit and inter-rater reliability analysis 
was used to examine the agreement on MPM1D content.  

Results & Discussion 
In the classroom, teachers may feel they are making informed decisions about students, the 

reality is that all measures are estimate of student competence and the more precise the testing 
instruments the better the diagnoses of student learning. The results identify the construction of 
all the exams appears to be heavily skewed away from the Measurement and Geometry strand, 
this was also mirrored in the questionnaire. This is of great concern as a balance of these strands 
forms the foundation of higher-level mathematics.  

Ambiguity in ministry expectations made the study more complex. However, this may be 
purposeful as not to prescribe the curriculum. Adversely this makes examining the relationship 
between ministry excitations and teachers’ values and/or exams unreliable.  

The most fascinating finding was the relationship between the different school exams. The 
exams are aligned very well on the curricular expectations, however when examining the 
distribution of marks for the curricular expectations, alignment is very low. Suggesting that 
exams are comparable between schools, while the results are not, different schools place 
emphasis on curriculum differently.  

The research conducted for this paper, explores how cohesion between curricular values, 
ministry expectations and teacher-generated exams contribute to the quality of assessment. The 
methodology employed is unique, however still needs refinement for future studies. Overall, 
what appears is the MPM1D exams are developed in a similar manner to other classroom 
assessments, making the quality of the exams questionable.  The exams creation process needs to 
be greatly refined to increase the quality of interpretation. This is important, as these exams are 
methods of accreditation. Thus educators need to critically examine the purpose “assessment of 
learning” – more specifically in design and intent otherwise we run the risk of missing what 
mathematics students ought to know developmentally.  
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An alternate view of achievement gaps based upon achievement levels rather than demographic 
groups is proposed. Four distinct patterns of instructional effects on low and high achieving 
students are discussed. 

“Closing the achievement gap” is a goal espoused by many — from those in the mathematics 
education research community to the authors of No Child Left Behind. How we define these 
gaps influences our approach to closing them. In this presentation, we consider an alternative 
definition and advocate a classroom-based approach that focuses on teacher moves and student 
engagement, two factors directly related to achievement. 

A standard definition of achievement gap is a significant difference in standardized test 
scores between some aggregate of white, largely middle-class students and some aggregate of 
“other” students, defined as not white or not middle class. Posing the problem this way has led to 
solutions aimed at the “other group,” including helping “them” catch up or accelerate their 
learning, and identifying and addressing cultural factors from institutional racism to taboos on 
“acting white.” In practice, this kind of definition can lead to ascribing qualities of the aggregate 
to the individual, such as characterizing all students in the “other” group as low-achieving. This 
is a serious category mistake that only makes things worse. 

We propose an alternative view, a shift from a view of differences between demographic 
groups across schools to differences between achievement groups within classrooms. Consider in 
each school, or classroom, the students who are low achieving and the students who are high 
achieving—where achievement is measured by standardized test scores or by school-based 
assessments. The issue of large scale achievement gaps can be framed differently, in terms of 
these groups. The problem is that the ratio of low-achieving to high-achieving African-American 
students, for example, is higher than the ratio of low to high-achieving White students. 
Surprisingly, evidence suggests there is a great deal of stability in differences between low and 
high achievers (regardless of race or ethnicity), and a positive correlation between low 
achievement one year and low achievement the next. These patterns may be an artifact of the 
psychometric properties of standardized testing, a reflection of the “accumulation of 
disadvantage” (Valian, 1998), or the net effect of classroom processes that reinforce prior levels 
of achievement. (We do not assume they reflect immutable differences in children’s ability to 
learn.)  

What is the role of classroom processes in maintaining or ameliorating gaps between 
achievement groups in classrooms? To answer this question, we examined prior studies of 
classroom instruction that reported achievement gains disaggregated by levels (e.g., low, 
medium, high) and concentrated on inquiry learning, where inquiry learning is an imprecise 
umbrella term for taking a problem solving approach, encouraging argumentation and 
justification, emphasizing conceptual understanding, and so on. We focus on classroom 
processes (teacher moves, student engagement around tasks) as the explanatory unit, not 
curriculum programs – whether it’s Everyday Math or Singapore Math –  as proxies for these 
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processes.  We found four patterns of effects on low and high achieving students.  
Some classroom processes support higher achievement for all. This leaves a persistent gap if 

the increase is even across both groups (Saxe et al., 1999), but in some cases actually widens the 
gap by raising the ceiling on achievement, giving high achieving students even more room to 
excel. For example, in a case study of a highly skilled cognitively guided instruction third-grade 
teacher, Koehler (2004) found lowest performing students made the most dramatic gains relative 
to pre-established proficiency levels on a district-mandated standardized test. The highest 
performing students were operating at least a standard deviation above middle-schoolers. The 
teachers in these studies had a high level of knowledge of children’s mathematical thinking, and 
used this knowledge to differentiate – or essentially, fine tune – tasks to maximize opportunities 
for student engagement. 

A second group of classroom processes supports higher achievement for middle or high-
achieving students but not for low-achieving students, clearly widening the gap. Some studies 
(Baxter, et al., 2001; Lubienski, 2000) have found higher gains for middle- and high-achieving 
students than for low-achieving students. One possible explanation is that tasks were, on average, 
too difficult for low achieving students and so those students were meaningfully engaged at a 
lower rate. Another possible explanation is that teacher moves differentiated among students 
depending on whether students were considered low or high achieving, resulting in qualitatively 
different opportunities for engagement. 

A third category is marked by closing or narrowing the gap between low and high achievers. 
The idea of “narrowing” suggests that the higher achieving group is held in place while the lower 
achieving group catches up, or that the lower achieving group learns at a faster rate than the 
higher achieving group. If an achievement measure has a ceiling effect, it lends the appearance 
of narrowing, rather than reflecting more realistic learning gains. For example, U.S. states 
showing a narrowing of achievement gaps between demographic groups (not achievement 
groups) that was not corroborated by the National Assessment of Educational Progress (NAEP) 
in fact were relying upon ceiling effects (Lee, 2006). 

We propose a fourth category, based upon the notion that prior achievement levels should not 
foreclose or substantially limit what students can learn from instruction: classroom processes that 
result in gains that are not predictable based on initial achievement rankings. Some gain 
considerably, some do not, but it is difficult to predict who will do what based on previous 
achievement scores. This kind of approach ruffles now rigid boundaries in classrooms between 
low and high achieving groups. We found no examples of classroom instruction where 
achievement gains fit this pattern.  

With the exception of the second pattern, each of these patterns arguably supports a version 
of equity. However, we propose creating and studying instruction that exemplifies the fourth 
pattern is a critical program of research towards equity in school mathematics.  
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This paper concerns a project to explore factors affecting improvement in mathematics 
achievement at Grades 3 and 6. We believe that understanding the relationship between school 
practices and patterns of improvement is fundamental to understanding strategies that provide 
opportunities for all students to successfully learn mathematics. The concept of “learning 
environment” as set out by Bransford et al. (2000) informs our analysis of the data. 

Since 1997, when a new curriculum was launched, student achievement in Ontario schools 
has been described in terms of four “achievement levels”.  The provincial standard is level 3 – a 
“high level of achievement” and a level at which parents “can be confident that their children 
will be prepared for work at the next grade” (The Ontario Curriculum, Grades 1-8, 
Mathematics,Ministry of Education and Training, 1997, p. 8).  

As a research group seeking to understand the factors contributing to mathematics 
improvement, we are concerned that the provincial focus on achievement of the standard ignores 
improvement shown by students below level 3. It embodies a dubious philosophy of education in 
which there are winners and losers and where “reaching the standard” or “failing to reach the 
standard” is expected to have significant motivational effects on students, teachers and schools.  

In the first phase of our work, we developed a weighted average system, whereby weights 1, 
2, 3, 4 are assigned to the percentages of students with achievement at levels 1- 4 respectively 
and the weighted percentages are added to generate a school score between 0 and 400. We used 
the WA system to examine the results of all grade 3 and 6 students in two Ontario school boards 
and identified a number of schools in which there was marked improvement in mathematics 
achievement, although that improvement may not have been recognized by the provincial 
formula. We believe that this approach allows us to recognize improvements in achievement of 
the majority of learners in the majority of schools. 

In phase 2 of our work we conducted case studies at 12 of the schools that had shown a 
strongly positive improvement on our measure, in order to develop a deep understanding of 
contributing factors. We carried out questionnaire surveys of teachers and principals, observed 
mathematics lessons, and interviewed teachers who may have had an impact on student results. 
For example, if a school had improved its grade 3 scores, we met with those teachers who had 
been involved with the kindergarten to grade 3 program at that school in the past 5 years.  

Theoretical Framework 
In examining the collected data we used the concept of learning environment as envisioned 

by Bransford, Brown, Cocking, Donovan, and Pellegrino (2000); they state that learning 
environments must first be learner-centred. That is, they must take into consideration the 
knowledge, skills, attitudes, and beliefs that learners bring to an educational setting. Because of 
the complexity of meaningful knowledge and skills, scaffolding must be provided to help 
learners carry out components of the task that they cannot yet manage on their own. Learning 
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environments must also be knowledge-centred. In structuring such environments it is critical to 
provide effective and ongoing professional development to deepen understanding of content 
knowledge. Thirdly, learning environments must be assessment-centred. The assessment should 
focus on higher level thinking skills, not only on factual or procedural recall. Fourth, Bransford 
et al. state that learning environments must be community-centred. Finally, the design of learning 
environments must be coordinated so that all four elements function together.  

Study Findings 
Our results showed that the study schools had implemented changes in all four areas. They 

had developed particular initiatives that took into account students’ individual needs and prior 
knowledge; their teachers were involved in a range of professional development projects and 
were making significant use of provincial curriculum documents and exemplars; on an ongoing 
basis schools were using the results of diagnostic assessments to inform program decisions, and 
they had developed connections with the broader community. However, there were differences. 

Schools in Board A were largely autonomous. They analysed their own provincial results and 
developed a range of unique responses at the school level. In most cases, programs were aimed at 
improving school culture and/or literacy skills. For example, teachers attended literacy 
workshops, and schools mobilized classroom teachers, special education teachers, parents, and 
even local seniors to help implement a variety of reading/writing support strategies. In contrast, 
Board B developed mathematics initiatives at the board level. For example, workshops were 
designed around kits of manipulatives provided (and maintained) by the board, numeracy 
specialists were assigned to groups of schools to model best practices and mentor teachers, and 
teacher candidates from the local university were brought in as tutors. There was no common 
mathematics text for schools in Board A, while all schools in Board B used the same (new) text.  

In Board A schools some teachers were using ideas from numeracy workshops, emphasizing 
problem solving and use of manipulatives, and encouraging students to share their ideas, and 
explain their thinking, but interviews revealed that these changes were recent and could not be 
related to improvements in mathematics achievement over the past five years. On the other hand, 
in Board B there was extensive evidence of well-established ‘best practices’ in mathematics 
teaching, an emphasis on the use of multiple approaches to solving problems, displays of 
mathematical work, and a pervasive attitude that “math is fun”.  

Teachers were asked to reflect on possible reasons for the improvement in mathematics 
scores. In Board A, teachers mentioned consistency in staff, school climate initiatives, attention 
to early identification and remediation in literacy and numeracy, focused reading programs, 
collaboration and communication at the division level, and goal setting. In Board B, teachers 
credited openness to new strategies, teachers who enjoy math and have backgrounds in it, teacher 
dedication, research-based mathematics curriculum materials, and “knowing what’s required”.  

Thus, study results indicate that diverse approaches contributed to the study schools’ 
mathematics improvement. In one board, a strong emphasis on literacy led to collateral benefits 
in mathematics; in the other, board-wide mathematics initiatives were the key factors. At the 
same time, in both boards, responses to the initial problem of low scores involved the 
implementation of research-based strategies to strengthen the foundations of a learning 
environment -  learners, knowledge, assessment and community.  
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This report describes a teaching experiment designed to document effects on students’ 
understanding and other valued learning outcomes from an example of high-fidelity 
implementation of social-constructivist pedagogy and curriculum compared to an example of 
traditional behaviorist mathematics instruction. A mixed-methods analysis provides evidence of 
significant differences in important learning areas not documented by a state criterion-
referenced test. 

Conceptual Perspectives 
Authors of Principles and Standards for School Mathematics (The Standards, NCTM, 2000) 

argue that “Students must learn mathematics with understanding, actively building new 
knowledge from experience and prior knowledge” (p. 15). Clearly, achieving this goal requires 
major changes in curriculum, teaching, and assessment. The Standards also argue that “Teachers 
need to move beyond a superficial ‘right or wrong’ analysis of tasks to a focus on how students 
are thinking.... Although less straightforward than averaging scores on quizzes, assembling 
evidence from a variety of sources is more likely to yield an accurate picture of what each 
student knows and is able to do” (p. 23). 

Over a decade ago, Hiebert and Carpenter (1992) argued that “one of the most pressing 
problems in education is the development of procedures for assessing higher-order thinking…. 
Significant progress… depends on good measures of understanding, so that the specific 
outcomes of instruction can be assessed. Progress in achieving widespread implementation of 
curriculum programs stressing understanding depends on being able to document the outcomes 
of such programs” (p. 89). In today’s accountability environment, documenting students’ 
understanding and problem solving as outcomes of particular learning experiences remains a 
significant challenge for teachers and other stakeholders. 

This study examines the following research question: How can we gather evidence of 
learning that goes beyond standardized test scores and fairly represents the broader goals of the 
NCTM Standards, particularly the process standards through which understanding is 
demonstrated? 

Methods and Evidence 
The first author taught mathematics for one hour each school day for six years to the same 

group of students at one elementary school in the Western U.S. She began teaching this 
experimental group as a natural class of 22 first-grade students and continued to teach these 
students on a “pull-out” basis through sixth grade. A control group began with 26 students at a 
neighboring elementary school with very similar demographics. The data examined in this study 
comes from the first year of this six-year longitudinal study. 

The experimental group received instruction in mathematics that can be characterized as 
social-constructivist and highly consistent with the NCTM Standards. This instruction was 
orchestrated and supported by the units from the Investigations in Number, Data, and Space 
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curriculum (Russell & Tierney, 1998). These materials were used in a manner which qualified as 
a high-fidelity implementation (Reys, 2004), based on the following criteria: (1) regular and 
primary instructional resources, (2) significant amounts used during the year, and (3) 
instructional decisions influenced by the philosophies of the materials. Instruction in the control 
group classrooms consisted primarily of direct instruction in counting, learning routine 
computational procedures, and memorizing number facts typical of the traditional focus on 
learning basic skills. 

Near the end of the first-grade year, each student was interviewed by the first author. 
Students’ responses during these interviews were videotaped and transcribed. The problems used 
were created to provide evidence about specific learning goals, including the mathematical 
content and types of problems emphasized in the NCTM Standards and research on children’s 
understandings of number and operations. These goals were associated with production of 
correct answers (CA), problem-solving strategies (PS), understanding of concepts (U), and 
communication (C). 

The authors used a five-point (0-4) general scoring rubric as the foundation for developing 
topic-specific and problem-specific rubrics for scoring students’ responses to each of the 
interview problems. These rubrics provide ways to quantify the qualitative differences among 
student responses, while giving value to those performances identified in the NCTM Standards 
and the authors’ goals. These rubrics describe and value the more advanced performances as well 
as the typical inadequacies seen in the interview data. 

The students in both groups also completed a constructed-response problem-solving activity 
and participated in their states’ end-of-level criterion-referenced standardized testing. 

Results and Discussion 
A multivariate analysis of variance (MANOVA) test of the significance of the differences 

between the experimental group and control group (simultaneously considering composite 
percentages for the interview, the constructed-response task, and the state criterion-referenced 
test) indicated significant evidence of a treatment difference (p-value <0.00001). Investigating 
the effect of each of these data sources individually shows there is strong evidence of a treatment 
difference for the interview and constructed-response task. The mean percentage score on the 
interview for the experimental group was about 17 percentage points higher than the control 
group at a 95% confidence level. However, there is no evidence of a treatment difference 
between the experimental group and the control group for the state mathematics core test. 

Conclusions 
The methodology applied in this study provided clear evidence of significant differences in 

learning outcomes between two groups of students that were not documented by their state 
criterion-referenced testing program. Important learning goals for students expressed in the 
NCTM Standards were documented, described, and valued using rubrics for analyzing students’ 
responses to problem-solving tasks conducted during videotaped clinical interviews. 
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This research examined the impact of an end-of-course assessment on high school teachers’ 
expectations for students in Algebra I classrooms. Data sources included official state 
documents, interview transcripts, and test results. Results showed that although the test 
implicitly communicates expectations for students to engage in mathematical processes—
problem solving, etc.—the expectations are not explicitly communicated to teachers and 
students. 

To graduate from high school, all students in Indiana must take Algebra I. Aligned with 
Indiana’s Academic Standards for Mathematics, the Algebra I End-of-Course Assessment 
(Algebra I ECA) is a final exam measuring what students know and are able to do upon 
completion of the course. As part of Indiana’s school accountability system, the Algebra I ECA 
is designed to ensure the quality, consistency, and rigor of Algebra I across the state. Passing the 
Algebra I ECA is not currently a requirement for graduation. A guiding question for this research 
was, “Why do students perform so poorly on the Algebra I ECA?” Additional questions 
included, “What are the relationships among the intended curriculum, the implemented 
curriculum, and the achieved curriculum in Algebra I in Indiana schools?” “What expectations 
for teachers and students are communicated through the intended curriculum?” “What 
expectations for students are communicated through the implemented curriculum?”  

A particular focus in this investigation was the role of mathematical processes—problem 
solving, reasoning, communication, representation, and connections—in the various Algebra I 
curricula. These processes are important ways of acquiring and using mathematical content 
knowledge (NCTM, 2000), and the ability to engage in these processes is an important part of 
mathematical competence (Hiebert, 2003). 

To examine the intended Algebra I curriculum the researchers studied various documents 
posted on the Indiana Department of Education (IDOE) website. The documents describe 
graduation requirements, standards, textbooks, and details regarding the Algebra I ECA itself. To 
gain insight into the implemented curriculum, the researchers interviewed 12 teachers from 8 
high schools and examined various printed materials – including a departmental curriculum 
guide, a list of “power standards,” a final exam study guide, and several final exams – from the 
participating schools. Evidence for the achieved curriculum was found in students’ performance 
on the Algebra I ECA. 

Results 
The mathematical content of the intended Algebra I curriculum is clearly communicated 

through documents posted on the IDOE website. The role of mathematical processes, however, is 
not as prominent in these materials.  
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Of the eight schools in the study, only three suggested they made changes in their curriculum 
because of the test. The five that did not attribute the test as a factor in their implemented 
curriculum suggested new textbooks or state standards as influential. Schools least influenced by 
the test indicated the lack of consequences related to test scores as a reason to de-emphasize the 
test at this point. Although some schools do not value the test at this point, they do recognize 
expectations that are being communicated through the test. Teachers’ comments revealed that 
some Algebra I teachers do not expect their students to develop long-term mathematical 
understanding beyond recall of facts and procedures. Those schools more influenced by the 
Algebra I ECA cited a stronger focus on word problems, a stronger focus on “thinking,” a 
stronger focus on graphing, earlier coverage of topics, and more review as changes made in their 
curricula. 

Evidence of the achieved curriculum appeared in the results of the Algebra I ECA. The 
number of students tested was 69,198 with 24.3% passing. The minimum attainted scaled score 
was 200 and the maximum attained scaled score was 800. The scaled score cut was 579 and the 
state average scaled score was 510.7. The results for the various categories of test items will be 
shown in a table (not included here for lack of space). 

Discussion 
The results of the Algebra I ECA suggest the need for change. Etchberger and Shaw (1992) 

note that “perturbation” is the first step in a process of change in teachers. They describe 
perturbation as, “a dissatisfaction or uneasiness with the way things are, e.g., teachers may not be 
happy with their present teaching methods or satisfied with their students’ understanding”  (p. 
412). The Algebra I ECA has created such a reaction among teachers, even when they claim they 
are not making changes in their curriculum because of the test. The teachers who do make 
changes do so only after approving the new expectations as beneficial to students. Some teachers 
respond to the perturbation by changing their implemented curriculum. The aspects of these 
changes include adjustments in mathematical content, expectations for student engagement in 
mathematical processes, and opportunities for more review. Other teachers, though, do not make 
changes because: (1) they agree with the ideas but they have low expectations for their students, 
or (2) they do not agree with the ideas because their own vision of mathematics (algebra) is 
different. 

It has long been known that large-scale assessments such as the Algebra I ECA influence 
teaching and learning. “Tests are more than a simple instrument of measuring achievement. They 
are interactive with the learning environment since they communicate to teachers and students 
society’s values about what students should learn”  (Webb, 1992, p. 679). The Algebra I ECA 
communicates expectations for knowledge of mathematical content and engagement in 
mathematical processes, but this communication is merely implicit, not clearly articulated. The 
authors will offer suggestions to address the problem. 
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Effective professional development (PD) is grounded on best practices (Ball & Cohen 1999, 
Clarke 1994) and evidence (Holcombe 2004, Love 2002) and has student learning and 
achievement as the ultimate goal (Guskey & Sparks 2004, Smith 2001). Under a 2005-06 Texas 
Education Agency grant, we developed evidence-based PD using item analysis of data from the 
state’s high-stakes mathematics test (TAKS: Texas Assessment of Knowledge and Skills) for 
middle school students’ achievement in mathematics. The 23 participating teachers are from 
high-need (based on % of students not passing mathematics TAKS) and low-SES (based on 
percentage of students participating in free or reduced-price lunch) schools.  These schools’ 
student bodies are about 80-90% Latino/Hispanic. 

Our 14 PD workshops engaged teachers in analyzing student error patterns and adapting 
pedagogy.  Each session was launched by teacher reflections upon low-performing items from 1 
of the 6 TAKS objectives.  Teacher exploration of items went beyond teaching-to-the-test to 
unpacking big conceptual ideas and strategies (e.g., multiple representations) to help improve 
achievement on a much larger collection of items, and situate this understanding in a larger set of 
curriculum objectives and in the K-12 continuum.  

We used these measures:  (1) TAKS is administered in mathematics at Grades 3-11, and 
satisfactory performance on grade 11 is required for HS diploma. 
www.tea.state.tx.us/student.assessment/; (2) Teacher Observation Protocol (teacher lesson 
observations were accompanied by journal reflections and observer instruments informed by 
issues addressed during the workshops); (3) Teacher Knowledge Survey (TKS) of TAKS-like 
problems for teachers to solve, identify big ideas, and explain how they would teach them; (4) 
Teacher Reflections after each workshop session, focusing on any changes in teaching. 

Our results include solid improvement in student TAKS scores.  The TKS revealed lowest 
performance on the “patterns, relationships, and algebraic reasoning” and “measurement” 
objectives, which are the lowest performing two TAKS objectives for MS students!   
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DEVELOPMENTAL UNDERSTANDING OF MATHEMATICS WITH ELE MENTARY 
SCHOOL STUDENTS 

Doug McDougall 
OISE/UT 

dmcdougall@oise.utoronto.ca 

Introduction 
This research describes the process and findings for the development and validation of 

developmental continua in elementary school mathematics. A major goal was to provide a 
framework for identifying the phases at which students are operating in mathematics. This 
framework is based on key concepts and skills matched with phases of development that students 
pass through to understand mathematics.  

Developmental continua describing the phases that students pass through as they acquire the 
skills and understanding of concepts associated with given subject are of great use to teachers 
since they link curriculum, assessment, and instruction.  

In addition to the need to organize mathematics curriculum guidelines in ways that facilitate 
teaching and learning, educators are also concerned with understanding how students think about 
mathematics. One prevailing view is that an improved understanding of how students think 
mathematically will lead to improved student achievement (Ross, McDougall & Hogaboam-
Gray, 2002). 

Methods and Data Sources 
Data collection to validate the developmental maps occurred during two stages of testing in 

2003 and 2004. Students in Kindergarten to Grade 3 answered sets of questions in oral 
interviews; students in Grades 4 to 6 completed sets of written questions. Correlations among 
responses to questions in the same developmental phase and across developmental phases were 
examined to establish that the items were, in fact, empirically related, as had been indicated on 
the relevant map (using a mean >0.5, r =.40, and p<0.05). Questions yielding low mean scores 
and questions that were negatively correlated with other items in the same phase or with other 
items in adjacent phases were further examined and rewritten. 

Findings 
Field-test research has validated much of the researchers’ original hypotheses regarding the 

phases of development for the five math strands. For the purposes of this paper, we will only 
describe the findings relating to Number and Operations. There were five phases in the Number 
and Operations developmental map, with five concepts and three skills. 

Research for Number indicates that very few students, even at Grade 6, reach Phase 5 (the 
flexible phase), and many do not even reach Phase 4. This suggests that deeper understanding of 
some of the topics presented to students may occur later than we think. Another reason might be 
that the educational system does not regularly provide sufficient conceptual underpinning for 
students to allow students to reach this phase.  

Research for Operations resulted in a similar finding: very few students, even at Grade 6, 
reach Phase 5 in the Operations strand because relatively few students are able to work with 
decimal operations. This is particularly the case in the area of multiplication and division. This 
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also indicates that relatively few students consider alternatives and make explicit choices about 
how to calculate in particular situations 
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PRODUCING A VIABLE STORY OF GEOMETRY INSTRUCTION: W HAT KIND OF 
REPRESENTATION CALLS FORTH TEACHERS’ PRACTICAL RATI ONALITY? 

Patricio Herbst (1) 
University of Michigan 
pgherbst@umich.edu 

Daniel Chazan 
University of Maryland 

We report on the development of representations of teaching based on sequential-art sketches of 
classroom stories. We demonstrate with focus group data that these resources can help sketch 
compelling classroom stories and elicit the practical rationality of mathematics teaching.  

For quite some time policy makers have looked for levers for instructional improvement –
whether increasing teacher knowledge, upgrading instructional resources, or raising standards for 
student achievement. But instruction, like many other human activities that take time and recur 
over time, is organized by a rationality, a way of doing the activity that makes sense to 
participants and that tends to keep the activity stable and viable. We posit therefore that in order 
to design and promote improvements that are feasible and sustainable reformers also need to 
know about the mathematical work that teachers and students customarily do as they interact in 
classrooms. We have borrowed from Bourdieu (1998) the notion that a practical rationality, tacit 
and shared, undergirds the decisions and actions of the mathematics teacher in specific 
instructional situations. In the present paper we describe and illustrate a novel technique that 
project ThEMaT (Thought Experiments in Mathematics Teaching) has developed in order to 
study this practical rationality empirically, in selected situations in secondary algebra and 
geometry.  

The project is based on the hypothesis that practitioners’ instructional actions respond to 
obligations to the discipline, the students, and the school institution, but are neither determined 
by those obligations nor chosen at will through individual management of personal resources. 
Rather, courses of instructional action are constructed as viable, tactical plays of a game that 
pursues curricular and other stakes through the collective production of work over time. We 
conceive of the practical rationality invested in the teaching of algebra and geometry as 
composed of a system of dispositions that serves the purpose of warranting a range of possible 
tactical plays that a teacher of a given school subject might consider viable to do. We conceive of 
this system of dispositions as including the categories of perception and appreciation that actors 
of a practice can draw upon to relate to (possible or real) events and things in that practice. By 
categories of perception we mean the categories available in a practice with which a teacher can 
identify and describe events or things. By categories of appreciation we mean the categories 
available in a practice with which a teacher can have an attitude toward, or allocate value to, 
events or things.  

In this paper we report on our conceptualization of a novel resource for eliciting the practical 
rationality of mathematics teaching based on sequential-art sketches of classroom stories 
deployed in three media forms: animation, slide show, and comic book. These stories are 
designed to engage practitioners in thought experiments about instruction, thought experiments 
that, we argue, can elicit practitioners’ practical rationality. We conceptualize the use of this 
media against the background of our prior use of video for similar purposes and illustrate the 
kind of data that we have been able to collect with it. 
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Practical Rationality and Instructional Situations 
Complementary to the notion of practical rationality is the hypothesis that joint work in any 

mathematics classroom is framed by instructional situations (Herbst, 2006). Instructional 
situation refers to the system of norms that regulate the exchange or trade between, on the one 
hand, the work that teacher and students do together to sustain their classroom relationship and, 
on the other hand, the claims that they can make about the knowledge at stake. Specifically we 
hypothesize that classroom life is organized in segments of interaction whose goal is to produce 
mathematical work and exchange it for claims on what is at stake. An example is the 
instructional situation called “doing proofs” (Herbst & Brach, 2006) which is a normative way of 
organizing some exchanges in high school geometry classes in the US.  

We model instructional situations by proposing systems of norms that express hypotheses 
about what is at stake in the exchange, what is the division of labor (who is supposed to do what, 
and how), and what is the organization of time for work (when are things to be done, and for 
how long). By a norm we mean a central tendency around which actions in instances of a 
situation tend to distribute. Since, these actions are performed by humans at a scale in which they 
could willingly act at variance, we expect that norms exist to mark central tendencies but that 
these are not necessarily estimated by the most frequent set of actions enacted in instances of that 
situation. Thus, instructional situations are sets of norms that identify similarly regulated 
phenomena but not necessarily regularities in behavioral manifestation; teachers operating under 
the same norms may produce different actions. As we will illustrate below, the notion of 
practical rationality helps us make sense of that apparent contradiction.   

Practical rationality is the system that helps practitioners notice and justify (or else denounce) 
departures between actual actions and (implicit) norms. The empirical datum that justifies the 
existence of a norm is the frequency of observations of similar ways of noticing and valuing 
different behaviors. Thus the operational definition of practical rationality calls for uncovering 
the categories of perception and appreciation that actors of a given practice invest in noticing and 
negotiating the status of specific, problematic actions.  

The mathematics education community has in the past drawn in similar ways on the notion of 
belief system, whereby a belief system is what warrants and puts a value on actions. Practical 
rationality is akin to belief system in that both attempt to explain what regulates action. But our 
use of practical rationality (and of dispositions) is not just another way to say belief system since 
beliefs have usually been attributed to individuals. Instead practical rationality is proposed as 
regulatory of specific situations and to be common to the individuals who play a similar role in 
those situations; it is what accounts for the continuities in instructional practice that persist as the 
actors change. Practical rationality points to a collectively held system of warrants for specific 
actions in a situation (e.g., there is a practical rationality for engaging students in proving). 
Conceptually, practical rationality is the system of dispositions that allows actors in a situation 
handle the presumption that they should or should not abide by a norm. 

To illustrate the ideas described above and get into the substance of this paper, we’ll 
elaborate on the instructional situation of “doing proofs” in the high school geometry class which 
is one of four situations our project is studying. We hypothesize that several norms regulate 
division of labor and organization of time in this situation. In particular, there are norms that 
apply to who can do what to diagrams and when. Three of those hypothetical norms are:  

1. the diagram to be used in a proof contains all the objects that students will need in 
order to do the proof and no more than those; and no (generally) false properties are 
represented by way of objects included in a diagram   
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2. the diagram to be used in a proof is drawn in its entirety (including labels) before the 
writing of the proof starts, with the only exception of markings (hash marks, arcs for 
angles, etc.) which might be added while the proof is being done  

3. the teacher is in charge of drawing the diagram (including all the geometric objects) 
that will be used in a proof, whereas the student may be responsible for marking the 
diagram with information given or discovered while the proof is being done  

We submit that these norms express a set of default regulations regarding interaction with 
diagrams while proving. They are neither immutable laws nor explicit preferences of actors; 
rather, they are hypotheses made by an observer that help explain classroom observations and 
help sketch classroom stories that are marginal to customary practice. The ThEMaT project 
constructed three stories that show departures of these norms around properties of the 
intersections of angle bisectors in a kite, a square, and a parallelogram. In “The Kite” a student is 
allowed to prove that in a kite the angle bisectors meet at a point (a true property) starting from a 
diagram that she has drawn and that shows an apparent (non-rhombus) kite and its diagonals 
(one which bisects two of the angles of the figure, the other which does not). In “The 
Parallelogram” the teacher leads the class in proving that the angle bisectors of a parallelogram 
meet at a point (which is false), using a diagram that he has drawn of a parallelogram whose 
sides look congruent and whose angles between diagonals and sides are marked with equal arcs. 
In “The Square” a student who is sharing from his seat a proof that the angle bisectors of a 
square meet at a point requests the teacher to erase one of the diagonals of the square on the 
board (which contains two diagonals). We created these stories to purposefully contravene the 
norms listed above since our theory led us to predict that instances not abiding by those norms 
would elicit ad hoc remarks by participants, remarks that point to, describe, or put a value to the 
departures from the norm. The practical rationality of “doing proofs” includes the categories on 
which those remarks build; no matter whether they indict or praise the actions done.  

Note, by the way, that these sample norms demonstrate why practical rationality is defined as 
dependent on an instructional situation, in that it is obtained empirically from the reactions to 
breaches of norms that characterize a specific instructional situation (e.g., “doing proofs” in the 
American geometry class). Evidently, it is possible that the empirical study of practical 
rationality in different situations might yield as a result the conjecture that some elements of 
practical rationality will be common across situations and might be attributable to the teaching of 
a particular course (such as geometry or algebra).  

A Resource for the Study of Practical Rationality 
We have developed a technique that permits us to study practical rationality empirically. In 

Herbst & Chazan (2003), when we introduced practical rationality, we described how we had 
gotten a glimpse of it as we examined conversations among practitioners looking at an edited 
video episode of a lesson where the teacher had made a decision at variance from what (we 
hypothesized) a teacher would do when engaging students in proving. We have used video 
because of the effectiveness of records of practice (Lampert & Ball, 1998) and video cases 
(Jacobs & Morita, 2002) in getting teachers to talk about teaching. We argued then that video 
episodes have the potential to elicit practical rationality because video episodes are not just 
records of events and cases of a kind of teaching, but also artifacts (i.e., reconstructions of events 
with a recording protocol that transforms the events), and probes into teaching (i.e., catalytic of a 
normative response from those who create practice, like Rorschach’s blots are).  

Embedded in the notion that a record of practice could operate like a probe into teaching, by 
compelling practitioners to remark upon deviations from a norm, is the notion that practitioners’ 
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feel for their practice is summoned by vicarious experiences with instances of that practice. All 
practices consist of actions that happen in time—they take time, but also they can be timely or 
not; they depend on what happened before and constrain what can happen after. In this sense, 
video episodes are very different than other cases such as written cases; video episodes allow one 
to probe the temporal dimensions of instructional situations both in the sense of duration of 
events and in the sense of order (and timeliness) of events. In spite of that potential of video, we 
also realized that systematic studies of the practical rationality invested in a specific instructional 
situation could not depend on the possibility to obtain video records of events that illustrated 
deviations of specific hypothetical norms. This and other considerations led us to explore 
whether other temporal media forms alternative to video (such as animations, comic books, and 
slide shows), could also be leveraged to be records, artifacts, cases, and probes.  

The second consideration that led us to investigate other media forms is related to the 
argument that video recorded episodes are cases of teaching, which builds on the notion that the 
craft knowledge of teaching is stored and communicated in the form of stories (Carter, 1993). 
The same reasons that recommend videocases as useful for teacher educators to provide 
prospective teachers an ‘anticipatory socialization’ into the problems of teaching were the ones 
that discredited video as a resource for us to prompt expert practitioners to relate stories of what 
they might do instead. As Richardson & Kile (1999) noted, videocases provide “a moving 
picture of a classroom context” (p. 122) and “are probably the best representation [of reality]” (p. 
133). This we took to be a disadvantage, in that video can too forcefully narrate one story, 
address one context, and thus obliterate any need to rely alternative stories that should have 
happened instead or could have happened in another context. Whereas videocases might help 
viewers study a specific case and to explore what happened in that instance, our research on 
practical rationality required sketchier representations that invited all geometry teachers to 
project themselves and their students into the case. If participants in a conversation could do that, 
we expected the conversation might not just address the general issues of the case represented, or 
call forth the alternatives that individuals might undertake in their class instead, but also elicit the 
common categories of perception and appreciation with which colleagues would relate to the 
events represented and the alternatives elicited.  

Following that line of argument, we understood that in addition to describing the media itself 
along the lines of their qualities of records, artifacts, cases, and probes, we needed to focus on 
the properties of the interaction between the media and the target viewers, experienced teachers 
of geometry in the case under consideration. We conjectured that our sequential-art 
representations of teaching needed to draw on various modalities so as to create the sense that 
stories were on the one hand conceivable but also sufficiently sketchy so as to encourage 
individuals to make inferences and imagine alternatives. They needed to be encoded in a 
sufficiently general visual language so as to encourage dialogue across those inferences and 
alternatives. According to those considerations, and against the background of the use of video to 
represent teaching, we inquired into whether conversations prompted by other representations 
could showcase the properties of temporality and reflectiveness usually enabled by videocases, 
as well as those of projectiveness, alternativity, generality, and normativity. By projectiveness 
and alternativity we mean that the representations should allow geometry teachers to project into 
the media the particulars of their contexts and imagine alternative storylines that could have 
happened instead. By generality and normativity we mean that the representations should 
provide material for participants to address general issues of an instructional situation and that 
the conversation should include normative statements about such instructional situation. We 
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illustrate below the extent to which our representations have demonstrated those properties after 
we describe our characters. 

We investigated the use of various forms of sequential art (Mc Cloud, 1994) to construct 
representations of teaching. For the three forms investigated—comic book, slide show, and 
animation—we used settings and characters that deflect attention from themselves onto the story 
they sketch. The project has developed a number of character sets. The character set used in the 
episodes described below, the ThExpians (Figure 1), consists of two-dimensional figural, but 
schematic drawings in two different sizes (teacher and student). They have heads, limbs, and 
bodies made of simple geometric figures. ThExpians do not display the kind of immanent 
characteristics that identify a given person (e.g., affiliations, handicaps, race) but they have 
available a finite number of facial expressions and gestures (encoded with smaller, simple 
geometric figures) which are used to nonverbally do their share in sustaining human interaction 
over time, showing a range of emotions (e.g., anger, puzzlement). Each character is named after 
a Greek letter in each story whereas the teacher is always referred to by his or her role.  

The rationale to investigate the qualities of comic books, slide shows, and animations in 
prompting conversations, hinged in the particular affordances that they provided regarding 
temporality. Across all of these modalities, we conjectured that participants’ sense of the passing 
of time would be supported by representations that displayed interactions at the timescale of the 
utterance (Lemke, 2000). We also conjectured that, for those representations to be projective, 
they would need to omit the many other elements that enhance the sense of uniqueness and 
reality of video, including elements of action that take place at smaller timescales (e.g., fine 
motor movement, phonetic variation, ambience noise) and elements that take place at larger 
timescales (e.g., what the previous day’s lesson was about, the time of the year this lesson takes 
place). Thus representations sketch conceivable stories but the viable stories are produced in the 
collective thought experiments. 

 The media forms studied (animation, comic book, slide and show) 
were chosen because they embodied different manifestations of the 
passing of time: time as bidirectional, discrete sequence of events of 
arbitrary duration; time as unidirectional, discrete sequence of events of 
standardized duration; and time as unidirectional, continuous sequence 
of events of uncontrollable duration. The verbal content was represented 
through written speech bubbles, oral single narrator, and multiple-  
-speaker voice over. Three different storylines were represented in such 
a way as to support participants’ production of comparable geometry 
classroom thought experiments about proving properties of geometric 
figures (kite, square, and parallelogram), each of those storylines in two 
different media forms. The three storylines were different but in all 

Figure 1. A 
ThExpian presents a 
conjecture 

cases they represented deviations from the hypothetical norms listed above about interaction with 
diagrams when engaging students in proving. 

Conversations among Teachers about these Representations 
We convened a group of nine experienced mathematics teachers. Most of them had taught or 

were teaching geometry in high school but a couple of them had taught geometry in college and 
three had moved from classroom teaching to part time or full time teacher education. During a 
four-hour meeting participants were given the opportunity to look at the six representations 
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described above, one at the time and engaged in a collective dialogue about the story. The 
session was videotaped and transcribed.  

The themes in the conversation among participants were examined in search for indications 
of the properties targeted (temporality, reflectiveness, generality, projectivenness, normativity, 
and alternativity). First of all we were interested on whether the media would support 
conversations about strategic and tactical aspects of the teaching involved. Apropos of the 
“given” in the slide show of The Parallelogram story that diagonals of a parallelogram are angle 
bisectors, Brent offered the following reflection, which illustrates how the stories could be seized 
and turned into objects of study and discussion like cases are: 

I think some of the students in the class might find it difficult to accept things as hypothetical 
givens. I mean if a teacher leaves that given as unchallenged, then that's accepted I believe in the 
minds of many of the students.  

But beyond those general reflections, conversations also addressed more specific issues of 
temporality in the stories. For instance, Karin made some comments about how later moments in 
the comic book version of The Kite story seemed to depict too fast a story to be believable:  

In frame 88, the teacher says ‘look at this diagram, if the angle bisectors did meet at three 
points, what would we know that has to be true about all these triangles?’ I, imagining my 
students working on this, there would be a lot of discussion about what triangles to attend to, or a 
pregnant pause where everybody wasn't really sure what that question was asking. And so you 
don't get like the length of pauses in this representation, but there doesn't seem to be the kind of 
bickering about the difficulty of the problem that we saw earlier. 

Conversations also addressed issues that correspond to the distinction between context and 
situation. The media compelled participants to project their own selves and students into the 
stories, as the following quote from Melvin apropos of the student who wanted to erase the 
diagonal in the animated version of The Square demonstrates: 

this other student, [Lambda], who I'll call Alex, because I know Alex, has an idea in his head 
and the teacher, which is me, doesn't totally understand what he's getting at, but that happens a 
lot. So at some point in time, you have confidence that he knows where he's going, but I don't 
know how to help him to interpret to the rest of the class. 

In addition to allowing participants to identify their contexts with the stories, conversations 
also addressed general issues of instructional situations that were depicted through the media 
without any of the richness of a particular context. In regard to The Parallelogram story, Ben 
indicated: 

I would have to understand why you would spend a lot of time trying to prove something that 
wasn't true in regards to maybe the more important part of properties of the rhombus, where you 
could show… 

And as expected, the conversations also addressed issues that pertain to the distinction 
between possible and normative (or expected). On the one hand, participants shared alternatives 
that they thought they might possibly do instead. About the comic book on The Kite, Anthony 
said: 

I would immediately challenge the fact that the short diagonal is a bisector, as opposed to 
letting the students start proving it, and run into trouble. 

On the other hand, participants did point to normative aspects of the instructional situation of 
engaging students in proving. Referring to The Parallelogram, Anthony said 
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if you're going to prove that the diagonals intersect at a point… that the bisectors meet at a 
point, then your givens should be this line and that line are the bisectors, not that they are the 
diagonals. 

Conclusions 
The focus group meeting gave credence to our conjecture that these representations of 

teaching could engage practitioners in thought experiments in mathematics teaching. Participants 
viewed representations of teaching practice in unusual media forms but could focus on the stories 
of mathematics teaching sketched out in these media. They took these stories seriously as stories 
about teaching; for example, they critiqued the moves of the teacher on many occasions. 
Participants’ behavior while looking at the representations, and their comments afterwards, also 
give evidence that the way in which representations portray time makes a difference. Participants 
did browse back and forth in the comic books. They made comments more like those of an 
observer than those of an actor. In contrast, animations elicited reactions to more timely events 
such as the frustration evidenced by the teacher in The Square story when one of the students 
could not grasp how the problem was about the relationship between diagonals and angle 
bisectors. Whereas the slide shows were similar to the animations in relation to the kind of 
discussions that they elicited, participants indicated some sense of irritation at the way the slide 
shows boosted the importance of otherwise unremarkable events by inducing so many pauses. 
Overall we found evidence that the six properties of temporality, reflectiveness, generality, 
projectiveness, alternativity, and normativity can be helpful in contrasting conversations about 
video from conversations about sequential-art based representations of teaching, especially 
helping us identify the potential value added of the latter.  

Endnotes 
1. The research reported in this article is supported by NSF, grant ESI-0353285. Opinions 

expressed here are the sole responsibility of the authors and do not reflect the views of the 
Foundation. The character set ThExpians was made for ThEMaT by Jack Zaloga, under direction 
of Patricio Herbst and with the assistance of Gloriana González. The stories referred to in this 
paper were created by ThEMaT at the University of Michigan. 
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As they engage with activities in mathematics textbooks, students have a variety of opportunities 
to make sense of the concept of similarity.  The nature and sequence of these activities have an 
impact on the development of concept images that support students as they make sense of the 
terms “similar figures” or “scale drawings” and the properties they hold.  In this analysis of the 
treatment of similarity in three middle grade textbook series, the authors share their analysis of 
the concept definitions and concept images supported by these texts.   

The term “curriculum” has different meanings in different contexts.  According to the Center 
for the Study of Mathematics Curriculum, the most familiar terms include the ideal curriculum, 
the intended curriculum, the enacted curriculum, the achieved curriculum and the assessed 
curriculum.  The focus of the present study was on the intended curriculum, which typically 
includes teacher’s manuals, student books, and additional resources such as technology, 
assessment, etc.  

On the basis of goals, prior curriculum content analyses can be divided into two major 
categories.  One goal is to evaluate the alignment or effectiveness of a given curriculum against a 
set of pre-determined criteria.  Typically, a score or a grade will be assigned as the results of 
such analysis.  Examples of this type of study include analysis done by Project 2061 of the 
American Association for the Advancement of Science on algebra and middle school curricula.  
The other goal of content analyses is to understand the characteristics of different curricula, for 
example, their philosophy, content coverage, sequence, and instructional approaches.  The 
current study shares the latter goal and our unit of analysis is a particular concept, the concept of 
similarity.  Similar studies have been done by Cai and his colleagues on the textbook treatments 
of arithmetic average and early algebraic concepts (Cai, Lo & Watanabe, 2002; Cai, 2004).  We 
draw upon theoretical constructs of concept definitions and concept images to help us analyze 
the potential of each curriculum to promote conceptual understanding of similarity.   

Many events in daily life provide us experience with similar figures, for example, sun 
shadows, mirrors, photos, and copying machines.  The applications of similarity include map and 
model making as well as surveying.  Similarity also serves as a building block for more 
advanced study in trigonometry and calculus.  Because curriculum plays a central role in school 
mathematics learning, it is important to ask what curricula have done (or failed to do) to address 
the conceptual difficulties inherent in the teaching and learning of the similarity concept.  This 
paper will discuss some key issues that emerged from an analysis of middle-grades textbooks 
with illustrations taken from various curricular materials.   

Concept Definitions and Concept Images 
According to Tall and Vinner (1981), concept definition is a form of words used to specify a 

concept.  Concept images include all the mental pictures and associated properties and processes 
built through experiences over the years.  The learners may or may not be aware of the 
connections among these components.  Influenced by an individual’s experiences both inside and 
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outside of school, concept images can vary in terms of the degree of richness and connectedness.  
It is also possible for an individual to hold contradictory concept images without perceiving the 
contradiction if they are associated with different contexts and not being called for 
simultaneously.  Limited and fragmented concept images will be of little use to subsequent 
learning or practical uses in real life contexts.    

For any given concept, a concept definition is given either explicitly or implicitly to the 
students.  Contrary to common belief that mathematics is built upon precise definitions and 
axioms, mathematical definitions can vary greatly depending on the contexts.  A group of 
researchers, when analyzing the classification of quadrilaterals in various textbooks, found five 
different definitions for isosceles triangles (Usiskin, Griffin and Witnosky, 2004).  Similarly, the 
curricula may contribute to the development of concept images very differently depending on the 
nature and sequence of activities they use to engage students.   

Prior Studies on the Concept of Similarity 
The majority of findings on the concepts of similarity are embedded in studies of 

proportional reasoning, which has been extensively studied.  Much has been learned about 
students' errors and difficulties in solving proportion tasks (Hart, 1984; Lamon, 1993) as well as 
task variables that affect students' choice of strategies and performance (Kaput & West, 1994). 
Lamon (1993) identified four semantic problem types.  The last type, stretchers and shrinkers, 
includes tasks based on the concept of similarity.  Lamon found the stretchers and shrinkers were 
the most challenging type for the six-grade students in her study to understand.   

Research studies focused specifically on the concept of similarity report some seemingly 
contradictory findings.  On one hand, researchers documented that children at early elementary 
grades are able to recognize similar figures visually (Swoboda & Tocki, 2002) and some were 
able to then judge the reasonableness of scaled images (Brink & Streefland, 1979).  On the other 
hand, when working on missing value tasks involving similar figures, close to 40% of the 15 
year olds still focus on the additive change rather than the multiplicative change of the given 
values when solving for the missing side length (Hart, 1998).  

Some researchers have attempted to identify the nature of the difficulty with the similarity 
concept. Chazen (1987) identified three such aspects: 1) notions of similarity, 2) proportional 
reasoning, and 3) dimensional growth as the most difficult similarity-related concepts for 
students. He pointed out that the use of the term “similar” might mislead students who have 
strong associated images with the term set in non-mathematical contexts.  For example, some 
students might think all rectangles are similar because they are generally alike and all have four 
right angles. Both Lehrer, Strom & Confrey (2002) and Swoboda & Tocki (2002) suggest that 
one way to clarify this situation with students is to treat “similarity” as a special way of 
classifying shape. In our analysis, we will examine if and how each curriculum attempts to 
address the conceptual difficulties raised by prior research studies.   

Methodology 
The primary data source for our curricular analysis includes units of similarity from two 

Standards-Based curricula:  Connected Mathematics 2 and MathScape.  Even though the 
development of these curricula were supported by the National Science Foundation and share 
some common characteristics, such as attempting to incorporate situations from natural and 
social science as contexts for mathematics, there are significant differences among them. To 
broaden our perspective, we also examined lessons from a Japanese textbook series: Study 
Together.  While Connected Mathematics 2 treats the concept of similarity in one cohesive unit 
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entitled Stretching and Shrinking, MathScape revisits the concept during four distinct units over 
three grade-levels of study.  While Gulliver’s Travels (Grade 6) includes the most concentrated 
treatment of the topic, additional lessons from the units From the Ground Up (Grade 7), Getting 
in Shape (Grade 7) and Roads and Ramps (Grade 8) were also examined.  From Study Together, 
we included only the unit on scale drawing at the grade 6 level.  It should be noted that the 
concept of similarity is closely related to the concepts of ratio and proportion.  However in our 
analysis, we included only the lessons that focus primarily on the development of similarity 
concepts, rather than on the concepts of ratio and proportion in general.   

For each curriculum listed above, we first identified the stated concept definition for 
similarity.  We then developed a concept map, in the form of a flowchart, to illustrate the 
potential concept images that could be developed through the suggested activities.  Finally, we 
determined if and how each curriculum attempts to address the conceptual difficulties inherent in 
the notion of similarity.  

Findings 
Both Connected Mathematics 2 and MathScape devote over 20 lessons to the topic of 

similarity; whereas Study Together provides less than half of this amount on this topic.  This 
difference contributes directly to the types of activities as well as the learning experiences each 
curriculum provides for students.  Nevertheless, all these curricula share the same goal of helping 
students build a conceptual understanding of the properties of similarity, and be able to use these 
properties to solve real life problems.  Our analysis centers around these main foci, diverging in 
the case of unique features provided by each curricula.  

Concept Definitions 
Both Study Together and MathScape introduce the concept of similarity in the context of 

scaling.  Study Together presents to students four houses on grid paper and asks students 
which of the three remaining houses has the same shape as the first.  In Gulliver’s Worlds, 
MathScape has students read passages from Gulliver’s journals to identify clues about the 
sizes of various objects in the Brobdingnag.  Using these clues and the measurements of the 
same objects in our land, students are asked to find the scale factor that relates the sizes of 
the two lands.  Neither curriculum offers explicit definitions of “same shape.”  Study 
Together assumes students are capable of determining whether two shapes are similar by 
looking at them, and MathScape assumes that students understand that scaling will preserve 
the shape.   

As a contrast, Connected Mathematics 2 provides two different definitions of similar 
figures in their student book, one during the beginning of the unit, one in the glossary toward 
the end of the book.   

• … for two figures to be similar, there must be the following correspondence 
between the figures. 

• the side lengths of one figure are multiplied by the same number to get the 
corresponding side lengths in the second figure. 

• the corresponding angles are the same size. 
The number that the side lengths of one figure can be multiplied by to give the 

corresponding side length s of the other figure is called the scale factor.  (p. 25) 
Similar figures have corresponding angles of equal measure and the ratios of each 

pair of corresponding sides are equivalent.  (p. 103) 
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Notice that the first definition provides a sufficient condition for “similar figure” while the 
second provides a necessary condition.  Merging the necessary and sufficient conditions 
provides the traditional if and only if form of mathematical definitions for similar figures.  

Concept Images 
All curricula examined in this study share two related goals, that is, help students 1) develop 

the notions of similarity, and 2) apply the properties of similarity to solve problems.  In the 
following section, we will discuss these two aspects.   

Develop the notions of similarity.  Our analysis has identified three major types of activities 
that are used by these curricula to develop the notions of similarity, differentiating, measuring, 
and constructing.  In the differentiating activity, students are either asked to determine if a given 
pair of figures are of the same shape, or to identify those figures with the same shape among a set 
of given figures.  The assumed basis for this determination is either the intuitive notion of same 
shape, or the properties of similarity.  The second type of activity is the measuring activity.  
Students are asked to measure a variety of attributes either directly or through estimation and use 
those measurements to explore certain patterns and relationships.  The third type of activity is the 
constructing activity.  The curricula may provide students with specific tools (e.g. grid paper, 
ruler & protractor) and/or step-by-step instructions (e.g. rubber band stretcher) when carrying out 
this type of activity.  The activity may include a specific scale factor or leave it open while 
providing other information such as measures of side lengths or angles. In the latter case, 
students’ choices are typically bounded by the limitations of the materials or space afforded to 
them.   

These different types of activities, used separately or in conjunction provide students with 
different opportunities to develop concept images.  Differentiating activities prompt students to 
examine the notion of “same shape” more critically.  Measuring activities affirm that the 
measures of the corresponding angles will be the same and the ratio of the corresponding sides 
will be equal among all figures that are similar.  Constructing activities helps students see how 
the above properties can be used to create same shape figures.  Together, they help to establish 
the necessary and sufficient conditions that are needed to mathematize the intuitive notion of 
same shape.  Even though all three curricula include these three types of activities, there are 
significant differences in terms of the set up, the sequence and the purpose for using these 
activities among these curricula.  

MathScape provides extensive opportunities for students to construct and measure similar 
figures, however does not provide any experiences with differentiating beyond assessing the 
quality and status of student constructions. In this assessment, students are taught to use 
estimation strategies to account for real-life margins of error as they have been working with 
complex images and complex scaling strategies.  

Unlike MathScape, Study Together starts its introduction of the concept of similarity with a 
differentiating activity.  It then asks students to perform various measurements to identify the 
properties of “scale drawings” and to use the properties as the basis to reject the additive pattern.  
Study Together then engages students in the constructions of scale drawings.  The curricula 
suggests four different methods: using grid papers with the same size grid, using grid papers with 
different size grid, using a ruler and protractor, using the idea of central dilation as shown in 
Figure 1 (p. 72), and using copy machines where the scale factor is represented using percentage. 
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Figure 3. (1) 

The unit from Connected Mathematics 2 provides the most extensive experience with the 
concept of similarity for students in two dimensions, and interweaves experiences with the three 
types of activities.  For example, it introduces three different ways to construct similar figures: 
rubber band stretcher, algebraic transformation (x, y) → (k1x+a, k2x+b) and rep-tile.  It provides 
students opportunities to examine the conditions under which a mere subset of the properties will 
be sufficient to preserve the shape.  Furthermore, the ratio formed by comparing the adjacent 
side lengths within a figure is explored as another necessary and sufficient condition for similar 
rectangles and triangles.   

Apply the concepts of similarity.  Our analysis of the three examined curricula identified four 
main types of activities asking students to apply the concepts and the properties of similarity.  
Direct applications such as finding the scale factor or a missing measure of two or more given 
figures are the first of these types.  One main characteristic of this type of task is that the problem 
statement makes it explicit that the concept of similarity is involved.  This can happen when the 
students are told explicitly that the figures are similar or that they are scale drawings of each 
other.  

The second type of application tasks also asks students to identify the scale factor or a 
missing measure, but instead of working with given figures, students need to either work with 
the concept of corresponding parts directly without visual support, or to make their own scale 
drawings from which to work.  All curricula include tasks of these two varieties that demonstrate 
to students the usefulness of scale drawings in solving problems.   

Eliminating explicit clues in the problem statement that the concept of similarity is involved 
yields a third type of activity only found in the Connected Mathematics 2 curriculum.  To be able 
to solve this type of task successfully, students not only need to recognize that the concept of 
similarity is involved or embedded in the situation, they also need to make the correct 
associations between corresponding parts.  Figure 2 illustrates one such task taken from 
Connected Mathematics 2 (Stretching and Shrinking, p. 85).  



Vol.2-226  PME-NA 2006 Proceedings 

 

 
Figure 4 

The fourth type of task extends the basic one-dimensional properties of similar figures to 
higher dimensions.  Both Connected Mathematics 2 and MathScape provide students with 
opportunities to examine the relationship between the scale factor and the corresponding area 
growth.  MathScape goes a step further to engage students in building three-dimensional scale 
models to get a sense of volume growth.  This process helps students build strong images that, 
numerically speaking, area grows much more quickly than length and volume grows even faster.  
Later, the exact mathematical relationships (K2 for area growth and K3 for volume growth, K: 
scale factor) are discovered by investigating area and volume built using unit squares and cubes.   

Our analysis so far captures all but one type of activity which we believe is also very 
important to the development of concept images: communicating mathematical ideas.  Study 
Together engages students in extensive small group and whole class discussions in conjecturing 
and debating.  Connected Mathematics 2 includes “mathematical reflections” at the end of each 
sub-unit for students to write about what they have learned.  MathScape ends each unit with an 
extensive final project that requires students to pull together the main ideas and skills they have 
learned.  For example, the final project from Gulliver’s Worlds asks students to create three 
dimensional models of collected objects from Gulliver’s travels and to describe the 
measurements of the object on display and to compare them to the same objects in our land.  The 
experiences of constructing models and examining models constructed by others provide ample 
opportunity to build a strong images of scale drawings/models for the students.   

Discussion 
One major finding of our analysis is the focus on scaling in Study Together and MathScape.  

Even though scale drawing is an important application that depends on similar figures, this 
context alone does not convey the full range of the concept of similarity.  Scale drawings are a 
very special case of similar figures, where correspondence is taken for granted.  It is natural to 
think that the roof of an original drawing should correspond to the roof of the image.  However, 
as see in the mirror task above, there are applications of the concept of similarity that are not 
based on scale drawings. We conjecture that the lack of experience with identifying the 
corresponding parts may contribute to the low success rate among high school students in seeing 
the similar triangles ABC and DAC in Figure 3 (Chazen, 1988).  
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Figure 5 

Another important finding of this study is the importance of providing students with different 
types of activities in order to help them establish the necessary and sufficient conditions for 
concept definitions.  The measuring activity helps students to see the existence of the properties 
of corresponding parts between figures with the same shape; the constructing activity provides 
students with experience of creating images of the same shape by using the properties of 
corresponding parts, while the differentiating activity draws upon both students’ intuition of 
same shape and their understanding of the properties of corresponding parts.  The strength of 
these connections will help students to avoid overly relying on the visual clues.  After all, all 
skinny rectangles may be considered “similar” because they all look alike as opposed to fat 
rectangles or squares.  To be able to reach the conclusion that a 3 by 4 rectangle is “shaped” 
differently from a 4 by 5 rectangle, it is necessary to have both an intuition about the general 
shape, and recognition of that the unequal multiplicative relationships between the corresponding 
side lengths will distort the shape.   

The myriad of differences that we have noted amongst the three curricula may be attributed 
to the intentions and emphases placed on the concept by individual curriculum developers.  None 
of the three curricula treats in quite the same way, choosing to highlight different aspects, related 
concepts, and contexts.  MathScape seems to consider scale drawings and models to be a fruitful 
context to highlight other related concepts such as estimation, measurement, and geometry.  This 
is quite different from the focus of Study Together on developing multiple construction methods 
and rich imagery to lay the groundwork for geometric proof in a future course.  Also, while 
MathScape chooses to develop both two and three dimensional scale models, Connected 
Mathematics 2 focuses exclusively on similarity in two-dimensions yet goes far beyond the 
context of scaling in the development of the concept, including forays into informal proof.  
Individual treatments of similarity highlight the mathematical complexity of this concept. Future 
research studies are needed to examine the effect of these different curricular treatments on the 
development of concept definitions and concept images. 

Authors’ notes 
This research is supported by Center for the Study of Mathematics Curriculum.  

Endnotes 
1. Translation of text in figure:  The teacher says: "In an enlarged diagram, the ratios of 

corresponding segments are equal..." The boy says: "Can we draw a shrunken diagram in the 
same way?"  
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The purpose of this study was to investigate the discourse elicited by a multi-representational 
view of non-Euclidean surfaces, the artifacts used to model these surfaces, and the metaphorical 
discourse used to construct mathematical understanding. A multi-tiered teaching experiment was 
conducted in a 15-week undergraduate course in non-Euclidean geometry. The results suggest 
that the careful use of metaphor helped provide an intuitive base for a more conceptual 
understanding of geometric concepts. 

Introduction 
Given the communicative nature of mathematical learning, semiotics as a theoretical 

perspective has become a viable framework for research in mathematics education.  While the 
term semiotics in its root form refers to the study of signs in communication, the breadth of the 
body of mathematics education research spans a variety of issues related to semiotic theory.  
Some semiotic issues investigated are the role of representations (Doerfler, 2000; Presmeg, 1992, 
2002; Sfard, 2000b), discourse (Presmeg, 1997, 1998; Sfard, 2000a, 2001), and cultural artifacts 
(Hoyos, 2002) in the semiotic mediation of the construction of mathematical knowledge.  

Representations can be thought of as the form, perceptual or cognitive, which the 
mathematical concept takes.  Furthermore, mathematical representations may take the form of a 
literal symbol (Sfard, 2000) or exist in the mind of the learner (Doerfler, 2000: Presmeg, 1992). 
Cultural artifacts refer to physical objects that are external to the cognizing being, and mediate 
the internal construction of psychological constructs (Mariotti, 2000).  Cultural artifacts may be 
technologically advanced or complex (e.g. - dynamic-geometry software, computer algebra 
systems, or applets), or technologically simple (e.g. – pencil, paper, Lenart Spheres, or everyday 
objects).  In an instructional setting, the teacher constructs an activity utilizing the artifact in 
order to promote the construction of a mathematical concept.  At the same time, the student uses 
the artifact to accomplish the given activity.  The artifact serves as a semiotic mediator to elicit 
meaningful mathematical discourse on a representational level; in other words, artifacts are tools 
that help us talk and write about mathematical objects. Furthermore, the relationship between 
representations, discourse and cultural artifacts is reflexive in which there is an active interaction 
between the three strands in the construction of one’s mathematical understanding.   

Within this three-fold framework or representations, discourse, and cultural artifacts is 
intuitive process that the learner utilizes to make sense of the mathematical investigation and 
discourse.  While the term intuition has many different connotations, Fischbein, Tirosch, and 
Melamed (1981) characterize intuition as a direct acceptance without the necessary support of an 
explicit detailed justification.  Furthermore, there is an immediacy to this form of knowledge.  In 
this study, the lessons and instruction were designed to enable an intuitive thought process to 
develop a deep conceptual understanding of non-Euclidean geometry.    

To help guide this intuitive process, the literary notion of metaphor (Presmeg, 1992, 1997, 
1998) served as an important construct to help foster the students’ mathematical intuition, and to 
better understand the discursive activity in the meaning making process in this study. The use of 
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metaphor allows a person to use one construct to stand for another.  However, with a metaphor, 
meaning is mediated by the connection between one domain of experience with another 
seemingly unrelated domain (Presmeg, 1992).  For example, in this study to better understand 
the nature of a geodesic, or line, on various non-Euclidean surfaces, students were encouraged to 
imagine the experience of a bug walking along that geodesic.  So on a sphere, as a bug walks 
along a great circle, its physical experience would be the same as walking on a straight line on 
the Euclidean plane.  As a discursive tool, one can see how the power of metaphor lies in making 
meaning for a new concept through a previously constructed conception (Presmeg, 1998).  
Furthermore, the metaphor creates an extended context in which the learner may intuitively 
reason about the nature of geodesics on a non-Euclidean surface.   

Sfard (2000), Doerfler (2000), and Presmeg (1992, 1998) suggest that meaning making in a 
mathematics environment is mediated by both the representations of the mathematical concepts 
that students are given and the discourse that ensues as a result of the representation.  The 
purpose of this study was to investigate the discourse elicited by a multi-representational view of 
different non-Euclidean surfaces, the artifacts used to model these surfaces, the students’ 
intuition, and the metaphorical discourse used to construct mathematical understanding.  In 
particular, the research questions that this paper will address are in what ways did the use of 
metaphor and intuition help to make sense of the multiple representations of the non-Euclidean 
surfaces and to mediate the discursive activity in the construction of mathematical meaning.   

Methodology 
To investigate these phenomena, a naturalistic (Moschkovich and Brenner, 2000), multi-

tiered teaching experiment (Lesh and Kelly, 2000) was conducted in an upper level 
undergraduate course in non-Euclidean geometry at a medium sized Midwestern university.  
Three researchers participated in this study to provide three tiers, or perspectives, consisting of 
the researcher level, the teacher level, and the learner level.  One researcher assumed the role of 
traditional researcher by observing and videotaping every class session from the back of the 
room.  The second researcher assumed the role of teacher-researcher (Ball, 2000).  This 
researcher was the normal classroom instructor for this course and was responsible for the 
planning and teaching of all the lessons throughout the semester.  The third researcher assumed a 
role that we identify as learner-researcher.  In this unique role, the third researcher assumed a 
position of being a naïve-learner by attending all classes throughout the semester and 
participating in all the in-class activities in discussion.  Since this researcher had never taken a 
course in non-Euclidean geometry of this nature, he was truly naïve in his limited understanding 
of the geometric concepts being taught, thus providing a perspective of how a student thinks 
during the activities and discussions.   

The student participants in this study consisted of three male and three female undergraduate 
mathematics majors. The six participants were randomly selected from those in the class that 
volunteered to be a part of the study.  The six students were put into two groups, one group of 
three students and a second group made up of the remaining three students and the researcher-
learner.  Each 75-minute class period was taught using a variety of instructional styles: lecture, 
small-group activity, and large-group discussions.  Furthermore, a multitude of artifacts were 
used including Lenart Spheres, a dynamic spherical-geometric system, a dynamic hyperbolic-
geometric system (Poincare model), Java applets, and a multitude of everyday objects.  
Throughout the semester over two dozen class sessions, in their entirety, were videotaped and 
transcribed forming the primary data source for this study.  Other data sources include 
videotaped pre-study interviews, videotaped post-study interviews, and copies of participants 
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‘written homework, and copies of participants’ formal written assessments.  The data was 
analyzed using iterative refinement cycles for video analysis (Lesh and Lehrer, 2000) in which 
each data was reviewed by all three researchers.  The goal was to have the multiple perspectives 
from the researcher, teacher and learner converge on individual episodes or written artifacts to 
identify points of agreement and disagreement.   

Results 
Using Presmeg’s (1992, 1997, 1998) concept of metaphor to create mathematical meaning 

provided a helpful theoretical lens to interpret the data.  In particular, two themes arose.  The first 
is the role of teacher-generated metaphors to facilitate discourse to help students make sense of 
mathematical concepts (Figure 1).  As a teacher tries to convey a certain mathematical concept, 
they choose an appropriate metaphor that reflects the mathematical concept.  The metaphor is 
shared with the learner.  The familiarity of the metaphor then helps the learner make sense of the 
unfamiliar mathematical concept. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

For example, to foster an intuitive understanding of geodesics on non-Euclidean surfaces to 
support more mathematically rigorous notions of geodesics, the professor introduced a variety of 
metaphors.  One metaphor was the idea of imagining the experience of a bug as it walks along a 
given surface (Henderson and Taimina, 2005).  As the bug walks in a straight path, from its 
perspective, the bug is walking along a geodesic of that surface.  On a plane, as a bug walks in a 
straight path, from its perspective, it is walking along a geodesic, or line in a traditional 
Euclidean sense.  However, on a sphere, as the bug walks straight, from its perspective, it is 
actually traveling along a great circle, which is a geodesic.  Conceptually, recognizing both a 
Euclidean line and spherical great circle as being lines is a strange notion when viewed from an 
extrinsic global, or bird’s eye, perspective.  However, from the bugs intrinsic perspective, the 
local experience of walking straight on a plane and on a sphere are identical, thus providing the 
rational that the Euclidean line and the great circle are indeed both lines for their respective 
surfaces.  This bug metaphor proved to be a powerful metaphor as students considered geodesics 
on other non-Euclidean surfaces (saddle, torus, cones, and cylinders) 

The second theme is the role of student-generated metaphors and the resultant discourse to 
help make sense of mathematical activities and concepts. In some cases, students would generate 
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their own metaphors, or extend teacher-generated metaphors in order to make sense of the 
mathematical investigations and discussion.  The following case story is taken from a classroom 
discussion on the concept of planar curvature.  In this episode, the teacher was conducting a class 
discussion based on the students’ homework assignment in which they had to calculate the 
curvature of two different circles with different radii.  The purpose of the activity was to show 
that for any given circle, the planar curvature is constant for any circle with radius, r, but 
dependent on the given radius.   

Case story – curvature of circles 
After the students put their answers to the homework problems on the board, the professor 

answers students’ questions about the algebraic representations.  After explaining the algebraic 
manipulation for the planar curvature of a circle, he asks, “Does that help you?  Does that make 
sense?” 

In a moment of honesty, one student responds, “I would not have done that on my own…it 
(the algebra) got really ugly, really quickly.” 

At this point, the instructor does an algebraic generalization with the students to show that 
the planar curvature of a circle with radius r is, as one student put it, “negative one over r.” 

The instructor summarizes the activity and discussion saying, “It tells you that the curvature 
at any point is the same and is related to one over R (radius)…does this make sense to you 
guys?”    

Referring back to a discussion from the last class the instructor asked, “Ok, does this agree 
with your intuition that we developed last time…that the curvature of a circle should be 
constant?”  In the previous class, the curvature of a circle was developed intuitively through the 
experience of one’s physical experience of driving a car around a small circular track, at a 
constant speed.  Although one would feel a centrifugal force, the force would be constant.  
However, while driving at the same speed on a larger circular track, the force would be constant, 
but not a great as driving on the smaller circular track.  

There is a brief momentary silence over the room as the students jot down notes.  It seems 
like many of the students are passively waiting to move on.  Thinking the students are ready to 
move on the professor asks, “Are there any questions on the first three (problems) here?”  One 
student raises her hand, “Mia?” 

Not yet ready to move on to a new question Mia responds, “I have a question…I understand 
why it (curvature of a circle) is constant…but…but…in my intuition…the circle all (of them) 
should have the same curvature.” 

The professor clarifies, “all circles should have the same curvature?” 
“Yes, its like we talked about how when you drive a car around a curve, it would depend on 

how big your car is,” referring to the previous class discussion.  
“Well, I want you to try to… let me try to appeal to your intuition, if we…suppose we drive 

in a circle in your car,” pretending to drive a car the professor turns an imaginary steering wheel 
hand over hand as if making a hard fast turn, “we turn the wheel and hold it there, right?” 

“Right.” 
“And you’re going to go…well, close to a circle…so if you turn the wheel all the way over 

and you drove it 50 miles and hour…you got it up to 50 miles and hour… would you have a 
different experience than if you turned it a little, say a quarter turn and you were still going in a 
circle.  Would you feel something different?” asked the professor. 
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Mia responds, “Yea, but if your car was really small and your were a really small 
person…like a bug, and you ride…very fast…in a very small circle, you would feel the same 
way when you ride in a big circle and ride in a big car…”   

“Ok, so you’re getting into more what a person would feel depending on the size of the car 
and the size of the cir... if I understand you right, if you were a really small person moving on a 
really small circle, you would feel the same thing if you were a large person moving on a large 
circle…” said the professor trying to understand and clarify what Mia was saying. 

“…right.” 
The professor continues, “Ok, so we have to have a fair comparison, we have to have the 

same…you want to try to think about this as…it’s the same small person doing both or the same 
large person doing both, you’re not allowed to change the size of the car or the person doing it.” 

“Ok.” 
Bringing the discussion to a close the professor concludes, “And that’s one way of thinking 

about it, again, we have the mathematics behind this, which tells us that it (the curvature of 
circles with different radii) is different, but again I want to appeal to your intuition to try to 
explain why that might make sense.” 

Case story discussion 
This story is an example that shows both the strength and potential limitations of metaphor 

and intuition.  The strength of the metaphor lies in its ability for students to conceptualize and 
bring clarity to a concept like curvature that may seem arbitrary.  For example, one could think 
that since all circles are similar, then they should have the same curvature.  On the other hand, a 
small circle, like a wedding ring, seems to bend more than a large circle, like in a racecar track.  
From an intuitive perspective, both notions seem reasonable.  To bring clarity to a seemingly 
arbitrary situation, the professor chose a metaphorical experience, that of driving a car in a circle, 
to help guide the students’ intuitive process, and to give the students another “way of thinking” 
about the curvature of a circle.  This was meaningful and useful discursive tool to help students 
make sense of planar curvature. 

However, since a metaphor is a concept that exists outside the domain of study, over 
extending or misapplying the metaphor may result in a reasonable but incorrect conclusion.  In 
this case, the professor had used a formal algebraic proof to show that the curvature of a circle is 
dependent on the radius, but constant for any given circle.  While at first, its seemed as if all the 
students were willing to accept this algebraic proof, Mia shared her thought that the proof, while 
mathematically correct, seems counterintuitive to her notion of curvature.  To Mia, her intuition 
seemed to have a relatively high degree of obviousness and confidence (Fischbein, Tirosh, & 
Melamed, 1981) yet conflicted with the algebraic representation presented by the professor and 
another student. The conflicting issue did not necessarily arise out of incorrect intuition, but 
rather an extension of the metaphor that led to an incorrect conclusion. She extended the 
metaphor so that the person driving a car along the smaller circle is proportionately smaller than 
the larger person driving on the larger circle. This is an example of an unintended consequence 
of a metaphor. Unlike the teacher who chooses a metaphor to reflect a concept, students must use 
a metaphor to make sense of a concept.  In this case story, Mia incorrectly extends the metaphor.  
In order to bring clarity and correctness to Mia’s counter-intuition, the professor added a 
necessary constraint to the metaphor to make it consistent with the algebraic representation.  In 
this episode, the instructor’s constraint on the metaphor, that the car and bug size remain 
constant was necessary to ensure the intended mathematical understanding was reached.  



Vol.2-234  PME-NA 2006 Proceedings 

 

Conclusion 
Although one class out of the semester was discussed in this report, the themes discussed in 

this paper were consistent across other classroom episodes.  In general, the professor’s use of 
metaphor and artifacts to cultivate students’ intuition provided a meaningful way for students to 
gain a better conceptual understanding of non-Euclidean objects.  While unintended 
consequences of the students’ intuition and use metaphor had initially led misconceptions, the 
resulting discourse between students and professor was mathematically rich as they negotiated 
the intended meaning and the student constructed meaning of the mathematical concepts.   
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Teachers of geometry claim to want their students to think logically and organize coherent 
arguments. Our research shows that most students are only attaining these goals on a superficial 
level. Students focus on learning rules of the game but are unable to resolve inconsistencies 
between the rules of formal proof and their non-mathematical reasoning experiences. 

Objectives 
When asked why teaching and learning proof continues to be an important component of 

most high school geometry classes, teachers of geometry often claim that learning proof helps 
students learn to think logically and to organize coherent arguments that explain why something 
is true. With these as goals for geometry students in proof-based courses, to what extent do 
students attain these goals? Much research over the past couple of decades has explored methods 
for teaching formal proof as well as student understanding of proof (Harel & Sowder, 1998; 
McCrone & Martin, 2004, 2005; Senk, 1985; Weber, 2001). Our current study also focuses on 
student understanding of formal proof. However, we investigate student participation in the 
discourse of proof in various settings as one measure of their understanding of proof. 

In particular, we address the following two questions: 
� Can students learn how to write, analyze and communicate about proofs? 
� How is their ability to participate in the discourse of proof linked to their 

understanding of proof? 
These questions are addressed by analyzing student responses to a research questionnaire and 

to interview questions, as well as by examining transcripts of videotaped classroom discussions. 

Theoretical Perspective 
Student participation in the discourse of the classroom is one measure of student 

understanding (Cazden, 1988; Sfard, 2000) In fact, Sfard characterized communication as 
thinking and learning as gaining access to a certain discourse. In order to elucidate these ideas, 
she described object-level rules, rules governing content of a discipline, and meta-discursive 
rules, rules governing the flow of the exchange of information within a discipline. In particular, 
Sfard claimed that student understanding may be assessed by determining the extent to which 
students follow these discursive rules. Because Sfard’s ideas fit well with our own experiences 
related to student learning in classroom situations, we investigated implicit and explicit rules that 
governed student discourse about proof and the nature of students’ participation in proof 
discourse to assess student understanding of formal proof in the high school geometry classroom.  

Results and Conclusions 
Based on analyses of classroom transcripts, interview transcripts, and other data sources, we 

were able to construct a portrait of students’ participation in formal discourse related to proof. 
We detected a conflict between the “rules of the game” and students’ apparent convictions about 
what constitutes proof. In this section, we examine student participation in the discourse of proof 
as it is related to two aspects of proof highlighted by McCrone and Martin (2004). 
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Validity of Proof 
Although there are many ways to assess a proof’s validity, in this section we focus on the 

nature of the reasoning (inductive vs. deductive) and the logical ordering of a proof’s 
components. One theme that arose within this category was that students preferred deductive 
arguments for constructing a “valid” proof because that was what was expected within the 
culture of the classroom. The students seemed to imply that by using this generalized form of 
argument they were able to demonstrate their understanding of geometric content and the proof 
“algorithm” they were supposed to be learning in class. Even so, most students agreed that 
empirical arguments were acceptable ways of justifying geometric statements. 

Purpose of Proof 
 Our focus in this category was on proof as a tool to convince and explain to oneself or 

others that a mathematical statement is true. Some students saw the purpose of proof as being 
very local, such as to prove a specific geometric relationship, perhaps congruency, in relation to 
a unique diagram. Additionally, many students who were able to echo the notion that proof can 
be used to convince a reader of the validity of a statement, indicated that proofs are only 
convincing to teachers and others who were informed about the particular formats and rituals of 
proof used in their classroom. 

Conclusions 
We found that most students attempted to or were successful at following the meta-discursive 

rules of the classroom in relation to the general nature of a proof and in analyzing a proof. 
However, we have shown that, perhaps because these rules are so different from their everyday 
language and ways of forming convincing arguments, many students developed ways to 
rationalize apparent contradictions between their intuitive sense-making and the artificial world 
of the geometry classroom. Their rationalizations are exactly that: rational explanations for rules 
that may appear irrational. Perhaps teachers at this level need to be more explicit in helping 
students understand how and why mathematical language and practices are different from those 
in a loosely structured everyday culture. 
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A four-month pilot teaching experiment on the learning of geometry was conducted with two pre-
service teachers and two in-service teachers.  The purpose of the study was to understand how 
learners with some knowledge of geometry are able to reorganize it and develop a better sense 
for geometric objects and their properties. The tasks of the study used semi-structured 
constructions in the GSP environment and open-ended questions to give learners freedom to 
explore, to make conjectures, to investigate them (inductive thinking), and to prove them 
(deductive thinking). One of the tasks of the study investigated isosceles trapezoids and their 
properties. The two pre-service teachers not only expressed these properties, but also they 
proved them using their previous knowledge of similar and congruent triangles.  

Theoretical rationale 
Several studies in the teaching and learning of geometry (Choi-Koh, S. S., 1999; Mariotti, 

2000; Jiang, Z., 2002; Christou, Mousoulides, Pittalis, & Pitta-Pantazi 2004; De Villiers, M., 
2004, among others) have used the GSP environment to mediate the interaction between teacher 
and students. The GSP not only fosters the learners’ constructions and ways of thinking but it 
also mediates and makes tangible the learners’ dialogues with themselves and their 
constructions.  

Methodology 
Teaching experiment. The teaching experiment methodology consists of long term 

interactions between researchers and learners to focus on their conceptual constructions and 
cognitive manifestations. This pilot study lasted four months and consisted of one-to-one task-
based interviews with two pre-service and two in-service teachers. One researcher was the 
interviewer and the other was the participant observer. The tasks of the study used semi-
structured constructions in the GSP environment and open-ended questions. The teachers were 
interviewed weekly throughout the academic semester; each interview lasted 90 minutes. Here 
we analyze a task solved by the two pre-service, Susan and Michael. 

Task. Figure 1 was given to them in the GSP environment. By dragging points and segments, 
they first explored and conceptualized the cases of congruence and similarity between the 
triangles ∆OAB and ∆OCD. Then, using appropriate open-ended questions and open hints, they 
constructed trapezoids and isosceles trapezoids. Both teachers used the congruence of the non-
parallel sides and of the two pairs of base angles in isosceles trapezoids to prove new found 
properties.  

_____________________________ 
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Analysis 
Michael used the congruence of the angles in a base to construct an isosceles trapezoid 

connecting this property with the similar property of isosceles triangles. In contrast, Susan 

started from two line segments PR and RM  (Fig. 2) and constructing a perpendicular line on 
RM at the point M she mirrored these two segments over this perpendicular line. Finally, she 
joined the points P and S (Fig. 2) to construct the isosceles trapezoid.  

Each teacher proved different properties in different order reasoning in different ways. Susan 
first conjectured that “if a trapezoid is isosceles then its diagonals are congruent”. She used 
Figure 2 to prove the congruence of triangles ∆PRQ and ∆SQR by SAS concluding that the 
diagonals PQ and SRare congruent. Similarly, Michael, using the isosceles trapezoid he 
constructed (Fig. 3), proved the congruence of the triangles ∆DGF and ∆EFG by SAS. So, they 
gave the same proof.   

On the other hand, they approached differently the property of the perpendicular bisector to 
the bases of isosceles trapezoids. Susan conjectured that “if a trapezoid is isosceles then the 
intersection of its diagonals lies on the perpendicular bisector of its two bases”. Using the Figure 
2, she proved the congruence of the triangles ∆TRP and ∆TQS by ASA concluding that TR is 
congruent to TQ  and TP is congruent to TS. Hence, she proved her conjecture. Michael, on the 
other hand, conjectured that “the line that connects the midpoints of the bases in an isosceles 
trapezoid is perpendicular bisector to both bases”. He first constructed Figure 4 and proved the 
congruence of the triangles ∆UTC and ∆VWC by SAS concluding that CU  is congruent to CV . 
He completed the proof proving the congruence of triangles ∆CDU and ∆CDV by SAS. Finally, 
Michael wrote all the properties of isosceles trapezoids.  

Susan conjectured and completed the proofs of the properties of isosceles trapezoids faster 
than Michael. Then, we asked her to try to prove the following proposition: “if the diagonals in a 
trapezoid are congruent then the trapezoid is isosceles”. She struggled to complete the proof. 
First she constructed congruent diagonals but not in a trapezoid. Second, using the Figure 2, she 
compared triangles but in all cases an element was missing to be congruent and she got stuck. 
Then, the interviewer using appropriate open hints helped her to realize the need of right angles. 
She thought to construct the perpendicular line to both bases through the intersection of the 
diagonals of the trapezoid but she realized that this perpendicular was not convenient. So, she 
figured out that the appropriate lines were the perpendicular lines from the points R and Q to the 
bases of the trapezoid and she constructed Figure 5 creating a rectangle. She proved the 
congruence of triangles ∆RVS and ∆QUP by hypotenuse and leg and the congruence of triangles 
∆RVP and ∆QUS by two legs. Finally, she proved that the trapezoid was isosceles because sides 

PR and SQ were congruent.  

Figure 1 
Figure 3 Figure 4 

Figure 2 
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Then, she continued proving the proposition “If the intersection of the diagonals in any 
trapezoid lies on the perpendicular bisector of one base, then the trapezoid is isosceles”. Susan 
constructed Figure 6 and she proved the congruence of triangles ∆GEB and ∆GED by SSS and 
of the triangles ∆HGA and ∆HGC by ASA concluding that the trapezoid was isosceles. After this 
proof the interviewer asked Susan to rethink and try to give a different proof. So, using the 
property of the point G being equidistant from the points B, D she concluded that the triangle 
∆GBD was an isosceles triangle. She also proved that the triangle ∆GAC is an isosceles triangle 
using the property of parallel bases. So she proved that the trapezoid was isosceles as its 
diagonals were congruent. Using the Figure 7, she also proved the congruence of triangles 

∆GAB and ∆GCD by SAS that gives the congruence of sides AB  and CD making the trapezoid 
isosceles. In conclusion, Susan was able to prove more propositions than Michael did, but 
Michael was more explicit in his proofs and wrote them in detail. 

Summary 
The analysis indicates that, step by step, the two pre-service teachers achieved a holistic 

sense of the properties of isosceles trapezoids and were able to prove them. The GSP 
environment mediated their explorations, their inferential thinking (inductive and deductive), and 
their dialogues with themselves and their constructions as they acted and reacted upon them.  
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In this work I ask what conceptions of congruency emerged discursively as students interacted 
with dynamic diagrams in a geometry class? The main data sources are videos of an 
“instructional experiment” (Herbst, 2006) in two sections of honors geometry. In the first two 
days of a 12-day unit on quadrilaterals, students worked to fill a table of properties relating 
characteristics of a quadrilateral and the quadrilateral formed by connecting successive 
midpoints of the original one (m-quad).  The teacher asked, “What quadrilateral would you need 
to start from in order to get an interesting m-quad?”  Students drew sketches by hand and 
assumed that sides and angles were congruent if they looked so.  These claims relied on what I 
propose to call a visual-perception conception of congruency (PERC), which uses spatial and 
graphical features of the diagram such as the orientation, size, or position. The 3rd and 4th day, 
the teacher kept the same problem but changed the task (Herbst, 2006) by giving students access 
to the table of properties and Cabri-Geometry.  Students’ use and interpretation of numerical 
values that resulted from measuring and dragging showed a change in their conception of 
congruency, namely a measure-preserving conception of congruency (MEAP), which takes two 
objects as congruent if they have the same measure.   

Measuring, which is usually perceived as an illegal or undesirable activity in the high school 
geometry class, can allow students to relate geometry objects by their properties rather than their 
shapes.  The use of dragging and measuring in the geometry class contrasts with teachers’ usual 
reluctance to measuring and their support of a transformation conception of congruency 
(TRANS), which establishes that two objects are congruent as long as there is a geometric 
transformation that maps one segment onto the other one.  While measuring still does not 
promote the TRANS endorsed in classroom mathematics, it could be the seed for students to 
discover new mathematical ideas and go beyond visual perception. 

Endnote 
The data used for this research has been collected by GRIP under grant NSF REC 0133619 (Reasoning in 

Geometry, PI P. Herbst).  Opinions expressed here are the sole responsibility of the author and do not reflect the 
views of the Foundation. 
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Efforts to increase students’ share of labor in the development of new knowledge require us to 
understand how new knowledge is customarily developed in classrooms. Like other classroom 
activities, the introduction of new knowledge in the mathematics class is done jointly (even in 
the extreme case, when one of the registers of interaction is nonverbal): the teacher does some 
things in some way, the students do other things in other ways. Furthermore, the introduction of 
new knowledge is done over time, some actions happen earlier and others later, and all of them 
take time as well as occupy places in time. Whereas accomplishing this joint work over time is 
contingent on many factors, what is to be accomplished, the element of mathematical knowledge 
at stake, somehow preexists that interaction. The claim that a given class has come to know 
something requires a judgment call over an exchange between work done and what that work 
could mean for an (mathematically educated) observer. The teacher may not necessarily be 
responsible to tell, sanction, or produce new knowledge, but she is, by virtue of the title she has, 
responsible to manage the place where students come to know. To understand whether and how 
students might take responsibility for developing, recognizing, inscribing, and remembering new 
knowledge we need to first understand what the customary exchanges leading to the claim that a 
class knows something, what the customary division of labor and organization of time are like.  

In project ThEMaT (1) (Thought Experiments in Mathematics Teaching), we have been 
studying a case of this phenomenon in the context of the US high school geometry class: how 
theorems are installed. The expression “installing a theorem” designates the activity whose goal 
is for the teacher to be able to hold students accountable for knowing a theorem that she could 
not have held them accountable to know before. We expect that this activity might include 
actions as apparent as stating a declarative proposition and sanctioning it as theorem, but also 
subtler things such as translating a statement about concepts into a statement about objects. What 
are all those actions? How are they done, and by whom? When are those actions done in relation 
to each other and how long can they take? Our poster shows a model that describes the 
installation of theorems in geometry classes as a system of norms; where by norm we mean a 
central tendency around which actions tend to distribute, or a default that is applied whenever 
nothing ad hoc or special is done in its stead. We have been studying the norms associated with 
the installation of theorems by way of a novel experimental method that builds on Bourdieu’s 
(1998) notion of practical reason: Confronting groups of practitioners to representations of the 
installation of a theorem that deviate from norms we hypothesize, and observing whether they 
say something and what they say to mark the deviation perceived (see also Herbst & Chazan, 
2003).  

Endnotes 
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expressed here are the sole responsibility of the authors and do not reflect the views of the 
Foundation. 
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Some conceptions and difficulties are reported in this paper which in a group of 11 university 
students were showed by them around the topic of variability. The results show that some 
students consider that variability is a product of the quantity of the data as well as the 
irregularity in its distribution. In homework assignments with a probabilistic context they had 
difficulties in recognizing the sample variability and they choose for the most probable results, 
meanwhile in homework assignments with statistical context, they tend for the explanation the 
variability by ignoring the sampling and having support in deterministic reasonings. 

Background and purposes 
The concept of variability and the reasoning process involved in it, hold a central place in the 

study of statistics. Several researchers (e.g., Moore, 1990; Wild & Pfannkuch, 1999) consider it 
as a basic component of the reasoning process and statistical thinking. Nevertheless its 
importance, for a long time variability has stayed relegated into the curriculum and as a topic of 
research in statistics education. The most frequent reference about variability it was usually made 
–and still keeps this influence in no few curricula-, inside the topic of dispersion or variability 
measurements, with a stressed emphasis in formula and calculation process, such as standard 
deviation and variance, without any conceptual analysis about its meaning and also without a 
real purpose of developing the statistical thinking of the students. 

With the difference of the topic of variability, the study of central tendency measurements 
had held much more the attention and the efforts of many statistical educators until some few 
years ago. As a results, nowadays different results of research we have around the concepts and 
beliefs students have about averages (e.g., Mokros & Russell, 1995; Pollatsek et. al. 1981, 
Konold & Pollatsek, 2004), but just a little is known about the conceptions and beliefs over the 
topic of variability or dispersion. And one reason about it lies in the lack of research on the topic 
(Shaughnessy, 1997). 

Among the causes of this lack of attention to variability is that averages are often used to 
estimate or predict what will happen in the future, or just to compare two different groups or 
treatments. However, the knowledge of variability can not be disregard in order to these 
estimations and comparisons have sense in statistical inference. As a result we notice that a 
conceptual gap is present in most students when the topic of variability is discussed, which needs 
to be boarded by educational research (Shaughnessy, 1997). 

This tendency has started to revert in recent years as well as some investigations had to 
emerge around the thinking of the students have about variability. Some examples of this, are the 
research works of Reading & Shaughnessy (2000), Torok & Watson (2000) and Watson & Kelly 
(2002), who have studied the variability in different contexts with students of elementary and 
middle levels. 

At the university level is even more limited such investigation about variability, even when 
students need to understand it in order to start the study of statistical inference besides of making 
the correct interpretation on  such findings. Our teacher experience and the reflections of other 
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statistical educators around the topic, show us that students learn to calculate dispersion 
measurements such as standard deviation and variance, but without understanding its meaning. 

The present research work represents just a part of a greater study in which the purpose has 
been the research of meanings in university students about the sampling distributions and 
concepts around it, among in them, variability but particularly, sample variability holds a very 
important place. We have specifically established and questioned the following: What are the 
conceptions and difficulties that university students have about variability in a previous level to 
the study of statistical inference? 

Methodology 
The study is explorative and responds to a qualitative methodology. The main instruments of 

data collection were the questionnaire and interviews with some students. They were 11 
voluntary students (19-21 years old) who were taking course of statistical inference at the 
National Polytechnic Institute in Mexico City. 

Those features of variability that were taken into account in the study were: 
1. Variability of a set of data from a graphic point of view. 

a) Given two data distributions identify the distribution of greater variability 
2. Sample variability 

a) Predict the possible results of the samples taking into consideration the parameters 
of the population. 

b) Identify the sample variability as the cause of the difference between the results of a 
sample and the parameters of a population. 

Results and discussion 
Let’s firstly analyze some items related to variability of the data from a graphic point of 

view: 
1. Mark with an X the distribution which has more variability and explain with details the 

reasons of your election. 
 
 
 
 
 
 
 
 
 

 

Three students answered correctly this item, but only one of them establishes and founds well 
his answer, as we see immediately: 

Student  Response 
Omar Because the graphic occupies a bigger range. 
Denis For me the first one has more variability                                                                      

considering the fact that it has a greater   
number of data and is from 0-10. 
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Libnia I chose it because it has more bars in the                                                                      
histogram. 

In the case of Omar and Denis, they relate correctly the variability with the range of the 
distribution, however, this latter student adds that the variability is related with the number of 
data, which is incorrect. Libnia doesn’t involve the range in her answer and considers that the 
variability depends on the number of bars. The rest of the students considered that the second 
graphic has greater variability than the first one. Their explanations are focused in the difference 
between the heights of the bars, that is, in the irregularity of the histogram. Let’s see some other 
cases: 

Student Response 
Ana Lilia For showing the results in different levels. 

Edgar Because there is more difference between the 
heights of the bars. 

Gerardo The second one has more variability since the 
bars of the histogram increase and decrease in 
different proportion in comparison to the first one. 

Jorge If variability is represented as the bars of the 
histogram, the one that has more variability is the 
distribution 1, but if variability is represented by 
the size or the difference that other bars have, so 
the histogram 2 has more variability 

These students consider that the variability of a distribution of data has a relation with the 
irregularity of its shape. They never relate the variability with the range of the distribution, as 
Omar and Denis did. 

The Jorge’s case deserves special attention, since it shows confusion about the criterium for 
the evaluation of the variability of the distributions and besides that in both cases it exhibits a 
misconception. 

According to the latter mentioned, we notice two misconceptions from students about 
variability of a set of data from the graphic point of view. 

a) Variability depends on the quantity of data. 
b) Variability depends also on the irregularity of the distribution. 
2. In the following graphic three populations distributions are presented in which the mean 

is 10=µ  and its standard deviations are 1=σ , 2=σ  and 3=σ  respectively. Place 
over each one of them the corresponding standard deviation. 

 
 
 
 
 
 
 
 
 
The purpose of this item was investigate whether students are relating in a correctly way the 

standard deviation with the variability of a distribution, since we make the conjecture that some 
students learn to make the calculations but they don’t know the meaning, nor the implications in 
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a data distribution. Only six students answer and base their answers in a correct way. Some of 
them are showed in the following table: 

Student Response  
Monica Because the standard deviation is found closer to 

the mean. 
Gerardo The smaller the deviation, the higher the curve. 
Ana Lilia The greater the standard deviation, the more 

flattened the curve is. 
Donovan Because the greater the deviation the curve is on 

the way of widening. 
As we can see, these students relate in a correct way some properties of the distributions, such as the height and 

the extension, just for assigning the values of the standard deviations. However, if we analyze their responses and if 
we compare them with the results of the first item, we notice that the students have an isolated and unconnected 
comprehension about the variability in a distribution and its quantification through the standard deviation, since they 
weren’t able to relate it with the variability of the distributions in the first item. They have also learnt to make the 
calculations of the standard deviation and to establish some relation with properties of the theoretical distributions, 
but they don’t understand its meaning when they apply it in different contexts, such as that of the empirical 
distributions. 

The latter mentioned, constitute a representative example of the prevailed teaching process 
about the variability in the university level, where more emphasis has been put on the calculation 
of measures of variability, but without the searching of the understanding of its meaning in a data 
distribution and its relevant properties, what shows a conceptual gap as Shaughnessy (1997) 
says. 

In corresponding terms to the topic of sample variability, the questionnaire included several 
items. Let’s analyze the following (with probabilistic context), which pretended that the students 
identify some possible sample results, having known the population parameter. 

3. If a well manufactured coin is thrown a great quantity of times, the proportion of 
“heads” that are going to appear will be very close to 0.5. Let’s suppose that you take 5 
samples of 10 throws each one. Write down how many “heads” would you expect that 
they would appear in each of the 5 samples. 

Number of heads in the sample 1: _____ 
Number of heads in the sample 2: _____ 
Number of heads in the sample 3: _____ 
Number of heads in the sample 4: _____ 
Number of heads in the sample 5: _____ 
Six students appreciated the sample variability in a correct way and they considered results 

around of 5 heads, even though solid arguments were missed which make well justifications to 
the responses. By their own, those who answered incorrectly they wrote responses such as 5, 5, 
5, 5, 5  in most of the cases. Those latter arguments contain elements of probability, such it is 
shown in the two following cases: 

Student Response 
Jorge Because the proportion of “heads” and “tails” is 

equalprobable in 0.5, so in each the same 
probability is expected. 

Omar Because the probability doesn’t change 
In these students responses we notice that their knowledge about probability represents an 

obstacle in order to appreciate the sample variability. Even then, their response considers the 
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result with greater probability to occur, they aren’t conscious that combinations of other results 
closer to 5,5,5,5,5 that could occur with greater frequency. Similar results were obtained by 
Shaughnessy & Ciancetta (2000), in a study with secondary students. 

In other items of the questionnaire (with statistical context) it was searched that the students 
could explain the difference between the sample results and the population as a product of the 
sample variability. The following item is an example of them: 

4. The M&M chocolate company says that 30% of their chocolates that come in a yellow 
bag presentation, are in color brown. A sample was taken with 10 bags and the result 
was that the proportion of brown chocolate was of about 25% ¿How do you explain the 
previous result? 

Five out the eleven students point out that the difference is because the samples vary, other 
four say that the difference is because the sample is too small. These students have into 
consideration adequate elements in their explanation about the difference of results. The first 
ones referring to sample variability and the second ones, in pointing out in an implicit way a 
representative sample, when they refer to the size. By their own, the other two students, they are 
not conscious of these properties when pointing out that the company was wrong. 

5. A 50 data sample is selected from a population of temperatures presenting a sample 
mean of 20 degrees centigrades. ¿Which one would be your best estimation of the 
population mean ? 

a )Would it be exactly 20 degrees? 
b) Would it be close to 20 degrees? 

c) Wouldn’t it be possible making an estimation, sinceµ is an unknown parameter and that 
the information is only of a single sample. 

d) Another response. 
The purpose of this item was to investigate if students are conscious that the sample 

variability generates a sample error at the moment of making an estimation. Only five students 
point out that the sample mean would be close to the parameter, what shows an adequate 
reasoning about variability, other five consider that it is not possible to make an estimation with 
the base of the results of a single sample and one student considers that the mean would be 
exactly the same parameter. As it can be seen, more than the half of the students have reasoned 
in an inadequate way about variability as the main cause of the sample error.  

With the same target than the item before, we have following one: 

6. Under similar conditions, three survey companies have done a survey in order to 
determine the citizen opinion over the performance of the president of the country. 
¿Would you expect that they get the same result? Explain your answer. 

In this item, seven students point out that they wouldn’t expect the same result, however, in 
some arguments is ignored the sample as a source of variability. Such it is the case of Denis and 
Monica: 

Student                     Response 
Denis No, because we all have different kinds of 

point of view or opinion 
Monica No, because they aren’t the same citizens 

and everyone thinks differently 
 By her own, Libnia and Jorge, give credits to the sample process the variability in the 

results. 
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Student                   Response 
Libnia  No, because it wouldn’t be the same 

section or proportion of the population 
Jorge No, because the sample means have a 

variation in comparison to the population  
mean. 

As we can notice, most of students consider that the results of the surveys, which are based in 
different samples vary among each other. Nevertheless, most part of them, in their arguments 
ignore the variability owed to the sample process and adduce the reasoning with deterministic 
disposition in order to explain the variability. 

Getting to resume: 
Among the misconceptions that showed the students about variability we find the following: 
a) From the graphic point of view, most of the students considered that the variability 

depends on the quantity of data or better upon the irregularity of a distribution and they 
don’t take into consideration the length of that distribution. 

b) They have a superficial understanding about the meaning of the standard deviation as a 
measure of variability and they also don’t relate it correctly with the properties of  a 
distribution, specially in empirical distributions. 

c) In probabilistic context situations, such as hazard games, many students choose the most 
probable result and they do not consider that a mixture of other results can occur more 
frequently. 

d) In statistic context situation, such as samples and surveys, they tend to ignore the sample 
process as a cause or source of the variability itself and try to explain the results through 
deterministic arguments which don’t have any relation with the uncertainty generated by 
the sample process. 

Conclusions 
The results of this research, even at an exploratory level, point out that the students showed 

different misconceptions and difficulties in the understanding of the variability, as well as a 
superficial understanding of the standard deviation as a measure of the variability, in spite of 
being university students who had taken at least a statistics course in previous levels and at the 
moment of the research they were taking a statistical inference course. The latter without any 
doubt represents an obstacle for the understanding of more advanced topics such as those of 
sampling distributions and inference methods, which require insight and deeper knowledge much 
more for knowing how to calculate a measure of variability. 

One suggested cause is that the teaching students received during the statistics courses was 
focused into the calculation of variability measures, such as could be the standard deviation and 
the variance, and not explicitly in the development of a thinking which involves variability and 
the understanding of statistical concepts. This is also a proof about the conceptual gap developed 
by Shaughnessy (1997). 

Without any doubt, the results show that it is necessary a lot of research with students at this 
level, in order to know and discover at a greater detail their conceptions and difficulties of 
understanding about variability in different situations, that could permit the generation of 
teaching strategies in order to develop the statistical thinking in the students besides the fact of 
an adequate understanding about variability. 
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Relationship of paper to the goals of PME-NA 
The present work of research has a close relation with the major goals of the North American 

Chapter of PME, considering that it reports results from a research made in order to understand 
the conceptions and difficulties that university students have and face around the issue or topic of 
variability, a very important and basic concept for the teaching and learning process of statistics. 
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Many students have intuitive biases that are contradictory to probabilistic reasoning (Fischbein 
& Gazit, 1984; Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993), which makes the teaching 
of probability complex and difficult. Preservice teachers need teacher education programs that 
address this issue. Castro (1998) introduced a teaching method called the conceptual change 
method. This paper is a literature-based argument for the use of this method within teacher 
education programs to effectively address preservice teachers' understanding of probability. 

Several researchers have established the importance of teaching and learning probability 
(Batanero, Henry, & Parzysz, 2005; NCTM, 2000; Shaughnessy 1992). However, one of the 
difficulties in teaching probability is due to the fact that many students have intuitive biases that 
are contradictory to probabilistic reasoning (Fischbein & Gazit, 1984; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993). They rely on these biases when making estimates of the likelihood 
of events as opposed to using more formal probabilistic reasoning. 

This problem is found not only in K-12 students but in preservice teachers as well. In his 
study of preservice teachers’ probabilistic reasoning, Koirala (2003) noticed both informal and 
formal reasoning used when solving probability problems. Formal probability is often based on 
university courses and informal probability is based on everyday intuitions and experiences.  
Tversky and Kahneman (1974) define a judgmental heuristic as a strategy that relies on a natural 
assessment to produce estimation or a prediction, which is based on students’ perception of 
events. In light of these issues, Shaughnessy (1977) poses the question, “is there an effective way 
of teaching elementary probability so that students would learn to rely upon probability theory … 
rather than relying upon heuristic principles which may bias probability estimates?” (p. 298).  

Researchers claim that the most effective way to address misconceptions is to bring about a 
conceptual change (Castro, 1998; Fischbein & Gazit, 1984; Konold et al., 1993; Stohl, 2005). In 
a study done by Castro (1998), an instructional model based on conceptual change was compared 
to a more traditional model. Castro uses Piaget’s theory of learning to frame the study: there are 
two different ways of acquiring knowledge. In the first way students have adequate intuitive 
cognitions to solve a problem. The new knowledge is assimilated into their existing cognitive 
structure. In the second way students have inadequate or incorrect intuitive notions and a radical 
change is needed for students to reorganize their concepts. This process is called 
accommodation.  

There are four criteria needed for an accommodation to occur: there must be dissatisfaction 
with existing conceptions, the new conception must be intelligible, the new conception must be 
initially plausible, and the new concept must suggest a new ‘research program’ to open up new 
problems. (Castro, 1998). Once students are exposed to a situation where their existing 
conceptions are inadequate or incorrect, the symbols and words of a new conception must be 
understandable to the student. In addition, this new conception must be consistent with other 
knowledge and aid in solving problems generated by the former conception. This process is not 
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immediate; it is usually a process of stages of gradual adjustment. Thus the teacher’s role is to 
guide the student through this process of adjustment starting from their initial conceptions.  

One of the key proponents of the conceptual change method of teaching is the building on 
students’ prior knowledge and experience. When dealing with questions of uncertainty and 
chance, students rely on past experiences and intuitions to find answers. Many of these 
conceptions are inconsistent with formal probabilistic reasoning and thus require change. Konold 
et al. (1999) believe that one way to produce conceptual change is to create situations that 
produce cognitive conflict when the answers are based on a particular incorrect intuition. 
Therefore within the teaching of probability there should be opportunities for students to 
experiment and test their conjectures. Preservice teachers should be exposed to models of 
teaching for conceptual change within their teacher education programs.  

An area that is missing in the literature regarding the teaching of probability is that of 
effective teacher education. The conceptual change model proposed by Castro should be used as 
a method for teacher educators to address preservice teachers’ incorrect intuitive probabilistic 
reasoning. This in turn will allow those teachers to effectively teach probability to their students 
because they will have a greater awareness of students’ misconceptions as well as their own. 

One of the key aspects that sets conceptual change teaching apart from traditional teaching is 
the fact that it is student-centered, not teacher-centered. Rather than the teacher being a 
transmitter of information, the teacher is more of a moderator and supervisor. They provide 
guidance while students decide if their own previous conceptions are adequate or need to be  
modified. The dual nature of probability, both empirical and theoretical, requires experimental 
learning situations that are designed to explore this connection. Through experimentation 
students can test their conjectures and form convincing arguments based on their findings.   
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Little is known about how elementary preservice teachers understand distribution, for example 
how to best describe, represent, and compare distributions. This study was investigated the 
development of understandings of distribution as expressed in the measures and representations 
used to communicate aspects of a given distribution.  

Theoretical Perspective 
Several studies provide insights into concepts considered integral components of distribution. 

Research suggests that visually representing a distribution has the potential to draw attention to 
particular aspects of data. A study carried out by Hammerman and Rubin (2004) suggests that 
access to a visual representation of a distribution may influence the value(s) that one chooses to 
represent that distribution. Similarly, Makar & Confrey (2005) found that preservice teachers are 
more likely to use measures of variability to represent a distribution if the data are presented 
graphically. Uncovering prospective secondary math and science teachers’ understanding of 
variation was facilitated by attending to their nonstandard statistical language, revealing a ‘strong 
relationships between expressions of variation and expressions of distribution’ (Makar & 
Confrey, 2005, p. 27).   

Other research focuses on preservice teachers’ understandings of measures used to index 
distributions of data (Canada, 2004; Gfeller, Niess, & Lederman, 1999; Heaton & Michelson, 
2002; Leavy & O’Loughlin, 2006; Makar & Confrey, 2002) and many of these studies converge 
on the same finding – preservice teachers’ understanding of measures of center tends to be 
procedurally rather than conceptually-based. Leavy & O’Loughlin (2006) found that elementary 
preservice teachers demonstrated fluency in using and manipulating the mean algorithm but 
demonstrated gaps in conceptual understanding of the mean. The prevalence of procedural 
understandings is further supported by Gfeller, Niess & Lederman’s (1999) finding that 
computational algorithms were the most prevalent method used by preservice teachers for 
solving problems related to the mean. 

Participants and methodology 
The 23 participants were enrolled in a math methods course as part of a one-year master’s 

degree program leading to elementary certification. Instruction on data analysis centered on two 
statistical investigations and the data modeling aspects of statistical inquiry (see Lehrer & 
Romberg, 1995), with a focus on distributions and the ways to represent and compare them. 
Instruction was anchored in the statistical inquiry, addressed the statistical skills required in the 
inquiry, and concentrated on statistical questions surfacing from the inquiry. 

This one group pretest posttest design incorporates aspects of teaching experiment 
methodology (Steffe & Thompson, 2000) and teacher development experiment (Simon, 2000). 
Two or more of the four research team members were present in the classroom during every 
teaching session and were involved in the daily organization and evaluation of classroom 
mathematical practices.  
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Findings and Conclusions 
Initially, participants did not represent distributions in ways that highlighted structural 

features, rather, the focus was on calculating descriptive statistics, in particular the mean, as a 
way to describe data. Participants held fundamental misconceptions about the mean that limited 
the ways in which the mean was used to represent the distributions. Misconceptions ranged from 
believing that the mean could not be used to compare data sets of unequal size, to difficulties 
calculating weighted means, to a lack of understanding of the limitation of the mean in 
representing skewed data, to the belief that data values having a magnitude of zero values need 
not be included in the mean. In addition, none of the participants used graphical representations 
in a way that revealed aspects of the data. Increasing preservice teachers’ awareness of and 
attention to the concept of distribution is possible. Over half the participants moved from using 
graphical representations to display group means to a focus on graphical representations as a way 
to depict a distribution. These participants used graphs as tools to maximize insight into a 
distribution, as a way to facilitate the observation of variables and the detection of outliers, while 
at the same time supporting the identification of trends and patterns in the data. This improved 
appreciation for the power of graphical representations was realized only for those participants 
who started out with an appreciation for graphical representations. For others the resilience of the 
mean algorithm was prevailing.  

Supporting the development of understanding of distribution requires that preservice teachers 
have their attention drawn to the notion of distribution. The use of statistical inquiry supported 
the evolution of a distributional perspective due to the emphasis drawn by the context on the 
variation of data values along a scale of measurement (i.e. how height of the beans varied within 
the range of possible heights). A focus on data set as an entity was also essential as it provided a 
meaning and context for the construction of representative values (see Mokros & Russell, 1995) 
– measures that were initially applied without an underlying rationale. The act of comparing data 
sets forced the entity view in that the act of comparison required the search for comparison 
values, each of which needed to be representative of the body of data. Finally, once the notion of 
distribution was established and the concept of data set as an entity developed, understandings of 
distribution were further nurtured though exposure to the range of measures and representations 
that supported the continued effort of describing, analyzing and comparing distributions.  

Gains in understanding were influenced by having access to strategies used by peers when 
engaging in data description and comparison. While classroom teaching experiences supported 
the development of skills and conceptual understanding, what they seemed not to do was 
convince participants of the utility of such measures when engaged in data analysis. Such 
experiences provide opportunities for participants to learn in practice, to develop communities of 
learners that engage in authentic statistical inquiry, and who continuously seek to find more 
efficiently and statistically justifiable ways of thinking about distribution. 
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This study is part of a larger NSF funded grant investigating students’ conceptions of variability. 
The research presented here focuses on one student’s thinking in a series of sampling tasks that 
asked him to make predictions for single outcomes and repeated samples. In reflecting on 
hypothetical student responses – presented in a semi-structured interview, the student revised his 
initial thinking. This paper illustrates possibilities for using student thinking coupled with 
dynamic tasks as a way to promote engaging statistical discourse.  

Reading and Shaughnessy (2004) point out that the K-12 statistics curriculum has 
overemphasized measures of center at the expense of measures of spread, and that there exists a 
gap in the statistics education literature in the area of student reasoning about variability. 
However, to fully appreciate the complexity of statistical enquiry one must consider the critical 
role that variation plays in statistical thinking (Pfannkuch & Wild, 2004; Reading & 
Shaughnessy, 2004). The research presented here is part of a larger NSF funded grant involved 
in an effort to fill in some of the gaps in research on students’ statistical reasoning with the 
primary goal of investigating students’ understanding of variability.  

Research Questions 
Two overarching research questions for this NSF research grant are: 1) How do students 

acknowledge, describe, and record variability when they are asked to represent or to make 
decisions about sampling data, repeated measurements data, and multivariate data in tables and 
graphs? and 2) In what ways do students’ conceptions of variability evolve from their initial 
conceptions as they experience classroom-based investigations involving sampling/re-sampling, 
comparing data sets, repeated measurements, and investigate large multivariate data sets? 

Background, Methods, and Procedures 
Middle and high school students from six schools (two urban, three suburban, one rural) 

participated in this research project. Three week-long classroom ‘teaching episodes’ were 
conducted over a two-year period: the first focused on sampling distributions, the second on 
repeated measurements, and the third on univariate and multivariate data sets in the contexts of 
fast food restaurant information. Surveys and task-based interviews preceded the first two 
teaching episodes, and a task-based interview preceded the third teaching episode. In all six 
research classes, four students (two males, two females) were chosen for interviews.  

The tasks and student responses discussed in this report are excerpts from the first and third 
interviews and are focused on students’ understanding of variability within sampling contexts. 
The first interview specifically addressed sampling contexts, and two tasks on the third interview 
revisited the topic of sampling distributions in order to investigate growth and change in student 
thinking over the course of the project. In particular, the following sub-research questions were 
investigated: Would students be overly focused on an expected value? Would students recognize 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Vol.2-258  PME-NA 2006 Proceedings 

 

a reasonable amount of spread around the center value? Would student reasoning be consistent 
with their predictions? Would there be evidence of student growth of understanding from the 
first to the third interview? After presenting an example of the interview tasks, I discuss the 
thinking of an 11th grade student, Jeremy, that serves as an illustration of how a framework for 
student thinking emerged and how these tasks could be used in classrooms to engage students in 
meaningful statistics activities.  

Task 
1. Suppose you have a container with 100 candies in it. 60 are red, and 40 are yellow. The 

candies are all mixed up in the container. You pull out a handful of 10 candies. 
a. How many reds do you expect to get? Why? 
b. Suppose you did this several times. Do you think this many reds would come out 

every time? Why do you think this? 
c. How many reds would surprise you? Why would that surprise you?  

After this initial task, students were asked to make predictions for six handfuls of 10 candies 
and then 50 handfuls of 10 candies. Students were also shown hypothetical examples of other 
students’ predictions for six handfuls and asked to pick out ones they thought were likely.  

Discussion and Results 
Jeremy’s responses are described with reference to a five-tiered framework for statistical 

reasoning that emerged in the analysis of the larger research study (see Shaughnessy et al., 
2005). Jeremy is characterized as a proportional reasoner since he predominantly attends to the 
ratio of reds to yellows in the jar. What is particularly interesting is the role these tasks could 
potentially play in promoting statistically rich classroom discourse and in facilitating student 
transitions to more sophisticated stages of statistical reasoning. Jeremy’s survey responses 
yielded little information about his reasons for predictions, but the interview tasks engaged 
Jeremy in statistical discussions that provided insight into his thinking, as well as ways in which 
his thinking changed as he reflected on particular interview tasks. For example, Jeremy initially 
expected an equal number of handfuls above and below six red candies, the expected value. 
However, his thinking changed significantly when he examined the hypothetical responses of 
other students. Jeremy decided that he liked one of the hypothetical responses more than his 
original response because it had more outcomes above the center than below it. From this point 
on, including during the third interview, Jeremy believed that there was a higher probability of 
having more handfuls above the expected value. He also exhibited inconsistencies in his 
reasoning about the number of reds above and below the center compared to his predictions for 
50 handfuls. His prediction of more outcomes above the center was not consistent with this 
belief. Jeremy’s inconsistencies reveal that although he has some sound statistical ideas he has 
not fully integrated these ideas with prior knowledge. Jeremy’s engagement with the sampling 
tasks in the interviews provides a promising illustration of how to develop meaningful statistical 
discourse in the classroom. 
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This paper shows the differences observed in students’ answers when faced with problems 
involving composite experiments and asked about conditional, marginal and joint probabilities, 
problems that despite being equivalent can be distinguished from one another by whether or not 
there is simultaneity in the actions that make up the experiments. 

Introduction 
The notions that students have and the difficulties they are confronted with concerning 

conditional probability have been studied in detail for a long time. (Falk, 1979 ; Pollatsek et al. 
1987; Gras and Totohasina, 1995). 

A deeply-rooted conception in the students is the chronological one, by which the occurrence 
of the conditioned event is thought to be impossible after the conditioning one (Falk, 1979). 

Sánchez & Hernández (2005) studied the effect of time on the use of the product rule for 
independent events. In their work, the authors devised a series of questions that consider so-
called synchronic and diachronic situations: “we will call synchronic situations, those which are 
made up of two or more actions taking place simultaneously, and diachronic situations, those 
formed by two or more actions taking place successively one after another” (Sánchez & 
Hernández, 2005, p. 300). Their results, although not very conclusive, show that students use the 
product rule more often in the synchronic case than in the diachronic one. 

With this in mind, we have conducted a research that sheds some light on the effect of the 
time variable on calculations of direct and inverse probabilities as well as on the use of the 
product rule for independent events and the computation of marginal probabilities. In order to 
compare answers we assume, unlike Sánchez & Hernández (2005), equivalent problems, one 
with diachronic situations, the other with synchronic ones. We designed a series of questions 
about two problems in the urn context. In the first problem, used by Falk’s in his study, two 
draws are made one after another (diachronic), whereas in the second problem the two draws 
take place at the same time (synchronic). The full text of the problems can be found in the 
Appendix. 

Description of the students 
The questions were asked to 30 third-year students of the Teaching-oriented Undergraduate 

Mathematics Program of the Universidad Industrial de Santander. They had already taken at least 
one course on basic probability and statistics and were familiar with combinatorial processes, 
classical probability, tree diagrams, conditional probability, independent and dependent events, 
the Total Probability Theorem and Bayes' Theorem. 

Results and Discussion. 
The first question, about direct conditional probability in diachronic version, was correctly 

answered by 27 students, whereas in its synchronic version only 8 answered correctly. In this 
case it is clear that the diachronic version is a lot more intuitive. 

To the second question, about inverse probability, the answer ½ was given by 19 students 
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when it was formulated in diachronic version; the same answer was given by only 9 to the 
synchronic version of the question, favouring again the chronological conception of conditional 
probability. The correct answer, 1/3, was given by seven students when the question was in 
diachronic form and by 14 when it was in synchronic form. This shows that the chronological 
conception loses strength when the draws are simultaneous. 

The third question regards the product rule. It is observed that the time interval between the 
two actions induces better answers from the students. Indeed, 12 students, under the diachronic 
version, answered correctly 1/6, while only three answered likewise under the synchronic 
version. This behavior is contrary to that reported by Sánchez & Hernández (2005). 

To answer the fourth question, 15 students argued that it “depends on the outcome of the first 
draw” under the diachronic version, while only one student stated similarly under the other 
version. The correct answer, ½, was given by only 4 students when the question was in 
diachronic form, but the synchronic one made 24 students answer correctly. 

Conclusions 
The results demonstrate the influence of the time axis on the resolution of problems dealing 

with conditional probability, product rule, Total Probability Theorem and Bayes' Theorem. The 
synchronic situation mitigates the chronological notion of conditional probability and the 
'dependence argument' to compute marginal probabilities, but it also complicates the 
computation of direct conditional probability and the product rule. 

In didactical terms, the obtained results stress the importance of presenting equivalent forms 
of identical problems, distinguished by the variation of variables irrelevant for the problem, the 
time variable in particular. This assortment of random phenomena all equivalent would allow the 
student to perceive what is essential in the experiments and dutifully overlook the 'confusion 
variables'. 

Appendix 
Problem 1. An urn contains two white balls and two black balls. A ball is drawn, put aside, 

and then another one is drawn. Answer. 
What is the probability that the second ball drawn be white, if the first was black? 
What is the probability that the first ball drawn was black if the second one is white? 
What is the probability that the two balls be white? 
What is the probability that the second ball drawn be white? 
Problem 2. An urn contains two white balls and two black balls. Two balls are 

simultaneously pulled out, one with the left hand, the other one with the right hand. The 
questions are the same as in the former problem, only substituting first draw by left-hand draw, 
and second draw by right-hand draw.    
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Students who have been classically educated in statistical inference techniques such as 
hypothesis testing and confidence intervals may perform well in statistics classes but can they 
use their statistical reasoning when faced with making an inference based on empirical data that 
has been collected?  There is currently a lack of research on students’ understanding of the 
connections between empirical data collection and theoretical probability using simulation tools 
(Jones, in press).   This study attempts to build on previous research on the statistical reasoning 
of US high school Advanced Placement statistics students when using such tools (Rider & 
Baker, 2005).   

The first research study conducted by the authors utilized a task designed for sixth grade 
students (Stohl & Tarr, 2002) and determined that AP Statistics students, although successful in 
their traditional course, lacked a conceptual understanding of theoretical probability within a 
simulation environment.  With this realization, the AP Statistics teacher incorporated more 
simulation activities in everyday instruction.  To examine the effect of this instruction, this 
current study considers how students who have been exposed to probability through the use of 
simulation tools approach the same task.  Our analysis focuses on how students approached the 
task, the size of the samples they chose to collect, and whether they applied statistical inference 
techniques to provide compelling evidence to support their estimates of the theoretical 
probability. We are also examining the students’ interpretation and use of the law of large 
numbers and the central limit theorem.  We are using case-based methods to study pairs of 
students’ work as they operate the computer “microworld” (Probability Explorer, Stohl, 2002) to 
estimate the outcomes from randomly generated die.  The purpose is to examine the difference 
between classically instructed students and students who have utilized simulation activities on a 
regular basis.  

Data for the current study is under analysis, however data from the original study showed 
that although students could apply inference techniques appropriately, their use of samples of 
size 30, based on their misunderstanding of the central limit theorem and the law of large 
numbers, hindered their ability to arrive at appropriate estimates for the theoretical probability.  
Our poster will contain a description of the task the students  completed, a comparative analysis 
of the students’ statistical reasoning and success in estimating theoretical probability, and 
examples of students’ work.   
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The National Curriculum Statement in South Africa emphasises the critical role of representation 
in data handling, referring to the way in which different representations can either highlight or 
hide features of a situation. The curriculum recommends that when the data are collected or 
generated, special attention must be given to the representation thereof and learners should be 
guided to understand how to organise the data in a manner that allows them to conduct the 
proper data analysis to answer the question posed in the beginning.  

A key idea of learning in statistics is to form and change data representations to arrive at a 
better understanding, a process that is called transnumeration (Wild & Pfannkuch 1999). 
Genuine understanding will most probably emerge and become evident to others when 
transnumeration takes place, that is, when a learner is able to summarise and represent a data set 
in a number of different ways and is capable of translating between these different 
representations (Chick 2003). Data arrangement plays an important role in this transformation of 
data during the phases of transnumeration (Mooney 2002; Chick 2003).  

In the research project described here the purpose was to elicit Gr 4-7 students’ spontaneous 
representations in two data tasks to determine the arrangement types, representational types and 
level of statistical thinking evident from these representations. One of the questions concerned 
the relationship between representation and arrangement. A sample of 144 mixed ability students 
in Grade 4-7 in a suburban government school in South Africa took part in the study. In the 
analysis eight different representational types were found, namely pictures, lists, tables, 
pictograms and frequency tables, bar graphs, pie charts, line graphs and anomalous 
representations. Four main categories, namely clustered, sequential, summative and regrouped 
summative arrangement strategies were found in seven different combinations. For each of the 
six appropriate representational types, two or three different arrangement types were used. 
Summative arrangement was a popular arrangement strategy used for all appropriate 
representational types. No pictograms and pie charts were categorised as inappropriate 
representations, while inappropriate representations were found for all other representational 
types. 

Several arrangement types were found for each representational type. No direct relationship 
between arrangement strategies and representation types were found. The refined frameworks for 
categorising representational and arrangement types that were designed to accommodate all the 
different combinations of the broad categories, however proved adequate tools to shed light on 
learners’ strategies to deal with data representation.  
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Teaching is a complex activity. While we have some idea of the role teacher knowledge 
plays in teaching mathematics (Ma, 1999; Shulman, 1986), we are less clear about the types of 
knowledge and understandings that well-regarded teachers draw upon when teaching in urban 
settings. Our study examines the types of knowledge three well regarded urban Algebra I 
teachers drew upon in their teaching of data analysis and statistics. In particular, we pay attention 
to their use of context-rich data problems. 

The high school is located in an urban setting in the Eastern United States and has a large 
minority population and high mobility. Three African American female teachers (T1, T2, T3) 
were studied. All were well regarded teachers and were nominated for participation by their 
school principal. The Algebra I/Data Analysis course taught was high stakes in that all students 
are required to pass a state mandated exam pertaining to this content in order to graduate. The 
teachers varied along a number of dimensions: teaching experience (2, 3.5 and 15 years 
respectively), mathematical content knowledge (all have undergraduate degrees in mathematics, 
T1/T2 have stronger preparation in data analysis and statistics), and formal academic experiences 
focusing on pedagogy (T1/T2 are certified, T3 has not gone through a standard teacher 
preparation program and was enrolled in an alternative certification program).  

Our analytic methods drew on the constant comparative method used in the development of 
grounded theory (Glaser & Strauss,1967) in which data are constantly compared as they are 
analyzed against current conjectures. Eight observations of classroom teaching, a test of 
statistical content knowledge, two interviews, and pre and post teaching conversations were 
conducted throughout the school year. Analysis of the ways in which each teacher used real life 
examples and familiar domains revealed a stark contrast in the teachers’ use of context. T2 and 
T3 attempt to use context in their data analysis sections to strengthen student interest and 
understanding whereas T1 embraced a purely mathematical and context-free style. Our analyses 
yield the following conclusions: (1) The use of real life contexts can scaffold teacher knowledge 
and create opportunities for learning for students that go beyond what it seems the teacher 
knows, (2) Contexts are not all alike, the use of context rich examples is not a sufficient 
condition to ensure student engagement, contexts must be familiar and compelling for students, 
and (3) School textbooks and curricular materials presented less compelling examples, successful 
instances of incorporating context required substantial investment of time and effort in 
identifying data sets that resonated with urban students. In conclusion, while mathematical 
content knowledge is a critical component of mathematics teaching, we observed that other 
characteristics such as selection of compelling statistical contexts and tasks augmented the 
teacher’s ability to engage students in making sense of fundamental statistical ideas. 
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Research on students’ reasoning about scatter plots has mostly concentrated on the reading, 
translating, and representing processes (Moritz, 2004). Our research placed students in the 
position of raising their own questions and conjectures about the types of variability they notice 
in a scatterplot, with subsequent probes for possible causes of that variability.  

Research Questions 
� Will students reason just about particular points, or employ data reduction strategies 

and  reason about clumps in describing variability? 
� How will students explain the variability within and across categories of variables? 
� Will students reason from absolute numerical values, or will they address the 

proportions or percentages, thus combining information from several variables? 

Discussion 
Less than half of the students (36%) were able to articulate the relationship between the two 

variables and to use of that information to reason about the scatterplot.  Relating the two 
variables requires an understanding of proportions, and the ability to focus on both axes when 
reading scatterplots. 

Conclusion 
The students’ responses demonstrated a wide spectrum of possible thinking about bivariate 

information. Students made predictions and comparisons: I) Focusing only on outliers or 
particular values; II) Appealing to clumps or clusters of the data; III) Creating their own 
hypothetical cut-off lines; IV) Reasoning only from frequencies (purely additive reasoning); V) 
Transforming the initial data by using proportions or percentages (proportional reasoning); VI) 
Explicitly referring to both centers and spreads when making comparisons across the restaurants 
(distributional reasoning).  The rich spectrum of responses to this task suggests that students pass 
through a variety of levels of thinking about bivariate graphical information. Students’ responses 
to such tasks can provide researchers with solid clues about the developmental paths of student 
thinking about graphs, and can give teachers an opportunity to tap student responses to promote 
classroom discourse and shared thinking. 
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This study documents the type of mathematical competence that first year university students 
develop as a result of working on series of problems that involve definite integral concepts. 
During the problem solving sessions students had the opportunity of using DERIVE software to 
solve the tasks, that were specially designed (Camacho, Depool and Santos, 2004), to 
comprehend and apply definite integral concepts. In this report, we sketch a framework to 
evaluate the students’ mathematical competences that emerge during the sessions and value the 
importance, for instructors, to think of the curriculum contents in terms of problems or activities 
that guide the students’ learning trajectories within CAS (Computer Algebra Systems) 
environment. 

Introduction 
The definite integral is a relevant content that engineering students need to comprehend and 

use in diverse contexts during their learning experiences. Thus, it becomes important to 
characterize initially, mathematical features, resources and strategies associated with the concept 
that are important for students to reflect in order to develop a robust understanding of that 
concept. In addition, the use of Computer Algebra Systems (CAS) to generate and operate 
distinct representations of the concept or problem seems to help instructors identify and evaluate 
potential learning trajectories that students may follow during instruction. Research questions 
that were useful to orient the development of the study include: What main mathematical 
concepts are involved in the process of understanding the definite integral? How the concept of 
area under a curve is related to the definite integral concept? What does it mean for a function to 
be nonnegative and continuous on one given interval? What does it mean the limit of the sum of 
the areas of the inscribed rectangles? How is the concept of definite integral defined in terms of 
the limit of the Riemman sums? How is the limit process represented geometrically?  And, what 
type of reasoning do students develop about the concept as a result of using Derive software? In 
particular, important data used to discuss the research questions came from the implementation 
of instructional activities where students had opportunity of reconstructing the definite integral 
concept in accordance to its epistemological development. That is, guiding the students to think 
of the concept, in terms of finding areas of bound regions by using the idea of approximation and 
limit visually, dealing with numeric and algebraic representations, and construing geometric 
representations of the concept.  

The use of CAS, in this case Derive, seems to offer students the possibility of approaching 
the concept graphically by representing a variety of functions and drawing simple figures 
(rectangles, trapezoids, or parabolic trapezoids) to approximate the area under those curves. 
What does it happen visually to the area, when the number of the drawn simple figures increase? 
What does the sum of those areas represent when the number of simple figures increases? Is 
there any relationship between the primitives associated to those functions and the limit of the 
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sums of the area of the inscribed figures? These types of questions helped students discuss 
strengths and limitations that appear while using the software to deal with problems or situations 
that involve the use of the concept of definite integral. 

Conceptual Framework 
Principles that helped organize and structure the study involve the recognition that students 

develop resources, strategies and ways of reasoning within a learning community that favors 
their active participation in problem solving activities (Schoenfeld, 1992). The use of CAS offers 
students the opportunity to represent information and relationships to solve problems in terms of 
visual, numeric and algebraic approaches. In this context, it is important to examine de process 
that students show in transforming the use of the artifact (Derive software) in a problem solving 
tool to explain, in terms of properties and meaning, connections and relationships among the 
distinct representations and operations that appear while solving the problems. In this 
transformation process, students need to develop skills and strategies to use software’ in order to 
generate proper representations of the problem that lead them to pose and discuss pertinent 
questions to examine and deal with the problem. In this context, the use of the tool becomes 
important for students to explore the problem from perspectives that include numerical, 
algebraic, and graphic approaches. Thus, students learn mathematics as a result of reflecting on 
distinct ways that concepts can be represented and used in problem solving activities. In 
particular, when students use the software to approximate areas of limited regions, they need to 
think of ways to refine partitions of the interval to draw rectangles, trapezoids, etc to determine 
the area through summing areas of simple figures. The concept of limit becomes relevant to 
interpret the refining process of the interval partitions. Students can also use the software to solve 
some definite integrals directly; however, in order to introduce the expression into the program, 
students need to analyze the behavior of the function to determine the integration limits and to 
visualize graphically the meaning associated with solving the integral. 

How are aspects of mathematical practice that involve the use of techniques or algorithms 
and concepts reconciled with the use of CAS? Artigue (2002) argues that “[techniques] have also 
an epistemic value, as they contribute to the understanding of the objects they involve, and thus 
techniques are a source of questions about mathematical knowledge (p.248). Thus, analyzing and 
transforming results produced with the use of CAS becomes important for students to understand 
the meaning of operations and concepts. That is, “technique –whether mediated by technology or 
not- fulfils not only a pragmatic function in accomplishing mathematical tasks, but an epistemic 
function in building mathematical concepts” (Ruthven, 2002, p. 283). Heid (2002) suggests that 
results from CAS studies challenge the assumption that students’ abilities to perform procedures 
must precede the development of conceptual understanding. “…[CAS studies] have provided 
evidence that, prior to developing related by-hand routines, students can learn at a greater depth 
than in a traditional skills-before-concepts curriculum” (p.98).   

To document the students’ process of transforming an artifact into an instrument, that is 
making the use of computer algebra system (CAS) functional to comprehend or solve 
mathematical problems, we recognize that students need to develop cognitive schemes to 
transform a physical device or material into a mathematical tool. Artigue (2002) states that: “for 
a given individual, the artifact at the outset does not have an instrument value. It becomes an 
instrument through a process, called instrumental genesis, involving the construction of personal 
schemes or, more generally, the appropriation of social pre-existing schemes” (p. 250). This 
instrumental genesis can be explained in terms of constrains and potentialities of the artifact and 
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their relation to the cognitive schemes that students develop as a result of progressively using the 
tool in problem solving activities.  

In order to understand and promote instrumental genesis for learners, it is necessary to 
identify the constrains induced by the instrument; “command constrains” and “organizational 
constrains”. It is also necessary, of course, to identify the new potentials offered by instrumental 
work, (Artigue, 2002, p. 250). 

The students’ process of transforming an artifact, in this case the DERIVE software, into a 
problem solving instrument shapes not only their ways to use the tool, but also their sense and 
conceptualization of mathematics and problem solving activities. That is, tools’ use influences 
directly students’ ways to deal with mathematical activities. The transformation process is linked 
to the tool characteristics (potentialities and constrains) and to the subject’s activity that include 
his/her knowledge and ways to use it (Trouche, 2005). With the use of CAS, students build a 
conceptual system that guides their mathematical behaviors. Ruthven (2002) points out that 
“…building a coherent conceptual system and an overarching concept of framing involves the 
progressive coordination of many other specific schemes (p. 279). 

Design, methods and procedures 
Forty engineering students who were taking a first year calculus course participated in the 

study. The course included a combination of regular classes where the instructor mainly 
presented the content to the students, and series of computer lab sessions in which students had 
the opportunity to work on sequences of tasks with the help of DERIVE software. During the 
development of the laboratory session, students worked on the tasks in pairs and the instructor 
monitored the students’ work. All the sessions were videotaped and each pair handed in its work 
(electronic file). In addition, all the pairs were videotaped during the development of the 
sessions. For the study, we focused on the work shown by 6 students during 9 sessions of 
computer laboratory. In particular, we are interested in analyzing information that comes from 
students working, in pairs, on two problems. ¿How do students make sense of the relevant 
information embedded in each problem? What type of representation do they use to identify and 
deal with concepts and mathematical properties attached to the problem? To what extent does the 
use of the software helped them to visualize relationships and apply corresponding procedures to 
solve the problem? These types of questions were used to guide and structure the students’ 
approaches to each problem 

Problem 1:  
Given the function 
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a. Calculate, if it is possible, the 
bound area of the curve and the 
interval [-2,3] 

If it is possible, find the value of the 
definite integral on the interval [-2,3]. It is 
not possible then you must explain your 
reasoning. 

 
 



Vol.2-274  PME-NA 2006 Proceedings 

 

 
Problem 2:  
An engineering company will construct a tunnel 

under a mountain. The tunnel will have 300 feet of 
length and 50 feet width. The shape of the tunnel is 
an arc whose equation is ( )50/25 xCosy π= . The up 
part of the tunnel will be sealed with a paint that 
cost $ 1.75 dollars per squared foot. How much will 
it cost to apply the painting (Thomas y Finney, 
1996, p.399) 

 
 

 

Preliminary Results 
To structure and present main result of the study we focus, firstly, on identifying features of 

the mathematical interpretation that students gave to the content involved in each task, secondly, 
the effects produced by the software facilities (syntax, command use, etc.) in students ways to 
represent and deal with the task, and thirdly, the extent to which the students’ experience in using 
the software influences the type of mathematical reflection that they get involved during their 
interaction with the problems.  

For the first task. We are interested in discussing the extent to which students utilized the 
software to make sense of the task statement, identify relevant information to translate the 
problem into mathematical operations, to apply the tool to solve the problem, and to make sense 
of the results. For example, do the students identify visually the region limited by the curve and 
the given interval? Do students pay attention to the intersection points of the function with x-
axis? How do students calculate the area of the bound region? Do they use different methods to 
determine that area? How do they compare the results? How do students interpret the result? 

While students worked on the first task, there is evidence that students in general visualized 
on the graph the region limited by the function and the x-axis. This was clear when they used the 
Utility File to approximate the corresponding area. However, some students utilized the software 
to determine the area under the curve, by introducing the function’s expression and taking the 
extremes of the interval as the inferior and superior integration limits without analyzing the 
behavior of the function under such interval. That is, students seem to have acquired a procedure 
to calculate definite integral, with the software, by associating the initial and end point of interval 
as the corresponding integration limits and introducing the function into the software to get some 
results. These students never explained what that result meant in terms of the given problem. 
Thus, to illustrate the work shown by the students in the first problem, we reproduced part of the 
interview carried out with a pair of students: 
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PAIR 2 

62) R (Researcher): What did you do? 
63) EJ: First, we represented the function, then we are asked to calculate the area, so we 

calculate the integral for each subinterval from -2 to -1; from -1 to 2; and from 2 to 3 (pointing 
to the graph) 

64) R: ¿Would that give you the area? 
65) EJ: No. It will give us the measure of each one. 
66) R: and the area? 
67) EJ: Then, we add them up. Because, in case that one part of the graph lied below the X-

axis, then we World take the absolute value; but we can observe that the entire graph is located 
above the X-axis.. 

68) R: ¿Is the graph of the function above the X-axis? 
69)EJ: Ajaa. The integrals’ values are positive, so we added them up to get a value. Later we 

calculate the integral, with the whole matrix form, and we got the same results. Here again, we 
added all the matrix row value and we got similar results.  

                       The area is 5.212522774 

 
70) R: Write down you conclusions 
71) EJ: Ajaa. They wrote “ to calculate the definite integral between -2 and 3, the result is 

expressed as a matrix, since we are dealing with a function defined by parts which gave us the 
area value for each part. The total area would be then the sumo f the absolute values of each 
part” 

”. 
72) EJ: Now using Barrow’s formula, we calculate the definite [integral] (pointing to the 

integral )  and evaluate in the integration limits, we are going to add all to see 
what we get.. 

 
Other students chose the integration limits of the region based on identifying the 

discontinuity points of the function. Thus, they solved the definite integral by selecting 
integration limits associated with pieces or parts of the function in accordance with their 
domains.  There is evidence that students often use the software efficiently to carry out series of 
operations, but they experience difficulties in interpreting in mathematical terms what they get 
through the software. 

For the second task: Do students visualize the area to be sealed? Do they identify relevant 
information to determine the area? How do they choose the formula to calculate the arc length? 
How do they determine the integration limits? What units do they use to express the area? What 
response or solution do they get? Do they interpret the solution? 

It was observed that some students experienced difficulties in interpreting the problem in 
terms of using the definite integral concepts. Specially when they need to apply the concept in 
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situations that do not involve areas. For example, a pair of students (DR and PV) interpreted that 
the arc length can be calculated directly by finding the integral of the given function. It seems 
that the use of the software helped them carry out difficult operations or calculations; but they 
lack resources and strategies to make sense of the meaning of the results in terms of integral 
within the length context. 

 
PAIR 2 
42) DR: we are asked to find the total cost to seal the tunnel 

(pointing to the figure); but in order to find the tunnel’s  area, 
we have the arc tunnel function. Thus, we find the areas 
(pointing to the figure). 

 
43) R: The area? 
44) DR: The integral (PV) we get the integral of the function. 
45) R: with the integral, what are you going to calculate? 
46) DR: wit the integral of the function between -25 y 25. 
47) R: What do you get with that? 
48) PV: This is something like the width. 
49) R: the width? 
50) PV: the measure of this (pointing to the border of the figure). 
51) R: what do you call that? 
52) DR: Arc. 
53) R:  And? 
54) DR: That result is multiplied by 300, which is the depth of the tunnel to get the area. 
55) R: ¿What is the area? 
56) DR:      52.387324146.10 
57) R: Yes? 
58) DR: Ajaa.  Then we are told that the squared feet costs 1.75 dollars, then this amount 

( 52.387324146.10) is multiplied by 1,75 to get the total cost, which is . 
59) R: isn’t that amount a lot? 
60) PV: that is what we got. 
61) R: What was the integral value? 
62) DR: looking for the commands 
63) R: where is the function? 
64) DR: (pointing to the expression)  

     
65) R: I believe that you are not right, this is not the formula. 
66) PV: it isn’t the formula? 
67) I No68) DR: why are you saying that ? 
69) R: What do you think? 
70) R: What formula do you get? 
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71) PV: This is the formula (pointing to ) 
72) R: when you solve the integral, are you sure that you get the length of the arc? 
73) DR: We, by using analogy, thought that if we integrate the function, the function is the 

arc of the tunnel (looking at the figure).  
74) R: Do you think that the length of the arc can be calculated by solving the integral of that 

function?  
75) DR: The arc is not the given function and the integral (PV) is the  measure of what we 

got here, 25…but the total area is the product of that number and 300… 
 

There is evidence that for students to approach the problems they need to develop a robust 
understanding of the involved mathematical concepts. It is clear that the pair of students, who 

worked on the second task, lacked understanding of what the definite integral concept involves. 
In particular, it seems that students do not recognize that the integral expression can also 

represent other type of situations that are different from areas. It was also observed that students 
tend to use the tool (CAS) mechanically to solve integrals but without reflecting on the meaning 

of what they do or obtain.  

Concluding Remarks 
What type of experience do students need in order to use the software efficiently? To what 

extent the students’ experiences in using the tool (domain of the syntax, commands, limitations, 
etc.) influence the way they represent and deal with mathematical problems? These were central 
questions that guided the development of the study. A central finding is that students’ learning 
trajectories should involve both attention to the students development of resources and strategies 
that allow them to examine mathematical concepts from different angles or perspectives, and 
ways to select and use proper syntax and software commands to represent and explore 
mathematical tasks and problems. In particular, the software should be taken as a vehicle to 
represent and explore properties attached to those problems. Thus, students constantly should use 
the software to formulate and examine set of questions that lead them to comprehend and solve 
the problems.  
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Changing the beliefs of preservice teachers is a prominent topic in mathematics education. In 
this paper we present the results of a study that focuses on the changes in preservice elementary 
school teachers’ beliefs during a method course. Their evolving beliefs are documented in 
reflective journals. These journal entries are analyzed according to established categories 
describing mathematical beliefs. Results indicate that through their own experiences with 
mathematics in a non-traditional setting the participants' beliefs about mathematics and the 
teaching and learning of mathematics are positively affected to include beliefs commensurate 
with reform teaching practices.  

Introduction 
Even before undertaking their first education course, prospective teachers have developed a 

wide range of beliefs about mathematics as well as about the teaching and learning of 
mathematics (Ball, 1988; Feiman-Nemser et al., 1987). As often stated, these beliefs are quite 
stable and robust and therefore difficult to change. Schommer-Aikins (2004) points out that 
beliefs are “like possessions. They are like old clothes; once acquired and worn for awhile, they 
become comfortable. It does not make any difference if the clothes are out of style or ragged. 
Letting go is painful and new clothes require adjustment” (p. 22). Nevertheless, one of the roles 
of the teacher education programs is to reshape teacher beliefs and to correct misconceptions that 
could impede effective teaching of mathematics (Green, 1971).  

This study uses reflective journals to examine in what ways the beliefs of a group of 
preservice elementary school teachers did and did not evolve during their enrolment in a 
mathematics method course that was designed and taught with the implicit goal of changing their 
beliefs.  

Theoretical framework 
In this paper we deal with beliefs about mathematics and its learning and teaching. In 

general, such beliefs can be referred to as “messy constructs” (Furinghetti and Pehkonen, 2002; 
Pajares, 1992). Some of this 'messiness' can be reduced, however, if we focus on the composition 
of these beliefs. Törner and Grigutsch (1994) suggest that beliefs are composed of three basic 
components called the toolbox aspect, system aspect and process aspect. In the "toolbox aspect", 
mathematics is seen as a set of rules, formulae, skills and procedures, while mathematical 
activity means calculating as well as using rules, procedures and formulae. In the "system 
aspect", mathematics is characterized by logic, rigorous proofs, exact definitions and a precise 
mathematical language, and doing mathematics consists of accurate proofs as well as of the use 
of a precise and rigorous language. In the "process aspect", mathematics is considered as a 
constructive process where relations between different notions and sentences play an important 
role. Here the mathematical activity involves creative steps, such as generating rules and 
formulae, thereby inventing or re-inventing the mathematics. Besides these standard perspectives 
on mathematical beliefs, a further important component is the usefulness, or utility, of 
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mathematics (Grigutsch, Raatz & Törner, 1997). 
Robust beliefs are difficult to change. However, an abundance of research purports to 

produce changes in preservice teachers of mathematics. Prominent in this research is an approach 
by which preservice teachers' beliefs are challenged (Feiman-Nemser et al., 1987). Another 
prominent method for evoking change in preservice teachers is by involving them as learners of 
mathematics (and mathematics pedagogy), usually submersed in a constructivist environment 
(Ball, 1988; Feiman-Nemser & Featherstone, 1992). A third method for producing changes in 
belief structures has emerged out of the work of one of the authors in which it has been shown 
that preservice teachers' experiences with mathematical discovery has a profound, and 
immediate, transformative effect on the beliefs regarding the nature of mathematics, as well as 
their beliefs regarding the teaching and learning of mathematics (Liljedahl, 2005; Smith, 
Williams, & Smith, 2005). All three of these approaches are combined in the design and teaching 
of the aforementioned mathematics methods course.  

Methodology 
Participants in this study are 39 preservice elementary school teachers enrolled in a Designs 

for Learning Elementary Mathematics course for which the first author was the instructor. 
During the course the participants were immersed into a problem solving environment. That is, 
problems were used as a way to introduce concepts in mathematics, mathematics teaching, and 
mathematics learning. This designed for the course emerged out of the literature on producing 
changes in preservice teachers’ mathematical beliefs. This included, for example challenging 
their beliefs (Feiman-Nemser et al., 1987), involving them as learners of mathematics (Ball 
1988; Feiman-Nemser & Featherstone, 1992), or occasioning experiences with mathematical 
discovery (Liljedahl, 2005; Smith, Williams, & Smith, 2005).  

Throughout the course the participants kept a reflective journal (Mewborn, 1999) in which 
they responded to assigned prompts. These prompts varied from invitations to think about 
assessment to instructions to comment on curriculum. One set of prompts, in particular, were 
used to assess each participant's beliefs about mathematics, and the teaching and learning of 
mathematics (What is mathematics? What does it mean to learn mathematics? What does it mean 
to teach mathematics?). These prompts were assigned in the first and final week of the course. 
The data for this proposal comes from the journal entries responding to these prompts.  

The three authors independently coded the data according to each of the four aforementioned 
components of mathematical beliefs: toolbox, utility, system, and process. Discrepancies in 
coding were resolved as part of a recursive process of discussion-coding-discussion that the three 
authors engaged in. This recursive process not only led to a more stringent treatment of the data, 
but also led to a greater and shared understanding of the interpretive framework at hand. We use 
two excerpts from the participants' journals to exemplify our shared understanding of some 
aspect of beliefs with respect to mathematics as well as the teaching and learning of mathematics 
(for further examples see Rolka, Rösken & Liljedahl, 2006). 

Beliefs about mathematics – toolbox aspect: 
� "My first impression is that math is numbers, quantities, units. In math there is always 

one right answer. […] Math is about [...] memorizing formulas that yield the right 
answer." (Stephanie)  

� "When first pondering the question "What is mathematics?" I initially thought that 
mathematics is about numbers and rules. It is something that you just do and will do well 
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as long as you follow the rules or principles that were created by some magical man 
thousands of years ago." (David) 

Beliefs about learning and teaching mathematics – process aspect: 
� "The other thing that stands out is the difference between formally teaching students, 

and actually facilitating learning. By being a facilitator of the learning process, we are 
able to choose situations, activities and problems for the students to work on either 
individually or in groups, and through this approach, students are able to […] try 
different ideas, and develop strategies." (Robyn) 

� "I think to teach mathematics you need to let the thinking be put in your students’ hands. 
You need to give them ownership of ideas and let them feel safe and free within the 
classroom." (Michelle) 

Results and Discussion 
The coded data were treated in two distinct, but related ways. First, the coded data were 

aggregated to produce a holistic picture of the evolving beliefs of the class as a whole (Rolka, 
Rösken, & Liljedahl, 2006). The results of this analysis are summarized in Figures 1-4.  

Beliefs about mathematics at
 the beginning of the course

Toolbox

System

Utility

Process

 

 
Beliefs about mathematics at 

the end of the course 
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System

Utility
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Figure 1 Figure 2 

 
Beliefs about learning and teaching 

mathematics at the beginning of the course

Toolbox

System

Utility
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Beliefs about learning and teaching 

mathematics at the end of the course

Toolbox
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Utility
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Figure 3 Figure 4 

The most obvious change is the degree to which a process aspect of mathematics and the 
teaching and learning of mathematics has been introduced into the collective beliefs of the class. 
To see what gave way to this change a further analysis of the data was performed. 
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As such, the data were analyzed with a focus on how individual participants' mathematical 
beliefs changed. For each participant the data was examined to see how their beliefs at the 
beginning of the course compared to their beliefs at the end of the course. For example, in her 
first entry Becky’s beliefs about mathematics correspond to the toolbox and the utility aspects.  

So all I can think of when asked this question [what is mathematics?] is numbers, the study of 
numbers and perhaps how math exists in this world all around us, how it encompasses us, from 
everything from our 10 fingers and toes to the products we bought for groceries to the angle of 
the sun or the curvature of the earth. 

In Becky's last entry, however, her beliefs about mathematics correspond to the process 
aspect.  

I was focused on seeing math as a tool; that its benefit was in its uses. I put the stress on the 
applications [...] and equated meaning to its usefulness as a tool. Throughout the course, this has 
been the biggest evolution in my thinking, as I have moved from this definition of math towards 
one that focuses more on math as the thought processes or reasoning that goes on inside of us to 
make sense and give meaning to number relationships and patterns. [...] For me, math has truly 
transformed from being a skill or procedure that can be used merely for efficiency to being 
imbedded within a process of meaning-making that goes on inside the individual, a construction 
of understanding that we make up. 

The changes in Becky's beliefs are coded as [toolbox, process] and [utility, process], where 
[x, y] is an ordered pair denoting [initial belief, final belief]. For most of the participants (n=36) 
more than one belief was expressed in their responses to at least one of the journal prompts. This 
necessitated the above coding method in which more than one ordered pair was assigned for a 
participant.  

Due to space restrictions, we limit ourselves to the presentation of one student's change in her 
beliefs about mathematics. However, we do present the results of our coding of the data. Figure 
5 presents the changes in beliefs about mathematics across all of the participants.  
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Figure 5: Changes in beliefs about mathematics 
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Figure 6 presents the changes in beliefs about the teaching and learning of mathematics 
across all of the participants. 
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Figure 6: Changes in beliefs about the teaching and learning of mathematics 

Each of the tables in Figures 5 and 6 are to be read vertically. For example, in Figure 5 there 
were nine participants who initially expressed a belief of mathematics that was coded as utility 
[Utility Before]. Two of these participants maintained a belief of mathematics as utility at the end 
of the course, one adopted a belief that mathematics was a toolbox, and so on.  

From these figures a number of results emerge: results that are also supported within the fine 
grain analysis of individual participants' journal entries. One of these has already been alluded to 
above and pertains to the predominant shift towards a process belief about the teaching and 
learning of mathematics. In all, there were 45 instances where initial beliefs were either replaced 
by, or complemented with, a process belief. This can be seen in the first three columns of Figure 
6. Not seen in Figure 6, however, is the result that this adoption of a process belief was 
embodied within 24 of the 30 (80%) participants who did not initially profess a process belief. 

A second result that emerges from this data is the robustness of the systems belief about 
mathematics. 14 out of 28 participants who had a demonstrated systems belief of mathematics at 
the beginning of the course retained that belief at the end of the course. This is by far the greatest 
retention of any one belief aspect within the study and speaks, at least in part, to the resilience of 
the characterization of mathematics as logic, rigorous proofs, exact definitions and a precise 
mathematical language. This resilience is further accentuated by the fact that7 of the 14 
participants who retained a systems belief of mathematics at the same time shifted from a 
systems belief about the teaching and learning of mathematics to a process belief 1. We are still 
trying to make sense of this bifurcated shift in beliefs. Our conjecture is that the difference may 
lie within the changes to their belief structures as opposed to just their beliefs. That is, beliefs are 
not discrete entities – they cluster together to form belief structures (Green, 1971). We think that 
the bifurcated nature of the changes in beliefs is due to the fact that these participants' beliefs 
about mathematics reside within a different belief structure from their beliefs about the teaching 
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and learning of mathematics. Ongoing research with these data as well as with these participants 
is currently under way in order to further explore this conjecture. 

Conclusion 
There are two main conclusions from this study. The conclusion most relevant to the results 

presented here pertains to the effectiveness that the problem solving environment had on the 
recasting of these preservice teachers' beliefs about what it means to teach and learn 
mathematics. Through their own experiences with mathematics in a non-traditional setting most 
of the participants come to see, and furthermore to believe, in the value of teaching and learning 
mathematics in the sense of the process aspect. This is an important shift in that it most closely 
aligns their beliefs with contemporary theories of learning as well as contemporary ideas about 
what constitutes effective practice (NCTM, 2000). There is an important subtlety here, though, 
that is not to be overlooked. Beliefs are not practice. Although there is strong evidence to suggest 
that beliefs govern practice (Chapman, 2002) we are not to be fooled into thinking that beliefs 
automatically translate into practice. Research has repeatedly shown that the adversity faced in 
the early years of teaching can have profoundly detrimental effects on novice teachers' best 
intentions of practice. Further research is needed, and is ongoing, to determine the robustness of 
these beliefs in the face of such adversity and to closer examine the transition from intentions of 
practice to actual practice.  

A further result pertains to the robustness of the systems belief about mathematics. For many 
of the participants in this study it seemed as though these beliefs were impervious to their recent 
experiences with mathematics within the context of the course that the study was situated. 
Robust beliefs are to be expected. What was unique within this study, however, was that these 
beliefs remained unchanged while other (closely related) beliefs did not. Robust beliefs within 
such a context were not expected. We conjecture that this robustness is, in fact, due to the 
resilience of the belief structure that these individual beliefs reside within. Again, further 
research is needed, and is ongoing, to closer examine this conjecture. 

Endnote 
1. The other 7 of the 14 participants who retained a systems belief of mathematics also 

retained their systems belief about the teaching and learning of mathematics. 
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In this article we report on the work realized by high school students when confronted with a 
combination of problems that involve different methods of solution in a scenario of instruction 
based on problem solving. During the process of implementation, the students had the 
opportunity to work in small groups, to present and defend their ideas to the whole class, and to 
constantly revise their work as a result of the criticisms and opinions they were given during 
their presentations and discussions in class. In this context, the students exhibited different 
cycles of understanding that permitted them to comprehend the fundamental ideas associated 
with the solution, and eventually, they resolved the tasks. 

Recent proposals for a mathematics curriculum (NCTM, 2000: Balanced Assessment 
Package for the Mathematics Curriculum, 1999; 2000) suggest the organization of the teaching 
and learning of mathematics around the resolution of problems.  In these it is recognized that the 
experiences of the students are enriched when they work with attractive problems or tasks that 
are posed in real contexts wherein they have the opportunity to apply and extend the basic 
mathematical relationships. The convenience is also recognized of implementing a manner of 
working in the classroom in which collective work in the whole class and in small groups is 
combined with individual work, and wherein the students can present and defend their ideas 
before the others. This also permits them to invigorate their comprehension of the mathematical 
contents and fortalice their abilities in the resolution of problems. In this study we were 
interested in documenting the strategies, representations and resources that the students used 
when confronted with a combination of problems that were interesting for them and were 
therefore easy to understand, that contained fundamental contents of the curriculum and that, 
because of their design, permitted the recuperation of the processes utilized in the attempts at 
solution. Some of the questions that guided the development of the study are: What manners of 
comprehension and methods for solution appear during the processes of problem resolution? 
What is the role of the professor during the development of the sessions of application? What 
signifies that the students are learning mathematics? 

Conceptual Framework 
Mathematics learning involves the development of a disposition on the part of the students 

to: explore and investigate mathematical relationships, employ distinct representations in order to 
analyze particular phenomenon, to use distinct types of arguments and to communicate results 
(NCTM 2000). This disposition permits them to better their initial attempts because the students 
exhibit cycles of understanding in the distinct phases of problem resolution (Lesh et al. 2000) 
that permits them to constantly refine their models of solution and advance their mathematic 
comprehension. 

Furthermore, it is recognized that learning mathematics is a continual process that is favored 
in an atmosphere of problem resolution (Schoenfeld 1998) wherein the students have the 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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opportunity to develop manners of thinking that are consistent with the routine work of the 
discipline. In this context, the students conceptualize mathematics in terms of problems that they 
must examine, explore and resolve through the use of distinct mathematical strategies and 
resources (Hiebert et al. 1997). 

To bring about teaching and successful, significant learning, the Balanced Assessment 
Package for Mathematics Curriculum (1999; 2000) group proposes the utilization of tasks that 
are designed in a manner which is easy to understand and interesting for the students. These 
involve fundamental curriculum concepts and ideas presented in a manner in which the work of 
the students can be analyzed and documented. Furthermore, the package also emphasizes the 
implementation of an instruction that combines group and intellectual work. 

Participants, Methods of Investigation and Procedures 
The present report forms part of a study undertaken in Mexico in various public schools at 

the high school level in the city of Morelia, Michoacan with reference to a combination of tasks 
wherein the participation of the students was promoted in processes of the resolution of 
problems. Eighteen students of the third year of high school participated in sessions of two 
classroom hours wherein they were given a combination of problems with the following phases 
of instruction (Sepúlveda and Santos, 2004): i) Prior Activity. The teacher gave a brief 
introduction to the task, emphasizing the importance of the students’ participation. ii) Group 
work. The students began the task, in groups of three, for a period of approximately 30 minutes; 
their actions were registered in the written report of each team, and this was turned in to the 
teacher, and the activities were audio taped. iii) Group presentations. Each team presented their 
solution to the whole class, receiving opinions and criticisms from the others. iv) Collective 
discussion. The teacher promoted discussion of the expositions, leading and guiding the 
participation of the students and when necessary, systemizing the methods of solution presented. 
v) Individual work. The students had the opportunity to work individually on the task and 
incorporate their reflections and understandings that were generated during the interaction. 

The analysis phase consisted of three stages: In the first the attempts at solution and modes 
that arose when the students worked in teams were identified; in the second, it was verified 
whether there were variations in the different models after the presentations and collective 
discussion; and finally, in the third, the transcriptions of the ideas given by the students were 
analyzed. In this manner, the written reports of the students, the audio recordings and the 
observations of the teacher made up the database for our analysis. 

Presentation of Results 
To illustrate the type of analysis and results that emerged in the study, we present the work 

realized in one of the tasks. In this, what was of interest was to see whether the students could 
recognize that in increase in the lineal dimension did not produce a similar increase in area. This 
was represented in a problem that involved a builder who had to explain how to cover the 
skylight of a building with a mosaic that was square, similar to a given drawing. The task was 
presented on a grid of a mosaic with small rectangular pieces of glasses (as in Figure 1) of three 
different colors; blue 144, amber 144, red 288. The measurement of the side did not include the 
border that is formed by the 40 rectangular pieces of black glass. 

The students were asked to answer the following: 
� How many pieces of glass of each color are necessary to cover the skylight of a 

building of 121.92 cm. x 121.92 cm.? (Do not forget that the border is black). 
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� Write a description to explain how to obtain the number of pieces of glass of each 
color necessary to cover a similar drawing of any size. 

� Suppose that there were only 6,000 pieces of red glass that that there were extras of 
the other colors. What is the size of the largest drawing, as in the Figure 1, that can be 
made? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Illustration that accompanies the task “Evaluate a drawing” 

When they started the work in teams, some of the students rushed to say that if the side of the 
square were doubled, then the number of pieces of glass on the interior must be doubled; but they 
changed their opinion after hearing the arguments of their classmates. 

The written reports of the work of the small groups demonstrates that five of the groups 
coincided in the answers to Question 1; however, three distinct approaches were distinguished: 

� Teams A and B sketched squares with sides 1 and 2, calculated areas and parameters, 

and established the proportions x
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1
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 for the interior pieces of glass, and x

40
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=

 for 
the black pieces. They argued that the figures are similar and that “the number of 
black pieces of glass is doubled because of having the relation of 1 to 2. The interior 
pieces are quadrupled because of the square of the areas is 1 to 4” (Figure 2). 

� Teams C and F had an geometric approach; the drew a square such as that of the 
given Figure and another that contained twice as many black pieces of glass on each 
side. Team C concluded that the given drawing fit four times in the new one and 
required 80 black pieces of glass (double), 576 blue pieces of glass, 576 amber pieces 
of glass, and 1,156 red pieces of glass (quadruple); team F established proportions 
and resolved the problem (Figure 2). 
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Figure 2. Approaches of teams A and C in Question 1 

� Team D obtained the square of the areas 
2

1 96.60=A  and 
2

2 96.121=A ; 
4

1

2 =
A

A

; multiplied 4 
times 288 and obtained the number of red pieces of glass, etc. Initially, the tape 
recordings show that some of the students rushed to say that if the side was double, the 
interior pieces of glass would be double, but changed their opinion after hearing the first 
arguments. 

In Question 2 was evaluated as the step which generally represented a problem for the 
majority of the students. Only the written report of team F contains a concrete answer. Their 
approach consisted in applying proportionality according to the lineal dimension (black pieces of 
glass) or of area (interior pieces of glass). The other teams’ work contains verbal expressions or 
phrases that do not accord with what was asked in the instructions. 

Teams D and F answered Question 3. Team F drew a square with side x, and applied 

proportionality through the rule of three: 576 is to 60.96 as 12000 is to x. Team D obtained the 

reasoning 
83.20

288

6000
==x

, called A1 the area of the given square, calculated the area of which 

they were going to construct: 2.7741912 == xAA ; therefore .26.2782.774192 cml ==  
During the group presentations, when team A went to the front to explain their solution, they 

had a strange form of accommodating the black pieces of glass. The following is a part of the 
discussion between Abraham [A] (team A), Sarahi [S] (team F), and the teacher [T]; 

� A: If there are 40 black pieces of glass in the given drawing, and each side requires 
10, how will they be placed?  If you put 10 above and 10 below then the other 20 
don’t fit, or at the most eight and eight fit, …taking out the two that go in each corner. 

� T: Why don’t you do a Figure e, try to draw the placement of the black pieces of 
glass. 

� A: … I did but it didn’t work, there were empty places… 
� S: Make your drawing bigger and start marking for the black pieces of glass from the 

extreme left. That way you have 10 frames, and then start to count the 10 pieces of 
glass on the side that follows, but from the width of the exterior of those that you 
have already placed. 
Abraham was not convinced in spite of the intervention of the teacher to support 
Sarahi’s proposal. The teacher made an appointment with Abraham for later (here is 
included a part): 

� T: Draw a large square with the corresponding shape of the black pieces of glass. 
Remember the recommendation that Sarahi made. 
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� A: Okay. I start to count from here and count 10, but … I keep missing spaces to fit 
in the 40, don’t I? … (Persists in his error). 

� T: What would happen if the black pieces of glass were square? How would you 
place them? 

� A: (Abraham makes various attempts to place them) … Oh yes, if they are square 
they go exactly to the corner. Their width and length are equal and where the first one 
ends or starts the last one coincides with the interior pieces of glass; but … 

� T: Make a new drawing and place the glasses in the corners (Abraham does the 
drawing and marks the squares of the corners). How many pieces of glass have you 
used and how many are left to place? 

� A: … 36 divided by 4 is … 9. Yes, there are 9 left to place on each side. 
� T: Draw them. What do you see? 
� A: Ah, from the end of glass 10 starts the first piece of glass of the 10 that go on this 

side (points to the design that resolved the problem). 
� T: Now do it supposing that they are not square. (Abraham draws a large square with 

a thick outline and places the 40 black pieces of glass). 

Another aspect that motivates the discussion is related to the form and 
measurements of the interior pieces of glass, and if the black pieces of glass are of the 
same measurements as those of the interior. During the presentation of team C, in 
which Francisco was a member, the following dialogue occurred (Francisco [F], 
Teacher [T], Miguel [M] (team D), Sarahi [S]). 

� F: Since you tell me that there are 144 blue pieces of glass, this means that the side 
of the square where they go has 12 pieces of glass, which means that all of the interior 
pieces of glass are square. 

� T: Let’s see. What do you think? (Asks the entire group). 
� M: Yes, they are square. 

There is doubt whether to argue or agree with the argument of Francisco until Sarahi 
intervenes. 

� S: The interior pieces of glass are not necessarily square. You have based that on the 
fact that the square root of 144 is 12, but you can be sure that there are other 
measurements of rectangular glass that give 144. You could show this with 24 and 6, 
for example. 

� F: … but it would work if they were square. 
� S: Yes it would, but it would also work with pieces of glass that are rectangular, not 

necessarily square. (She points to a piece that makes this apparent). 
The presentations of teams D and F motivated the collective discussion with their 

contributions and various students from the other teams commented that they had understood the 
solutions to Questions 2 and 3. Particularly in Question 3 there were advances in individual 
solution on the part of the students; however, after the collective discussion some of the students 
tried to give the answer to Question 2 but the answers were not complete, except for the 
individual answer of Sarahi who, it seems, had sufficiently developed the skill of making 
generalizations. It should be mentioned that Sarahi, being the most advanced student of the 
group, had a manner of implementing the activity that helped the others to understand her and 
respond correctly. Some of her first interpretations at the start of the work in small groups were 
mistaken, and after the interaction with her classmates, with other teams and with the teacher she 
said “she had not understood the problem well”. Afterwards, during the presentations of the 
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teams, she actively participated in the discussions and contributed with ideas so that the others 
understood the solution of the questions. Figure 3 shows the individual work of Sarahi. 

Discussion 
Practically, the presentations initiated the collective discussion that was converted into a 

platform for the discussion of issues related with the understanding of the problem, the use of 
distinct representations, mathematical relationships, and the solution of the problem. In the first 
approach fragmented knowledge appeared, as well as incomplete or incorrect ideas; however, 
when the students had the opportunity of discussing and exploring their ideas with the other 
students, they improved their initial approaches and proposed more “robust and sophisticated” 
manners of resolving the task. The fundamental ideas that emerged in the work of the students 
involved the use of figures, calculation of parameters, areas, and the application of 
proportionality to justify the type of variation between a lineal dimension and one of area. 

 

Figure 3. Individual work of Sarahi 

The form of work in the classroom and the meaning of the arguments derived in the form of 
interaction all implemented the activity. They were organized in a plan completely distinct from 
the traditional; on one hand, the arguments of validation of the result could have come from one 
or various students at the precise moment in which they spoke, whether it be during the group 
work or in the presentations of the teams, such as occurred in various issues that resulted in being 
problematical: the placement of the pieces of black glass or whether the interior pieces of glass 
were square. On the other hand, this form of task in the classroom permitted the approximation 
of the possibility in which the student was able to construct knowledge in the measure of how 
their understanding was evolved, which definitely occurred when Francisco accepted that the 
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pieces of glass were not necessarily square because of a piece that showed that 4 square pieces of 
glass had the same area as 4 rectangular ones of double the longitude and half the width. Or 
during the interview with Abraham, when he understood about placing the black pieces of glass, 
which was derived from the suggestion that he supposed that those pieces of glass were square. 
That is to say, this form of instruction converted the task itself converted into a learning tool. 

The task resulted in being useful for the students with a distinct level of development to 
advance in their understanding level, as in the case of Sarahi, who was able to write the general 
expressions involved in the notion of proportionality in order to determine the number of pieces 
of glass of each color in Question 2, and of Daniel, who argued correctly his answer to Question 
1 (Figure 4). In general, the answers corresponding to the individual work are more complete 
than the answers contained in the report elaborated in the group work. Some of the students had 
serious difficulty when they wished to calculate the area units of each of the interior pieces of 
glass and to apply proportionality in order to answer Questions 2 and 3 because this required a 
careful management of the small quantities that they obtained. In Figure 4 it can been seen how a 
variety in the use of resources permitted Juan Carlos to answer Question 3. Only the group E 
demonstrated inattention in the group dynamic. 

Figure 4. Individual answers. David (team A) and Juan Carlos (team D). 

Remarks 
We comment two important aspects over this work: i) The importance of designing or 

reformulating activities in which the students have the opportunity to utilize previously studied 
mathematic resources and the process of solution demands from them the extension or 
consideration of new resources or concepts for the solution of problems. Here one must identify 
the mathematical potential of the activity before using it in the classroom. ii) The implementation 
of the activity in the instruction must consider the active participation of the students in the 
distinct phases of solution. In particular we recommend that initially the students work in small 
groups of three; afterwards each group should present their attempts at solution to the whole 
class. In such a way the group that is making the presentation has the opportunity to defend their 
methods of solution and the other students, along with the teacher can formulate questions and 
ask for explanations that help them understand and justify what they have presented. The public 
presentations were a forum for discussing points related to the use of certain relationships and 
the necessity to justify the work in each of the groups. In general, during the work the students 
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on this group of problems they experienced difficulties as much in the use of the language as in 
the use of the resources to pose and communicate their ideas, but the form of instruction 
permitted a refinement of their ideas in their approximations to the problems, which permitted 
them to get ever closer to the solution. 
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Few teachers would doubt the value of providing students with opportunities to consider 
multiple solutions for mathematics problems; yet, this practice is rarely seen in studies of U.S. 
mathematics teaching. To consider the complexities and challenges entailed in this seemingly 
straightforward pedagogical practice, we provide an analysis of data collected in the BIFOCAL 
project.  Using these data, we examine how teachers’ thinking about this issue changed over 
time in relation to a sequence of professional development sessions. 

During the past three years, in the context of the BIFOCAL (Beyond Implementation: 
Focusing on Challenging and Learning) project, we have worked with mathematics teachers in 
the middle grades (grades 6-8) and offered them opportunities to (re)consider many issues 
pertaining to teaching practices that affect students’ opportunities to learn mathematics.  One 
issue that arose early and resurfaced often in our work together was the practice of having 
students consider multiple solution approaches for mathematics problems. In a previous paper 
(Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005), we reported on our work during 
the first year of the project with 12 teachers, who were experienced users of a so-called 
standards-based mathematics curriculum, and we examined some of their concerns that appeared 
to serve as obstacles to displaying multiple solutions in their classrooms. We speculated that 
other teachers would likely perceive many of these obstacles in considering the issue of multiple 
solutions. Tracing the emergence of this issue during participants’ year-long professional 
development experience, we also identified two major transformations that seemed to account 
for what they learned. First, they shifted from treating multiple solutions as a slogan associated 
with reform-oriented teaching, to seeing the use of multiple solution approaches as a complex, 
nuanced aspect of instructional practice. Second, they refined their understanding of how the 
display of multiple solutions could help advance their mathematics instructional goals. Based on 
what participants said and wrote during the year, we argued that they gradually became better 
prepared to manage this complex pedagogical practice; yet we lacked data to directly support this 
assertion. The current paper builds on and extends this earlier analysis. 

The current paper extends the earlier work in three ways. First, we analyze data from the 
second year of the project, particularly performance data on a task that was constructed and 
administered to elicit subtle changes in teachers’ thinking regarding the use of multiple solutions 
and their ideas about enacting this aspect of teaching. Second, because we worked with a larger 
sample of teachers with more diverse backgrounds in the second year of the project, we are able 
to examine whether this broader sample of teachers faced obstacles like those identified in our 
previous work. Finally, we consider what aspects of their professional development experience 
might have contributed to any perceived changes. In particular, in this paper we seek answers to 
the following two questions: (a) To what extent and in what ways did teachers’ thinking 
regarding the issue of multiple solutions change over a sequence of professional development 
sessions? and (b) To what extent do perceived changes appear to be related to professional 
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development experiences?  

Context and Research Methods 
In this section, we provide a brief description of BIFOCAL and the project participants.  We 

also describe the data we collected and the process we used to analyze them.   

The BIFOCAL Project 
During its second year, BIFOCAL enrolled 60 mathematics teachers from elementary, 

middle, and high schools in the Detroit Metropolitan area that had been using standards-based 
curricula. The teachers met roughly once every other month in a series of six day-long 
workshops. These sessions were designed to assist teachers to improve their instructional 
practice by engaging in two main sets of activities: (1) case analysis and discussion and (2) 
modified lesson study. (For more details about the project, see Silver et al., 2005.) We used cases 
that were designed to stimulate reflection, analysis, and inquiry, given that they illuminate many 
of the challenges faced by teachers working with cognitively challenging tasks in the middle-
grade mathematics classrooms (Smith, Silver & Stein, 2005a, 2005b). Before examining a case, 
participants were asked to solve a mathematical task drawn from the case, or a very similar task 
that would allow examination of the mathematical ideas encountered in relation to the task. A 
whole-group discussion followed, during which the participants presented and discussed 
different solutions to the mathematical task. During the sessions teachers also completed several 
cycles of a modified lesson study process, in which they planned a target lesson with colleagues, 
taught the lesson, and reflected on their instructional moves in relation to evidence of students’ 
thinking and understanding. Professional development sessions were planned and facilitated by 
the BIFOCAL project team. An iterative process was used to plan the sequence of sessions, with 
a tentative plan developed for a series of sessions and then adjusted as needed based on observed 
teacher participation and their comments and reflections following each session. 

Data sources and analysis 
Several different kinds of data were systematically collected during BIFOCAL. In this paper, 

we mainly draw on responses to a task that was administered to teachers at the beginning and 
end of year two (hereafter called the “One-Less Task” or OLT). Initially developed and used at 
the University of Pittsburgh, the OLT explored teachers’ stance toward the issue of having 
students share multiple solutions, as well as their approaches to implementing this aspect of 
teaching in their own practice. The OLT consisted of a brief narrative case (from Barnett, 
Goldenstein & Jackson, 1994) and a set of follow-up questions.  The case describes a classroom 
lesson in which a teacher asks her students to solve the following problem: “A secondhand store 
trades four of their comic books with five of yours. How many of their comic books will they 
trade for 35 of yours?” The students propose several different solutions, one of which is 
incorrectly based on an additive rather than a multiplicative rationale (i.e., Geraldo argues that 
the trading results in the number of your books being one less than their books, and so he 
concludes that trading 35 of your books will yield 34 in return). After reading the case, 
participants answer some questions (2 on the pre-test and 3 on the post-test; see Figure 1).  

Teachers’ responses were coded using a scheme developed at the University of Pittsburgh 
(for question 2) and additional schemes developed by our research group (for questions 1 and 3). 
Three persons independently coded the responses, and they achieved a high degree of inter-coder 
agreement for all three schemes (the lowest level was 82% agreement); any disagreements were 
discussed and resolved to reach a consensus coding. Given the focus of this paper on 
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documenting changes in teachers’ thinking and searching for plausible reasons for these changes, 
we focus here on the qualitative analysis of the task responses, but when they are relevant we 
refer to findings from the quantitative analysis of the task responses. We also draw on other 
sources of data collected in the BIFOCAL project (e.g., teachers’ responses to a survey asking 
participants about their beliefs and instructional practices, and participants’ post-session 
reflections). 

 
Q1: The teacher in the case says: “I consciously foster the notion that there are many ways to 

solve problems by having my students share and discuss their methods. The variety of 
solutions never ceases to intrigue me.” In contrast, a colleague of this teacher expresses a 
very different view: “I consciously avoid having my students share and discuss their methods 
for solving a problem. Although sometimes students present really good solutions, at other 
times they might present wrong solutions on the board. I worry about confusing the class.” 
Where do you stand in relation to these two different positions? 

Q2: Please (i) describe the “one less” error and the thinking that might have led Geraldo and 
other students to make this mistake, and (ii) suggest a few things the teacher could do to help 
these students correct the error and develop a deeper understanding of the mathematical ideas 
involved. 

Q3: Think back to the student solutions presented in the case. Suppose these solutions were 
posed by students in your classroom. Please describe how you might design the “share” or 
“summary” portion of the lesson, including the reasons for your decisions (appeared only in 
the post-test). 
 

Figure 1: The questions used in the One-Less Task 

Findings 
This section is organized in four parts. The first three address the first research question, and 

the last one addresses the second research question.  

Unpacking the complexities and subtleties of the issue of sharing multiple solutions 
Responses to Q1 suggest that teachers initially accepted the idea of multiple solutions as a 

good idea, at least in theory.  Teachers’ pre-test responses to Q1 showed that, at the beginning of 
the year, a majority of participants (about 70%) agreed with the first teacher. The rest of the 
teachers supported the idea of sharing multiple solutions, but raised concerns about time 
constraints, the feasibility of using this approach in classes with “low-ability” students, and the 
likelihood of creating more confusion rather than helping students develop understanding, 
especially if the incorrect solutions were to be presented. These concerns resonate with those 
reported in our prior study of first-year participants. On the post-test, the number of participants 
who agreed with the first teacher in Q1 increased to about 85%, and there was a corresponding 
decline in the number of teachers who voiced concerns about time issues or the issue of 
confusing students. Thus, there appeared to be a shift in the direction of stronger support for 
having students share and discuss multiple solutions when solving a mathematics problem. 
Perhaps more importantly, however, teachers’ responses at the end of the year suggested that 
they were more aware of some of the complexities and subtleties of this practice.  

Consider, for example, one teacher’s pre-test response to Q1:“My preference is absolutely 
the first choice given: supporting multiple solution strategies for any problem. I believe this 
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“policy” supports the fostering of critical thinking in students and that their learning experience 
is more meaningful if they’ve figured out the solution on their own.” The teacher subscribes to 
the idea of using multiple solutions, arguing that this approach fosters critical thinking and helps 
students see meaning in their work. But, as our earlier study showed, supporting the idea of 
enacting multiple solutions in teaching is not sufficient to ensure enactment in the classroom. 
This teacher’s post-response illustrates a deeper appreciation of the ways in which this approach 
could advance her mathematics teaching agenda, well beyond merely “honoring” student work: 
“ I prefer to always accept all solutions that any students try, no mater how different or 
confusing; but I believe it matters how you use them. It’s very important in being a good teacher 
to be able to anticipate students’ responses in carrying out a lesson. You can address 
misconceptions in many ways: leave them as food for thought to revisit later, compare them to 
work already presented to help students see the error right then. I prefer to start with a solution 
strategy that is visual and will assist students who struggle, to draw them in before I lose them 
completely […] I feel that if a student is taught only one solution, they walk away feeling that 
their approach is probably wrong, and they lose confidence” (emphasis in the original). The 
teacher values having students share multiple solutions, even the incorrect ones, and argues that 
this approach fosters students’ confidence and understanding. Yet, now she moves into the 
particularities of this approach: She underscores the importance of being able to orchestrate the 
sharing of multiple solutions well; she stresses that the teacher should anticipate some of 
students’ responses and misconceptions well in advance in order to build her lesson in ways that 
help students develop understanding; she even considers multiple ways of capitalizing on 
students’ errors; finally, she has developed an idiosyncratic way of sharing multiple solutions 
and she explicates what makes her approach legitimate.  

To document change in thinking, it may be even more informative to consider one teacher 
whose post-test response to Q1 appeared to suggest more rather than less concern about sharing 
multiple solutions when compared with her pre-test response. The teacher’s pre-test response 
was: “I lean much closer to the first view point [support sharing multiple solutions, even the 
incorrect ones]. I also try to give a particular version as a way to try remembering if none of the 
versions are making sense.” In her post-test response, the teacher notes that she is “Somewhere 
in between. If you are skilled at drawing connections and fostering students’ ability to do the 
same, then multiple approaches can help students solve more types of mathematical problems. If 
you are not very skilled, then the students might get confused even more.” This teacher appears to 
acknowledge the challenges inherent in enacting this practice. She suggests the importance of a 
teacher developing proficiency in helping students share, compare, and connect different 
approaches. Other aspects of her extended response on the post-test suggest that she also 
recognizes the challenge of helping students learn to consider multiple solutions and build 
connections among different approaches. Her post-test response suggests that she has deepened 
her understanding of the entailments of this teaching practice and the requirements it imposes on 
the teacher.  

The participants’ deepening appreciation of the complexities of this aspect of pedagogy was 
also evident in their responses to Q3. A majority of teachers claimed that if responses like those 
in the OLT case were to occur in their classrooms, they would examine students’ different 
solution approaches and select which solutions to have students share (about 68%). About 40% 
of participants referred to the “mechanics” of enacting this approach in practice, specifying how 
students would be expected to work (e.g., in groups, individually), and what particular equipment 
they would use (e.g., sharing multiple solutions using the overhead projector, presenting multiple 
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solutions on papers posted on the walls). But their consideration of classroom practice went well 
beyond mechanics. About half of the teachers pointed out the importance of purposefully 
sequencing the sharing of students’ solutions and asking students to justify their answers. Going 
even further, one in three teachers asserted that they would ask students to draw connections 
among the different solutions displayed. These elaborations appear to suggest that the teachers 
were gradually becoming more prepared to manage this issue in their practice. 

Treating the incorrect solutions 
One of the complexities entailed in having students share multiple solutions is the issue of 

treating incorrect approaches. We examined project participants’ stance toward this issue 
drawing on their responses to Q2. At the beginning of the year about one-third of the teachers 
stated that they would try to help students develop understanding by having them act out the 
situation (“I would ask students to trade books”). One in five teachers stated that they would 
have students use manipulative materials to help them understand their error. A comparison of 
teachers’ responses to Q2 at the beginning and end of the year suggests a shift in the way 
teachers would treat the one-less error and structure their lessons to assist their students. In 
general, teachers’ post-test responses were more nuanced. More teachers referred to using 
multiple representations and employing different mathematical ideas in the post-test than in the 
pre-test (about 57% and 31%, correspondingly). Additionally, more teachers indicated that they 
would require students to justify their answers and make connections among different solutions 
and representations (about 23% in the post test compared to 8% in the pre-test).  

These general trends can be seen in the responses offered by particular teachers. Consider, 
for instance, one teacher’s pre and post responses: “Geraldo and other students need more visual 
and hands on activities. I would have the class do the problem, then use real comic books as a 
mini experiment. I would post the variety of correct answers as well (pre-test). “[I would] have 
“one less” people explain their way; have other correct- students explain their way especially 
using scale factor; show problem visually; show examples of when you would use “one less” and 
how it is different than [the] current problem” (post-test). At the beginning of the year, this 
teacher saw the use of manipulative materials and acting out the situation as the only viable 
approaches. In contrast, at the end of the year he suggested more intellectually demanding 
approaches, such as: having students explain their answers and compare problems in which the 
additive approach works to problems in which this approach leads to an incorrect answer. In this 
way, the teacher appears to have realized that is possible to capitalize on a student’s mistake as a 
way to have students consider both additive and multiplicative situations. Also, we note that the 
post-test response targets the underlying mathematical idea of the problem (i.e., the scale factor).  
A similar shift in thinking is evident in the following pair of answers for another participant: 
“The teacher could ask Geraldo to actually “trade” books until the store totaled 35 books. Have 
the students draw a picture, then make a table” (pre-test); and “I would ask all the students to 
explain how they got their solutions, listening for correct mathematical language and reasoning. 
Then, I would ask clarifying questions, restate the students’ process and/or see if the class has 
any questions. The “minus 1” students need to see the error of their thinking, especially after 
discussion about the other solutions. “What amount of comic books would you trade for 4 of the 
store comic books? 8 of the store? etc Is this ratio for one time only or each group of 4?” (post-
test). Like the teacher in the first example, at the beginning of the year, this teacher talks about 
treating the one-less error in very general terms (i.e., draw a picture, make a table, and do the 
trading). Her answer at the end of the year reveals a shift in emphasis. First, she attends to 
students’ reasoning and use of correct mathematical language. Second, she expects that the 
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students inclined to make the error would develop understanding through participation in a 
discussion of several different approaches. Finally, she refers to a central mathematical idea that 
she wants students to consider in solving the problem (i.e., the ratio).  

Reconceptualizing the roles of  teacher and student  in the process of sharing multiple 
solutions 

Our analysis of participants’ pre and post responses to the OLT also suggests that there was a 
shift in their conceptualization of the roles of the teacher and students during the process of 
sharing and discussing multiple solutions. Our quantitative analysis of teachers’ pre-test and 
post-test responses indicates a shift in perspective. At the beginning of the year, the participants 
were more than seven times more likely to indicate that they would try help students correct the 
one-less error by directing them through the process (i.e., modeling the trading or guiding 
students to do the trading), essentially having the teacher assume responsibility for all of the 
thinking. 

An example of this shift in conceptualization of teacher and student roles is evident in the 
following pre and post responses to Q2 from one participant: “[I would] have students look at 
each transaction of 4 to 5 separately. For example, you may have 35 comic books to turn in, but 
you can only trade 5 at a time. While explaining this method, [I would] use the other students’ 
models to visually reinforce this idea. (pre-test) “I would first ask the students to prove their 
answer, hopefully leading to some type of chart, or ask them what would happen if I didn’t trade 
35 in once, but traded 5 at a time over the course of a couple of weeks. This might lead them to 
take one less from every exchange and not just at the end” (post-test). Notice that the teacher’s 
role in the pre-test response is conceptualized as dominant: the teacher guides students to do the 
trading; she also does the explanation, using several students’ responses. In the post-test response 
the teacher is seen as assisting students to arrive at the correct answer, but her role is 
conceptualized differently. Instead of directly explaining how children could do the trading and 
why it works, she would ask students to explain the process and underlying rationale. The 
following pair of responses is suggestive of a similar transformation in another participant’s 
thinking: “The teacher could have actually had the students model the trading to show that it was 
actually 1 less on 7 different occasions” (pre-test) “The teacher could ask other students to 
explain in their words- sometimes hearing a student explain rather than a teacher is more 
beneficial” (post-test). Similar to her colleague, in her pre-test response this teacher reveals an 
inclination to direct her students to the right answer. In contrast, in her post-test response, she 
appears to shift responsibility for problem solving and reasoning more to her students, having 
students develop and present their own solutions and then try to convince their classmates that 
their approach works.  

What might have caused the changes in teachers’ thinking? 
The preceding analysis documents some changes in teachers’ thinking about having students 

consider multiple solutions in mathematics classes. It also provides evidence that, at the end of 
the year, participants appeared to have a deeper, more nuanced view of this complex pedagogical 
practice and also to be better prepared to manage it in their classrooms. A consideration of our 
findings in relation to the experiences of project participants suggests some plausible reasons to 
account for these changes.  

First, in the BIFOCAL project sessions teachers were offered recurrent opportunities to 
experience the benefits of sharing multiple solutions as learners themselves. One participant 
mentions in an End-of-Session Reflection (ESR): “There is more than one way to approach a 
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problem. I was immediately going to the algebraic method and solve. I had a difficult time seeing 
things visual. I have never been a visual learner” (February, 2005). Another participant made a 
similar observation in her ESR: “Seeing the group presentations really makes me think how 
diverse my students must be in their approach to a problem. I need to exploit those differences 
for the good of the class and the class discussion” (February, 2005). The sessions also helped 
teachers realize that in addition to fostering students’ confidence, sharing multiple solutions 
could create significant learning opportunities for their students: “I was impressed at the multiple 
ways to represent a problem, and how simple problems can serve as building blocks for 
algebraic thought” (March 2005). The more opportunities teachers were offered to reflect on this 
aspect of their thinking, the more nuanced their thinking around it became.  

Second, the analysis and discussion of teaching cases in BIFOCAL project sessions helped 
teachers (re)consider their teaching practice and become aware of issues that might impede their 
use of multiple solutions in practice. For instance, many teachers were confronted with the 
dilemma of challenging students’ thinking while at the same time ensuring that students would 
be engaged and remain on-task: “I am concerned about how to be effective when it comes to 
balancing student interest and student frustration. Need to develop strategies that equip students 
to engage in the problem with interest and without being overwhelmed by frustration” 
(September, 2004). Surfacing and discussing these concerns appears to be a critical step in 
shifting from a general endorsement of sharing multiple solutions to actualizing this in practice.    

Third, the discussions of this issue appear to have caused some disequilibrium for teachers. 
In fact, participants often reported leaving a session with more questions than they had at the 
beginning. For example, one teacher wondered in her ESR: “How many different representations 
will help students better understand the problem? When do you stop?” (March 2005) and another 
one pondered issues of managing the sharing of multiple solutions in her ESR: “How will I 
manage students and time during the sharing of their solutions?” (February 2005). On the other 
hand, reflecting on this issue and its entailments often offered them ideas with which they could 
experiment: “Sometimes I do not take the time in class to look at multiple strategies. I think I 
vary from day to day, but I need to take more time every day” (March 2005).   

Finally, it appears that changes in teachers’ thinking were also accompanied by changes in 
their beliefs about teaching and learning mathematics. In particular, the analysis of project 
participants’ answers to the survey questions revealed that they were less reluctant at the end of 
the year to consider allowing their students to experience disequilibrium and struggle as they 
learned mathematical ideas and solved complex problems. For instance, participants expressed 
less support at the end of the year for survey statements indicating that teachers should arrange 
their instruction so that students avoid frustration and uncertainty or that teachers should always 
explain clearly and completely how a problem should be solved. That is, teachers appeared to 
have become less inclined to do all the thinking for their students. 

Conclusion 
Our analysis of data collected in the second year of the BIFOCAL project appears to support 

many of the observations made in our earlier research based on a smaller group of participants in 
the first year. In particular, many of the perceived obstacles to using multiple solutions appeared 
to be operative for the larger group of teachers. But our analysis also suggests that providing 
teachers with systematic and recurrent opportunities to consider and reconsider their 
mathematics teaching in relation to their students’ opportunities to learn can allow them to 
develop a deeper, more nuanced understanding of the desired practice as well as the inherent 
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challenges. In so doing, they become better prepared to actualize innovative practices in their 
classrooms. 
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This paper describes a detailed analysis of verbal discourse within an exemplary mathematics 
lesson—that is, George Pólya teaching in the Mathematics Association of America [MAA] video 
classic, “Let Us Teach Guessing” (1966). The results of the analysis reveal an inductive model 
of teaching that represents recursive cycles rather than linear steps. The lesson begins with a 
frame of reference and builds meaning cyclically/recursively through inductive processes—that 
is, moving from specific cases, through recursive cycles, toward more general hypotheses and 
rules. Additionally, connections to univocal (conveying meaning) and dialogic (new meaning 
through dialogue) discourse are made. 

“First, guess; then prove… Finished mathematics consists of proofs, but mathematics in the 
making consists of guesses” (Pólya, 1966). 

Introduction 
The National Council of Teachers of Mathematics [NCTM] has consistently recognized 

communication and problem solving as essential components of reform-oriented mathematics 
education (NCTM, 1989, 1991, 2000). Recent research demonstrates that even among teachers 
who report agreement with reform ideas, instructional practices emphasize routine procedures, 
giving learners little opportunity to investigate, conjecture, reason, and justify (Spillane & Zeuli, 
1999). Talk alone is not sufficient; the quality and type of discourse affect its potential for 
promoting conceptual understanding (Kazemi & Stipek, 2001). To learn how to orchestrate 
meaningful discourse, mathematics teachers need evidence drawn from exemplary practice. This 
paper describes a detailed analysis of discourse within an exemplary mathematics lesson—that 
is, George Pólya teaching in the Mathematics Association of America [MAA] video classic, “Let 
Us Teach Guessing”1 (1966). Additionally, the results of the analysis are connected to models of 
teaching that have been previously reported (Truxaw & DeFranco, 2004, 2005), thus providing a 
focus on teachers and learners of mathematics. 

Background 
Decades before current mathematics reform documents were published, similar themes were 

espoused by George Pólya, noted mathematician, mathematics educator, and problem-solving 
expert, in works such as “How to Solve It” (1945/1985), “Mathematical Discovery” (1958/1962) 
and his “Mathematics and Plausible Reasoning” volumes (1954). In 1965, Pólya was filmed 
teaching a mathematics lesson to a group of university students (1966). He began the lesson with 
a rich problem that was unfamiliar to the students—that is, into how many parts is space divided 
by 5 planes?2 During the lesson, Pólya used discourse to guide the students through cycles of 
evidence-based guesses (i.e., plausible reasoning), investigations, and explanations that result in 
mathematical sense-making—about the problem itself, about generalizations of the problem, and 
about strategies for approaching problem-solving. This lesson and Pólya’s teaching have stood 
the test of time as exemplars. In fact, other researchers have investigated the lesson; in particular, 
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Leinhardt and Schwarz noted, “The advantage of examining this particular episode of teaching is 
that the mathematical and epistemological knowledge carried by the teacher in this lesson can 
justifiably be considered exemplary” (Leinhardt & Schwarz, 1997, p. 397). While Leinhardt and 
Schwarz focused on “the instructional explanation of guessing as a heuristic for solving the Five 
Planes Problem” (1997, p. 305), this paper will examine the verbal discourse and its implications 
for teaching and learning associated with “mathematics in the making”. 

While this research draws from divergent theoretical viewpoints, sociocultural theory, with 
its contention that higher mental functions derive from social interaction, provides a meaningful 
framework for analysis and discussion of discourse as a mediating tool in the teaching-learning 
process (Vygotsky, 1978, 2002). When considering language as a mediator of meaning, it is 
useful to take into account the two main intentions of communication—that is, dialogic (i.e., 
constructing meaning through give-and-take communication) and univocal (i.e., one-way 
transmission of knowledge) (Lotman, 2000; Wertsch & Toma, 1995). Structures associated 
specifically with classroom discourse are also relevant. For example, the basic structures of 
classroom discourse include the following: moves, exchanges, sequences, and episodes (Lemke, 
1990; Mehan, 1985). The move, exemplified by a question or an answer from one speaker, is 
recognized as the “smallest building block” (Wells, 1999, p. 236). An exchange is made up of 
two or three moves and occurs between speakers (typically including initiation, response, and 
evaluation or follow-up moves: I-R-E or I-R-F). A sequence contains a single nuclear exchange 
and any exchanges that are bound to it. The episode is the level above sequence and represents 
“all the talk that occurs in the performance of an activity” (p. 237). 

In addition to structures, identified forms of talk and verbal assessment include the following: 
monologic talk (i.e., involves one speaker—usually the teacher—with no expectation of verbal 
response), leading talk (i.e., occurs when the teacher controls the verbal exchanges, leading 
students toward the teacher’s point of view), exploratory talk (i.e., speaking without answers 
fully intact, analogous to preliminary drafts in writing) (Cazden, 2001), accountable talk (i.e., 
talk that requires accountability to accurate and appropriate knowledge, to rigorous standards of 
reasoning, and to the learning community) (Michaels, O'Connor, Hall, & Resnick, 2002), inert 
assessment (IA is verbal assessment that does not incorporate students’ understanding into 
subsequent moves, but rather, guides instruction by keeping the flow and function relatively 
constant), and generative assessment (GA is verbal assessment that mediates discourse to 
promote students’ active monitoring and regulation of thinking). 

Previously reported research (Truxaw & DeFranco 2004, 2005) demonstrated that graphic 
maps of discourse (called sequence maps) could be developed to represent the flow of the talk 
and verbal assessment, as well as the overall function of the discourse (i.e., tending toward 
univocal or dialogic). Additionally, the sequence maps, when combined with multi-level analysis 
of transcripts and other evidentiary data (e.g., interview transcripts and field notes), could be 
used to develop associated models of teaching. Three models of teaching were reported: a 
deductive model (associated with univocal discourse), an inductive model (associated with 
dialogic discourse), and a mixed model (a hybrid of the other two). This paper describes how 
these strategies and constructs were applied to an investigation of the talk, verbal assessment, 
discursive functions, and associated teaching of a lesson taught by mathematics education expert, 
George Pólya. 

Methods and Procedures 
The data derived from the video, “Let Us Teach Guessing” (Pólya, 1966). The dialogue from 

the video was transcribed, coded, and analyzed using strategies that had been developed in 
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previously reported research (Truxaw & DeFranco, 2004, 2005). In particular, the transcripts 
were formatted into tables and numbered based on “utterances” (i.e., speaker’s turns—from here-
on-out to be called “lines”) (Bakhtin, Holquist & Emerson, 1986). Moves within each line of text 
were coded using strategies adapted from Wells (1999) and Nassaji and Wells (2000). Next, the 
coded text was parsed into 19 sequences. Individual sequence maps (i.e., diagrams representing 
the flow of forms of talk and verbal assessment within a sequence) were developed by applying 
the coded data to a previously developed graphic template of classroom discourse (Truxaw & 
DeFranco, 2004). After that, sequences were deconstructed into sub-units that included data from 
sequence maps, transcribed text, and evidentiary data from Pólya’s published works. The sub-
units were then reconstructed within the context of instructional episodes and mapped onto a 
model of teaching. 

Results and Discussion 
Not surprisingly, initial viewing of the lesson showed expert teaching derived from deep 

understanding of both content and pedagogy. Further, the analysis of the discourse uncovered 
details that may help teachers move toward more reform-oriented practices. For example, the 
coding of the transcripts showed the use of triadic exchanges (I-R-F) to facilitate the discourse 
within the lesson. Although triadic exchange structure has been associated with “illusory 
understanding” (Lemke, 1990), Pólya demonstrated its use in conjunction with a rich 
mathematical problem and with discourse aimed at building (rather than simply conveying) 
students’ understanding of mathematics. An important question is: how did he do this? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of sequence map. lesson continued, the sequence 

The analysis of this lesson yielded 19 sequence maps. The sequence maps allowed us not 
only to count each form of talk and verbal assessment, but, more importantly, to indicate when 
and how each was used in the dialogue. The sequence maps showed the flow of the moves within 
each sequence as well as relationships of sequences to each other. For example, sequence maps 
1-3 showed monologic talk that was univocal in nature. In contrast, sequence 4 showed leading, 
exploratory, and accountable talk and both IA and GA that, although univocal overall, had slight 
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tendencies toward dialogic function (see Figure 1). As the maps shifted back and forth between 
exploratory stances (e.g. guessing) and talk that tended more toward conveying meaning (e.g., 
the introduction of problem-solving strategies). 

Increasing instances of accountable talk were documented as strategies and evidence were 
built. 

GA was infused at critical junctures—typically when students had gathered sufficient 
evidence to question previous conjectures. 

Inductive Teaching 
Three models of teaching based on analysis of middle grades mathematics teachers were 

previously reported: deductive, inductive, and a mixed models (Truxaw & DeFranco, 2005). The 
model of teaching developed from Pólya’s lesson most closely resembled the inductive model— 
that is, moving from specific cases, through recursive cycles, toward more general hypotheses 
and rules (see Figure 2). The discourse that mapped onto this model will be described next 

Figure 2. Inductive model of Polya’s lesson. 

The first three sequences established a frame of reference (see Figure 2-A) (i.e., the five 
planes problem [5PP] and the theme of guessing) and communicated common meaning related 
to the problem and procedures (see Figure 2-B-1). In sequence 1, Pólya introduced the theme of 
the lesson—that is, guessing: 

Pólya:    …Mathematics when it is finished, complete, all done, then it consists of proofs. 
But, when it is discovered, it always starts with a guess…  

In sequence 2, he shared rules related to guessing: 
Pólya:    …If you know already my problem, don’t answer my question. That would be 

unfair, if you know already the answer … it wouldn’t be guessing, and you would 
spoil the fun of all of us…  
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In sequence 3, Pólya described the five planes problem [5PP]—that is, into how many parts 
is space divided by 5 planes? 

In sequence 4 (see Figure 1 for sequence map), students made initial guesses (see Figure 2-
B-2). Pólya facilitated exploratory talk using both IA and GA. An excerpt follows. 

Pólya: Who is ready to say? Don’t be bashful. Go ahead. Yes. Say something. 
S1: Um, 25. 
Pólya: 25. How did you get it? [Writes it on the chalkboard.] 
S1: I looked at 5 times five. 
Pólya: Five times five. That’s an idea. There is an idea. Good. Anybody ready for another 

guess? Yes, please? 
S2: 32 
Pólya: Thirty-two. Oh, oh. There’s something behind your… Oh, 32. Interesting… 
In sequence 5, Pólya introduced the strategy, “solve a simpler problem” in order to begin to 

test the guesses (see Figure 2-B-3). This revised the frame of reference (see Figure 2-C). In 
sequences 6-10, Pólya facilitated investigation of space cut by one, two, and three planes, thus, 
establishing common meaning about these simpler cases (see Figure 2-D-1). Additionally, 
extreme cases, such as parallel planes and zero planes were discussed. After the students had the 
opportunity to investigate patterns from these simpler examples, in sequence 11, guessing (see 
Figure 2-D-2) was again infused. 

Pólya: Now, let me come to the next case. We have four dividing planes. Try to guess it. 
Four dividing planes. How many parts? The consensus of the group, based on the 
observed patterns, was that four planes would divide space into 16 parts. 

Pólya: So we got really the 16 in a reasonable way of guessing. We observed. We found 
the pattern. And we said, and so on. It will go on like this. We made a 
generalization. That’s very important, you see. 

In sequences 12-15, Pólya facilitated testing the guess (See figure 2-D-3) using another 
strategy—that is, analogy. Pólya suggested that the students consider lines divided by points and 
planes divided by lines as analogies to space divided by planes. This again revised the frame of 
reference (see Figure 2-E). As Pólya and the students worked through the analogous problems 
(using all four forms of talk and both IA and GA), responses were discussed and recorded on the 
blackboard. This helped to further build common meaning (see Figure 2-F-1). Pólya used both 
IA and GA to encourage the students to look for patterns and to generalize beyond the individual 
cases. The students generated new meaning about space divided by four planes—that is, that 15 
parts would be formed, rather than the originally conjectured 16 parts. This discourse was coded 
as dialogic because new meaning was constructed through give-and-take communication. 

In sequence 16, the 5PP was revisited. Pólya used GA to promote students’ active monitoring 
and regulation of thinking. Students made connections among the strategies, patterns, and 
common meanings that had been built throughout the lesson. Students hypothesized and 
defended their conjectures, using inductive processes to build generalizations (see Figure 2-F-
2). The group came to consensus that space divided by five planes would form 26 parts. This new 
meaning represented another example of dialogic discourse within this lesson. 

In sequences 17 and 18, Pólya facilitated a discussion about whether the answer (26 parts) 
has been proven or, rather, was based on a reasonable guess (see Figure 2-F-3). The discussion 
led to reminders that it is important to test guesses—although plausible reasoning pointed to 26 
as the answer, they had not yet proved it. The strategies, themes, and new understandings about 
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the 5PP and the problem solving strategies were summarized (see Figure 2-G). Finally, in 
sequence 19, Pólya told a short story that reinforced the themes of guessing and proof. 

The analysis revealed that the discourse in Pólya’s lesson followed patterns that were 
compatible with those represented in a previously reported inductive model of teaching. Pólya’s 
lesson represented recursive cycles, rather than linear series of steps. The lesson began with a 
frame of reference (i.e., the 5PP) and built meaning cyclically/recursively through inductive 
processes—that is, establishing common meaning related to the problem and to problem-solving 
strategies, conjecturing (i.e., guessing), investigating, and revising conjectures based on 
additional evidence. An answer based on plausible reasoning was developed through dialogic 
discourse, but the answer was not proved. The frame of reference of the lesson was the 5PP, but 
the outcomes of the lesson moved beyond the solution to the problem to include strategies and 
ways of thinking that could be applied to other mathematical problems—thus, mathematical 
meaning was developed. 

Final Remarks 
Within Pólya’s lesson, monologic talk, leading talk, and IA—often associated with univocal 

discourse—were evident (see Table 1); however, they were used as part of a larger cyclic 
process that also included exploratory talk, accountable talk, and GA. The percentages of verbal 
assessment and talk moves shown in Table 1 are informative, but when and how each was used 
further explicate Pólya’s teaching 
practices. For example, while IA was 
the predominant form of verbal 
assessment used throughout the 
lesson, it should be noted that IA was 
rarely used in an evaluative way (I-
R-E); rather, it was used as follow-up 
(I-R-F) to keep the discourse 
moving—often to encourage 
exploratory talk. GA appeared to be 
used strategically; typically, it was infused after common understanding of key ideas had been 
established. Further, the analysis indicated that GA was particularly productive in facilitating 
dialogic discourse when it was used in later repetitions of the cyclic process. In sum, dialogic 
discourse (and accompanying evidence of new meaning) seemed to be built through recursive 
cycles of establishing common understanding, guessing (i.e., plausible reasoning), and infusing 
GA to test and move beyond the guesses. In the end, the inductive teaching facilitated by Pólya 
helped the students to build new meaning about the problem and about mathematical problem 
solving. While we would not suppose to suggest that an analysis of the discourse in Pólya’s 
lesson can uncover the nature of his expertise or art, the hope is that some clues related to 
facilitating mathematics in the making have been revealed. In this way we hope that this research 
contributes to a focus on learners through a focus on this exemplary teacher and scholar. 

Endnotes 
1 The authors would like to thank the Mathematical Association of America for granting 

permission to use data drawn from the video, “Let Us Teach Guessing.” The video is 
copyrighted by the MAA and all rights are reserved. 

2 This problem is described in detail in volume 1 of Pólya’s Mathematics and Plausible 
Reasoning (1954) text. 



Vol.2-308  PME-NA 2006 Proceedings 

 

References 
Bakhtin, M. M., Holquist, M., & Emerson, C. (1986). Speech genres and other late essays (1st 

ed.). Austin: University of Texas Press.  
Cazden, C. B. (2001). Classroom discourse: The language of teaching and learning (2 

ed.).Portsmouth: Heinemann.  
Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary 

mathematics classrooms. Elementary School Journal, 102(1), 59-80.  
Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, N.J.: Ablex. 
Leinhardt, G. & Schwarz, B. (1997). Seeing the problem: An explanation from Polya. Cognition 

and Instruction, 15(3), 395-434 



Problem Solving  Vol.2-309 

 

ORAL RETELLINGS: SOLUTION STRATEGY FOR COMPARING WO RD 
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This study explored oral retellings used as a problem solving strategy for compare word 
problems in mathematics. The research involved 29 sixth graders (14 boys and 15 girls) from 
two classes who took a pretest, participated in four 30-minute instructional periods, and 
completed a posttest and delayed posttest. Results showed no statistically significant change in 
overall success in problem solving or in the number of computational errors students made. 
However, students made fewer operational errors following instruction in oral retellings. This 
finding suggests that students may more accurately select operations based on their retelling of 
the word problem, thus benefiting from instruction in oral retellings as a strategy for solving 
compare word problems. 

The ability to solve problems is “a hallmark of mathematical activity and a major means of 
developing mathematical knowledge” (National Council of Teachers of Mathematics, 2000, p. 
116). Word problems stand “front and center” as problem solving contexts for developing 
analytic thinking and cognitive abilities (Latterell & Copes, 2003). Compare word problems have 
been the focus of abundant word problem research (Lester, 1994) and have been deemed the 
most difficult type of word problem to solve (Carpenter, Fennema, Franke, Levi, & Empson, 
1999). Researchers have begun to look at the potential of oral retellings in measuring students’ 
comprehension of compare word problems (Verschaffel, 1994). In this study, sixth grade 
students were instructed in oral retelling as a problem solving strategy. To deepen understanding 
of the psychological aspects and implications of instruction using oral retellings, the researchers 
examined the effect of instruction on the following: (a) overall success in solving compare word 
problems, (b) the number of computational errors made, and (c) the number of operational errors 
made. 

Method 
Two classes of sixth graders from an elementary school in a suburban city in the western 

United States participated in the study. The participants consisted of a stratified random sample 
of 29 students (14 boys and 15 girls) who were fluent English speakers. All 29 students 
participated in four 30-minute class sessions in which they practiced retelling narrative and 
expository text selections and then practiced retelling mathematical word problems. The students 
also wrote original word problems and retold them with partners.  

The instruments employed in the study were administered by the classroom teacher and 
included a pretest, posttest, and delayed posttest period, each following a similar, free-response, 
paper and pencil format. Each 10-item test consisted of a warm-up question, four fillers, and six 
target word problems. Only the target problems were scored and analyzed. The target items were 
three compare word problems worded consistently and three compare word problems worded 
inconsistently. The posttest was administered on the day immediately following the completion 
of instruction in oral retellings. The delayed posttest, administered two weeks after treatment, 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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provided insight into the enhanced, constant, or diminished effects of the treatment over time and 
the effects of instruction on near and far transfer.  

Results 
Pretest, posttest, and delayed posttest target items were scored as “correct” or “incorrect”; 

incorrect solutions were analyzed to determine the type of error made. Arithmetic or counting 
errors were grouped as computational errors. Incorrect operation selection was considered an 
operational error. Errors that did not appear to fall into either category, approximately 2% of the 
data, were omitted from the analysis. 

The first research question examined overall success in problem solving. An analysis of 
variance for repeated measures yielded no evidence of a statistically significant difference in the 
pretest, posttest, and delayed posttest scores (F = 2.688; p = 0.077). Instruction in oral retellings 
did not significantly affect students’ overall success in solving word problems.  

The second and third research questions investigated the effects of instruction on the number 
of computational and operational errors. Results of an analysis of variance for repeated measures 
for computational error rates yielded no evidence of a statistically significant difference (F = 
0.177; p = 0.839) between the pretest, posttest, and delayed posttest. Instruction in oral retellings 
did not significantly affect the computational error rates of students. Operational error rates were 
also compared using an analysis of variance for repeated measures. This analysis yielded a 
statistically significant difference in the operational error rates between the pretest, posttest, and 
delayed posttest (F = 4.534; p = 0.015). Instruction in oral retellings appeared to have a 
significant effect on students’ selection of an arithmetic operation when solving compare word 
problems. 

Discussion and Recommendations for Future Research 
This study showed that students continued to struggle with compare word problems even 

after instruction in oral retellings. The results of this study provide further evidence of the need 
to focus on students’ comprehension of these problems and offer students a variety of problem-
solving strategies that are based upon a clear understanding and representation of the problem. 
Further research into oral retellings of compare word problems should be conducted to clarify the 
utility and role of retellings in the problem solving process. Suggestions for future research 
include using oral retellings with younger populations and among English as Second Language 
populations. 
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STUDENT COGNITIVE PROCESSES IN SITUATIONAL ALGEBRA TASKS 

Brian P. Devine 
San Diego State University 

Clinical interview observations of secondary mathematics students engaged in novel situational 
algebra tasks are reported. Discrete word tasks were constructed to both perturb and elicit 
demonstrations of subjects’ abilities to employ personal problem solving templates, exhibit 
quantitative reasoning skills, and to discern proficiencies with symbolic representations. Coding 
and analysis focus is on two subjects and their processes of identifying and examining 
recognized patterns of relationship in order to express a solution as a closed form symbolic 
generalization of the situation. Guiding research questions are: To what extent did the students 
see the task in terms of situational modeling and analysis of covariational relationship, 
proportion, or functional dependency? How do they access and employ qualitative problem 
solving strategies? When faced with perturbations, how did they work their way around 
cognitive obstacles in their solution path? Were they able to express this relationship in precise 
verbal and symbolic statement or proposition? 

Motivations 
Current pedagogic arguments emphasize relational development of qualitative and symbolic 

reasoning skills as essential for the eventual success of mathematics students in reifications to 
higher understandings. Skemp coined the ideas of instrumental learning versus relational 
learning – “learning an increasing number of fixed plans [versus] building up a conceptual 
structure from which it’s possessor can develop any number of plans...” (Skemp, 1976, p. 14). 
Usiskin (1998) identifies common conceptions and misconceptions regarding school algebra and 
symbol usage, in that Algebra can be viewed as generalizations of arithmetic, a study of solution 
method, a study of relationship, or as a study of structure. Variables thus take on meanings that 
are conception-dependent. Sfard and Linchevski (1994) argue that reasoning skills and 
conceptual development is a series of reifications from operational/instrumental to 
structural/relational understandings. Arcavi (1994) addresses symbol sense within an aesthetic 
awareness of roles that symbols play in mathematics. 

Herscovics (1989) has categorized cognitive obstacles encountered in school algebra 
curriculae. Work within the cognitive obstacle tradition has included that of Philipp and 
Chappelle (1999), who report difficulties faced by students and instructors when viewing algebra 
as a generalization of arithmetic; students are not readily able to integrate syntactic and semantic 
understandings. MacGregor (1998) has indicated that secondary mathematics students have 
exhibited significant difficulties with translations from intuitive verbal understandings of task 
into taught procedures for algebraic form. Zaslavsky, et al, are involved in very interesting work 
in the study of the default assumptions that students and instructors bring into mathematical task, 
and in reactions to designed task-induced perturbations (Zaslavsky, et al, 2002). These intriguing 
viewpoints motivate a great interest in the default assumptions and the varieties of reasoning that 
students, and instructors, bring into engagement with mathematical task, and in the ways that 
they deal with any cognitive perturbations that they come across in task. The cognitive obstacles 
that learners encounter in engagement of mathematical task include, but are not limited to, 
student difficulties with syntactic/semantic integration, struggles with recognition of applicable 
solution templates, vague assumptions regarding variable choices and delimitation which lead to 

_____________________________ 
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imprecise engineering of situational algebraic representations, and internal debate regarding 
cognitive “costs” discerned for achievement of solution. 

Presmeg and Balderas-Cañas (2001) validate that word task attentions and interpretations 
demand an emotional attachment. They make a case that problem solvers manifest a 
metacognitive awareness of their own mathematical cognition and affect as they solve problems. 
Izsák (2003 & 2004) suggests a theoretical cognitive pathway for algebraic modeling where 
students generate representations of situations by drawing on their understandings of physical and 
numerical patterns, conceptual schemata, and symbolic templates. They use patterns that can be 
modeled by their familiar algebraic representations. 

Methods 
Word, or story, tasks contain inherent cognitive obstacles in that they must be interpreted 

from a syntactic form into a semantic conceptualization, and then again into a symbolic language 
in algebraic generalization of the situation. Qualitative protocols were designed around a task 
bank of offered tasks that were chosen and contextualized from classic discrete mathematical 
tasks. All represent a relative degree of relational shadings, including co-variational linearity, 
recursion, proportionality, and all can be approached from a variety of directions mathematically. 

Clinical interview series were conducted with AP mathematics students from the same 
secondary community. Subjects were interviewed independently in undisturbed classroom 
settings. Two students, Phillip and Chris -- both AP Pre-Calculus students with records of high 
achievement -- were chosen for juxtaposition analysis. Each interview began with a presentation 
of a card-stock page containing five word-form discrete tasks. The subjects were asked to choose 
only one of the tasks and then make attempt at solution. All interviews were recorded, 
transcribed, and coded versus investigation criteria. Thematic analyses were drawn from these 
transcriptions (Strauss & Corbin, 1990). 

Results and Analyses 
Reported results for interviews contain comments and notable consequences that emerged 

within the interview processes. Interviewees exhibited varying degrees of algebraic reasoning in 
their approaches to task. Below are examples of observations actions from the two interviews: 

 
Phillip - The Golden Apples 

� Found interesting sense of co-variational 
linearity within task. 

� He had interesting conventions for 
variable usage. 

� Phillip experienced obstacles by 
attacking the task in a syntactic manner. 

� Phillip saw experience as an exercise and 
expressed enjoyment during engagement in task. 

 
Notable consequences: 

Phillip’s approach to the task was strictly 
algebraic and symbolic in nature. Most obstacles 
encountered were from arithmetic error due to haste. 
Phillip Suggested an inductive proof for verification of 
universality of his solution, but could not accurately 
describe induction nor engineer proof. 

 

 
Chris - Cutting the Pizza 

� Initially attempted centrically intersecting 
cuts; experienced confusion when method 
challenged by off-center cut. 

� Chris overcame confusion and stated 
observed recursive pattern easily but could not 
engineer algebraic/symbolic statements of 
situation well. Exhibited significant 
syntactic/semantic disintegrations, tendencies 
towards quitting task. 

� Chris saw task as a problem to be endured 
and expressed a marked degree of discomfort 
with the process. 

Notable consequences: 
Chris’ solutions focused upon use of t-tabulation 

methods. He did not use a diagram until it was 
suggested for clarification purposes. 
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Subjects showed an intriguing variation in their abilities to initially verbalize situational 
relationships. Significant differences were observed in display of subject understandings of 
variable usage and in transiting from syntactic to semantic when engineering symbolic 
representations of situation. Indications from the investigation support claims discussed as 
framework motivations: the use of qualitative reasoning and a strong symbol sense are essential 
to success in situational algebra word task engagement, and that there are significant cognitive 
obstacles encountered by students in transit from the syntactic to semantic. 

Pedagogical implications entail employment of co-variational approaches that embrace 
relationship emphasis and directions or scaffolding that emphasizes and nurtures this type of 
reasoning. Recommendations for further investigation are warranted in that word modeling to 
symbolic representation integration is a significant part of the instructional methods for algebra, 
and other mathematics disciplines, at every level, in that many textbooks and exam formats rely 
upon this type of task. 
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TEACHERS AND HIGH SCHOOL STUDENTS  
THROUGH TASK-BASED MATHEMATICS 

Diana Dimond 
Brigham Young University 
dianadimond@gmail.com 

Janet G. Walter 
Brigham Young University 
jwalter@mathed.byu.edu 

We present a qualitative comparative analysis of the mathematical concepts elementary school 
teachers, participating in a content-based professional development course, and high school 
students, in a pre-calculus course, developed as they worked collaboratively on a conceptually 
challenging task. These two groups developed some similar and some very different mathematics 
concepts while working on the same task.  

Metaphor 
We introduce a useful metaphor, topographical explorations, for learners’ activities while 

working on open-ended mathematics tasks. Through the prism of the metaphor, students take on 
the role of an explorer while working on open-ended mathematics tasks and figuratively draw a 
‘topographical map’ that traces the development of their mathematics based on the way-points 
(points between major points on a route) of mathematical concepts they developed. Student 
explorers may create different way-points on their maps or developed understanding of some of 
the same features of the topography, although the route may have been explored at different 
times or from different perspectives, resulting in different emphases on core mathematical ideas. 
The focus, here, is on the way-points drawn by the students instead of the end location or 
completeness of a map which might indicate mastery of all related mathematics concepts.  

Related Literature 
There has been substantial research into the positive effects that task-based instruction has in 

the classroom. Dewey’s (1916/1944) principle of continuity suggests that students gain richer 
understanding by connecting to previous knowledge and experience. He also suggests that 
learning by experience is a forward and backward connection between what we do and what 
occurs as a result. Task-based instruction typifies Dewey because the students have the 
opportunity to personally construct mathematical concepts (Fraivillig, 1999), which allows them 
the ability to make choices which is an essential component in learning (Walter & Gerson, in 
press). 

Research Question 
How does the map drawn (mathematics concepts explored) by elementary school teachers 

compare to the map drawn (mathematics concepts explored) by high school students while 
working on the same conceptually challenging task? 

Method 
In this qualitative comparative study, we use a grounded theory approach to analyze the 

mathematics and interactions of teachers and students as they work on open-ended tasks.  
Grounded theory is particularly suited to our study because the tenets of grounded theory support 
an inductive approach to interpreting the meanings of the interactions of people involved in 
problem-solving situations (Strauss & Corbin, 1998; Zaslavsky & Leikin, 2004). 
_____________________________ 
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Participants and Setting 
Twenty-five practicing elementary teachers from thirteen schools in one district participated 

in an experimental professional development program. Teachers met for more than three hours 
each week for five semesters in evening class sessions, explicitly designed to foster mathematics 
learning in teachers as they collaboratively explored challenging tasks. Episodes presented here, 
from the third-semester course, trigonometry, focus on three teachers in one group. Twenty-five 
high school students in a pre-calculus course participated in a three day exploration of a 
conceptually challenging task. These students had limited previous experience with collaborative 
learning. Episodes presented here focus on four students in one group.  

Tasks 
A detailed comparative analysis will center on teachers’ and students’ collaborative work in 

representing a spiral shell. The Placenticeras Task was designed to challenge university honors 
calculus students (Speiser & Walter, 2004). Teachers in the professional development program and 
the high school students were given a photocopy of an ammonite shell and were asked to collect 
data and then describe the spiral of the shell. 

Data Collection 
All class sessions were videotaped, research team members took field notes, and participants’ 

written work was collected. Video descriptions and transcriptions were linked to video time codes 
in hours:minutes:seconds to afford fine-grained analysis of the development of teachers’ and 
students’ connected and invented mathematics. Selected episodes were identified in which the 
focus group of teachers and the focus group of students built connections between the mathematics 
tasks they each previously explored and the mathematics they were each inventing.  

Selected Data and Preliminary Analysis 
An overview is presented of the way-points (mathematics concepts) in the order they were 

explored by each group. 
Elementary School Teachers 

• Common ratio (25-02:26:01, 1-01:26:24) 
• Sine curve (25-02:52:29) 
• Damped sine curve (25-02:54:29) 
• Right triangle trigonometry (1-01:06:53) 
• Trigonometric inverses (1-01:10:55) 
• Exponential functions (25-03:19:24, 1-01:39:04) 
High School Students 
• What is a function (00:08:12) 
• Exponential function (00:23:15) 
• Common ratio (00:55:10) 
• Graph transformations (01:02:05) 
• Transformations between polar and rectangular coordinates (01:38:52) 

Discussion 
The maps drawn by these two groups are not the same. Common ratio and exponential 

functions are common way-points, but there are many way-points which are unique to each 
group. Despite differences, both groups explored fundamentally important mathematics. Which 
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concepts emerged depended on the background of the participants and the interpretation of the 
task. Although the mathematics explored in each group was different, one topographical map is 
not inherently better than the other. Participants in both groups deepened their understanding of 
mathematics and have foundations from which to continue to draw and complete their individual 
maps.  

Implication 
Task-based instruction is a powerful tool in teaching. This comparative analysis between 

elementary school teachers and high school students working on the same task demonstrates how 
a single task can illicit understanding of different mathematics concepts. Thus, tasks not only 
allow students the opportunity to choose how to develop their understanding of mathematics 
concepts, but are rich in the number of mathematics concepts available to explore.  
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The proposed project will develop and test arithmetic cartoons meant for grades K-2. These 
cartoons are acted out situations, on a computer screen, that occur in real life. The solutions that 
students will produce while working on the activities created around the cartoons will involve 
“models” (Lesh & Doerr, 2002) for describing and solving problems regarding whole number 
arithmetic. These cartoons will not just focus on problems in which the problematic aspect is that 
students must make meaning out of symbolically described situations (usual textbook problems) 
but they will focus mainly on problems in which the problematic aspect is that students must 
make symbolic description of meaningful situations (Ibid).  

 

 

Figure 1: Textbook word problems vs. Arithmetic cartoons 

Models and Modeling 
Previous research (Fuson, Carpenter, and Steffe) that has been done in the area of whole 

number addition and subtraction talks about the models that researchers have developed to 
explain children’s learning of whole number arithmetic. For example, those models have either 
been task specific (join, separate, combine etc… problems by Carpenter et. al.), researcher’s 
interpretation of how children solve the word problems (count all, count on etc… by Fuson et. 
al.) and researcher’s model of different stages children go through while learning about whole 
number arithmetic (perceptual, figurative, etc… stages by Steffe et. al.). The models that we are 
talking about are the conceptual systems that students will develop while solving the problems 
presented through the cartoons. They test and revise these conceptual systems during problem 
solving and express them using various representational media (Lesh & Doerr, 2002).   

The models discussed in this project are both internal (conceptual systems that students 
develop and use to solve real life problem solving situations) and external (conceptual systems 

Real world 
(meaningful 
situations) 

Symbolically 
described situations 

(textbook word 
problems) 

In textbook word problems, students make 
meaning of symbolic described situations.   

Through these cartoons, students will make 
symbolic descriptions of meaningful situations.  
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that students express using variety of representational media). Previous research (Rational 
Number Project, 1980’s – 1990’s) has shown that representational fluency (shown in figure 2—
Lesh’s translation model) is a very important part of understanding a given conceptual system. 
The arithmetic cartoons project assumes that children will develop a better representational 
fluency while working on the activities created around the cartoons and eventually develop a 
better conceptual system of whole number arithmetic. 

 
 
 
 
 
 
 
 
 

Figure 2: Lesh’s translation model 

What kinds of situations do we want students to describe using whole number arithmetic? 
As stated in the very first paragraph that in usual textbook word problems the students are 

required to make meaning out of symbolically described situations whereas, through our 
arithmetic cartoons, we want students to make symbolic descriptions out of meaningful 
situations (Lesh and Doerr, 2002). The cartoons will be simulations of “real life” problem 
solving situations in which the big idea of whole number arithmetic (addition, subtraction and to 
some extent multiplication and division) will be involved. Previous research (Lesh et. al., 2000) 
has shown that the understandings that are emphasized in textbook problems represent shallow 
and narrow aspect of problem solving relevant in real life. Real life problems often involve 
concepts and abilities that seldom fall into only one topic area (for example, most of the 
situations may involve both addition and subtraction simultaneously rather than only addition or 
subtraction), they often involve several interacting representational media (symbols, pictures, 
stories, words, concrete materials) instead of only symbols or only words, and different 
embodiments (or constructs) of numbers (number line, counts, directed quantities etc…). 

A short clip of the Flash movie and the story that goes along with the cartoons is shown 
below: 

The Runaway Puppy Rescue Center 
 
My friends Harry and Gary run a rescue operation; they rescue run away puppies. They use a 

wagon to transport the puppies back to The Runaway Puppy Rescue Center. 
To catch the runaway puppies, Harry makes puppy treats. These are special treats because 

they smell just like a Happy Hamburger sold only at Charlie’s Hamburger Place next to Jungle 
Jack’s Skateboard Park. Humans cannot resist the smell and dogs are completely helpless with 
hunger from the delicious aroma. Treats that smell like Happy Hamburgers made rescuing 
puppies easy, Gary can even rescue them. 

Harry liked to put his puppies on the left side and Gary put his rescued puppies on the right 
of the wagon. One day they rescued 8 puppies all together. Harry put the five puppies he rescued 
into the right side of the wagon and Gary placed his three puppies in the right side of the wagon.   
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Solving story or word problems is a challenging task in elementary mathematics classrooms. 
Research shows that students’ poor performance in word problem solving could be a result of 
their miscomprehension of the problem (Cummins et al., 1988). Among factors influencing 
miscomprehensions are: difficulties in perception of mathematical language (Kane, 1967), 
insufficient subject matter knowledge (Mayer, 1992), problem posing (Butts, 1980), language 
deficiencies (Mestre, 1988), ineffective text processing (Nathan, Knitsch, & Young, 1992), and 
lack of effective reading strategies in problem solving (Shuard & Rothery, 1988). We examine 
the following research question: what impact a problem posing along with other variables such 
as instructional setting and language have on students’ performance in solving word problems? 

Research Design 
The research sample consisted of 141 second graders from an urban southwestern public 

school with predominantly Hispanic student population. Data collection conducted through the 
use of a short and extended version of a ‘trick’ word problem (the problem that doesn’t contain a 
solution). The trick problem was selected for the study purposefully; it is a non-routine problem 
that requires students to comprehend the problem before solving it. The short version was 
presented as a mathematical word problem and the teacher (graduate student) introduced herself 
as a math teacher. The short version used in the monolingual class was: ”There are 125 sheep 
and 5 dogs in a flock. How old is the shepherd?” Students in the bilingual class had an option to 
approach the problem in English or Spanish (the problem was translated into Spanish).  

The main difference between the short and extended version was that the extended version 
was introduced to the students as a reading assignment and the teacher didn’t introduce herself as 
a math teacher. The extended version for the monolingual class was presented in the following 
way: “Once there was a shepherd who had 125 sheep and 5 dogs. He would take his sheep up to 
the hill to eat. They would stay there all day and in the late afternoon the shepherd would walk 
them back down. The dogs would help him keep the sheep together so they wouldn’t get lost. At 
the end of the day the shepherd would be tired, but happy because he still had all his sheep. Help 
us to answer the following questions: (a) how many sheep did the shepherd have? (b) where did 
the shepherd take his sheep to eat? (c) how old is the shepherd? (d) who would help the shepherd 
keep the sheep together?”. The extended version was also translated into Spanish for the 
bilingual class. There were two sub-groups for each version of the word problem posing: without 
and with a direction which consisted of only one statement: “Read everything carefully!” In all 
the groups the teacher provided an individualized assistance helping students understand what 
each unfamiliar word (if any) meant.  

Results 
Data collection and analysis were performed using the following 4 categories based on 

variations of students’ responses. Results of the study on instructional setting, problem posing, 
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and language in solving word problems are presented in Table 2. 
 130 (+) 

120 (-) 
Wrong variations (5, 
105, 129, 505, …) 

“Reasonable” 
answers (15-75) 

Correct 
responses 

Short version (N=70) 
Without Direction S. (33) 

a) Monolingual 
(17) 
b) Bilingual 
(16) 

 
With Direction S. (37) 

a) Monolingual 
(15) 
b) Bilingual 
(22) 

 

 
 

6 (35.3%) 
5 (31.3%) 
11 (33.3%)  

 
9 (60.0%) 
13 (59.1%) 
22 (59.5%) 

 
 

6 (35.3%) 
8 (50.0%) 
14 (42.4%) 

 
3 (20.0%) 
6 (27.3%) 
9 (24.3%) 

 
 

5 (29.4%) 
3 (18.8%) 
8 (24.2%) 

 
3 (20.0%) 
3 (13.3%) 
6 (16.2%) 

 
 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 

Total - short version 
 

33 (47.1%) 23 (32.9%) 14 (20%) 0 (0.0%) 

Extended version (N=71) 
Without Direction S. (35) 

a) Monolingual 
(20) 
b) Bilingual 
(15) 

 
With Direction S. (36) 

a) Monolingual 
(20) 
b) Bilingual 
(16) 

 

 
 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
 

3 (15.0%) 
1 (6.7%) + 1 

(6.7%)* 
4 (11.4%) 

 
0 (0.0%) + 1 

(5.0%)* 
2 (12.5%) 
2 (5.6%) 

 
 

9 (45.0%) 
10 (66.7%) 
19 (54.3%) 

 
4 (20.0%) 
2 (12.5%) 
6 (16.7%) 

 
 

8 (40.0%) 
3 (20.0%) 
11 (31.4%) 

 
15 (75.0%) 
12 (75.5%) 
27 (75.0%) 

 

Total - extended version 0 (0.0%) 6 (8.5%) 24 (33.8%) 41 (57.7%) 

Table 2. Results of the study 

Discussion and Conclusion 
Considering limitations of the study (small sample size, non-randomized selection of the 

research sample, absence of follow up cognitive interviews with students, etc.), we feel safe to 
open a discussion on the following observations and interpretations from the data we collected: 

1. There is a strong impact of the problem posing variable on students’ performance. The 
most impressive result was shown by both monolingual and bilingual groups that used the 
extended version with the direction statement “Read everything carefully!” 

2. There is a mixed impact of the direction statement (an instructional setting variable) on 
the students’ performance depending on two other variables. Data tells us that the direction 
statement played a “negative” role in the short version setting: more students performed 
arithmetic operations without understanding the problem. On the contrary, the students in the 
‘extended version’ groups didn’t even try to use meaningless computations at all! 

3. The study also showed a small impact the language variable had on students’ 
performance: in the ‘short version’ groups monolingual students were capable to come up with 
more ‘reasonable’ answers than bilingual students.  
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4. Observations of student behavior showed that the students in the ‘extended version’ 
groups were more engaged and open minded while approaching and solving the problem; they 
asked more question for clarification purposes compare to the students in the ‘short version’ 
groups who were mostly silent and less active.  
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This study investigated students’ understanding of fractions as measures using number lines. 
Fifty-six seventh graders were asked to locate ¾ on two number lines: one was 1-unit long, and 
the other 5-units long. Results showed only 9 students correctly located ¾ on the both number 
lines. Analysis suggests that the students’ difficulties stem from an overgeneralization of part-
whole partitioning strategies in measurement contexts.  

Several reports of national and international assessments of students’ understanding of 
rational numbers have documented students’ difficulties conceptualizing fractions as measures 
(Jakwerth, 1996). Our observations of students at a middle school mirrored those difficulties. In 
this paper, we report on the students’ responses to tasks that asked students to identify fractions 
on number lines. We use the students’ responses as a window into their conceptual 
understanding and struggles in making sense of fractions as measures. 

Theoretical Background 
Several researchers identified different aspects of rational numbers, two of which are part-

whole and measurement (e.g., Kieren, 1993). Traditionally students have been introduced to 
rational numbers as part-whole representations with two-dimensional shapes partitioned into 
multiple equal parts. In this study, we focused on children’s understanding of fractions as 
measures and used a number line representation to exemplify such a measurement 
understanding. A measurement understanding is defined as one that is able to see and use a given 
unit to measure any distance from the origin (Lamon, 1999). The distance is then some amount 
of partitioned units from a point of origin, and the collection of units on the number line 
consecutive, continuous measurements from that origin.  

Although partitioning of the unit occurs in both part-whole and measurement contexts, there 
are not the same. Part-whole partitioning involves comparing the number of equal parts to the 
total number of equal parts, while in measurement “the number of equal parts in the unit can 
vary, and what you name your fractional amount depends on how many times you are willing to 
keep up the partitioning process” (Lamon, 1999, p. 113). Moreover, students’ partitioning 
experiences in part-whole contexts are often limited to dealing with one unit, such as partitioning 
a pizza into two 1/2s. In contrast, in measurement contexts, students often deal with measures of 
multiple units. Due to a similar language, similar sets of symbols, and similar representations, we 
hypothesize that students will overgeneralize part-whole partitioning strategies in measurement 
contexts. 

Methods 
Fifty-six students from three 7th grade classrooms in Pheonix, Arizona participated in this 

study. The school mainly served minority students (85%). Data was gathered through written 
assessments. In this paper, we focus on students’ responses to 2 of the 8 problems to highlight 
their understanding of fractions as measurement--the first problem asked students to locate ¾ on 
a number line from zero to one, and the second ¾ on a number line from zero to five.  All the 
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students were taught by one math teacher using Mathematics in Context (MiC). 

Results  
Nine of the 56 students in 7th grade (16%) answered both problems correctly. Jack’s 

strategies exemplify students’ valid implementation of unitization and partitioning strategies in 
linear measure contexts. In Figure 1, Jack correctly interpreted the unit on a number line as zero 
to one.  He found a half of one and correctly estimated the location of ¾.  In Figure 2, he first 
estimated the length of each one-unit on the number line between 0 and 5. He then halved the 
first unit to find ½ and correctly located ¾ at the midpoint of the line segment from ½ to one. 

 

Figure 1.  Jack’s strategy for locating ¾ 
on a number line from zero to one.  

 

Figure 2.  Jack’s strategy for locating ¾ on 
a number line from zero to five.  

 
Thirty-six students (64%) identified ¾ on the number line from zero to one, but not on the 

number line from zero to five. For example, Jessica found ¾ correctly on a number line from 
zero to one, by partitioning the number line into four equal pieces and estimating ¾ appropriately 
(Figure 3). 

 

Figure 3.  Jessica’s strategy for locating ¾ 
on a number line from zero to one.  

 

Figure 4.  Jessica’s strategy for locating ¾ 
on a number line from zero to five.  

 
Jessica, however, overgeneralized her first strategy when using a number line from zero to 

five, providing her with an inappropriate location of ¾ (Figure 4).  

Conclusion 
Among students’ difficulties in transitioning from part-whole to measurement, this paper 

focused on two issues. First, many students seemed to use a number line as if it was a fraction 
bar, partitioning it as if the entire visual number line was a unit of one. Second, it seemed that 
students were unable to see a number line as a continuous collection of iterated units. While part-
whole aspects of students’ strategies were valid for the first problem, many students 
overgeneralized the strategies and failed to identify an appropriate unit or measure 3/4 of one 
unit on the second problem. The results suggest that we need to consider the over-emphasis of 
part-whole aspects of fractions and limited representations in rational number instruction.  
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Scholars studying writing to learn strategies within classrooms argue that writing can be used as 
an effective learning tool. One of the functions of writing is to augment understanding through 
cognitive and metacognitive actions that it demands. In addition, during writing, one negotiates 
meaning; and in negotiation, one is generating knowledge and augmenting learning (Powell & 
Lopez, 1989). 

The recent research emphasis has been on incorporating writing into mathematics classrooms 
to develop students’ problem solving abilities. According to Polya (1981), problem solving is a 
process of making conjectures among the data (known), the unknowns, and the conditions of the 
problem. Kenyon (1989) argued that writing can be used effectively for promoting the problem 
solving process because it allows students to gather information, organize their thoughts, and 
make connections between their mathematical concepts, problem solving strategies, and the 
conditions of the problem. 

The mathematics reasoning heuristic (MRH) was developed to scaffold students’ problem 
solving skills with writing tasks embedded into mathematics activities. The MRH is a 
pedagogical tool that combines teacher’s mathematical understanding, students’ understanding of 
mathematics, negotiation of ideas, and writing. 

Method 
The purpose of this study was to look at high school students’ performances on the post-test.  

The main data source was students’ pre- and post-test scores obtained from the teacher. This 
study was conducted with a ninth grade algebra teacher who had two classrooms. A classroom 
with 16 students was chosen as the control group and the other was chosen as the treatment 
group with 24 students. 

Results 
An analysis of covariate (ANCOVA) model was estimated to look at the group difference. 

The results showed that students in the MRH (treatment) classroom significantly outperformed 
students in the control group on the post-test when their pre-test scores were controlled (F(1,37) 
= 5.688, p = 0.022). The effect size for this group difference was 0.55 SD, which is a medium 
effect. 

Discussion and Conclusion 
The significant results indicated that the treatment group students improved more than the 

control group students. This difference can be attributed to the intervention that was practiced by 
the teacher. Along with writing tasks, students engaged in classroom discussion where they 
could have opportunity to negotiate common meaning and individual understanding of the topic. 
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Problem solving and writing processes resemble in many ways. The authors exploring writing 
process suggest that the writer engages in a series of complex cognitive actions to transform his 
experience through the specific symbol system of language into an icon (the graphic product) 
(Emig, 1977). Similarly, a problem solver constructs internal and external representations of the 
object and develops strategies to make the connections between the information extracted from 
the problem text by means of language and the conditions and goals of the problem (Mayer, 
1982). 

Method 
The purpose of this paper was to investigate the characteristics of problem solving and 

students’ problem solving skills within writing tasks over a longitudinal course of study (three 
chapters in a math textbook); and to explore their explanation of mathematical concepts (e.g., 
word-choice) to younger audiences. Students were asked to explain what they had learned, in a 
text format using mathematical examples, to different audiences so that they could understand. 

Results 

Problem Solving Skills 
The analysis of students’ second writing samples in chapter 7 revealed that students put more 

emphasis on understanding the problem by extracting the relevant information from the problem 
text to set their solving strategies. 

Using Mathematical Language 
Students’ use of mathematics language showed variation, and improvement, across the 

writing samples depending on the target audience. For example, when students wrote a letter for 
a fifth grade student about ratios, proportions, and percents, they explained the mathematical 
terms either using simpler everyday words or drawing pictures. For example, a student started 
with asking her audience whether he/she heard of ratio, proportion, and percent. She then gave a 
mathematical definition for ratio, “A ratio is a way to compare numbers.” She further provided 
real life examples, “if you have 8 brownies and 12 cookies, you could set the ratio up like this 
8:12.” 

Discussion and Conclusion 
Improving students’ problem-solving and reasoning skills is one of the major goals in 

mathematics education. Writing is one of the tools that teachers can use in their classrooms to 
help students enhance their abilities to solve mathematical problems. Writing gives students the 
chance to reflect on, and react to their thoughts and ideas (Kenyon, 1989) and helps students 
develop reasoning and a specialized mathematical language through the language they more 
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Solving arithmetic word problems has been studied from several perspectives: considering a 
schematic approach (Carpenter y Moser, 1982), attending the semantic structure (Nesher, 1982) 
and considering as well the place of the unknown (Vergnaud y Durand, 1986). 

Nevertheless, an element that has not been considered in depth is the language proficiency 
the student has and its relation to solving addition word problems. 

A qualitative research was carried out in order to see what role reading comprehension and 
use of everyday language had when solving addition word problems. Word problems were 
classified according to Puig and Cerdán’s (1988) semantic classification: 'combine', 'change', 
'compare' and 'to make equal' type of problems.   

Using two instruments during individual interviews, it was possible to assign each of the 17 
students a language level and an ability level when solving addition word problems. Student’s 
age was 10-11 years old; all of them had already studied in previous years the four types of 
verbal problems. Bearing in mind that language was the key factor of the research, seven 
children with hearing problems (moderate to severe) took part in the study.  

In order to assign the language level, Ortega and Garza’s (1982) instrument was applied. The 
attainment level when solving word problems was determined with 16 problems: four for each 
semantic category, each given orally as well as written down.  All problems included small 
numbers which addition did not surpass 20, with the purpose of focusing on the language and the 
semantic categories used.  Children that could not answer correctly one of the verbal problems, a 
theatrical presentation of the problem was used to identify if the difficulty was in their language 
ability or in understanding the semantic structure of the problem. 

Use of language and word problem solving was classified into three levels: high, medium 
and low.   

With regard to problem solving, nine out of the 17 students obtained a high level in problem 
solving, of which seven had a high level in use of language, one medium and the other low.  One 
student obtained a medium level in problem solving with a high level in use of language. The 
rest, seven students, got a low level in problem solving, of which four had a medium level in use 
of language and three a low one. The hearing problem factor had no influence on these results. 

Considering the use of language, students with a medium or a low level had mayor 
difficulties with the aspect of “auditory memory” and “following orders” comprehension. Nine 
students had problems with one or the two aspects.   Seven of these nine students where the only 
ones that got a low level in problem solving, regardless if they had hearing problems or not. 

In conclusion, it was found that the use of language plays an important role in solving 
addition word problems, being the “auditory memory” and “following orders” aspects that 
children need to master in order to be good problem solvers.  Thus, a high level in use of 
language leads to a high level in problem solving; a low level use of language results in a low 
level in problem solving. All the same, a low level in problem solving does not imply that the 
student has a low level of use of language.  

_____________________________ 
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The « Kangourou des Mathématiques » competition aims at showing its participants the beauty 
and entertainment of mathematics by problem solving. On the basis of the data of over 100.000 
participants’ answer sheets of the German version of this multiple choice competition, a choice 
of a couple of problems is examined which predicts best the outcome of the competition. These 
prove not to be simply the most difficult ones; they cover rather a wide range of mathematical 
areas. The samples of those questions indicate that problems connecting different areas of school 
mathematics are likely to decide about the prize winners. 

The making of the multiple choice problems for the kangaroo competition 
The kangaroo competition is international in organisation and tradition. It was founded in 

France in 1991 as « Kangourou des Mathématiques » following the example of the “Australian 
Mathematics Competition” – a fact its name alludes to. First and above all the Kangaroo project 
aims at showing the beauty of mathematics by problem solving. Each year, an international 
board selects suitable problems for the different age-groups from a pool of problems contributed 
by the 14 participating countries. The organisers of each country select approximately 75 % of 
the problems for their national test from the catalogue. The remaining part can be chosen freely 
or modified from original problems. The problems are not designed for a diagnostic purpose; 
conceptually, they are rather set to reflect a certain spirit of mathematics and mathematical 
problem solving in its whole diversity. 

Objects of research in view of the kangaroo design 
The merits of problem solving are widely acknowledged (Pehkonen, 1991). Working on 

problems in mathematics is widely believed to be a key of mathematics education at all levels 
(NCTM 1999). In the well known competitions in mathematics, problems are designed to 
determine the most talented problem solvers. These are used and designed for the diagnosis of 
mathematical abilities (Kalmann 2002). A canon of solution strategies is established, which is 
claimed, again, to be universal for mathematical contents (Engel 1998). 

This kangaroo project questions the tradition of problem solving, which does not mean it 
would not respect it highly. The relation of mathematical content and problem solving strategies 
is not well understood yet; some selection of problems stress, for instance, the combinatorical 
component. It seems also interesting to us to find out whether the Kangaroo competition, as an 
event for all, gives a broader range of problems than Mathematics olympics, which tend to be an 
event for the gifted. The project involves the following parts: 

� Identifying the choice of those problems which reflect best the achievement in the 
whole test, 

� Analysing this shortened form of the test from the point of view of problem solving in 
order to find out in which regard these problems are special, 

� Working out criteria for the quality of problems and to understand more about the 
relation between mathematical contents of the problems and heuristic strategies. 

_____________________________ 
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Data analysis method: finding wallabies 
In Germany, questionnaires for five groups of age are offered; the total number of 

participants refers to the year 2001. The results are being discussed here: 
 

Grades 3 and 4 5 and 6 7 and 8 9 and 10 11 to 13 
Total of participants 17,690 37,059 27,218 15,370 6,457 
Prize winners 814  

4.6 % 
1,808  
4.9 % 

1,396  
5.1 % 

815  
5.3 % 

348  
4.5 % 

Table 1: Participation in Germany in 2001 

The approach of the discriminant analysis is not described here in detail because the studies 
on the wallaby-problems will be more interesting for the readers. The approach involves a kernel 
for the ordinal three parameters: correct answer, no answer, and wrong answer. As already 
mentioned, no distinction is made between the various wrong answers. The data is divided into 
two subsets: a training set for the estimation and its complement for checking the quality of the 
decision rule in the second step. 

Wallabies for grades 3 and 4 as well as for grades 11 to 13 
In this section, the results on the year 2001 are given. The older results are taken on purpose 

because in this way accompanying studies with students today rule out the possibility that they 
have worked on these problems at the time because they are now in a different age-group. 

The answers in the group of grade 11 to grade 13 are included here to give an impression of 
how diverse the statistics to the problems is distributed. The original problems can be found at 
the website www.mathe-kaenguru.de in the archive “Chronik” and the folder “Aufgaben”, 
subfolder “2001”. 

The discriminant analysis singles out three problems as the wallaby which predict best the 
outcome of the test. The group of prize winners agrees with those who answer all these problems 
up to an estimated error rate of 4.37 %. One can add a fourth question to the wallaby which 
increases the error rate only marginally. In the following table, the wallaby questions are written 
in italics. 

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Correct 
(%) 

52 
45 

47 
41 

42 
35 

35 
32 

34 
34 

23 
16 

48 
48 

6 
6 

39 
29 

33 
35 

7 
9 

35 
35 

23 
23 

34 
32 

57 
59 

Wrong 
(%) 

28 
38 

47 
50 

21 
31 

46 
55 

38 
41 

45 
57 

28 
29 

35 
39 

37 
49 

33 
37 

75 
77 

35 
37 

57 
57 

24 
30 

33 
32 

n. a. 
(%) 

20 
17 

6 
9 

37 
34 

19 
13 

28 
25 

32 
27 

24 
23 

59 
55 

24 
22 

34 
28 

14 
14 

30 
28 

20 
20 

42 
38 

10 
9 

Problem 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Correct 
(%) 

45 
41 

20 
15 

9 
8 

42 
36 

33 
33 

36 
38 

25 
17 

20 
14 

39 
42 

21 
18 

7 
6 

45 
43 

14 
14 

20 
19 

7 7 

Wrong 
(%) 

31 
38 

26 
54 

41 
48 

36 
33 

46 
48 

34 
41 

31 
47 

30 
42 

31 
33 

33 
44 

66 
59 

29 
37 

49 
57 

47 
47 

40 
42 

n. a. 
(%) 

24 
21 

36 
31 

49 
44 

32 
31 

21 
19 

30 
21 

34 
36 

50 
44 

30 
25 

36 
38 

27 
25 

26 
20 

37 
29 

33 
34 

53 
51 

Table 2: Percentages of correct, wrong and no answers of prize winners and others in 
grades 11 to 13 
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For the grades 3 and 4, the questions number 8, 11 and 21 (in the year 2001) were identified as 
wallaby problems. 

Discussion 
The results of the test for the grades 3 and 4 and that from grade 11 were chosen because 

they reflect common aspects to all group-ages and contain also some particularities. 
Older students become more and more careful with giving an answer. Although it can be 

doubted whether abstaining from an answer is a good strategy, they seem to want to be quite sure 
before ticking the appropriate box. Thus, there is a striking difference in ages for multiple choice 
questionnaires that penalize wrong answers compared to abstaining from giving answers. For the 
wallabies this means that these are more reliable for older students because the option of giving 
no answer at all is almost neglected by the younger children. 

The classical solution strategies, which appear in the wallabies, cannot always be clearly 
distinguished. For sure, in the examples presented here, we find a problem aiming at the 
invariance principle (grades 3 and 4, problem 8) as well as a combinatorical problem (grades 11 
to 13, problem 23) which some students approached with a strategy of systematic trying. 
Combinatorical problems appear frequently in wallabies, but they are not dominant. 

It can also be observed that some problems link different areas of mathematics. Question 20 
(grade 11 to 13) links geometry and algebra by the way the choice of possible answers is given. 
And question 25 (grade 11 to 13) involves very different aspects within the area of analysis. 

Following the results, it could be worthwhile examing whether the solution strategies for 
problem solving have been stressed too much in the tradition of mathematics education. They 
seem to indicate that problem solving competence involves significantly both the ability to work 
on problems of different mathematical areas and to connect different mathematical areas in the 
solving process of a single problem. 
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Many researchers emphasize that in order to understand students as learners of mathematics and 
to build on students’ thinking, teachers need opportunities to examine and understand children’s 
strategies while solving mathematics problems (Carpenter, Fennema, Franke, Levi, & Empson, 
1999; NCTM, 2000). Carpenter et al. (1999) identified student strategies for solving 
multiplication and division problems, but avoided analysis of student strategies in combinatorics. 
Maher and Martino (1992) characterized the solution strategies of two students working on a 
combination problem presented to students by the researchers. 

In this poster presentation, we will report preliminary findings on the strengths of children’s 
thinking and the different solution strategies they develop while working on a combinatorics task 
presented by their classroom teacher. This qualitative research is part of a professional 
development project with twenty-eight elementary teachers. The video analyzed here is from one 
session in a classroom of twenty-two second grade students taught during the last month of 
school by Melanie, a second-year teacher. Melanie introduced a combinatorics task to her 
students by asking them to explore how many different outfits could be made if there are three 
shirts and two pairs of pants. 

Students used various strategies to solve the shirts and pants problem. Tanner stated, “It [the 
problem] says there's three pairs of shirts and two pair of pants. If there's one more pants you 
could make three.” Tanner believed he needed the same number of pants as shirts to make three 
outfits. Tiffani used colored squares of paper to represent the shirts and pants and arranged them 
in such a way that she held the shirts constant and varied the pants. If we denote the number of 
shirts as 3S and the number of pants as 2P, then a mathematical representation for Tiffani’s 

strategy could be 2P(S + S + S) = 2PS + 2PS + 2PS. Caleb used colored squares of paper to 
represent the shirts and pants and solved the problem in two parts. First, he held one pair of pants 
constant and varied the shirts. A mathematical representation for the first part of Caleb’s strategy 

could be (S + S + S)P = SP + SP + SP. Second, Caleb held the other pair of pants constant and 
varied the shirts, which could be represented as SP+SP+SP. Shelby used a connecting-line 
strategy. She said, “Since there's three shirts and two pairs of pants, well, you could take two 
shirts and each put them with a pair of pants. Then switch the ones. And then like if you left out 
the red shirt, put the red shirt on that one [pants] and then on that one.” A mathematical 

representation for Shelby’s strategy could be (2S + S)2P = 4SP + 2SP. 
Additional data and implications for building on student thinking will be discussed. 
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Problem solving map (PSM) –method 
The main idea of the PSM is that pupils will learn to collect and write down notes that will 

help to solve the problem. The PSM emphasizes metacognitive thinking. The application of 
metacognitive techniques has two important mathematical purposes: It allows pupils to keep 
track of what they have done and it allows pupils to make connections between their problem 
solving work and their knowledge of subject matter and mathematical procedures (Finkel 1996; 
Schoenfeld 1985). 

Method  
This study was carried out in the 6th grade of a small Finnish school using a quasi-

experimental design. The experimental group (N = 17) was taught problem solving over six 
weeks in 30 lessons integrated in to their regular school days, mainly in mathematics but also in 
mother tongue, science, art and craft. In teaching problem solving Schroeder’s and Lester’s 
(1989) ideas on the three components: about problem solving, for problem solving and through 
problem solving were used. The control group (N = 35) studied mathematics and other school 
subjects in their normal way. The PSM -method played a central role in the course. Pupils’ 
problem solving performance was measured in pre- and post-tests and 1.5 years later in a delayed 
test.  

Results 
The differences between the control and the experimental group in three tests could be 

compared if the results of the control group were standardized to 100% in all the three tests 
(table 1). 

Test Experimental group Conrol group 
Pre-test 97% 100% 
Post-test 126% 100% 
Delayed test 115% 100% 

Table 1. Standardized results in the pre-test, in the post-test and in the delayed test 
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The larger study from which this poster comes is concerned with exploring how adults in 
workplace training learn, understand and use mathematics as they engage with it in the context of 
their specific trade.1 This poster will focus on the growing mathematical understanding of three 
apprentices, known here as Joe, Andy and Mike, who are in the second year of an apprenticeship 
training program to become credentialed ironworkers. The taught program is based at an Institute 
of Technology in Vancouver, BC, and involves classroom and practical sessions. The 
apprentices were in a larger class of about twenty students and Joe, Andy and Mike worked 
closely together, for about one hour, at a desk, where they were video and audio recorded. In this 
session they have been posed the task of establishing the size of choker sling required to lift an 
assembled structure of four large iron beams into an upright position, and later of determining 
where the crane should be positioned to accomplish this. The structure consists of two upright 
beams, one top crosspiece, and one middle beam. This is lifted into position using two chokers in 
a sling arrangement around the top beam. It is the size of these chokers that the apprentices have 
been asked to calculate, something that is dependant on the total weight of the structure to be 
lifted. In analysing the data, and in seeking to describe and account for the way in which the 
students work mathematically whilst solving this problem, we employed elements of the Pirie-
Kieren Theory for the Dynamical Growth of Mathematical Understanding (Pirie & Kieren, 
1994). However, we also characterise mathematical thinking as particularly complex in the 
workplace, involving the drawing on and working with three different forms of mathematical 
understandings: understandings of the task as posed; understandings of the mathematical 
relations required by the task; and understandings of the task as an actual job to carry out. We 
contend that it is the way that these apprentices are able to build an understanding that shifts, and 
builds connections, across these three dimensions, that leads to their success with the task. 

Endnote 
1. The research reported in this poster is supported by the Social Science and Humanities 

Research Council of Canada, (SSHRC) through Grants #831-2002-0005 and #501-2002-0002. 
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Introduction 
This study supports the claim that the mathematical knowledge of both a classroom 

community and individual students in the community is advanced through the significant 
influence of shared student communications, interactions, and products.  In the past, some 
attention has been given to the sharing of such practices among students in collaborative working 
groups (Noddings, 1989), but little to no attention has been given to the sharing of such practices 
between working groups. In many mathematics classrooms, students are introduced to ideas 
through the teacher’s presentation of them to the entire class. This study investigates two middle 
school mathematics classrooms where students are often introduced to practices, processes, and 
products through the spread of student-initiated ideas. The spread of these ideas occur both 
within students’ collaborative working groups and between the collaborative groups. 
Characterizing the effects of sharing students’ practices, processes, and products both in and 
between working groups as they work collaboratively on thought revealing mathematics problem 
solving tasks forms the basis of this study.  

Collaborative learning environments that involve students working on thought revealing 
mathematical tasks encourage the development, exchange, and sharing of knowledge (Lesh, 
Hoover, Hole, Kelly, & Post, 2000), where mathematical knowledge is a broad term referring to 
mathematical ideas, facts, concepts, problem solving strategies, tool related practices, etc.   The 
notions of development, exchange, and sharing does not suggest imitation but instead a process 
of interpretation, adaptation, and evolution.  When students work on complex problem solving 
activities, there are often discussions involving negotiations, clarifications, explanations, and 
justifications among students. During this process of negotiating meanings of goals, ideas, 
possible strategies, progress and other issues, students share and spread new ideas. One of the 
purposes of characterizing the effects of such sharing is to clarify means for engaging students in 
processes of knowledge advancement. The challenge is not simply to provide opportunities for 
collaboration but to design the classroom environment so that knowledge is shared.  

Data Collection and Analysis 
A random sample of six groups of students from two different mathematics classes was 

studied. Data collected include (i) audiotapes and videotapes of student group work and group 
presentations, (ii) student work (i.e. group product, individual homework assignment), (iii) 
informal interview with teachers and students, and (iv) field notes. Multiple sources of data were 
analyzed in relation to one another to check for congruency and to enhance the credibility of 
their findings. Discussions and interactions between students were captured on audiotape and 
videotape. Data from videotapes were primarily used to visually capture whole class interactions 
and support audiotape data. All audiotape data were transcribed or summarized.  Data were 
coded and categorized according to the pattern coding method (Miles & Huberman, 1994) to 
specifically trace the development and diffusion of ideas among students.  
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Results 
The findings of this research indicate interactions occurring both within and between 

working groups foster the development and sharing of knowledge. Data also show that varying 
views and ideas should be accessible and valued as a resource for the entire classroom 
community. Interactions occurring within students’ working groups and those occurring between 
groups of learners are both relevant with respect to encouraging the development and exchange 
of new ideas. Although groups of students often work on the same task, each group may 
reconstruct the problem differently. Within their own working group, students naturally negotiate 
and interchange ideas.  

In inter-group interactions, non-group members have access to alternative ideas. These 
alternative ideas should be accessible to all students throughout the implementation of a problem 
solving task. Through connecting ideas from their own group with ideas from neighboring 
groups, students are able to connect multiple ideas to form one new idea. During intra-group 
collaborations, students focus on developing and structuring their designs and models. The inter-
group environment leads students to further discussions of the quality of their models, functions 
of their designs, and justifications for their reasoning. Both types of interactions elicit and foster 
the development, sharing, and appropriation of knowledge through opportunities of peer 
dialogue, submission of contrasting ideas, and active seeking of information outside the group. 
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The author designed and taught two semesters of math-through-muraling classes under a 
nationally-funded after-school program. Over 90% of students at this middle school qualify for 
free or reduced cost lunch. The author was also a participant-observer in four daytime math 
classrooms, for one of which a mural activity was implemented at the end of the year.  

The fall class used concepts of polygon and circle geometry to construct a large mural based 
on familiar regional weaving motifs. Goals were assigned such as “record an aspect of our 
project which you think future viewers may wish to know about,” but execution, including, for 
the above example, choosing how to collect, record, summarize and present data was entrusted to 
the students as a whole.  Students painted their statistical and geometric analyses into the mural. 
Vigorous mathematical debate was often observed during this after-school class. Of note was the 
voluntary attendance and extended, concentrated mathematical work of students regarded as 
behavior problems in their daytime math classes.   

During spring semester, muraling as a model-eliciting activity (Lesh, Hoover, Hole, Kelly, & 
Post, 2000) was explored. Using an image of a Fibonacci spiral for mural design, the activity was 
only successful once structured to physically require collaboration.  Thereupon students quickly 
progressed through multiple cycles of increasing mathematical perception as they struggled to 
make their sections of a model for the mural fit with other groups' sections.   

Last, to address challenges observed in an 8th grade classroom, a mural activity was designed 
for the class in which students used algebraic notation to communicate with other teams about 
color proportions. The goal was to establish a situation wherein: 

� interacting with and generating data about meaningful phenomena form the foundation 
for translating experience into algebraic representation (Moses, 2001), 

� communication in algebraic language could be appropriated by students, and  
� strongly disengaged students could be valued and re-engaged.  

In each turn at the mural, a team read the latest equation, decided how to translate the 
relationships between colors encoded therein into an appropriate total volume of paint for the 
section, painted, saw the result, decided what direction they wanted the mural to take from there 
in terms of color, represented this in a new equation, and wrote this equation onto the next 
section. Equations penciled onto the wall were the only mode of communication between teams 
in this relay, in which each team had several turns over two weeks. 

Project goals were met, as measured by positive feedback from classroom teachers, students 
quickly adopting mathematical language in dialog with each other, and high challenge and 
engagement for most students: the quietest in-class students now persistent with their questions 
and the most disruptive in-class students taking the mural seriously. Students applied in-class 
material to the solution of mural equations and responded effectively when mural equations were 
referenced as aids in understanding in-class material. Opportunities for muraling to act as 
formative assessment (Black & Wiliam, 1998) were also realized. 
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Is there a difference in the mathematical ideas elicited when solving the same meaningful 
problem in two different languages? Do students whose first language is Spanish have difficulty 
doing mathematics because of the math, or because of their lack of confidence in their second 
language (Khisty, 1997)? According to Moschkovich (2002, p.190), “Students are now expected 
to communicate mathematically, both orally and in writing, and participate in mathematical 
practices, such as explaining solution processes, describing conjectures, proving conclusions, and 
presenting arguments.” 

Model-eliciting activities are based on real-life situations where students, working in small 
groups, present a mathematical model as a solution to a client’s need (Lesh, Hoover, Hole, Kelly, 
& Post, 2000). Students must develop a mathematical model which the client can comprehend, 
find useful, and apply to other situations. These models reveal “important aspects about how 
students are interpreting the problem solving situations” (Lesh and Doerr, 2003, p.9). These 
activities are thought-revealing, allowing students to elicit their knowledge in a variety of ways: 
orally, as students communicate among each other when solving the problem and present their 
solution to the whole group; and in writing, when they respond to the client in a letter format. 

This study will look at two groups of 8th grade students. Both groups will have a 
combination of students whose second language is English, and whose first language is Spanish; 
and students whose first language is English. One group will solve a model-eliciting activity in 
English and the other group will solve the same model-eliciting activity in Spanish. The focus of 
this study is to look at the extent at which students’ mathematical ideas are elicited, and if 
language places a difference in these mathematical ideas. Are the same mathematical ideas 
elicited no matter what language the activity is in? Is student performance on this task related to 
the language of the activity? 

In order to answer these questions, we will conduct classroom observations as students in 
both groups solve the activity. These observations will focus on the language that students use in 
communicating with other peers, the mathematical ideas elicited while students solve the 
problem and present their solutions. We will also collect students’ solutions to the model-
eliciting activities and use a scoring rubric to assess their performance. Later, we will relate 
students’ performance on this task, with the mathematical ideas used, and the language used, 
both, by the students and in the task; we will find how these variables are related to each other. 

During the poster presentation we will discuss which mathematical ideas were elicited from 
the two groups. We will also discuss how each group went about solving the problem, what ideas 
were elicited, and their solutions to the problem. We will compare the mathematical ideas 
embedded in each group’s solutions and discuss why they did/did not differ. 
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This study focused on probing undergraduate students’ understanding of two concepts of 
differential equations, that of slope fields and equilibrium solutions, as they solved complex 
problems in mathematical and non-mathematical contexts.  The term complex problem refers to 
a problem that requires the solver to consider the concepts of slope fields and equilibrium 
solutions together and as non-isolated facts.  Problems in a mathematical context are those 
expressed purely in mathematical terms.  By contrast, problems in a non-mathematical context 
are framed in real-word applications settings. 

Also assessed were participants’ abilities to solve problems that evaluated different types of 
understandings of the concepts of slope fields and equilibrium solutions separately.  These latter 
problems are referred to as simple problems, all of which were presented in mathematical 
contexts only.  The specific questions guiding the research were: 1) Does performance on 
complex problems vary by context (mathematical, non-mathematical)?  2) When considering a 
complex problem in a mathematical and a non-mathematical context, are participants who 
answer the problem in one context correctly more likely to answer the corresponding problem in 
the other context correctly?  3) Does performance on simple problems predict performance on 
complex problems?   

In order to investigate the three research questions, a written test was designed to consist of 
four complex problems and six simple problems, three pertaining to slope fields and three 
pertaining to equilibrium solutions.  Two of the complex problems were in mathematical 
contexts and for each of these, there was a corresponding problem in a non-mathematical context 
designed to be identical in terms of its solution and mathematical requirements.  This written 
instrument, named the Differential Equations Concept Assessment (DECA) was administered to 
91 participants drawn from three introductory differential equations courses.  Of those 
participants, 13 were interviewed to provide detail for interpreting performance on DECA.  

The data obtained from DECA and the interviews showed that participants performed 
significantly better on complex problems in non-mathematical contexts than on complex 
problems in mathematical contexts.  There was a significant relationship found between 
performance on a problem in a mathematical context and performance on the isomorphic 
problem in the context of population growth, but a significant relationship was not found 
between a different pair of isomorphic problems, one in a mathematical context and the other in 
the context of learning.  However, for all the complex problems, participants illustrated a 
preference for algebraic rather than geometric methods, even when a geometric approach was a 
more efficient method of solution.  Although performance on simple problems was not found to 
be a strong predictor of performance on complex problems, the simple problems proved to elicit 
difficulties participants had with aspects of slope fields and equilibrium solutions.  For example, 
participants were found to overgeneralize the notion of equilibrium solution as being any straight 
line and as existing at all values where a differential equation equals zero.  Participants were also 
found to identify slope fields as determining only equilibrium solutions. 
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TEACHERS’ IMPLEMENTATION OF STANDARDS-BASED ELEMENT ARY WHOLE 
NUMBER LESSONS1 

Stacy Brown, Catherine Ditto, Catherine Randall Kelso, Kathleen Pitvorec 
Institute for Mathematics and Science Education, University of Illinois at Chicago 

stbrown@uic.edu, cditto@uic.edu, ckelso@uic.edu, kapitvor@uic.edu 

Recent calls for research investigating the impact of the Principles and Standards for School 
Mathematics have indicated a need to better understand the relationship between teachers and 
Standards-based curricula. This study examines teachers’ implementation of a Standards-based 
lesson strand in terms of the level of fidelity to two curricular forms: the literal and the intended 
curricula. Results indicate that level of fidelity to the literal curriculum is not indicative of the 
level of fidelity to the intended and vice versa. It is also shown that level of fidelity to the 
intended curriculum varies within sites despite professional and contextual similarities.  

Three years after the release of the NCTM Principles and Standards for School Mathematics 
[Standards] (NCTM, 2000), the Board of Directors of NCTM organized a conference focused on 
the impact of the Standards. One outcome of this conference was a call for research that 
examines the role and influence of the Standards on K-12 mathematics education, including 
research on the interaction between teachers and instructional materials. Coinciding with the 
NCTM Research Catalyst Conference was the initiation of a multifaceted investigation of an 
NSF-funded, comprehensive Standards-based2 elementary curriculum, Math Trailblazers. One 
component of this large-scale investigation was the Whole Number Study, a study aimed at 
documenting teachers’ implementation of whole number lessons, student learning of whole 
number concepts, and the relationship between the two. In this paper, we share the design of the 
Whole Number Study and then focus in on a particular data set – the videotaped classroom 
observations - presenting both our analytical approach and findings on teachers’ implementation 
of Math Trailblazers whole number lessons. 

Perspectives on Curricula 
Curricula can be thought of as having many forms or levels. Cuban (1992), for instance, 

distinguishes between the intended, the taught, and the learned curriculum. From his perspective 
the intended curriculum “is written” and includes “that body of content contained in state 
frameworks, district courses of study, listings of courses taught in a school and syllabi” (Cuban, 
1992). The taught curriculum is “what teachers do (lecture, ask questions, listen, organize classes 
into groups, etc.) and use (chalk, texts, worksheets, machines, etc.) to present content, ideas, 
skills, and attitudes” (Cuban, 1992). The Instructional Materials and Curriculum Working Group 
also described various forms or levels, making distinctions between the ideal, intended, enacted, 
assessed, and achieved curriculum (Reys & Roseman, 2003). Here the idea of a taught 
curriculum is replaced with the more holistic notion of an enacted curriculum. “While teachers 
rely heavily on textbooks and district curriculum guides, they also often make major alterations 
to textbook lessons resulting in an enacted curriculum that looks very different from the intended 
curriculum. … the enacted curriculum represents the opportunities students have to study and 
learn specific areas of mathematics (Reys & Roseman, 2003, p. 134). The notion of an enacted 
curriculum is more holistic than Cuban’s taught curriculum in the sense that it goes beyond a list 
of actions and materials and considers how teachers and students interact with curricula when 
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lessons are brought to life in classrooms.  
Alternatives to Cuban’s definition of the intended curriculum have also been proposed. For 

example, Reys and Roseman (2003) state: “To be effective, general curriculum standards must 
be translated into specific grade level learning expectations and materials that guide the day-to-
day decisions of teachers and help them focus on the important mathematical learning goals in 
significant ways.  Teachers and publishers utilize these expectations and materials to build 
lessons to implement the intended curriculum” (p. 134).  Viewed in this way the intended 
curriculum is more than a written curriculum or a set of standards, for it encompasses the 
expectations that guided the curriculum’s development.  

In this paper, we examine teachers’ use of three curricular forms: literal, enacted and 
intended. We use the term literal curriculum to refer to the instructional materials provided to 
teachers, i.e., textbooks, workbooks, implementation guides, software, etc. We view the enacted 
curriculum as comprised of the “opportunities to learn” mathematics that arise as teachers and 
students engage in lessons (Reys & Roseman, 2003). We take the distinction between Cuban’s 
and Reys and Roseman’s definitions one step farther and define the intended curriculum as the 
curriculum discerned from applying the stated philosophical approach to the mathematical 
content as articulated in the instructional materials. This applying, we posit, fosters an image of 
the potential opportunities to learn one can create by engaging in the curricular activities in 
specific ways. 

Research Questions and Data Collection 
The purpose of the Whole Number Study was three-fold. First, we hoped to gain a deeper 

understanding of how a Standards-based lesson strand is used in schools. Second, we wished to 
explore the relationship between implementation and students’ learning of a key content area. 
Third, we aimed to produce research-based recommendations that would inform revisions to the 
curriculum. To achieve these goals, we asked: Which components of the curriculum do teachers 
use, omit, modify, or supplement; which factors influence teachers’ use of whole number 
lessons; to what extent are students developing the whole number concepts and operations that 
are the foci of the whole number strand; and, how are whole number lessons implemented in 
classrooms? To address these questions, teachers completed level-of-use surveys, Lesson 
Reviews, and extensive interviews. Also, researchers interviewed 2-3 students and videotaped 2-
3 lessons per participating classroom. Data collection for grades K-2 primarily took place during 
the 2003-04 academic year with a total of 19 classrooms. Data collection for grades 3-5 primarily 
took place during the 2004-05 academic year with a total of 20 classrooms. We recruited 1-2 
classrooms per grade level per site. Due to space limitations, we restrict our discussion to the 
grade 1-2 classroom observation data. These classrooms were recruited from 9 schools with 
varying demographics (SES, size, and location) and differences in terms of length of use of the 
curriculum.  

Classroom Observation Analytic Approach 
Initial attempts to analyze the observation data employed the Horizon Research, Inc. Protocol 

(HRI, 2000) for evaluating reform classrooms and then the Reformed Teaching Observation 
Protocol (Pilburn, et al., 2000). However, we found that analyzing the implementation of whole 
number lessons required a more detailed protocol in terms of teachers’ use and enactment of 
whole number curricular materials. Thus, we developed a two-component protocol for analyzing 
classroom observations.  
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The first component of the protocol involves comparing the videotaped classroom 
observation to the literal lesson: the instructional materials provided to teachers for the lesson, in 
particular, the explicit written suggestions and recommendations. We created a description of the 
literal lesson by outlining the recommendations and suggestions in the instructional materials and 
then coded each recommendation and suggeston as either implemented, partially implemented, or 
not implemented. Having compared the observation to the literal lesson, we then produced a 
summary rating of the extent (high, moderate, low) to which the literal lesson was implemented 
in the classroom. This rating - the level of fidelity to the literal lesson - reflects the level of 
alignment between the literal lesson and the classroom observation. 

The second component of the protocol involves comparing the intended and enacted lesson. 
In order to identify the intended curriculum, we generated lists of the specific “opportunities to 
learn” described within the whole number strand instructional materials.3 The perspective taken 
when identifying opportunities to learn was that these are the opportunities teachers and students 
can create by engaging in the lessons in specific ways. The identified opportunities were then 
grouped into two categories: opportunities to reason and opportunities to communicate. 
Opportunities to reason included students’ opportunities to: (A1) reason to solve problems, 
reason about mathematical concepts; (A2) use or apply concepts, strategies or operations, or to 
refine strategies so that they become more efficient; (A3) select from multiple tools, 
representations or strategies; (A4) compare and make connections across tools, representations, 
or strategies; and (A5) validate strategies or solutions, reason from errors, or inquire into the 
reasonableness of a solution. Opportunities to communicate included students’ opportunities to: 
(B1) describe ways of reasoning about tools, representations, strategies, operations or 
communicate mathematical ideas; (B2) interpret another student’s ways of reasoning about tools, 
representations, strategies or operations; (B3) clarify or justify reasoning or explanations; and 
(B4) characterize mathematical operations. Within the two categories, we defined each code. 
Due to space limitations, however, we will only provide the definition for A3.  

 
A3: Select from multiple tools, representations, or strategies: Situations in 

which students may consider a variety of tools, representational approaches, or 
strategies in an effort to make appropriate choices based on the problem context. 
This code includes situations in which students may spontaneously select and 
include tools, representations, or strategies while problem solving. 

 
Following the classification of specific opportunities, we identified the intended and the 

enacted lesson for each observation. The intended lesson is defined as the potential 
“opportunities to learn” that are expected to occur when the stated philosophical approach is 
applied to the mathematical content as articulated in the lesson. The enacted lesson is defined as 
the opportunities to learn mathematics that occurred as students and teachers engaged in the 
lesson. To identify the enacted lesson we reviewed videotapes and transcripts of the classroom 
observations. The transcripts were coded in terms of the opportunities to learn that arose, arose in 
a limited manner or were missed and then listed in an enactment record. We then compared the 
intended lesson to the enactment record to determine the extent to which the intended lesson was 
implemented in the classroom. This rating - the level of fidelity to the intended lesson – reflects 
the level of alignment between the enacted lesson (the observed opportunities to learn) and the 
intended lesson (the potential opportunities to learn).  
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Results 
In this paper we focus on two findings that emerged from our investigation of teachers’ 

implementation of Standards-based whole number lessons. The first concerns variability among 
teachers within sites. The second concerns variability between the two levels of fidelity (LOF) – 
LOF to the intended lesson and LOF to the literal lesson. With respect to variability among 
teachers within sites, our data indicate that teachers may implement curricula with varying 
degrees of fidelity despite having similar classroom settings, professional development, and levels 
of experience teaching the curriculum. In regard to variability between the two levels of fidelity, 
we found that an observation’s level of fidelity to the literal lesson was not indicative of the level 
of fidelity to the intended lesson, and vice-versa. Below, we discuss and provide examples to 
illustrate our findings.  

Variability among teachers within sites, our first finding, was most evident among the new-
user cohort at School 7, an elementary school located in a mid-sized city. At the time of data 
collection, School 7 had a predominately-white, middle-class student population of over 500 
students. The cohort of grade 1-2 teachers from School 7 had jointly participated in professional 
develop during the summer prior to the year when data was collected and teachers began using the 
curriculum for the first time. Several teachers in this cohort reported in their exit interviews that 
teachers had been asked by the district to “follow the textbook” for a year before attempting to 
alter the curriculum. That the cohort of grade 1-2 teachers took this request seriously is evident 
from the LOF to the literal lesson ratings for their observations, with the grade 1-2 observations 
consistently indicating a high or moderate LOF to the literal lesson. Thus, the cohort consisted of 
teachers who had similar classroom settings, professional development, levels of experience 
teaching the curriculum and whose observations indicated a high or moderate LOF to the literal 
lesson. The enactment records for these observations, however, indicate that teachers at this site 
enacted the observed lessons with varying LOF to the intended lesson. Variability in the LOF to 
the intended lesson indicates variability in the degree to which opportunities to learn are created 
when the lesson is enacted in classrooms. 

Two grade 1 teachers at School 7, for example, showed markedly different enactments of the 
lesson Arrow Dynamics. Arrow Dynamics is one in a series of lessons in which students: (a) use 
the 100 Chart to identify numbers and explore relationships between numbers; and (b) write 
addition and subtraction number sentences in various contexts. A 100 Chart is a ten-by-ten grid 
with the numbers 1 to 100 sequentially listed (Figure 1).  

 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 

Figure 1. Three rows of a 100 Chart 

 
During the lesson, students play a game using a 100 Chart and a spinner (Figure 2) that can 
indicate one of four options: � (-10), � (+10), � (+1),  (-1). Students put their markers on the 
number 45 and then, in pairs, take turns spinning and then moving on the 100 Chart until one 
player reaches 100. After each student completes a turn, the student writes a number sentence to 
represent the move. 
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Figure 2. Arrow Dynamics Spinner 

Teacher 113’s enactment record for Arrow Dynamics indicates that the lesson was 
implemented with a low LOF to the intended lesson. A low LOF to the intended lesson indicates 
that opportunities to learn were consistently missed or limited during the lesson.  For example, 
opportunities to reason to solve problems (A1) were either missed or arose in a limited manner in 
all but one instance during the observation. Analysis of the rationale for the A1 codes indicates 
that when interacting with students the teacher repeatedly directed students on where to place 
their markers and stated the appropriate number sentence. Below, we provide an excerpt of a 
typical interaction between the teacher and a student during the lesson.4 This way of interacting 
with students, depending on the context, resulted in a series of either missed or limited 
opportunities for students to reason about the appropriate placement of their marker for the given 
spin and the numbers and operations to include when representing their move with a number 
sentence.  

 

Teacher: Okay. This should say sixty-three. Erase fifty-five. Right here. [Jeff erases error and 
fixes it as teacher helps.] Now put in sixty-three. Now was it a plus ten? Alright. So you’re at 
sixty-three, move it down ten more. Right here. What would it be? 

Jeff: Seventy-three 

Teacher: Seventy-three. So sixty-three plus ten makes seventy-three. [Jeff writes on record 
sheet.] So you need to write seventy-three here. Erase… no, no no. Right here. Right here. The 
sixty-three plus ten is seventy-three right? Seventy-three. Good. [Jeff nods.] Now, you take that 
big number, and you put it here. Let’s just erase all this, ‘cause this is all wrong. [Teacher erases 
Jeff’s page.] Okay. Now, let’s spin it. Alright, let’s spin it. See what you get. [Teacher puts the 
spinner back on the page.] Let’s go back and see if your… [Jeff spins spinner.] What do you 
have to do? [Student moves his marker.] 

Jeff: Minus ten. 

Teacher: Minus ten, so write that down. Take ten away from seventy-three.  

We also observed trends in the opportunity to communicate code rationale, which indicate a 
general scarcity of opportunities for students to express their interpretations of moves and 
operations indicated on the spinner or their understandings of a spin in terms of actions on the 100 
Chart. Thus, the low LOF to the intended lesson rating was the result of a series of auxiliary 
instructions and specific classroom ways of acting that limited or removed students’ opportunities 
to engage in the mathematics the lesson was intended to address. 

Teacher 112’s enactment record for Arrow Dynamics indicates that the lesson was 
implemented with a high LOF to the intended lesson. A high LOF to the intended lesson generally 
indicates that appropriate opportunities to learn consistently arose during the lesson. We say 
“appropriate” because, for example, one would not expect to observe opportunities to select 
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representations, tools, or strategies (A3) in a lesson that calls for specific representations, tools, or 
strategies. Analysis of the rationale for the A1 codes indicates that opportunities to reason to solve 
problems consistently arose in Teacher 112’s classroom.  
 

Allen: [Spins the spinner] Oh, minus ten. [He begins to move the green counter.] 
Teacher: Okay. Which one are you? 
Sophia: Forty-five 
Allen: [He moves to forty-five.] Oh, darn it. That was where we started. 
Teacher: So what are you going to write? Allen, let me hear you thinking.  
Allen, let me hear your thinking. Would you talk out loud so I can hear you? What do 

you have? 
Allen: Fifty-five 
Sophia: Minus ten 
Teacher: No, that’s your thinking Sophia. I want to hear Allen. 
Allen: Minus ten… equals… forty-five. [Allen records number sentence as he talks.]  

 
Students in Teacher 112’s classroom also had several opportunities to interpret another 

students’ ways of reasoning (B2), whereas not one instance of a B2 code was identified in 
Teacher 113’s implementation. Thus, interactions among Teacher 112’s students and between the 
teacher and students provided opportunities for students to reason through open-ended questions 
and mathematical operations, to generate number sentences that represent moves on the 100 
Chart, and to communicate their thinking, i.e., students had multiple opportunities to engage in 
the mathematics the lesson was intended to address. As these examples demonstrate, Teacher 
112’s enactment of the lesson Arrow Dynamics was markedly different from Teacher 113’s 
enactment. 

School 7 was one of several sites for which similarities across factors, such as classroom 
setting, professional development, and level of experience teaching with the curriculum, were not 
indicative of similarities in the LOF of the intended curriculum. Thus, the classroom observation 
data supports the claim that variation in the LOF to the intended curriculum will occur at a 
classroom level despite similarities across factors, such as those listed above. 

Variability between the two identified levels of fidelity for an observation, our second 
finding, refers to general trends in the fidelity ratings. These trends indicate that LOF to the 
literal curriculum is not indicative of LOF to the intended curriculum, and vice versa. This 
finding is demonstrated below with the Fidelity Table for grade 1 (Figure 2).5  
 

 
 

LOF Low Moderate High 
Low  118 113 113 
Moderate  117 112, 118, 117 
High  100 112, 112, 114,114 

Figure 2. Grade 1 Fidelity Table 

 
Consider, for example, the lessons with a high LOF to the literal lesson. In this set, high LOF 

to the literal lesson was not indicative of a high LOF to the intended lesson, for observations 

Literal Lesson Rating 

Intended 
Lesson 
Rating 
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were rated as having high, moderate and low LOF to the intended lesson. Recall, the LOF to the 
literal lesson indicates the level of alignment between the classroom observation and the literal 
lesson: the instructional materials provided to teachers for the lesson, in particular, the explicit 
written suggestions and recommendations. Thus, a high LOF to the literal lesson indicates that 
the lesson guide recommendations and suggestions were followed. Variation in the LOF to the 
intended lesson, however, suggests that even when the recommendation and suggestions are 
followed, teachers may struggle to foster the intended opportunities to learn.  

Thought of from a different perspective, a low LOF to the intended lesson is not indicative of 
a low LOF to the literal lesson, for observations with a low LOF to the intended lesson were 
rated as having high, moderate and low LOF to the literal lesson. Recall that the LOF to the 
intended lesson indicates the level of alignment between the intended lesson (the potential 
opportunities to learn) and the enacted lesson (the observed opportunities to learn). A lesson with 
a low LOF to the intended lesson is a lesson where the enactment record indicated that 
opportunities to learn arose in a limited way or failed to arise throughout much of the lesson. 
Thus, the observations with a low LOF to the intended lesson demonstrate, in another way, that 
the degree to which the intentions of the curriculum are realized may not be indicative of the 
degree to which the teacher implemented the various recommendations and suggestions in the 
lesson. 

Concluding Remarks 
Our findings support Schoenfeld’s claim that “ … data gathering, coding, and analysis must 

try to indicate the character of the implementation and its fidelity to intended practice” 
(Schoendfeld, 2006, p. 17). Had our analysis of teachers’ implementation of whole number 
lessons been limited to teachers’ implementation of the literal curriculum, we would have lost 
critical information regarding how an implementation may shift, add to or limit the intended 
curriculum. As researchers examine and evaluate Standards-based curricula the limitations of 
simple measures of curriculum implementation must be taken into consideration.  

Endnotes 
1. This material is based upon work supported by the National Science Foundation under 

Grant No. 0242704. 
2. “Standards-based” refers to “curriculum materials developed in response to the NCTM’s 

Standards documents (e.g., NCTM 1989)” (Remillard & Bryans, 2004). 
3. In this paper, the phrase “opportunities to learn” refers specifically to opportunities for 

students to learn as opposed to opportunities for teachers to learn. 
4. All names are pseudonyms. 
5. Multiple listings of a teacher’s numeric code indicate multiple classroom observations. 
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SIXTH GRADERS’ CONSTRUCTION OF QUANTITATIVE REASONI NG  
AS A FOUNDATION FOR ALGEBRAIC REASONING 
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In a year-long constructivist teaching experiment with four 6th grade students, their quantitative 
reasoning with fractions was found to form an important basis for their construction of algebraic 
reasoning. Two of the four students constructed anticipatory schemes for solving problems that 
could be solved by an equation such as ax = b. In doing so, these students operated on the 
structure of their schemes. In solving similar problems, the other two students could not foresee 
the results of their schemes in thought—they had to carry out activity and then check afterwards 
to determine whether their activity had solved the problems. Operating on the structure of one’s 
schemes is argued to be fundamentally algebraic, and a hypothesis is proposed that algebraic 
reasoning can be constructed as a reorganization of quantitative operations students use to 
construct fractional schemes. 

In this paper, I demonstrate how 6th grade students’ quantitative reasoning with fractions can 
form an important basis for their construction of multiplicative algebraic reasoning. In particular, 
during a year-long constructivist teaching experiment with four 6th grade students, the 
coordination of fractional schemes and whole-number multiplying schemes was seen as pivotal 
in the students’ work toward solving basic linear equations of the form ax = b.  

Since ax = b is essentially a statement of division, considering its construction and solution 
requires understanding how students produce division, which entails understanding students’ 
multiplying schemes and multiplicative reasoning. Furthermore, any statement of division 
inherently involves reasoning with fractions: While fractions may be implicit or disguised in 
solving equations like 4x = 28, they soon become explicit in solving equations like 3x = 7. So in 
contrast to recent studies on elementary school students’ early algebraic reasoning that are 
largely additive in nature (e.g., Blanton & Kaput, 2005; Carpenter, Franke, & Levi, 2003; 
Carraher, Schliemann, Brizuela, & Earnest, 2006), I was specifically interested in investigating 
students’ construction of multiplicative algebraic reasoning. 

Two of the four students in the teaching experiment constructed anticipatory schemes for 
solving problems that could be solved by an equation such as ax = b. The anticipatory nature of 
these schemes meant that the students did not have to carry out activity in a computer 
microworld and then check afterwards to determine whether their activity had solved the 
problem. Instead, these two students could foresee, in thought, aspects of the results of 
implementing their schemes (1). In doing so, these two students operated on the structure of their 
schemes. The larger purposes of this paper are (1) to argue that operating on the structure of 
one’s schemes is fundamentally algebraic and (2) to propose a hypothesis that algebraic 
reasoning can be constructed as a reorganization of quantitative operations students use to 
construct fractional schemes. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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Quantitative and Algebraic Reasoning 

Fractions as Quantities 
I use the phrase quantitative reasoning with fractions to refer to the purposeful functioning of 

a person’s fractional schemes and operations in the context of quantities and quantitative 
relationships. In my study, this approach to fractions meant that problem situations often 
involved quantities whose values were fractional amounts identified with standard units of 
measurement, such as 3/4 of a yard of ribbon. More generally, fractions were measures of 
quantities (often lengths) made in relation to an identified (but non-standard) unit quantity. So, 
conceiving of 4/5, for example, meant being able to draw 4/5 of a previously identified unit 
length. Taking 1/3 of 4/5 of a unit length invariably meant being able to draw this amount and 
determine the resulting length in relation to the unit length. This approach to fractions was 
facilitated by the use of JavaBars (Biddlecomb & Olive, 2000), a computer program in which 
students can draw rectangles (bars) of various dimensions and operate on those bars by 
partitioning them into parts, further partitioning parts, disembedding parts, iterating parts, etc. 

Early Multiplicative Algebraic Reasoning 
In my study, I did not want to take the equation ax = b as a given. Instead, I wanted to 

understand more about what was required for students to generate that equation out of their 
reasoning and what schemes students might construct to solve it, even in the case where a and b 
are fractions. This focus meant that I was interested in how students operated on both known and 
unknown quantities that stand in multiplicative relationship to each other: For example, if 3/5 of 
a length is 7 inches, how do students come to know that 3/5 multiplied by the unknown length is 
a length exactly 7 inches long? How do they come to know that 5/3 of the 7 inches produces the 
unknown length? From this point of view, in generating the equation ax = b, operating on both 
knowns and unknowns is involved. At the very least, conceiving of (3/5)x requires conceiving of 
3/5 operating multiplicatively on an unknown quantity represented by x. 

Some researchers have proposed explanations for students’ difficulties in operating on 
unknowns when solving linear equations (e.g., Filloy & Rojano, 1989; Herscovics & Linchevski, 
1994), while others have contested such difficulties (e.g., Brizuela & Schliemann, 2004). Often 
researchers have not considered a operating multiplicatively on x as “operating on the unknown,” 
opting instead to examine students’ solutions of more complex equations with “unknowns on 
both sides,” such as ax + b = cx + d. The reasons for exploring such equations have varied but 
sometimes have resulted in students’ solutions of ax = b being dismissed as not yet algebraic—as 
merely involving the reversal of arithmetic operations in order to be solved. Yet students in 
Filloy and Rojano’s study did not correctly solve equations of the form ax = b in the case of 102x 
= 51, which indicates that reversing one’s thinking to solve ax = b is not trivial and can be 
considered a component of early algebraic reasoning (cf. Sfard and Linchevski, 1994). 

Abstracting Conceptual Structures 
More broadly, many researchers characterize algebraic reasoning as generalizing 

mathematical activity into structural ways of thinking (e.g., Carpenter, et al., 2003; Sfard & 
Linchevski, 1994). Consistent with this view, in my study a central distinction between students’ 
quantitative and algebraic reasoning was the extent to which students had abstracted a conceptual 
structure. A concept, according to von Glasersfeld, is “a kind of place-holder or variable for 
some of the properties in the sensory complex we have abstracted from our experiences of 
particular things” (1991, p. 49), where the place-holder is often linguistic.  
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By abstracting a mathematical conceptual structure, I mean abstracting a “program of 
operations” from the experiences of using particular schemes that includes an awareness of how 
the schemes are composed (their structure) and an ability to operate with this awareness. So 
attributing a conceptual structure to a student means inferring the student is operating on or with 
the structure of his schemes. I use this notion of abstracting conceptual structures to account for 
differences in the schemes constructed by the four students in the study. In particular, students’ 
multiplicative structures were central explanatory constructs. I conceive of students’ 
multiplicative structure as the units coordinations that they have abstracted from the activity and 
results of their multiplying schemes and can take as given. Taking a units coordination as given 
means a student can project the coordination into a situation and operate further with it. Such 
units coordinations are said to be interiorized. 

Methods of Inquiry 
To investigate the purposes I have described, I conducted a year-long constructivist teaching 

experiment (Steffe & Thompson, 2000) in which I taught two pairs of sixth-grade students at a 
rural middle school in north Georgia from October 30, 2003 to May 12, 2004. The four students 
were invited to participate after individual selection interviews conducted during September and 
October of 2003. In the interviews I used fraction tasks to select students who were reasoning 
multiplicatively (see Hackenberg, 2005, for full details). 

The pairs and I met twice weekly in 30-minute episodes for two to three weeks, followed by 
a week off. Most sessions included the use of JavaBars, and all sessions were videotaped with 
two cameras for on-going and retrospective analysis. One camera captured the interaction 
between the pair of students and myself, and the other camera recorded the students’ written or 
computer work. Two witness-researchers were present at all sessions to assist in videotaping and 
to provide other perspectives during all three phases of the experiment: the actual teaching 
episodes, the on-going analysis between episodes during the experiment, and retrospective 
analysis of the videotapes. 

In retrospective analysis, I aimed to construct second-order models (Steffe & Thompson, 
2000) of the students’ ways and means of operating and changes in those ways of operating. A 
second-order model is a researcher’s constellation of constructs formulated to describe and 
account for another person’s activity. In my study, I used scheme theory (Piaget, 1968; von 
Glasersfeld, 1995) as a central tool toward this end, and thus I viewed mathematical learning as a 
process in which a person makes accommodations in her schemes and operations in response to 
perturbations (disturbances) brought about by her current schemes and operations in on-going 
interaction within her experiential reality. 

Data Excerpts 
All four students coordinated their fractional schemes with their whole-number multiplying 

schemes, at least to some extent. However, only two of the four students, Michael and Deborah, 
embedded their whole number multiplying schemes into their fractional schemes to construct 
powerful anticipatory schemes for solving problems that can be solved by basic linear equations 
of the form ax = b. I call such problems reversible multiplicative reasoning (RMR) problems. 

For example, on February 18 Michael solved the following RMR problem by using his whole 
number multiplying scheme in service of his reversible fractional scheme: 

The Candy Bar Problem. This collection of 7 inch-long candy bars is 3/5 of another 
collection. Could you make the other collection of bars and find its total length?(2) 
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Michael quickly formed a goal to divide 7 inches into three equal parts. However, he had no 
immediate way of operating to achieve that goal—seven seemed to be a perturbing element. His 
activity in some previous episodes in January, in which he solved problems such as making a 
2/2-bar into a 3/3-bar without erasing the half mark,(3) was an important basis for his elimination 
of this perturbation. That is, Michael partitioned each of the 1-inch bars into three equal parts and 
determined he had 21 parts, which he knew could be divided by 3. He then announced, prior to 
carrying out further activity, “I know how many there are now.” He made the new collection by 
making five of the three equal parts of the 7 inches. 

In this solution, Michael used the activity of his multiplying scheme to convert the composite 
unit of 7 inches into a composite unit consisting of number of parts (21) that he could split into 
three equal parts. I infer that he could operate in this way because he could view the 7 inches as a 
unit of seven units, into each of which he could insert more units (three units) to produce a 
number of units (21) that he could reorganize, in thought, as a unit of three units each containing 
seven units. So Michael inserted the coordination of units (the activity of his multiplying 
scheme) into the activity of his reversible fractional scheme—thereby operating with the 
structure of his multiplying scheme on the structure of this other scheme. This way of operating 
was novel for Michael, and during the rest of the study he used this new scheme, a reversible 
multiplying scheme with fractions, to solve other RMR problems like the Candy Bar Problem. 

Problems like the Candy Bar Problem proved to be quite a challenge for Michael’s partner 
Carlos. As a result, by mid-March I began to pose “basic” RMR problems where both the known 
quantity and the quantitative relationship were whole numbers: 

Basic RMR Problem. That 2-foot candy bar is three times longer than your candy bar. Make 
your candy bar and tell how long it is. (No erasing the foot-mark on the bar.) 

Carlos struggled to solve this problem over two teaching episodes, and even after several 
tries  he wanted to erase the foot-mark and then split the unmarked bar into three equal parts. 
However, on his third try on March 29, he partitioned each of the two feet into three equal parts 
for a total of six parts, and pulled away two of the six pieces, explaining “I multiplied two by 
three and got six.” So like Michael, Carlos used the activity of his multiplying scheme to convert 
a composite unit he could not split into three parts (the 2-unit bar) into a composite unit that he 
could split (the 6-unit bar). Yet because he had seen his partner operate in similar ways many 
times before, and because he may have been aiming for a particular visual image (he had created 
a bar that was 1/3 of 2 feet prior to this last solution), it is difficult to judge to what extent this 
was a significant or permanent modification for him. 

Carlos did use this way of operating in subsequent episodes, at least when the goal was to 
make a 2-part bar into three equal parts. However, when working with bigger numbers, such as 
making a 5-part bar into four equal parts, his tendency was to partition each part of the 5-part bar 
into some number of small parts, select a number of those small parts that he estimated would 
constitute 1/4 of the whole bar, and iterate that selection four times to check. If he was not 
successful, he would adjust his estimate and try again. So he did not appear to make a 
modification in his activity at the same level of generality as his partner’s modification. My main 
explanation for this difference between the boys was that Carlos had not yet interiorized the 
coordination of three levels of units (Hackenberg, 2005). That is, Carlos could use his 
multiplying scheme to determine that a 5-part bar with each part partitioned into 4 equal parts 
would produce a 20-part bar. But he could not take that structure as a given while mentally 
reorganizing the 20-part bar into a different number of units of units—i.e., as a unit of four units 
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each containing five. I call his scheme for solving basic RMR problems an enactive reversible 
multiplying scheme (without fractions). 

On March 29, Bridget also demonstrated that she could solve basic RMR problems by 
solving this problem: 

Chocolate Bar Problem. Four yards of chocolate is three times what Phillip has. Can you 
make Phillip’s chocolate bar? How long is his bar? 

Bridget partitioned each of the four yards into three equal parts, disembedded one of those 
parts, and iterated it to produce a 4-part bar. In explanation she said, “you can’t divide three into 
four, so you go, three times four is twelve. And twelve divided by three is four. You have to 
divide it by three because you said three times.” 

To test out the nature of Bridget’s scheme for solving basic RMR problems, I posed a series 
of them in the next teaching episode on March 31. Bridget began to solve them by partitioning 
each unit of the known quantity into the number of parts given in the relationship between 
known and unknown. However, then she said things like “Hmm. I don’t know what else to do,” 
and “Why am I doing that?” Although she generally completed solutions of the problems, she 
did not appear to be certain about her activity unless it was confirmed in some way by me or by 
her partner Deborah (who seemed certain). During the episode I challenged Deborah to solve a 
basic RMR problem without enacting the physical coordinations in the microworld, and she did. 
When I then posed another such problem to Bridget, she exclaimed “I can’t do that in my head!” 
Thus I can conclude that like Carlos, Bridget had constructed an enactive reversible multiplying 
scheme to solve basic RMR problems. She needed to carry out the activity of the scheme in the 
microworld in order to solve these problems, and thus a three-levels-of-units structure was 
something she could make in activity. Like Carlos, she did not seem to be able to take such a 
structure as given so as to reorganize the known quantity into a different units-of-units structure, 
in order to anticipate the result of the scheme. 

Meanwhile, Deborah began to construct an anticipatory scheme for solving the most complex 
type of RMR problem she encountered. On May 12, using the context of a homemade racecar 
contest between two teams, I posed this problem to Deborah: 

Race Car Problem. The Lizards’ car goes 1/2 of a meter. That’s 3/4 of how far the Cobras’ 
car went. Can you make how far the Cobras’ car went and tell how far it went? 

Deborah partitioned her 1/2-meter bar into three equal parts, disembedded one of the parts, 
and iterated it to produce a 4-part bar which she called 4/6 of a meter. When I asked her what she 
had to take times the Lizards’ distance to make the Cobras’ distance, she promptly said, “three-
fourths—I mean four-thirds.” In explanation, she pointed to the Lizards’ distance and stated that 
it was 3/4 of the Cobras’ distance. 

I then posed the same problem except the Lizards’ car went 2/3 of a meter. Deborah 
partitioned each third of her 2/3-meter bar into six equal parts, disembedded one of the parts, and 
iterated it to produce a 16-part bar. In explanation, she said, “I knew each third is four pieces. So 
four times four, because you need four thirds for this one,” pointing to the Cobras’ car’s distance. 
A short time later, she also referred to the 16-part bar as “four-fourths.” 

At this point in the teaching experiment, Deborah had constructed a reversible multiplying 
scheme with fractions similar to Michael’s. However, as shown here, a characteristic of her 
solutions was her use of reciprocal relationships between the two quantities. In fact, she was the 
only student of the four to state these relationships swiftly and to use them in operating. Her 
initial justification for knowing that the Cobras’ distance was 4/3 of the Lizard’s distance 
indicates that she had constructed a multiplicative relationship that did not rely on reference to 
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material parts. In other words, she did not explain that the Cobras’ distance was 4/3 of the 
Lizards’ distance because the Cobras’ distance was four equal parts and the Lizard’s three. 
Instead, she relied on the given multiplicative relationship, that the Lizards’ distance was 3/4 of 
the Cobras’ distance. Her explanation leads me to infer that she knew the following: If Bar A 
was 3/4 of Bar B, then Bar B was 4/3 of Bar A. When solving the second Race Car Problem and 
other variations, she used this kind of reasoning. Yet she did not compress her reasoning so much 
as to, for example, take 4/3 times the known distance to solve the Race Car Problems—i.e., she 
did not appear to view these problems as problems that could be solved by fraction 
multiplication. 

Discussion 
So, what was algebraic about Michael’s and Deborah’s ways of operating in contrast with 

their partners? Both Michael and Deborah operated on the structure of their reversible fractional 
schemes with the structure of their multiplying schemes. That is, they both seemed to view the 
known quantity as a unit of so many units where the goal was to divide it into some number of 
parts—the number being determined, in the case of a fractional relationship, by the number of 
units of fractional size that the known quantity was of the unknown quantity. Once they used the 
activity of their multiplying schemes to accomplish this goal, each part they had created was a 
unit fractional part of the unknown and could be used in iteration to make the unknown. This 
aspect of their scheme was one that they could foresee and one reason for calling their schemes 
anticipatory. In contrast, Carlos and Bridget needed to carry out activity materially and check the 
result in retrospect—the results were not “contained” in the implementation. 

Thus anticipatory schemes have a general, structural quality to them. They seem general in 
the sense that they apply to a wide range of situations, and this generality is related to their 
structural nature. For example, to both Michael and Deborah I can attribute a conceptual 
structure for splitting any known whole-number quantity into any number of parts required to 
solve a particular RMR problem. In contrast, I cannot be sure how general Carlos’s or Bridget’s 
reversible multiplying schemes were, nor can I claim they were operating with an awareness of 
the structure of their schemes. 

My main explanation for the difference between the constructions of anticipatory versus 
enactive schemes involves the students’ multiplicative structures. Being able to take the 
coordination of three levels of units as given prior to activity meant that both Michael and 
Deborah could project two different units of units structures into the known quantity, and 
flexibly switch between them, while also keeping track of the “larger” unit structure between 
known and unknown. Not having interiorized three levels of units was a significant constraint in 
Carlos’s and Bridget’s activity. However, being able to coordinate three levels of units in activity 
seemed to facilitate their construction of enactive schemes.  

Although powerful, this explanation does not account for the main difference between 
Michael and Deborah: the use of reciprocal relationships in solving RMR problems. My current 
explanation is that Deborah had abstracted fractions as programs of operations that included all 
the ways to make as well as “unmake” the fractions. So, for example, 1/4 meant not only to 
disembed one part from a bar partitioned into 4 parts; it also meant that 1/4 taken four times, or 
4*1/4, would yield the original bar. Thus if one bar was 3/4 of another bar, it was 3 times 1/4 of 
the other bar, and the other bar was 4 times 1/4 of itself, which was 4 times 1/3 of the original 
bar. Abstracting fractional concepts seemed to allow her to flexibly switch between viewing 
either quantity as the unit to which the other quantity could be compared. The reason Deborah 
made this abstraction while Michael did not is not yet clear. 
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Of course, in one sense the students’ activity was clearly not algebraic: No students operated 
on standard algebraic notation in lieu of carrying out their own mental operations. In addition, 
with the exception of Deborah’s use of reciprocal relationships, the students did not explicitly 
operate on unknowns (or knowns) multiplicatively with fractions (they did do so with whole 
numbers). However, this research supports and extends the notion put forth by early algebra 
researchers that arithmetic (including “arithmetic” with fractions) has an algebraic character 
(Blanton & Kaput, 2005; Carpenter, et al., 2003; Carraher, et al., 2006). 

In fact, although early algebra researchers have indicated that reconceiving of arithmetic can 
bring out its algebraic qualities, they have not yet proposed a reorganization hypothesis for 
algebraic reasoning similar to the hypothesis proposed by Steffe (2002) for students’ 
construction of fractions. Steffe’s hypothesis is that students’ operations on discrete quantities 
are reorganized to produce operations on continuous quantities—that students use the operations 
they have used to construct whole numbers in the construction of fractions.  

I propose that such a hypothesis might be fruitful for understanding how students can 
construct multiplicative algebraic reasoning out of their previous quantitative reasoning with 
fractions. The main question in proposing such a hypothesis is: What quantitative operations are 
reorganized? One possible response has its origins in the research presented here: If students use 
their interiorized coordinations of three levels of units to operate with multiple units structures at 
once, it could be that students further abstract these interiorized units coordinations so that they 
can “apply” not just to numerical units but to schemes themselves. That is, algebraic reasoning 
may involve taking schemes as units that can be inserted into other schemes in at least 2-level 
and perhaps 3-level structures. In turn, this units-coordinating activity likely requires abstracting 
this “mega-structure” of embedded schemes as a program of operations. 

Conclusion 
The usefulness of this research, and of the proposed reorganization hypothesis for algebraic 

reasoning, will be measured by the degree to which it helps researchers understand more about 
the nature and value of early algebraic activity for elementary and middle school students. 
Ultimately, research that investigates and refines this reorganization hypothesis will contribute to 
testing Kaput’s (1998) proposal that algebraic activity integrated across K-12 schooling will lend 
coherence, depth, and power to K-12 students’ mathematical educations. 

Endnotes 
1. Still, activity in a computer microworld often accompanied the implementation of their 

schemes. 
2. In solving RMR problems, the students usually determined the length of the unknown. 

Due to space limitations in this paper, I will restrict myself to discussing only how they made the 
unknown quantity. 

3. To solve this problem, Michael partitioned each of the halves into six equal parts 
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I report on mathematical knowledge that two U.S. 6th-grade teachers used while teaching 
fraction multiplication for the first time with lengths and rectangular areas. Both teachers were 
using versions of the Bits and Pieces II unit from Connected Mathematics. Data came from 
videotaped lessons, teacher interviews, and student interviews. To explain where each teacher 
did, and did not, adapt to her students’ explanations and drawn representations, I examined the 
unit structures that each teacher evidenced and the purposes for which they used drawn 
representations. The results highlight the importance for teachers of reasoning flexibly with 
three levels of units when responding to students’ representations of fractional quantities. 

Context and Objectives 
Research on teachers’ knowledge has expanded from studies of subject matter knowledge of 

various content areas to the organization of knowledge for teaching particular topics (e.g., Ball, 
1991; Ball, Lubienski, & Mewborn, 2001; Borko & Putnam, 1996; Ma, 1999; Shulman, 1986). 
As part of this development, current discussions of teacher knowledge are often framed in terms 
of subject matter, pedagogical, and pedagogical content knowledge (e.g., Borko & Putnam, 
1996). When introducing the notion of pedagogical content knowledge, Shulman (1986) 
emphasized knowledge of students’ thinking about particular topics, typical difficulties that 
students have, and representations that make mathematical ideas accessible to students. Building 
on the notion of pedagogical content knowledge, Ball et al. (2001) emphasized the importance of 
examining how teachers use mathematical knowledge in the course of their work and argued 
that, with respect to research methods, this implies working backwards from practice to infer 
mathematical knowledge that supports both routine and non-routine aspects of practice. 
Describing the mathematical knowledge that teachers need to teach particular topics remains a 
central challenge for the field.  

The present study examines instruction in two U.S. sixth-grade classrooms to uncover 
aspects of mathematical knowledge for teaching fraction multiplication with drawn 
representations. Both teachers were teaching fraction arithmetic with reform-oriented materials 
for the first time and were using drafts of the revised Bits and Pieces II unit that has since been 
published as part of Connected Mathematics 2 (CMP; Lappan, Fey, Fitzgerald, Friel, & Phillips, 
2006). The CMP materials use lengths and rectangular areas as representations of fractional 
quantities and ask students to solve problems about situations in which fractions are embedded. I 
focus on the use of drawn representations in teaching not only because discussions of 
pedagogical content knowledge and mathematical knowledge for teaching refer to 
representations, but also because reform-oriented curricula in the United States often place new 
demands on teachers and students to interpret and reason with a variety of representations.  

Background and Theoretical Framework 
Research on teachers’ knowledge has examined fraction division and decimal multiplication 
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more closely than fraction multiplication. Research on fraction division has reported that 
teachers can confuse situations that call for dividing by a fraction with ones that call for dividing 
by a whole number or multiplying by a fraction (Ball, 1990; Borko, Eisenhart, Brown, Underhill, 
Jones, & Agard, 1992; Ma, 1999). Research on decimal multiplication has built upon the notion 
that people have intuitive models for arithmetic operations (Fischbein, Deri, Nello, & Marino, 
1985) and that the model for multiplication is repeated addition. For instance, Graeber and 
colleagues (Graeber & Tirosh, 1988; Graeber, Tirosh, & Glover, 1989) administered to 129 
preservice elementary teachers a written test consisting of word problems adapted from those 
used by Fischbein et al. They report that a higher percentage of the teachers solved multiplication 
word problems correctly when the multiplier was a whole number but often used division in 
problems that should have used a decimal less than one as the multiplier. 

Conceptual units of various types have played a central role in research on children’s 
understandings of rational numbers (Behr, Harel, Post, & Lesh, 1992; Olive & Steffe, 2001; 
Steffe 2001, 2003, 2004). The present study builds most directly on the research of Steffe and 
Olive, who have examined how elementary students solved tasks involving lengths and areas by 
coordinating two and three levels of units and by using disembedding, iterating, and partitioning 
operations. The most successful students constructed operations based on three levels of units. 
Steffe (2003, 2004) defined one such operation, recursive partitioning, to be taking a partition of 
a partition in the service of a non-partitioning goal. To illustrate, students might begin taking 1/3 
of 1/4 by partitioning a unit into four pieces and then partitioning the first of those pieces into 
three further pieces. Determining the size of the resulting piece is a non-partitioning goal, and 
students could accomplish this in more than one way. Students might iterate the resulting piece 
and count to see that 12 copies fit in the original unit. This solution requires decomposing an 
initial unit into a unit of units (one unit containing 12 twelfths). Alternatively, students might 
recursively partition by subdividing each of the remaining fourths into three pieces. This solution 
involves decomposing an initial unit into a unit of units of units structure (one unit containing 4 
fourths, each of which contains 3 twelfths). The first solution is based on 2 levels of units and the 
second on 3 levels of units.  

The theoretical frame for the present study emerged from analyses of two teachers and builds 
on past research about conceptual units. The common parts-of-a-whole entry point into fractions 
emphasizes two levels of units. The extension of fractions from parts of wholes to parts of parts 
creates opportunities to establish three-level unit structures when relating parts of parts back to 
the original whole. Because the first solution to 1/3 of 1/4 discussed above illustrates that 
reasoning about parts of parts is not necessarily the same as reasoning with three levels of units, I 
will distinguish between the two throughout. To reason with three levels of units one must relate 
all three levels at once, not just two of the three levels at a time. The analyses below will 
demonstrate that flexible three-level structures are necessary for teachers if they are to adapt in 
response to the range of ways that students might assemble such structures.  

In addition to levels of units, I also consider purposes for which teachers use drawn 
representations. One use is simply to illustrate solutions also arrived at using an alternate 
method, such as a numeric computation. A second use is to infer a computation method by 
determining solutions for various problems using drawn representations and then looking for 
numerical patterns (for fraction multiplication the pattern might be products of numerators are 
numerators of products and products of denominators are denominators of products). Each 
teacher emphasized one of these two purposes. A third use is to adapt how one represents 
structures of quantities in response to students’ thinking by attending to the variety of ways that 
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students might begin to assemble three-level unit structures as evidenced by their explanations 
and drawings. This would require, in turn, the ability to perceive and produce three-level unit 
structures in a variety of ways and to understand opportunities for determining general numeric 
methods afforded by different approaches. Neither teacher used drawn representations to adapt.  

Methods and Data 
Data for the present report come from a larger study of teaching and learning mathematics 

conducted by a team of researchers in a rural middle school in the Southeastern United States. 
The school adopted the CMP materials in the 2001-2002 school year and has a racially and 
economically diverse student body. Data for one teacher were collected in Spring 2003, and for a 
second teacher in Spring 2004. Both teachers began the transition to reform-oriented materials 
with limited professional support. The district hired a consultant to help teachers select units for 
the first year, and the research project provided further support starting in Spring 2003.  
Members of the research team videotaped each teacher’s lessons during the same class period 
every day for 4 to 5 weeks. Each afternoon we analyzed that morning’s lesson for mathematical 
ideas, problem-solving strategies, and representations that, from our perspective, seemed central. 
We identified excerpts during which the teacher and students apparently had difficulty 
understanding one another and replayed such excerpts during student and teacher interviews.  
I conducted weekly, semistructured interviews with pairs of students selected from the same 
classrooms to represent a cross-section of achievement (3 pairs in 2003 and 4 pairs in 2004). 
During the interviews, I had the students work on tasks similar to those in the lesson excerpts and 
asked questions to gain access to mathematical understandings that they used. Then, I had the 
students watch the lesson excerpts and asked them to comment on what they thought their 
teacher wanted them to learn. As the interviews progressed, I moved back and forth between 
tasks and excerpts to access ways that students used their understandings of the content to make 
sense of the lessons. Although central to the research design for the larger project, these 
interviews will not be in evidence during the analyses below.  

I then planned with other members of the research team weekly teacher interviews that used 
the same lesson excerpts and related student interview excerpts as prompts. These researchers 
asked the teachers to summarize their preparation and enactment of the lessons, examine student 
work from the lessons and interviews, comment on what students understood and where they 
struggled, and discuss how they might address students’ observed difficulties in future 
instruction. These interviews provided further access to understandings of the mathematics 
(including drawn representations) and of students that teachers used during the observed lessons.  

Once the data were collected, I conducted further, more detailed analyses using a version of 
the constant comparative method described by Cobb and Whitenack (1996) for conducting 
longitudinal analyses of classroom videorecordings. These analyses used talk, gestures, and 
inscriptions as evidence for teachers’ and students’ understandings of the content and the lessons. 
I treated knowledge teachers evidenced in interviews as confirming evidence in cases where it 
appeared consistent with knowledge teachers evidenced in lessons. In cases where knowledge 
evidenced in interviews appeared inconsistent with knowledge evidenced in lessons, I 
reexamined both sets of data and tried to refine my interpretations to achieve a consistent 
account of what teachers said and did in both contexts. Finally, I examined the teacher’s edition 
of the Bits and Pieces II unit to determine which mathematical ideas the materials emphasized 
and how they presented the role of drawn representations in the activities.  



Rational and Whole Numbers  Vol.2-367 

 

Results and Conclusions 
Bits and Pieces II develops fraction arithmetic through problems about situations in which 

fractions are embedded. Many of the problem situations can be modeled using lengths or 
rectangular areas as representations of fractional quantities. The introduction to the teacher’s 
edition states that Bits and Pieces II does not teach a preferred algorithm. Rather, the stated goals 
include developing ways to model sums, differences, products, and quotients using lengths and 
rectangular areas; looking for and generalizing patterns in numbers (consistent with the second 
purpose for drawn representations discussed above); and developing students’ strategies into 
general algorithms (consistent with the third purpose). The main result I emphasize is that the 
unit structures the teachers produced shaped in fundamental ways the purposes for which they 
used drawn representations and the extent to which they adapted in response to their students.  

Ms. Reese 
Prior to the present study, Ms. Reese (all names are pseudonyms) had taught algebra to 

seventh-, eighth-, and ninth-grade students for approximately ten years. She reported that her 
high school classes had focused on “traditional mathematics” and algorithms, had rarely used 
manipulatives, and had included drawn pictures only occasionally to introduce a topic or when 
there was confusion. Ms. Reese was in her second year of CMP implementation, but at the time 
of the study was teaching Bits and Pieces II for the first time.  

Ms. Reese could produce three levels of units but struggled to adapt and respond to some 
students’ representations of parts of parts. A central example occurred during her second day of 
instruction on fraction multiplication. Students were using squares to represent parts of parts of 
brownie pans. At one point, Ms. Reese worked with a student whose incorrect representation for 
1/3 of 5/6 was similar to that shown in Figure 1b. The student explained that the answer was 2/6 
because the whole was broken into three pairs of smaller rectangles. If, in producing her 
drawing, the student took the whole pan as a unit that was divided into thirds each of which was 
further divided into sixths, she would have produced three levels of units when arriving at her 
answer. Ms. Reese said that something was not right, questioned whether the student had shaded 
5/6, and counted the shaded pieces to check. That Ms. Reese hesitated and then counted the five 
shaded pieces suggested that she was genuinely stuck. The student continued to explain when 
Ms. Reese interrupted, “Oh. I gotcha. OK. So you just didn’t divide it up again. You just put like 
this is one third (pointed to two pieces), that’s one third (pointed to another two pieces), and 
that’s one third (pointed to the last two pieces). OK. That’s fine.” Apparently, Ms. Reese 
produced three levels of units, but she did not address the problem with the student’s work. 

 

  
(a) (b) 

Figure 1. (a) Ms. Reese’s approach to 1/3 of 5/6. (b) Two students’ approach. 

Ms. Reese observed another student who had a similar incorrect solution and stopped the 
class so that she could compare two strategies for determining 1/3 of 5/6. Ms. Reese began by 
telling the class that it was alright to have different answers so long as they were equivalent 
fractions. She demonstrated her solution first (Figure 1a) and pointed out that she partitioned the 
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brownie pan into sixths by drawing lines in just one direction (horizontally). She shaded five 
pieces and pointed out that she could not form three equal groups directly from those pieces (an 
instance of reasoning with three levels of units). She then partitioned her brownie pan vertically 
into thirds, shaded the first third of the whole, and reminded students that the bottom piece was 
not included. Thus, she focused on 1/3 of 5/6 but did not discuss the fact that she had taken 1/3 
of each shaded sixth (a drawn instantiation of the distributive property). With some prompting 
about the size of the pieces, students said the answer was 5/18. Ms. Reese then recounted the 
alternate student solution, led the class to express the solution as 6/18, and emphasized that the 
two answers were truly different. Finally, she asked which of the two answers was consistent 
with the pattern emerging from previous problems (e.g., 1/2 of 2/3 is 2/6 and 3/4 of 1/2 is 3/8).  

From this point forward, Ms Reese rejected solutions in which students cross-partitioned for 
just one fraction. For instance, later during the same lesson, she rejected a student’s correct (from 
my perspective) drawing for 2/3 of 3/4 reproduced in Figure 2a, saying that the student would 
run into the same problem shown in Figure 1b. A moment later, she accepted another drawing 
reproduced in Figure 2b. Ms. Reese knew that difficulties could arise when cross-partitioning for 
the first fraction, but may not have focused on the underlying role of the distributive property. In 
an interview, Ms. Reese still hesitated to accept the approach shown in Figure 2a. Thus, she was 
not sufficiently flexible with three levels of units to consistently respond to her students’ correct 
and incorrect representations of parts of parts or to adapt when using drawn representations. 

In subsequent lessons, Ms. Reese and her students used lengths to solve three examples, 1/4 
of 2/3, 1/3 of 1/2, and 2/5 of 1/2. In each case, Ms. Reese evidenced recursive partitioning, and 
hence further reasoning based on three levels of units. She also asked students if new solutions 
were consistent with the emerging pattern. Ms. Reese’s ability to produce three levels of units 
supported her use of drawn representations to determine solutions to fraction multiplication 
problems and to infer a numeric pattern in which numerators were multiplied together and 
denominators were multiplied together, the second use of drawn representations discussed above.  

 
 
 
 

  

(a) (b) 

Figure 2. (a) Ms. Reese rejected this drawing for 2/3 of 3/4. (b) She accepted this 
drawing. 

Ms. Archer 
Ms. Archer was a first-year full-time teacher but had taught in the district as a long-term 

substitute, mostly in high school classrooms. She had a bachelor’s degree in mathematics and, at 
the time of the study, was enrolled in a 2-year alternative certification program. In contrast to 
Ms. Reese, who used lengths and rectangular areas to determine products of fractions and 
inferred a computation procedure from a pattern in the results, Ms. Archer told students from the 
beginning that a fraction times a number and of the number meant the same thing. She almost 
always multiplied numerators together and denominators together before turning to drawn 
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representations. Thus, she used drawn representations to illustrate solutions also arrived at 
through an alternate method, the first use of drawn representations discussed above.  

Ms. Archer’s troubles explaining drawn representations of fraction multiplication and 
responding to some students’ questions appeared rooted in reasoning with just two levels of 
units. As one of several examples I found, Ms. Archer introduced the rectangular area model 
(interpreted as a pan of brownies) for fraction multiplication with the example 1/2 x 2/3. As 
shown in the teacher’s edition, she first partitioned the unit square vertically into thirds and 
shaded two parts. She then partitioned the unit square horizontally into halves and shaded one 
part. In so doing, she described 2/3 as two of three equal parts of the whole pan (two levels of 
units) and 1/2 as one of two equal parts of the whole pan (also two levels of units). At this point 
she had drawn a two-by-three array with five parts shaded. She told students the answer could be 
found where the two fractions “overlapped” and that this demonstrated “why” 1/2 x 2/3 = 2/6. 
One student argued that the diagram showed the answer to be 5/6 because five of six pieces were 
shaded. Ms. Archer simply stated that the picture was correct and called on another student who 
said the fractions “mixed” in two of the six parts. Ms. Archer accepted the latter explanation but 
never addressed the former. When she moved on to the next part of the lesson, problems from 
the book asked students to show “part of the part in the brownie pan.” These problems 
introduced the part-of-a-part language into the lessons and, as Ms. Archer worked with students, 
she appeared to be learning how to represent parts of parts alongside her students. For instance, 
she first rejected a representation of 3/4 of 1/2 in which a student represented the answer, 
correctly, as 6/16. The student had divided the unit square into a four-by-four array, shaded one 
half (eight parts), and then double shaded six parts. During an interview, Ms. Archer rejected the 
solution a second time but then accepted it after she reduced 6/16 to 3/8. With the additional 
level of units (sixteenths), she did not recognize quickly that the solution was correct.  

The cases of Ms. Reese and Ms. Archer cast into relief aspects of mathematical knowledge 
for teaching fraction multiplication. In particular, examining places where both teachers were, 
and were not, able to engage and effectively respond to their students’ reasoning revealed the 
central role that reasoning with nested levels of units can play. Reasoning with just two levels of 
units constrained Ms. Archer’s explanations of drawn representations of fraction multiplication. 
Reasoning with three levels of units, Ms. Reese was able to solve fraction multiplication 
problems using lengths and areas as representations of fractional quantities, but she was not 
sufficiently flexible with three-level unit structures to consistently respond effectively to 
students’ correct and incorrect solutions. The results demonstrate correlation between the unit 
structures that each teacher could produce and the purposes for which each used drawn 
representations. Ms. Archer’s difficulties explaining 1/2 of 2/3 with the unit square suggested 
that she would be challenged to determine solutions to fraction multiplication problems using 
just lengths and rectangular areas as representations of fractional quantities. This, in turn, would 
preclude using drawn representations to infer or adapt. Ms. Reese could clearly use drawn 
representations to infer but not to adapt. I do not claim that nested levels of units and uses for 
drawn representations are a complete account of mathematical knowledge for teaching fraction 
multiplication, but I do conjecture that these tools will be useful in understanding mathematical 
knowledge that other teachers use when teaching with reform-oriented materials and, most 
importantly, places where they do, and do not, engage and build upon their students’ thinking. 
 

The research reported in this article was supported by the National Science Foundation under Grant 
No. REC-0231879. The opinions expressed in this paper are those of the author and do not necessarily 
reflect the views of NSF. 
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INVENTED STRATEGIES FOR DIVISION OF FRACTIONS 
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A study of computational strategies developed by sixth-grade students and prospective and 
practicing teachers identified two-step approaches for measurement and partitive division of 
fractions problems. These strategies, grounded in direct modeling and problem contexts, extend 
one-step strategies developed for division of whole numbers by adding a step which converts 
units by multiplying (unitizing). The order of the two steps, as well as the type of division 
performed, depends on problem type. The study also identified common computational errors, 
and observed the use of co-measure units in adapting strategies. 

Introduction 
Division of fractions is arguably the least understood of the arithmetic operations studied in 

school mathematics. Instruction often begins and ends with the invert-and-multiply algorithm 
traditional in the U.S., although even most adults are hard-pressed to explain why it works. 
Research has shown that children can develop their own computational strategies for operations 
on both whole numbers (e.g., Carpenter et al., 1998) and rational numbers (e.g., Warrington, 
1997)—in fact, students who develop their own strategies before working up to traditional 
algorithms have been seen to make fewer errors in their later use of the traditional algorithms 
(Carpenter et al., 1998). However, the additional complexities involved in working with rational 
numbers often challenge student and teacher alike, with the result that students are typically 
presented with the traditional algorithm for division of fractions before having an opportunity to 
construct meaning for it themselves. This practice interferes with students' construction of 
meaning (e.g., Mack, 1990, Nagle, 1999), so that their knowledge of dividing fractions tends to 
be disconnected from their understanding, as well as “buggy” (making procedural errors such as 
inverting the wrong fraction before multiplying). 

Studies of children's invented strategies for division typically distinguish two types of 
problems: measurement division, also called repeated subtraction, in which the group size is 
known and the number of groups is the unknown; and partitive division or fair sharing, in which 
the number of groups is known but the size of each group is unknown. Studies of invented 
strategies for division of whole numbers showed that students tend to approach measurement 
division problems by making groups of the known size, but approach partitive division problems 
by distributing items from the total to each group, one or a few at a time (e.g., Ambrose et al., 
2003). This distinction between problem types is equally important in division with fractions 
(e.g., Flores, 2002; Siebert, 2002). Measurement interpretations are much more common than 
partitive ones for division of fractions problems, principally because it is difficult to imagine a 
natural context in which the number of groups is not a whole number. Ott, Snook and Gibson 
(1991) found that both literature and textbooks tend to ignore the partitive division of fractions. 
Sharp and Adams (2002) described students' conceptualizations of context-free division of 
fractions problems as measurement interpretations, and all the context-situated problems given in 
their figures are measurement division problems. Additionally, Warrington (1997) showed that 
children can develop their own computational strategies for dividing fractions. One interesting 
observation that can be made from the examples she describes is that her students' explanations 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Vol.2-372  PME-NA 2006 Proceedings 

 

for (context-free) problems involving the division of a whole number by a proper fraction tended 
to be given in terms of a measurement interpretation, whereas their explanations for a problem 
involving the division of a proper fraction by a whole number were given in partitive terms. It is 
therefore important to consider both types of division problems when examining strategies for 
division of fractions. This study examined the computational strategies developed for both 
measurement and partitive division of fractions problems by sixth-grade students, prospective 
teachers and experienced teachers working (separately) on the same problems. The study also 
examined ways in which invented strategies for division of fractions paralleled those for division 
of whole numbers. 

Methods 
The study involved 22 sixth-graders, 24 prospective teachers enrolled in an undergraduate 

content course, and 26 practicing middle school teachers. The sixth-graders attended a Title I 
elementary school and were of various ethnicities; 9 participated in October, and the other 13 in 
late April of the same school year. The middle school teachers were from a different district 
which included sixth, seventh and eighth grades in middle school. In each case, subjects were 
asked to solve word problems involving division of fractions. They were provided with materials 
for modeling, and encouraged to work in small groups to solve the problems and to describe their 
solutions individually using concrete models, pictures, words and numbers. All sessions lasted 
approximately one hour. Some sixth-graders returned for a second session to complete their 
work. 

Data collection included subjects' written work, photos of models constructed, observation of 
subjects while they worked and discussed their solutions, and in some cases interviews 
immediately following the session to clarify solution approaches when the available artifacts did 
not make them clear. Analysis focused on the first four problems (see Table 1) and involved 
description and then classification of approaches to each problem. The problems were chosen for 
the following properties: Questions 1 and 4 are measurement problems with the number of 
groups (the quotient) a noninteger greater than 1 and the divisor a proper nonunit fraction. 
Questions 2 and 3 are partitive problems, but in the former case the number of groups (the 
divisor) is less than 1, whereas in the latter it is greater than 1. 

 
 
1. You have 2 ½ oranges. If each student serving consists of ¾ oranges, how many 
student servings (or parts thereof) do you have? 
2. You have 1 ½ oranges. If this is enough to make 3/5 of an adult serving, how many 
oranges constitute 1 adult serving? 
3. Sarah is making posters by hand to advertise the school play, but the posters she has 
designed are not the same size as a standard sheet of paper. She has 3 ½ sheets of paper left, 
which is enough to make 2 ⅓ posters. How many sheets of paper does each poster use? 
4. If Alberto is also making posters, but his posters only use ⅔ of a sheet of paper, how 
many of Alberto's posters will those 3 ½ sheets of paper make? 

 

Table 1. Problems used in the analysis  
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Results 

Strategies 
In general, subjects used either a one-step or a two-step strategy particular to problem type. 

The numbers involved in a problem (in particular, whether the number of groups was less than 1, 
or the fractional part of the known group size involved a small enough denominator) influenced 
the number of steps in the strategy used to solve it. 

A minority of the adults (43% of the prospective teachers and 13% of the practicing 
teachers), and none of the sixth-graders, applied a measurement division-of-whole-numbers 
strategy to Question 1 (q.v.), making as many ¾-oranges as possible (see Figure 1). Sharp and 
Adams (2002) describe one such strategy as an “early strategy”. All of the sixth-graders and the 
remainder of the adults used instead a two-step process (see Figures 2 and 3): 

1. Cut the dividend into quarter-oranges. 
2. Make groups of three quarter-oranges. 

This can be expressed more generally as first multiplying by the denominator of the 
dividend, which converts units (here, from oranges to quarter-oranges), and second performing a 
measurement division of whole numbers (here, 10÷ 3). All solutions to Question 4 used this two-
step strategy. This structure can also be seen in the strategies used by students to solve 
measurement division of fractions problems in existing literature such as Sharp, Garofalo and 
Adams (2002) and Perlwitz (2004). 

Subjects also solved the partitive division problems in Questions 2 and 3 primarily by two-
step methods occasioned by the fractional divisor (see Figure 3). This approach was: 

1. Divide the oranges into three equal parts. 
2. Obtain five such parts (often phrased as “get two more” parts). 

The first step corresponds to a partitive division by a whole number (the numerator of the 
divisor), followed in the second step by a multiplication (by the denominator of the divisor) that 
converts units, from fifths of a serving to servings. The only subjects who used a different 
approach for Question 2 were a group of sixth-graders who misinterpreted the question as 
measurement division and attempted to find how many 3/5-orange servings were in 2 ½ oranges. 
This group cut the half-orange into quarters instead of fifths, and thus ended up with a miscount 
in the remainder. 

However, the most common approach to Question 3 was some variation of a one-step 
division-of-whole-numbers approach. Here the dividend is 3 ½ and the divisor is 2⅓, and all but 
one of the adult groups who solved this problem first subdivided the sheets of paper into smaller 
parts—halves, thirds, or sixths—before dealing them out into piles. They typically dealt out into 
2 piles and stopped with a few parts of a sheet left in hand to determine how many to deal into 
the ⅓-pile. This preliminary subdivision into smaller (common-denominator) units like sixths, 
called co-measure units (e.g., Olive, 1993), also seen (but not identified in these terms) in the 
solution to a measurement division problem in Perlwitz (2004), may account for how partitive 
division-of-whole-numbers strategies can be adapted to division-of-fractions problems, contrary 
to the expectations of some researchers (e.g., Sharp, 1998). The only subjects to solve Question 3 
with a two-step division-of-fractions approach (partitive division by 7, then multiplication by 3) 
were one group of middle school teachers; this required reconceptualizing the divisor as an 
improper fraction (7/3) rather than a mixed number. 
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Errors 
Patterns also emerged in the missteps made in approaching the problems. In measurement 

division problems, the most common error was to divide the fractional part of the dividend into 
as many parts as the denominator of the divisor: for example, quartering the half-orange into 
eighths when solving Question 1. Half (50%) of the sixth-graders did this, and two of these 
groups then continued to divide the whole oranges into eighths also before self-correcting when 
making groups of ¾ (which they modeled as 6/8). 

The other common difficulty encountered with measurement division problems was reporting 
a remainder in terms of the wrong (old) units: half the sixth-graders also first reported the answer 
to Question 1 as “3 ¼” (see Figure 3) before being prompted for units (labels) made them realize 
that they had 3 servings and ¼ orange. Perlwitz (2005) reported a similar error by college 
students on a measurement division of fractions problem; without using units in their answers, 
they were even unable to explain the observed discrepancy with the quotient obtained through 
the traditional invert-and-multiply algorithm. Remainders were never an issue, however, in 
solving the partitive problems. 

Finally, there was also a confusion of division types. The only common error in the two 
partitive division problems, Questions 2 and 3, was to apply the first step of the strategy for 
measurement division instead, e.g., dividing into 1/5-oranges in Question 2. Half the sixth-
graders discussed doing this (see Figure 4), and one group actually did so, as did one group of 
preservice teachers. One group of sixth-graders also applied partitive division by 3 to the leftover 
¼-orange in Question 1, to place one piece with each serving. 

 
 
 
 
 
 

 

Figure 1. One-step solution to Question 1  Figure 2. Two-step solution to Question 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Student work for Questions 1 and 2 
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Figure 4. Student sketch proposing dividing the whole orange in Question 2 into fifths 

Implications for Teaching 
In addition to the distinction between strategies developed for measurement and partitive 

division problems, there is a sharp distinction between division-of-whole-numbers strategies, 
which involve only one step and can be applied to some division-of-fractions problems, and the 
two-step strategies particular to division of fractions. In general, the two-step strategies 
developed for division-of-fractions problems simply add to the one-step division-of-whole-
numbers strategies an extra step which deals with the unit conversion inherent in operating with 
fractions and can be described mathematically as multiplying by the denominator. This process, 
called unitizing, is considered critical to conceptual development in mathematics. It is important 
to note that this extra step is the first step in measurement problems but the second step in 
partitive problems; also, the division step in each case is different, according to problem type. 
Measurement problems such as Question 1 allow both one-step and two-step approaches since 
the divisor (¾) is familiar and easily recognizable in physical models. Partitive problems like 
Question 2 do not allow one-step approaches because the number of groups is less than 1. 
Further study may be needed to distinguish the influences of mixed numbers, improper fractions, 
and unit fractions in the development of these strategies, as well as the role of co-measure units 
in problems where dividend and divisor have unlike denominators. 

The development of these strategies by learners has several implications for teaching. 
Teachers must attend carefully to the sequencing of problems they use (see also Sharp and 
Adams (2002), p. 338). Students will approach their first division-of-fractions problems armed 
with division-of-whole-numbers strategies, so those first problems should admit one-step as well 
as two-step strategies—in particular, measurement problems should have familiar, recognizable 
divisors, and partitive problems should have divisors greater than 1, with fractional parts as 
simple as possible. Later, more advanced problems will require two-step approaches. The sixth-
graders in this study solved the three problems with divisors less than 1 with uniformly two-step 
approaches (whereas several of the teachers and prospective teachers applied one-step 
approaches). It is also important to balance students' exposure to measurement and partitive 
division-of-fractions problems. Although the latter type are often harder to solve, and certainly 
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harder to write well, they extend students' invented partitive division-of-whole-numbers 
strategies, and lead to solutions where remainders do not prove as much a sticking point as in 
measurement division problems. Finally, only after many experiences using these two two-step 
strategies may students recognize that the two steps in each strategy are the same, and can be 
performed in a single step, via the traditional algorithm. 
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This report theorizes and provides empirical evidence of how researchers and educators might 
recognize categories of teachers’ knowledge for teaching as teachers teach and discuss with 
peers their student’s mathematical behavior and their practice. Its theoretical orientation 
engages work by Shulman on pedagogical content knowledge, Ball and Bass on mathematical 
knowledge for teaching, and Steinbring on teachers’ epistemological knowledge.  The empirical 
evidence emerges from the practice of teachers working with working class African American 
and Latino students in a poor, urban school district in the United States of America.  The results 
of this investigation, part of larger, broader inquiry, suggest that the categories of teachers’ 
knowledge implicate each other.  

Introduction 
Teaching mathematics is a multifaceted human endeavor, involving a complex, moment-by-

moment interplay of different categories of knowledge.   Teachers’ mathematical knowledge, 
pedagogical competence, and insight into the development of students’ mathematical ideas and 
reasoning are key to improving students’ mathematical achievement.  High quality standards, 
curriculum, instructional materials, and assessments are also important but not enough to 
improve students’ learning of mathematics.  As Ball, Hill and Bass (2005) argue, “little 
improvement is possible without direct attention to the practice of teaching … [h]ow well 
teachers know mathematics is central” (p. 14).  Conceivably, this explains why recently there has 
been considerable discussion and research on teachers’ subject-matter knowledge, pedagogical 
content knowledge, and mathematical knowledge for teaching (for example, Adler & Davis, 
2006; Ball, 2000; Fennema et al., 1996; Hill, Rowan, & Ball, 2005; Shulman, 1986).  The 
problem we theorize and explore empirically is “How might educators and researchers 
investigate and understand the development of teachers’ mathematical knowledge for teaching?”  
Our perspective seeks descriptions of how teachers develop their mathematics knowledge for 
teaching in the complex, discursive interaction of actual practice as students evidence their 
mathematical ideas and reasoning and in the course of teachers’ discussion of students’ 
mathematical behaviors. 

Theoretical Perspective 
The theoretical perspective for our methodological approach has several sources.  It is based 

on the assumption that teachers engage several categories of knowledge to enact successfully the 
mathematics education of their students. They clearly need knowledge of mathematics as well as 
knowledge of the subject that is specific to their work as teachers.  In agreement with Shulman 
(1986) and Ball, Hill, and Bass (2005), our perspective recognizes that to teach a school subject 
like mathematics effectively necessitates knowledge of mathematics that “goes beyond the 
knowledge of subject matter per se to the dimension of subject matter knowledge for teaching” 
(Shulman, 1986, p. 9), or what Ball (2000) terms “mathematical knowledge for teaching.  In their 
practice, teachers also need management and organizational knowledge that is distinct from 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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subject matter knowledge—pedagogical knowledge (Shulman, 1987).  Furthermore, effective 
teaching requires teachers to attend to and endeavor to understand the mathematical ideas and 
reasoning of their students (Maher, 1998; Sowder, in press).  This category of knowledge is 
specific and varies moment-to-moment and refers to teachers’ inference into the status of 
students’ knowledge.  As Steinbring (1998) notes, a teacher “has to become aware of the specific 
epistemological status of the students’ mathematical knowledge. … to diagnose and analyze 
students’ constructions of mathematical knowledge and … to compare those constructions to 
what was intended to be learned in order to vary the learning offers accordingly” (p. 159).  This 
category of knowledge—teachers’ awareness of the epistemological status of students’ 
mathematical understanding—enables, for instance, teachers to pose appropriate, new challenges 
for students to consider as they further build mathematical ideas and reasoning.  

Researchers can infer teachers’ mathematical knowledge for teaching by analyzing their 
practice in action, including interactions with students, questions they ask, issues they make 
salient to students, student artifacts they use, as well as post-session analyses they perform of 
their actions, plans, and students’ work. Interaction also provides a lens through which to view 
mathematical knowledge, mathematical knowledge for teaching, pedagogical knowledge, and 
awareness of the epistemological status of students’ mathematical understanding.  These four 
categories of knowledge though conceptually different do at times, as we have observed, interact 
and even intersect.  When they do intersect, they are essentially indistinguishable one from the 
other.  Teachers’ mathematical knowledge for teaching can be observed through their 
pedagogical moves; that is, by way of their pedagogical knowledge revealed in their moment-to-
moment discursive interaction with students.  In this paper, based on our methodological 
approach, we provide empirical evidence to substantiate the theoretical claim that teachers’ 
mathematical knowledge, mathematical knowledge for teaching, pedagogical knowledge, and 
awareness of the epistemological status of students’ mathematical understanding are in some 
instances mutually constitutive.  

Method 
This study is an adjunct of larger, ongoing analyses that emerge from a multi-prong, three-

year research endeavor, “Informal Mathematics Learning Project” (IML).  Two primary goals of 
the IML project involve investigating (1) how middle-school students (11 to 13 years old) 
develop mathematical ideas and reasoning over time in an informal, after-school environment 
and exploring relationships between agency and students’ learning as well as (2) how teachers 
facilitate IML sessions and attend to students’ ideas and reasoning.  The IML research sessions 
occur in a middle school, after-school program in Plainfield, New Jersey, an economically 
depressed, urban area, whose school population is 98 percent African American and Latino 
students. These sessions were held after the regular school day to avoid some constraints of 
schools, such as time, curriculum, and testing. 

For an academic year and a half, including the intervening summer, three pairs of teachers 
facilitated 20 sessions, 90-minute each, with a cohort of approximately 20 students, who began 
in their sixth grade, while graduate students from Rutgers University observed as ethnographers.  
This cohort explored similar mathematical tasks that had engaged an earlier cohort of students 
with whom researchers from Rutgers University worked, while the teachers participated as 
observers, taking field notes, and as co-investigators in post-session debriefings.  Nonetheless, 
the teachers were not given a script; rather, they developed their own by selecting tasks and 
planning their own sessions.  For about 50 minutes after each research session, the two teachers 
who facilitated the session, the other four teachers who observed the session, and two to three 
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graduate students along with one Rutgers researcher discussed their observations and reflections 
on the tasks and on the ideas and reasoning of students.  Research and debriefing sessions were 
videotaped. Students’ inscriptions, graduate students’ observation notes, teachers’ planning 
documents were collected and stored electronically. 

Through the course of IML sessions, the teachers invited students to work on strands of 
mathematical tasks.  These tasks range across areas of mathematics that include rational 
numbers, combinatorics, probability and data analysis, and algebra.  By design, the tasks are 
open-ended and well-defined, in that students were invited to determine what to investigate and 
how to proceed, identify patterns and search for relationships, make and investigate 
mathematical conjectures, develop mathematical arguments to convince themselves and others of 
their solutions, and evaluate their own arguments and those of others. 

To understand the nature and development of mathematical knowledge for teaching, we 
analyzed data from the teachers’ planning, implementation, debriefing sessions, as well as 
teachers’ written reflections on the sessions they facilitated.  For this report, we present an 
analysis of the first two IML sessions that two teachers, Lou (six years teaching experience) and 
Gilberto (three years teaching experience), facilitated as well as the corresponding work of 
students.  For each session, there were between three and five video cameras, each with a boom 
microphone, capturing images from different student work groups and whole class discussions.  
Our videodata analysis follows methodological suggestions outlined by Powell, Francisco, and 
Maher (2003) and within this framework, we coded all data inductively and deductively.  Our 
initial coding scheme intended to flag instances of teachers’ using, commenting, and questioning 
about mathematics and pedagogy.  Analyzing the data to understand teachers’ mathematical 
knowledge for teaching, we noticed several instances of an intersection among teachers’ 
awareness of the epistemological status of students’ mathematical understanding and teachers’ 
pedagogical and mathematical knowledge , some of which we present in the following section. 

Results 
The purpose of this paper is to theorize and explore an emergent approach for understanding 

the nature and development of teachers’ knowledge.  Above, we described a method for flagging 
critical events from data that provide investigators with insight on teachers’ content and 
pedagogical knowledge as well as their awareness of the epistemological status of students’ 
mathematical understanding .  This section describes how we applied our methodology.  Space 
only permits us to present a sequence of four critical events, occurring in one debriefing session. 

The sequence of critical events concern students’ presentation of ideas and teachers grappling 
with how understand the students’ ideas and the underlining reasoning and how to orchestrate the 
next session based on the students’ discourse that transpired in that day’s after school session. 
These critical events provide us a window into the teachers’ knowledge of pedagogy, 
mathematics, mathematics for teaching, and epistemological status of student learning. In the 
research session, students worked on the following task with Cuisenaire rods: If the light green 
rod has the number name two, what is the number name for the dark green rod?  Three individual 
students each presented a different solution at an overhead projector. 

Tiffany stated that since the light green rod has the number name two, then the white, the red, 
the purple, the yellow, and the dark green rods have respectively the number names zero, one, 
three, four, and five.  Devon asserted that the white, the red, the light green, the purple, the 
yellow, and the dark green rods have the number names one, two, three, four, five, and six, 
respectively. With different results, both Tiffany and Devon lined-up their rods according to their 
heights and used their ordinal position to reason what number names to assign the rods.  The 
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third student, Sameerah, reasoned that since light green has the number name two, then the dark 
green has the number name four because two light green rods have the same length of one dark 
green rod and therefore, two plus two is four. Her reasoning is based on the additive property of 
length (two light green rods placed end-to-end are equivalent in length to a dark green rod) to 
name the dark green rod four.  The session concluded with Lou and Gilberto asking the students 
to think about the three different solutions and announcing that the following day they will 
revisit them. 

The first critical event occurs during the debriefing session when Alice, a university 
researcher, asks the teachers to assess the validity of the three student solutions described above.  

Alice: What do we think? Are they all equally valid?  
Teacher1: Yes 
Teacher2: No 
Alice: Okay, I’m hearing, some -1 Jennifer what do you think?  
Jennifer: I guess I would respond to your question by saying “yes”. They were valid to 

me because they were able to explain and justify their thinking behind it. It’s 
not necessarily how I would have interpreted…i But that - the way the 
students who just lined them up in steps and explained to me, that if you call 
this one two and the ones below it are one step down each and the ones above 
it - to me that’s a reasonable explanation and justification and explanation for 
their reasoning. 

Alice: Okay for their reasoning, now help me to understand what’s going on in their 
reasoning 

Jennifer: Using just the attribute of length. That’s all they were looking at and it made 
sense to me. If this one is a certain number 

Alice: Ok, if - you just said attribute of length  
Jennifer: Yes, those weren’t their words  
Alice: Wait just a minute, though. What would the attribute of length be if you gave 

something the number name two?  
The above discussion was selected as a critical event because the teachers begin to assess the 

validity of the students’ solutions. By so doing, they discuss the students’ reasoning and try to 
make sense of the students’ understanding. They are exhibiting their mathematical knowledge 
for teaching and discussing their awareness of the epistemological status of students’ 
mathematical understanding.  

When Jennifer says that the students are using “just the attribute of length” to solve the task, 
Alice asks the teachers to discuss the mathematical meaning of assigning the number name two 
based on the attribute of length. The above discussion continues and is flagged as a second 
critical event:  

Jennifer: Because the number name two - 
Alice: What does that mean in relation to the attribute of length? 
Kim: It depends on the unit. 
Jennifer: It means that if I have one [rod] that’s shorter, it’s a number that going to be 

less than two and if it’s longer then it’s going to be greater than two. 
Alice: Oh, okay, well that is certainly one thing that it means. Uhm, let’s really push 

on this because mathematically, this is what we’re having to agree on. 
You’ve all have said, and agreed, that it is the attribute of length that we are 
interested in and according to the attribute of length, you’re giving light green 
the number name two. What does that mean about - anything? To say that it 
is two in length 
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Gilberto: That it is one plus one  
Alice: It is one what… yeah I agree, but one what? 
Gilberto: One unit 
Danielle: Whatever the length it is 
Kim: Unit 
Alice: Okay, if this is two, then it is one unit plus one unit in length 
Here, a shift occurs in the conversation. Alice asks the teachers to consider what it means 

mathematically to give a rod the number name two. Hence, the discussion shifts from assessing 
the validity of the students’ solutions and understanding their reasoning to a discussion of the 
underlying mathematical ideas of the task. While we hear a couple of the teachers use the term 
“unit” to answer Alice’s question, we also hear responses that involve comparing lengths and 
applying the additive property. As a community, the teachers discuss and negotiate their 
mathematical knowledge as it pertains to comparing the lengths of Cuisenaire rods.   

Once the teachers agree on the mathematical consequence of giving the number name two to 
the light green rod, they return to the assessing validity of the students’ solutions. This is a shift 
in conversation from mathematics back to assessing the validity of students’ reasoning is our 
third critical event.  

Danielle: So based on that [Tiffany’s] argument, the young lady that assigned, that said 
we’re going to take the white off and were going to have that be zero then 
we’re going to make red one and, and light green two and what was next, 
yellow three, and purple or purple then yellow and then she named it five, if 
we’re looking at length, then its not, you can’t justify that based on that 
answer because, you know, if light green is two then red should be half of 
light green, if, right, as one, if light green is two then yellow should have 
been exact, a double, she was naming yellow four, so yellow can’t be four, 
however, because its not the double measure -  

Jennifer: So it’s not the attribute of length, it’s the attribute of position. 
In this discussion, Danielle notes the contradictions that would occur if yellow is given the 

number name four and red the number name one. In the first critical event, Jennifer assessed that 
the students were using the attribute of length to justify their solutions. After the discussions that 
occurred during the second critical event, Jennifer returns to correct her first statement and assert 
that the students are using the attribute of position to justify their solutions. This evidences the 
use of teachers’ knowledge of mathematics to understand the status of the students’ 
mathematical reasoning.  

With this awareness of the epistemological status of students’ knowledge and reasoning, 
Gilberto turns to designing an intervention for the next after school session, which we have 
flagged as our fourth critical event: 

Gilberto: [He moves to the overhead projector and lines Cuisenaire rods in height 
order: red, light green, purple, yellow, dark green.] So what they are taking 
into account here is order - the position, first, second, third, fourth, and then 
this [pointing to dark green rod] is the fifth position. So then, I say, well if it 
[light green rod] is two, then the number name for red will be one. She is 
going to, she might answer that. Then I will ask her, if this is one [pointing to 
red] - ok if this is two [pointing to light green], then she is going to say this is 
one [pointing to red], and then I think we should ask her, how many ones do 
you need to make two? And then she will probably come with something like 
this [aligning two red rods end-to-end and placing them adjacent to one light 
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green rod] and then we will see that if red is called one, two ones will be 
bigger than two.  

Prior to this statement, Gilberto acknowledges that the students must take the lengths of the 
rods into account to successfully progress through the Cuisenaire tasks that the teachers have 
planned over the following five after school sessions. He uses Tiffany’s solution as a starting 
point for designing an intervention that he hopes will lead the students to recognize a 
contradiction and shift their reasoning from positional to additive. Gilberto’s understanding of 
the underlying mathematical ideas of the task, his pedagogical intervention for the upcoming 
sessions, and his insights into the students’ reasoning evidences specific aspects of his 
knowledge of pedagogy, mathematics, mathematics for teaching, and awareness of the 
epistemological status of students’ mathematical understanding.  

Discussion 
By analyzing teachers’ practices in action, we notice that their knowledge of mathematics, 

mathematics for teaching, and pedagogy, as well as their awareness of student learning 
intertwine and intersect. As the teachers discussed the students’ reasoning and tried to make 
sense of the students’ understanding, they exhibited their mathematical knowledge for teaching 
and their epistemological awareness of the students’ mathematical understandings.  In these 
conversations, their discussion shifted from assessing the validity of the students’ solutions to an 
examination of the underlying mathematical ideas of the task.  Consequently, as a community, 
the teachers negotiated their mathematical understanding, which they applied as they returned to 
assessing the validity of the students’ solutions and discussing the epistemological status of 
students’ knowledge. Using the shared knowledge of the group, Gilberto designed an 
intervention comprised of pedagogical moves informed by the teachers’ collective understanding 
of possible student trajectories.  These pedagogical moves included his awareness of the 
epistemological status of students’ knowledge.  Furthermore, his pedagogical intervention was 
based on developing a proof by contradiction (if the red rod has the number name 1, then since 
the length of two red rods, whose combined length is 2, is longer than the length of one light 
green rod, whose length is also 2) evidences his mathematical knowledge.  Cumulatively, we are 
able to infer his mathematical knowledge for teaching from his pedagogical moves.  His four 
knowledge domains (mathematics, mathematics for teaching, pedagogy, and awareness of the 
epistemological status of students’ mathematical understanding) interact, one influencing the 
other. 

We have found that researchers can acquire an understanding of four types of knowledge of 
teachers—teachers’ knowledge of pedagogy, mathematics, mathematics for teaching, and 
epistemological awareness of students’ mathematical—understanding by studying teachers’ 
practice and their reflections on their practice.  Specifically, researchers can obtain insights into 
the development of teachers’ knowledge by observing how teachers analyze students’ 
mathematical behavior, grapple with the mathematical, epistemological, and pedagogical issues 
involved in addressing challenges they perceive in facilitating students’ growth in students’ 
mathematical ideas and reasoning, as well as by studying teachers’ pedagogical moves (Powell 
& Hanna, 2006). 

Endnotes 
* This work was partially supported by a grant from the National Science Foundation, REC-

0309062 (directed by Carolyn Maher, Arthur Powell, and Keith Weber).  Any opinions, findings, 
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and conclusions or recommendations expressed in this paper are those of the authors and do not 
necessarily reflect the views of the National Science Foundation. 

1 In the quoted transcripts, the symbol “-” indicates pause in speech, “…” indicates inaudible 
speech, and bracketed words provide background information.  
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This presentation will share findings from research that explored the mathematical practices a 
class of sixth-grade students and their teacher engaged in when learning about fractions using a 
problem solving or constructivist approach. In particular, the important role of benchmarks and 
estimation as students explore fraction operations and develop algorithms for operating with 
fractions will be highlighted. 

In the past decade there has been an emerging focus on understanding students’ invented 
algorithms (Carpenter & Fennema, 1992; Kamii, 1985). Part of this work has focused on 
understanding how to create learning opportunities where algorithm development draws upon 
students ideas but at the same time leads to the development of powerful and efficient methods 
for operating with numbers. This development of algorithms should involve a process that leads 
to determining the efficiency and usability of an algorithm. Lappan and Bouck (1998) argue that 
“[t]he invented algorithms of students are often very efficient and with a teachers’ help can 
become powerful, generalizable methods” (p. 184). McClain, Cobb and Bowers (1998) also 
indicate that the teacher and the curriculum are influential parts of the algorithm development 
process but discussions where students justify their reasoning is critical.  

Designing experiences that lead students to create and understand algorithms is a relatively 
new area of exploration. As the mathematics education community continues to explore the 
development of algorithmic thinking several questions remain. What does it look like when 
students engage in tasks that support them in developing algorithms? What do these tasks look 
like? What role does the teacher play in this process? This paper presents the findings of research 
that explored the mathematical practices a class of sixth-grade students and their teacher engaged 
in when learning about fractions using a problem-based or constructivist approach. The goal is to 
highlight the important role of benchmarks and estimation as students participated in a unit that 
developed algorithms for operating with fractions. 

This work draws upon the situated nature of learning and the notion of practice where 
practices are common patterns of behavior that students (and their teacher) engage in. Cobb, 
Stephan, McClain, and Gravemeijer (2001) speak of mathematical practices or “taken-as-shared 
ways of reasoning, arguing, and symbolizing established when discussing particular 
mathematical ideas” (p. 126). Mathematical practices are emergent in classroom activity as well 
as particular to mathematical ideas. Regarding fractions, this research seeks to understand what 
mathematical ideas are common to or at the center of conversations engaged in as part of an 
instructional unit where students develop strategies for operating with fractions. The setting for 
this work is a classroom where 23 sixth-grade students and their teacher use a problem-based 
curriculum with an inquiry-oriented approach to learning mathematics. The fraction practices 
that emerged in this research were shaped by the design or intent of the curriculum as well as by 
classroom activity making them both intended and emergent at the same time (Wells, 2000).  

Using curricular analysis in conjunction with analysis of observational field notes and 
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classroom video of lessons, five interactive elements were identified to form the practice of 
learning to operate with fractions. These five interactive elements are: 1) problem context, 2) 
diagrams/visual models, 3) symbolism, 4) algorithms, and 5) benchmarks and estimation. The 
development of an operation occurs through problems that lead to combining, separating, 
partitioning, replicating, sharing and grouping quantities as well as estimating, modeling, and 
writing number sentences. For each operation, students work thought several contextual 
situations and are eventually asked to pull their ideas together and articulate an algorithm for 
each operation.  

One example happened when discussing an activity that involved playing a game where 
students had to estimate fraction sums and use a number line to illustrate the reasoning leading to 
the solution. The class had just moved to discuss finding the estimated sum of 6/10 and 6/7.  

Mrs. Kay How about 6/10 + 6/7? 
TJ:  Wouldn’t they be 12/17 if added? 
Mrs. Kay I don’t know? Does it make sense? How much, about, is 12/17? 
Class It is about 3/4. 
Mrs. Kay About how much is 6/10 and 6/7? 
[Students talk with their partners.]  
Student C 6/10 is a little more than 1/2 and 6/7 is almost one whole. 
Student D 6/7 is about 3/4. 
Mrs. Kay Will the sum be more than 3/4? 
Class Yes 
In this conversation, students used estimation to find a reasonable sum and disprove TJ’s 

suggested algorithm. In the discussion students drew upon the mathematical context of the game 
they were playing, the diagram of a number line [this is not apparent in this shorten version of 
the discussion], symbolism, benchmarks and estimation, and a potential algorithm. Across 6 of 
13 tasks where students were exploring fraction operations, benchmarks and estimation stood out 
as an important conversational element in determining if an algorithm that was offered was 
indeed a legitimate algorithm. It was used by students to argue when someone’s algorithmic 
approach did not make sense, by the teacher to help students decide on the validity of an 
algorithm that was proposed, and in the curriculum to help students develop operational number 
sense. 
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Algebraic thinking is an important topic in school mathematics.  In this paper, the authors will 
provide an overview of 7th grade students’ solution methods regarding problems that elicit 
algebraic thinking.  Data, which includes student written work on adapted tasks from the 
Balance Assessment Project, indicate that the students highlighted intermediary schemas of 
arithmetic and algebraic thinking. 

Algebraic thinking is deemed an important topic in school mathematics (Chambers, 1994; 
Chappell, 1997). In the Principles and Standards for School Mathematics understandings of 
patterns, relations, functions, mathematical models and quantitative relationships are recognized 
as key facets of algebraic thinking (NCTM, 2000).  In essence, algebraic thinking “embodies the 
construction and representation of patterns of regularities, deliberate generalization, and most 
important, active exploration and conjecture” (Chambers, 1994, p. 85).  Algebraic thinking 
should function as a means of shifting from arithmetic to algebraic concepts (Kaput, 1999; 
Kieran & Chalouh, 1993).  This shift has proven to be difficult for students (Herscovics & 
Linchevski, 1994; Lee & Wheeler, 1989; Stacey & MacGregor, 2000; Usiskin, 1988).  
Accordingly, it is imperative to explore students’ reasoning as they approach problems that elicit 
facets of algebraic thinking (Nathan & Koedinger, 2000).   

Methods and Data Sources 
This study involved twenty-four middle school students, who were enrolled in a pre-algebra 

class.  These students were participants of the Diversity in Mathematics Education (DiME) 
Project at the University of California at Berkeley.  The problem set utilized in this study was 
adopted from the Balanced Assessment Project and adapted by members of the Diversity in 
Mathematics Education (DiME) Project at the University of California at Berkeley. A subset of 
problems is presented in below.  

Figure 1.  CUPS (Part I) 

Tom makes a table to show the number of white cups in each stack and the height of each 
stack. 

Number of white cups 2 4 6 8 
Height of white cups in centimeters (cm) 1

0 
1

4 
  

*Permission to reprint was granted by the Balanced Assessment Project 
Fill in the missing numbers in Tom’s table and find the height of a stack of 12 cups.  Explain. 
 
Students’ responses were examined to determine: (1) how students approach problems that 

elicit algebraic thinking (e.g., did they resort to extending tables), and (2) the extent to which 
students present evidence of algebraic or arithmetic thinking (e.g., what features (if any) are 
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highlighted).  

Results 
In the following sections, we will provide an overview of students’ solution methods.  In the 

interest of brevity, we will discuss a solution method that highlights an intermediary phase of 
arithmetic and algebraic thinking.  For instance, for problem 1 in Figure 1, 21 (88%) students 
provided accurate heights of 18 and 22 centimeters for 6 and 8 cups, respectively.  When asked 
to determine the height for 12 cups, only 11 (30%) students provided an accurate height of 30 
centimeters.  One student, Brandon, provided the following response:  “The answer is 36 cm. 
because I added 18+18 becaue 6+6 = 12 and hight of 6 cups 18 cm so if you 18+18 you the hight 
of 12 cups” [sic].  Brandon concluded that the height of a stack of 12 white plastic cups would be 
36 cm.  He reasoned that since 6 (cups) + 6 (cups) = 12 (cups) and the height of 6 cups is 18 cm 
that the height of 12 cups would be 18 cm. + 18 cm. or 36 cm. Here he seems to be applying an 
additive part-whole proportional stacking heuristic that considers the stack as smaller parts that 
can be measured independently and put back together to find the whole instead of one 
continuous stack as called for in the problem.  Moreover, Brandon’s approach highlights the 
following proportional relationship:  (6/18) = (6x2)/(18x2) = (12/36).  Interestingly, his approach 
does highlight reasoning beyond specific quantities (e.g., “add 2 cm for each cup added”) and 
emphasizes reasoning about relationships between quantities.  Consequently, Brandon’s line of 
reasoning may highlight an intermediary phase of arithmetic and algebraic thinking.  In essence, 
this phase could be perceived as a way that students may begin to reason about relationships 
between quantities after arithmetically considering specific quantities.  

Conclusions 
The shift from arithmetic thinking to algebraic thinking is difficult. However, as evidenced 

by the reasoning presented here and additional samples of student work in this study, the shift 
may not be absolute, but instead involve an intermediary phase of thinking that is characterized 
by aspects of both reasoning about specific quantities (arithmetic) and reasoning about 
relationships between quantities (algebraic).  
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Figure 1. The Bean Snare 
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The NCTM Standards (2000) recommend that 
instructional programs enable all students to create, use, 
and translate between mathematical representations. Yet, 
students are apt to fail in transferring between situated 
and symbolic notation (Martin & Schwartz, 2005). We 
propose that this transfer failure is due to critical shades 
of meaning being lost between media. Also, we explore 
the pedagogical value of having education researchers 
and practitioners analyze such semiotic breakdown.  

The third author designed the Bean Snare (Figure 1) 
to spark discussion of the complexity of constructivist 
design, teaching, and learning, i.e., subtle interactions of 
content and context as well as multi-media, multi-modal, 
and multi-representational aspects of collaborative 
reasoning about a situated mathematical problem. Note 
how the presentation surreptitiously leads us down the 
garden path to a mathematically incorrect statement. 

What is lost in translating between this situation 
(combining groups of white/black beans) and the 
standard mathematical notation (adding fractions)—our 
group concluded after a semester of lively debates—is a 
crucial fragment of meaning implicit within the ostensive 
statement (“…2 of them are black”) and accompanying 
deictic gesture (indicating each whole group). Thus, in 
inscribing the combining action, the multiplicand (the 
cardinality of each group of beans) is inadvertently 
omitted (so it should be 2/3 * 3 + 3/5 * 5 = 5/8 * 8). 
Alternatively, the paradox lies in shifts between 2 frames 
of meaning—proportionality (a/b or a:b) and sets (a + b). 

Situated mathematics can help ground mathematical 
meaning. Yet, if designers and/or teachers fail to 
recognize potential pitfalls inherent in mathematization, 
then the concrete contexts may constitute a disservice. The Bean Snare is a case of an activity 
that can generate insight into the intricacies of situated-mathematics curricula, i.e. the nature of 
mathematical reasoning and learning, challenges of pedagogy, didactics, and design, and issues 
of policy making around the “math wars.” In future work, we will interview in-service teachers, 
using the bean snare, to investigate potential tension between their pedagogical beliefs (e.g., 
constructivist) and their formative-assessment practices (see edrl.berkeley.edu). 
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As a part of a longitudinal study involving rational number understanding of middle school 
students, we became interested in the question of how students’ lack of procedural skills 
impacted the subsequent development of their conceptual knowledge in certain instances.  
Specifically, we explored how their lack of long division skill with decimal or fractional 
remainders affected the concepts in the tasks they were given. In videotaped individual 
interviews, the students were given word problems to solve and we looked for cases where 
students’ exhibited a lack of procedural skills while problem solving and then identified the 
concept that was impacted by this procedural deficiency.   

Based on our interview data, we identified two situations or categories where the students’ 
lack of procedural skills hindered subsequent conceptual understanding. In Category 1, the lack 
of procedural knowledge interrupts conceptual understanding, where the students' choice of the 
wrong procedure or a set of procedures prevents them from progressing from Concept A to 
Concept B. In Category 2, students selected the correct procedure, but did not execute it 
properly. Basically, students lack some of the procedurals skills involved in the progression from 
Concept A to Concept B, leading to an impoverished understanding of Concept B. 

Category 1 is illustrated by a student converting a fraction (Concept A) to a percent (Concept 
B).  She knows that to change 9/24 (a fraction which is hard to express as a percent using part 
whole relationship or memorization) to a percent, she should use division, but she divides 100 ÷  
9, which is the incorrect procedure. Thus, she is lacking both the concept and procedure for 
fraction as division, which prevents her from changing this type of fraction to a percent.  

Category 2 is illustrated with the following situation involving ratio questions. The student 
could only describe and understand ratio with whole numbers (Concept A). The student’s 
impoverished conceptual knowledge of ratio was affected by her inability to divide beyond the 
decimal point and to divide multi-digit numbers (Concept B in two related parts), even though 
she knew the necessity of using division to get the ratio. She could divide 23 ÷  4 to get 5 R3 but 
could not divide 1300 divided by 500, so she could not find the ratio when it included a decimal 
fraction. 

Across both categories, the students' lack of procedural knowledge is affecting the further 
development of the concept in the question.  We argue that this is evidence that conceptual and 
procedural knowledge are interrelated and should be taught in concert. 
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This paper presents results from a multi-year research study1 that examined the development of 
middle school students’ competencies in mathematical reasoning and proof. Written assessment 
data collected from 78 middle school students over a period of three years shows that while 
improvement occurs from 6th to 8th grades, results indicate that competencies needed to generate 
mathematical proof remain to be developed. 

Proof has always been a central aspect of the discipline of mathematics and the practice of 
mathematicians, but it is a relatively recent aspect of mathematics education for students at all 
grade levels. Traditionally, students’ first encounters with proof occurred during high school 
geometry courses, where the formal two-column proof was often the only method of proving 
students encountered, and explorations of proving general mathematical statements in other 
mathematics courses such as algebra were typically not supported. However, researchers such as 
Schoenfeld (1994) and Wu (1996) assert that proof cannot be separated from mathematics and it 
is an essential part of the process of doing and communicating mathematics in all content areas. 
From its inclusion in the 2000 Principles and Standards for School Mathematics (NCTM), 
reasoning and proof has gained increased attention as a central part of mathematics education for 
students at all grade levels. The 2000 NCTM document recommended that students be 
encouraged to view reasoning and proof as fundamental aspects of mathematics, know how to 
make and test conjectures, and evaluate and select various types of reasoning and methods of 
proof. Existing research, however, indicates that students’ understandings of proof are weak in 
light of these recommendations (e.g., Balacheff, 1988; Bell, 1976; Healy & Hoyles, 2000; 
Porteous, 1990; Senk, 1985). Understanding the notion that a proof treats the general case is 
critical for students’ success in evaluating and generating mathematically correct proofs. A 
number of researchers have documented evidence that students tend to view empirically-based 
arguments as sufficient justification for demonstrating the truth of a mathematical argument (see 
Porteous, 1990; Fischbein & Kedem, 1982; Balacheff, 1988, Healy & Hoyles, 2000). Existing 
research, however, has not studied students’ competencies in proving over a cohesive grade band 
(e.g., middle school or high school). The purpose of this paper is to present results from a 
longitudinal study of middle-school students’ conceptions of proof. We explore how students’ 
understandings of proof change during their middle school education by exploring the following 
questions related to notions of generality: Do students tend to generate empirically-based 
arguments or proof-like arguments to justify a mathematical statement? and To what extent do 
students recognize that a proof treats the general case? 

Proof framework 
Researchers have hypothesized that the development of students’ proving competencies 

might follow a developmental progression and, indeed, various frameworks have been proposed 
that reflect such a developmental progression (e.g., Balacheff, 1988; Bell, 1976; van Dormolen, 
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1977; Waring, 2000). Building upon these aforementioned frameworks, we used four levels of 
proof concept development: Level 0 – students respond either “I don’t know” or give 
information already presented in the problem (for this paper, Level 0 also includes non-codable 
and no response/I don’t know); Level 1 – students consider checking a few cases as sufficient; 
Level 2 – students are aware that checking a few cases is not sufficient and may attempt a 
general argument, but the argument is on the “wrong track” (i.e., would not lead to a proof) or is 
incomplete (would lead to a proof if completed); and Level 3 – students generate an argument 
that treats the general case of the statement (i.e., a proof). 

Methods 
Longitudinal data were collected from 78 students beginning in grade 6 and continuing 

throughout grades 7 and 8 (students range in age from 11 to 14 years). All students attended the 
same middle school that utilized Connected Mathematics as a curriculum in mathematics courses 
from sixth to eighth grades. The use of Connected Mathematics is relevant since the authors 
(Lappan et al., 2002) assert the following: “Throughout the curriculum, students are encouraged 
to look for patterns, make conjectures, provide evidence for their conjectures and strategies, 
...Informal reasoning evolves into more deductive arguments as students proceed from grade 6 
through grade 8” (p. 8). Thus, it seems reasonable to conjecture that student understanding 
regarding the generality of a proof may be more fully developed for this sample than that of 
students from schools with more traditional curricular programs (as reported in previous 
research).  

The primary source of data was student responses to written assessment items designed to 
measure their proving competencies. The students completed one assessment in the fall of sixth 
and seventh grades, one assessment in the fall of eighth grade, and one assessment in the spring 
of eighth grade. Each assessment contained between 6 and 7 questions designed to measure 
proving competencies; each assessment had a core set of questions that remained essentially the 
same for each administration of the assessment.  

This paper will focus on student responses to three of the core assessment questions. Two of 
the questions (Items 1 and 2) required students to provide a justification for a mathematical 
statement. The third question (Item 3) presented students with a statement introduced as a 
mathematical truth and asked students to choose which of two arguments justifies the truth of the 
given statement. One argument utilizes only examples-based reasoning, while the other argument 
treated the general case.  

For Items 1 and 2 in which students were asked to generate justifications, their responses 
were coded according to the aforementioned framework. Results presented for Item 3 focus 
exclusively on students’ choices between the examples-based justification and the proof, not on 
the students’ explanations of why they chose one argument over the other. 

Results 
Due to page length limitations of the conference proceedings, a selection of results will be 

briefly presented and discussed here (more detail as well as additional results will be presented 
during the conference session). 

Assessment Item 1  
Item 1 asked students to respond to the following item, with parts of the context changed, 

such as names, for each assessment (cf. Porteous, 1990): Jesse discovers a cool number trick.  
She thinks of a number between 1 and 10, and adds 4 to the number, doubles the result, and them 
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she writes this answer down.  She goes back to the number she first thought of, she doubles it, 
she adds 8 to the result, and then she writes this answer down. [The preceding text was following 
by an example using the number 5.](a) Will Jesse’s two answers always be equal to each other 
for any number between 1 and 10?(b)Does your explanation in part (a)  show that the two 
answers will be equal to each other for numbers greater than 10?  

Typical Level 1 responses to this item include affirmations of the rule as well as further 
examples of numbers for which the rule works: 

 
(a)  Yes, it would always be equal because I tried a few problems. 
[Student has the correct calculations for the numbers 3, 8, and 10][Student has the correct 
calculations for the numbers 11-13]. 
 
(b)  Yes, it would work for numbers more than 10 because I tried numbers that are higher 
then ten. [8th grade student] 
 
Level 2 reasoning on Item 1 is usually an attempt to describe why both operations yield the 

same number, but such descriptions, as shown in the excerpt below, often fall far short of a 
satisfactory proof due to their ambiguity: 

 
(a)  Yes her 2 answers will always be the same because there doing the same thing except 
reversing the order. 
 
(b)  Yes my answer does because even though the two methods are different they are doing 
the same thing.  50, 50+3=53, 53x2=106.  50, 50x2=100, 100+6=106. [7th grade student] 
 
Typical Level 3 responses describe why the net procedures applied in each case change the 

original number in the same way.  Interestingly, most student responses did not make use of 
symbolic/algebraic arguments nor mention the distributive property: 

 
(a) Yes because since you add 4 then double it then that would be the same as doubling 
and adding 8 because 4 doubled = 8.  [8th grade student] 
 
Consistent with previous research, a significant number of the 78 students preferred the use 

of examples when justifying the truth of a statement. For each assessment, fewer than half of the 
students’ responses were coded as attempts to produce a general argument (Level 2 or 3). There 
is a positive trend towards more successful proof production from the 6th to 8th grade. Figure 1 
illustrates the frequency of responses to Item 1 among the longitudinal sample across all four 
assessments. 
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Figure 6 

In particular, if we consider attempts to produce a general argument (combining Levels 2 and 
3), we see an increase from 27% in 6th grade to 38% at the end of 8th grade (interestingly, we see 
a slight drop from the fall of 8th grade to the spring of 8th grade). In addition, the percentage of 
examples-based arguments (Level 1 responses) remains relatively constant throughout all four 
assessments, ranging from a high of 33% in 6th grade to a low of 26% in the spring of 8th grade. 

A notable portion of the longitudinal sample, 9%, produced a proof for this item in 6th grade. 
Further, approximately 36% of the students never formulated a general argument for this 
assessment item across all four assessments. Overall, only 42% of students produced an adequate 
proof (Level 3 response) to Item 1 on at least one of the four assessments. Note that the apparent 
drop in proof production in the final assessment is not statistically significant. 

Assessment Item 2  
Similar to Item 1, Item 2 prompted students to explore a general mathematical statement and 

provide justification for their reasoning. Item 2 asked students to respond to the following item: 
We know that an odd number added to another odd number is always an even number, and we 
know that an even number added to an odd number is always an odd number. (a) What happens 
if you add any three odd numbers together, is your answer always odd? (b) Provide an 
explanation that would convince your teacher that the answer is always odd. 

Typical Level 1 responses include examples of three odds that add up to an odd as well as 
claims that this reasoning satisfies as proof or is at least enough to convince the student of the 
statement’s verity:  

 
(a)  I agree because I showed examples and I think the statement is true.1+3+5=9; 
7+9+11=27; 13+15+17=45. 
 



Reasoning and Proof  Vol.2-399 

 

(b)  All you have to do is add 3 odd numbers and find out what the answer is, like in the 
example above. Once you are done looking at the numbers, I hope I have convinced you to 
believe that if you add any 3 numbers, you will always get an odd sum.  [6th grade student] 
 
Unsuccessful general arguments, Level 2, were represented by various strategies. Some 

students used an analogy with the cancellation of the sign of negative numbers when 
multiplying, others made mention of the alternating pattern of even and odd numbers and some 
even used visual arguments. All Level 2 arguments made an explicit attempt to treat the general 
case, but they were unsuccessful in that they were not specific or well-stated enough to prove the 
statement. An example is given below: 
 

(a)  Yes because, you could think of it like + (even) - (odd) and if you have odd odd =even, 
but odd, odd, odd =odd.[student draws three - signs, and crosses out the first two] cancel out 
leaving you with -.[8th grade student] 
 
For Item 2, the successful proofs looked very similar to one another, differing only in 

whether they used an illustrative example in addition to the proof. The most typical response 
provided a logical linking of the given mathematical facts to establish that three odd numbers 
added together yields an odd number. Similar to student arguments for Item 1, students 
producing Level 3 arguments did not make use of symbolic representations (i.e. even: 2n, odd: 
2m-1). The following Level 3 response is representative: 

 
(b)  It will be odd because if add the first two numbers together, it will equal an even number.  
If you take the third number and your answer of the first 2 numbers, which is even, you take 
the odd number plus the even number and an odd number plus an even number equals an 
odd number, so your answer will be odd.  Example: 3+3+3=?; 3+3=6+3=9(odd).  [6th 
grade student] 
 
Unlike Item 1, the results for Item 2 showed a consistent and statistically significant increase 

from 6th to the final 8th grade assessment in the number of general responses; again, considering 
both Level 2 and 3 arguments, there was an increase from 22% in 6th grade to 47% at the end of 
8th grade. Still, fewer than half of the 78 students produced Level 2 or 3 responses on each 
written assessment. The overall performance of the longitudinal sample on this assessment item 
was better than on Item 1; 53% of students who completed all four assessments provided an 
adequate proof for Item 2 on at least one of the four assessments compared to 42% for Item 1. 
There is a noticeable drop in the Level 0 responses across the time points and an increase in 
completed proofs. Compared with Item 1, there are fewer Level 2 responses and an even higher 
count of Level 1 responses. Figure 2 illustrates the frequency of responses to Item 2 among the 
longitudinal sample across all four assessments. 
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Figure 7 

Assessment Item 3  
One assumption underlying the design of Items 1 and 2 is that students possessed sufficient 

mathematical maturity to produce general arguments on their own for the given contexts. Item 3 
attempted to further test students’ beliefs about the value of empirical evidence, that is, whether 
students believe that examples suffice as proof or they are aware of the limitations of an 
examples-based argument. Students were presented two arguments, attributed to fictitious 
students, justifying the same statement. One argument provided only three examples as evidence 
of the truth of the statement, while the other argument used a deductive chain of reasoning with 
mathematical facts (i.e., a proof). Students were asked to select the argument that proves the 
mathematical statement. 

Results of this assessment item indicate that, until the final assessment in the spring of 8th 
grade, many of the 78 students believed that the examples-based argument was preferable over 
the general justification. Only 18 (23%) students never chose the general justification over the 
examples-based argument on any of the four assessments. In the final assessment, nearly half of 
the students (38 or 49%) chose the general argument over the examples-based argument (29 or 
27%). Other responses given include “Both,” where the student believed both arguments suffice 
as proof, “Neither,” where neither argument is believed to suffice as proof, and “No Response” 
or “Non-Codable” (NR/NC). Figure 3 displays the type of responses given by students for each 
assessment time point. 
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Figure 8 

The figure clearly shows that, from Time Point 1 to Time Point 4, the percentage of students 
choosing the general argument (G) increases, while the pattern of among students choosing the 
examples-based argument (E) is less clear. Considering all analyses for this item, students 
appeared to have made gains in their understanding about what type of argument serves to justify 
a general mathematical statement from the 6th to 8th grades.  

Discussion 
In closing, our results suggest that many middle school students lack an understanding of 

generality, particularly when it applies to producing a general justification of a mathematical 
statement. The types of statements that students were asked to provide justification for, such as 
Item 2, are closely related to activities in Connected Mathematics units, particularly the Prime 
Time unit in 6th grade. However, a large number of students used examples-based justifications 
on these items, and that number did not decrease much, if any, throughout the duration of the 
study. It may be possible that the structuring of activities in Connected Mathematics promotes 
empirical investigation but does not offer as much opportunity for students to generate and 
evaluate abstract conjectures from concrete experiences. Further, an informal analysis of the 
Connected Mathematics curriculum reveals that it is the responsibility of teachers to exploit 
opportunities to engage students in proof-related activities; they are not a ubiquitous part of the 
materials.   

On the other hand, some results, indicate that some students do possess an understanding of 
generality, particularly when they are asked to evaluate whether or not an argument is a proof. 
What is interesting about this finding is that the Connected Mathematics curriculum rarely asks 
students to determine whether an argument suffices as proof, but students show gains in 
performance from 6th to 8th grade on these types of tasks. We speculate that as students 
encounter more mathematics, they may learn what types of arguments are preferred by their 
teachers without necessarily having explicit instruction on what makes for a valid proof. Hence, 
while students may learn to recognize that examples alone do not suffice as proof, further 
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investigation would need to determine whether they could discern the difference between two 
general arguments where one of the arguments fell short of being a proof. 

Endnotes 
1 The research reported here is supported by the National Science Foundation under grant 

REC-0092746. The opinions expressed herein are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. 
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The purpose of this paper is to deepen our understanding of how group discussion of middle-
school aged urban students can facilitate the learning of mathematics. We illustrate how student 
challenges and counterarguments can lead them toward investigating the deep, underlying 
mathematical structure involved in the situation that they are investigating and the arguments 
that they are making. In particular, we investigated how students made judgments about fairness 
of dice by running computer simulations of die tosses. Our analysis revealed that although 
students initially offered unsophisticated justifications for their judgments on which dice were 
fair, challenges to students' justifications led to a lively debate on important mathematical 
principles such as the importance of sample size. 

Introduction 
Participating in discussions in which mathematical ideas are debated provide students with 

powerful opportunities for learning mathematics (Balacheff, 1991; Cobb et al., 2001). McCrone 
argues that discussions “allow students to test ideas, to hear and incorporate the ideas of others, 
to consolidate their thinking by putting their ideas into words, and hence, to build a deeper 
understanding of key concepts” (p. 111). For these reasons, influential organizations such as the 
NCTM (2000) and many researchers in mathematics education (e.g., Balacheff, 1991; Heibert & 
Wearne, 1993; Lampert, Rittenhouse, & Crumbaugh, 1996) recommend that discussion play a 
prominent role in reform-oriented mathematics classrooms. Analyzing students’ discussions is 
also considered central in analyzing how students learn mathematics (Powell & Maher, 2002). 
Ongoing research is building an empirical base for the role of discussion in mathematical 
learning (e.g., Cobb et al., 1997; Manouchehri & Enderson, 1999; Stephan & Rasmussen, 2002; 
McCrone, 2005). The purpose of this paper is to contribute to this literature by presenting and 
analyzing a discussion in which African American and Latino middle school children from a 
poor, urban environment make, justify, and challenge statistical claims.  

Our goal in this paper is to describe and illustrate one way that discussion can foster 
mathematical learning. In the mathematics education literature, several accounts for how 
discourse can contribute to mathematical learning have been proposed. Discussion can objectify 
students’ previous experiences, thereby making these experiences objects that can be analyzed 
(Cobb et al., 1997), encourage students to take a more reflective stance on their mathematical 
reasoning (Manhouchehri & Enderson, 1999), require students to consolidate their thinking by 
verbalizing their thoughts (McCrone, 2005), and help students learn to communicate 
mathematically and participate in a wider range of mathematical argumentation (Lampert & 
Cobb, 2003). We propose that group discussion can also facilitate learning by inviting students to 
be explicit both about the ways in which they make new claims from previously established facts 
and about the standards they are using in deciding whether an argument is acceptable. Further, 
challenges from classmates can lead students to debate whether a particular method of 
argumentation is appropriate, provide students with the opportunity either to justify their 
methods when their reasoning is sound or to revise or abandon these methods when their 
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reasoning is flawed. In the discussion that we will analyze, students debated what statistical 
conclusions legitimately could be drawn from a set of existing data. In the discussion, students 
considered central statistical issues such as the importance of sample size in drawing warranted 
conclusions. 

Theoretical Perspective 
Krummheuer (1995) and others (e.g., Stephan & Rasmussen, 2002; Rasmussen & Stephan, in 

press) have argued that Toulmin’s (1969) model of argumentation can be a useful analytical tool 
for understanding the progression of students’ arguments during collective discourse. In 
Toulmin’s model, an argumentation consists of three essential parts, called the core of the 
argument: the claim, the data, and the warrant. When an individual presents an argument to his 
or her community, he or she is trying to convince the audience of a particular claim. To support 
the claim that is being made, the individual typically presents evidence, or data. The audience 
may ask the individual presenting the argument to explain why one should deduce the claim 
being made from the data being presented. In Toulmin’s scheme, such an explanation is referred 
to as a warrant. In mathematical discussions, students often will not state their warrant when 
they are presenting their argument to their classmates. Frequently, it is a challenge by a teacher 
or classmate that prompts the student to explicitly state the warrant that he or she had, until that 
point, only used implicitly (Rasmussen & Stephan, in press). It is possible for the audience to 
accept the data put forth by the presenter but reject the explanation for why the data support the 
conclusion. If this occurs, the presenter is required to provide backing for why the warrant is 
acceptable and the core of the argument is valid (cf., Stephan & Rasmussen, 2002).  

A central argument advanced in this paper is that classroom discussion may foster 
mathematical learning by requiring students to be explicit about the warrants that they are using 
and requesting that they provide backing for why these warrants are legitimate, thereby 
establishing that their modes of reasoning are valid. As Rasmussen and Stephan (in press) note, 
“eliciting backings is crucial for supporting the evolution of increasingly sophisticated 
mathematical ideas”. Without such elicitation, students may come to believe that all means of 
deducing new information are equally acceptable. It is also possible that the class may present an 
argument that illustrates why the warrant in question is not valid and should not be used to 
present a purported convincing argument. The arguments from our study differ from those 
presented in Rasmussen and Stephan in that our students were not trying to obtain a 
mathematical solution to a problem but were asked to examine whether various six-sided dice 
were fair based on data obtained from computer simulations. The claims students made were 
judgments about the fairness of each of the dice used in our study. The data (in Toulmin’s sense) 
usually, but not always, consisted of data (in a statistical sense) obtained from running 
simulations in which the die under consideration was “rolled” multiple times. Similar to the 
classrooms described in Rasmussen and Stephan, what was most interesting to us as researchers 
was not whether a student believed a particular die was fair (the student’s claim) or even the data 
the student used to justify this conclusion (the data) but what principles the student was using to 
draw conclusions from examining data (the warrant) and the ensuing debates about whether 
these principles were legitimate (the debate about warrants and the construction of backings). 
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Methods 

Setting 
This study is an adjunct of larger, ongoing analyses that emerge from a multi-prong, three- 

year research endeavor, “Informal Mathematics Learning Project” (IML), conducted in an after-
school program in a partnership between the Robert B. Davis Institute of Rutgers University and 
the Plainfield School District in New Jersey, an economically depressed, urban area, whose 
school population is 98 percent African American and Latino students (1).  Two primary goals of 
the IML project involve investigating (a) how middle-school students (11 to 13 years old) 
develop mathematical ideas and reasoning over time in an informal, after-school environment 
and exploring the relationship between agency and students’ learning as well as (b) how teachers 
facilitate IML sessions and attend to students’ ideas and reasoning. For two and a half academic 
years, including the intervening summers, we facilitated 30 sessions, 60- to 75 minutes each, 
with a cohort of approximately 25 students. During these sessions, students were asked to work 
on open-ended, well-defined tasks involving topics such as fractions, combinatorics, and 
probability. Throughout the study, collaboration, justification, and sense making were 
encouraged, and both researchers and students attended to students’ ideas and took them 
seriously.  

This report focuses on a culminating probability and data analysis task, “Schoolopoly,” That 
has been used in prior studies (Stohl & Tarr, 2002; Tarr, Lee, & Rider, 2006). In this task, six 
hypothetical dice companies produced die that may or may not be fair and students are 
challenged to decide which company should supply the dice for a Schoolopoly game. Each pair 
of students was assigned two or three companies, and was asked to judge whether each company 
produced fair dice by simulating rolling their dice using Probability Explorer software. Each die 
company was explorer by at least two groups. After their investigation, students produced a 
poster of their findings, including the data and graphical displays from their simulations and 
justifications for why they believed their judgment was correct. Students then explored the 
posters that each group constructed. Our analysis in this paper focuses on a 30-minute discussion 
that followed students’ analysis of posters as students debated which company to choose for the 
Schoolopoly game.  

Analysis 
All student activities were videotaped. The data were analyzed in a manner consistent with 

the first stage of the research methodology prescribed by Stephan and Rasmussen (in press). 
Members of the research team to get a strong sense of the data viewed the videotape repeatedly. 
The discussion was then transcribed. Next, a description (using the methods of Powell, 
Fransisco, and Maher, 2003) of the videotape was constructed. The description of the videotape 
is a relatively objective description of what transpired in which acts of interpretation are 
explicitly avoided. The data was parsed into specific student argumentations. Each argument that 
a student presented was coded according to Toulmin’s scheme as prescribed by Stephan and 
Rasmussen (in press); each argument was coded in terms of the claim being made, the data to 
support the claim, and, when given, the warrant for how the data implied the claim. In cases 
where no warrant was provided, we sometimes would make a note in our codings with our 
interpretation of the warrant that the student seemed to be implicitly using. Each coding and all 
interpretations were discussed within our research team until all disagreements were resolved. 
We also coded all challenges to a students’ argument by what part of the argument—the claim, 
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data, or warrant—was being challenged. The result of our analysis was a coded chronological 
account of the arguments and challenges that the students raised during the 30-minute discussion. 

Results 
A description of the discussion among students about which die was fair is organized by 

presenting an analysis of three episodes in which a student presented an argument that was 
challenged by his or her peers. 

Episode 1. 
The first episode occurs at the beginning of the discussion. The researcher begins by asking 

Chris to explain why he would choose to buy dice from Delta’s Dice Company. 
 
Chris:  Because, if you look at both of them [posters], they both like, like really explain 

the same thing. Like to me, I thought the first poster and the second poster were 
like about the same thing.  They really explained it […] 

R1:  OK.  Out of how many trials? What were they doing, do you remember? 
Chris:  Uh…. I think it was 600.  But I don’t know. 
R1:  OK.  So it seems to me that one of the reasons why you’re picking Delta’s Dice is 

because the two groups agree. 
Chris:  Uh-huh.  Because, like, in other ones [posters of other dice companies], like, one 

didn’t agree and one did agree, or sometimes they didn’t really explain enough. 
 
We coded this excerpt in the following way: 
 
Claim: Delta’s Dice is fair 
Data: Both posters agreed that Delta’s Dice was fair and presented similar arguments. 

Posters for other dice did not agree, or did not give thorough explanations. 
Warrant: None provided. We inferred Chris’ warrant to be that if both posters for a die 

agreed, it was reasonable to conclude that die was fair. 
 
Chris seems to be accepting that Delta’s Dice was fair based on the authority of the posters 

that he examined, but not on the data or arguments contained in the posters. When the researcher 
asked Chris for details about the poster (“Out of how many trials? What were they doing?”), 
Chris could not recall details of the poster with confidence. He also agreed the agreement of the 
posters was one of the reasons he chose Delta’s Dice. After Chris gave his argument, Chanel 
challenged it: 

 
Chanel: I just have a real quick question.  Why does on the one scribbly and stuff, why 

does it say that one [outcome] is lower, one might be lower and the rest are higher, 
and why, how is that fair? [Referring to statement on poster “the dice are close to 
each other except for one might be low like number 5”] Yeah, I don’t get it […] 
that one, it might be lower, and the rest, the rest is just higher.  So, how is, I don’t 
get it, how is that fair? 

 
In this excerpt, Chanel is questioning whether the data and claim made in one of the posters 

for Delta’s Dice really is evidence that Delta’s Dice is fair. Several other students raised similar 
questions. Chanel’s challenge is arguably more sophisticated than Chris’ argument since she 
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examines the data and argument presented in the poster and not just the conclusion expressed in 
the poster. However, it is also important to note that Chanel’s challenge was to Chris’ 
conclusion, but not to his reasoning. She did not question whether it was appropriate to conclude 
a die was fair because both posters claimed it was; rather she challenged Chris’ claim because 
she reached a different conclusion from her examination of data and claims on one of the posters 
of Delta’s Dice. The next two students after Chris presented similar arguments that Delta’s Dice 
was fair, primarily relying on the fact that the two posters evaluating Delta’s Dice both 
concluded that it was fair. 

Episode 2. 
Tiffany deviated from the previous students by arguing that Calibrated Cubes would be the 

die most likely to be fair: 
 
R1:  OK.  Tiffany, what do you think? 
Tiffany:  Um, I picked Calibrated Cubes. 
R1:  OK.  Can you tell us why? 
Tiffany:  Because, um, I think it’s fair because all the numbers were even, ‘cause when I 

looked at the charts, all the numbers had 11, I think. 
 
Here, Tiffany is referring to a table on one of the posters that showed that on one of the 

samples of 80 trials, 1, 2, and 3 each occurred exactly 11 times. The table on the poster was 
arranged in such a way that the number of times a 4, 5, and 6 occurred were not shown. We 
coded this argumentation as follows: 

 
Claim: Calibrated Cubes is a fair die. 
Data: The table for Calibrated Cubes shows that 1, 2, and 3 each occurred exactly 11 times. 
Warrant: None given. We inferred the warrant to be that if three sides of the die were rolled 

the exact same number of times in a particular simulation, the die is likely to be fair. 
 
Note that Tiffany differed from the previous students in that the data with which she 

supported her claim did not concern the judgment of the posters that she inspected, but rather 
their contents. Chanel immediately challenged Tiffany’s argument: 

 
Chanel:  I think that, um, like on Calibrated Cubes it just showed three 11’s.  It didn’t 

show all of the cubes.  ‘Cause there were three more cubes, and those could have 
been 12, 13, or 14, or any other number. And it didn’t show all the, um, numbers, 
it showed the three 11’s.  How do we know it wasn’t like 34 or something on the 
other ones [outcomes 4, 5, and 6]? 

Student: (off camera) Or 117. 
Chanel:  You agree with it! 
Student:  (off camera) I know but still. 
Tiffany:  But I have a question.  Whoever that is, what was the other numbers? You don’t 

have to lie. 
 
In this excerpt, Chanel is challenging Tiffany’s implicit warrant. It is possible that in the 

table that Tiffany looked at, the missing numbers could have been large, such as 34. Chanel 
appears to be implicitly arguing that if a 1 appeared 11 times and a 4 appeared 34 times, a 
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plausible possibility given the data Tiffany alluded to, then it would be unreasonable to call a die 
fair based on this evidence. Another student, apparently one who initially agreed with Tiffany 
that Calibrated Cubes was fair, chimed in that one of the missing numbers could have occurred 
117 times, an impossibility since the total number of trials was 80. It is not clear whether 
Chanel’s challenge caused this student to change his mind that Calibrated Cubes was fair, but 
this student clearly was attending to Chanel’s challenge and building upon her reasoning. 
Tiffany’s request to know the missing values of the table suggests that she too is attending to and 
appreciates the merits of Chanel’s challenge. Finally, note that Chanel’s challenge here differs 
from the one that she and others posed to Chris. Chanel did not simply challenge Tiffany’s claim 
because she arrived at a different judgment; here she is challenging the validity of Tiffany’s 
reasoning. 

Episode 3. 
Jerel challenges Tiffany’s argument for a different reason than Chanel. 
 
Jerel:  Well look.  They only ran it 80 times.  You’ll never know if another number is 

gonna come up and pass it.  Even though it was even, they ran it a small amount 
of times.  You need to run it a lot of times.  Because  

Terrill:  Why, why? I don’t understand why. 
Jerel:  I didn’t say you had to, I said you need to […] Because, you, all right, just like 

when we were doing Delta’s Dice, we had ran it, um, I think a hundred times, and 
one number won by a lot.  But when we ran it like one thousand times and all that, 
other numbers won….Because, like, um, other numbers won, but they were close 
to each other still, and the reason they got that all is because they had a little bit 
amount of numbers that they ran it, but when you like, I guarantee you if you ran 
it like 500 times, it would have been different.  You ought to say it was unfair. 

 
In this exchange, Jerel is arguing against a different aspect of Tiffany’s warrant. Tiffany is 

drawing a conclusion based on the results of rolling the die 80 times. Jerel is questioning whether 
one can legitimately draw such conclusions from such a limited data set. In fact, he puts forth a 
counterclaim that one needs to run a large number of trials in order to reach a reliable conclusion, 
citing his experience in seeing discrepancies in his data when he ran simulations with 100 and 
1000 trials. Jerel’s counterclaim goes beyond the data Tiffany referred to and the argument that 
Tiffany made; it focuses on a central statistical issue—the importance of sample size. Jerel’s 
counterclaim became the subject of intense debate among the students, with students offering 
arguments and counterarguments for why they did or did not need to examine data with a large 
sample size when judging whether a die was fair. 

Summary 
The first three students who offered their decision on which die to buy chose Delta’s Dice, 

primarily because the two groups that inspected Delta’s Dice both found Delta’s Dice to be fair 
and no other dice company shared a similar level of agreement. The students making these 
arguments did not discuss the content of the posters. Only one of the three arguments was 
challenged. The challenges posed were not based on the reasoning that the student used, but on 
the conclusion that he reached. Tiffany was the first student to present an argument based on the 
data presented in the posters that she inspected. Challenges to Tiffany’s arguments were based 
on the warrants that she appeared to be using to draw her conclusions. A central challenge to 
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Tiffany’s data occurred when Jerel questioned whether it was appropriate to draw conclusions 
from a simulation that used a relatively small sample size. The issue of sample size subsequently 
led to a lengthy and lively debate. Subsequent challenges to students’ arguments were based on 
the warrants that the students were using, or appeared to be using implicitly. In particular, 
arguments based on the conclusions of the posters but not the data presented in the posters were 
challenged by other students.  

Endnote 
(1) This research is a component of the National Science Foundation funded project, 

Research on Informal Mathematical Learning (REC-0309062). Any opinions, findings, 
conclusions and recommendations expressed in this paper are those of the authors and do not 
necessarily reflect the views of the National Science Foundation. 
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Research suggests that teachers need to have mathematics content knowledge that allows them 
to effectively deal with the particular mathematical issues that arise in their everyday practice. 
This implies the importance of providing teachers with learning opportunities that prepare them 
to both recognize situations in their practice where these mathematical issues arise and be able 
to apply their mathematical knowledge to successfully manage these situations. Yet, little 
research has focused on how such learning opportunities can be effectively promoted in teacher 
education. In this article we take a step toward addressing this limitation by discussing and 
exemplifying a special kind of tasks for use in teacher education which we call “teaching-related 
mathematics tasks.” These are mathematics tasks that are connected to teaching and can foster 
the development of teachers’ mathematics content knowledge that is important for teaching.  

In recent years, there has been increased research attention to the mathematics content 
knowledge that is important for teaching (e.g., Ball et al., 2001; Ball & Bass, 2000, 2003; Davis 
& Simmt, 2006; Ma, 1999; Shulman, 1986). A major idea advanced in this body of research, 
especially in the work of Ball and Bass, is that teachers need to have mathematics content 
knowledge that allows them to effectively deal with the mathematical issues that arise in their 
everyday practice, which are generally different from the mathematical issues that arise in the 
everyday practice of other professionals who use mathematics. For example, the work of an 
engineer does not (normally) necessitate that the engineer knows different methods for dividing 
fractions, or how these methods correspond to one another. A teacher, however, needs to be able 
to reason accurately and quickly about different methods – both valid and invalid – for dividing 
fractions in order to be able to function effectively in teaching situations where this mathematical 
issue arises. In the context of a classroom discussion of the standard “invert and multiply” 
method, a student may ask the teacher whether it is correct to use a different method such as 
“dividing numerators and denominators.” This situation raises for the teacher some critical 
questions: Is dividing numerators and denominators a valid method for dividing two fractions? If 
so, how does this method correspond to the standard invert and multiply method?  

The idea that teachers need to have mathematics content knowledge that allows them to 
effectively deal with the mathematical issues that arise in their everyday practice implies the 
importance that teacher education programs design opportunities for teachers to learn 
mathematics that are tailored for the particular needs of teaching. Specifically, it implies the 
importance that these programs provide teachers with learning opportunities that prepare them to 
both recognize situations in their practice where different mathematical issues arise (like the 
situation described in the previous paragraph) and be able to apply their mathematical knowledge 
to successfully manage these situations. Despite the importance of these learning opportunities 
for teachers, little research has focused on how such opportunities can be effectively promoted in 
teacher education (both teacher preparation and professional development programs).  

In this article, which is a continuation of Stylianides and Stylianides (2006), we take a step 
toward addressing this limitation by discussing a special kind of mathematics tasks – which we 
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call “teaching-related mathematics tasks” – that can foster the development of teachers’ 
mathematics content knowledge that is important for teaching. Our goal is to further elaborate on 
the nature and illustrate the utility of this kind of tasks. To promote our goal, we connect the 
notion of teaching-related mathematics tasks with existing literature and we offer a critical 
reflective account of our own personal experiences in designing and implementing one such task 
in a mathematics course for preservice elementary teachers (grades K-6). To investigate more 
systematically the utility of the tasks in teacher education we are in the process of conducting a 
design experiment, the findings of which will appear in a future report. 

The Notion of “Teaching-related Mathematics Tasks” 
Consider the following two versions of a mathematics task that aims to promote teacher 

learning of proof in the domain of multiples of a number. The first version is a standard 
mathematics task typically used in mathematics courses for preservice elementary teachers, 
whereas the second version is a teaching-related mathematics task that we use in our 
mathematics course for preservice elementary teachers. 

Version 1 (standard mathematics task): 
Develop three proofs for the claim: “A multiple of 3 plus a multiple of 3 equals a multiple of 

3.” One proof should use everyday language, another proof should use pictures, and the third 
proof should use algebra. 

Version 2 (teaching-related mathematics task): 
As the mathematics specialist in your school, you teach mathematics in all three fifth-grade 

classes: Class A, Class B, and Class C. The past week you have been working with all three 
classes on the notion of multiples of a number. The three classes developed appropriate 
definitions of multiples of a number, but in each class these definitions were represented in a 
different way. In Class A they were represented using everyday language, in Class B they were 
represented pictorially, and in Class C they were represented algebraically.  

In the next lesson, you plan to engage your students in the three classes in proving the claim: 
“A multiple of 3 plus a multiple of 3 equals a multiple of 3.” 

In preparation for this lesson, you want to take into account the fact that each class shares 
definitions that are represented in a different way. So, for Class A you want to prepare a proof 
that uses everyday language, for Class B you want to prepare a pictorial proof, and for Class C 
you want to prepare an algebraic proof. Write the three proofs.  

Although both tasks aim to promote teacher learning of proof in the domain of multiples of a 
number, they do so in substantially different ways. Contrary to Version 1 of the task, Version 2 
facilitates connections between the intended learning and the work of teaching by situating the 
preservice teachers’ mathematical activity in an authentic teaching situation where this learning 
is crucial. In particular, Version 2 of the task helps preservice teachers make connections 
between learning equivalent proofs that utilize different representations and teaching situations 
where only certain representational tools are available in the shared knowledge of a particular 
classroom community. By so doing, Version 2 of the task helps preservice teachers appreciate 
what this task intends to teach them and, thus, makes it more likely than Version 1 of the task 
that preservice teachers will learn the mathematical ideas embedded in the task (Harel, 1998). 
According to Harel, “[s]tudents are most likely to learn when they see a need for what we intend 
to teach them, where by ‘need’ is meant intellectual need, as opposed to social or economic 
need” (p. 501). In the case of preservice teachers, “need” can be defined as their interest in 
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developing mathematics content knowledge that is useful for their work and in becoming able to 
apply this knowledge to successfully manage teaching situations where this knowledge is called 
for. The consideration of preservice teachers’ need for learning is consistent with findings of 
research on the motivational aspects of cognition which suggest that a prerequisite for successful 
problem solving is that problem solving be situated in personally meaningful contexts (see, e.g., 
Mayer, 1998; Renninger et al., 1992; Weiner, 1986). According to the findings of this body of 
research, students learn better – that is, they think harder and process the material more deeply 
and with more likelihood of transfer – when they have an interest in the material.  

Given our analysis of versions 1 and 2 of the task above, we argue that mathematics courses 
for teachers (both preservice and inservice) need to place emphasis on the use of tasks like 
Version 2 that we call teaching-related mathematics tasks. These are mathematics tasks that are 
connected to teaching, and have a dual purpose: (1) to foster learning of mathematics that is 
important for teaching; and (2) to help teachers see how this mathematics relates to teaching, 
thereby increasing the possibility that they will learn it and use it in their work. By “task” we 
mean a sequence of related activities (e.g., engagement with a mathematical problem 
accompanied by reflection on the work to solve the problem) that focus on a particular idea and 
aim to promote a particular goal. 

Teachers’ engagement with teaching-related mathematics tasks can be thought of as a 
process of mathematizing teaching. Our use of the term “mathematizing” follows that of 
Freudenthal (1973, 1991). Freudenthal, used mathematizing to describe a notion of mathematics 
as an activity – as schematizing, structuring, and modeling the world mathematically, rather than 
as a discipline of structures to be transmitted, discovered, or even constructed. Also, we use 
mathematizing to include both horizontal and vertical mathematization, i.e., the process of 
converting a contextual (teaching) problem to a mathematical problem that can be solved 
mathematically and the process of taking the mathematical content to a higher (meta) level, 
respectively (Treffers, 1987). We elaborate on these ideas below. 

A teaching-related mathematics task engages teachers in studying (e.g., interpreting, 
analyzing) a teaching situation with a mathematical lens, and, in some cases, the task engages 
them additionally in studying their own mathematical activity in the task at a meta-level (e.g., 
reflecting on their own work in the task). Version 2 of the task we presented earlier provides an 
example of the former: it engages preservice teachers in studying mathematically the situation 
where a teacher needs to develop three proofs for a mathematical claim given the constraints in 
the representational tools available to different student populations. If the task additionally asked 
preservice teachers to reflect on their own mathematical activity in the task, this would facilitate 
studying the mathematical activity at a meta-level. Such a reflection could help preservice 
teachers identify their mathematical activity in this particular task as being part of the more 
general mathematical activity of producing equivalent ways to represent different mathematical 
ideas (e.g., arguments, concepts) within the constraints of given mathematical systems. 
Identification of this general mathematical activity would promote teachers’ understanding of 
where and how in teaching they would need to engage in a similar mathematical activity, thereby 
increasing the possibility of them transferring the mathematics content knowledge to be acquired 
from their engagement in this teaching-related mathematics task to new teaching situations. 

A Mathematics Course for Preservice Elementary Teachers 
Over the past three years, we have developed a set of teaching-related mathematics tasks on 

different content areas (e.g., algebra, geometry, number theory) that we have piloted – with 
promising results – in five enactments of a mathematics course for preservice elementary 
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teachers. The course places emphasis on the use of teaching-related mathematics tasks and aims 
to advance preservice teachers’ content knowledge that is important for teaching elementary 
school mathematics. A major goal of the course is to promote a notion of mathematics as a 
sense-making activity – that is, activity characterized by meaningful learning – and to create a 
community of mathematical discourse where ideas are validated based on mathematical 
argument. As a result the notion of proof holds a prominent place in the course. To facilitate 
connections between the mathematics learnt in the course and the work of teaching, the course 
makes extensive use of records of classroom practice (e.g., video or written reports of lessons, 
student artifacts). These records are derived from various sources, such as books (e.g., Carpenter 
et al., 2003), research reports (e.g., Zack, 1997), and a database of the Mathematics Teaching and 
Learning to Teach (MTLT) project at the University of Michigan that documents an entire year 
of the mathematics teaching of Deborah Ball in a United States public school third-grade class.  

An Example of A Teaching-related Mathematics Task From the Course 
In this section we present a teaching-related mathematics task we designed and implemented 

in our mathematics course for preservice elementary teachers. The presentation of the task is 
based on data (video records of lessons and student artifacts) we collected during the last 
enactment of the course in 2006; the instructor was the first author. 

Description 
This teaching-related mathematics task comes from the content area of number theory. In the 

class prior to the implementation of this task, the preservice teachers analyzed textbook 
definitions of even and odd numbers, and developed equivalent definitions of these concepts that 
are accurate mathematically and appropriate for use in the elementary grades. With this teaching-
related mathematics task, we aimed to help preservice teachers understand the utility of 
definitions in mathematical reasoning and, in particular, in proving true claims over infinite sets. 
The task had three parts: 

� Individual work to prove the claim: An odd number plus an odd number equals an 
even number.  

� Discussion of the mathematical issue raised in a videoclip from third grade where 
students try to prove the same claim. 

� Individual and small group work to revisit their work in part A. 
Part B is particularly important, because it uses a teaching situation to help preservice 

teachers realize the limitations of empirical arguments (that predominate in their solutions of part 
A), understand the importance of definitions in the development of proofs, and motivate them to 
revisit their work in part A to produce a proof. Below we consider each part separately. 

Part A. 
The course was taken by 18 preservice teachers. Their written responses to part A of the task 

are classified as follows: two responses did not offer any real argument for the claim to be 
proved (e.g., they were faulty or irrelevant responses); nine were empirical arguments; two were 
unsuccessful attempts for a general argument; and five were general arguments (see Table 1 for 
illustrative examples). By “general arguments” we mean arguments that address appropriately 
the general case and either qualify as proofs or require minor refinements (e.g., better 
justification of a step in the argument) before they qualify as such. By “proofs” we mean valid 
arguments from accepted truths (e.g., definitions, axioms) for or against mathematical claims. In 
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sum, at the beginning of preservice teachers’ engagement with the task, only seven out of 18 
made an effort to produce arguments that address the general case. 

Response Commentary 
An odd number multiplied by 2 always gives an 

odd number. 
This is a faulty response that does not 

offer any real argument for the claim to 
be proved. 

3+7=10, 1+5=6, 7+9=16, 3+37=40, -47+3=-44,           
-3+1=-2, -3+(-1)=-4, -37+(-51)=-88, 573+697=1270. 

Any odd number added to another odd number 
would equal an even number. Any way that you do 
it, it comes out to an even number. 

This is an empirical argument 
because the claim follows as a 
generalization from the confirming 
evidence offered by the examination of a 
few particular cases (a proper subset of 
all the possible cases). 

Any odd number on a number line that is moved 
an odd number of spaces to the right (i.e., an odd 
number is added to it), you always will land on an 
even number.  

This is an unsuccessful attempt for a 
general argument because, although it 
deals with the general case, it does not 
produce a valid argument.  

An even number can be divided equally by two. 
An odd number can be divided by two with one left 
over. If you add together two odd numbers, you are 
also adding the two leftovers, which will be able to 
be grouped by two without leftovers.  

This a general argument that qualifies 
as a proof because it makes adequate use 
of definitions of even and odd numbers to 
deduce logically the truth of the claim 
“odd+odd=even.”  

Table 1. Illustrative examples of different types of responses to part A of the task 

Part B. 
After the preservice teachers completed their individual work on part A, and without 

discussing their solutions in the whole group, the instructor engaged them in watching and 
discussing a videoclip from the MTLT database. The videoclip shows the third graders in 
Deborah Ball’s class investigating the same mathematical claim as in part A of the task, namely, 
that the sum of any two odd numbers is even. Ofala, like many other students in the third-grade 
class, asserts that the claim is true because she verified it in a few particular cases (e.g., 1+5=6). 
Jeannie, however, begins to worry about what it really means to prove a claim that involves an 
infinite number of cases. She says: “Numbers go on and on forever and that means odd numbers 
and even numbers, um, go on for ever and, um, so you couldn’t prove that all of them work.” 
(See Ball and Bass [2003] for a more detailed description of the classroom episode in the 
videoclip.) 

The guiding question for the preservice teachers in watching the videoclip was the following: 
What was the mathematical issue raised in the videoclip and how could this issue be addressed? 
After some discussion in small groups and then in the whole group, the preservice teachers 
concluded that the main issue in the videoclip was that checking a few particular cases does not 
suffice to prove true mathematical claims like “odd+odd=even” that involve an infinite number 
of cases. Regarding the second part of the guiding question, one preservice teacher suggested 
that “there’s a consistency in how odd and even numbers behave and this consistency guarantees 
that what happens in particular cases happens in all cases.” The instructor highlighted this idea of 
consistency and asked the preservice teachers to think more about it. What exactly about even 
and odd numbers guarantees this consistency? Another preservice teacher then pointed out that 
the consistency resides in the definitions of even and odd numbers.  
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Part C. 
After the discussion of the videoclip, the instructor introduced part C of the task: “Now that 

we’ve watched the clip and understood what the issue there was, I’d like you to think whether 
the proofs you gave [in part A] for the claim ‘odd+odd=even’ address this issue. If they don’t, 
how could you revise your proofs?” After the small group work, the instructor asked the different 
groups to present their proofs in the whole class. Out of five small groups, two tried 
unsuccessfully to produce a general argument and three produced general arguments. In other 
words, all groups made an explicit effort to avoid empirical arguments and to produce arguments 
that address the general case. 

Discussion 
A well-documented finding in the literature is that many students and teachers of 

mathematics demonstrate a reliance on the use of examples to verify the truth of general 
mathematical claims (e.g., Knuth et al., 2002; Martin & Harel, 1989; Simon & Blume, 1996). 
This finding is illustrated both in the work of our preservice teachers in part A of the task and in 
the episode used in part B of the task that showed the work of the third graders in Deborah Ball’s 
class. The teaching-related mathematics task helped us to engage our preservice teachers in 
thinking about the important mathematical issue of how one can prove true mathematical claims 
that involve an infinite number of cases. The innovative aspect of the task is that, instead of 
relying on the instructor and his/her authority to convince preservice teachers about the 
limitations of empirical arguments to prove general mathematical claims, it used a classroom 
episode from third grade that was raising the exact same issue. The set up of the task helped 
preservice teachers reconsider in productive ways their original approaches to proving the claim 
in part A of the task, resulting in significantly improved arguments in part C. Also, the preservice 
teachers appeared to be motivated to revisit their original approaches and to appreciate the value 
of what they were learning. The latter is encouraging, especially in the context of a task focusing 
on the notion of proof, because preservice teachers tend to consider proof as an advanced topic 
and, thus, they are often resistant to engage in activities that aim to develop their generally weak 
content knowledge in this important mathematical domain. Finally, we should note that part B of 
the task engaged preservice teachers in a process of mathematizing teaching, as it engaged them 
in interpreting and analyzing a teaching situation with a mathematical lens.  

Conclusion 
This article contributes to teacher educators’ understanding of how theoretical ideas on the 

mathematics content knowledge that is important for teaching can be used to design useful tasks 
that offer preservice teachers rich opportunities to learn mathematics in connection to the work 
of teaching. The reflective account of our own personal experiences in designing and 
implementing teaching-related mathematics tasks illuminates aspects of the role and nature of 
this kind of tasks, and suggests their promise in teacher education. Further research is needed to 
develop a comprehensive set of teaching-related mathematics tasks and investigate 
systematically their effectiveness by conducting experimental or quasi-experimental studies that 
will examine their impact on teachers’ learning of mathematics and on their teaching practice. 

Endnote 
1. The two authors had an equal contribution in writing this article. 
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Image-based reasoning, in which the image is an essential component of the reasoning process 
rather than merely a cognitive aid, is the basis of high-school geometry.  The principles of 
conceptualization are a proposed framework for understanding geometrical reasoning as a 
synergy between image and concept.  It points to a new “logic” for image-based reasoning. 

Rationale 
The term image-based reasoning refers to informal deductive geometry, in which image data 

must be used in the argument.  It is a feature of high-school geometry.  A better grasp of the 
cognitive processes of image-based reasoning would allow educators to comprehend student 
under-performance in geometry and lead to improvements in pedagogy. 

Review of Literature 
A schematic property is a geometric property that can be inferred validly from a geometrical 

diagram within the context of a geometrical argument; a deductive geometry without axioms is 
required of students in high school in many educational jurisdictions; schematic properties are an 
essential component of this type of informal deductive geometry (Handscomb, 2005).  It is 
interesting to note also that the geometry of Euclid required the use of schematic properties 
(Netz, 1999). 

A conceptualization of an image is a set of properties that are true of the image, for example 
schematic properties in informal deductive geometry.  Aristotle’s qua operator (Lear, 1982) and 
Godfrey’s (1910) “geometrical ‘eye’” (p. 197) both imply this notion. 

According to Fischbein (1993), image and concept together form a hybrid third type of 
entity: “The objects of investigation and manipulation in geometrical reasoning are then mental 
entities, called by us figural concepts, which reflect spatial properties (shape, position, 
magnitude), and at the same time, possess conceptual properties—like ideality, abstractness, 
generality, perfection” (p. 143, author’s italics). 

Theoretical Model 
A proof in high school geometry starts with a figural concept and ends with a figural 

concept—the given information and the conclusion, a statement that has been deduced from the 
given information.  In between are a number of intermediate figural concepts.  Laws governing 
the flow of these figural concepts would comprise a “logic” for image-based reasoning, a set of 
cognitive principles for non-formal deductive geometry. 

It is necessary to modify and extend Fischbein’s figural concept notion in two respects.  
Firstly, Fischbein’s concepts exist in a formal framework, and this requirement should be relaxed 
to allow concepts from outside a formal, axiomatic framework.  Secondly, the figural concept is 
a static construct, whereas I would like to understand it in terms of a dynamic interplay between 
image and concept, in which the geometer continually conceptualizes new aspects of the image. 

Given these modifications to the figural concept idea, I have developed five principles of 
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conceptualization.  These notions were derived through an introspective analysis of the reasoning 
process that needs to happen for successful, informal geometric proof. 

Principle 1 
If C and D are two conceptualizations of an image I, then the union of the properties of C and 

D is also a conceptualization of I. 

Principle 2 
If C is a conceptualization of image I, and D is a subset of C, then D is also a 

conceptualization of I. 

Principle 3 
If C is a conceptualization of image I, and the properties of D can be deduced from the 

properties of C, then D is also a conceptualization of I. 

Principle 4 
If image I is contained in image J, and C is a conceptualization of I, then C is also a 

conceptualization of J. 

Principle 5 
If image I is contained in image J and C is a conceptualization of J, then there is a subset D of 

C such that D is a conceptualization of I. 
 
A diagrammatic representation of these ideas is given in Figure 1.  Principles 1 and 2 can be 

seen to be special cases of Principle 3.  They are discussed separately for additional clarity.  Note 
that Principle 4 is certainly not true in a formal mathematical sense.  It should be emphasized that 
these are not mathematical propositions, but cognitive principles in the same spirit as the laws of 
Gestalt (Kosslyn, 1983). 

C D

IJ

C D

I

C DU

C D

I

C D

I

C

IJ

1 2 3 4 5

Figure 1. Principles of conceptualization 

Discussion 
A closer analysis of the processes involved in the principles of conceptualization leads to 

four geometrical reasoning skills.  I have described these geometrical reasoning skills in 
Handscomb (2005) and compared them to the van Hiele levels discussed in van Hiele (1986).  
There is a close correspondence between the two frameworks, although the principles of 
conceptualization and the geometrical skills are considered here more purely as cognitive 
processes rather than as a developmental model of geometrical reasoning. 
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My next step is to attempt a corroboration and/or refutation of these principles and skills by 
means of empirical research.  I will be using electroencephalographic (EEG) data gathered in the 
Engrammetron Laboratory at Simon Fraser University to seek reliable and valid brain-based 
correlates of these postulated cognitive processes. 

References 
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 

24(2), 139-162. 
Godfrey, C. (1910). The Board of Education circular on the teaching of geometry. 

Mathematical Gazette, 5, 195-200. 
Handscomb, K. (2005). Image-based reasoning in geometry. Masters Abstract International 

reference currently not available. 
Kosslyn, S. M. (1983). Ghosts in the mind’s machine. New York: W. W. Norton. 
Lear, J. (1982). Aristotle’s philosophy of mathematics. The Philosophical Review, 91(2), 

161-192. 
Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive 

history. Cambridge, UK: Cambridge University Press.  
van Hiele, P. (1986). Structure and insight: A theory of mathematics education. Orlando, 

FL: Academic Press. 



Reasoning and Proof  Vol.2-421 
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A recent study shows that prediction is the most prevalent grade level expectation on reasoning 
in state mathematics standards. In this presentation, we articulate characteristics of prediction 
and how prediction can be utilized to promote student reasoning using examples from state 
mathematics standards as well as 8th-grade classroom data. 

The analysis of the grade level expectations (GLEs) requiring reasoning in state mathematics 
standards revealed that GLEs pertaining to prediction were the most prevalent reasoning 
expectations across grades as well as content strands in the state (Kim & Kasmer, 2006). This 
suggested that prediction be an important component of reasoning that could be easily pursued at 
all grade levels and in all mathematics content strands. It also implicated the sound rationale to 
investigate the potential of prediction in the mathematics classroom that encouraged 
mathematical reasoning. Prediction, however, has rarely been investigated in comparison to other 
aspects of mathematical reasoning, such as justification. It is speculated that part of the reason 
may be that prediction is considered in relation to conjecture or hypothesis and typically not seen 
as a unique feature of reasoning. For example, the Trends in Mathematics and Science Study 
(TIMSS) includes hypothesize, conjecture, and predict in one category in its assessment 
framework on reasoning (Mullis, Martin, Smith, Garden, Gregory, Gonzalez, Chrostowski, & 
O’Connor, 2001). Some researchers used prediction and conjecture interchangeably (e.g., 
Blanton and Kaput, 2005). On the contrary, a body of research has investigated prediction in the 
area of reading (e.g., Block, Rodgers, & Johnson, 2004). In such research, students were asked to 
make a prediction as they proceeded in a reading activity using questions akin to ‘given the 
situation in the story, what will possibly happen next?’ Research found that asking students to 
make such a prediction helped increase students’ comprehension of reading. 

As such, we began to look at how prediction could help student reasoning by observing 
classrooms where prediction was utilized in each lesson. For this paper, we search for aspects of 
prediction expectations in state standards in order to identify what prediction is. We also further 
elaborate characteristics of prediction as a tool to promote reasoning using classroom data. 

Prediction in State Mathematics Standards 
State standards present various prediction GLEs as seen in the examples below whereas 

conjecture GLEs are much less common and primarily target general properties. These examples 
delineate a range of possible predictions from simple to more sophisticated (P1 can result in a 
premature guess as well as a prediction with sound reasoning), from forming a generalization 
(P5) to using a generalization (P2), and from dealing with one particular event (P3, P4, P6) to 
possibly leading to general structures (P4, P5, P6). 

P1. Predict the effect on the graph of a linear equation when the slope changes  
P2. Make reasonable predictions using generalizations about patterns  
P3. Predict what comes next in an established pattern and justify thinking  
P4. Predict and evaluate how adding data to a set of data affects measures of center  

 



Vol.2-422  PME-NA 2006 Proceedings 

 

P5. Make and test predictions about measurements, using different units to measure the same 
length or volume  

P6. Predict and justify the results of subdividing, combining and transforming shapes 
As seen above, prediction can be made by random guessing or based on plausible reasoning 

about mathematical relationships. In other cases, prediction can occur based on an established 
generalization of patterns observed. Prediction in this case can be a further application of 
generalization using known facts. Prediction can be used interchangeably with conjecture as seen 
in P5, and yet the two can have different focuses. A conjecture is to be tested to form a 
generalization (see Reid, 2002), but a prediction may or may not lead to a generalization and can 
be a simple application of a generalization. It can also be said that a prediction attempts to 
describe the outcome of a specific future event as well as a foundation of generality while a 
conjecture attempts to describe a general structure of events. In this sense, conjecture can be 
understood as a specific type of prediction.  

A Classroom Example 
The classroom episode described below demonstrates what prediction looks like in a 

classroom. Prior to the episode, students used dot grid paper to find areas of various geometric 
figures. In this episode, the teacher asked students to predict the length of a diagonal line 
segment connecting dots on a dot grid four across and one up, and justify their predictions. After 
students individually thought about the question and recorded their thinking, the teacher elicited 
responses about their predictions in the whole group. A summary of students’ predictions and 
reasoning discussed is presented below. 
Student Prediction Reasoning 
S1 5 Count dots “4 over and 1 up” or “1 down and 4 to the left 
S2 4 Multiply 4 (4 unit lengths across) by 1 (one unit length down) 
S3 4 Count spaces in between dots (the number of unit lengths either on the top or the 

bottom) only across 
S4 2 No particular reason 
S5 4 1/3 “Since it’s a diagonal, it’s actually longer [than the line across, which is 4].” “It 

doesn’t look like it’s that long [5] if you spun it around.” 
S6 4.5 Same as S5 

In this example, the teacher used prediction to motivate and engage students, which would 
eventually lead to properties of a Pythagorean triangle. Predictions students made in this lesson 
ranged from random guesses, such as 2, to more sophisticated ones noticing the diagonal being 
longer than each of the legs and shorter than their sum. Students provided justifications for their 
predictions using various support. Making predictions using this special case, students began to 
consider the relationship between the lengths of the hypotenuse and the legs of a triangle. These 
students’ predictions are indicative of the range of prediction GLEs found in the state standards. 

Conclusion 
Prediction has the potential to promote reasoning. Even though some consider prediction part 

of conjecture, it has its own distinct characteristics that help students develop reasoning. 
Prediction can facilitate students’ engagement in problems dealing with particular cases and yet 
it leads to general structures and properties in later explorations. When students offer their 
predictions with supported reasoning, various perspectives can come to the forefront of the 
discussion. Therefore, making a prediction affords students an opportunity to think about and 
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organize what they know and what they notice and make possible connections between those and 
concepts in later explorations.  
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STUDENTS’ USE OF REPRESENTATIONS IN THEIR DEVELOPME NT OF 
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This study documents the mathematical development of a group of eleventh-grade students who 
built representations to solve challenging combinatorics tasks, then refined and linked those 
representations to develop an understanding of the relationship among the tasks, combinatorial 
idea of (m choose n), and Pascal's Triangle. Students' use of their representations was critical 
for their development of combinatorial reasoning and justification. 

The National Council of Teachers of Mathematics [NCTM] (2000) recommends that 
combinatorics be an integral part of the mathematics curriculum. Research indicates, however, 
that “Combinatorics is a field that most pupils find very difficult” (Batanero, Navarro-Pelayo, 
and Godino, 1997, p. 182), and Schielach (1991) asserts that students are often given many 
formulas, with little justification, and attempt to memorize these formulas with the result being 
“disastrous” (p. 137). This study documents the mathematical development of a group of 
eleventh-grade students who built representations to solve challenging combinatorics tasks and 
then refined and linked their representations in order to develop an understanding of the 
relationship among the tasks, the combinatorial idea of (m choose n), and Pascal's Triangle. The 
perspective underlying this research is based on the view that when students are presented with 
challenging problem-solving tasks in an appropriately supportive environment, and have 
opportunities to build, refine, and link representations for their ideas, they can build elaborate 
justifications (Tarlow, 2004; Warner & Schorr, 2004; Davis & Maher, 1990). The NCTM (2000) 
states, “It is important that students have opportunities not only to learn conventional forms of 
representations, but also to construct, refine, and use their own representations as tools to support 
learning and doing mathematics” (p. 68). In this manner, students develop understanding by 
building upon their experience, rather than by being told by the teacher. 

Methods 
In an ongoing seventeen-year longitudinal study involving the development of students’ 

mathematical ideas1, students were engaged in combinatorics investigations in grades two 
through eight, during which they worked together to find solutions to problems and build 
justifications for their ideas. During this component of the longitudinal study, eleventh grade 
after-school sessions, several identical and similar problems were posed to nine students, five of 
whom were a subset of the original group. The tasks that are the basis of this study are the Tower 
and Pizza Problems. In the Tower Problem, students are asked how many towers n unifix cubes 
tall could be built, given two colors to choose from. In the Pizza Problem, students are asked 
how many pizza choices a customer has, given n toppings to choose from.  

Videotapes of each session, students’ written work, field notes, and videotape transcripts 
provide the data for this research. A qualitative methodology for data analysis was employed. 
Students’ representations, strategies, justifications, connections, and interactions, as well as the 
role of the teacher/researcher were coded, and the codes were used to identify and trace the 
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students’ development of representations, reasoning, and justifications. 

Results and Conclusions 
When presented with the Pizza Problem, one student, Stephanie, suggested that they employ 

a strategy that they had used with the Shirts and Pants Problem or the Tower Problem [referring 
to problems that they had explored in the study several years earlier], and Shelly recalled that 
they had used a tree diagram. The students used tree diagrams, which they modified to avoid 
duplicating pizzas, and then lists of letter codes to represent pizza choices. They organized their 
pizzas by cases according to the number of toppings and used a proof by cases to justify their 
solution. They found that for pizzas with four toppings available, there were 1 4 6 4 1 topping 
combinations, for a total of sixteen pizzas, and recognized these numbers as a row in Pascal’s 
Triangle. They extended their representation and used the Triangle to determine the number of 
possible pizzas with five available toppings—the next row 1 5 10 10 5 1—for a total of thirty-
two pizzas. The students then connected the numbers on Pascal’s Triangle to the corresponding 
topping combinations and used pizzas to explain the addition rule for generating rows on the 
Triangle. Robert generalized the solution for the total number of pizzas as 2n, for n available 
toppings, based on a doubling pattern that he observed when he summed the numbers in the rows 
of Pascal’s Triangle. When Stephanie explained how pizzas could be moved to two different 
places on the Triangle—in one they remain the same and in the other they get an added topping, 
Amy-Lynn connected this “two” with Robert’s 2n to provide a justification for his generalization. 
Furthermore, the students connected the numbers on Pascal’s Triangle to towers and used towers 
to explain the addition rule on the Triangle. They also explained the isomorphism between the 
Tower and Pizza Problems.  

As the students explored the tasks, they retrieved, built, refined, and linked representations. 
They developed a progression of representations that became increasingly abstract and symbolic, 
and they moved back and forth between their representations as they developed their ideas. In 
this manner, they developed important ideas in combinatorics and justification for their ideas. 
The students’ use of their representations was critical for their development of an understanding 
of combinatorics, a topic that has been noted to cause difficulty for students. This suggests that 
ideas of combinatorial notation should not be imposed on students, but rather students should be 
given time to develop these ideas in environments that encourage them to recall, produce, refine, 
and connect representations. By examining the nature and role of the students’ changing 
representations, educators may better understand students’ use of representations to develop and 
justify their combinatorial ideas. 
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This paper reports the results of an exploratory study in the manner in which students of   senior 
secondary school perceive dragging after multiple activities on the construction of geometrical 
figures with ruler and compass as well as with the software - Cabri–Géomètre  

Many works have established the necessity of studying the student’s perception on relying on 
geometrical elements for drawing and the sequence of drawing on a dynamic geometrical 
environment. (Hazzan & Goldenberg, 1997; Goldenberg & Cuoco, 1998; Mariotti, 2001, Talmon 
& Yerushalmy, 2004). 

The ability to perceive the relationships that exist among the properties of given geometrical 
figure is a necessary condition to understanding a Mathematical proof. Without this it is 
impossible to know with which theory to explain the problem at hand. In the dynamic 
geometrical environment, the ability to drag an object is related to the notion above (Mariotti, 
2001). The question then is: Can various activities using Cabri enable the participants develop 
enough skills to recognize the relationships that exist among different properties of geometrical 
objects?  

Participants  
The participants are 42 students. They are all in the third semester in the high school. Their 

ages range between 15 and 16 years. The participants are already familiar with the use of ruler 
and compass for drawing and were given instruction on the use of Cabri. One of the authors of 
this paper works as a teacher of Mathematics III – geometrical drawing, which allowed him to 
observe the students over a period of 30 hours. This work focuses on observation carried out on 
19 students randomly selected from the participants. 

Procedures 
The construction of typical geometrical figures was carried out using ruler & compass and 

with Cabri, following some given steps, other activities include exploration of typical figures, 
discovery and conjectures. 20 hours were dedicated to the former and 10 hours to the latter.  

Answer sheets were given to students for both drawings. Questionnaires were administered 
on each student after they had carry out to conjectures activities.  

Instruments 
Questionnaire of 3 questions: 

� Why could some elements be dragged and some could not? 
� Describe what happens when an element is dragged? 
� What happens to the properties of some geometrical figures when they are dragged? 

The answers to the above questions are complex to a certain degree, but the following 
answers, among others, which demonstrate to a certain degree the understanding of dragging a 
figure, could be expected from the participants.  

� There are independent and dependent figures or objects. The latter can be constructed 
from the former. 
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� Certain objects remain constant, some change in some aspects. In some, certain 
properties are conserved; depending on how the were constructed. 

� The properties that were established during the construction using the commands of 
the menu are conserved. In another case, some properties appeared on the some of 
which were conserved why others were not. 

Results and Discussion. 
Question 1. Even though the participants had dragged many objects during various activities, 

almost half of those examined did not attempt to respond to the question which asks about the 
difference between the objects that can be dragged and those that can not. Among those who 
answered this question, 4 gave an answer that was least expected of them; the “dependent object” 
-that were first constructed can not be moved while those that were constructed from the 
dependent objects –dependent figures, are movable. This idea runs contrary to the working of 
Cabri and its source could be traced to a static knowledge of geometrical drawing (Talmon & 
Yerushalmy, 2004).  

Question 2. The answers indicate that participants could not immediately observe many of 
the properties of the figures drawn –the figures that change in whole, those that partially change, 
with some of its elements moveable while other are static. The participants lack the ability to 
spontaneously interpret or read meaning to some phenomenon of their activities. The more 
advanced student only pointed out that certain elements in the figures are movable, with no 
mention on those figures that could be movable in whole. The stragglers among the participants 
could only observe the movement of the object without being able to detect which elements or 
parts of the figures, remain constant.  

Question 3. Most of the participants could not clearly distinguish the concept of geometrical 
properties from the perceived characteristics of the drawings. They identified the properties of 
the figures through its constituent elements. They were unable to understand the property of a 
geometrical figure as being an integral characteristic of the figure and not the constituent 
elements.  

Conclusions 
Based on the drawing activities, the participant, were able to observe some relationships that 

exist between the objects and the sequence of their construction, without a clear spontaneous 
idea or knowledge on the figures and their properties. This on one hand is as a result of mode of 
thinking about the objects, which sees them as static. On the other hand, the participants were 
able to identify the features in the drawing through the geometrical properties. However, the act 
of drawing with Cabri seems promising enough for students, to gradually perceive the properties 
that involve in the constructions. This facilitates an orientation towards identifying some 
differences in the interpretation of dragging by students which could help in understanding of 
dependent geometrical relationships that were dragging on the dynamic geometrical 
environment.  
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This paper reports the results of an exploratory study of students’ proof strategies in the context 
of a problem-based undergraduate number theory course.  The students’ strategies for 
constructing proofs varied depending on context, but our analysis demonstrated that they were 
primarily engaged in making sense of the mathematics, rather than attempting to reproduce 
particular proof types or strategies. 

Mathematics educators and education researchers have reported students’ difficulties with 
mathematical proof and point out the conflict between the nature of this essential mathematical 
activity and current approaches to teaching it (Hanna, 1991; Harel & Sowder, 1998; Moore, 
1994; Raman, 2003; Selden & Selden, 1995; Usiskin, 1980; Weber, 2001). This recent interest 
has led to an increased effort to teach proof in innovative ways. One instructional approach that 
emphasizes student-centered learning processes is “inquiry-based” or “problem-based” teaching, 
in which the central activity of the course is to engage students in mathematical inquiry or 
problem solving, rather than to present them formal mathematics in the form of a lecture.  

Our study focused on students’ proving processes and strategies for constructing proof in 
inquiry-based undergraduate number theory course at a large state university. In this particular 
course, students worked outside of class to solve problems and prove theorems.  The students 
then presented their solutions during class meetings and the instructor led whole-group 
discussions of their work.  The role of the instructor in the course was that of facilitator and 
advisor; he did not lecture or present himself as the arbiter of mathematical “truth”.  The students 
in the course were expected to determine the correctness of the presented solutions through their 
discussion.  The course served as a “transition to proof” course at the university, so for most of 
the students, this was their first course in which formal mathematical proof was the primary 
focus. The instructor did not tell them what constituted a mathematical proof; rather, he expected 
the students to construct an understanding of proof by participating in the course. 

In order to closely examine how students in this non-traditional context learned to construct 
mathematical proofs, we employed an exploratory case study design guided by two research 
questions: What processes do undergraduate students employ when proving mathematical 
statements? What strategies do students use to construct mathematical proofs in an inquiry-based 
undergraduate course? Six students were selected from those enrolled in the above-described 
course. During a series of four task-based interviews conducted over the span of the semester of 
study, the students were asked to construct proofs of various number theory statements.  

The interview transcripts were analyzed using open coding techniques, and a framework of 
interconnected “paths” for proof emerged.  A visual representation of these paths is shown in 
Figure 1.  Students’ proving processes consisted of four phases: use of initial strategies, 
construction of informal arguments, construction of a formal proof, and validating or reflecting 
on the final proof/argument.  Our results demonstrated that students’ proving processes were not 
necessarily hierarchical in nature, but shifted fluidly and frequently between these phases.  The 
students were primarily engaged in making sense of mathematics and often used concrete 
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examples to understand the statement, clarify the strategy or gain further insight into the 
problem.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reflection was an important component in students’ progress in constructing proofs and 

appeared to be the mechanism by which students shifted from one phase of the proving process 
to another. We found that the students did not tend to reflect on the final proof or argument 
spontaneously, so the influence of our intervention was included in the analysis.   

Overall, our results also showed that individual students’ strategies for constructing proofs 
varied greatly, in contrast to the more static tendencies for proof frequently seen discussed in the 
literature.  The participants in our study did not seem to prefer the same sequence of phases for 
each proof attempted, nor did they appear to use the same strategies each time.  We hypothesize 
that the problem-based structure of the courses facilitated the development of their relatively 
flexible and sophisticated strategies for proof.   
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Historically, calculus has triggered and supported revolutionary shifts in how we see, think 
about, and work in the world, but can similar impacts occur on the students in a course where 
students were invited, through real-world problem tasks that raised central conceptual issues, to 
invent major ideas of calculus? Research in cognition and brain function has recently revealed 
the fundamental role played by the personal experience of perceptually guided action in the 
forming of many central mathematical concepts. 

The research here centers on the following questions: 
� How might careful, explicit analyses of learners’ problem solving offer opportunities 

to revisit and perhaps rethink important mathematical content?  
� How might such studies offer insight into how more learners might come to 

understand and care about important mathematics concepts?  
In this poster I will describe some preliminary results from the analytic phase of a research 

study based on data from experimental teaching in a special section of Honors 250, 
Mathematical Modeling, taught in Fall 2005 by professor Robert Speiser. The analyses focus on 
learners’ actions and reflections, considered in detail. 

Honors 250 is a one-semester general education course where students outside the sciences 
can look closely at how mathematical ideas help clarify our understanding of the world. 
Problem-based instruction centered on key issues in the mathematical study of motion and 
change. The project’s research focuses closely on work and thinking of the students, as they 
sought both personally and collectively to build key ideas, representations and compelling lines 
of reasoning.  

The fourteen student subjects, all majoring in dance or dance related subjects, constituted one 
entire section of Honors 250. My work emphasizes a focus group working within the full 
classroom context. The class met three hours at a time, once a week, for fifteen weeks. I 
videotaped all class sessions and took field notes on each. Student journals were also collected. 
As students in the arts, these students were seemed to value creativity, technique, and analytic 
rigor. The videotaped record of the work and thinking of these fourteen students, supplemented 
by their drawings and inscriptions, constitute the data I will analyze. 

Preliminary findings suggest strongly encouraging responses to both research questions 
mentioned above. 
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Complexity theory focuses on complex learning systems which arise through the actions and 
interactions of individual agents and which engage in ongoing adaptation to a changing 
environment (Davis & Simmt, 2003).  One of the necessary conditions for the emergence of a 
complex learning system is internal diversity.  Activity theory likewise deals with evolving 
dynamic systems situated in an environment (Nelson, 2002) but stresses the role of internal 
incoherence and conflict in bringing about change.  An important question in comparing the two 
theories is hence “in what ways do internal diversity and conflict differ?”.   

In this study a group of eleven grade 12 students worked on a problem using Geometer’s 
Sketchpad. When students shared their findings, one student, who had created an incorrect 
formula, was challenged, and another student, with a useful data-collection idea, got little 
feedback.  The first student went on to independently discover the correct formula and prove it 
with mathematical induction; the second student did not develop her work further.  

The type of interactions in which both students engaged affected their mathematical 
behaviour.  The challenge put to the first student was made tentatively, on the basis of differing 
results, and a blatant arithmetic mistake was ignored. The second student failed to engage her 
neighbours with her ideas.  Both students experienced conflict, in the sense of a “disagreement 
between people with different ideas or beliefs” (Oxford Paperback Dictionary, 1991), but the 
first student experienced interest and respect while the second experienced hostility and 
indifference. 

This finding suggests that the ways in which diversity or difference are both communicated 
and responded to have an important effect in subsequent mathematical achievement.  It also 
points to the inadequacy of the general notion of conflict as a factor in change:  further 
comparison between complexity and activity theory will require further elaboration of this 
notion. 
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The NSF-funded project “Research on Informal Mathematics Learning (IML)” is a three-year, 
multi-pronged study of mathematics learning in the context of an after-school enrichment 
program at an urban middle school in Central NJ.  During the first year, a team of Rutgers 
researchers facilitated three cycles of six after-school sessions with the first cohort of 6th grade 
students.  As part of the study’s design, a group of 6-9 of district teachers became “teacher-
interns” to the research, observing after-school sessions being facilitated by the research team 
and joining them in discussion about what happened at each session immediately following it. 
The teacher-interns then studied the video recordings of those sessions in preparation for the 
second year when they began to facilitate IML sessions in replication of the first year’s activities 
with a new cohort of 6th grade students.  The first cycle of activities for both cohorts of students 
centered on problem-solving tasks using Cuisenaire rods to study students’ reasoning.  For the 
students, this led to exploring proportional relationships, including fractional parts to wholes. 

The data in this presentation come from the sixth day of the first cycle facilitated by the 
teacher-interns, after the students had explored several tasks in which they reasoned 
proportionally using Cuisenaire rods to justify their solutions.  One of the teacher-interns co-
facilitating the session introduced a new question building on relationships identified in previous 
tasks.  Referring back to some models made with Cuisenaire rods via the overhead projector, he 
asked the students “Are all one-thirds the same?” He suggested they discuss the question at their 
tables and be prepared to offer justifications for their arguments.  Students had about 15 minutes 
to work at their tables.  The teacher-interns circled the room to observe whether students 
understood the task and to monitor their progress. 

Video data collected from the three cameras that recorded the IML activities were analyzed 
using the methodology described by Powell, Francisco & Maher (2003). The events were then 
situated within the context of the full cycle through working with fellow researchers in a 
graduate-level mathematics education course who had carefully analyzed video data from the 
first five sessions and post-session discussions of this particular cycle. 

All sixteen students worked on the problem at their tables (four students at each table), and 
two pairs of students made presentations at the overhead projector to share their reasoning. The 
first pair of students concluded that the answer is not “yes or no” but rather “yes and no”, and the 
second pair agreed with them.  The poster will illustrate representations shared by the students 
and how, through a particular mode of questioning that the teacher-interns learned how to 
emulate, students articulated that all one-thirds are the same in that for each instance it takes 
three to make one whole (unit), but that they are different in that they are one-thirds of different 
wholes (units).   

Endnotes 
1. This research was funded by National Science Foundation grant REC-0309062.  
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The following research is aimed to explore potential relations between the mathematic 
experience that elementary education students (10-11 years old) have accumulated in two 
contexts -within school  and outside the school- and the complexity level of their strategies to 
solve proportionality arithmetic problems. The study was carried out in two schools: while "I" 
has a high institutional cohesion level, "Z" has an incipient organization. The students in "Z" 
have wide "out-of-school-mathematics" experience (due to their activities in informal economy) 
and students in "I" excel due to their performance achieved in official evaluations on 
mathematics. 5 students of each school took part (those with the highest performance) and were 
asked to solve 5 proportionality problems (missing value with some structural difficulties), by 
means of two semi-structured interviews (recorded on video and transcribed), and one written 
exam. Results of research on proportional thinking and Piagetian Genetic Epistemology, were 
used as the interpretative framework, in order to define, analyze and portray the complexity level 
of the strategies provided by the children. Thus, special attention was paid to the kind of objects 
involved in such strategies, the operations carried out by the students over such objects, as well 
as the degree of conceptual structuring. The following three levels and sublevels were identified: 

Level 1. Absence of Proportional  Thinking. 1.A. They focus on one single term isolated 
from a single Measure Universe (UM) to which they compulsively apply operations. 1.B. They 
take a single object from each UM, to which they symmetrically apply qualitative actions, with 
the purpose of compensating Level 2. Pre-proportional thinking. 2.A. They built ratio tables by 
means of counting processes, thoroughly considering all possible objects, which they represent in 
an iconic way. 2.B. They built ratio tables by means of recursive processes based upon multiples. 
The UM has a very incipient structure (multiplicative). Iteration and its representation point 
towards reasoning (still very attached to the object). Level 3. Proportional thinking. 3.A. They 
apply the scale factor to objects that belong to UM taken as totals with a multiplicative structure. 
There is coordination of arithmetic operations. 3.B. They apply proportionality factor to the UM 
considered as sets with a clear multiplicative structure. It is the immediate precedent to the direct 
proportional variation idea as linear function and the operativity over the complete totals (linked 
to reflexive abstraction processes). The poster will show typical answers from every sub-level. 

During the research, there were group regularities detected regarding the chosen strategies: in 
"I", a clear tendency to use the more general and efficient strategies, located in the last two levels 
of cognitive complexity, while in "Z" the use of strategies that stick more to concrete (see 
graphics). 
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Our study suggests that a school like “I” provides the student the cognitive tools that less 
structured schools seem not to provide (like “Z”) or the informal mathematics experiences that 
such student has. This research provides evidence about the influence of context in the 
constitution of their cognitive schemes, and, as a result, in their development. 
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This poster presentation highlights a selection of posters constructed by urban middle school 
students to justify their solutions to a set of probability investigations using data from computer 
simulations, and the students’ written comparisons and critiques of each others’ justifications. In 
this study, ten students, working in pairs, analyzed the fairness of dice. The students simulated 
the tossing of each die, supposedly produced by different companies, on computers using 
Probability Explorer (Probability Explorer (c) Hollylynne Stohl Lee, 1999-2005), a software tool 
that provides graphic and table representations of the data as the die is “tossed” for any given  
sample size requested by the students.  Each company’s die had been weighted by the computer 
program with the actual weights hidden from the students.   

The authors studied the inscriptions, symbolic - graphic - linguistic that the students chose to 
include on their posters and the conclusions they made about the data, as well as the evidence 
they used in comparing the various solutions and agreeing or disagreeing with other students’ 
conclusions. Of particular interest, was the evidence documenting the students’ reasoning about 
the importance of sample size and their understanding of fairness. Subsequent interviews with 
these students gave further insight into their reasons for selecting a graph or table to constitute 
evidence. Some students indicated that there might be different definitions of fairness, and that a 
claim is valid as long as evidence supports it. 

The framework for this study is guided by research on the development of representations 
(Davis & Maher, 1997). Students today are expected to be able to read, analyze, synthesize, write 
and discuss solutions to mathematical problems (NCTM, 2000). Their ability to solve 
mathematical problems depends also on their ability to connect with the natural language of the 
classroom. This research analyzes the students’ posters and critiques through a lens that focuses 
on graphic, symbolic and written inscriptions as evidence of the students’ mathematical thinking 
carried out in their urban context. 

This research is part of a study on representations and reasoning from data that is one 
component of the “Informal Mathematical Learning” Project, a three year research project 
focusing on the mathematical thinking of urban, middle school students as they engage 
voluntarily in open-ended investigations in after school sessions and summer institutes, 
supported by the National Science Foundation (ROLE Grant REC0309062, directed by Carolyn 
Maher, Arthur Powell and Keith Weber).  
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Educational neuroscience is a potentially foundational new area of scientifically grounded, 
evidence-based research that promises to help integrate and add dimensionality to traditional 
forms of educational research. In particular, educational neuroscience seeks to combine 
theoretical and methodological orientations of educational research, such as those of 
developmental and cognitive psychology, with methods of cognitive neuroscience and 
psychophysiology. Using traditional methods of educational research informed by research in 
cognitive psychology and cognitive neuroscience, mathematics educational neuroscience aims to 
integrate and extend what is known about our biological and cultivated abilities to think 
mathematically. This paper explores some of the background, paradigms, and possibilities for 
this emerging new area of research in mathematics education.  

Introduction 
There has been much research in mathematics education that has addressed a wide variety of 

affective, cognitive, and social issues  (e.g., Grouws, 1992), and there have been a wide variety 
of phenomenological, behavioural, cognitive, and social interactionist approaches taken to 
understanding these issues (Sierpinska & Kilpatrick, 1998). To date, however, researchers and 
practitioners in mathematics education remain largely unaware of and uninformed by other 
growing bodies of research into the more biologically grounded nature and processes of 
mathematical cognition and learning, especially in the areas of cognitive psychology (e.g., 
Campbell, 2004), cognitive neuroscience (e.g., Dehaene, 1997), and in the fast emerging area of 
neurogenetics (e.g., Gordon & Hen, 2004). Basically, related phenomena pertaining to 
mathematics education are being studied from a variety of humanistic, social, and scientific 
perspectives. These disparate areas need to be focused, integrated, and extended to more 
effectively inform and expand upon current research and practice in mathematics education. This 
research report introduces mathematics educational neuroscience as a new field of inquiry with 
that aim in view. 

Educational neuroscience is a fast emerging and potentially foundational new area of 
educational research. There is a general consensus on two basic points. First, educational 
neuroscience is characterized by soundly reasoned and evidence-based research into ways in 
which the neurosciences can inform educational practice, and vice versa. Secondly, educational 
research in cognitive psychology informed by, and informing, cognitive neuroscience constitutes 
the core of educational neuroscience (cf., Bruer, 1997). 

Background 
Educational neuroscience is viewed here as a new area of educational research, not so much 

in terms of building a bridge between the neurosciences and education, but rather, as filling a gap 
between these vast areas. In filling this gap, foundations for such a bridge can be put in place. 
Educational neuroscience prioritizes learners. It is informed by, but is not geared toward 
identifying neural mechanisms underlying or accounting for cognitive behavior.  Such is the task 
of cognitive neuroscience, not educational neuroscience.  
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Accordingly, differences between educational and cognitive neuroscience can be exemplified 
by the latter’s quandaries regarding the function of consciousness and how it arises from, and 
even how it can possibly arise from the activity of neural mechanisms. Educational neuroscience, 
on the other hand, takes the reality and utility of consciousness as given; something to work with, 
not something to explain, or to explain away. 

Perhaps the major area of potential overlap and common interest between cognitive 
neuroscience and educational neuroscience are cognitive and educational psychology, 
respectively. Both have been engaged, from various philosophical perspectives, in developing 
models of cognition and learning. Both are concerned with identifying and establishing reliable 
correlations between these models and brain behavior.  

Over the past couple of decades, collaborations between cognitive psychologists and 
neuroscientists have been forging ahead (Byrnes, 2001) resulting in the vibrant and rapidly 
expanding new field of cognitive neuroscience. Cognitive neuroscience offers new alternatives 
and greater dimensionality in moving toward more scientific evidence-based educational 
research. Driven by new brain imaging methods, and informed by decades of lesion studies, 
cognitive neuroscience is making great strides in correlating cognitive function with brain and 
brain behaviour. Mathematics education can benefit greatly from these developments. This 
suggests the possibility of a truly educational neuroscience, as a bona fide new area of 
educational research that is both informed by methods, theories and results of cognitive 
neuroscience. Of specific interest here is the possibility of a bona fide mathematics educational 
neuroscience as a new area of research in mathematics education. 

There have been previous initiatives and efforts to incorporate cognitive science and 
cognitive technologies into research in mathematics education (e.g., Davis, 1984; Schoenfeld, 
1987. Pea, 1987). Until very recently (e.g., Campbell, forthcoming), however, there has been 
very little to be found in the literature exploring or drawing out possible implications of 
neuroscience or cognitive neuroscience for research in mathematics education. Indeed, the term 
“neuroscience” is not to be found in the indexes of the following publications: Grouws, 1992; 
Sierpinska & Kilpatrick1998. Perhaps more surprisingly, despite much hoopla over the ‘90’s 
being designated as “the decade of the brain,” and a naïve though quite popular “brain-based 
education” movement, which is in dire need of critique, there is no mention of that term (viz., 
“neuroscience”) whatsoever in Guitierrez & Boero, 2006.  

Embodied Cognition 
Setting aside foundational dualisms that have traditionally served to undermine a unified 

studies of subjective human experience and objectively observable behaviour (Campbell & 
Dawson, 1995), educational neuroscience adopts a view that: 1) embeds mind in body (with a 
special emphasis on brain); 2) situates embodied minds within human cultures; and 3) recognizes 
the biological emergence of humanity within and our dependence on the natural world (Merleau-
Ponty, 1962, 1968; Varela, Thompson, & Rosch, 1991; Campbell & Dawson, 1995; Núñez, 
Edwards, Matos, 1999). To help illustrate the unifying power of this view, consider Eugene 
Wigner’s famous reflections on the “unreasonable effectiveness of mathematics in the natural 
sciences” (1960). If mind is fundamentally (i.e., ontologically) distinct from the material world, 
it remains a mystery as to why mathematics can be applied to the world so effectively. If mind is 
embedded within the material world, as the embodied view suggests, mystery dissolves into 
expectation (Campbell, 2001). Moreover, in considering embodied mind as an ontological 
primitive, there is no need to treat consciousness as an inexplicable and apparently useless 
epiphenomenon of erstwhile mechanical neural processes (cf., Jackendoff, 1987). We can then 
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expect the subjective experience of mind to share and participate in the kinds of objectively 
observable structures and processes that are evident in the natural world (Campbell, 2003a, 
2002a, 2001). 

In accord with this naturalistic embodied, situated, and emergent view, when meaning is 
constructed, transformations take place in the minds that are manifested through bodies 
(especially through changes in brain behaviour). It remains possible, of course, that such 
embodied, i.e., objectively observable and measurable, manifestations of mind, remain but 
shadows of subjectivity, analogous in a sense to the way in which the exterior of an extensible 
object is but a external manifestation of that object’s interior. Scratch away at the surface of an 
extensible object as much as one might, some aspects of the interior will always remain hidden.  
The bottom line here is that brain and brain behaviour are made progressively more manifest to 
investigation through close observation and study of embodied action and social interaction in 
both clinical, classroom, and ecological contexts. With the advances in brain imaging, the 
shadows of mind are becoming much sharper. 

Embodied cognition provides mathematics educational neuroscience with a common 
perspective from which the lived subjective experience of mind is hypothesized to be manifest in 
objectively observable aspects of embodied actions and behaviour. Such framework may enable 
educational neuroscience to become a bona fide transdisciplinary inquiry  (Gibbons, Limoges, 
Nowotny, Schwartzman, Scott, & Trow, 1994), in that it has the potential to integrate and to 
extend well beyond traditional ontologically disjoint frameworks, be they of mind (i.e., 
phenomenology), brain (i.e., neuroscience), function (i.e., functionalism), or behaviour (i.e., 
behaviourism). Moreover, there is no need to attempt to reduce mind to brain (physicalism), or 
brain to mind (idealism). 

New Questions and New Tools 
Embodied cognition introduces new research questions pertaining to investigations into 

teaching and learning. Consider, for example, what kinds of detectable, measurable, and 
recordable psychophysiological changes are occurring in learners' minds and bodies during 
mathematical concept formation — that is, when various mental happenings coalesce into 
pseudo or bona fide understandings of some aspect of mathematics. For instance, what 
observable embodied changes in brain activity detectible using electroencephalography (EEG) 
occurred in a student working with Geometer's Sketchpad™ as she came into a realisation that 
all right triangles inscribed in a circle must pass through the centre of that circle (Campbell 
2003b)? And what of the student at ease with graphs, yet who cringed at the sight of 
mathematical symbols on the screen (ibid.)? How might eye-tracking technology, 
electrocardiography (EKG), and galvanic skin response (GSR) have helped to quantitatively 
capture embodied responses what is but qualitatively described in the foregoing as a “cringe.” 
Capturing embodied behaviours at moments such as these may provide rich and important 
insights into subjective experience and afford exciting new venues for mathematics educational 
neuroscience research. 

What is gained from using methods of psychophysiology and cognitive neuroscience, such as 
EEG, EKG, eye-tracking, and GSR, are new means for operationalising the psychological and 
sociological models educational researchers have traditionally developed for interpreting the 
mental states and social interactions of teachers and learners in the course of teaching and 
learning mathematics. This statement holds for qualitative educational researchers and 
quantitative educational psychometricians alike. It bears emphasis that educational neuroscience 
can augment traditional qualitative and quantitative studies in cognitive modelling in general, 
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and more specifically, in research in mathematics education. McVee, Dunsmore, & Gavelek 
(2005) have recently argued quite compellingly that schema theory, the mainstay of cognitive 
modelling, remains of fundamental relevance to contemporary orientations towards social and 
cultural theories of learning. Holding fast to a humanistic orientation, educational neuroscience 
concerns both psychological, sociological, and naturalistic dimensions of learning, only now, 
using methods of cognitive neuroscience, all the while guided by, and yet also serving to test and 
refine, more traditional educational models, questions, problems, and studies. 

Research in mathematics education to date has taken a wide variety of phenomenological, 
behavioural, cognitive, and social interactionist approaches to mathematical cognition and 
learning, and not surprisingly so. Mathematics education lies at the crossroads of many well-
established areas, including mathematics, psychology, epistemology, cognitive science, 
semiotics, and sociology (Sierpinska & Kilpatrick, 1998). A central focus of this author’s recent 
foray into mathematics educational neuroscience concerns preservice teachers’ understandings of 
mathematics (e.g., Campbell & Zazkis, 2002; Zazkis & Campbell, 2006). Most of this cultivated 
understanding goes well beyond what is known about the biological and psychophysiological 
groundings of mathematical cognition studied by cognitive neuroscientists (e.g., Dehaene, 1997) 
and cognitive psychologists (e.g., Campbell, 2004). It seems important that these culturally 
inculcated understandings should be consistent in connecting with and building upon their 
biological and psychophysiological underpinnings (e.g., Dehaene, Piazza, Pinel, & Cohen, 
2004). What is more likely the case, and this is the central and guiding hypothesis for this 
initiative, is that there are a range of “disconnects” between our inherited biological 
predispositions for mathematics and the culturally derived mathematics comprising the K-12 
mathematics curriculum. 

Cultivating mathematical ability is the main task and mandate of mathematics education. 
Most of this cultivated understanding goes well beyond what is known about the biological and 
psychophysiological groundings of mathematical cognition studied by cognitive neuroscientists, 
neurogeneticists, and cognitive psychologists. It seems important, however, that these culturally 
inculcated understandings connect and are consistent with their biological and 
psychophysiological underpinnings. A guiding hypothesis in defining mathematics educational 
neuroscience is that there are a range of “disconnects” between our inherited biological 
predispositions for mathematics and the culturally derived mathematics comprising the K-12 
mathematics curriculum. Pursuing the implications of this foundational hypothesis of 
disconnects in understanding between biologically and culturally developed aspects of 
mathematical cognition has inspired, motivated, and guided this embodied approach to defining 
mathematics educational neuroscience.  

As a case in point, there is an emerging consensus in cognitive neuroscience that the human 
brain naturally supports two key mathematical processes: a discrete incrementing process, which 
generates countable quantities, and a continuous accumulation process, which generates 
continuous quantities. Gallistel & Gelman (2000) have noted an emerging synthesis between 
these two processes, and the tensions between them, have been “central to the historical 
development of mathematical thought” and “rooted in the non-verbal foundations of numerical 
thinking” in both non-verbal animals and humans. These processes also appear to be implicated 
in Lakoff and Nüñez’s (2000) four fundamental “grounding metaphors” of object construction 
and collection (viz. discrete) and measuring and motion (viz. continuous). In research in 
mathematics education, it is well documented that many children and adults have notorious 
difficulties in moving from whole number arithmetic (working with quantities) to rational 
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number arithmetic (working with magnitudes). It is common practice in mathematics education, 
in accord with a relatively quite recent development in the history of mathematics, to view whole 
numbers as a “subset” of rational numbers. This may constitute a classic disconnect between our 
natural biological predispositions and the mathematics curriculum and instruction, and 
potentially explains why this shift is so problematic for learners from early childhood into 
adolescence and beyond. Identifying and reconciling disconnects such as these can be taken as 
central issues and concerns in defining mathematics educational neuroscience. 

Methodologies and Applications 

Electroencephalography 
Electroencephalography (EEG) is a clear method of choice for educational researchers who 

would like to augment their research with quantifiable observations of brain and brain behavior. 
One reason for this is that EEG is amongst the least expensive of brain imaging technologies. 
Another is that EEG is quite adept for capturing the dynamics of thought in action. It offers 
temporal resolutions at the speed of thought and places fewer spatial constraints on learners than 
other methods. Furthermore, as evidence of increasing confidence in both the reliability and 
robustness of the method, many “turnkey” acquisition and analysis systems are now readily 
available, placing fewer technical burdens on researchers using these systems. 

Cognitive neuroscientists have developed a viable approach to studying complex cognitive 
phenomena through electromagnetic oscillation of neural assemblies (e.g., Klimesch, 1999). The 
key to this electroencephalographic approach is the notion of event related 
desynchronization/synchronization (ERD/S) (Pfurtscheller & Aranibar, 1977). In the course of 
thinking, the working brain produces a fluctuating electromagnetic field that is not random, but 
rather appears to correlate well within distinct frequency ranges with higher cognitive function in 
repeatable and predictable ways. With the elements of such a "neural code" falling into place, 
well-developed and reliable tools and methods for data acquisition and analysis of EEG 
correlates of cognitive and affective function are available to mathematics educational 
neuroscientists to study these phenomena. 

Eye-tracking and eye-gaze 
Non-intrusive, methods have been developed for remotely measuring eye movements in 

human-computer interactions. These remote-based methods have become very reliable, quite 
robust, and easy to set up. Most instructional software today can be offered in web-based 
environments. Remote-based eye-tracking, therefore, offers reliable means for evaluating the 
design and usage of computer enhanced mathematics learning environments (CEMLEs). Specific 
measures that can be analysed and correlated with EEG include the real-time tracking and video 
recording of users’ hand (mouse) and eye movement, including dwell time of eye-gaze on 
various aspects of the web site, both in serial time and cumulative time modalities. Results from 
such analyses can serve to inform understandings of CEMLEs and contribute to improving and 
expediting their design and development. 

Psychophysiology 
It is well established that affective and cognitive factors are deeply interrelated (e.g. Bell & 

Fox, 2003). Therefore, it seems essential to contrast and conjoin data, say, acquired in moments 
of insight during problem solving activities using CEMLEs with psychophysiological data 
functionally correlated to various manifestations of math anxiety. One preservice teacher 
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encountering algebraic symbols in a CEMLE designed to investigate learners' reactions to 
symbolic and visual representations of division and divisibility reported  "... when I look at all of 
this... all I want to do is throw the screen away," while another "loved it!" (Campbell, 2003b). 
What functional correlates of brain behaviour are implicated in moments of enlightenment and 
aversion in the learning of mathematics? Learners interacting with CEMLEs provide rich 
opportunities for capturing such moments while monitoring their psychophysiological states. 

Psychometrics 
Research in both cognitive neuroscience and mathematics education reveals anxiety to be a 

multifaceted construct. Mathematics educational neuroscience research in this area can benefit 
from being informed by results from both fields. Factors implicated with anxiety include 
decreased working memory capacity and a general shift away from symbolic toward figurative 
cognitive functions. Research into math anxiety in mathematics education, on the other hand, has 
identified anxieties associated with calculating in everyday contexts, performance anxieties 
associated with being observed in the act of doing mathematics, and various other kinds of 
anxieties associated with taking tests, using computers and problem-solving. Methods of 
mathematics educational neuroscience should provide invaluable new resources for detailed and 
comprehensive research into functional correlates of this complex phenomenon and its inhibitory 
effects on concept formation. It is desirable, if not imperative, to guide these studies with well 
validated psychometrical instruments (e.g., Hopko, 2003). 

Concluding Remarks 
Educational neuroscience is an emerging new area of educational research that promises to 

integrate educational psychology and cognitive neuroscience in ways that are likely to carry 
significant new possibilities for research in mathematics education. One set of possibilities 
indicated here is to apply these frameworks and methods to the study of teachers’ understandings 
of and aversions toward mathematics, particularly in mathematical problem solving contexts 
using computer enhanced mathematics learning environments.  
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This paper outlines examples of children learning mathematics in a bilingual and culturally 
inclusive environment utilizing the lens of student identity as a way to understand the 
intersection of multiple factors affecting their learning. The research is situated in an after-
school setting located in a majority Latino/a school. Several studies highlight the importance of 
community knowledge, situating it on the same level as academic knowledge. Our findings 
indicate that the inclusion of community knowledge and use of home language are elements that 
mediate mathematics learning, particularly in the context of social justice mathematics. The 
study has implications for teachers who wish to create more inclusive and potentially 
transformative learning environments for all students. 

Objectives 
Schools in the United States are increasingly becoming locations where children from 

different cultures of origin and backgrounds come together. These multicultural contexts raise 
important challenges to professionals who work in educational settings, particularly in light of 
inequitable educational outcomes for marginalized populations. In this paper we address these 
challenges within the context of mathematics teaching and learning, in the hopes of uncovering 
how apparent “challenges” can be transformed into assets by creating learning environments in 
which they are valued and drawn upon. In particular we focus on the relationship between 
mathematics education, language, and culture through the lens of identity. With our research we 
seek to provide insight into what a linguistically and culturally inclusive learning environment 
might look like as well as to describe the impact of embedding mathematics learning within 
social justice mathematics. 

Theoretical Framework 
This research takes place in an after-school “math club” for fourth and fifth graders in a 

predominantly Latino/a (primarily of Mexican origin), border community. Our approach to the 
activities in the Math Club is grounded in our belief in education as a tool to transform 
exclusionary situations and to fight for social justice (Freire, 1998).  To this end, many of the 
activities in this mathematics club have a social justice component. Our main goal is to analyze 
the teaching and learning of mathematics in this after-school setting, in order to identify 
strategies that provide learning opportunities to all students. In this particular setting, we analyze 
the relationships that exist between mathematics, language, culture, and social justice. 

We focus our analysis on student identity to attempt to understand the impact of an inclusive 
and transformative learning environment. Several authors emphasize the importance of 
considering identity in the form of narratives about persons in analyzing sociological and 
educational processes related to learning and teaching. A student’s evolving identity influences 
how they learn and how they make sense of mathematical ideas. Sfard and Prusak (2005) view 
“identity-making as a communicational practice” (p. 16), and therefore interaction would be a 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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natural place to understand the development of a student’s identity in relation to learning. 
Identity is a concept that allows us to focus on lived realities in context, such as the process of 
mathematics learning of Latino children in schools, as well as the impact of a unique learning 
environment such as the Math Club. 

Recent research shows that an individual’s home, related to history and the social context, is 
the source of funds of knowledge (Moll & Gonzalez, 2004) that students could potentially bring 
to learning situations if the learning environment encouraged it. Researchers in critical pedagogy 
(Gutstein, 2005; Flecha, 2000) claim that these funds of knowledge should be given the same 
value as traditional “academic” knowledge. Researchers have explored the idea of funds of 
knowledge specifically in relation to teaching and learning mathematics (Civil & Andrade, 
2002), highlighting the fact that individuals have multiple forms of understanding mathematics 
that are not only in formal ways. There are several experiences around the world that 
demonstrate a learning environment based on critical pedagogy and the incorporation of 
students’ funds of knowledge, such as Learning Communities (Elboj, Puigdellívol, Soler, & 
Valls, 2002) and dialogic learning (Flecha, 2000) in Spain, and Accelerated Schools (Levin, 
1998) in the United States. In addition, prior research demonstrates the impact of including 
mathematics funds of knowledge in classroom environments (Civil, 2002; González, Andrade, 
Civil, & Moll, 2001). These experiences and research demonstrate the need to understand the 
intersection of mathematics, language, culture, and identity and inform our research.  

Methods  
Our methodology is based on the communicative paradigm (Flecha & Gómez, 2004; Gómez, 

2001) and includes participant observations of students interacting with others as they learn 
mathematics. According to this methodological paradigm, research is a tool to transform the 
situations that we are researching. In particular, methodology is seen as a systematic way to 
understand the inter-subjective relationships that constitute our world in order to find elements 
with which to transform exclusionary situations. Through our research we seek for ways in 
which pedagogy can be transformative for students who are often marginalized in our 
educational system. 

Over the course of the past school year, we conducted after-school sessions twice a week 
during which students engaged in mathematics activities. All sessions were videotaped in order 
to conduct in-depth reviews of the interactions amongst participants. A graduate student, two 
post-doctoral students and four undergraduate facilitators were participant researchers who 
assisted in facilitation and took detailed field notes. Most sessions involved several small groups 
of students interacting, and so it was imperative that each researcher took field notes to be able to 
capture all conversations and interactions that might not have been the focus of the videotape.     

Evidence 
In reviewing our data, we focused on narratives about students in order to understand the 

multiple elements of language, mathematics learning and culture interacting in the context of 
social justice mathematics activities. This analysis allowed us to focus on student identity as a 
way to analyze how these elements played out in interaction in the immediate context while 
considering social and historical factors that affect student learning. Our examples illustrate the 
role that funds of knowledge, social justice mathematics, language, culture, and dialogue played 
in the Math Club learning environment. 
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Funds of knowledge 
The learning environment of the Math Club was characterized by group work, embedding of 

activities in real life experiences, as well as facilitators being seen as resources rather than 
experts. This environment encouraged students to draw on their funds of knowledge easily as 
they worked to solve mathematics problems related to gardening, such as measuring and evenly 
dividing up rows, calculating seed depth, and charting plant growth. As students engaged in 
planning out how to divide up the plots for a garden, they spoke fluidly in Spanish about their 
prior gardening experiences. One student spoke about how she had learned to add sand to her 
Nana’s garden to save water and ran to the adjacent sandbox to add some to our garden. Another 
student spoke about knowing how to plant seeds because of work he had done on his uncle’s 
finca (farm). Being able to speak in Spanish and positioning all participants as experts enabled 
these two children who were often distracted in classroom activities or when it comes to 
mathematics tasks, to engage in the activity and subsequently the mathematics problems.  

Identity, language and mathematical understanding in the context of social justice mathematics 
During the past school year in which we conducted the Math Club, recent immigration 

protests began to take place across the United States, in which immigrants voiced their objection 
to legislation introduced that would criminalize illegal immigrants, among other concerns. 
During this national mobilization, several participants in the Math Club showed their knowledge 
of and preoccupation with the issue, prompting us to include an immigration project as a social 
justice mathematics activity. The direction of the project was open to student input, and we 
began by questioning the students about the theme of immigration from a mathematics 
perspective.  

The children became very engaged with this project, and because many of them are 
immigrants or children of immigrants, they drew 
on resources from their own lived experiences. 
Two sisters in the program, whose family includes 
immigrants from Mexico, decided to carry out a 
survey with family, friends, and Math Club 
participants to capture their community’s opinions 
about the legislation and protests. They constructed 
a table with the data they gathered in collaboration 
with other participants. Several other students 
decided to calculate the time it takes for a person 
to travel on foot from the nearest Mexican border 
city, Nogales, to their own U.S. border city, 
Tucson. These students used a map, interpreting 
the scale in order to calculate the distance between 
cities. They then calculated the total time it would 
take to walk that distance, using a standard rate for 
walking in kilometers and miles per hour.  The 
attached picture illustrates one student’s 
calculations and results. In this example we can see 
how she uses English (and the U.S. system of 
measurement) as well as Spanish (in terms of vocabulary and in the use of the metric system). 
Finally, one student sought to represent the distribution of immigrants by gender, in which he 
discovered that there are more male immigrants than female. In discussing these results with his 
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classmates, the students explained that in their experience, seeking jobs is a motive of 
immigration and that often the male head of household is more likely to be the breadwinner than 
the female.  

Mathematical strategies and dialogue 
Dialogue became a natural way to share and learn different strategies to solve mathematics 

problems, validating students’ multiple approaches to formal mathematics. The following 
dialogue (Table 1), which primarily took place in Spanish, is between a monolingual Spanish-
speaking student, a bilingual student, and a bilingual facilitator:  

Table 1: Methods of Multiplication 

 
 
 
  
Jenny: (va a la pizarra y apunta 48 x 5 –en 
vertical-) ¡Dos cientos cuarenta! 
Facilitador: Muy bien. ¿Sabes otra manera 
más rápida de hacerlo? 
Jenny: (mira dudando) 
Facilitador: Imagínate que tienes billetes de 
10. Entonces, 48 son 480, ¿no? Pues si 
tienes billetes de $5, entonces es la mitad... y 
la mitad de 0 es 0, no? La de 8 es cuatro, y 
la de 4 es 2, Con lo cual, qué tienes? (escribe 
240). ¿Es el mismo resultado, no?  
Jenny: (va a buscar a Rosa y le hace la 
misma pregunta) Do you know another way 
to do that? 
Rosa: (escribe lo siguiente):  

 
Jenny: (le explica el método que acaba de 
aprender).  
Rosa: (se sorprende con el método “nuevo”). 
(Researcher fieldnotes, 14/11/2005) 

(Context) 
Rosa and Jenny are playing with copies of 
dollar bills. The facilitator has 48 $5 bills. He 
asks Jenny how much money he has.  
Jenny: (goes to board and writes 48 x 5 –
vertically-) Two hundred forty! 
Facilitator: Very good. Do you know faster 
way to do it? 
Jenny: (looks doubtful) 
Facilitator: Imagine that you have $10 bills. 
So 48 would be 480, right? So if you have $5 
bills, then it is half... and half of 0 is 0, right? 
Half of 8 is 4, and of 4 is 2. And so, what do 
you have? (writes 240). It is the same answer, 
right? 
Jenny: (goes to look for Rosa and asks her the 
same question) Do you know another way to 
do that? 
Rosa: (writes the following): 

 
Jenny: (explains the method she has just 
learned). 
Rosa: (is amazed by the “new” method).  
(Researcher fieldnotes, 11/14/2005)  

 
This example shows a dialogue between two children and a facilitator about a multiplication 

problem. The first student uses a formal method most often used in Mexican schools to solve the 
problem (presumably because she is a recent immigrant). The second student uses the lattice 
method (the method that teachers use in her school) to solve the same problem. The facilitator 
proposes a third way to do the same problem that demands applying logical reasoning based on 
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knowledge of using ideas such as “double” or “half”. The importance of this dialogue is that the 
students were able to communicate in the language they are comfortable in, and that dialogue 
took place in which three different methods of solving the same problem emerged, each with its 
own cultural origin and seen as equally valid. Deeper understanding and an inclusive learning 
environment are facilitated as a result of using cultural resources. 

Mathematics and language 
Over the course of the school year, a shift took place in terms of language use. In the 

beginning, students often spoke in English, the language of instruction in their school, when 
communicating about mathematics or as a group. Language use became much more fluid and 
occurred naturally in context depending on participants, purpose and relationships. On one 
occasion in the Math Club, a boy who is often distracted and unengaged during his classroom 
mathematics discussions and activities, tried to explain a concept in English. Another student 
turned to him and said, “Speak Spanish.” He then started to explain his mathematical thinking 
clearly and with ease. Also, students were particularly vigilant about translating mathematics 
books they read at the beginning of the Math Club when Spanish monolingual students were 
present, a situation that does not happen in their classrooms. Students often grouped together 
based on language use so that the Spanish monolingual students were able to communicate in 
Spanish to group members. These situations evolved in the Math Club environment where code 
switching and language choice happened naturally and fluidly in all aspects of communication, 
whether it was social or academic discussion.    

Results and Conclusions 
Our findings demonstrate the importance of language as a cultural mediator in learning 

(Vygotsky, 1978; Schliemann, 2002) as well as the need to incorporate students’ funds of 
knowledge in mathematics learning, particularly for students whose language and culture are 
marginalized in typical classrooms. When the after-school Math Club first started, these 
primarily bilingual children used only English to participate in the activities. Children asked 
questions, provided answers and explained their thoughts in English, which is the language used 
in classrooms for teaching, as dictated by State law. Through observations, we have seen how 
Latino/a students, many of them recent immigrants and Spanish dominant, began to group with 
other students who spoke Spanish in order to communicate during mathematics activities. This 
indicates that language is not only a cultural mediator in terms of an “instrument” that allows us 
to gain/transmit understanding (in this case in the area of mathematics); language is also a 
mediator in the range of inter-subjective relationships. Knowledge (or lack of) a language shapes 
group dynamics in terms of how students interact with each other and in terms of participation 
and student engagement with activities. During group activities, several Spanish-speaking 
students who would often appear distracted, quiet or disruptive in their English-dominant 
classrooms would engage in the activities.  

The diverse cultural and linguistic backgrounds of the students also explain the use of 
different strategies to approach the same operation, as shown in the third example. This 
demonstrates that prior experience, educational history, and problem-solving methods used by 
students have a clear impact on the strategies that students use (from the cognitive point of view 
of mathematical understanding). Here, ideas such as funds of knowledge (Moll & Gonzalez, 
2001) or identity development in communication with others (Sfard & Prusak, 2005) play an 
important role in terms of their contribution in demonstrating and uncovering the social aspect of 
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learning. We argue that this is essential when planning curriculum and in developing a classroom 
environment and pedagogical strategies for use in diverse classrooms. 

In relation to our second area of interest, the impact of embedding mathematics learning 
within social justice activities, we have found strong evidence of increased student engagement 
when using mathematics as a tool to read and write the world (in the Freirean sense) from a 
critical perspective (Gutstein, 2005; Skovsmose & Valero, 2002; Frankenstein & Powell, 1994). 
The “immigrant” experience that is a part of the evolving identities of most participants in the 
Math Club played an important role in involving these students in the activities related to 
immigration. This kind of activity shows evidence of the importance of embedding mathematics 
in their lived social context in order to engage students and develop their sense of the importance 
and power of mathematics. Identity appears as a key element in understanding group dynamics 
and individuals within a learning environment, and allows us to focus on the development of a 
learning environment that is inclusive of and empowering to all students.  

All of these findings suggest that introducing strategies such as incorporating student culture, 
language and other funds of knowledge into curriculum and classroom teaching is one way to 
counter dominant ideologies that create barriers to learning and to overcome inequalities in 
educational opportunities. Our current research focuses on gathering more evidence to prove (or 
disprove) these findings and on continuing to uncover methods that will prove useful for teachers 
in developing their practice in diverse classrooms. 

Relationship of Paper to Goals of PME-NA 
This research project is the result of the collaboration between a mathematician, mathematics 

education researcher and educational researcher with a background in educational psychology, 
all with experience in mathematics teaching. This demonstrates the power of interdisciplinary 
research in order to understand the complex factors influencing the mathematics educational 
experiences of diverse students. In order to understand how to reverse the achievement gap for 
students who are marginalized from the educational system in the United States, we must 
understand the complex factors that affect and shape student identity, and how this can be 
affected through culturally and linguistically inclusive mathematics learning environments. 
Through an examination of the changing identities of students in the context of social justice 
mathematics learning, we highlight the need to include students’ funds of knowledge (including 
home language and culture) in diverse mathematics learning environments.   
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In this paper, our goal is to address a conceptual challenge that arises as researchers conduct 
design experiments to support and understand teachers’ learning. This challenge centers on 
articulating the relations between teachers’ learning in professional development and their 
practice in the classroom. In our view, designs for supporting teachers’ learning necessarily 
involve suppositions and assumptions about such relations. These suppositions and assumptions 
shape not merely the goals for teachers’ learning but the actual process of their learning and the 
means of supporting and organizing it. By drawing on our own design research experience we 
propose a bi-directional conceptualization that, in our view, profoundly influences all three 
phases in a design experiment.  

The design research methodology has become increasingly prominent in mathematics 
education and related fields in recent years. A program of design research that is aimed at 
supporting teacher learning involves engineering the process of supporting teacher change 
through iterative cycles of design and research (Brown, 1992). In this process, conjectures about 
the trajectory of the teachers’ learning and the means of supporting it are continually tested and 
revised in the course of the experiment. In this highly interventionist activity, decisions about 
how to proceed are informed by ongoing analyses of the participating teachers’ activity. As 
noted by Wilson and Berne (1999), design research is an appropriate methodology to investigate 
teacher professional development as little is known about systematically designing professional 
development to support teacher learning and as a result, teacher educators are “researching a 
phenomenon while they are trying to build it” (p. 197).  

Research of this type involves a “bifocal” attention encompassing both “designing 
meaningful professional development and conducting rigorous research” at the same time 
(Wilson & Berne, 1999, p.197). This interdependence between design and research is reflected in 
all three phases of a design experiment: preparing for the experiment, experimenting to support 
learning, and conducting retrospective analyses of the data generated in the course of the 
experiment (cf. Cobb, Confrey, diSessa, Lehrer & Schauble, 2003).  

In this paper, our goal is to address a conceptual challenge that arises as researchers conduct 
design experiments to support and understand teachers’ learning. This challenge is inherent to 
teacher development experiment as the primary intent is to engage teachers in activities in 
professional development sessions with the goal of supporting the reorganization of their activity 
in another setting, the classroom. Thus, the coordination of teachers’ learning across two 
differing settings is an distinctive characteristic of teacher development experiments that 
distinguishes them from classroom based design experiments aimed at supporting students’ 
learning of mathematics. The conceptual challenge that we address in this paper therefore centers 
on articulating the relations between teachers’ learning in professional development and their 
practice in the classroom.  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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In the following sections, we first clarify the implications of a conceptualization as such for 
all three phases in a design research. We then draw on our own design research experience with a 
group of middle-school mathematics teachers to illustrate how our own conceptualization of this 
relation evolved as a result of our ongoing effort to support the teachers’ learning. We conclude 
by discussing the specific implications that the resulting conceptualization carries for more 
effective design.  

Implications for the Three Phases in a Design Research 
A research team’s conceptualization of the relations between teachers’ activities in these two 

settings profoundly shapes all three phases of an experiment even in cases where the nature of 
these relations is implicitly assumed rather than explicitly articulately.  The design conjectures 
formulated in the preparation phase of a design research necessarily involves assumptions about 
the specific ways in which teachers’ learning in professional development sessions might 
influence their classroom practices and vise versa.  It is possible to infer how these relations are 
conceptualized in various designs for supporting teachers’ learning even when underlying 
assumptions are not made explicit.  In most cases, the relations are conceptualized in uni-
directional terms (Borko, 2004; Clarke & Hollingsworth, 2002).  It is assumed that teachers will 
develop insights into their instructional practices and their students’ learning in professional 
development sessions and then apply them in their classrooms.  Designs for supporting teachers’ 
learning that reflect such a conceptualization typically focus on equipping teachers with forms of 
expertise that researchers believe are important their development of effective instructional 
practices.   

A number of researchers have challenged this uni-directional conceptualization by arguing 
that teacher professional development should be situated in the context of teaching.  For 
example, Ball and Cohen (Ball & Cohen, 1999) call for teacher development activities to be 
centered on the use of artifacts and practices that are directly relevant to teachers’ daily practices.  
This proposal is underpinned by the claim that teachers’ classroom practices constitute a 
valuable resource on which researchers can draw as they formulate design conjectures.  In this 
conceptualization, what counts as an effective design for supporting teachers’ learning depends 
on how closely it is tied to teachers’ classroom experiences, needs, and practices (Ball & Cohen, 
1999; Franke, Carpenter, Fennema, Ansell, & Behrend, 1998; Nelson, 1997; Borko, 2000).   

The second phase of an experiment, experimenting to support learning, involves testing and 
revising design conjectures about both the learning of a group of teachers and the specific means 
of supporting that learning.  In this phase, the research team’s assumptions about the relationship 
between teachers’ learning in the professional development sessions and their classroom 
practices circumscribe the ongoing design decisions to a considerable extent.  For example, when 
this relationship is conceptualized in uni-directional terms, the revisions made to design 
conjectures are likely focus on 1) additional skills or insights that researchers think are crucial 
for effective instructional practice, 2) new tools or technologies that can be used to support 
teachers’ development of these skills or insights, and 3) the specific activities in which teachers 
should engage in professional development sessions in order to develop these skills or insights.  
In such cases, the iterative design cycles focus primarily on what can be accomplished in the 
professional development setting, and the teachers’ classrooms are viewed as settings in which 
the consequences of their learning in the professional sessions can be assessed. 

A research team might scrutinize its assumptions about the relations between teachers’ 
learning in professional development sessions and their classroom practices as it tests and revises 
design conjectures in the second phase of an experiment.  However, it is unlikely that this will 
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occur unless the research team has explicated its assumptions about these relations and is aware 
of how they shape design conjectures.  In cases where the assumed relations have not been 
articulated or are not considered central to the design process, it is doubtful that they will be 
implicated in the success or failure of the design conjectures.   

The last phase of a design experiment involves conducting retrospective analyses. One of the 
goals of this phase should, in our view, be to contribute to the development of a domain-specific 
teacher development theory (cf. Cobb & Greveimeijer, in press; Cobb et al, 2004).  Assumptions 
about the relations between teachers’ participation in professional development sessions and 
their classroom practices will be inherent in the retrospective account of the teachers’ learning 
and thus in the resulting teacher development theory. 

Our Evolving Conceptualization 
Having clarified the importance of explicating assumptions about relations between teachers’ 

activity in professional development session and the classroom, we now illustrate how our 
conceptualization of these relations evolved in the course of a five-year collaboration with a 
group of middle-school teachers. The school district in which the collaborating teachers worked 
is a large urban district located in a state with a high-stakes accountability program. Our long-
term goal in working with the teachers was to support their development of instructional 
practices that place students’ reasoning at the center of their instructional decision making. To 
this end, we engaged the teachers in activities from a statistical data analysis instructional 
sequence that was designed, tested, and revised during prior NSF funded classroom design 
experiments conducted with middle grades students (Cobb, 1999; McClain & Cobb, 2001). 
During the five years of our collaboration with the teachers, we conducted six one-day work 
sessions each school year and three-day sessions each summer. 

About 18 months into the collaboration the group evolved into a genuine professional 
teaching community that satisfies Wenger’s (1998) criteria for a community of practice indicated 
by joint enterprise, mutual engagement, and a shared repertoire. As we have documented 
elsewhere (Cobb, McClain, Lamberg & Dean, 2003; Dean, 2005), the activities during the first 
two years supported the deprivatization of the teachers’ instructional practices and the evolution 
of the teacher group into a community.  Against this background, we engaged the teachers in 
activities in which they analyzed their students’ work.   

At the outset of our collaboration with the teachers, our conceptualization of the relation 
between their activity in the two settings was consistent with Ball and Cohen’s (1999) view that 
professional development should involve the use of artifacts or practices that originate in the 
teachers’ classrooms. More specifically, this design decision was based on three rationales.  We 
conjectured that because students’ work is an indispensable aspect of teachers’ instructional 
practices, making it a focus of activity would enhance the pragmatic value of the professional 
development sessions in relation to the teachers’ classroom practices.  In addition, we 
conjectured that the teachers would openly critique and challenge each other’s interpretations of 
student work because teaching was now deprivatized. Finally, we conjectured that open 
discussions of this type would give rise to opportunities for the teachers to gain insight into the 
diversity of their students’ reasoning that would be useful when they attempted to build on their 
students’ solutions while conducting whole class discussions. These interrelated rationales reflect 
our conscious effort to build on the teachers’ classroom practices and indicate our 
conceptualization of the relations between the teachers’ activity in professional development 
sessions and their classrooms at that time.  The specific questions that we posed in order to orient 
the teachers’ analysis of their students’ work were as follows: 
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• What are the different solutions that you can identify from your students’ work? 
• How would you categorize students' solutions according to their level of sophistication? 
• How would you, as a teacher, build on these different solutions? Which solutions would 

you choose to focus on in class and why? 
Our design conjectures proved to be unviable despite our detailed preparations.  The teachers 

seemed to find the activity engaging and discussed their interpretations of the student work 
openly.  Furthermore, most were able to discriminate between students’ solutions in terms of 
levels of sophistication.  However, it became apparent that they did not view this activity as 
relevant to their classroom instruction.  The teachers’ primary orientation was evaluative in that 
they assessed whether the instructional activity had been successful or not.  Students’ work, for 
these teachers, was an assessment tool rather than a resource for instructional planning.  The 
orientation that teachers took towards students’ work was particularly evident when our question 
of “how are you going to build on students’ different solutions” received puzzled looks and 
almost no response from the teachers. The conversation within the work group came to a halt at 
this point. 

The teachers’ orientation towards students’ work indicated that there was something about 
the teachers’ classroom practices that we had yet understood.  This realization in turn led us to 
reexamine our assumptions about the relations between teachers’ activity in the professional 
development sessions and their classroom practices.  We generated data to that might enable us 
to address these issues by conducting an unscheduled series of modified teaching sets (Simon & 
Tzur, 1999) with all the participating teachers.  These modified teaching sets involve observing 
one or more lessons and then conducting an interview in which questions are grounded in 
specific activities and events that occurred during the observed lessons.  A central principle that 
guided our analysis of these and other teaching sets was that the teachers’ instructional practices 
were reasonable and coherent within their landscape of teaching and learning. 

The analysis of the modified teaching sets revealed that the process of students’ learning and 
what supported their learning was, for the teachers, a black box.  We conjectured that their 
repeated observation that students’ engagement in the same classroom activity typically resulted 
in different learning outcomes for different students only served to mystify the process of 
students’ learning.  The teachers indicated that they had a limited sense of control in how they 
could influence their students’ learning and identified two ways in which they believed they 
could support student learning.  The first was to ensure that students had sufficient opportunities 
to engage in instructional activities as intended. The common strategies that the teaches 
employed included using different forms of presentation (e.g. different visual supports or 
manipulatives), breaking mathematics problems down into smaller steps, and providing students 
with sufficient time and enough problems of a similar type.  The second way that the teachers 
believed they could influence student learning was to make sure that the students attended to the 
learning opportunities that would arise if they engaging in tasks as intended.  All the teachers 
valued students’ engagement highly and, for many, staying on task was synonymous with 
learning.  The teachers typically accounted for students’ failure to learn in terms of their lack of 
focused attention or, sometimes, their unwillingness to concentrate on the mathematical intent of 
tasks.  As a result, the overriding challenge that the teachers attempted to address in their 
instruction was that of ensuring that students were on task.   

This analysis of the teaching sets suggested that the teachers’ classroom practices might have 
been influenced by the institutional settings in which they worked more deeply than we had 
initially assumed.  Their orientation to teaching was largely shaped by the fact that the school 
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leaders assessed the quality of their instruction in terms of content coverage and the extent to 
which students were on task.  The teaching sets also revealed that students’ reasoning was 
largely invisible to the teachers as they engaged in classroom instruction.  This finding explained 
why the analysis student work was irrelevant to the teachers’ classroom practices.  From the 
teachers’ perspective, the diversity in their students’ solutions served to confirm that learning 
was an elusive phenomenon.  For most of the teachers, students’ work was a product of learning 
rather than a record of students’ reasoning and indicated whether the instructional activity was 
successful or not.  In other words, the teachers viewed students’ work as a tool for retrospective 
assessment rather than as a resource for prospective planning.  

Our analysis of the teaching sets resulted in two important insights.  First, it enabled us to 
understand why the teachers took an evaluative orientation towards the use of students’ work in 
the sessions.  Second, we came to realize that the ways in which we assumed student work would 
be used in the sessions did not fit with how the teachers used student work in their classrooms.  
In Wenger’s (1998) terms, student work was a reification of students’ reasoning within the 
context of our practices as researchers and teacher educators.  In contrast, student work was a 
reification of the outcome of instruction for the teachers within the context of their classroom 
practices.  These insights led us to explicate and question our assumption that teachers’ learning 
in professional development sessions and in their classrooms could be related by focusing 
professional development activities on artifacts that originated in their classrooms.   

We found Beach’s (1999) notion of consequential transitions particularly useful as we 
attempted to rethink the relations between teachers’ activity in professional development 
sessions and their classroom practices.  In Beach’s terms, transitions between settings occur 
when teachers shift from engaging in classroom teaching to participating in professional 
development activities, and vice versa.  For Beach, these transitions are consequential if and only 
if teachers’ participation in professional development sessions is oriented towards reworking 
their classroom practices, and if their classroom teaching constitutes the context in which they 
make sense of their engagement in professional development activities.  This perspective gives 
rise to two implications for professional development.  The first implication is that professional 
development activities should be designed so that teachers can relate their participation in 
sessions to their classroom practices.  In the case of the teachers with whom we worked, our 
design conjectures implicitly assumed that the teachers used student work as a reification of 
student reasoning in their classrooms.  As we have illustrated, this assumption was unviable. 

The second related implication of Beach’s perspective on people’s activity in different 
settings is that teachers’ activity in professional development sessions should be interpreted 
against the background of their classroom practices.  This implication clarifies that when the 
same artifact is used in activities in different settings (e.g., students’ work is used both in 
professional development activities and the classroom), its constitution in one setting needs to be 
understood in relation to how it is used in the other setting.  In the case of student work, the 
questions that might be addressed when conducting an analysis of this type include: How do the 
participating teachers typically use students’ work in their classroom practices? What 
pedagogical value do they attribute to students’ work in the context of those practices?  Are there 
significant differences between the teachers’ use of student work in their classrooms and the 
ways in which the researchers envision it being used in professional development sessions?  
Answers to these questions clarify whether the planned use of an artifact such as student work 
constitutes a viable means of supporting the teachers’ learning across the settings of the 
professional development session and their classrooms. 
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In summary, when we began the teacher development experiment, we assumed that the two-
way movement of artifacts between the professional development sessions and the teachers’ 
classrooms would support their learning across the two settings.  In attempting to understand 
why design conjectures based on this assumption were unviable, we came to conceptualize the 
relations between the teachers’ activity in the two settings as involving a bi-directional interplay.  
This conceptualization focuses not on the movement of artifacts per se, but on the relations 
between teachers’ use of artifacts in professional development sessions and the classroom.   

Implications of the Bi-directional Conceptualization 
This bi-directional conceptualization is consequential for all three phases of a teacher 

development experiment.  In preparing for an experiment, it indicates the importance of 
developing relatively detailed accounts of the collaborating teachers’ instructional practices and 
thus of the ways in which they use key artifacts.  In our view, two aspects of teachers’ classroom 
practices are particularly worthy of attention.  The first concerns the extent to which students’ 
reasoning is visible in teachers’ classroom practices whereas the second involves identifying 
issues that are pragmatically relevant to the teachers in the context of their instructional practices 
and that can be leveraged to achieve the professional development agenda of supporting their 
learning across the two settings. 

The bi-directional conceptualization implies that during the second phase of experimenting to 
support learning, the ongoing process of testing and revising the design conjectures should be 
informed by analyses of the collaborating teachers’ developing classroom practices as well as by 
analyses of their activity in the professional development sessions.  Recall again that our design 
conjectures for analyzing student work proved to be unviable.  We would not have understood 
why the teachers took an evaluative stance towards student work and thus did not view the 
activity as relevant to their classroom practices had we not conducted an additional round of data 
collection in order to analyze those practices.   

In the final phase of conducting retrospective analyses, the bi-directional conceptualization 
shapes the explanation of the teacher groups’ learning and also results in credible accounts for 
why particular design decisions did not work as expected.  For example, to account for why 
students’ work did not support the learning of the teachers with whom we collaborated, we 
focused on the lack of alignment between how we envisioned student work might be used in the 
professional development sessions and how it was constituted in teachers’ classroom practices.  
This type of explanation is potentially generalizable to other cases in which there is a similar lack 
of alignments between the use of artifacts in professional development sessions and the 
classroom.  In this regard, the bi-directional conceptualization structures the aspects of a design 
that are viewed as necessary and as contingent in supporting a group of teachers’ learning, and 
thus what is potentially generalizable and replicable. 

Conclusion 
Designs for supporting teachers’ learning necessarily involve suppositions and assumptions 

about the relations between teachers’ activity in the setting of professional development and the 
classroom. These suppositions and assumptions shape not merely the goals for teachers’ learning 
but the actual process of their learning and the means of supporting and organizing it. In our 
view, it is therefore crucial for researchers to scrutinize their assumptions and to be explicit about 
how they conceptualize the relations between teachers’ activities in the professional development 
sessions and their classroom instructional practices. In this paper, the bi-directional 
conceptualization that we have proposed to guide teacher development experiments reflects the 



Research Methods   Vol.2-463 

 

view of these relations that we developed while collaborating with a group of teachers to support 
their learning.  
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 Figure 1. A part-to-whole fraction as a 
conceptual composite. 

MATHEMATICAL REPRESENTATIONS AS CONCEPTUAL COMPOSIT ES: 
IMPLICATIONS FOR DESIGN 

Dor Abrahamson 
University of California, Berkeley 

dor@berkeley.edu 

Positing that mathematical representations are covert conceptual composites, i.e., they implicitly 
enfold coordination of two or more ideas, I propose a design framework for fostering deep 
conceptual understanding of standard mathematical representations. Working with bridging 
tools, students engage in situated problem-solving activities to recruit and insightfully 
recompose familiar representations into the standard representation. I demonstrate this 
framework through designs created for studies in three mathematical domains. 

This design-theory paper presents a framework that spells out intuitive aspects of the craft of 
design for mathematics education so as to formulate these aspects, giving designers tools for 
progressing from domain analysis and diagnosis of learning problems toward design, 
implementation, and data analysis. The proposed framework focuses on mathematical 
representations and attempts to provide specificity, a “design template,” for implementing 
radical-constructivist philosophy of didactics in terms of actual objects, activities, and facilitation 
guidelines for mathematics learning environments. The paper emanates from reflection on a 
decade of design-based research my collaborators and I have conducted on students’ 
mathematical learning, in three separate projects with designs for the content domains of 
fractions, ratio and proportion, and probability, respectively, with K-16 participants 
(Abrahamson, 2000; Abrahamson & Wilensky, in press; Fuson & Abrahamson, 2005).  

The foundations of the proposed design framework are in the philosophies of constructivism 
and phenomenology (Freudenthal, 1986; Heidegger, 1962; Piaget & Inhelder, 1952). Also, I 
regard effective learning as acts of creativity, so I build on creativity studies (Steiner, 2001), 
which describe insight as the act of imaginatively 
combining ideas. Mathematical representations, I 
posit, are conceptual composites, i.e., they enfold a 
historical coordination of two or more ideas. For 
example, part-to-whole diagrams representing the 
idea of a fraction (see Figure 1) integrate the 
multiplicative relation between a part and a whole, 
e.g., 2-to-3, and the logical relation of inclusion, i.e., 
the part is integral to the whole. The composite 
nature of mathematical representations is often 
covert—one can use these representations without 
appreciating which ideas they enfold and how these 
ideas are coordinated. Consequently, learners who, 
at best, develop procedural fluency with these 
representations, may not experience a sense of 
understanding, because they lack opportunities to 
bridge the embedded ideas, even if these embedded 
ideas are each familiar and robust. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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In the proposed framework, a designer creates a cluster of mathematical representations that 
decompose and “satellite” the target representation, highlighting its covert conceptual 
components. The teacher leads classroom discussion of situated problems to illuminate how the 
satellite representations are embedded in the target representation. Working with bridging tools 
(Abrahamson, 2004)—“ambiguous” representations interpretable as either of the complementary 
composite components—students recompose the components insightfully, as a reconciliation of 
the tension caused by the ambiguity, into the composite captured in the standard representation. 
Figures 1 and 2 demonstrate, for three designs, the standard representation interpreted as a 
conceptual composite and the bridging tools that help students build on their previous and 
emergent understandings and support students in seeing and coordinating these understandings. 

 

Figure 2. De-/re-compositions of ratio-and-proportion and probability representations. 

The emergent framework may contribute to the work of researchers and practitioners: (a) For 
design-based researchers, the framework may guide both analyses and design in further 
mathematical domains; and (b) the framework may inform guidelines for professional 
development and, specifically, it may sensitize teachers to the possible opacity of some taken-as-
shared mathematical constructs that are in fact historical composites—teachers informed by this 
framework may have new facilitation tools for seeing through the “smokescreen” of procedural 
fluency and helping students rebuild conceptual knowledge on their own robust understanding.  
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DESIGN RATIONALE: ROLE OF CURRICULA IN PROVIDING OP PORTUNITIES 
FOR TEACHERS TO DEVELOP COMPLEX PRACTICES 

Jeffrey Choppin 
University of Rochester 

jchoppin@ITS.Rochester.edu 

This study analyzes the potential of two similar tasks to generate dialogic classroom 
interactions. Although both tasks were similar in context and outcome, one affords teachers’ 
actions to elicit and build from diverse student explanations. This would require greater teacher 
expertise – both mathematically and pedagogically – and an articulation of conditions when 
more potentially dialogical tasks should be implemented. 

Introduction 
An enduring challenge in mathematics education reform is to help teachers develop 

competency at new and complex practices (cf. Smith, 1996). The mathematics reform 
represented by the NCTM Standards implicates teaching practices that involve highly developed 
knowledge packages and skills that are demanding and complex. Large-scale studies have 
indicated that few teachers develop such skills (cf.  Stigler & Hiebert, 1997; Jacobs et al., 2006); 
consequently, attention must be paid to conditions which foster the development of new and 
complex skills.  

Curricula can play a role in teacher learning of complex practices, especially curricula which 
speak to, rather than through, teachers (Remillard, 2005). A number of curricula, particularly 
NSF-supported ‘reform’ curricula, include characteristics of educative curricula (Ball and 
Cohen; 1996; Davis & Krajcik, 2005) such as descriptions and analyses of a variety of student 
responses to a particular problem, mappings of student learning in a particular content strand 
over time, and consideration of various representations of and connections between mathematical 
concepts. Such elaborations of the ‘design rationale’ “help teachers to see connections between 
suggested activities in the curriculum and their own understanding of mathematics and what they 
believe is important for students to come know and understand in mathematics, thereby moving 
them away from teaching a list of unconnected, isolated topics and toward teaching mathematical 
concepts and ideas” (Stein & Kim, 2006, p. 17).   

Curriculum designers face a tension regarding the design rationale. Curricula designed to 
promote learning primarily through the interaction between the written task and students 
(procedure-centric curricula) require less expertise on the part of the teacher than curricula which 
promote learning through the interaction between teacher and student (resource-centric curricula) 
(Stein & Kim, 2006). The tension faced by curriculum designers can be stated in terms of two 
competing forces: on the one hand, there is the vision of mathematics instruction which 
highlights conditions for learning with understanding; on the other hand, there is the reality of 
teachers’ familiarity and skill with complex practices noted above.  

This article articulates a framework which illustrates the interaction between features of 
curriculum design, teacher learning, and opportunities for students to learn with understanding. 
The underlying perspective is that there is a participatory relationship between teachers and 
curricula (Remillard, 2005), no matter the intended design. That is, teachers’ engagement with 
curricula varies according to available resources, individual traits such as beliefs and knowledge, 
and the context in which the teacher works.  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
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The goals of this article are to elaborate the role of design rationale in providing 
opportunities for teachers to learn complex practices and to highlight the importance of 
analyzing curricula in terms of the nature and elaboration of their design rationale. I use 
examples of two very similar tasks to illustrate characteristics of tasks in relation to design 
rationale.  

Framework 
The underlying notion for this article is that curricula can afford or constrain complex 

teaching practices and that complex teaching practices are associated with creating opportunities 
to learn with understanding, which Carpenter et al. (2004) define as engaging in four types of 
activities: (a) constructing relationships, (b) extending and applying mathematical knowledge, (c) 
justifying and explaining generalizations and procedures, and (d) developing a sense of identity 
related to taking responsibility for making sense of mathematical knowledge. I emphasize the 
interactive nature of learning with understanding, both in the sense of students interacting with 
mathematical ideas but also with each other.  

I make two assumptions: (1) curricula which strongly prescribe teacher and student actions 
require less complex teacher practices (those associated with recitational forms of instruction) 
and are less likely to engender learning with understanding; and (2) curricula which focus more 
on the mathematical ideas to be developed rather than highly specified task structures and 
sequences require more complex teaching practices and are more likely to engender learning 
with understanding. The figure below illustrates this relationship.  

 
 
 
Figure 1: Diagram of framework 
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Borrowing from Brown and Edelson (2003), I would say the latter curriculum requires a 

greater degree of pedagogical design capacity (PDC), which refers to a teacher’s ability to use 
resources, including curricula, to design and enact tasks that engage students in disciplinary 
thinking. Brown and Edelson describe a continuum of three teacher actions which exemplify a 
teacher’s PDC. The first practice, offloading, suggests that teachers follow the task design and 
sequence specified in the curriculum without adaptation. Although this adherence to task design 
and sequencing affords types of student activity which the teacher may be unable to manage on 
her own, it also constrains efforts to build from local resources, including how students are 
thinking about a topic. As teachers become more experienced with the curricular content and 
how students think about the content in regards to the particular task design and sequencing, they 
begin to adapt the curriculum to make it a better fit. Through an extensive process of adapting 
the curriculum, teachers begin to improvise task design, focusing on more organic and emergent 
processes in relation to the big ideas.  
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The framework suggests a fairly straightforward (and possibly naïve) correspondence 
between offloading and less complex teaching practices and an even more problematic 
correspondence between complex teaching practices and improvising. I make strong assumptions 
in the model that a teacher’s adaptation process will result in the development of, for example, 
the ability to orchestrate student discourse around the big mathematical ideas implied in tasks. 
This assumes that a teacher has the appropriate disposition, epistemological beliefs, and 
mathematics knowledge to build from and guide the adaptation process.  

Given these assumptions, however, the design rationale and task design of curricula can 
serve to inhibit or afford growth in a teacher’s PDC. Brown (in press, cited in Kim & Stein, 
2006) discusses the notion of procedure-centric and resource-centric curricula in relation to how 
curricula speak to teachers. A procedure-centric curriculum “focuses on the actions involved in 
carrying out the lesson” while a resource-centric “approach to the design of teacher materials … 
emphasizes the key building blocks of a lesson and tries to make visible the pedagogical 
affordances of such building blocks” (Stein & Kim, p. 29).   

Below, I analyze the design of two highly related tasks, one from the Connected Mathematics 
Project (CMP) (Lappan et al., 1998) curriculum, and the other from the book Connected 
Mathematical Ideas (CMI) (Boaler & Humphreys, 2005). I use the analysis to point out how the 
structure of the task design and sequence requires different levels of teacher expertise and affords 
certain aspects of learning with understanding. The analysis is intended to suggest that teachers 
ultimately need to adapt CMP tasks to afford greater interactivity. The process of adaptation is 
reflexive: adapting tasks will foster growth in understanding of mathematics and of student 
thinking, while the adapted tasks will require a greater understanding of student thinking and a 
strongly connected understanding of the underlying mathematical ideas.  

A tale of two task designs 
The two tasks have highly similar goals, but their designs differ in terms of the opportunities 

they provide for generating multiple appropriate solutions. Consequently, the opportunities for 
interactivity differ across the two tasks. The purpose of this analysis is: (1) to highlight the 
impact of task design on opportunities to generate interactive student engagement; (2) to suggest 
that published curricula are intended to scaffold the teaching as well as learning of mathematical 
concepts; and (3) therefore, to consider how experienced teachers can adapt tasks to enhance 
opportunities to learn with understanding. The task is labeled the ‘Border Problem’ (Boaler & 
Humphreys, 2005). In the task, students are asked to determine the number of tiles that it would 
take to make a border around a square. Below, I summarize the two task designs.  

CMP task design.  
The CMP version of the border problem introduces the task by emphasizing the notion of 

equivalency of two symbolic expressions. The text includes a familiar context, the area formula 
of a rectangle, so that students can easily verify the equivalency of the two expressions. This 
textual cue points to the goal of the activity as determining symbolic equivalency. The text then 
presents the scenario of finding the number of square tiles (1 foot x 1 foot) necessary to create a 
border around a 5-foot by 5-foot swimming pool. The example provides the appropriate quantity, 
24, to help students understand the nature of the problem (can contact curriculum designers 
about this).  

Problem 2.1 follows the introduction and states that students should calculate the tiles in the 
border of square swimming pools that have side length 1, 2, 3, 4, 6, and 10 feet. Students are 
asked to create a table and then write an equation from the table that relates the number of tiles to 
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the side length of the pool. As a matter of background, students have generated equations from 
tables in the Variables and Patterns unit of the CMP curriculum (need to make sure that this 
typically precedes Say it With Symbols).[Should get a scanned version for Problem 2.1] 

In the last part of Problem 2.1, students are asked to generate another equation from the same 
table. The follow-up to problem 2.1 is designed to get students to write quadratic expressions 
relating the areas of the pool and the border and to compare these expressions with linear 
expressions. Problem 2.2 begins with a mini-introduction, similar to the introduction to the entire 
investigation involving the area formula for a rectangle (Might need a scan of the area formula). 
The mini-introduction relates one expression for the length of the border to its geometric 
representation. The sub-parts of problem 2.2 provide three more expressions and ask that 
students generate geometric representations related to each of the symbolic expressions. The 
follow up to Problem 2.2 then asks students for ways to show the various expressions are 
equivalent.  

Analysis 
Although the sequence of tasks affords opportunities for students to consider multiple ways 

of expressing the length of the border, each subpart of a task (or subtask), is highly constrained 
in terms of the variation of appropriate (within the context of the instructional goals of the unit) 
student responses. This acts to scaffold the enactment in terms of the teacher’s choice of task 
sequence and focus of each task, but it also constrains the generative characteristics of the task. 
For example, in Problem 2.2, part b, students are asked to relate the symbolic expression to the 
geometric figure. There is really only one appropriate way to relate the two.   

The investigation also sequences the order with which representations are introduced. In 
Problem 2.1, the students are to make a table of values and then generate an equation from the 
table. In problem 2.2, the students then take symbolic equations and relate them to geometric 
diagrams. In each case, the task design stipulates the representations with which students work. 
The unit design also constrains generativity by focusing on representations that provide fewer 
appropriate choices. For example, Problem 2.1 has students generating equations from a table, 
which provides fewer choices than if they were generating equations from the geometric 
diagram.  

Boaler & Humphreys task design.  
In the Boaler and Humphreys version of the Border Task, students were first tasked to 

determine the number of squares in a border surrounding a 10x10 foot pool. The students were to 
do this without counting and without using pencil and paper. These restrictions were intended to 
focus students on finding a strategy connecting the sides of the pool to the length of the border. 
The students then shared their strategies with the class, which Humphreys listed on the board, 
thus creating a shared public record of the set of strategies. Students who shared their solutions 
were required to explain their strategy by explicitly relating it back to the diagram. Humphrey’s 
intent of this initial task was to get students to get students to think of the functional relationship 
between the length of the border and the length of the pool.  

The next task was for students to use the strategy they had developed on the 10x10 square on 
the 6x6 square. The intent of this was to help students understand what was generalizable about 
their strategies; i.e. what changed and what remained the same. The following lesson began with 
students having to verbalize their strategies, keeping in mind what had changed and what had 
stayed the same between the two different grids. The verbalizing was designed to help students 
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generate formulas by explicitly expressing the components of their strategy. The next step was to 
have students generate symbolic expressions for their strategies.  

Analysis 
Students were provided the opportunity to generate and then compare the 6 ways of finding 

the sides of the square. A considerable amount of discussion was generated around comparing 
the numeric expressions structurally to determine equivalency. Similarly, students selected their 
own strategy, numerically and verbally represented, and create a formula from them. Even within 
strategies, there was some useful variation for different formulas, mostly centering on how many 
letters to use. Given a uniform decision to use one variable in a formula, then there would be 6 
different formulas to represent the different strategies. Going from geometric to numeric 
provided maximum variation (6 different ways), which Cathy later used to illustrate the 
structural equivalency. As students develop symbolic expressions for these, they will already 
have established their equivalence and can then look to see what rules should apply in the 
manipulations to make them equivalent.  

Comparison of the two tasks 
Over the sequence of tasks, the students connect tabular, symbolic, and geometric 

representations for the length of the border. By doing so, the tasks support the development of 
the notion of equivalence for linear and quadratic expressions. This helps to ultimately establish 
rules for simplifying algebraic expressions through combining like terms and using the 
distributive property. The multiple representations act to provide anchors and rich connections 
for establishing equivalence.  

Although the outcome of the two task designs were quite similar – the students are to connect 
patterns found in the border problem to equivalent algebraic expressions which highlight the 
distributive property – the opportunities for student interaction are afforded in Humphrey’s 
design and constrained in the CMP design. In the case of CMP, the sequenced nature of the 
subtasks affords a trajectory from the border problem to the development of the distributive 
property. Although the task as a whole supports students’ consideration of multiple 
representations and multiple ways to generate the border, each subtask provides little room for 
students to generate multiple solutions or explanations.  

Humphrey’s task design explicitly elicits and builds from multiple interpretations or 
strategies. In fact, it is the diversity of explanations which drives the development of content. 
Humphreys displays the students’ strategies numerically in a way that elicits comparisons and 
then facilitates the development of multiple algebraic expressions. From their prior work, 
students know that the expressions must be equivalent and must therefore come to understand the 
mechanism that allows 4n – 4 to be equivalent to 4(n – 1). The CMP task also requires that the 
students consider equivalent algebraic expressions, but these expressions are given and not 
explicitly generated by the students.  

Discussion 
The task in Boaler and Humphreys demands more expert teaching practices and affords the 

kinds of interactions associated with learning for understanding. The CMP task was more 
structured and, if the teacher fully offloaded the task design onto the written text, would require 
less complex teaching practices and more constricted forms of student engagement and 
interactivity. A goal of this analysis was to locate tasks at either end of the oblique line given in 
figure 1. The next part of this discussion is to conjecture how teachers would adapt the CMP 
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tasks to afford the kinds of generative possibilities inherent in the Boaler and Humphreys’ task. 
That is, how could a teacher understand the characteristics of the CMP task design in a way that 
afforded adaptations toward a task that required more complex teaching practices and that 
afforded greater opportunities for students to learn with understanding?  

The teacher’s edition of the Say It With Symbols unit of CMP, in which the border task is 
located, provides a general overview of the big mathematical ideas, the representations that will 
be emphasized, and a trajectory of learning within the content strand. In that sense, it provides a 
fairly comprehensive description of the design rationale of the unit. The teacher’s edition 
provides a very brief set of cited resources to which a teacher could seek greater elaboration of 
some of the tasks, but it does not provide citations for research about student learning in the 
content area. Teachers read and utilize curricular material in variable ways (Sherin & Drake, 
2005), so even the inclusion of features of design rationale is insufficient to guide the process of 
adapting tasks.  

Cathy Humphreys, the teacher who designed and implemented the Border Problem, describes 
in some detail the research as well as the mathematical goals that guided her design and 
enactment of the Border Problem. It is clear from the description of Cathy’s thinking that the 
process of adapting the Border Problem has been a lengthy, iterative, and reflective process for 
her.  

The written tasks and accompanying resources provide a starting point for teachers to 
consider the enactment of a task. The process of adapting tasks to accomplish more demanding 
and productive learning requires a continual effort on the part of the teacher. This effort is much 
like a design experiment, in that teachers make conjectures based on prior experience and 
reading of research, test out new adaptations, note how students react to them, reflect on the task 
design, and revise the task for the next iteration. The goal of these design experiments is to create 
opportunities for students to learn with understanding.  
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In this paper I analyze 37 clinical interviews of 13-year-old students from the same classroom. 
The interviews were conducted for the purpose of documenting students’ quantitative 
understanding about fractions. The interviewed students attended a school that belongs to a 
branch of the Mexican educational system (“Secundaria Técnica”) ranked as low-performing 
according to results from PISA 2003. The analysis serves to identify some important challenges 
in designing meaningful mathematical instruction for students attending this kind of educational 
institutions. It suggests that strategies should be developed to help students build from early 
types of proportional notions, given that many might not have developed satisfactory 
understandings about fractions from prior instructional and/or out-of-school experiences. The 
analysis also suggests that some students might also need help in developing relatively basic 
number-sense. 

Since the year 2000, the Organization for Cooperation and Economic Development (OCED) 
has implemented the Program for International Student Assessment (PISA) for the purpose of 
assessing the quality of the educational systems of its 30 member countries, as well as those of 
some partner countries. The assessment is conducted every three years. It is based on 
representative samples of the fifteen-year-old population enrolled in school at the time. It 
assesses students’ performance in reading, science, and mathematics, specializing in one of these 
areas in each implementation. In the 2003 assessment the specialized area was mathematics.  

The PISA 2003 was meant to assess students' mathematical skills for meeting the challenges 
of today’s knowledge societies (Learning for tomorrow's world: First results from PISA 2003, 
2004). According to their performance in the assessment, students were placed at one of seven 
performance levels (from 0 to 6). The main borderline was set between levels 1 and 2. Following 
the PISA rationale, students at Levels 0 and 1 (i.e. under the main borderline) failed to 
demonstrate consistently that they had “baseline mathematical skills, such as the capacity to use 
direct inference to recognize the mathematical elements of a situation, use a single representation 
to help explore and understand a situation, use basic algorithms, formulae and procedures, and 
the capacity to make literal interpretations and apply direct reasoning” (p. 91). These students 
were considered unlikely to develop the mathematical skills necessary for insertion in 
tomorrow's workforce and for participation in democratic societies as active and informed 
citizens. 

The PISA 2003 serves to identify the challenges that participating countries face in terms of 
providing all of their students with the mathematics education necessary for becoming active and 
productive citizens. The results show that in every country there is much work to do. The 
average score among the OCDE member countries showed 21.4% of students at Levels 0 and 1 
(In Canada 10.1% and in the USA 25.7%). However, the proportion was significantly larger in 
some of the developing countries that participated. In particular, Brazil, Indonesia, Mexico, 
Thailand, Tunisia, and Uruguay had more than 50% of their students placed south of the PISA 
border. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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In this paper I analyze 37 clinical interviews of students from a primero de secundaria 
classroom (13 year-olds) in the Mexican state of Chiapas. These students attended a Secundaria 
Técnica, a middle school that belongs to one of four branches within the Mexican public school 
system offering middle school education. Schools in this branch offer, in addition to the core 
national curriculum, 4 hours per week of technical education (e.g., electricity, computing, 
carpentry, etc.). It is worth clarifying that in Mexico there is no tracking in the educational 
system (at least not officially). As a consequence, it would not be adequate to consider the 
Secundaria Técnica branch as part of a non-college track. The other three branches of the system 
are (a) “Secundaría General,” a branch that offers the same curriculum as Secundaria Técnica, 
except for the 4 hours per week of technical education; “Telesecundaria,” a branch that services 
rural populations, where 1 instructor teaches all the subjects with the support of television 
broadcasts; and “Secundaría para Trabajadores,” a branch that offers classes in the evenings for 
teenagers and adults that work.  

The Secundaria Técnica schools service 28% of the national middle-school student body. In 
PISA 2003, 82.7% of the students attending Secundaria Técnica were placed at Levels 0 or 1 
(these findings are statistically representative, Vidal & Díaz, 2004). The purpose of this analysis 
is to specify some of the main instructional-design challenges involved in supporting significant 
mathematical learning in classrooms that belong to low performing middle-school educational 
systems such as the Mexican Secundaria Técnica.  

Methodology and Data Collection 
The 37 interviews were part of the planning phase of a classroom design experiment (Cobb, 

2000b). They were conducted with the intent of identifying a viable starting point for a 
conjectured learning trajectory (Gravemeijer, 2004 Simon, 1995) aimed at supporting students’ 
understanding of basic proportional concepts used for analyzing data (fractions, percents, and 
ratios). The overarching instructional goal of the classroom design experiment was to help the 
students develop relatively sophisticated understandings of proportionality, thereby enabling 
them to make sound quantitative sense of statements such as the following: “23% of the adult 
population in Chiapas is literate, 2/3 of whom are women.” “In Chiapas there are 1100.5 people 
per doctor, whereas in Mexico City there are 700.2.”    

The interviews were individual and were video-recorded. I conducted all of the interviews in 
April 2005, following the general guidelines of clinical interviews as they have been used in 
mathematics education (Cobb, 1986). Each interview lasted about 35 minutes. During the 
interviews, students were presented with 4 problems, 2 of which I will discuss in this paper. 

The first problem was based on a narrative about a bus traveling from San Cristóbal de las 
Casas (the students’ hometown) to Comitán, a city that is 90 kilometers away. Students were 
shown a diagram representing the road that connects the two cities (see Figure 1) and asked, first, 
to identify and make a mark at the point where the bus would be upon having traveled 1/2 of the 
total distance. They were also asked to determine that distance in kilometers (i.e. 45 km).  

Figure 1. The road between San Cristóbal de las Casas and Comitán 
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Students that were able to identify half the distance were then asked to do the same with 1/3 
the distance, and likewise to determine its correspondence in kilometers (i.e. 30 km). Those that 
were readily able to do so, or that required little support, were then asked to identify 3/5 of the 
distance, once again both in the diagram and in kilometers (i.e. 54 km). If a student was not able 
to do so, the interviewer explored if he could at least identify 1/5 of the distance in the diagram 
and in kilometers (i.e. 18 km). The interviewer (me) always tried to make certain that students 
understood the situation by asking questions and making as many explanations as necessary. I 
also made probing questions to determine how sure students were about their answers and to 
explore how they were reasoning.  

In the second problem, students were shown a drawing of two bags of cement leaning against 
a wall (see Figure 2). They were first asked to determine which of the two bags had more 
cement, given that one was filled up to 4/9 and the other to 3/4. Students that gave adequate 
responses were then told the sum of adding the contents of the 2 bags (i.e. 43/36) and asked if 
they thought it would be enough to fill one bag, and to explain their answer. 

The students who said that they did not know which of the two bags would have more 
cement, that gave an incorrect answer, or that seemed uncertain about their answer, were asked 
to mark the level of the cement in the bag that was filled up to 3/4. Those that still gave an 
incorrect answer or seemed uncertain about their answer were asked to identify the 1/2 and then 
the 1/4 levels. Some of them were also asked to clarify if they thought that 2/4 would be more, 
the same, or less than 1/2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two bags of cement leaning against a wall 

The video-recorded interviews were coded, identifying whether a student could adequately 
respond to the question or not, given the social context of the interview (Cobb, 2000a). Students 
that could readily respond to a question and justify their answers were considered to understand 
the notion involved (e.g. 1/2). Students that with relatively little help could produce an adequate 
response and justify it were also considered to understand the notion involved. For instance, in 
the road problem, some students seemed uncertain about where the bus would be upon having 
traveled one third of the distance (un tercio) but could identify the spot and its equivalence in 
kilometers when asked where the bus would be upon having traveled one of three parts of the 
trajectory (una tercera parte del trayecto). These students were considered to understand the 
notion of 1/3. Students that required more help to produce an adequate answer or that did not 
produce an adequate answer were considered to not understand the notion involved, given the 
problem that was presented and the social context of the interview.   
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In addition to the coding, the mathematical reasoning of the three students whose 
performance was the poorest during the interviews was analyzed in detail. As I further explain 
below, the analysis of these interviews suggests that these students not only struggled when 
dealing with simple proportional tasks (e.g. identify the 1/4 point of a bag of cement), but also 
seem to have relatively poor number sense. 

Results 
With regard to the road problem (see Figure 1), all of the students were able to identify the 

point in the diagram were the bus would be upon having traveled 1/2 of the distance, to establish 
its correspondence in kilometers (45 km). However, three students struggled with calculating the 
correspondence of 1/2 of 90 km. 16 of the 37 students (43%) were able to adequately identify the 
spot where the bus would be upon having traveled 1/3 of the distance (i.e. some place before 1/2 
but after 1/4) and to establish its correspondence in kilometers (30 km). Of these 16 students, 5 
could adequately identify the spot where the bus would be upon having traveled 3/5 of the 
distance (e.g. where the bus would be upon having traveled 3 of 5 equal segments), and 2 were 
readily capable of identifying the correspondence in kilometers (54 km). Of the 11 students that 
did not adequately identify the 3/5 spot, 6 could do so with the 1/5 spot and establish its 
correspondence in kilometers (30 km).  

With regard to the cement-bags problem (see figure 2), 6 of the 37 students (16%) identified 
the bag that was filled up to 3/4 as having more cement than the one filled up to 4/9, and soundly 
explained their answer. Of the remaining 25 students, all could identify the point where the 
cement would reach if the bag were to be filled up to 1/2; 20 could identify the 1/4 point, and 18 
of them the 3/4 point. 18 of the 25 students who did not identified the bag with 3/4 as having 
more cement that the one with 4/9 were asked about where the cement would be if a bag were to 
be filled up to 2/4, and to clarify if it would have more, the same, or less cement than if it were to 
be filled up to 1/2; 10 of them gave an adequate response.  

Table 1 shows the number of students that seemed to be capable of reasoning satisfactorily 
about the different notions involved in the problems, given the nature of the problems and the 
social context of the interviews. 

Notion 1/2 1/4 3/4 1/3 1/5 3/5 4/9 Improper 
Fraction 

Absolute 
Frequency 37 32 30 16 11 5 6 6 

Relative 
Frequency 100% 86% 81% 43% 30% 14% 16% 16% 

Table 1. Students who were capable of reasoning about different notions 

The cases of three students (all of them male) were of special interest since, in addition to 
struggling with the relatively simple problems of the interview (e.g. identifying the 1/4 point in a 
cement bag), they also seemed to experience difficulties when addressing relatively simple 
arithmetic tasks. The ensuing exchange is representative of these students’ difficulties. 

Researcher: (After the student identified half the distance in the diagram representing the 
road; see Figure 1) And how many kilometers would that be? 

Student: Sorry? 
Researcher: If from here to here (pointing at the start and end of line in the diagram) there are 

90 kilometers, when the bus is half of the way (pointing at the mark made by the student), how 
many kilometers would that be? 

Student: (Silent for a few seconds) 25? 
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Researcher: 25? 
Student: Yes? 
Researcher: If you travel 25 kilometers twice would you have traveled 90 kilometers?  
Student: (Silent) 
Researcher: Does 25 plus 25 equal 90? 
Student: Yes (seeming doubtful). 
(Next, the student and the researcher spend a few minutes with a calculator, seeking for a 

number that added twice would become 90 [i.e., 45 + 45 = 90]).  
It is not possible to establish to what point the social context of the interview (as experienced 

by the child) may have a been a determining factor in this case and in the cases of other students’ 
who exhibited rather poor mathematical reasoning, nor how much better some of them could 
have performed in other social contexts. However, it is worth noticing the relative simplicity of 
the tasks with which three of the students struggled (e.g. determining what would be half of 90). 
It is reasonable to conjecture that the number-sense developed by some of the students—either in 
their prior instructional experiences or in their out-of-school experiences—might not be enough 
to allow them to readily benefit from participating in instructional activities that involve dealing 
with relatively simple proportional tasks. 

Discussion 
The analysis of the interviews is useful for understanding what might be happening in terms 

of mathematical learning in educational systems like Secundaria Técnica, and for formulating 
instructional-design conjectures about how to seek improvement. It is worth noticing that the 
relatively low-performance of the interviewed students is, in general, consistent with the results 
of students attending the Secundaria Técnica branch on the PISA 2003 exam (Vidal & Díaz, 
2004). It is then reasonable to expect that many classrooms of this grade level—in this kind of 
educational system—would be composed of students that would perform similarly to what was 
documented in the interviews. In this sense, the analysis of the interviews is useful both for 
understanding why students in this kind of educational institution perform poorly on tests, and 
for informing instructional design that can better support students’ mathematical learning. 

The Mexican educational system operates under a national curriculum (Secretaría de 
Educación Pública, 2006). Much of the content-knowledge addressed in the curriculum for 
primero de secundaria (the grade level of the interviewed students) requires an understanding of 
proportional notions that only very few of the interviewees seemed to have developed at the time 
of the study. For instance, the national curriculum requires that, at the beginning of primero de 
secundaria, teachers address tasks that involve finding correspondences between fractions and 
decimals in the number line. The analysis suggests that very few of the interviewed students (no 
more than 6) would have had an understanding of fractions comprehensive enough to allow them 
to readily and meaningfully engage in instruction involving such tasks. 

The results of the interviews make it reasonable to conjecture that a large portion of students 
attending the Mexican educational system might not have developed the mathematical 
understandings that the national curriculum expects them to have mastered upon arriving at 
primero de secundaria. If this is true, it is possible that many students in educational systems like 
Secundaria Técnica are being asked to deal with mathematical tasks about which they have not 
yet developed the necessary understandings to benefit from. Such a situation would imply that 
many students might not be having many opportunities to learn as a result of dealing with the 
kind of tasks that the curriculum prescribes. 
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The analysis suggests that the majority of the interviewed students could have benefited from 
participating in instruction that addressed basic fractional concepts. The analysis also suggests 
that, with proper instructional support, many of them could have rapidly advanced their 
understanding of proportionality.  

With regard to instructional design, the analysis suggests that it would be worthwhile to 
develop resources that allow primero de secundaria teachers to detect how their students 
understand basic fractional notions, so that they could take this information into consideration 
when making instructional decisions. In addition, it also seems worthwhile to develop 
instructional resources that would help teachers in these contexts and at this grade level support 
their students’ understandings of basic proportional notions. 

It is also important to mention that three students were detected in the interviews that not 
only might have needed help in developing basic understandings about fractions but also might 
have required support in developing basic number sense. The results of PISA 2003 are not 
helpful for formulating conjectures about how widespread the situation of these students might 
be within an educational system like Secundaria Técnica. However, it seems important not to 
lose sight of the fact that some students in these systems might not be readily capable of 
benefiting from engaging in instruction that addresses rather basic proportional notions, and that 
provisions should be made to help them develop basic number sense. 
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This paper discusses the entailments of mathematics education research that focuses on 
cognition and learning, culture and learning, and issues of race and power in mathematics 
education for understanding and addressing the achievement gap.  Research on the achievement 
gap that provides individual-level accounts of cognitive or social differences between students 
from dominant and non-dominant backgrounds often misses group-level processes shaping 
opportunities to learn.  As part of a review for the Second Handbook of Teaching and Learning 
in Mathematics Education, this paper conjoins theories of race and power with research in 
mathematics education to propose recommendations for research on inequity and injustice in 
mathematics education. 

The 2005 NAEP reports that the scores of African American and Latino students in 
mathematics continue to be substantially lower than their White and Asian counterparts. This 
report simply echoes what teachers, students, and parents of students experience in increasingly 
diverse schools and mathematics classrooms--that students of color are disproportionately placed 
in lower tracks (Oakes, 1985) and often feel marginalized (Martin, in press; Cobb & Hodge, 
2002).  Bob Moses, an esteemed civil rights leader and mathematician, argues that students who 
face these unjust circumstances need to “demand to understand” mathematics in order to pass 
college entrance exams and thus have access to a broader array of social and capital resources 
(Moses & Cobb, 2001). Similarly, a number of mathematics researchers from a social justice 
perspective are calling for teachers to focus not only on teaching students mathematical content, 
but also on how mathematics can be used as a tool for social empowerment (Gutstein, 2005; 
Gutierrez, 2002).  These researchers, educators, and professionals are acutely aware that social, 
educational, and thus professional differences in opportunities to become math doers among 
racial groups in America are deeply entrenched in a broader social and political system that 
serves to perpetuate inequity and social injustice in society (Kozol, 2005). Our aim in this paper 
is to review research in mathematics education that can speak to the achievement gap in 
mathematics education by conceptualizing these differences through group frameworks such as 
culture and race. 

Individual vs. group level explanations 
Despite the portrayal of the “achievement gap” as a group phenomenon, much of the 

research conducted on equity in mathematics has tended to focus on individual students, 
teachers, or schools. There are several limitations to this approach. First, by comparing the 
characteristics of individuals and/or discrete programs to what is considered normative or 
“adaptive”, researchers fail to note the fact that these characteristics inherently mirror those of 
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the dominant “White” culture (Tate, 1994).  Thus, instead of conducting analyses of learning and 
development across various communities and contexts, these accounts of mathematics learning 
and teaching tend to focus on what’s missing or defective in non-normative (i.e. non-White) 
contexts, “blaming the victim” for their own problematic condition,  

A second characteristic of this research is the tendency to focus heavily on the relation of 
cognition to achievement without attending to broader social and cultural processes. Of course, 
this critique often plays out in heated debates over particular theoretical perspectives (Sfard, 
1998).  For the purposes of this paper, we contend that while each perspective is certainly 
valuable, research on individual psychological processes, motivational orientations, or 
knowledge structures does not address the issue of differences in and among groups and more 
importantly, the relations between them.  In order to understand group differences in access to 
educational resources (material as well as ideational), the field of mathematics education 
research must begin to examine the broader sociopolitical power structures through which some 
groups experience discrimination and marginalization in our mathematics classrooms.  An 
unintended consequence of the limitations we point out in the current research is that 
explanations for school failure and success tend to be situated within individuals instead of 
acknowledging how groups of students, teacher and schools are positioned relative to each other 
and various resources, opportunities and constraints. In addition, framing differences in 
achievement outcomes across groups as individual differences tends to support deficit models for 
students of color and the poor. This paper deconstructs current explanations for differential 
achievement in mathematics with respect to particular lines of research and the assumptions of 
this research about individuals and groups in relation to broader social and cultural structures. 

Race, mathematics, and inequity 
Another aspect of differential achievement in mathematics among groups of students is that it 

is generally framed in terms of race or ethnicity.  Thus, although race is fundamentally a social 
construction that is used to classify groups of people, it has tremendous power in shaping 
explanations for why some students are better or worse at mathematics.  However, researchers in 
mathematics have only begun to study what Martin (in press) calls “racialized experiences” of 
groups of students (and teachers) in mathematics education. Perhaps one reason why researchers 
have shied away from group-level analyses that focus on race, ethnicity, or language is the 
danger of essentializing, or making attributions to individuals based on their group affiliation 
without attending to how individuals take up, adapt, or reject them. Gutierrez and Rogoff (2003) 
warn against stereotyping individual and groups of students in terms of, for example, learning 
styles or motivational orientations.  However, as Martin’s (in press) research illustrates, 
individuals continually negotiate racist structures and ideologies that influence both their access 
to high quality mathematics as well as their perspectives of themselves as mathematics learners 
and doers. 

Another reason why less is known about the relations between groups is that this type of 
research has been viewed as under the purview of research traditions outside of education, 
including sociology and anthropology.  Although an increasing number of mathematics 
education researchers draw from these traditions to inform their research (Cobb & Nasir, 2002), 
the field as a whole has not yet determined how best to manage cross-disciplinary research such 
that it receives the same attention as conventional educational research. This is most evident in 
methodology.  Research that draws on multiple disciplines to analyze educational contexts 
requires new ways of understanding educational phenomena and these ways of doing research 
are often not as well understood by researchers in mathematics education.  In an effort to further 
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the field’s understanding of the importance and complexities of group-level analyses, this paper 
examines research that focuses on issues of race and power in mathematics education that makes 
allowances for both individual agency and social structure.  

Overview of the paper 
In this paper, we review research in mathematics education that has attended to culture and 

examine what it contributes to an understanding learning inequities. Second, we consider what a 
perspective on race and power affords the field of mathematics education in understanding how 
to address learning inequities among groups of students.  Finally, we offer recommendations for 
conducting research that focuses squarely on issues of race and power in mathematics education.  
Our goal here is not to propose a new set of theories, but rather to offer different lenses to the 
field of mathematics education research where power and race are central.   

Methods 
This paper is part of a broader review of research on equity in mathematics education 

compiled over the last ten years in preparation for a chapter in the Second Handbook of Teaching 
and Learning in Mathematics Education. An extensive literature review was conducted of both 
theoretical and empirical work that analyzed the affordances and constraints of this research for 
understanding group-level differences in mathematical achievement. 

Cultural Activity, Community, and Opportunity to Le arn 
The relation between culture and individual differences in cognition, learning, and 

development has been a subject of study for many years.  In the past ten years, research on 
culture, formal and informal mathematical practices, and identity have gained prominence and 
offered alternative perspectives on the role of culture in learning, in terms of both what counts as 
learning and who has access to it. What we summarize as theories of cultural activity has 
afforded an understanding of knowing and learning as a function of what an individual 
accomplishes over time and across the various communities and practices in which he or she 
participates Theories of cultural activity include situated cognition, activity theory, cultural 
historical activity theory, and sociocultural theory. These theories point to the fact that 
mathematics classrooms are necessarily cultural and social spaces that can perpetuate social 
inequities by privileging certain forms of discourse and ways of reasoning or reorganize them by 
positioning multiple forms of learning and knowing as “having clout” (Cobb & Hodge, 2002; 
Gutstein, 2005).  

Understanding the cultural entailments of mathematics learning requires complicated 
analyses of how people live and learn culturally both within and outside of the mathematics 
classroom, individually and as part of groups. Group membership does not require that 
individuals directly take up the roles and relationships within the communities in which they 
participate. Rather, research has illuminated the diverse ways that students from similar and 
different backgrounds create, contest, and reconfigure learning within and outside of 
mathematics classrooms.  

One major contribution of this research is the conceptualization of mathematics classroom as 
communities, where various curricular and participation structures afford and constrain students 
development as learners and doers of mathematics (see, e.g., Boaler & Greeno, 2000; Cobb & 
Hodge, 2002; Martin, 2000). This perspective highlights the importance of arrangements for 
competence, ownership, and authority in the classroom to the social and cultural practices and 
identities of classroom participants. In particular, alignment between the practices and identities 
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of home and school has implications for whether students negotiate ways of participating that 
serve their individual goals, as well as the goals of the classroom community (Cobb & Hodge, 
2002; Hand, 2003).  

A second and growing contribution of this research is an expanded conception of competent 
classroom participation as supported by the wide variety of mathematical practices and identities 
that students bring to the classroom from their home and local communities (see, e.g., Nasir, 
2002; Taylor, 2004).  In mathematics classrooms where teachers rely on traditional scripts of, 
and formats for, classroom instruction, students' practices and ways of reasoning couched in 
everyday discourse can be inadvertently marginalized. Broadening mathematical activity to 
recognize and value the multiple ways that students participate in mathematics can draw in 
students who may normally be sidelined.  

Finally, this research offers promising models of classroom learning environments that begin 
to address issues of race and power in the mathematics classroom by focusing squarely on issues 
of cultural relevancy and social justice (see, e.g., Gutstein, 2005 Ladson-Billings, 1994; Moses & 
Cobb, 2001).  

Race, Power, and Opportunity to Learn 
Orfield, Frankenberg, and Lee (2003) stated that the level of segregation of schools is worse 

now than in 1968. Students of color and Whites are increasingly not in the same schools. 
Moreover, only 15% of the intensely segregated White schools have populations in which more 
than half are poor enough to receive free and reduced lunches. For Black and Latino students the 
percentage is 86%. Schools in communities predominantly consisting of Blacks and Latinos are 
poorer, and they generally have fewer AP courses, fewer credentialed teachers, more out-of-field 
teachers, and buildings in worse conditions.  Kozol (2005) and others (Frankenberg, Lee & 
Orfield, 2003; Hunter & Donahoo, 2003) have ascribed this situation to a new form of apartheid 
in the U.S. school system, where low-income public schools have become hypersegregated with 
populations up to 99% students of color.  

Along with the material conditions in “apartheid” schools, Kozol (2005) notes that in urban 
schools there are another set of conditions around how we talk about students and the ways they 
are expected to participate. Kozol points out that he has heard hypnotic slogans like “I’m smart! I 
know that I’m smart,” repeated everyday, “but rarely in suburban schools where potential is 
assumed” (p. 36). These non-material conditions shape the opportunities of students of color – 
often blaming them for their own failure. At the same time that these students are blamed for 
their failure, the system of mathematics education continually fails them.  

The literature on access and opportunity to learn mathematics documents how experiences 
differ along racial lines. Overall, segregated minority schools offer less access to upper-level 
math and science courses, many not offering courses beyond Algebra II. Oakes, Muir, and 
Joseph (2000) wrote that,  

A student can only take a high level class in science and mathematics if his or her school 
offers such classes or if his or her school opens up access to these courses to all students.  In 
other words, how far a student can go down either the mathematics or science pipeline depends 
on his or her access to particular courses. (p. 12) 

On the basis of a student’s race, he or she can expect to experience mathematics education 
differently (Hunter & Donahoo, 2003). Furthermore, as described in earlier sections, White 
culture also often determines what is “normal” and also constructs the dialogue or ideology for 
understanding the “other.” This dialogue is constructed and reinforced in mathematics education, 
for example, when achievement scores are reported in terms of race, and lower test scores are 
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ascribed to race (ignoring the fact that “White” is also a racial category). Educators fail to ask 
how the racial and cultural entailments of whiteness provide opportunities for large groups of 
White students to be consistently ahead of their Black and Latino/a counterparts. Instead, the 
success or failure of a White student often gets framed as an individual act, acclaiming or 
pathologizing the individual rather than the race.  

Ideologies are embedded within language and ways of talking that perpetuate stereotypes of 
the “other.” These broad Discourses, as Gee (1990) and colleagues call them, structure the ways 
of talking about children of color, communities of color, and structure our individual actions. 
Gee (1990) calls this dialogue Discourse with a big D because it contains ideologies, beliefs, 
practices, and ways of being that further the power of the dominant culture. There is more going 
on in individual success or failure, or individual interaction, than what is actually seen in front of 
us. Individual interaction sits inside of a historical reality; it sits within history, within a context, 
and within a relation of power. The stories embedded in these Discourses limit the ways of 
talking and thinking about people of color and can limit how one thinks about their intelligence 
and abilities, quality of family life, and cultural resources (Warren, 2005).  

The increasing segregation, decreasing access, and pervading Discourses place race and 
educational structures as central in educational opportunity. These areas are important for the 
field to explore in relation to mathematics education in particular.  

Theories of race and power provide a number of methodological techniques, which when 
applied to educational contexts, can highlight practices and policies that serve to perpetuate 
inequitable situations.  For example, examination of counternarratives identifying structural 
causes of school failure or successful students from non-dominant backgrounds challenge 
prevalent Discourses that shape research studies and agendas. Case studies that examine 
educational policies and practices from multiple levels (from school districts to classrooms) can 
illustrate how Discourses and schooling practices are taken for granted, normal, and neutral 
because they are part of the schooling institution (Spencer, 2006). Understanding and unpacking 
the social systems, policies, and narratives that structure classroom learning mathematics 
educators can better implement new reforms, navigate the political system, and develop policies 
that work for, rather than against, African Americans, Latinos, and the poor. This requires new 
understandings about how power employed through policy, states, districts, Discourses and 
Whiteness influences the learning that goes on in classrooms. It also means listening and taking 
up the concerns of those not empowered by the current system in researching mathematics 
education.  

Researching Culture, Race, and Power in Mathematics Education 
The examination of race, culture, and power with respect to student achievement and 

learning in mathematics raises different questions for our current system of mathematics 
educators. Research questions are needed that can help guide studies of mathematics education in 
both untangling and challenging processes that perpetuate current inequity and injustice in 
mathematics education and in society writ large (see, e.g., Gutierrez, 2002; Gutstein, 2006; 
Martin, in press). These questions stem from the perspectives that these researchers hold about 
the relations of race, culture, and power in mathematics, the nature of mathematics teaching and 
learning, as well as the role of mathematics education in society.  These researchers share a 
concern with analyzing what counts as mathematics learning, in whose eyes, and how these 
culturally bound distinctions afford and constrain opportunities for students of color to have 
access to mathematical trajectories in school and beyond. 
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Different kinds of questions often require different methodologies. Asking questions about 
systematic inequities leads to methodologies that allow the researcher to look at multiple levels 
simultaneously. This means that mathematics education research should take a multifaceted 
approach, aimed at multiple levels from the classroom to broader social structures, within a 
variety of contexts both in and out of school, and at a broad span of relationships including 
researcher to study participants, teachers to schools, schools to districts, and districts to national 
policy. It is important, then, that researchers understand that policies do play out as well as the 
ways in which they play out at the classroom, school, district, and state levels.  

Both qualitative and quantitative research has strengths and limitations. Work using 
narratives, ethnographies, and historical analyses allow research to speak to multiple levels of 
practice in order to see nuanced details. Although these methods are sometimes discredited, not 
counted as research, or not given the same respect as other forms, their multilevel nature situates 
them as particularly powerful in understanding the details of relationships and structures. 
Similarly, quantitative methods such as multilevel modeling can uncover systematic issues of 
inequity. Although multilevel modeling such as Hierarchical Linear Modeling (HLM) is already 
respected as a form of research, when using such techniques we must be just as thoughtful and 
careful that we are actually measuring what we intend. The measures must be sensitive enough to 
allow for the subtle ways that culture, race, and power can influence teaching and learning in 
mathematics classrooms. When this is the case, multilevel modeling allows researchers to 
understand complex causal relationships that can uncover power dynamics within social 
structures that shape the experiences of groups.  

In addition to different kinds of questions and methodologies, this work will push the field to 
develop new ways of understanding results. This is not an argument for a particular framework; 
rather, multiple lenses and theoretical perspectives will be needed to understand inequity in 
mathematics education in relation to social structures and cultural and racial histories. New 
frameworks for understanding the interactions between culture, race, and power would shape 
how we discuss and understand the work of mathematics education.  
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We present findings from textual and readability analyses of how two reform-oriented 
elementary mathematics curricula frame and communicate mathematical ideas to parents.  The 
materials provide parental roles and reflect assumptions that parents have particular sets of 
knowledge and skills that they bring to their work with their children. We question the 
accessibility of these materials to all parents, particularly in light of the current educational 
policies which target parents in low-income areas. 

Introduction 
Over the past 15 years, with the adoption of the National Council of Teachers of 

Mathematics (NCTM) Standards (1989; 2000), the development of the National Science 
Foundation supported reform-oriented mathematics curricular projects reflecting the vision of the 
Standards documents, and the adoption of reform-oriented Standards-based curricula by about 
half of  the school districts in the ten most populous U.S. cities, there has been a simultaneous 
increase in the attention given to the role of parental involvement in education.  Federal, state, 
and local governments have mandated that districts make efforts to involve parents.  An 
assumption guiding such calls for parent involvement is that students who have more “involved” 
parents will achieve at higher rates than other students with similar backgrounds. Consequently, 
parents, particularly in low-income communities, are being called on to support their children 
more directly as they encounter school mathematics that looks quite different from the 
mathematics they learned in school (Jackson & Remillard, 2005).  In this paper, we focus on the 
textual materials that the designers of Standards-based elementary mathematics curricula created 
to “involve” parents.   

All Standards-based elementary mathematics curricula include material designed to support 
parents’ understandings of how best to support their children’s learning of mathematics and 
completion of homework.  However, there has been no research as to the roles these curricular 
materials actually afford for parents with regard to their children’s homework.  Nor has there 
been research about the assumptions these materials make as to the background, skills, and 
knowledge that parents need to assume valuable roles in the mathematics education of their 
children. We assert that this sort of research is critical to undertake, particularly in the context of 
reform and in the context of increased calls for parental involvement that target low-income 
families.  

Based on a textual and readability analysis of two elementary Standards-based mathematics 
curricula, this study is designed to answer the following questions:  What sorts of roles do these 
materials afford and constrain for parents?  What do these materials assume parents need to 
know and do to support their children’s mathematical learning? What are the readability levels of 
these materials and how might this relate to the assumptions made about parents’ roles in 
supporting the mathematical learning of their children?  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Socio-Cultural Issues   Vol.2-489 

 

Theoretical Framework 
To guide this study, we draw from Hoover-Dempsey and Sandler’s (1995) model of parent 

involvement in education in general and in homework in particular (Hoover-Dempsey, Bassler, 
& Burow, 1995). They provide a theoretical model of why and how parents are involved in their 
children’s education and how involvement influences children’s school outcomes.  We use this 
account because it views parent involvement as a dynamic process that occurs over time 
involving parents, school, child, and societal contributions. They posit that there are three 
mechanisms, modeling, reinforcement, and direct instruction, which may have a positive effect 
on children’s educational success.  Though none are necessary or sufficient, these mechanisms 
can create opportunities for children’s success.  

We also draw upon the work of Cai (2003; Cai, Moyer, & Wang, 1999), who in contrast to 
Hoover-Dempsey and colleagues, considered parental roles specific to involvement in 
mathematics homework.  Cai and his colleagues identified five roles parents may play in their 
children’s mathematics learning (Cai, 2003, p. 89): motivator, resource provider, monitor, 
mathematics content advisor, and mathematics learning counselor. These roles overlap with the 
practices discussed by Hoover-Dempsey and her colleagues but are somewhat more specific to 
mathematics.   

We also sought to locate parent involvement in mathematics homework in the context of 
mathematics education reform.  Prior research suggests that parents may feel less able to act in 
roles that require mathematics content and pedagogical content knowledge particular to reform-
oriented approaches than they might with traditional approaches to the teaching of mathematics 
(Civil, 2001; Jackson & Remillard, 2005; Peressini, 1996, 1998; Remillard & Jackson, in press). 
In particular, we heed Peressini’s (1998) summary review of documents about prominent parent 
involvement policies in mathematics education: “It is clear throughout these documents parents 
have not been recognized as significant contributors to the mathematics education of their 
children” (p. 569).   

Method 
We completed a textual analysis and a readability analysis of the Everyday Mathematics 

(EM) (University of Chicago School Mathematics Project, 2001) and Investigations (INV) 
(TERC, 1998) curricular materials designed for parents, grades 1-3.  We chose these two 
curricula to analyze because they are the most popular Standards-based curricula adopted across 
school districts in the United States.  We focused on grades 1-3 because part of our analyses 
included cross-curricular comparisons, and EM does not include parent materials beyond grade 
3.  By parent materials, we mean the written directions that are given to parents as part of the 
homework assignments that are sent home with the children.   

Description of Parent Curricular Materials 

EM Documents  
Common to both curricula is the use of a letter to family members which begins each unit.  

Family Letters in EM are usually multi-page documents. The term “letter” for these documents 
may be misleading.  They do not begin with a salutation such as “Dear family member.”  Rather, 
Family Letters tend to present an overview of the unit.  Embedded within the EM "Family 
Letter" are two other documents.  The first is a list of vocabulary words that represents important 
terms used in the unit.  Each of these terms is defined and in some cases is accompanied by an 
illustration to help further clarify the definition.  The second embedded document is called “Do-
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anytime Activities.”  These activities consist of suggested tasks that parents can do with their 
children to support their mathematics learning.  The final section of the EM “Family Letter” is 
called “As you help your child with homework.” In this section, parents are given the answers to 
the homework problems that are given to the child in that unit.  They are instructed as follows: 
“As your child brings home assignments, you may want to go over the instructions together, 
clarifying them as necessary.  The answers listed below will guide you through this unit’s Home 
Links.”  At the conclusion of this “Family Letter,” the activities are presented and designated 
with a number such as Home Link 2.1.  Typically, each of these Home Links will begin with a 
brief “Family Note,” located at the top of the Home Link homework task.  The letters and notes 
are integrated into the curriculum’s Home Links workbook that contains all homework 
assignments (as prescribed in the EM teacher’s guide for each lesson).  It is assumed that this 
goes home with the child on a daily basis.   
INV Documents 

INV’s parent materials are available for purchase separately from the classroom curricular 
materials as a series of booklets that if a school chooses to purchase, the teacher sends home with 
the child.  INV’s booklets, Investigations at Home, correspond with the INV classroom units.  
Each booklet begins with a “Family Letter.”  In contrast to the EM Family Letter, the INV letter 
has the format of a letter.  The letter includes information about what happens in the unit.  
Following this there is information about the importance of playing games with the child.   

Each INV unit follows the same format.  It is divided into several separate investigations 
(typically four or five).  Each investigation includes several sections.  First, there is a section 
titled “What Happens” in which parents are given descriptions of what students will be doing in 
class during each session.  The next section is called “Mathematical Emphasis” that highlights 
the mathematical content embedded in the investigation.  The next part of each unit is called 
“Homework Notes.”  These notes are presented for each session and include a section titled 
“Math Content,” a section titled “Materials”, and then the description of the session. Finally, at 
the end of each unit there is a section called “Related Activities.”  This section is similar to EM’s 
“Do-Anytime Activities.”   

Readability Analysis 
All first through third grade units of EM Home Links and INV Investigations at Home were 

scanned and converted to Microsoft Word™ text documents using OmniPage Pro™ optical 
character recognition (OCR) software. We chose those sections that consisted mainly of text to 
use for conducting readability analyses.  In EM, we scored (1) Family Letter (not including the 
vocabulary definitions or the answers to the math problems), (2) Do-Anytime Activities, and (3) 
Family Notes. In INV, we scored (1) Family Letters, (2) What Happens, (3) Mathematical 
Emphasis, (4) Homework Notes, and (5) Related Activities.    Each of these sections was 
highlighted in Microsoft Word, and, using the built in Word Readability Statistics program (part 
of the spelling and grammar checking function), we calculated Flesch-Kincaid Grade Level and 
the Flesch Reading Ease statistics. These data were then compiled as an SPSS data file and 
analyzed using analysis of variance procedures which used curriculum, grade, and type of text 
(letters versus other types of texts) as independent variables and Flesch Grade Reading Level and 
Reading Ease as dependent variables.   

Textual Analysis 
Textual analysis involved inductive coding of the documents; this was an iterative process 

and involved several cycles of refining our codes.  We first downloaded all documents, grades 1-
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3, for both EM and INV into QSR NVIVO, a qualitative data analysis software package. Using 
QSR NVIVO, we coded for the sorts of roles that each of the documents afforded parents.  We 
drew on the work of Hoover-Dempsey et al. (2001) and Cai (2003) to identify the types of 
parental roles/practices afforded by the curricular documents.  However, we did not limit our 
coding to categories provided by Hoover-Dempsey et al. and Cai.  Based on our reading and re-
reading of the documents, we identified roles and their respective practices unique to the 
documents. Once we had established what we deemed to be a fairly rigorous coding schema, we 
had a second coder code sample documents representing each grade and each curricula.  
Interrater reliability ranged from 0.72 and 1.00 with an average agreement (Cohen’s Kappa 
statistic) of 0.91. For each unit of each curriculum, the frequency of each coding category was 
entered into an SPSS data file.  Analyses of variance using curriculum and grade as independent 
variables and the frequencies of various roles were computed.  

Results 

Readability Analysis 
Table 1 presents reading ease data and Table 2 presents reading level data. In Table 1, higher 

numbers mean greater ease of reading. In Table 2, numbers refer to grade levels.  

Table 1. Reading ease 

Grade Everyday Math 
Mean and (SD) 

N Investigations 
Mean and (SD) 

N Over Both Curricula 
Mean and Standard Error 

ALL DOCUMENTS COMBINED 
1 64.8  (14.2) 123 54.9 (18.7)   77 60.9 (1.1) 
2 59.1 (11.5) 126 48.3 (21.1) 103 54.4 (1.1) 
3 57.0 (14.7) 137 50.9 (14.2) 102 55.0 (1.1 
Over All 3 Grades 60.2 (13.9) 386 51.0 (18.3) 282  

FAMILY LETTER AND ALL OTHER DOCUMENTS TREATED SEPARATELY 
1 Letter 53.7 (11.7) 13 67.2 (6.1) 6 60.4 (2.6) 
1 Other 66.1 (13.9) 110 53.9  (19.1) 71 60.0 (1.2) 
2 Letter 45.1 (9.5) 12 61.4 (7.1) 8 53.2 (2.4) 
2 Other 60.5 (10.7) 114 47.1 (21.5) 95 53.8 (1.1) 
3 Letter 42.1 (13.9) 12 63.6 (7.4) 8 52.8 (2.4) 
3 Other 58.4 (14.0) 125 49.8 (14.1) 94 54.1 (1.1) 
Over All 3 
Grades: Letter 

47.1 (12.6) 37 63.8 (7.0) 22  

Over All 3 
Grades: Other 

61.5 (13.3) 349 49.9 (18.6) 260  

Based on modified population marginal mean; Significance level of comparisons: Grade 1 vs. grade 2: 
<.001; Grade 1 vs.  grade 3 <.001; Grade 2 vs. grade 3:n.s.; Over All 3 Grades: INV vs. EM: <.001 
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Table 2. Reading grade level 

Grade Everyday Math 
Mean and (SD) 

N Investigations 
Mean and (SD) 

N Over Both Curricula 
Mean and Standard Error 

ALL DOCUMENTS COMBINED 
1 7.9 (2.0) 123 9.0 (1.8)   77 8.3 (0.13) 
2 8.8 (1.8) 126 9.7 (1.7) 103 9.2 (0.12) 
3 8.9(1.9) 137 10.3 (1.8) 102 9.5 (0.12) 
Over All 3 Grades 8.6 (1.9) 386 9.7 (1.8) 282  

FAMILY LETTER AND ALL OTHER DOCUMENTS TREATED SEPARATELY 
1 Letter 9.5 (1.6) 13 8.1 (1.4) 6 8.8 (0.43) 
1 Other 7.7 (2.0) 110 9.1  (1.8) 71 8.4 (0.13) 
2 Letter 10.8 (1.0) 12 8.7 (1.2) 8 9.8 (0.40) 
2 Other 8.6 (1.7) 114 9.8 (1.7) 95 9.2 (0.12) 
3 Letter 10.9 (1.4) 12 8.2 (1.4) 8 9.6  (0.40) 
3 Other 8.7 (1.9) 125 10.4 (1.7) 94 9.6 (0.12) 
Over All 3 
Grades: Letter 

10.4 (1.5) 37 8.3  (1.3) 22  

Over All 3 
Grades: Other 

8.4 (1.9) 349 9.8 (1.8) 260  

Based on modified population marginal mean significance level of comparisons: Grade 1 vs. grade 2: 
<.001; Grade 1 vs.  grade 3 <.001; Grade 2 vs. grade 3:n.s.; Over All 3 Grades: INV vs. EM: <.001 

Overall, EM documents are easier to read than those from INV.  However, EM Family 
Letters are significantly more difficult to read than INV Family Letters. In contrast, other INV 
documents are significantly more difficult to read than the other EM documents. For both 
curricula, parental reading material is easier in first grade than it is in second or third grade.  

Overall, 18% of all documents were at the 11th grade reading level or higher.  13% of EM 
documents exceeded the 11th grade reading level, and 25% of all INV documents exceeded the 
11th grade reading level.  In fact, 15% of the INV documents were written at grade 12 reading 
levels.   

It should be noted that while we reviewed the materials available in English, EM is available 
in Spanish, and INV is available in Spanish, Vietnamese, Cantonese, Hmong, and Cambodian. 

Textual Analysis 
All passages of text from the various units were coded for parental roles. We collapsed initial 

subcategories to form five major roles.  The roles and their definitions were: 
1. Instructor:  Parent is expected to engage in a behavior designed to teach the child and/or 
review with the child a concept or skill (mathematical and/or non-mathematical), and/or evaluate 
the child's understandings. 
2. Monitor:  Parent expected to oversee an aspect of the child's activity, but not provide 
instructional support. 
3. Game Player:  Parent asked to play math game with child prescribes by curriculum. 
4. Engaged Audience Member:  For example parent listens to something the child says or looks 
at something the child shows to the parent. 
5. Material Resource Provider:  Parent is expected to provide materials for child to take to 
classroom or is asked to gather materials for the child to use in the home. 

Table 3 presents data about the frequency of various roles for each curriculum. 
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Table 3. Comparison of roles 

ROLE Everyday Math 
Mean and (SD) 

N Investigations 
Mean and (SD) 

N Over Both Curricula Mean 
and (Standard Error) 

FIRST GRADE 
Instructor   7.6  (3.6) 10 13.3  (6.0) 6 9.8  (5.3) 
Monitor 10.3  (2.9) 10   3.5  (2.7) 6 7.8  (4.4) 
Game Player   0.6  (1.6) 10   7.7  (7.2) 6 3.3  (5.6) 
Audience   4.3  (2.8) 10   3.8  (3.2) 6 4.1  (2.8) 
Material 
Provider 

  2.9  (2.4) 10   3.5  (3.0) 6 3.1  (2.6) 

SECOND GRADE 
Instructor 6.7   3.5) 12 6.4  (2.8) 8 6.6  (3.2) 
Monitor 9.6  (3.5) 12 2.0  (1.4) 8 6.6  (4.7) 
Game Player 0.0  (0.0) 12 2.8  (2.8) 8 1.1  (2.2) 
Audience 3.8  (3.1) 12 2.3  (1.8) 8 3.2  (2.7) 
Material 
Provider 

2.0  (1.7) 12 2.5  (1.4) 8 2.2  (1.5) 

THIRD GRADE 
Instructor   6.7  (3.3) 11 4.4  (2.4) 10 5.6  (3.1) 
Monitor 12.3  (2.6) 11 2.4  (2.4) 10 7.6  (5.6) 
Game Player   0.6  (0.8) 11 1.3  (1.6) 10 0.9  (1.3) 
Audience   3.6 (2.0) 11 3.1  (1.7) 10 3.3  (1.8) 
Material 
Provider 

  1.6 (0.8) 11 1.8  (1.8) 10 1.7  (1.4) 

ALL GRADES COMBINED 
Instructor  7.0   (3.4) 33 7.3  (5.1) 24 7.1  (4.2) 
Monitor 10.7  (3.2) 33 2.5  (2.2) 24 7.3  (4.9) 
Game Player   0.4  (1.0) 33 3.4  (4.6) 24 1.6  (3.4) 
Audience   3.9  (2.6) 33 3.0  (2.1) 24 3.5  (2.4) 
Material 
Provider 

  2.1  (1.8) 33 2.5  (2.1) 24 2.3  (1.9) 

Significance of comparisons: Main Effect for Roles: <.001; Main effect for curriculum: n.s.; Main effect 
for grade: <.002; role X curriculum interaction: <.001; role X grade interaction: <.001; role X curriculum 
X grade interaction: <.009;  Pairwise comparison of roles using Duncan’s New Multiple Range Test: 
instructor vs. monitor:n.s.; instructor vs. gameplayer: <.001; instructor vs. audience: <.001; instructor vs. 
material provider: <.001; monitor vs. gameplayer: <.001; monitor vs: audience: <.001; monitor vs. 
material provider: <.001; gameplayer vs. audience: <.005; gameplayer vs. material provider: n.s.; 
audience vs. material provider: <.029 

 
For parents whose children are using INV, the role of instructor is the most frequent role 

available.  However, both curricula provide comparable numbers of opportunities for parents to 
assume an instructional role. In general, when parents were asked to be instructors, the materials 
assumed that parents had a relatively solid mathematics education background; in most cases it 
was assumed that a parent should understand a particular concept with little explanation.  
Further, most of the materials assumed that the parents were familiar with reform-oriented ways 
of teaching mathematics. 

EM offers a comparable number of opportunities for parents to assume an instructional role 
in each of the three grades.  In contrast, INV offers extensive opportunities for parental 
instruction in the first grade, but by second grade, it offers less than half as many opportunities, 
and that number declines further by third grade.  Likewise, INV offers parents frequent 
opportunities to serve as a game playing partner to their child in the first grade.  However, those 
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opportunities declined by more than half in the second grade and continued to decline further in 
the third grade. 

Monitoring one's child is the most frequently available role to a parent whose child uses EM.  
The level of monitoring activities available remains relatively constant over each of the first 
three grades of EM. In contrast, INV is consistent in that it offers relatively few opportunities for 
parents to monitor the work of their child over each grade. 

Discussion: Issues of Access, Instruction, and Monitoring 
Both curricula provide parents roles of Instructors.  However, INV offers parents virtually no 

information as to how to assume the role of an instructor thereby effectively excluding most 
parents from being able to take on this role. With no other roles to play, INV affords parents little 
opportunity to be involved in homework activities.  INV Family Letters, much easier to read than 
Mathematical Ideas Homework Notes, tell the parents what the teacher is doing with their 
children in school and offer very few ways in which parents can be involved in the homework 
activities.  We argue that this relationship between the readability and what parents are asked to 
do reflect Peressini’s (1998) critique that parents are told what is best for their children and are 
given few opportunities to learn about the reform-oriented approaches and or to question them. 
Parents are explicitly told not to share the algorithmic methods of calculation that they learned in 
school.  The sense one gets from reading the materials other than the letters in INV is that they 
are offered as evidence that teachers have a well-planned curriculum and that the children are in 
the hands of competent professionals.  

While (at least in the first grade) EM does not offer as many opportunities for parents to take 
on roles as Instructors as does INV, it does dedicate more space to attempts to communicate 
some of the reform-oriented approaches, as in providing vocabulary terms with definitions and 
Family Notes explaining EM curricular conventions, recognizing that many parents have not 
been schooled in reform-oriented approaches to the learning of mathematics.   

The most frequently offered role by EM is monitoring, often through the provision of 
homework answers to the parent, indicating that while EM recognizes that a parent may not, 
herself, know how to solve the problem, she has an interest in being able to monitor her child’s 
work and ascertain whether the child is getting the correct answer.  While both reform curricula 
place less emphasis on “getting correct answers” than on engaging in mathematical thinking, EM 
provides a role that allows parents to take on a role that does not require particular mathematics 
content knowledge. By providing mechanisms (such as the correct answers for parents to 
consult), EM offers a way for parents to feel efficacious and to engage in behaviors consistent 
with their views of what a concerned parent ought to do.  INV provides few opportunities for 
parents to engage in monitoring and thus affords fewer opportunities than EM for parents to 
experience a sense of efficacy in connection with possible involvement in their child’s 
mathematics homework. 

However, while EM provides the role of Monitor for parents, the readability analysis shows 
that EM’s explanations of mathematical content and reform-oriented approaches (conveyed in 
the Family Letters) are generally at the mid-tenth grade reading level.  EM’s Family Letters are 
much more difficult to read than their general instructions for parents in the form of the Family 
Notes (the instructions given to parents for each homework assignment), which tend to suggest 
the parental role of Monitor.  In other words, parents can more easily access information on how 
to act as Monitors than as Instructors.  This again confirms Peressini’s (1998) critique that 
parents are effectively being constricted in the sorts of roles that the mathematics education 
community formally invites.   
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In addition, for both curricula, as the grade levels increase, so does the readability level of 
difficulty.  We assume that this happens because the mathematics content increases in its 
sophistication.  However, this finding raises critical questions about the ability of parents to 
support their children with their homework in ways consistent with that of INV and EM, 
particularly as the children grow older and encounter more difficult material.     

Implications and Future Research 
This analysis raised several questions about the sort of mathematical, pedagogical, and 

pedagogical content knowledge parents are assumed to have and how parents are positioned via 
the reforms in materials that intend to provide parents a way to support their children.  We assert 
that these questions are critical to explore in contexts where parental involvement is increasingly 
being mandated.  

This textual analysis is phase one of a larger project designed to understand how these 
curricular materials position parents, how parents interpret such materials, how parents work 
with their children on mathematics homework, and how teachers make use of these materials.  
While the findings reported on in this paper are only a part of the larger picture, they suggest 
strongly that parents are not invited to take on roles that will maximize modeling, reinforcement, 
and instruction—mechanisms that positively influence student outcomes (Hoover-Dempsey & 
Sandler, 1995).  Further, the findings suggest that these materials are not sufficient for parents to 
learn about how best to support their children in the context of reform-oriented approaches to the 
teaching and learning of mathematics.   

Endnotes 
1 MetroMath, a Center for Learning and Teaching funded by the National Science 

Foundation, supported this research under Grant # ESI0333753. Any opinions, findings, and 
conclusions or recommendations expressed in this paper are those of the authors, and do not 
necessarily reflect the views of the National Science Foundation.  A consortium of Rutgers 
University, the University of Pennsylvania, and the City University of New York, MetroMath 
aims to improve the learning of mathematics of inner-city children. More information about 
MetroMath is available at http://www.metromath.org. 

References 
Cai, J. (2003). Investigating parental roles in students' learning of mathematics from a cross-

national perspective. Mathematics Education Research Journal, 15(2), 87-106. 
Cai, J., Moyer, J. C., & Wang, N. (1999). Parental roles in students' learning of mathematics:  An 

exploratory study. Research in Middle Level Education Quarterly, 22(3), 1-18. 
Civil, M. (2001). Redefining parental involvement:  Parents as learners of mathematics. Paper 

presented at the National Council of Teachers of Mathematics Research Pre-session, 
Orlando, FL. 

Hoover-Dempsey, K. V., Battiato, A. C., Walker, J. M. T., Reed, R. P., DeJong, J. M., & Jones, 
K. P. (2001). Parental involvement in homework. Educational Psychologist, 36(3), 195-209. 

Hoover-Dempsey, K. V., & Sandler, H. M. (1995). Parent involvement in children's education:  
Why does it make a difference? Teachers College Record, 97(2), 310-331. 

Jackson, K., & Remillard, J. T. (2005). Rethinking parent involvement: African American 
mothers construct their roles in the mathematics education of their children. The School 
Community Journal, 15(1), 51-73. 



Vol.2-496  PME-NA 2006 Proceedings 

 

National Council of Teachers of Mathematics. (1989). The curriculum and evaluation standards 
for school mathematics. Reston, VA: Author. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 
mathematics. Reston, VA: Author. 

Peressini, D. D. (1996). Parents, power, and the reform of mathematics education:  An 
exploratory analysis of three urban high schools. Urban Education, 31(1), 3-28. 

Peressini, D. D. (1998). The portrayal of parents in the school mathematics reform literature: 
Locating the context for parental involvement. Journal for Research in Mathematics 
Education, 29(5), 555-582. 

Remillard, J. T., & Jackson, K. (in press). Old math, new math:  Parents' experiences with 
Standards-based reform. Mathematical Thinking and Learning. 

TERC. (1998). Investigations in number, data, and space. Menlo Park, CA: Dale Seymour. 
University of Chicago School Mathematics Project. (2001). Everyday mathematics (2nd ed.). 

Chicago: SRA/McGraw-Hill. 



Socio-Cultural Issues   Vol.2-497 

 

TEACHER COMMUNICATION BEHAVIOR IN THE MATHEMATICS C LASSROOM 

Michelle Cirillo 
Iowa State University 
mcirillo@iastate.edu 

Beth Herbel-Eisenmann 
Iowa State University 

bhe@iastate.edu 

This paper describes the results of a questionnaire, the Teacher Communication Behavior 
Questionnaire (TCBQ), distributed to 178 students. The TCBQ assesses students’ perceptions of 
five teacher communication behaviors.  In this exploratory study, we show that the TCBQ, which 
was developed for science classrooms, can provide useful information about teacher 
communication behavior in mathematics classrooms as well. 

Introduction and Current Literature 
To promote effective discourse in the mathematics classroom, teachers should encourage 

participation by all students and provide feedback about the mathematics as well as the quality of 
communication (Adler, 1999). As Ambrose, Levi & Fennema (1997) argue, when teachers 
change their practices to encourage participation by all students, some equity issues will lessen 
while other unanticipated issues may arise (e.g., participation, peer affiliation, listening).  
Teachers must tend directly to issues related to gender inequities, for example, by reflecting on 
their decisions about orchestrating classroom discourse and balancing pragmatic and idealistic 
stances (Ambrose et al., 1997). Affective aspects of underlying interpersonal relationships in 
classrooms are no less important for children’s learning than cognitive aspects (Cazden, 2001).  

In this paper, we report the results of the implementation of a questionnaire on students’ 
perceptions of their teachers’ communication behaviors that has been used in science classrooms. 
We argue that more research needs to be done to examine the students’ and teachers’ perceptions 
of the communication environment in the classroom. If we want teachers to facilitate effective 
classroom communication, we must also understand their students' perceptions.  

Research Methodology 
This study takes place within a larger, five-year NSF-funded project1 in which eight middle 

grades2 mathematics teachers from seven different schools are involved. Data for this study were 
collected during October, 2005.   

This exploratory study is based on the administration of the Teacher Communication 
Behavior Questionnaire (TCBQ) (She & Fisher, 2000), which assesses student perceptions of the 
following five categories of teachers’ communication behaviors: Challenging, Encouragement 
and Praise, Non-Verbal Support, Understanding and Friendly, and Controlling. Each category 
included eight statements, which were scored on a Likert scale (where the values 1-5 correspond 
to Almost Never, Seldom, Sometimes, Often, and Almost Always, respectively). Examples of 
the statements include: This teacher encourages me to discuss the answers to questions and This 
teacher nods his/her head to show his/her understanding of my opinion. 

The data were analyzed using the mean scores from the five categories provided on the 
questionnaire. We report the findings related to the entire group of students (n = 178), the entire 
group of teachers (n = 8), the eight classes separately as entire classes and by gender, and the 
relationship between gender of student (n = 102 males, n = 75 females, n = 1 missing) and 
teacher (n = 3 males, n = 5 females). The teachers were included in the data file and variables 
that would calculate a mean score for each of the five categories were created. Using the five 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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communication behaviors as the dependent variables and the teacher as the independent variable, 
student-reported means were calculated for every behavior category for their respective teachers.  

Results 
The results of a regression analysis indicated a high positive correlation (r =.720) between 

the Non-Verbal Support and Encouragement and Praise variables. In addition, moderate positive 
correlations were found between the following variables: Challenging/Encouragement and Praise 
(r = .681); Challenging/Non-Verbal Support (r = .602); Understanding and Friendly/Encourage-
ment and Praise (r = .618); and Understanding and Friendly/Non-Verbal Support (r = .650). 

The gender variable also produced interesting results. Although the n-size of any one class is 
too small to draw conclusions of statistical significance, bar graphs were used to provide 
suggestive evidence of differences between the perceptions of male and female students within 
teachers’ classrooms. Most often, differences were noticed in the Non-Verbal Support variable.  

Summary and Implications 
This study shows that the TCBQ can provide useful information about students’ perceptions 

of teacher communication behavior in the mathematics classroom. Because teachers are “usually 
too busy teaching to have the leisure to observe the details of the ebb and flow of students’ 
engagement” (Lemke, 1990, p. 135), the TCBQ results can be used to uncover the students’ 
perceptions of their teachers’ communication behaviors.   

The perspectives and voices of students themselves need to be considered more seriously in 
research on teaching and learning (Erickson & Shultz, 1992). Mutual trust between students and 
teachers takes on many forms and is dependent on both individual and cultural histories and 
preferences (Cazden, 2001). Deeper understanding of teacher communication behavior from both 
teachers’ and students’ perspectives, can assist in promoting effective classroom communication. 

Endnotes 
(1) This paper is based upon work supported by NSF (Grant # 0347906, Herbel-Eisenmann, 

PI).  Any opinions, findings, and conclusions or recommendations expressed in this paper 
are those of the authors and do not necessarily reflect the views of NSF. 

(2) In this study, “middle grades” refers to grades in which students’ ages range from 11 to 
16. 
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This study focused on the interactions between urban parents with limited mathematics 
education and their 3rd and 4th grade children as they worked together on mathematics 
homework. A variety of parent behaviors, instructional strategies and support mechanisms 
emerged during the parent/child homework sessions, even though parents were not always able 
to complete the assignments themselves.  

This study seeks to explore what happens when parents, who did not complete high school, 
work with their children on math homework. This population is of great interest because, in 
some urban areas, up to 40% of the adults have not graduated from high school and their children 
are at higher risk of poor school performance (Grissmer, Kirby, Berends, & Williamson, 1994). 
We hypothesize that parents with limited mathematics education will display behaviors and 
patterns of interaction that differ from those described in studies of relatively well educated 
middle class parents (Shumow, 1998, 2003).  

Conceptual Framework 
This research is informed by Bronfenbrenner’s ecological framework (1979) that envisions 

children simultaneously developing as learners in multiple settings or microcosystems. The 
settings are both interconnected but also independently influenced by their own external 
environments. Through interactions around homework, we can see the extent that the activities, 
processes and behaviors developed in the classroom and family microcosystems are or are not 
aligned.   

In studies in which parents’ and teachers’ interactions with children were compared (simple 
model building tasks, Wertsch, Minick, & Arns, 1984; scientific reasoning, Gleason & Schauble, 
2000; arithmetic word problems, Lehrer & Shumow, 1997), parents were found to be more 
directive and tended to take responsibility for conceptualizing the tasks. This study questions 
whether the nature of the parent-teacher alignment differs when parents are less confident of 
their own mathematics content knowledge.  

Methodology 
Eight parents/caregivers of 3rd or 4th grade children were recruited from two adult basic 

education classes in large east coast cities. All adult students with appropriately aged children 
were invited to participate in the study; one mother declined to participate citing time constraints. 
The 7 mothers and one grandmother ranged in age from 34 to 61 and included 5 African-
Americans, 2 Latina immigrants and one Caucasian. Their children all attend city schools that 
use the reform Everyday Mathematics curriculum.  

Each parental figure worked with her child on a sequence of tasks drawn from homework 
materials provided with the classroom curriculum materials. Parent/child sessions took place at a 
time and location that was convenient to the parent. Five parents chose to meet at their homes 
and three chose to meet with their children at the adult education site. Sessions lasted about one 
hour and were videotaped. 
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A coding scheme was developed by the authors through an iterative process, initially starting 
from Lehrer & Shumow’s (1997) codes for level of control and function of parental assistance 
and then adding and modifying the codes to capture the nature of the parent/child interactions 
captured on the videotapes. 

Findings 
Many unproductive interactions resulted from parents’ limited understanding of the 

mathematics. That said, there were also productive situations and interactions that were common 
across multiple parents. There were three categories of interactions that emerged when parents 
were unsure of the mathematics needed for the task: parallel work, positioning the child as 
teacher, and collaborative work with justifying conjectures. 

One issue that emerged was children’s use of alternative algorithms learned in school, that 
parents had been unable to understand. Many of the parents and children have negotiated a 
practice of parallel work, during which parents use a traditional algorithm to check the children’s 
answer that was derived with an alternative algorithm. 

Some parents use homework time as an opportunity to learn from the child about what he or 
she is learning in school. This also serves as a learning opportunity for the parent when she is 
unsure of the content. The parent puts the child in the role of the “explainer,” answering the 
parent’s questions and explaining how he or she is approaching and solving the problems. 

Sometimes, when both parents and children are unsure of how to solve a problem, they work 
together to come to an agreed upon solution, with one or both putting forth suggestions and 
justifying their methodology and conclusion. When one mother was unsure of a strategy to solve 
the problem and did not immediately understand what her son was doing, she questioned his 
conclusion so he explained his reasoning to her, convincing her of its logic. 

Discussion 
The parent/child interactions described here are reflective of the types of interactions that are 

promoted for the classroom by the NCTM Standards. These include making and investigating 
mathematical conjectures, communicating mathematical thinking, flexibly shifting among 
various representations, cooperative learning and sharing ideas through discussion (NCTM, 
2000). In an environment in which both parent and child are struggling to understand a 
mathematical idea, it seems that the parent can take on the role of a peer as envisioned and 
enacted in reform classrooms, rather than the role of a teacher. 
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This study explores the life stories of four young immigrant women from El Salvador, 
Guatemala, Mexico, and Nicaragua who began high school as English Language Learners and 
successfully completed four years of college preparatory mathematics. We learn that these 
students’ mathematical successes had much to do with the identities they constructed as women 
and the ways in which their mathematics classrooms supported these identities through socio-
mathematical norms.  These stories provide powerful counter narratives to a mainstream story 
which often suggests that students who immigrate to the United States and are English Language 
Learners cannot learn rigorous mathematics or that their parents and broader cultures do not 
support them in doing so. 

Purpose and Background 
Attention to the ways in which students participate in mathematical learning communities 

provides information about not only what students learn but also the forms of knowledge and the 
identities they create in relation to mathematics (Boaler & Greeno, 2000; Boaler, 2002; Martin, 
2000; Nasir, 2002). This is important work as attention to the identities students create within 
mathematics classrooms has the potential to illuminate how students make sense of their 
mathematical experiences and then make choices about how to act in relation to them. 
Additionally, understanding learning as a process that encompasses the construction of new ways 
of being provides for a unique balance between personal agency and influence from the broader 
communities in which students participate. This perspective prevents us from completely 
attributing students’ achievement or failure to culture and simultaneously recognizes the role of 
the individual in academic pursuits. 

The gap in mathematics achievement and enrollment in higher-level mathematics courses 
between young women and men, between immigrant students and U.S. citizens and between 
Latinos, African Americans and White students continues today (NCES, 2005). While much 
work has been done to narrow this gap, too often efforts to do so rely on the homogenization of 
students. For example, it is frequently assumed that all girls learn better in a collaborative 
environment or that all Latina/o students require a certain kind of academic support. This study 
complexifies constructions of gender, ethnicity and the immigrant experience by including young 
women who immigrated to the United States from four different countries and who currently 
reside in a large urban area in Northern California.   

Method 
This project is an analysis of in-depth interviews and focus group discussions with four 

Latinas who were enrolled in and successfully completed four years of college preparatory 
mathematics courses.  Each of the women immigrated to the United States from Mexico or from 
countries in Central America and began their high school mathematics careers as English 
Language Learners. This study contributes to a four-year longitudinal research project conducted 
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by the Stanford Mathematics and Learning Study (2000-2004), that monitored approximately 
700 students through four years of mathematics at three different public high schools in Northern 
California. When compared to students from the two other schools, Boaler and Staples (in press) 
claim that “students [at Railside] achieved more, enjoyed mathematics more and stayed with 
mathematics to higher levels” (p.1). It is also important to note that the mathematics program at 
Railside School is detracked and reform-oriented and has been shown to promote a view of 
mathematics focused on connections and meaning, relational equity, and high academic 
achievement amongst its ethnically diverse and working-class student population (Horn, 2006).   

I borrow from McAdams’ (1985) construction of identity as life-story and use a narrative 
approach to gather the life-stories of these particular young women; stories that explore the role 
of school and mathematics in their families and communities both in their home countries and in 
the United States. Narrative methods and the analysis of life stories provided access to the 
women’s personal identities and the cultural and social worlds in which they are created 
(McAdams, 1993). This approach afforded insight into the personal constructions of self, the 
women’s relations to mathematics in general and to school mathematics in particular rather than 
relying on second or third-person accounts.   

Results 
Results from this project provide powerful stories from young immigrant Latinas. These 

stories run counter to a mainstream narrative in the United States, which often suggests that 
students who immigrate to the United States and are English Language Learners cannot learn 
rigorous mathematics or that their parents and broader cultures do not support them in doing so. 
From the young participants in this project, we learn that their mathematical successes have 
much to do with the identities they have constructed as women and the ways in which their high 
school mathematics classrooms supported these identities through the socio-mathematical norms 
created in their math classrooms. Given the rapidity with which immigrants are joining schools 
across the United States and the unacceptable rate at which these same students are rejecting 
mathematics or dropping out of school altogether, these findings are crucial for mathematics 
teachers and anyone working to improve the quality of education for immigrant students.  
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While engaging aboriginal elders from eastern canada in ethnomathical conversations, we 
discovered challenges trying to develop a sense of mawikinutimatimk – learning together – 
which was our guiding principle. We reflect upon these initial challenges and how they 
correspond with similar issues in creating a community of learners in mathematics classrooms, 
especially as it pertains to aboriginal students.  

The National Council of Teachers of Mathematics (NCTM) asserts that “the need to 
understand and be able to use mathematics in everyday life and in the workplace has never been 
greater and will continue to increase” (2000, p. 4).  Today’s changing world demands that 
students have the opportunity to “learn significant mathematics with depth and understanding” 
(NCTM, 2000, p.5).  Mathematics learning is especially important for children in Canada’s 
Aboriginal communities. Aboriginal leaders look to the younger generations to acquire the 
knowledge and skills to address community challenges such as developing sustainable 
economies as they move towards greater self-determination. However, currently, too few 
Aboriginal students are choosing to pursue studies in essential skill areas such as mathematics 
and science. Aboriginal people in North America have the lowest participation rates of all 
cultural groups in advanced levels of mathematics (Trumbull, Nelson-Barber, & Mitchell, 2002).  

Methodology 
Our research initiative emerged both from our desire to address the Mi’kmaw people’s call 

for improvements to mathematics education within their schools and from the increased national 
concern about the disengagement of Aboriginal students from mathematics and science.  The 
initial goal of our research was to bring together community elders, adults and youth in dialogue 
about the role of mathematical processes within Aboriginal culture.  The groups discuss both 
historical and current cultural practices that involve an informal knowledge of mathematics. 
Participants also consider ways to engage more Aboriginal youth in the study of mathematics.  
The key questions are: What mathematics is already present in Aboriginal culture? and How can 
this Indigenous knowledge be incorporated into the learning and teaching of mathematics to 
meet the needs of Aboriginal students better? 

The Mi’kmaw Ethics Committee guidelines declare that Mi’kmaq people must be treated as 
equals when participating in research, and that knowledge must be collectively discovered.  Thus 
research needs to be done collaboratively with participants, respecting the knowledge, values and 
traditions of the communities. In a casual dialogue, Lisa asked an elder for a word that describes 
this kind of interaction – the act of people coming together to talk about an issue or solve a 
problem.  The word he suggested, mawikinutimatimk, literally means “coming together to learn 
together”. This spirit informs our methodology: all members of the group have something to 
share and something to learn.  Our research comprises conversations, which reflect the long-
standing Mi’kmaq tradition of coming together to share stories and ideas, and to deal with 
concerns (c.f. Joe & Choyce, 1997). 
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Findings 
Early in our initial discussions with elders, we discovered the challenge of fostering 

mawikinutimatimk. The elders frequently asked if what they were saying was what we wanted. 
“Is this what you want? Are we telling you stuff you wanted to know?”  Such questions 
demonstrate an unequal conversation, in which one group’s questions and understanding are felt 
to be privileged over another’s. The elders came with an understanding of what mathematics is 
and were unclear how that related to their everyday lives.  One member of the group later said he 
was shocked to see everyday activities as “math” because to him they were “just problem solving 
in a way.” Ironically, our attempts to value Indigenous mathematics knowledge seemed to be 
challenging these Indigenous people’s sense of what mathematics is. 

As we faced the challenges of mawikinutimatimk in research, we realized that similar 
challenges exist in mathematics classrooms.  We wondered what prevents mathematics classes 
from becoming communities of learners – communities marked by collective discovery and in 
which each participant’s contributions are valued and everyone, including the teacher, can learn 
something new. How many students harbour the same questions for their teachers that these 
elders asked of us: “What do you want? What do you really want? What are you going to do with 
the information I give to you?”  Such questions suggest a sense of inequality amongst 
participants (even if the teacher truly wants a sense of equality), a barrier to a classroom culture 
that would reflect both mawikinutimatimk and the NCTM’s communication principle: 
“Conversations in which mathematical ideas are explored from multiple perspectives help the 
participants sharpen their thinking and make connections” (p.60).  All students must feel that 
their ideas and beliefs are valued within such a classroom culture. This may be especially 
important amongst Aboriginal children because when they do not see their cultural values 
reflected in the mathematics they are learning, they are not inclined to think that their ideas 
belong (Aikenhead, 2002; Trumbull, Nelson-Barber, & Mitchell, 2002).  

Unfortunately, attempts to include cultural contexts (e.g. exploring patterns in baskets, rugs, 
and beadwork) often position “Western” mathematics as acting on indigenous cultural artefacts.  
Such trivializations insufficiently address the colonization embedded in the life experiences of 
Aboriginal students.  A substantive, decolonized approach needs to address Indigenous world 
views in addition to artefacts: “Aboriginal children are advantaged by their own cultural identity 
and language, not disadvantaged in some deficit sense”(Aikenhead, 2002, p.3).  

It is important for mathematics educators at all levels to be conscious of the effects of 
colonization on Aboriginal learners and to seek ways to include indigenous knowledge in a 
substantive way.  Our conversations with elders have shown that mathematical knowledge was 
and still is embedded in the daily activities of Aboriginal people. This knowledge needs to be 
valued if we are to have mawikinutimatimk in mathematics classrooms. 

In our presentation, we will describe the elders’ responses to our reflections on our 
conversations. 
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We compare the performance of students of different ethnic and socioeconomic groups using the 
revised Investigations in Number, Data, and Space curriculum to the performance of students 
using other, non-Standard-based curricula. This study also examines gender differences in 
achievement and strategy use. Moreover, we explore the following question: How does the 
revised Investigations curriculum influence gender-, ethnic-, and socioeconomic-related 
achievement gaps? 

The National Council of Teachers of Mathematics (NCTM) strives to empower all students 
by providing them with an equitable, high-quality mathematics education. Because NCTM 
placed equity first among their core principles in the Principles and Standards for School 
Mathematics (NCTM, 2000), implementing Standards-based curricula carries an implied 
promise to produce the positive, meaningful changes necessary to eliminate mathematics 
achievement inequities often linked with larger societal inequities. However, the field of 
mathematics education lacks research documenting the benefits and limitations of using 
Standards-based curricula with all students and needs a clearer, more complete description of 
equitable teaching practices.  

In this short oral session, we describe research comparing the performance of students of 
different ethnic and socioeconomic groups using the revised Investigations in Number, Data, and 
Space curriculum (Inv.) to the performance of students using other, non-Standards-based 
curricula. We also examine gender differences in achievement and strategy use. Moreover, we 
explore the following question: How does the revised Inv. curriculum influence gender-, ethnic-, 
and socioeconomic-related achievement gaps?  

The study is part of a large-scale, longitudinal evaluation of the revised Inv. curriculum. The 
evaluation compares the mathematical learning and achievement of students in classrooms using 
the revised Inv. curriculum with that of students in classrooms not using Inv. While the larger 
evaluation study follows two student cohorts over three years, beginning in the first and third 
grades, this report focuses on the performance of students in a subset of the third-grade cohort as 
they progressed through three years of school. The approximately 380 participants attended eight 
elementary schools (four revised Inv. and four non-Inv. schools) located in an ethnically, 
socioeconomically diverse large Midwest urban district.  

To gather achievement (performance) data, we used four primary instrument types: (a) the 
Iowa Test of Basic Skills (ITBS), (b) content-focused assessments, (c) state-wide assessments, 
and (d) a task-based interview. We administered the ITBS mathematics and reading subtests in 
the fall of the 2002-2003 school year and used the results to account for initial achievement 
differences between the Inv. and the non-Inv. students. The students also took the initial content-
focused assessment in the fall of 2003 and spring of 2004, at the beginning and end of their third-
grade year, and the second and third content-focused assessments at the end of their fourth- and 
fifth-grade years. These assessments capture students’ growth in number and operations and 
algebraic reasoning. They emphasize problem-solving contexts and authentic tasks, but include 
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some symbolic computation items. Additionally, in the late fall of each school year, the students 
completed the state-wide assessments, and during the middle of their fifth-grade year, we 
conducted the task-based interviews with a subset of approximately 50 Inv. students. Through 
the interviews, we investigated gender differences in strategy use found in previous research. In 
addition, the teachers completed curriculum logs and a pedagogical survey to record and describe 
the implemented curriculum. We analyzed each data source using standard procedures of coding 
and statistical analysis and interpreted the multiple data sources in relation to one another.  

In this short oral session, we add to the discussion about the potential of Standards-based 
curricula and teaching to promote equitable outcomes in our schools. Along with previous 
research, the study’s results suggest that implementing Standards-based curricula and pedagogy 
without paying particular attention to poor and minority students’ strengths and needs does not 
automatically narrow the achievement gap. Furthermore, they suggest using the Inv. curriculum 
has the potential to increase the achievement gap among diverse ethnic and socioeconomic 
groups. However, the findings also suggest that using the Inv. curriculum does not promote 
gender differences, and thus, contrast the results found by Fennema et al. (1998) in their study of 
early elementary students whose teachers used Standards-based teaching methods. In their study, 
Fennema et al. found boys’ and girls’ achieved at the same level, but girls were more likely to 
use modeling, counting, and standard algorithms, and boys were more likely to use abstract 
strategies.  

Although reasons for the inequities in schools extend well beyond the nature of curriculum 
and instruction, this study focuses on curriculum—one of the elements of the student-teacher 
relationship teachers and schools can effectively control (Knapp et al., 1995). The results 
highlight the need for more research focusing on Standards-based curricula, teaching practices, 
and equity to further the discussion about equitable teaching practices (The National Research 
Council, 2004). Moreover, the findings reaffirm Lubienski’s (2000) assertion equity must be 
kept at the forefront of discussions regarding curriculum and pedagogy; a curriculum or 
pedagogical practice promising for many students may not be promising for all.  
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This study investigates teachers’ perceptions of the role of graphing calculators in the 
mathematics instruction of students from different SES schools. Findings showed that the nature 
of graphing calculator use was strongly influenced by the various contexts and that the low-SES 
school’s respondents appeared not to involve their students in lessons that capitalized on the 
powerful characteristics of graphing calculators. 

Introduction and Rationale 
Race and socioeconomic status (SES) are equity factors, which have long been associated 

with the disparities and achievement gap, amongst students in mathematics. Although there has 
been a multiplicity of meanings of the term equity in relation to mathematics learning, the 
general consensus has been the acknowledgement of the existence of this achievement gap. 
Moreover, technology has been one of the tools recommended for achieving equity in the 
mathematics classroom. Compared to other forms of technology, however, the physical access to 
graphing calculators is high in general and issues pertaining to equity when using graphing 
calculators arise more from the experiential access; that is, the nature of graphing calculator use. 
This study investigates teachers’ perceptions of the role of graphing calculators in the 
mathematics instruction of students from different SES schools. 

Perspectives and Frameworks 
A sociocultural perspective enabled me to examine teachers’ perceptions of graphing 

calculator use as a mediating tool to facilitate the mathematical learning of low-SES and high-
SES students situated within different sociocultural classroom and school contexts. According to 
sociocultural theory, learning is socially and culturally situated in contexts of everyday activities 
(Vygotsky, 1978; Wertsch, 1991) and is the result of a dynamic interaction between individuals, 
other people, and cultural artifacts or tools, all of which contribute to the social formation of the 
individual mind and lead to the realization of socially valued goals. These activities include the 
everyday cultural experiences that are subject to social conditions, such as SES. 

The goal of this study was to learn about, and draw to the attention of mathematics educators, 
some of the potential red flags that stand in the pathway of ensuring not only the availability but 
also the appropriate use of graphing calculators that can in turn promote equitable mathematics 
education. The research questions that guided the study were: 

1. What are the perceptions of teachers regarding the role of graphing calculators in the 
mathematics instruction of students with different SES?  What are their perceptions of the 
local constraints pertaining to the use of graphing calculators? 

2. What are the teachers’ perceptions of the factors that influence their decisions regarding 
the use of graphing calculators in different SES contexts? 

In addressing these questions, I compared the perception of the respondents, at both high-and 
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low-SES schools, of the role or use of graphing calculators in mathematics instruction. In 
addition, I investigated how the situational context appeared to have enhanced or constrained the 
use of graphing calculators at both the high-and low-SES schools. Pertinent to this discussion 
and of prime importance is how the situational context appeared to have influenced the way the 
graphing calculator was used. 

Data Collection 
In this study, I used both quantitative and qualitative methodologies to investigate the 

research questions. The quantitative part was comprised of a Likert scale survey instrument, 
while the qualitative component was comprised of classroom observations and semi-structured 
interviews. 

Results and Conclusion 
The results of this study indicate that the participants’ perception of the nature the role of 

graphing calculator is dependent on the context within which it is used and that the low-SES 
school’s respondents appeared not to involve their students in lessons that capitalized on the 
powerful characteristics of graphing calculators. In my analysis, I conceptualized a four-
component framework, which helped to tease out the role of the situational context (see figure 
1). 

  
 
 
  

  
  
  
  
  
 

 
 
 

 
 

 
 

Figure 1.  A Four-component Model of Mathematical Learning using a Graphing 
Calculator 

Moreover, I assumed that the components of this framework are continuously in interaction 
with one another which implies that a change or perturbation in one of the components 
perturbates all the other components. The continuous interactions of the components of this 
framework suggest that equity issues in connection to the nature of graphing calculator should be 
an ongoing process that is continuously locating for strategies that will afford all students 
appropriate access and use of graphing calculators. This is important for the use of the graphing 
calculator, as a tool of educational reform, to achieve the NCTM’s (2000) equity goal, rather 
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than to end up exacerbating the already existing inequities between students of high-SES and 
low-SES schools.  
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The results of this paper are part of a multiyear project focusing on developing instructional 
resources designed to increase the effectiveness of mathematics instruction for students who are 
English Language Learners. The project is a partnership between the Texas State University 
Mathematics for English Language Learners Initiative, Texas State University System 
universities, and the Texas Education Agency.  

Introduction 
English Language Learner (ELL) students, students whose native language is not English and 

who are in the process of developing English speaking and writing skills, experience significant 
challenges in the typical United States mathematics classroom. As a group, secondary ELL 
students consistently score among the lowest of any student group on the Texas Assessment of 
Knowledge and Skills (Texas Education Agency, 2000). Growing evidence suggests that low 
performance on standardized assessments by ELL students has little to do with innate 
mathematical ability and much to do with cultural differences in the ways mathematics concepts 
are taught in other countries and with linguistic (vocabulary) barriers commonly found among 
non-native English speakers (Richardson & Wilkinson, 2005).  

Such issues are often coupled with the problem of limited professional development available 
to teachers of such students. The rationale for this study is to improve understandings about how 
to teach mathematics to ELL students. More specifically, the goal of this study is to support 
mathematics instruction for ELL students in Texas, specifically students at the secondary level, 
through citing secondary mathematics teachers’ perceptions of needed professional development 
in this area. Such professional development training needs may include, but are not limited to, in-
service training, supportive instructional resources and tools, and implementation of specific 
professional development programs.  

Data Collection 
Researchers ascertained secondary mathematics Texas teachers’ perceptions of needed 

professional development to better support mathematics instruction for their ELL students 
through the collection and analysis of data from two key sources: survey data and focus group 
findings. The targeted audience included primarily high school mathematics teachers who were 
currently teaching or had taught a significant number of ELL students. However, researchers also 
interviewed other educators, including secondary ELL/ESL teachers who taught no specific 
content discipline, middle school and high school mathematics curriculum coordinators, middle 
school mathematics teachers, elementary ELL/ESL teachers, and school administrators. As a first 
step in identifying secondary mathematics teachers’ perceived professional development needs to 
better support mathematics instruction for their ELL students, survey forms were mailed to 130 
randomly selected high schools throughout the state of Texas, including each of the 20 Texas 
Education Service Areas. In each packet, the distribution was addressed directly to a high school 
principal with a cover letter requesting that the principal distribute the survey to three 
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mathematics teachers, with emphasis on teachers with high populations of ELL students. 
Postage-free envelopes were provided for return of the surveys.  

Approximately 25% of the surveys distributed were returned and analyzed. Select high 
school mathematics teachers, some of whom completed the survey, were invited to participate in 
small focus group interviews. Researchers hosted focus groups throughout the state, including 
focus groups in central Texas, south Texas, southeast Texas, and west Texas. The number of 
participants in each focus group varied, ranging from five to fourteen participants. Participants 
for each focus group were selected based on their documented interest expressed in the surveys 
distributed prior to formation of the focus groups, recommendations made by school principals 
and vice-principals, and recruitment from researchers based on their prior knowledge of schools 
with high ELL student populations. Because research indicates that focus group participants are 
generally more open and less guarded with people they do not know (Morgan, 1988), care was 
taken to ensure that teachers who knew one another were not recruited for the same sessions. The 
composition of each focus group consisted of teachers from different schools and/or school 
districts.  

Results 
Analysis of data revealed that teachers often engage in general forms of professional 

development that they couple with other strategies to assist their ELL students in the learning of 
mathematics, but all data indicate that participants had little to no professional development that 
specifically addressed improving mathematics instruction for ELL students.  Findings also 
revealed that mathematics teachers were in need of training that separated learning mathematics 
from learning English and many school districts were in need of certified secondary bilingual 
mathematics teachers.  
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Research on equity in mathematics and other school subjects has tended to focus on what is 
meaningful for particular racial and ethnic groups. With increasingly diverse classrooms and 
concerns about the danger of essentializing, there is a need for the field of mathematics 
education to identify classroom practices that provide equal access to opportunities to engage in 
mathematical inquiry and develop positive dispositions towards mathematics for a range of 
students.  This paper reports three studies that examined the structure of  activity in mathematics 
classrooms that were successful at promoting broad-based participation among their students.  
The analyses focus on four aspects of activity systems including instructional tasks, classroom 
discourse, and the roles of the teacher and students. Additionally, the analyses illustrate how 
interactions among these elements created access to opportunities for all students to be 
successful. 

Introduction 
The purpose of this paper is to problematize a current conceptualization of equitable teaching 

that focuses primarily on what is meaningful for particular racial and ethnic groups, and 
encourage a focus instead on how classrooms create opportunities for all students to negotiate 
competent participation and thus positive dispositions towards mathematics learning.  The 
motivation for this paper stems from several pressing concerns.  First, we are wary of approaches 
that simplify a complicated and rich process of locally constructing cultural practices in a 
particular setting by reducing them either to a list of topics to include in a curriculum or practices 
that may be easily stereotyped.  Second, we believe that accommodating every student’s home 
experiences is often untenable in America’s increasingly heterogeneous schools, wherein one 
classroom may include students from many different cultural backgrounds.  For these reasons, 
we believe that researchers who are concerned with issues of equity need to expand their focus to 
explore how particular classroom practices create opportunities for all students to be successful 
(Delpit, 1995; Gutierrez, 1999; Moschkovich, 2002).  Doing so requires thinking about success 
as more than achievement scores to include a consideration of both the ideas that students learn 
and how they come to appreciate and see value in mathematics. 

Our examination of opportunities to learn in the local space of the mathematics classroom 
shapes our conceptualization of equitable teaching in terms of students’ access to classroom 
mathematical practices.  We consider the processes by which students gain or lose access to 
mathematical practices in the design of classroom tasks, in classroom discussion, and in the 
broader classroom practices and norms that get organized over time Cobb & Nasir, 2002). This 
perspective of equity stands in contrast to one in which broader socio-political structures and 
processes around race, culture, and power outside of the classroom are considered with respect to 
classroom life (Martin, 2000, 2003; Tate, 1994) 

In the proposed paper, we will present three studies that investigate aspects of the classroom 
social context in supporting students’ access to ideas and forms of reasoning as well as a sense of 
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affiliation with mathematics. These three studies are united in their approach to the study of 
equitable teaching both in their perspective of the classroom as a system of activity comprised of 
different elements (Greeno,& MMAP, 1998; ), as well as the use of research methods that 
capture the functioning of these elements both in moment-to-moment classroom interaction and 
over time.  

Considering Access in the Classroom Activity System 
Creating access to opportunities to engage deeply with mathematical content is a theme that 

cuts across these studies. Focusing on the distribution of access in this way highlights the role of 
the organization of activity systems (Cohen & Lotan, 1995; Engle & Conant, 2002), and the 
nature of students’ experiences in mathematics in order to account for students’ successes and 
difficulties (Boaler, 1998; Martin, 2000). This perspective draws attention to the complex 
interactions between elements of a classroom system in constructing and reifying mathematical 
practices, and thus what counts as competent participation (XXXX). From the perspective of 
access, aspects of the classroom system can be seen to support or delimit students’ experiences to 
be successful in learning mathematics.  Considering the construction of equitable access to 
meaningful engagement ensures that practices of engaging with content become the focus of 
analysis, rather than assumptions of what may be meaningful, and thus “motivating,” for 
particular groups of students (XXXX). 

In the proposed paper, we will draw on data from three studies to delineate aspects of the 
classroom activity system that contributed to of the creation of opportunities for students to 
engage competently with mathematical content. In doing so, we focus our discussion on four 
themes: instructional activities, classroom discourse, the role of the teacher, and the role of the 
student. These aspects are closely related and can be seen to contribute to how mathematics 
becomes realized in particular classrooms (Bowers & Nickerson, 2001; Cobb, Yackel, Wood & 
McNeal, 1992; Lampert, 2001). The sorts of mathematical conversations that take place in a 
classroom can be viewed as situated within a space of possibilities that are afforded by 
instructional activities. In turn, classroom discourse can be seen as developing in interaction in 
which the teacher’s role, students’ roles, and their negotiation of what counts as mathematical 
competence are critical.  

Data Sources and Method of Analysis 
All three studies took place in the United States in urban middle and high school classrooms. 

The duration of the studies ranged from one semester to one year. All analyses drew on field 
notes, videotaped recordings of class sessions, and student interviews. The studies share common 
aspects of systematically analyzing data through multiple stages of coding (Glaser & Strauss, 
1967). These common and overlapping phases include first working through field notes in order 
to identify critical incidents and potential shifts in patterns of classroom discourse, the role of the 
teacher, and the role of the students. A second phase involves working through videotaped 
recordings session by session in order to isolate critical incidents and to make conjectures on 
patterns of participation. A third phase involved examining the analyses of sessions at a meta-
level in order to test conjectures about patterns and to isolate sessions that illustrate significant 
shifts in discourse, roles, and the opportunities that were afforded students to engage with 
mathematics in substantial ways. Particular attention was paid in each of the studies to situations 
that seemed to contradict ongoing conjectures and to offer explanations for these situations and 
how they informed the ongoing analyses.  
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Results 
A number of significant findings emerged from each study, and the purpose of the proposed 

paper is to draw attention to connections as well as significant differences across studies in order 
to inform more equitable classroom practices. We discuss key findings in terms of the four 
themes identified above. Our analyses revealed that instructional activities were critical in 
supporting substantial conversations about mathematics in that they opened up a space of 
possible mathematical topics that could become the focus of discussions. The structure of 
activities served both to support students’ initial engagement with the task and their later use of 
mathematics for solving problems.  

Classroom discourse and in particular what counted as a mathematical explanation afforded 
students access to multiple task interpretations from which they could become interested in 
informing the problem situation and in teasing out important math ideas as they compared 
analyses. As the analyses show, classroom discourse also presented students with opportunities 
to make their thinking and mathematics public, thereby creating opportunities for revision and 
contributing to a shared purpose and a sense of community in supporting everyone’s learning. 

Both the roles of the teacher and students proved to be critical as well in opening up spaces 
of opportunities. For instance, all three teachers adeptly included students’ comments as part of 
discussions while advancing the mathematical agenda. At the same time, all three teachers drew 
on different strategies and practices to navigate this tension. The roles that became constituted 
for students differed across studies, but one key commonality was that students were active 
contributors to the ideas that came to matter in each class, and in this process students were able 
to experience voice while engaging deeply with mathematics.  

Significance 
The proposed paper is positioned to make significant theoretical and pragmatic contributions. 

Theoretically, the paper will contribute to an understanding of how the dynamics of equity and 
processes involving access and opportunities are created, developed and sustained in classrooms. 
Pragmatically, the proposed paper will contribute to an understanding of more equitable 
instructional practices and resources that support students’ access to mathematical ideas and to a 
view of mathematics as a worthwhile and important activity.  
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The paper presents the results of an investigation of the infinitesimal procedures for the 
calculation of the area of a circle depicted in 19 modern Canadian, Taiwanese, and Russian 
secondary schools textbooks and in their medieval counterparts. The authors conjecture that the 
procedures found in the textbooks are related to mathematical methods found in medieval 
mathematical writings, in particular, in those of Gerard of Brussels and of J. Kepler. 

Recent investigations of the processes taking place in the mathematics classroom have 
focused on various aspects of the actual interactions within the groups composed by the teachers 
and learners thus often unintentionally downplaying the role of the textbooks used by the 
teachers. However, the mathematics textbooks arguably provide the frame of reference for the 
course design even in the cases when the approaches they suggest are not referred to by the 
teachers or even are opposed by them. In our study, we explored the hypothesis according to 
which a historical investigation of the concepts, strategies, and tools found in mathematics 
textbooks is relevant to the investigation of the conceptual framework shaping the modern 
classroom activities and to the description of the representations determining the most general 
trends of the mathematics education.  

Our investigation focused on the infinitesimal procedures for the calculation of the area of a 
circle depicted in modern Canadian, Taiwanese, and Soviet/Russian textbooks for secondary 
schools along with their potential didactical transposition for classroom activities. The approach 
is similar to that applied in (Freiman and Volkov 2004) to the study of the concept of fraction 
employed in textbooks representing various didactical traditions. We analyzed 12 textbooks 
published in Quebec province in 1969-1994, one textbook from Ontario (1997), five textbooks 
from USSR/Russia (1979-2001) and one Taiwanese textbook (2003). It was found that the 
majority of the procedures have been based on “intuitively clear” geometrical constructions 
intended to justify the formula of the area without using sophisticated formal tools such as the 
classical definition of limit involving the “ε−δ language.” These constructions were usually 
presented with one or several diagrams accompanied by short explanations appealing mostly to 
the intuition of the student. Among the especially popular diagrams there are (1) the circle 
covered with a large number of squares of small size (the surface area of the circle is thus being 
introduced as the number of the squares contained inside the circle when the squares are small 
enough); (2) the inscribed regular polygon (with the length of one side small enough to make the 
area of the polygon close to the area of the circle); (3) the circle subdivided into a number of 
identical sectors which can be rearranged in order to produce a curvilinear figure that can be 
approximated with a parallelogram if the number of the sectors is large enough; (4) the circle 
subdivided into a number of concentric strips that can be straighten up to produce a rectilinear 
figure (usually a triangle). Three latter constructions lead to the formula of the area of a circle, 
while the former one can only be used to introduce the very concept of the area of a circle.   

Even though these “intuitively clear” constructions were seemingly designed for the modern 
schoolchildren with purely didactical purpose, a number of them are actually much older and can 
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be found in medieval Western and East-Asian mathematical treatises. For instance, the 
configuration including the squares covering the surface of a circle is to be found in a number of 
Chinese treatises, for example, in the Hushi suanshu 弧弧弧弧 (The procedure of calculation of 
arcs and sagittas) by Gu Yingxiang 顧顧顧 (1483-1565), as well as in Korean treatises, for 
example, in the Sanhak yipmun 弧算算算 (Introduction to the science of calculation) by Hwang 
Yun-Syo 胤胤黃  (1729-1791), even though any evidence of the direct connections between these 
manuals and their modern counterparts can hardly be provided. However, the method of 
subdivision of a circle into sectors that became popular in Western textbooks no later than the 
early 20th century (Hall and Stevens 1910, p. 203) can be found in much earlier mathematical 
texts, in particular, in the works of J. Kepler (1571-1630), while the subdivision of the circle into 
a large number of concentric strips was suggested by Gerard of Brussels (1187-1260) in his 
Liber de motu, although in a rather different context (Clagett 1956). 

Historically, the first mathematically strict demonstration of the formula for the area of a 
circle was offered by Archimedes (287-212 BC) who carefully avoided any operations involving 
infinitely small and infinitely large magnitudes. However, our brief inspection of the history of 
European approaches to the topic suggested that the highly technical Archimedes’ method was 
not always enthusiastically embraced by the authors of medieval mathematics textbooks. Their 
didactical approach looked very close to that adopted in the school textbooks written in the spirit 
of the “intuitive geometry” of the late 19th – early 20th century widely employing visual 
representations similar to those of Gerard of Brussels and J.Kepler. One can conjecture that these 
representations, sometimes with slight modifications, eventually found their way to the recent 
textbooks whose authors most likely were not aware of the complex history of the methods they 
offered to the schoolchildren. Moreover, despite the apparent intention of the authors of the 
modern textbooks to avoid mathematically strict yet highly technical demonstrations and to offer 
seemingly simple visual explanations instead, the diagrams they provide may lead to various 
misconceptions concerning the concepts of infinity and of the areas of curvilinear figures. 

One can suggest that the similarities between the approaches found in today’s school 
mathematics textbooks and in their medieval counterparts do not represent a mere coincidence 
but are partly due to particularities of the history of the formation of the modern school 
textbooks. In the case under investigation, the visualizations of the concept of infinitesimals 
positioned as didactic approaches in modern textbooks are arguably related to medieval 
mathematical methods.   
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In ethnomathematical conversations with Aboriginal elders in Eastern Canada, we examine 
conflicts in values and intentions between the cultural mathematical practices in Aboriginal 
communities (both traditional and modern) and Western-oriented schools.  Elders' accounts of 
their mathematical practices highlight common sense, which cannot be applied in a school 
setting abstracted from community issues and needs. 

“You just take a [piece of birch] bark and hold it over the circle. Fold it in half and fold it in 
half again to get the centre.” Mi’kmaw elder, Diane Toney, was well-known for the quality of 
the boxes she made out of porcupine quills. For her, folding a round piece of bark to find the 
centre of the circle was common sense; it was not mathematics. 

As part of a large-scale project investigating mathematics and science learning in informal 
contexts in Atlantic Canada, we have been interviewing Aboriginal elders to identify some of 
their everyday practices (both traditional and current) that could be deemed mathematical. This 
typical approach to ethnomathematics research (c.f. Powell & Frankenstein, 1997) relies on 
Bishop’s (1988) definition of mathematical activity (practices that involves counting, measuring, 
locating, playing, designing or explaining) and on the assumption that any mathematics is an 
artefact of a particular culture. 

In these ongoing conversations, it is our intent to get beyond the identification of 
mathematical practices to consider differences in values and intentions as well as the changes 
Aboriginal children experience when they are encultured in their classroom mathematics. Thus, 
our focus question is: What is lost and what is gained in a move from the community's cultural 
practice to a “Western” mathematical practice? Our aim is not to deem such moves 
inappropriate, but rather to raise awareness to their socio-cultural effects. We believe that 
awareness of both potential losses and possible new opportunities could mitigate the losses to 
some extent. Also, awareness may encourage young Aboriginal people to engage more with 
Western mathematics and science because they will have had the opportunity to explore the 
issues behind the nagging feelings of inappropriacy that accompany such cultural transitions.  

Conflicts Between Aboriginal and School Mathematics 
In the interviews, the elders have been quick to identify cultural mathematical practices after 

we suggest the unacceptability of our larger society’s tacit definition of mathematics – things 
done in mathematics classrooms – and outline Bishop’s (1988) alternative definition. For 
example, when Diane Toney (who died May 15, 2006) made quill boxes (which are circular) she 
knew that ”To make a ring, you need to go across the centre of your birch bark [the diameter] 
three times and allow about the width of your thumb [i.e. π] to make a perfect round.” She could 
also find a circle’s centre as described above. 

When we asked about conflicts between cultural mathematical practices and school 
mathematics, elders responded saying that children take things for granted too much: They only 
flick a switch to get light. Because different groups of elders responded in the same way, we see 
that taken-for-granted aspects of our modern world must be at the heart of the perceived conflict 
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between traditional practices (some of which remain current practices) and the mathematics the 
elders see children take in school. 

In our interpretation of these interviews, we noticed the frequent reference to “common 
sense” when the elders described how they know what to do in the situations they described as 
mathematical. How much wood would they haul home for fuel? “Enough.” How did they know 
how much to bring? “Common sense.” By contrast, we might consider a school mathematics 
word problem that asks, “Bob’s wood pile for a week of fuel is about 2 x 5 x 3 feet. What would 
the dimensions of the pile be for two weeks of fuel?” It is easy to imagine a child in school 
answering 4 x 10 x 6, doubling each dimension. But it is hard to imagine someone who is 
cutting, hauling and burning the wood making the same error. 

The person who needs wood for fuel draws on common sense, which includes a sense of the 
situation, a sense of the family’s needs and a sense of the work it takes to meet these needs. In 
such situations, the answer to our mathematical questions can be “enough”. How many potatoes 
would you cook? “Enough. That way you didn’t waste any.” These kinds of answer may seem 
unmathematical because we may wonder how much enough is. But a typical mathematical word 
problem answer, like “9 potatoes are needed for a family of 6,” ignores the reality of variance in 
potato size. For the answer to the potato question, a gesture showing an imagined volume 
(roughly spherical) accompanies the elder’s “enough.” Likewise, for the wood-fetching question, 
the elder marks a height off with his hand as he says “enough.” The natural gesture, which is part 
of his answer, does not tell us how much wood was needed, but it does show us that he knew 
how much enough was. 

“Enough” implies a sense of what is needed. For this kind of sense, the question needs to be 
situated in a problem – a real problem. Children who have everything they need at the their 
fingertips cannot have a sense of necessity. To ground classroom mathematics in such necessity, 
we, like D’Ambrosio (1998), suggest that class activity begin with an issue faced by the 
children’s community. With mathematical activity that begins in local issues, students can begin 
to use their mathematics to exercise their intentions within these issues. This kind of personal 
(and communal) agency is different from agency that arises in classroom contexts in which the 
mathematical starting points relate to other people’s concerns. 

When Students cannot use Common Sense 
When their mathematics is not grounded in their experience, students cannot apply common 

sense. They need something else. Perhaps this something else is what some educators call spatial 
sense and number sense. It seems to be expected that children learn to understand space and 
number before addressing their community’s issues. The Aboriginal elders who we have been 
interviewing seem to be saying that this is backwards. Mathematics should begin with common 
sense. Brown (1996) asserts that the emphasis should not be “on students re-creating the 
teacher’s intention but instead […] on students’ production of meaning in respect to their given 
task” (p. 64). We suggest that students’ production of meaning should rather relate to their tasks 
as humans, addressing community needs. 

In our presentation, we will describe the elders’ responses to our interpretations. 
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For many years, Graduate Teaching Assistants (GTAs) have been employed to perform teaching 
related responsibilities. Studies from the early 1990’s found that about 2/3 of all GTAs serve as 
sole instructor for their course (Buerkel-Rothfuss & Gray, 1991), teaching an estimated 33% of 
all undergraduate classes (Butler, Laumer, & Moore, 1993). 

Because of the potential impact that Mathematics Teaching Assistants (MTAs) have on 
college mathematics instruction, researchers are trying to determine how best to prepare MTAs. 
The problem is that we do not know how representative these studies are of our MTA 
population, specifically regarding their demographics and responsibilities. 

To address this problem, we conducted a nationwide study of mathematics departments in 
order to determine: a) the extent and nature of MTA involvement in college instruction during 
the fall 2005 quarter/semester, and b) what is currently being done to prepare them for these 
responsibilities. This poster presents those findings related to the following questions: 1) How 
does the MTA population compare to the GTA population in general? 2) What type of 
responsibilities do MTAs typically have? 

Data analysis revealed major differences between MTAs and the GTA population at large, as 
well as great diversity among MTAs' responsibilities. Comparing MTAs and GTAs, we found 
that MTAs taught less frequently and had less autonomy than their counterparts in other 
disciplines. We further noted differences between institution type and the nature of MTA 
involvement in instruction. Analysis also revealed that departments differ by several non-
correlating variables; these variables, which include MTA population size, cultural diversity, and 
workload/autonomy, have the potential to create seriously different contexts and thus impact the 
social networking opportunities and thus the teaching development of MTAs in these 
departments. 

Results provide a variety of implications for researchers interested in understanding the 
experience and preparation of MTAs. By showing that cross-disciplinary research is not 
representative of the MTA population, this study supports the need for discipline-specific 
inquiry. Existence of the above variables suggests caution regarding the generalization of small 
scale, qualitative research; this implies that such studies provide this information to aid in 
interpretation of study results. Further details will be provided in the poster presentation. 
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While most mathematics textbooks are written to help the reader develop an understanding of the 
mathematical content, our hypothesis is that many undergraduate students do not use textbooks 
in ways that help them gain this understanding. Many college mathematics teachers have 
anecdotal accounts of the ways students use textbooks but this has not been studied in detail. Our 
goal is to describe the ways undergraduate math students use their textbooks.  

In our pilot study, we administered a survey to students in 1st and 2nd year mathematics 
courses at three large universities and a liberal arts college. Participating students were enrolled 
in a math class, including college algebra, calculus, statistics, and math content courses for 
elementary teachers.  

The survey questions asked students to identify the parts of the textbook they use, the times 
they use them, and their goals in using them. For example, we found that 90% of students look at 
the examples in the book, and students in math courses for pre-service elementary teachers were 
more likely to rephrase or summarize these examples while doing homework than students in 
other classes. We found that students thought the most important qualities of a textbook were 
including many examples and highlighting important equations. The survey also asked how the 
textbook is integrated into the course. For example, we found that within a class students’ 
perceptions of how they are asked to use their textbook vary considerably However, when 
students believe they are asked to read their textbook daily or weekly, they are more likely to use 
the book to prepare for class than if they are asked less frequently. 

Researchers have previously investigated mathematics curricula at the K-12 level. There has 
been considerable research on the teacher-curriculum relationship (e.g. Remillard, 2005).  
Studies have also investigated the impact of curricula, in particular standards-based or reform 
curricula, on student learning (e.g. Riordan and Noyce 2001).  Some studies have attempted to 
characterize various aspects of textbook content, such as types of definitions or control structures 
(e.g. Mesa, 2004). 

We believe our study adds to previous research by addressing several characteristics of 
undergraduate education that differ from K-12. Because of the lack of extensive curricular 
materials and college instructors’ considerable freedom in structuring courses, the textbook is 
effectively the unifying curricular element in undergraduate mathematics classes.  Also, the 
student’s relationship with the textbook exists primarily outside of class, and the instructor is 
involved only indirectly in this relationship. In addition, our study informs textbook analyses by 
describing how students actually use different aspects of the textbook. 
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Much of the research indicates that teachers who adopt classroom methods of cooperation versus 
competition “establish learning environments that change the traditional dynamics of 
classrooms”  (Streitmatter, 1994, p. 98).  For many girls and women, an atmosphere that enables 
students to enter into mathematics through “connected knowing” promotes successful learning 
(Wickett, 1997).  In this poster, I present the results of a qualitative study that examined the 
experiences of two female middle school students working in small groups in a reform-oriented 
mathematics classroom. 

For this study, I observed two different eighth-grade mathematics classes taught by the same 
teacher.  Study participants completed a brief open-ended questionnaire about their attitudes 
towards mathematics class and their feelings about working in small groups. After interviewing 
the students, I performed member checks by having the participants read my interpretations of 
the interviews.  I then conducted follow-up interviews. 

Although I was able to identify numerous themes, the two prevalent themes that I highlight in 
the poster are the themes of “helping” versus “giving answers” and what I call, “getting it done.”  
Both of the girls in the study, who I refer to as Amy and Janelle, spoke about helping students in 
a way that they were not just giving answers.  They both emphasized that it is important to 
understand the mathematics rather than just obtain the answer.  Amy and Janelle frequently 
spoke of “getting it done.”  By “it,” the girls were referring to the tasks that their teacher 
assigned for them to do in groups.  

Overall, in this study, the students reported that their experiences of working in small groups 
in mathematics class were positive and productive.  The two students seemed to have a strong 
sense about the type of helping behaviors that are beneficial to themselves and to their 
classmates.  Teacher-led conversations about giving help versus giving answers might be fruitful 
in fostering more productive work groups.  Last, the results indicate that teachers may want to 
think more carefully about the importance of group and individual accountability.  
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This study examined how pre-college experiences with equity in the mathematics classroom 
connect to mathematics attitudes in undergraduate African American students.  The participants, 
ages 18 to 19, were comprised of varied backgrounds in terms of majors, type and demographics 
of K-12 schools attended, mathematics performance, teachers, and instructional experiences.  
Semi-structured interviews were the primary data source for this qualitative study.     

Results suggested that pre-college perceptions of equity are integrally connected to the 
mathematics attitudes of African American undergraduate students in that the kind of 
mathematics experiences they had either encouraged or diminished positive attitudes toward 
mathematics and toward themselves as learners of mathematics.  The constructs that affected 
attitudes were: teacher characteristics (the type of math teachers the student encountered), 
student resiliency (personality and other individual traits), and student ideology (how the student 
viewed himself and the world).  This paper focuses specifically on the findings related to the 
dimension of teacher characteristics.  Characteristics are considered within the context of 
Culturally Relevant Pedagogy (Ladson-Billings, 1995).  The propositions: conceptions of self 
and others, social relations, and conceptions of knowledge were evidenced in the findings.  
Positive teacher-student relationships, high expectations, supportive learning communities, and 
dynamic teaching and scaffolding were salient in participants’ perceptions of what constituted a 
“good” mathematics teacher. 
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The phenomenon associated to the trigonometrical function has been contemplated in 
investigations of the cognitive perspective (De Kee, et. al, 1996) and didactic perspective 
(Maldonado, 2005), showing the narrow relationship of their results with the organization of the 
study programs, the exhibition of the text books and the teaching mathematical discourse.  

We propose a model on the social construction of knowledge associated to the 
trigonometrical function based on the germinal ideas, the context and the problems that give 
meaning and functionality to the related concepts. The elements of social construction we 
consider in our model are: the activities, the reference practices and the social practices bounded 
to the trigonometrical function (Montiel, 2005).  

Social practice  
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Basic Principles for the social construction of the trigonometrical function 
In the poster we are going to show the practical and scientific activities related to these 

reference practices, that give sense and meaning to the trigonometrical objects. At the moment 
we are designing didactic sequences, based on the model, in order to generate a “fiction genesis” 
on students, in the way of theory of didactical situations (Brousseau, 1997). 
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Research studies show that while women and men have similar achievement levels in 
mathematics (Boaler, 2002; Fox & Soller, 2001), women do not choose mathematics-related 
careers at the same rate as men (Gordon & Keyfitz, 2004; Sharpe & Sonnert, 1999).   Although 
substantial research has been conducted to investigate women’s attitudes towards mathematics 
and gender bias in mathematics education, most of this work has been at the primary and 
secondary school levels and with the purpose to explore why women do not choose to study 
mathematics.  A considerable number of women, however, do choose to study mathematics at 
the undergraduate level (NCES, 2003). Therefore, in addition to investigating why some women 
do not choose to pursue mathematics-based careers, it is also important to consider why certain 
women do choose mathematics.  Such knowledge may assist in designing appropriate 
intervention programs to help support other young women in pursuing careers in mathematics.  
As of the present, few studies have been conducted in this area. 

This research study is intended to help fill this gap in the literature by investigating what has 
influenced undergraduate women mathematics majors to pursue mathematics at the 
undergraduate level and whether or not they intend to pursue a mathematics-based career.  
Through a series of in-depth, phenomenologically based interviews with undergraduate 
mathematics majors at two different universities, we investigated the following research 
questions: 

� What has influenced these women to study mathematics at the undergraduate level? 
� At what stage of their life did they make this decision? 
� What are these women’s future career goals? 
� What experiences (if any) have these women encountered during their undergraduate 

education that has influenced their choices for future careers? 
In this poster we will discuss our preliminary results with regards to these research 

questions. 
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Making Mathematics Relevant in Brooklyn 
This research is situated in New York City, whose school system is the largest in the U.S.A. 

Within a climate of high stakes testing, mathematics teacher shortages, and an unacceptably low 
graduation rate, the call for “mathematics for all” is especially serious.  In addition, New York  
City is an exemplary model of urban-ness in terms of its linguistic, cultural, ethnic, and racial 
diversity alongside other urban factors like, say, high population density or paucity of resources. 
How should we be preparing and training mathematics teachers to teach in urban contexts? In 
addition to the requisite subject matter and pedagogical content knowledge (Shulman, 1986), a 
third dimension, that of equity pedagogy (Banks and Banks, 1995), is crucial. We opt to utilize 
Ladson-Billing’s (1995) specific construct of culturally relevant pedagogy (CRP) as our 
foundation, with its three attributes: it i) emphasizes students’ academic success, ii) encourages 
the development of cultural competence, and iii) facilitates development of critical 
consciousness. 

There is a powerful set of examples in the literature of teaching culturally relevant 
mathematics (e.g., Gutstein, 2006; Skovsmose, 1994; Vithal, 2003). These studies provide 
important existence proofs, typically taking place in individual classrooms in which the 
researcher acted as a teacher or as a co-teacher. In most cases, these projects employ a research 
model whereby the investigation and determination of students’ out-of-school activities and 
interests are conducted by university researchers. However, the local and temporal bounds of 
cultural and social relevance prompt a critical question as to how teachers might learn to identify 
what is relevant or meaningful with respect to their own students. The literature does not provide 
us with answers to this question and it is this opening that forms the basis of our work. 

This particular project is organized around the following research questions. The first is, how 
can urban mathematics teachers learn to teach mathematics with a culturally relevant approach?  
The second research question is, what are the complexities inherent in teacher learning about 
CRP when students come from a variety of cultural and/or linguistic backgrounds, all of which 
may differ from the teacher’s background? Finally, the third research question is, how does a 
structure of a professional community of learners, organized around the goal of learning to teach 
mathematics with a CR approach in cities, contribute to teacher learning? The poster will 
describe the collaborative project, trace several teacher learning trajectories, and identify a set of 
emergent questions and tensions. 
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This paper presents an innovative design for investigating mathematical beliefs. Students of 
grades 5, 9, and 11 were asked to express their views on mathematics on a sheet of paper. 
Further data was collected and qualitative methods were employed to identify the beliefs 
encoded in these works. The data was analyzed according to established categories describing 
mathematical beliefs. Typical features of each category were found in the pictures. Concrete 
examples that support these features are provided as evidences for the represented mathematical 
beliefs. Interestingly, older students, from grade 9 in this study, often include affective aspects in 
their pictures and texts on mathematics.  

Introduction 
The importance of beliefs in mathematics learning is nowadays widely acknowledged (Leder, 

Pehkonen & Törner, 2002). Traditionally, mathematical beliefs are investigated with the aid of 
questionnaires or interviews. This approach is well established. However, especially for younger 
students, who are not yet used to this technique and who might have difficulty in reading a long 
questionnaire attentively, alternatives could be helpful. Bulmer and Rolka (2005) introduced 
pictures as a means to understand university students’ views on statistics. In our study, we used a 
combination of pictures as well as written and oral statements for investigating student beliefs.  

Mathematical Beliefs 
Dionne (1984) suggests that mathematical beliefs are composed of three basic components 

called the traditional perspective, the formalist perspective and the constructivist perspective. 
Similarly, Ernest (1989; 1991) describes three views on mathematics called instrumentalist, 
Platonist, and problem-solving which correspond more or less with the notions of Dionne.  

In this work, we employ the notions of Ernest (1989; 1991) and use this section to briefly 
recall what is understood by them. In the instrumentalist view, mathematics is seen as a useful 
but unrelated collection of facts, rules, formulae, skills, and procedures. In the Platonist view, 
mathematics is characterized as a static but unified body of knowledge where interconnecting 
structures and truths play an important role. In the problem-solving view, mathematics is 
considered as a dynamic and continually expanding field in which creative and constructive 
processes are of central relevance. 

Methodology 
In this study, we extended the approach of Bulmer and Rolka (2005) using pictures as a 

means for investigating student beliefs. Additionally to the pictures, we asked the students to 
give an explanation of their work. The first task, scheduled for one week, was close to that in the 
study mentioned above:  

 
Imagine you are an artist or a writer and you are asked to show on this sheet of paper 
what mathematics is for you. 
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After the submission of their work, a second task was given over a period of five days: 
 
Explain your work by answering the following questions: 

• In which way is mathematics included in your work? 
• Why did you choose this style for your presentation? 
• Is there anything you would have liked to show but which you were not able to 

express? 
 
During these five days, the authors independently tried to classify the pictures according to 

the three mentioned views: instrumentalist, Platonist, and problem-solving. This classification 
was repeated later, when both pictures and texts were available to the authors. In certain cases, a 
third step was carried out by the first author, who interviewed the students individually. This was 
considered necessary when the answers based on picture and text remained unclear. The 
following illustration shows how the project proceeded: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The tasks were given to 84 students of grades 5, 9, and 11 from two schools in Germany. 
Among these, 61 students submitted pictures. The picturing task was integrated in the 
coursework of the classes. The students involved were used to work on projects over a longer 
period of time. In Halverscheid & Rolka (2006), the method was illustrated for students of grade 
5. In this paper, we want to investigate differences and common features which appeared in the 
comparison of the grades 5, and 9. 

Results and Discussion 
The students take different views on “what mathematics is for” them. Some consider and 

describe mathematics as a science without direct links to their own learning experiences. For 
others, the learning experiences in mathematics are given much more attention than the scientific 
viewpoint. 

In the following, we first give three examples that serve as illustrations for the  classification 
according to the three categories. We then focus on some affective aspects that can be found in 
the works. 

 

Students prepare 
their picture  

Students explain 
their work 

Analyses of pic-
tures alone 

Analyses including 
students’ texts 

7 days 5 days 

Interviews with 
some students 
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Illustrations of the three categories 
Pictures consisting of several non-connected sequences, such as symbols, objects, and 

situations seem to parallel an instrumentalist view on mathematics. The appearance of important 
people in the history of science is often an indication for a Platonist view, which can also mix 
with an instrumentalist view or a problem-solving view. Pictures telling a story or delivering 
objects for mathematical activities tend to correspond to a problem-solving view. 

The following picture has been classified as belonging to the catogory of the instrumentalist 
view: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In the picture a lot of different symbols, numbers, and some question marks are depicted. The 
text stresses the point of view that mathematics is not logical and that it cannot be explained. 
This supports the impression of a disconnected gathering of objects, which are not linked by a 
common thought. The text describes mathematics as a static, “illogical” field. Note already here 
that this student of grade 9 broaches the issue of her relationship to mathematics. 

The Platonist view is sometimes related to historic figures. Albert Einstein - particularly 
present in the media in 2005 - appears several times as a mathematical protagonist. Here is an 
example of a student who stresses the context of the geometrical objects he painted. It is hard to 
make sense of the student’s picture alone; it is the interplay with his text which makes it possible 
to understand it better. 
 

Student (grade 9, age 15, female): 
“For me, mathematics means many 
formulae and that it is illogical for 
me. I have decided to design my 
picture like this, because I think that 
mathematics cannot be explained and 
that there are just numbers and 
formulae… 
I would have liked to show more 
exactly how illogical mathematics is 
for me. Is it possible to explain 
mathematics at all? Not for me.” 
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To illustrate a typical feature of the problem-solving view, we include here the following 

work of grade 5. This picture too illustrates how essentially the analysis may depend on the use 
of a student’s text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The boy, 11, writes: “I wanted to 
sketch different fractions, such as 7/9
in the case of the set square or 9/10
for the pair of scissors. You can 
imagine any object which is not 
sketched entirely. In this way it is 
easier to memorize fractions. At least 
this is the way I do it.” 

Student (grade 5, age 11, male):   
“Mathematics is shown in my picture 
by geometrical forms. The circle is a 
figure that has no edges and corners. 
With п one can calculate the perimeter, 
the area, the diameter and the radius of 
a circle.  

The triangle is a figure whose 
angles add up to 180 degrees. The 
rectangle is a figure with four right 
angles. It has two longer and two 
shorter sides.  

I have picked this presentation 
because I have liked geometry at 
primary school very much. […] 

Originally, I wanted to draw the 
pictire ´Proportions of the Human 
Figure` by Leonardo da Vinci.” 
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The picture shows tools used in mathematics: an exercise book, pencils, a ruler, a set square, 

scissors. Parts of certain objects are missing like in the cases of the exercise book, the set square 
and the pair of scissors. For the other objects, it is not that clear whether they are sketched 
entirely. The facts that there is a number of objects and that a certain proportion of them is 
sketched come to mind as relations to mathematics. But the exact nature of the mathematical 
contents remains vague as far as the picture is considered alone. 

The text stresses the parts of the objects which are sketched. Finally, it does not matter to the 
student whether tools or other things are used. It is the creative and thus dynamic mathematical 
process itself which is of interest to the student: he takes any object and associates a rational 
number with it. For this reason, his work and explanations contain the main features of the 
problem-solving category established by Ernest (1989; 1991). 

In grade 5, the pictures jointly with the texts could be classified along the above-mentioned 
categories independently by the authors. In 26 pictures, we observed 14 pictures and texts with 
an instrumentalist view, 5 pictures and texts belonging to the Platonist view and 5 pictures and 
texts showing a problem solving view; 2 could not be classified. In some cases it was necessary 
to interview the students before classifying their works in the category of the Platonist view. As 
explained in more detail in Halverscheid & Rolka (2006), the Platonist view is related to both 
other views; the works often contain elements of the instrumentalist and, resp. or, problem 
solving view. Without the texts, a classification appears often impossible. 

Affective statements in the students’ texts 
The tasks leave a lot of freedom to the students to express their views on mathematics. The 

first example given above for the instrumentalist view represents also another aspect we 
observed in the data. In particular, the affective side of mathematics – often present in the works 
- has many facets: Admiration for the beauty of mathematics, pride of understanding certain 
mathematical ideas, exam nerves, frustration about difficulties in maths, just to name a few.  

The young students in grade 5 answer the question as to what mathematics is for them 
differently than the older students of grades 9 and 11. It is the science and the cultural aspects of 
mathematics for everyday life which are in the focus of the fifth-graders. Some of them refer to 
their learning experiences in mathematics, but with one exception all use these to describe their 
views on mathematics as a science or as a useful tool.  

It is only one student girl of grade 5 who considers the learning of mathematics as the major 
topic: She sketches a girl lying in bed at night with a text book on mathematics on her pillow, 
and she explains that the girl still has to prepare for a maths test. 

In grade 9, the focus of the pictures shifts towards a reflection on the learning of 
mathematics. In this study, about half of the students in grade 9 picked the learning of 
mathematics out as a central theme. Some very explicitly mention their frustration about 
mathematics at school and certain learning experiences.  

Difficulties with mathematical exercises are mentioned several times and are considered as 
something which can hardly be learnt. Frustrating experiences can be seen both in pictures and 
texts.  

One student, for instance, shows a machine which delivers in the students’ case always the 
wrong answer. In another picture that shows the frustration about problem solving in 
mathematics education the student describes problem solving tasks as a sort of vicious circle: 
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After every test, the student says, she smiles and thinks she has done a good job. When the 
results are published, she is always disappointed. Others use the texts to express their happiness 
in case of success or their disappointment in case of failure. 

The topics raised by the students can also be found when looking at affective statements 
which the students make to explain their pictures. These affective statements appear in the 
following ways: 

 
• Attitude towards mathematics  
• Emotions while learning mathematics 
• Self-confidence in mathematical abilities 
• Aesthetic comments on the picture. 
 
Certain components, for example the aesthetic comments, are expressed somewhat indirectly 

in the choice of words, or concerning the self-confidence in their mathematical abilities. Roughly 
speaking, the young students express more positive feelings on mathematics and a certain 
easiness concerning the challenges of mathematics. 

We want to pick out two aspects which might illustrate this when the fifth-graders and the 
nineth-graders are compared.  

The fifth-graders mention rather rarely emotions while learning mathematics, whereas the 
nineth-graders have chosen it in several cases as the main feature. We mentioned above already 
that only one girl among the fifth-graders has chosen this as the main topic. Self-confidence in 
mathematics does not seem to be a feeling which is expressed by the nineth-graders investigated 
in this study. It is not clear whether this is an indication of a lack of self confidence in 
mathematical abilities or or because they consider it inappropriate to mention it. 

The idea of mathematics as something useful seems to change over the years, too. The young 
students regard mathematics as a useful tool for everyday life and for future jobs. In grade 9 
or11, this idea can still be found. In all ages it is one of the key indicators of an instrumentalist 
view on mathematics. However, the older students stress more the use of mathematics at school. 
It seems that mathematics is less present in their everyday life.  

Conclusion 
Combining pictures and texts improves the empirical basis for decoding views on 

mathematics considerably. Furthermore, it makes better use of different students’ abilities which 
are often neglected in everyday mathematical activities at school. Since students are normally not 
used to pictures and texts in mathematics, the approach presented here is appealing to those who 
are talented in painting and writing. Already fifth-graders are able to express their views on 
mathematics without reading and filling in questionnaires which implies certain problems 
regarding their age. 

Students’ views on mathematics have many facets and allow both a classification of common 
features and a discussion of every individual attitude towards mathematics. The simultaneous use 
of students’ pictures and their own interpretation of their works and, if necessary, of short 
interviews to clarify certain aspects has proved to give insights into the views on mathematics of 
every individual student. 

An analysis in several steps, starting with the pictures alone and passing to the pictures and 
the students’ texts afterwards, gives a basis of data which allows to get often a distinctive idea of 
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the student’s views on mathematics. For the students and the researcher, the picture is the 
starting point for a discussion on mathematics and the learning of mathematics which, in the 
cases considered here, was continued in the classrooms. In this sense, the approach seems more 
rewarding for students than answering a questionnaire which is more difficult to integrate in 
classroom activities. 

One result concerning the differences between grade 5 and 9 is that younger students seem to 
express more positive attitudes towards mathematics than older students. In grade 9, the view on 
mathematics is dominated by the view on mathematics as a school subject or by their learning 
experiences. This is often accompanied by negative emotions like frustration or disappointment - 
a tendency which seems to continue in grade 11. This result that attitudes towards mathematics 
develop in negative direction when students progress through the grades has been observed 
already in other studies (Kislenko, to appear; Nurmi et al., 2004). 

The findings suggest that it is worthwhile to use this approach for investigating mathematical 
beliefs. If this approach is examined in more detail and with a variation of tasks in the future, it 
might have a potential to serve as a means of getting to know students better “beyond the purely 
cognitive” (Schoenfeld, 1983). 
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This study explores challenges novice secondary mathematics teachers experienced while 
attempting NCTM (1991) Standards-based teaching. The ongoing analysis has uncovered links 
between stresses novices faced and attempts at NCTM Standards-based teaching, including 
classroom discussions, mathematical explorations, and alternative assessments. The emerging 
results imply that goals that reform-oriented teacher preparation programs encourage novices to 
adopt may play into stresses they experience. 

In this paper, I introduce my dissertation research on how six novices’ attempts to teach in 
the spirit of the NCTM (1991; 2000) Standards related to the teaching stresses that they 
experienced. The data analysis is ongoing; however, since methodology and results could prove 
useful to teacher educators, I discuss both here. The methodology that I employ has resulted in 
21 categories of novice teacher stress to date, some of which are unique to novices attempting 
teaching consonant with the NCTM Standards. I also describe a closer analysis of 4 carefully 
selected novice teacher stress categories that strongly and directly relate to specific standards in 
the NCTM (1991) Professional standards for teaching mathematics. 

Objectives 
Teaching is among the most stressful of human service occupations (Travers & Cooper, 

1996). Novices in the U.S. must carry the same workload as experienced colleagues. Borko & 
Putnam (1996) suggest novices may be too stressed to learn efficiently from their teaching 
experiences. Efforts to enact some of the teaching practices described in the NCTM (1991) 
Professional standards for teaching mathematics, or to attempt, to some degree, NCTM 
Standards-based teaching [SBT] may add to those challenges. Because novices are often most 
familiar with “teaching as telling,” efforts to set “telling” aside to attempt SBT, may increase 
novices feelings of uncertainty (Smith, 1996). The literature is peppered with examples of 
novices struggling to enact SBT (e.g. VanZoest & Bohl, 2000). Lack of SBT-attempting 
colleagues in novices’ first teaching contexts may also prevent them from attempting SBT 
(Wilcox, et al., 1991). Existing research provides little insight into how general stresses of 
beginning teaching interact with attempts at SBT, which appears crucial knowledge for teacher 
educators advocating such practices. 

Through the lenses of teacher stress, novice teacher learning and development, and the 
NCTM (1991) Standards, I explore which stresses novice teachers attempting SBT faced, which 
of those stresses are related to their attempts at SBT, and whether the novices had resources to 
meet those stresses. As stated above, this paper focuses on the first two issues. 

Theoretical Framework 
While researchers have typically studied teacher stress via surveys, I situate this study in 

novices’ classrooms, as some survey researchers have advocated (e.g. Manthei, et al., 1996). 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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I define novices as teachers with less than 3 full years of classroom teaching experience. I 
characterize SBT using the six categories of high quality teaching identified in the NCTM (1991) 
Professional standards for teaching mathematics, namely Standard 1: Worthwhile mathematical 
tasks, Standard 2: Teacher’s role in discourse, Standard 3: Students’ role in discourse, Standard 
4: Tools for enhancing discourse, Standard 5: Learning environment, and Standard 6: Analysis of 
teaching and learning. 

Based on Kyriacou and Sutcliffe’s (1978) definition, I define teacher stress as a teacher’s 
perception that an aspect of the job is demanding or induces negative affect, often mediated by 
coping mechanisms acting to reduce the perceived threat. This definition aligns with my research 
goals and coincides with my ability to measure the perceived stresses, as well as acknowledging 
that I also plan to identify where teachers report using coping mechanisms or resources to 
mediate those stresses. 

I define coping mechanisms or resources as means of either alleviating the immediate effects 
of stress (such as meditation) or resolving the situation or event that caused the stress (such as a 
colleague who shares advice about dealing with a particular student’s behavior). 

Research Questions 
Framed by the aforementioned definitions, this study addresses the following questions:  

� What stresses do novice secondary mathematics teachers experience as they attempt 
to enact elements of the NCTM (1991) Professional standards for teaching 
mathematics? 

� During these attempts, which stresses are predicted by the existing literature and 
which are new? Which are related to their attempts at Standards-based teaching and 
how? 

I answer the first question by describing the list of categories that has emerged from my data 
analysis to date. To answer the second question, I discuss the results of my data analysis for the 
four coding categories most strongly and directly related to the NCTM (1991) Standards. 

Methods 
I asked the fifth-year content instructor at a highly ranked, progressive Midwestern 

University [hereafter, ‘MU’] for a list of recent graduates who were likely attempting SBT, based 
on observations of their MU classroom participation, student teaching, and mentor teacher’s 
orientation towards SBT. I sat in on 11 novice mathematics teachers’ classrooms who lived close 
enough to MU to make participation practical and who agreed to participate. Of those 11, I 
observed 6 secondary teachers attempting SBT, all of whom participated. 5 of the 6 were female; 
1 was male. Their teaching experience ranged from 1.25 to 2.75 years. 

I conducted a preliminary audiotaped interview, a minimum of three videotaped observations 
in a class where the teacher felt comfortable and the students were described as constructively 
talkative about mathematics [hereafter, ‘focus’ class], a single videotaped observation of a class 
where the teacher’s challenges were least like those in the focus class [hereafter, ‘contrast’ class], 
and a final audiotaped interview. I asked the teacher to keep a teaching log during my 
observations in the focus class, noting surprising, unexpected, and challenging events. After the 
observations were complete, I reviewed the videotapes to create a list of events where the teacher 
showed observable signs of stress; then using the teacher’s and my perceptions of those events, I 
prepared a videotape to review at the final interview of three salient, representative, and 



Vol.2-542  PME-NA 2006 Proceedings 

 

potentially stressful events by melding the teacher’s and my own observations, giving priority to 
those that I judged to be related to attempts at SBT. 

During the two interviews, I asked teachers about their teaching challenges. During the first 
interview, I asked general questions about those challenges. During the final interview, I asked 
the teacher to discuss their thoughts on the three specific classroom events that we viewed 
together from the videotapes, in particular what was going through their minds and whether they 
perceived those events as challenging. Then we discussed specific categories from the literature 
that novice teachers generally find challenging. Finally, we talked about how representative the 
challenges we had discussed were of those encountered regularly.  

Using this method, I learned about the bigger picture of the teachers’ stresses in the first 
interview. In the second interview, I attempted to get the teachers to create a picture of the 
specific challenges they perceived in their current teaching context. During this process, I subtly 
probed, when necessary, whether those challenges were related to their attempts at SBT. Finally, 
I broadened the discussion to discover how common and salient those specific challenges were in 
the context of all their teaching challenges. 

Data and Results 
As I began the analysis, I operationalized my definition of teacher stress as a teacher 

statement that something is challenging or is accompanied by negative affect. In my analysis, 
words that indicated that a situation or event was challenging for the teacher included: hard, 
difficult, stress, challenge, problem, etc. Some of the words that indicated that a situation or 
event was accompanied by negative affect included: hate, frustrate, disappoint, bother, peeve, 
irritate, annoy, etc. Also, I considered a negative description of an event to indicate negative 
teacher affect, including phrased such as “a bad [situation]” or “my class was out of control,” 
rather than neutral descriptions such as “they are not very organized students” or “they’re not 
really self motivated,” which did not necessarily convey negative teacher affect. 

I analyzed the interview data beginning with the coding categories found in the literature 
(Kyriacou, 1989; Lewis, 2004). I used an open coding (Glaser & Strauss, 1967) strategy, moving 
in recursive fashion between the data and the coding categories to refine them to fit the data. To 
date, 21 categories of teacher stress have emerged from the data, as follows: 

� Directing student-led explorations of mathematics: Stresses deriving from engaging 
students in activities where they explored, alone or in pairs or small groups, a 
problem or situation. 

� Implementing NCTM Standards-based assessment strategies: Stresses deriving from 
implementing assessment strategies consonant with the NCTM Standards. 

� Managing classroom discussions: Stresses deriving from facilitating classroom 
discussions by actively involving students in contributing expected ideas. 

� Responding to unexpected student ideas: Stresses deriving from teachers’ attempts to 
engage with and pursue unexpected student ideas during classroom discussions. 

� Working with technology: Stresses deriving from teachers’ attempts to implement 
technology, including the time that it took to teach technology use or the teachers’ 
lack of knowledge about technology. 

� Creating, aligning, modifying, or implementing curricula: Stresses deriving from 
organizing, creating, or implementing the school’s chosen curriculum, or from 
aligning it with the NCTM (2000) Standards or the state’s curriculum standards. 



Teacher Beliefs  Vol.2-543 

 

� Relationships and communications with colleagues: Stresses deriving from teachers’ 
interactions with their peers, often related to differences in beliefs about classroom 
management or pedagogical issues. 

� Lack of student interest/motivation: Stresses deriving from attempts to engage 
students and/or students’ resistance to engaging in classroom activities. 

� Dealing with class length or schedule: Stresses deriving from the length of class 
periods or the demands of a teacher’s particular schedule, including number of preps, 
types of classes, scheduling of classes (block/semester/trimester), etc. 

� Teaching students of varying ability levels: Stresses deriving from attempts to teach 
students with a variety of perceived ability levels within a single class. 

� Learning and teaching unfamiliar content: Stresses deriving from teachers’ attempts 
to teach content that they had never seen (e.g. graph theory), had not seen recently 
(e.g. geometry), or had had limited opportunities to learn (e.g. calculus). 

� Preparing for, administering, or evaluating standardized tests: Stresses deriving from 
preparing students for locally or federally mandated tests, including modifying 
curriculum, administering tests, evaluating tests, or utilizing feedback. 

� Relationships and communications with parents: Stresses deriving from teacher-
parent interactions, often relating to student misbehavior, assignments, or grades. 

� Responding to problematic student behaviors: Stresses deriving from student 
behaviors that teachers perceived as inappropriate for the classroom. 

� Finding resources: Stresses deriving from teachers’ attempts to find physical, 
curricular, or human resources to meet their pedagogical goals. 

� After hours work / Long hours: Stresses deriving from teachers’ attempts to manage 
extracurricular work hours so that they could complete preparations and grading for 
their classes, while also fostering a personal life outside of school. 

� Planning lessons: Stresses deriving from teachers’ attempts to prepare lessons. 
Sometimes this involved creating or adapting existing lessons to their curricular 
objectives [with a pedagogy not clearly described as NCTM Standards-based]. 

� Challenges associated with professional development: Stresses deriving from 
teachers’ feelings about their professional development experiences, including its 
adequacy to meet their needs and how efficiently it used their time. 

� Student diversity issues: Stresses deriving from teachers’ attempts to relate to and 
involve all students, including students’ whose racial and/or ethnic background was 
different from the teacher’s and/or some of their peers. 

� Controlling emotions: Stresses deriving from trying to control one’s emotions in 
difficult circumstances in order to teach effectively. 

� Teacher boredom: Stresses deriving from trying to deal with one’s own boredom 
when the content, lesson format, or students were not particularly engaging. 

Stresses contained in almost any of these 21 categories could connect in some way to SBT, 
but as I will soon explain, the connection was clear and direct for the 4 categories listed in Table 
1. I also looked for evidence in the data to link each of those 4 categories to the most relevant of 
the six NCTM (1991) Standards related to each in the subsequent discussion. 
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Category Definition Example 
Directing 
student-
led explo-
rations of 
mathe-
matics 

Stresses deriving 
from engaging 
students in activities 
where they explored, 
alone or in pairs or 
small groups, a 
problem or situation. 

[Ms. Grant felt frustrated by students’ lack of reflection 
on the results of an in-class, small-group exploration of 
how changing the coefficients in the equation alters the 
graph of y=ax2+bx+c.] 
Ms. Grant: So making that table and having the different 
a, b, and c values…, I thought that they’d start to 
recognize patterns faster, but …I didn’t anticipate that 
when they entered it into their calculators… that they 
would enter x2+x, x2+2x, x2+3x, all like Y1, Y2, Y3, Y4, 
Y5. So then when they get the picture, they’re all just 
there. So it’s hard for them to say which one’s which. 
And so they couldn’t see a progression… I thought they 
would graph one, then they’d change the coefficient and 
graph it again. Then they’d start to see, “Well every time 
I’m just moving down, or every time, I’m just moving 
up.” [Post, 2.15-3.10] 

Imple-
menting 
NCTM 
Standards-
based as-
sessments 

Stresses deriving 
from teachers’ 
attempts to 
implement 
assessment strategies 
consonant with the 
NCTM Standards. 

Mr. Jones: We have a performance assessment, which is 
where students get into groups of three or four and they 
work on a set of eight problems… Each group is going to 
have to present [a] problem for their final exam. And 
they have to teach it to the class… So this is really 
stressful for me, because I have to get all the problems 
copied. I have to make sure that I’m getting the class 
engaged enough to work on it. And when the group 
presents, I have to ask really thoughtful questions to 
make sure that I know what the students know [Pre, 7.30-
7.42]. 

Managing 
classroom 
discus-
sions 

Stresses deriving 
from facilitating 
classroom 
discussions by 
actively involving 
students in 
contributing expected 
ideas. 

Mr. Jones: Mmm, classroom discussions… would be 
probably a big one. We talked about that as far as who 
should be talking and how much work I should be doing 
as far as the classroom discussion. And I really feel like I 
should be the facilitator in a discussion, but sometimes it 
just doesn’t happen. And I need to work on some 
different ways of having discussions. And I think that’s 
probably a big challenge [Post, 21.35-21.39]. 

Respond-
ing to un-
expected 
student 
ideas 

Stresses deriving 
from teachers’ 
attempts to engage 
with unexpected 
student ideas during 
classroom 
discussions. 

Ms. Boone: When she said that, like I looked, because I 
was like, ‘Okay, I’d better figure out right now if this is 
true or not.’ So I sat there and I looked. And I was 
thinking through a couple of examples really fast in my 
head. And I was like, ‘Okay, that would be true’… 
I: Was there anything challenging about that at all? 
Ms. Boone: Well, trying to figure it out within 30 
seconds to see if it’s right or not! [Post, 5.28-5.42] 

Table 1. Stress coding categories and examples 
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Directing student-led explorations of mathematics directly relates to the NCTM (1991) 
Standards. When teachers created opportunities for students to explore problem situations, they 
encountered challenges as they worked to write questions that students could understand (see 
Standard 1: Worthwhile mathematical tasks) and trained students to actively explore problem 
situations (see Standard 2: Teacher’s role in discourse). The example in Table 1 illustrates how 
Ms. Grant struggled to get students to think during and thoughtfully reflect on the results of a 
task exploring how changing the coefficients in the equation y=ax2+bx+c affects the graph, in 
anticipation of a whole-class discussion. 

Implementing NCTM Standards-based assessments implicitly relates to the Standards. When 
teachers employed assessments that involved written or verbal communication of mathematical 
ideas (see Standard 1: Worthwhile mathematical tasks), they experienced difficulties with asking 
questions requiring mathematical justification (see Standard 5: Learning environment), dealing 
with fairness issues in group work situations, etc. The example in Table 1 illustrates how Mr. 
Jones felt stressed about needing to ask questions that would gauge the depth of his students’ 
understanding during each group’s problem presentation during their final exam, in addition to 
other concerns. 

Managing classroom discussions related primarily to attempts at SBT, because most of the 
aspects of discussion that stressed teachers dealt with active student participation. When teachers 
attempted to facilitate classroom discussions (see Standard 2: Teacher’s role in discourse) that 
involved building mathematical understanding as a learning community (see Standard 5: 
Learning environment) through active, meaningful student contributions to the discussion (see 
Standard 3: Students’ role in discourse), the teachers struggled with how to facilitate such 
participation. The example in Table 1 shows that Mr. Jones felt like he spent more time talking 
than he wanted, rather than facilitating the discussion. So Mr. Jones’ stress appeared to be as 
much about his teaching goals as it was about actual classroom events. 

Responding to unexpected student ideas relates to the NCTM (1991) Standards, because 
when teachers encountered unexpected student ideas, the flexibility of their mathematical 
knowledge was tested if they engaged with those ideas. Only teachers that wanted to use 
students’ ideas meaningfully in instruction (see Standard 2: Teacher’s role in discourse) felt 
stressed when students expressed them unexpectedly (see Standard 3: Students’ role in 
discourse), often because they did not know how to use them to continue building the 
mathematical discussion. The example in Table 1 illustrates how Ms. Boone scrambled to decide 
if a student’s conjecture was true. The topic had not arisen in any other section of the class, even 
though this was her third year teaching it.  

In the sense that all of these categories of novice teacher stress are related to the NCTM 
(1991) Standards, all are new to the literature; moreover, only Managing classroom discussions 
overlaps meaningfully with teacher stress categories existing in the literature as a specific form 
of classroom management. 
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                                     Names 
Codes 

Ms. 
Boone 

Ms. 
Grant 

Mr. 
Jones 

Ms. 
Riley 

Ms. 
Price 

Ms. 
Wells 

Total 

Directing student-led 
explorations of mathematics 

0 3 1 0 0 1 5 

Implementing NCTM 
Standards-based assessments 

0 0 2 0 0 0 2 

Managing classroom 
discussions 

1 3 4 4 5 0 17 

Responding to unexpected 
student ideas 

1 0 0 0 1 0 2 

TOTALS 2 6 7 4 6 1 26 

Table 2. Stress frequencies by category and participant 

Among the four stress categories strongly related to SBT, nearly all teachers reported the 
greatest number of stresses related to Managing classroom discussions (see Table 2). While 
some of those stresses had more to do with generic concerns like wait time and transitioning 
from extracurricular to mathematical topics, most novices’ struggles related to creating a 
classroom where students shared their own mathematical ideas and conjectures. They also 
reported several stresses coded as Directing student-led explorations of mathematics (see Table 
2), generally related to students not completely understanding or not actively exploring a given 
task. Responding to unexpected student ideas and Implementing the NCTM Standards-based 
assessments (see Table 2) also occurred, although much less frequently than the other categories. 

Conclusions 
The list of 21 stress categories shows the variety of stresses experienced by these novice 

teachers who were attempting SBT. I have also demonstrated that novices face many challenges 
while managing classroom discussions in which they expect students to participate and 
contribute meaningfully, when they encounter unexpected student ideas or conjectures during 
those discussions, while directing student-led explorations of mathematics, and while attempting 
to implement Standards-based assessments. These categories are all new to the teacher stress 
literature. These categories also relate to much of the terrain that at least four of the six NCTM 
(1991) Standards encompass, namely Standard 1: Worthwhile mathematical tasks, Standard 2: 
Teachers’ role in discourse, Standard 3: Students’ role in discourse, and Standard 5: Learning 
environment. 

As teacher educators grow to understand the challenges that developing teachers face and 
how those challenges relate to their attempts to engage in a powerful pedagogy like the one 
outlined by the NCTM (1991; 2000) Standards, we can to prepare them for such challenges and 
help schools to support novices in those challenges. Arguably, Ms. Grant could have benefited 
from support in dealing with her frustration when students were supposed to find patterns in the 
graphs as they changed the coefficients in the equation y=ax2+bx+c, but they either did not 
understand the task or failed to reflect deeply on the results of their explorations. While many 
challenges novices face are not related to their attempts at SBT, many clearly are, as in Ms. 
Grant’s case. An understanding of the challenges novices face as they attempt to enact SBT can 
help teacher educators, school administrators, and their teaching colleagues offer effective 
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support to maximize the learning accompanying stresses that novices’ teaching challenges and 
goals related to the NCTM Standards impose. 

References 
Borko, H., & Putnam, R. (1996). Learning to teach. In R. Calfee & D. Berliner (Eds.), Handbook 

of educational psychology (pp. 673-708). New York: Simon and Schuster Macmillan. 
Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative 

research. New York: Aldine de Gruyter. 
Kyriacou, C., & Sutcliffe, J. (1978). A model of teacher stress. Educational Studies, 4, 1-6. 
Kyriacou, C. (1989). The nature and prevalence of teacher stress. In M. Keynes (Ed.), Teaching 

and stress (pp.27-34). Philadelphia, PA: Open University Press. 
Lewis, G. (2004). Interns' and novice teachers' stresses while attempting NCTM Standards-

based teaching. Short oral report presented at the annual meeting of the Psychology of 
Mathematics Education—North American chapter, Toronto, Canada. 

Manthei, R., Gilmore, A., Tuck, B., & Adair, V. (1996). Teacher stress in intermediate schools. 
Educational Research, 38(1), 3-19. 

National Council of Teachers of Mathematics (2000). Principles and standards for school 
mathematics. Reston, VA: NCTM. 

National Council of Teachers of Mathematics (1991). Professional standards for school 
mathematics. Reston, VA: NCTM. 

Smith, J.P. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. 
Journal for Research in Mathematics Education, 27(4), 387-402. 

Travers, C., & Cooper, C. (1996). Teachers under pressure. New York: Routledge. 
VanZoest, L., & Bohl, J. (2000). The role of a reform curriculum in an internship: The case of 

Alice and Gregory. Paper presented at the annual conference of the American Educational 
Research Association, New Orleans, LA. 

Wilcox, S., Schram, P., Lappan, G., & Lanier, P. (1991). The role of a learning community in 
changing preservice teachers’ knowledge and beliefs about mathematics education. For the 
Learning of Mathematics, 11(3), 31-39. 



Vol.2-548  PME-NA 2006 Proceedings 

 

ELEMENTARY PRESERVICE TEACHERS’ CHANGING PEDAGOGICA L AND 
EFFICACY BELIEFS DURING A DEVELOPMENTAL TEACHER PRE PARATION 

PROGRAM 

Susan L. Swars 
Georgia State Univ. 

sswars@gsu.edu 

Stephanie Z. Smith 
Georgia State Univ. 
szsmith@gsu.edu 

Marvin E. Smith 
Kennesaw State Univ. 

mes45@byu.net 

Lynn C. Hart 
Georgia State Univ. 

lhart@gsu.edu 

This study examined changes in the mathematics pedagogical and teaching efficacy beliefs of 
elementary preservice teachers during a developmental teacher preparation program that 
included a two course mathematics methods sequence. Preservice teachers’ beliefs became more 
cognitively-aligned during the first methods course but had mean decreases during the second 
methods course and student teaching. Preservice teachers also had significant shifts in their 
personal efficacy for teaching mathematics, with these changes largely occurring in the second 
methods course. The results of this study suggest that as the preservice teachers continued to 
study, experiment with, and reflect on ways to implement standards-based pedagogy, they 
became more confident in their abilities to teach mathematics effectively. 

Theoretical Perspectives 
The relationship between beliefs and teaching is well-established. Beliefs influence teacher 

behavior and decision-making (Thompson, 1992; Wilson & Cooney, 2002). It is also known that 
beliefs develop over time (Richardson, 1996), that they are well-established by the time a student 
enters college (Pajares, 1992), and that they develop during what Lortie (1975) terms the 
apprenticeship of observation which occurs over years as a student. Teacher preparation 
programs have a limited amount of time to impact change in preservice teacher beliefs—usually 
two years or less. It is imperative that preservice teacher development and program effectiveness 
be assessed, at least in part, by development of beliefs that are consistent with a program’s 
philosophy of learning and teaching. 

The National Council of Teachers of Mathematics (NCTM) has proposed a vision of 
teaching mathematics based on a constructivist theory of learning which provides the basis for 
many teacher education programs in mathematics (NCTM, 2000). Introducing preservice 
teachers to the research-based professional development materials from the Cognitively Guided 
Instruction (CGI) Project (Carpenter, Fennema, Franke, Levi, & Empson, 1999) is one way for 
teacher preparation programs to develop mathematics pedagogical beliefs that are consistent with 
NCTM reforms. CGI is an approach to teaching and learning mathematics which focuses on 
teachers using knowledge of children’s mathematical thinking to make instructional decisions 
(Carpenter & Fennema, 1991). CGI includes four tenets: (a) children can construct their own 
mathematics knowledge, (b) mathematics instruction should be organized to facilitate children’s 
construction of knowledge, (c) children’s development of mathematical ideas should provide the 
basis for sequencing topics for instruction, and (d) mathematical skills should be taught in 
relation to understanding and problem solving (Peterson, Fennema, Carpenter, & Loef, 1989). In 
CGI, the essence of teaching mathematics becomes posing word problems, facilitating students’ 
problem solving, and orchestrating discussions of students’ thinking and solution strategies. 

Documentation of CGI’s effectiveness in changing inservice teachers’ beliefs about the 
teaching and learning of mathematics is abundant (Fennema, et al., 1996; Fennema, Franke, 
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Carpenters, & Carey, 1993; Peterson, Fennema, Carpenter, & Loef, 1989). Although fewer 
studies have been conducted with preservice teachers, these have also indicated significant 
changes in preservice teachers’ beliefs about mathematics instruction (Vacc & Bright, 1999). A 
challenge for reform in mathematics pedagogy is the tension between teachers’ development of 
constructivist-based beliefs and their efficaciousness toward such (Smith, 1996). Most teachers’ 
past experiences with mathematics are based upon traditional, behaviorist methods of 
mathematics instruction that rely on transmission by the teacher and absorption by the student 
(Battista, 1994). Such experiences contribute to the tension between teachers’ sense of 
efficaciousness toward teaching mathematics and embracing constructivist pedagogical beliefs 
(Smith, 1996). Teachers’ possessing a strong sense of efficaciousness is of critical importance as 
teacher efficacy has been linked with classroom instructional strategies, willingness to embrace 
educational reform, commitment to teaching, and student achievement. 

Using Bandura’s theoretical framework of self-efficacy, teacher efficacy is considered by 
many researchers to be a two-dimensional construct (Enochs, Smith, & Huinker, 2000). The first 
factor, personal teaching efficacy, represents a teacher’s belief in his or her skills and abilities to 
be an effective teacher. The second factor, teaching outcome expectancy, is a teacher’s belief that 
effective teaching can bring about student learning regardless of external factors such as home 
environment, family background, and parental influences. 

Bandura’s theory suggests that efficacy beliefs may be most malleable early in learning, thus 
the first few years of teacher development could be critical to the long-term development of 
teaching efficacy (Hoy, 2004). Once teaching efficacy beliefs are established, they are highly 
resistant to change. Studies suggest that coursework and the student teaching experience have 
differential impacts upon the personal teaching efficacy beliefs and teaching outcome expectancy 
beliefs of preservice teachers. Personal teaching efficacy increases during coursework and 
continues to increase during the student teaching experience (Hoy & Woolfolk, 1990; Plourde, 
2002). However, teaching outcome expectancy beliefs increase during college coursework but 
decline during student teaching. This decline has been attributed to the unrealistic optimism 
preservice teachers have prior to student teaching about teachers’ abilities to overcome negative 
influences (Hoy & Woolfolk, 1990). Although there have been numerous studies on generalized 
teaching efficacy, there has been less research specifically into the mathematics teaching efficacy 
of elementary preservice teachers. Most of the previous studies that have examined the effects of 
mathematics methods courses have indicated significant increases in mathematics teaching 
efficacy upon completion of the course (Huinker & Madison, 1997; Utley, Moseley, & Bryant, 
2005).  

Research Objectives 
1. To examine changes in the mathematics pedagogical and teaching efficacy beliefs of 

elementary preservice teachers during a developmental teacher preparation program 
2. To investigate the relationship between the mathematics pedagogical and teaching efficacy 

beliefs of elementary preservice teachers during a developmental teacher preparation program 

Methodology 
This study involved 24 elementary preservice teachers (23 females and 1 male) at a large 

urban university in the southeastern United States. The participants were enrolled in a two-year 
undergraduate teacher education program during their junior and senior year. The group was 
admitted as a cohort and completed all education courses together. The program consists of four 
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semesters of coursework with three semesters of two-day-a-week field placements followed by a 
semester of student teaching. The field placements are considered a developmental model since 
preservice teachers start their placements in prekindergarten and finish in fifth grade prior to 
student teaching. The development model is outlined in Figure 1, which shows the sequence and 
length of placements as well as when the two mathematics methods courses were completed. 
Other mathematics requirements in the program included three mathematics content courses for 
teachers taught through the mathematics department (number and operations, geometry, and 
statistics). 
 

 Semester 1 Semester 2* Semester 3* Semester 4* 
Mathematics 
methods courses 

None 
Focus on PreK-2 

mathematics 
Focus on 3-5 
mathematics 

None 

Field 
Placement 

PreK – 5 weeks 
K – 9 weeks 

lst – 7 weeks 
2nd or 3rd – 7 weeks 

4th – 7 weeks 
5th – 7 weeks 

Student 
teaching 

Administration 
of MTEBI & 
MBI (Four times) 

None 
Week one – Initial 
Week fourteen – 

Post one  

Week fourteen 
– Post two 

Week fourteen 
– Final 

Interviews None None Week fourteen None 
*Asterisks denote semesters included in this study. 

Figure 1. Sequence of teacher preparation program and data collection.  

During this study, the second author served as instructor of the mathematics methods courses 
throughout the two-semester sequence. Thus, the philosophical focus and the emphasis on 
teaching for understanding were consistent across the sequence. Important goals of the courses 
included (a) understanding children’s thinking about important mathematical concepts, (b) 
creating interest in changing curriculum and pedagogy, (c) understanding available alternatives 
to traditional instructional practices, (d) and inviting experimentation and reflection on the 
benefits to children of standards-based practices (see Smith, Smith, & Williams, 2005). 

During the first methods course, the students were assigned to read most of the general and 
P-2 sections of the NCTM Principles and Standards and Children’s Mathematics: Cognitively 
Guided Instruction (Carpenter et al., 1999). Classroom discussions and learning activities 
focused on social-constructivist pedagogy, supported by viewing videotapes of classrooms and 
clinical interviews with children. Students were also introduced to Standards-based curriculum 
materials, such as Investigations in Number, Data, and Space (TERC, 1998). Course 
assignments included three clinical-style interviews of children’s understandings of number and 
operations and two reports of students’ field experiences using this type of pedagogy in teaching 
mathematical concepts, including analysis of these lessons for coherence with the NCTM 
Principles and Standards.  

During the second methods course, the students were assigned to read Thinking 
Mathematically: Integrating Arithmetic & Algebra in Elementary School (Carpenter, Franke, & 
Levi, 2003) and selections of cases from two units of the Developing Mathematical Ideas 
materials (Schifter, Bastable, & Russell, 1999a, 1999b). Classroom discussions and learning 
activities continued to focus on social-constructivist pedagogy, supported by viewing videotapes 
of classrooms and clinical interviews with children. Course assignments included two clinical 
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interviews of children’s early algebraic thinking and two more analyses of the field experience 
lessons for coherence with the NCTM Principles and Standards.  

Data Collection  
Two instruments, the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI) and the 

Mathematics Beliefs Instrument (MBI), were administered to the participants four times during 
the teacher preparation program (see Figure 1). The MTEBI consists of 21 items, 13 on the 
Personal Mathematics Teaching Efficacy (PMTE) subscale and 8 on the Mathematics Teaching 
Outcome Expectancy (MTOE) subscale (Enochs, Smith, & Huinker, 2000). The two subscales 
are consistent with the two-dimensional aspect of teacher efficacy. The PMTE subscale 
addresses the preservice teachers’ beliefs in their individual capabilities to be effective 
mathematics teachers. The MTOE subscale addresses the preservice teachers’ beliefs that 
effective teaching of mathematics can bring about student learning regardless of external factors. 
The instrument uses a Likert scale with five response categories (strongly agree, agree, uncertain, 
disagree, and strongly disagree). Thus, possible scores on the PMTE subscale range from 13 to 
65; MTOE subscale scores range from 8 to 40. Reliability analysis produced an alpha coefficient 
of .88 for the PMTE subscale and an alpha coefficient of .75 for the MTOE subscale. 
Confirmatory factor analysis indicated that the two subscales are independent, adding to the 
construct validity of the MTEBI (Alkhateeb & Abed, 2003; Enochs, Smith, & Huinker, 2000).  

The MBI is a 48-item Likert scale instrument designed to assess preservice teachers’ beliefs 
about the teaching and learning of mathematics (Peterson, Fennema, Carpenter, & Loef, 1989). 
The four subscales include (a) role of the learner, (b) relationship between skills and 
understanding, (c) sequencing of topics, and (d) role of the teacher. Possible total scores range 
from 48 to 240. Peterson, et al. (1989) reported that internal consistency estimates for the total 
scores were .93 and for the subscales ranges from .57 to .86.  

After the two methods courses (see Figure 1), six participants were selected and interviewed 
as representatives of the following two groups of participants: Those with the greatest positive 
change in personal teaching efficacy scores and those with no change or a decrease in personal 
teaching efficacy scores. The interview questions were developed to elicit beliefs of the teachers 
around the same domains as the survey instrument (efficacy for teaching mathematics and beliefs 
consistent with the reform pedagogy) and to illuminate the survey responses for the two groups 
of participants these interviewees represented. 

Members of the research team initially analyzed the interview data individually looking for 
statements of beliefs about teaching and learning mathematics, beliefs about skills and abilities to 
teach mathematics effectively, and beliefs about the usefulness and appropriateness of the reform 
pedagogy that was introduced to them. After individual analyses were complete, the team 
engaged in recursive dialogue to verify their findings against each other and the data. 

Results 
Mean scores and standard deviations across the administrations are provided in Table 1. 

Table 2 indicates the statistical significance of the differences between these means using Wilks’ 
Lambda and its associated F-statistic. As indicated in Table 2, the preservice teachers had 
significant increases in overall MBI scores. The preservice teachers’ beliefs became more 
cognitively-aligned throughout the teacher preparation program with these changes largely 
occurring in the first methods course. The scores had mean decreases during the second methods 
course and significant decreases during student teaching. Data from the PMTE revealed the 
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preservice teachers had significant increases in their beliefs in their skills and abilities to teach 
mathematics effectively throughout the teacher preparation program. These changes largely 
occurred during the second methods course with the mean scores remaining constant during 
student teaching.  

Table 1. Means and Standard Deviations for Mathematics Teaching Efficacy and 
Pedagogical Beliefs Scores 

 Means Standard deviations 
Scale Initial Post one Post two Final Initial Post one Post two Final 
PMTE 48.46 49.96 54.38 54.38 7.30 7.30 5.58 8.26 
MTOE 26.75 28.33 29.75 29.46 4.33 3.70 3.25 4.42 
MBI 154.22 185.09 183.50 175.05 17.82 21.52 19.37 22.70 
 

Table 2. F-Values (p-values) for Mathematics Teaching Efficacy and Pedagogical 
Beliefs Scores* 

Scale Overall Initial to post one Post one to post two  Post two to final 
PMTE 6.09 (.004) .93 (.346)  12.58 (.002) .00 (1.00) 
MTOE 5.18 (.008) 4.10 (.055)  2.89 (.103) .140 (.712) 
MBI 25.40 (.000) 79.53 (.000)  .22 (.646) 7.85 (.01) 
 *For the overall comparisons, df = 3, 21; for all other comparisons, df = 1, 23 
 

The results of a Pearson product moment correlation analysis across the administrations are 
provided in Table 3. At the beginning and end of the first course, there are no significant 
relationships between personal mathematics teaching efficacy, mathematics teaching outcome 
expectancy, and pedagogical beliefs. However, at the end of both courses and student teaching 
the PMTE and MBI data reveals that the preservice teachers who had stronger beliefs in their 
skills and abilities to teach mathematics effectively generally had more cognitively-oriented 
beliefs toward the teaching and learning of mathematics. In addition, the preservice teachers with 
more cognitively-oriented beliefs had stronger beliefs that effective mathematics instruction can 
bring about student learning regardless of external influences at the end of the second course but 
this relationship is not evident at end of student teaching.  

 

Table 3. Pearson Product Moment Correlations Comparing Mathematics Teaching 
Efficacy and Pedagogical Beliefs Scores* 

MTEBI MBI (initial) MBI (post one) MBI (post two) MBI (final) 
PMTE subscale  .289 .377 .629** .685** 
MTOE subscale  -.032 .033 .473** .389 

*n = 24  **Correlation is significant at the 0.05 level (2-tailed). 
 

The interview data revealed that all six students had a solid understanding of the alternative, 
standards-based pedagogy emphasized in the courses. Five out of six interviewees maintained or 
increased their overall personal teaching efficacy scores. The one whose efficacy decreased by 
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13 points began with an initial personal teaching efficacy score of 62 (out of a maximum of 65) 
and declined to a more typical level of efficacy. 

All six students interviewed indicated an initially skeptical attitude toward the standards-
based instructional model, largely because they had not personally experienced this model and 
had not seen it used in schools during their field experiences. By the end of the two methods 
courses, those interviewed expressed some variations in personal preference for and beliefs about 
the usefulness of constructivist pedagogy, reflecting a need for continued experimentation with 
and reflection on the results of teaching for conceptual understanding. Many of the interviewees’ 
responses connected their confidence in teaching mathematics with their confidence in 
understanding mathematics. 

Three profiles of change emerged among the interviewees. Profile 1 (Participants #33, #2, 
and #1): Weak to uncertain confidence in understanding of mathematics for teaching and 
uncertain overall personal teaching efficacy beliefs; substantial improvement to solid confidence 
in understanding of mathematics for teaching and large increase to solid overall personal 
teaching efficacy beliefs. 

Profile 2 (Participants #17 and #6): Solid initial confidence in understanding of mathematics 
for teaching and solid overall initial personal teaching efficacy beliefs; maintained solid 
confidence in understanding and solid overall personal teaching efficacy beliefs. 

Profile 3 (Participant #15): Unrealistically strong initial confidence in understanding of 
mathematics for teaching and overall personal teaching efficacy beliefs; confidence in 
understanding and overall personal teaching efficacy beliefs moderated significantly toward a 
more realistic and slightly below average level, indicating a better understanding of the 
challenges of teaching mathematics for understanding. 

Conclusions 
The 24 preservice teachers in this study demonstrated significant increases in their personal 

efficacy for teaching mathematics and significant shifts in their pedagogical beliefs. The 
experiences in the courses emphasized views of mathematics learning and teaching that were 
unfamiliar and challenging. The shift in preservice teachers’ pedagogical beliefs toward 
constructivist methods largely occurred in the first course with small decreases in these scores 
during the second methods course and student teaching. For most of the preservice teachers, the 
first of the two semesters presented a paradigm shift in what it means to know and do 
mathematics and seems to have resulted in some “unfreezing” of beliefs. The second of the two 
semesters produced significant shifts in personal efficacy beliefs about teaching mathematics. 
The student teaching experience had no effect on the beliefs measured in this study. These results 
suggest that as preservice teachers continued to study, experiment with, and reflect on ways to 
implement standards-based pedagogy during the second mathematics methods course, they 
became more confident in their abilities to teach mathematics effectively using constructivist 
methods they had learned during the first methods course. 

References 
Alkhateeb, H. M., & Abed, A. S. (2003). A mathematics content course and teaching efficacy 

beliefs of undergraduate majors in education. Psychological Reports, 93(2), 475-478. 
Battista, M. T. (1994). Teacher beliefs and the reform movement in mathematics education. Phi 

Delta Kappan, 75, 462-470.  



Vol.2-554  PME-NA 2006 Proceedings 

 

Carpenter, T. P., & Fennema, E. (1991). Integrating research on teaching and learning 
mathematics. Albany: State University of New York Press. 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). Children’s 
mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann. 

Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating 
arithmetic & algebra in elementary school. Portsmouth, NH: Heinemann. 

Enochs, L. G., Smith, P. L., & Huinker, D. (2000). Establishing factorial validity of the 
mathematics teaching efficacy beliefs instrument. School Science and Mathematics, 100, 
194-203. 

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A 
longitudinal study of learning to use children’s thinking in mathematics instruction. Journal 
for Research in Mathematics Education, 27, 404-434. 

Hiebert, J. (2003). What research says about the NCTM standards. In J. Kilpatrick, W. G. 
Martin, & D. Schifter (Eds.), A research companion to principles and standards for school 
mathematics (pp. 5-23). Reston, VA: National Council of Teachers of Mathematics. 

Hoy, A. W. (2004). The educational psychology of teacher efficacy. Educational Psychology 
Review, 16, 153-176. 

Hoy, W. K., & Woolfolk, A. E. (1990). Socialization of student teachers. American Educational 
Research Journal, 27, 279-300. 

Huinker, D., & Madison, S. K. (1997). Preparing efficacious elementary teachers in science and 
mathematics: The influence of methods courses. Journal of Science Teacher Education, 8(2), 
107-126. 

Kilpatrick, J., Martin, W. G., & Schifter, D. (Eds.). (2003). A research companion to principles 
and standards for school mathematics. Reston, VA: National Council of Teachers of 
Mathematics. 

Lortie, D. (1975). Schoolteacher: A sociological study. Chicago: University of Chicago Press. 
National Council of Teachers of Mathematics. (2000). Principles and standards for school 

mathematics. Reston, VA: Author. 
Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. 

Review of Educational Research, 62(1), 307-322. 
Peterson, P. L., Fennema, E., Carpenter, T. P., and Loef, M. (1989). Teachers’pedagogical 

content beliefs in mathematics. Cognition and Instruction, 6, 1-40. 
Plourde, L. A. (2002). The influence of student teaching on preservice elementary teacher’s 

science self-efficacy and outcome expectancy beliefs. Journal of Instructional Psychology, 
29, 245-253. 

Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), 
Handbook of research on teacher education (pp. 102-119). New York: Simon & Shuster. 

Schifter, D., Bastable, V., & Russell, S. J. (with Cohen, S, Lester, J. B., & Yaffee, L.). (1999a). 
Building a system of tens: Casebook (Developing mathematical ideas: Number and 
operations, part 1). Parsippany, NJ: Dale Seymour. 

Schifter, D., Bastable, V., & Russell, S. J. (with Yaffee, L., Lester, J. B., & Cohen, S). (1999b). 
Making meaning for operations: Casebook (Developing mathematical ideas: Number and 
operations, part 2). Parsippany, NJ: Dale Seymour. 

Smith, J. P. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. 
Journal for Research in Mathematics Education, 27, 387-402.  



Teacher Beliefs  Vol.2-555 

 

Smith, S. Z., Smith, M. E., & Williams, S. R. (2005). Elaborating a change process model for 
elementary mathematics teachers’ beliefs and practices. Current Issues in Education, 8(19). 
(Online at http://cie.asu.edu/volume8/number19/index.html) 

TERC. (1998). Investigations in number, data, and space. White Plains, NY: Dale Seymour 
Publications. 

Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A review of the research. In D. 
Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127-146). 
New York: Macmillan Publishing.  

Utley, J., Moseley, C., & Bryant, R. (2005). The relationship between science and mathematics 
teaching efficacy of preservice elementary teachers. School Science and Mathematics, 
105(2), 82-88. 

Vacc, N., Bright, G. (1999). Elementary preservice teachers changing beliefs and instructional 
use of children’s mathematical thinking. Journal for Research in Mathematics Education, 30, 
89-211. 

Wilson, M., & Cooney, T. (2002). Mathematics teacher change and development: The role of 
beliefs. In G. Leder, E. Pehkonen, & G. Toerner (Eds.), Beliefs: A hidden variable in 
mathematics education? (pp. 127-148). Dordrecht, Netherlands: Kluwer Academic Press. 



Vol.2-556  PME-NA 2006 Proceedings 

 

DEVELOPING PRESERVICE TEACHERS’ BELIEFS ABOUT MATHE MATICS 
USING A CHILDREN’S THINKING APPROACH IN CONTENT ARE A COURSES 

Sarah Hough 
Purdue University  

North Central 

David Michael Pratt 
Purdue University North Central 

dpratt@pnc.edu 

David Joseph Feikes 
Purdue University  

North Central 

This paper measures changes in preservice elementary teachers' beliefs in math content courses 
when utilizing a supplement designed to help them understand how children learn mathematics.  
Results show that prospective elementary teachers can change their beliefs about mathematics 
and its teaching by focusing on how children learn and think about mathematics. 

Recent research in teacher education has focused on the importance of understanding and 
changing preservice teachers’ beliefs about mathematics (Stuart & Thurlow, 2000). It has long 
been known that those entering a teacher education program come with a variety of beliefs and 
conceptions about content knowledge and teaching based on their past experiences (Lortie, 
1975).  Recent studies have demonstrated that these beliefs about mathematics may be more 
resistant to change than beliefs about teaching in general (Raymond, 1997).  Therefore, it is 
essential that beliefs about mathematics be addressed as soon as possible in teacher education.  
Since most methods courses focus primarily on teaching, it may be important to address these 
issues in content courses (Thompson, 1992).  

This paper will focus on changes in preservice elementary teachers’ beliefs in math content 
courses.  These prospective teachers were enrolled in mathematics content courses using the 
Connecting Mathematics for Elementary Teachers (CMET) supplement designed to help them 
understand how children learn mathematics.  Helping preservice teachers understand how 
children learn and think about mathematics may be one means of influencing their beliefs about 
mathematics, teaching mathematics, and how children learn mathematics (Vacc & Bright, 1999).    

The CMET curriculum development project attempts to help preservice elementary teachers 
connect the mathematics they are learning in content courses with how children learn and think 
about  mathematics and in so doing ties research on children’s learning of mathematics to 
practice. For this reason, a supplement was developed that parallels the typical mathematics 
content course topics.  The CMET materials primarily consist of descriptions, written for 
prospective elementary teachers, about how children think, misunderstand, and come to 
understand mathematics.     

Methods 
Evaluation studies are underway to test the effects of the use of the CMET supplement on 

prospective teacher preparation.  In particular, we are examining changes in prospective 
teachers’ beliefs about mathematics and its teaching, their efficacy for mathematics subject 
matter and its teaching, and their knowledge of the mathematics necessary for teaching. This 
paper reports results pertaining to changes in prospective teachers’ beliefs about mathematics 
and its teaching.   

During the fall 2005 semester, the CMET supplement was used by two of its authors in 
typical Mathematics for Elementary Teachers courses at a small Midwestern university. Students 
enrolled in the two sections of course one and one section of course two agreed to participate in 
this study. The students enrolled in course two had been recipients of course one at the same university. 
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To examine effects of the courses on participant beliefs, a fifteen item Likert-style 
questionnaire that asked participants the extent to which they agreed or disagreed with belief 
statements was administered. This questionnaire was administered pre-course one, post-course 
one and post-course two, the purpose of which was to test the effects of the courses on 
participants’ beliefs as well as to see if the effects of the change (should any occur) were 
cumulative, i.e., did beliefs continue to change after participating in course? Some items were 
positively worded, such as: Children’s own methods of solving mathematical problems are useful 
in their learning; some were negatively worded, such as: Children should master the basic facts 
in mathematics before doing problem solving. Negatively worded questions were reverse scored. 

Principal component factor analyses were run before and after the courses to examine the 
structure of participants’ beliefs. Cronbach’s alpha were calculated on scales and resulting 
subscales to test for reliability. Two variables corresponding to the emergent factors math as 
procedures and math as creative activity were created and used to test for pre- and post-course 
differences. A Multiple Analysis of Variance (MANOVA), using SPSS was used to obtain these 
results. 

Results 
A two factor solution to the principal component analysis indicated that before taking the 

Math for Elementary Teachers course, participants had somewhat conflicting beliefs about 
mathematics and its teaching. Participants on average tended to agree or strongly agree with 
statements such as: Children learn mathematics best through extensive drill and practice 
(procedures); while agreeing with statements such as: Problem solving is an important aspect of 
mathematics (creative activity).  Table 1 summarizes these results.  

 Factor Loadings 

 Item 
proce-
dures 

creative 
activity 

Mathematics is primarily a step-by-step mechanical process. .772   
Mathematical skills should be taught before concepts. .718   
Children best learn mathematics through extensive drill and practice. .620   
Mathematics is mainly about learning rules and formulas. .535   
An elementary teacher should immediately explain the correct procedure when a child 
makes a mistake. 

.522   

A good textbook is more important for helping students learn mathematics than using 
manipulatives. 

.377   

Children should be able to figure out for themselves whether an answer is mathematically 
reasonable. 

.388 .353 

Children should master the basic facts before doing problem solving. .326 .410 
Frequently when doing mathematics one is discovering patterns and making 
generalizations. 

.306 .303 

Children's own methods of solving mathematical problems are useful in their learning 
mathematics. 

  .764 

Problem solving is an important aspect of mathematics   .721 
In mathematics there is one correct answer.   .507 
In mathematics there is always one best way to solve a problem.   .464 
For elementary school children it is not important to understand why a mathematical 
procedure works. 

  .452 

Children are often creative when solving problems.   .339 

Table 1.  Factor Loadings for beliefs about math survey items. 
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Post-course, all items loaded on a single factor indicating that this conflict had been 
somewhat resolved as a result of taking the course. Table 2 displays the results the mean scores 
for procedures and creative activities from pre to post courses.   

Time 
Pre 

course 1 
Post course 

1 
Post 

course 2 
Dependent Variable    
Math as procedures 2.8 3.3 3.6 
Math as creative activity 3.9 4.1 4.2 

Table 2.  Means for procedures and creative activity. 

Results of the MANOVA that tested for differences in variables between response time 
indicated an overall significant result (F(4,292) = 10.3, p<.001). Subsequent univariate tests 
indicated that both procedures and creative activity were contributing to this difference (F (2, 
146)=23.8, p<.001; F(2, 146)=7.9, p<.001, respectively). Significant differences in these beliefs 
were found between pre course 1 and post course one (p =.01) and between post course one and 
post course two (p=.03 ) indicating that not only did participants beliefs change (making them 
more consistent with the PSSM) but they also become stronger as a result of a second course 
using the same pedagogy. 

Discussion and Conclusion 
Prospective elementary teachers can change their beliefs about mathematics and its teaching 

by focusing on how children learn and think about mathematics in content courses for 
elementary teachers.  Furthermore, these beliefs tend to get stronger as a result of participation in 
a second such course. These results are important to consider based on the recent research 
regarding the difficulty in changing mathematics beliefs.  Perhaps if more focus was placed on a 
children’s thinking approach earlier in a preservice program (i.e., content courses), it would 
provide a better opportunity to affect these beliefs.  More research needs to be done, but perhaps 
more significantly, this approach may also improve students’ future teaching of mathematics to 
children. 
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DEVELOPING FUTURE MATHEMATICS TEACHERS: CREATING "S PACES OF 
DIFFERENCE" 

Stacy L. Reeder 
University of Oklahoma 

reeder@ou.edu 

The results of case study research, focused on one pre-serve teacher, suggests the importance of 
pre-service teachers working in classrooms wherein the mentor teacher and his/her students 
participate in ongoing and evolving mathematical conversations within an emergent curriculum. 
This experience had a profound impact on her beliefs about mathematics teaching and learning 
and on her emerging teaching practices 

Creating spaces for teacher candidates to be challenged and to grow, to be transformed, is an 
important goal for most teacher preparation programs.  Often these experiences occur in methods 
classes, field experiences, and during the student teaching experience.  However, despite good 
planning and thoughtful placements for student teaching experiences, teacher candidates often 
find themselves with mentor teachers who teach using pedantic, traditional “stand and deliver” 
methods.  In such cases, teacher candidates are inducted into teaching only having experienced 
limited pedagogical practices, thus growth and transformation are not likely to take place. 
Deleuze discusses the notion of one being “place[ed]… in a transformational matrix, a space of 
potential difference through which passes, from time to time, a spike of lightning that is the 
active realization of the transformative power of life” (Roy, 2003).  How can we create “spaces 
of difference” for teacher candidates – ones that have transformative potential?  What 
opportunities and experiences can challenge the beliefs and perhaps transform pedagogical 
practices of beginning teachers? 

Research on teacher beliefs indicates that teachers’ specific content and pedagogical 
knowledge is filtered through their beliefs about the nature of learning and about the nature of 
the specific content area (Swafford, 1995).  It is widely understood that teacher held beliefs have 
a strong impact on the choice of actions and behaviors related to instructional approaches in 
mathematics (Enochs, Smith & Huinker, 2000; Foss & Leinasser, 1997; Raymond, 1997).  
Thompson (1984) purports that there exists a consistent relationship between teachers’ 
instructional practices and their beliefs about the nature of mathematics while Cobb, Wood and 
Yackel (1990) contend that there exists a relationship between teachers’ beliefs about teaching 
and their beliefs about learning.  

The study sought to undertake the complex task of examining the beliefs of one teacher 
candidate during her student teaching experience and to better understand the impact on her 
beliefs about teaching and learning as she worked in constructivist mathematics classroom 
wherein the curriculum emerged and evolved as a part of an ongoing conversation between and 
among the students and the teacher. 

Methodology 
Using case study methodologies, narrative inquiry was employed in a  desire to capture the 

wholeness of the teacher candidate’s experiences in her own telling “filled with narrative 
fragments, enacted storied moments of time and space, and reflected upon” (Clandinin & 
Connelly, 1999, p. 17).  Additionally, an interpretational approach combined with a method of 
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constant comparison of data was used to both guide data collection and analysis of data 
throughout the study (Gall, Borg & Gall, 1996). 

Data Sources 
Data for this study were collected from a variety of sources.  Observations were made on a 

weekly to bi-weekly basis over a four month period.  Extensive interviews were conducted 
following each observation with both the teacher candidate and the mentor teacher following 
each classroom observation.  Both interviews and observations were audio taped and later 
transcribed.  Additionally, a daily journal was kept by the teacher candidate participant and was 
submitted weekly via e-mail. 

The Classroom and Mentor Teacher 
The school where Julie (participant pseudonym) student taught was a middle to upper 

suburban public school adjacent to one of the state’s larger cities.  The classes were 7th grade 
mathematics, pre-algebra and Algebra I.  Her mentor teacher, Wesley, is a veteran teacher of 28 
year.  Wesley’s pedagogic practices began to transform after his attending a workshop on 
Problem Centered Learning about 14 years ago.  His classroom today is a problem centered 
learning environment wherein he describes himself as participating in an ongoing, evolving and 
emerging conversation in which mathematical meaning is made. 

The Case of Julie 
Julie was an elementary education major at a state land grant university in the Mid-western 

United States.  In addition to her elementary education certification, she had passed the state 
certification exam to teach middle school mathematics through geometry.  Her background in 
mathematics was typical of most students graduating from public schools.  She believed she was 
“strong” in mathematics, stating that she “made good grades in high school and college math 
courses.” 

Perturbation and Change in Beliefs for Julie 
Perturbation in this experience occurred for Julie on many occasions.  She expressed 

concerns about what the student’s understand (or do not understand), issues related to middle 
school students, working with 140+ students during one day, the tasks (mathematics content 
embedded), asking questions (most frequently mentioned in journal and interviews – “How do I 
ask better questions?”) and finally listening to students – trying to understand what they are 
learning and what they are struggling with. 

The impact of this experience and its transformative power, however, can best be understood 
in Julie’s words: 
� I really used to think mathematics was just about numbers and learning all the relationships 

and how they fit together which means there are a lot of rules to learn.  After this experience 
I am thinking differently about mathematics more as patterns and relationships and not so 
much about the rules. 
� I am not sure that I can go out at first and teach the way I have had the opportunity to this 

semester but I know that I cannot teach the way I was taught (traditionally) because I 
know I would be doing an injustice to my students! 

� I have had the most amazing conversations this semester with 7th graders and with Wesley.  
Conversations about enlarging area, common sense ways for determining discounts and sales 
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tax, and conversations about fractions, decimals, and percents.  Absolutely amazing 
conversations – I never would have guessed something like this would have happened! 
For Julie, as with most transformative experiences, a variety of issues and opportunities gave 

rise to her questions and quest for understanding.  This student teaching placement created a 
“space of difference” wherein multiple “spikes of lightning” occurred for Julie such that she 
began to question her ideas about teaching and learning and what it means to understand 
mathematics. 
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This study investigated the effect of curriculum materials used in beginning teachers’ classrooms 
on their ability to meet their stated goals of implementing the Standards based teaching practices 
utilized in their university coursework and internship experiences. Seven teachers were 
observed, interviewed, and videotaped during their second year of teaching. We conclude that 
Standards-based curriculum materials are necessary, but not sufficient, to support beginning 
teachers. 

The design and dissemination of curriculum materials has been a major means of attempting 
to change classroom instruction, both historically and in recent years (e.g., Ball & Cohen, 1996). 
In the United States, the National Council of Teachers of Mathematics’ Standards documents 
(e.g., 2000) provide a focus for current change efforts. For preservice teachers, using Standards-
based curriculum materials in a teacher preparation program may provide a vision of what it 
looks like to teach in a reform manner. Manouchehri & Goodman (1998) found that beginning 
teachers whose teacher preparation programs had emphasized reform-based ideas about teaching 
were more confident about, and more committed to, using reform-based materials. Other 
researchers have found that the curriculum materials used in early teaching positions have an 
effect on new teachers’ practice. Specifically, a reform-based textbook seems to be a critical tool 
for implementing reform-based practices in the classroom (Steele, 2001). The study reported 
here examined the effect of the curriculum materials used in beginning teachers’ classrooms on 
their ability to meet their stated goals of implementing the Standards-based teaching practices 
utilized in their university coursework and internship experiences. 

Data sources were interviews and classroom observations from seven teachers’ 2nd year of 
teaching—after they had completed their first “survival” year of teaching and had begun to 
establish patterns of instructional practice. All seven teachers had completed a mathematics 
education program designed to prepare Standards-focused teachers who could serve as change 
agents in their future schools. Their program included a semester-long teaching internship under 
the mentorship of classroom teachers supportive of the Standards. Participants were observed for 
three consecutive teaching days and interviewed before and after each observation. An observer 
took field notes and videotaped. An independent evaluator used the LSC Observation Instrument 
(Horizon Research, 2000) to evaluate their teaching. The completed instruments and the 
observer’s field notes were used to develop a picture of each teacher’s classroom instructional 
practices. The interviews were audio-taped and transcribed, and then coded to identify dialogue 
related to instructional planning, classroom activity, student thinking and understanding, and the 
participants’ use of, and beliefs about, the curriculum materials they were using. 

The Curriculum Difference 
Five of the participants in this study used curriculum materials in their classrooms that had 

been rated exemplary by the U.S. Department of Education 1999 Math and Science Education 
Expert Panel, with four of these five teachers observed to display elements of effective 
instruction. The other two least effective instructors used curriculum materials that were not 
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rated exemplary. Based on these observations, it appeared to us that using exemplary curriculum 
materials might be critical to supporting the novice teachers in their efforts to teach in a manner 
consistent with the practices described in the Standards. This raised the question of why the 
instruction of one teacher, Elliot, was rated ineffective when he also used exemplary materials. 

Although Elliot used an exemplary textbook series, his practice was quite different than that 
of the other teachers who used exemplary materials. Elliot’s verbal enthusiasm toward his 
curriculum might lead one to assume that he would wholeheartedly embrace it. In the classes that 
were observed, however, Elliot used instead pages that he had copied from another textbook to 
expose his middle school students to the kind of material he believed would prepare them for 
their high school courses—material very different from the curriculum which had been adopted 
for use in his classroom. In contrast to the other teachers who made adaptations to the 
curriculum, Elliot replaced the curriculum. 

When asked specifically about his curriculum, Elliot expressed his support for it; however, 
he made comments at other points in the interview that suggested otherwise. For example, Elliot 
expressed concern that he was preparing kids to fail by using too much cooperative learning 
when they were likely to be expected to work independently at the high school level. He added 
that his students got tired of explaining, having to go the extra mile. His top students, especially, 
were “just traditional math students…they need the drill and practice; that’s how they want to 
learn.” He felt that there was not enough of this type of learning in his curriculum and thought 
that the students’ basic skills were going to be weak in the long run. Elliot summed up his beliefs 
in the following dialogue: 

I think that for an advanced math class, for about 75% of the kids, it’s not right for them. 
Because the real traditional, hard core math students can learn faster, can learn more, by 
doing it the traditional way. And that’s one of the weaknesses, I think, of [his 
curriculum]. 

Conclusion 
Using exemplary curriculum materials seems necessary to support novice teachers in 

achieving reforms advocated by organizations such as NCTM. In the words of one of our 
participants who did not have access to such materials, “I felt like I was taught all these 
wonderful things and all these wonderful methods, but unless I have a curriculum to support it, 
it’s hard. I mean, I try. I honestly do try.” However, we argue that the case of Elliot illustrates 
that exemplary curriculum materials are not sufficient on their own to ensure effective reform-
based instruction. Instead, the use of such curricular materials is mediated by teachers’ beliefs 
about learning mathematics and the needs of their students (Wilson & Lloyd, 1995). This study 
illustrates the importance of providing teachers with curricular materials that support their stated 
goals and the mediating effects of participants’ deep-rooted beliefs on their use of such materials. 
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The study reported here describes how teachers use district-adopted mathematics curriculum 
materials and other curricular resources. In particular, this study addressed the following 
questions: How do teachers utilize district adopted school mathematics textbooks? Why do 
teachers make the instructional decisions they do regarding the use of the district-adopted 
textbook? The conceptual framework for this study was based on Remillard’s model of the 
teacher’s role in curriculum development (Remillard, 1999). The model includes three arenas: a 
design arena, a construction arena, and a curriculum mapping arena. By looking at the three 
stages in which teachers interact with their textbooks, clearer descriptions of the factors that 
might determine how teachers use their textbooks can be explored. 

Three middle school teachers were chosen among 53 teachers participating in the Middle 
School Mathematics Study (Tarr et al, 2006). Analyses of survey data, textbook diaries, 
interviews, and classroom observations were used to describe the use of mathematics textbooks 
by these teachers. Two of them used Mathematics in Context (MiC), a comprehensive middle 
school curriculum developed by researchers at the University of Winsconsin and the Freudenthal 
Institute (Netherlands) with funding from the National Science Foundation. MiC was developed 
to reflect NCTM’s vision, emphasizing real-world contexts, student interaction, and multiple 
strategies. The third teacher used Saxon Math, a program based on incremental development, 
continual practice and review, and frequent cumulative assessment. Skills and concepts are 
taught through direct instruction. 

Teachers’ view of the curriculum and the match, or lack of it, between their own views about 
mathematics and mathematics teaching and the philosophy of the textbook —explicit or not— 
were the primary factors that determined how the textbook was used. However, the primary 
factor that determined what tasks were presented to students was the textbook itself. As a result, 
the enacted curriculum in each of these three teachers’ classrooms was shaped as much by the 
textbook as by the teachers’ beliefs about mathematics and mathematics teaching. Their broader 
goals for their students were reflected on their teaching but also on their interaction with the 
textbook as a tool for instruction. Teachers with similar views about mathematics, but teaching 
with different textbooks in different schools, enacted very different curricula due to the influence 
of textbooks that were developed with different assumptions about the roles of the teacher and 
students. At the same time, teachers within the same school and using similar textbooks also 
enacted very different curricula, as a consequence of decisions based on their views about 
mathematics and their stance towards the curriculum materials they were using. 

This study illustrates the fact that textbook adoption, by itself, does not necessarily change 
teachers’ practices. However, to the extent that textbooks influence topic determination, the 
impact of textbook choice on students’ opportunities for learning mathematics is certainly 
relevant. 
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This poster shares the current draft of a conceptual framework representing the logic teachers’ 
employ when verbally communicating to students.  The research studies implemented to create 
and support this framework are also outlined.  Attention is given to interpersonal communication 
and mathematics education literatures, the foundations for the framework and studies.  Questions 
are included to promote peer discussion and feedback. 
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Understanding the causes of the achievement gap between blacks and whites is a truly complex 
multidimensional task. According to Ogbu (1992), African Americans have adopted an attitude 
of resistance against that which is remotely “White”.  Others believe that poverty, not race is 
responsible for the achievement gap, however; even when class is controlled for, whites still 
outperform blacks (Trent, 1997).  Race and class however, are just the tip of the iceberg.  There 
are issues that are deeper than race and class which contribute to the black/white achievement 
gap in mathematics.  Steele (1999) has shown that African American students feel pressure when 
taking standardized tests because they feel as though if they fail, then their race is a failure. This 
view of their race as a failure stems from the negative images and stereotypes portrayed by the 
media, and commonly accepted by society, thus creating a need for social acceptance.  Factors 
such as math anxiety, test anxiety, low expectations, resources, and cultural sensitivity also affect 
mathematical performance (Gay, 2000; Green 1990; Oakes 1990).  This presentation relates to 
the goals of PME-NA by seeking to expand on the factors that contribute to African American 
underachievement in mathematics by exploring the mental images and perceptions of teachers 
and black and white students of different socioeconomic backgrounds. 

This poster will describe how black and white students and teachers feel about the ability of 
blacks and whites to do well in mathematics, and the characteristics that are attributed to 
“smartness” in mathematics by these students and teachers.  Tasks were aimed at perceptions and 
images held by the participants. These were black and white elementary and middle school 
students of low SES in low track and high track math classes, and their teachers; and black and 
white elementary and middle students of high SES in low track and high track math classes, and 
their teachers.  

These tasks were administered across grade levels ranging from third through eighth to see 
how perceptions might change from one grade to the next. It was necessary to have someone else 
administer the task for teachers as my race and/or gender could interfere with their comfort in 
being open and honest.  Individual clinical interviews, generative in nature, were conducted to 
get some sense of how the students’ teachers made the students feel as math learners, and to 
understand how students defined “smart’ in the math classroom.  

The distribution of student responses to my tasks and responses to interview questions 
provides some insight into why African Americans under-perform in mathematics. Rather than 
analyzing the results through a lens of black and white disparity, results were viewed in terms of 
similarities and/or differences in perceptions among blacks and whites in lower tracks of 
mathematics and among blacks and whites in higher tracks of mathematics. The tasks 
administered during the study reveal the ways in which black and white students and their 
teachers assign high and low mathematical ability and intelligence to racial groups and/or other 
categories and why they assign them in the manner that they do.  Also, the ways in which 
students perceived mathematical ability and intelligence was observed across grade levels.  I 
hypothesize that the results of this study may have broader implications for tracking students. 
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This paper examines how the Connecting Mathematics for Elementary Teachers (CMET) project 
is connected to the self-efficacy of preservice teachers. The primary goal of the CMET project is 
to connect the mathematics that preservice elementary teachers are learning in their content 
courses with how children learn and think about mathematics. While several studies have 
focused on innovative curriculum projects and their effects on preservice teachers (Hill et. al., 
2004, Lloyd, 1999) and recent research has shown that preservice teachers’ efficacy can be 
positively influenced in methods courses and in-service teachers’ efficacy through professional 
development (Ross & Bruce, 2005), we ask: “Can preservice elementary teachers’ efficacy be 
positively influenced earlier, in mathematical content courses, through a focus on children’s 
mathematical thinking?” 

Findings 
Statistically significant results for students at University I on all pre- and post-efficacy items 

indicate that participants felt more confident in all content and teaching areas after the course 
than before. Again, statistically significant results were found for students at University II 
between pre- and post-scores indicating that participants felt more confident in all content and 
teaching areas after the course than before. 

At both universities, prospective teachers felt more confident about their own mathematics 
ability than their ability to teach elementary mathematics to children before taking the course.  
After the participating in a course that focused on the children’s thinking this gap narrowed and 
for some items disappeared. In addition to analyzing the self-efficacy of individual participants, a 
t-test was run on the difference scores for Teaching Efficacy to test for differences between 
universities. No significant differences were found (t=1.8) indicating that having one of the 
supplement authors teach the course was not the cause for the increase in prospective teachers’ 
teaching efficacy.  
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Introduction 
The integration of discrete mathematics [DM] into the secondary school curriculum (grades 

7-12) is an important consideration because the mathematical area is dynamic and interesting, 
but also because it provides opportunities for teachers to develop innovative strategies and for 
students to experience non-standard mathematical approaches to solve real world problems. 
Rosenstein (1997) expressed that discrete mathematics is applicable, accessible, attractive and 
appropriate. Others have suggested that discrete mathematics is an effective approach for 
illustrating and emphasizing the five National Council of Teachers Mathematics [NCTM] (2000) 
process standards: problem-solving, communication, reasoning and proof, representation, and 
connection ( Kenney & Bezuszka, 1993). Discrete mathematics also can be used as an 
investigatory approach in mathematics classrooms (Burghes, 1985).  

The purpose of this study is to identify and describe preservice secondary mathematics 
teachers’ perceptions about integrating discrete mathematics into the curriculum. A case study 
design is used to describe preservice teachers’ perceptions. Data sources include a selected 
coursework, and an online survey. The results will include key issues and themes emerging from 
analysis of preservice teachers’ comments about the role of discrete mathematics in the school 
curriculum.  

Background 
In its Curriculum and Evaluation Standard for School Mathematics, from 1989, NCTM 

recognized the significance of discrete mathematics topics in the secondary curriculum by 
including it as one of the Standards. NCTM stated that: 

As we move toward the twenty-first century, information and its communication have 
become at least as important as the production of material goods. Whereas the physical or 
material world is most often modeled by continuous mathematics…the nonmaterial world 
of information processing requires the use of discrete (discontinuous) mathematics… it is 
crucial that all students have experiences with the concepts and methods of discrete 
mathematics. (p.176) 

Recently there have been attempts to integrate DM into textbooks and curriculum materials 
for middle school and high school. For example, the Contemporary Mathematics in Context 
textbook series (for grades 9-12) dedicate several units to DM topics such as graph theory, 
combinatory, permutations; Hart, DeBellis, Kenney and Rosenstein have a forthcoming NCTM 
book titled Navigation through Discrete Mathematics in Pre-Kindergarten to Grade 12. There 
are also many websites available that contain activities on DM (for example, 
http://mathforum.com). In addition, a textbook for teachers, Discrete Mathematics for Teachers 
(Wheeler & Brawner, 2005), was recently published.  

Some of the arguments made about the importance of teaching and learning DM in the 
schools are: (a) it is accessible for all students at all levels (Kenney, 1996; Rosenstein, Franzbalu, 
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& Roberts, 1997); (b) it encourages an investigatory in mathematics teaching (Burghes, 1985; 
DeBellis & Rosenstein, 2004; Heinze, Anderson, & Reiss, 2004); (c) it is a good approach for 
illustrating and emphasizing the five NCTM (2000) process standards (Kenney & Bezuszka, 
1993); (f)  it allows teachers to see mathematics in a new way and to rethink about traditional 
mathematical topics (DeBellis & Rosenstein, 2004; Kenney, 1996). These arguments might 
sound solid, but they are mostly based on speculation, although some of them have grounds in 
observation and teachers’ experiences (DeBellis & Rosenstein, 2004; Friedler, 1996).   

As a result of this need for information, this study identifies and describes preservice 
mathematics teachers’ perceptions of teaching and learning DM in the secondary school 
mathematics curriculum.  

Methodology 
The study involves a case study design in order to obtain an in-depth qualitative description 

of preservice teachers’ views of DM in the secondary curriculum. I intend to obtain an accurate 
snapshot of how a specific group of students/preservice teachers reacts to concepts of DM.  My 
research question will be: How do preservice secondary teachers perceive and react to the 
integration of discrete mathematics in the secondary curriculum? 

In my case study I examine students enrolled in the course Mathematics for Secondary 
Teachers I (MATH 4625), a mathematics course at Virginia Tech, Blacksburg VA in fall of 
2005. In this course, students analyzed topics in discrete mathematics and algebra from a 
secondary teaching perspective. In addition, students developed classroom activities and methods 
that involve the NCTM (2000) process standards (problem solving, reasoning and proof, 
communication, connections, and representation).  

Multiple sources of data, selected coursework and an online survey, will be used to determine 
preservice teachers’ conceptions about DM in the secondary curriculum.  

A collection of selected homework assignments from Math 4625 related to the integration of 
DM into the traditional secondary mathematics class (e.g. algebra, geometry) was be used to 
identify preservice teachers’ experiences and opinions about this topic. Part of the selected 
homework assignments included a survey. The purpose of the survey was to provide broad 
background information related to teaching and discrete mathematics beliefs among the students.  
The survey was given at the beginning of the course (August 2005). A second online survey 
focused on beliefs about teaching discrete mathematics had the purpose of identifying any 
changes of students’ views about teaching DM after they examined in the course. 

Implications 
Considering that there is a gap in the literature concerning teachers’ views of the relevance of 

discrete mathematics in the secondary classroom, different groups could benefit from this study: 
• Educators: the study will provide preservice teachers’ views about the integrating DM in 

the classroom.  It will help to identify obstacle and resources for integrating DM into the 
curriculum. 

• Students at different levels: the study will offer a new way to perceive mathematics as a 
practical way for problem solving. 

• Researchers: the study will inspire them to conduct investigations leading to new journal 
articles and conference presentations related to this topic. Future studies may build on 
the findings of this investigation. 
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According to Schwab (1973), “defensible educational thought must take account of four 
commonplaces of equal rank: the learner, the teacher, the milieu, and the subject matter. None of 
these can be omitted without omitting a vital factor in educational thought and practice.” (p. 508) 
In the creation and enactment of curriculum, Schwab’s commonplace framework stresses the 
importance of focusing on all four commonplaces and their interactions with one another within 
particular classroom settings and with the outer environmental structures. 

My dissertation study, a narrative inquiry, describes a quest to help mathematics teachers 
become empowered to deal with instructional challenges in the face of systemic impediments 
within their low-performing, urban high school. Initially, I sought to improve teachers’ 
instructional approaches to a new high school Geometry program which I had written to meet the 
needs of the high-stakes test demands of the No Child Left Behind Act (NCLB) and the student-
centered, cognitively-based standards set forth by the National Council of Teachers of 
Mathematics (2000). My study began with an imagined end in mind: With appropriate 
instructional support, teachers can improve their classroom practices within a professional 
development environment that provides them opportunities to share experiences and become 
reflective practitioners. Several weeks of classroom observations, post-observation discussions 
and suggestions for improvement indicated to me very little observable change in teachers’ 
practices. During this time, I observed several critical incidents among teachers, students and 
administration which pointed to a school-wide milieu in disarray. I realized that attempts to 
improve the teacher-subject matter connection would be futile until teachers came to terms with 
the disconnections within their school. I decided to focus on improving the teacher-learner-
milieu connections within the classroom, hoping that in turn teachers would recognize the need 
to work toward improving their repertoires of instructional approaches to better serve their 
diverse student population. 

This extended experience and subsequent analysis using Schwab’s commonplaces have 
provided a framework and tool for subsequent needs analyses when invited to provide 
professional development in other schools. In addition, when planning and enacting professional 
development programs, including subject matter courses for in-service mathematics teachers, the 
commonplaces play an important overarching framework in discussions about classroom culture 
and lesson design.  

In my poster presentation, I describe how Schwab’s commonplace framework became an 
interpretive tool for my dissertation study and now serves as a diagnostic and instructional tool in 
my professional development work with teachers and in schools. 
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In this poster, we report the findings of a study that has a goal of better understanding the 
relationship between a teacher’s conceptions (e.g., beliefs about the textbook, knowledge of 
mathematics) and what she actually does with a textbook when she uses it in her classroom. 
Remillard (2005) argues that we need to understand how teachers interact with curriculum 
materials in deeper ways than we currently do.  It is also important to gain a richer understanding 
of the relationships between a teacher’s conceptions and recommendations made within 
curriculum materials on how to use the materials (Lloyd, 1999).  Teachers interact with their 
curriculum materials in different ways (e.g., such as following the teacher guide or drawing ideas 
from the materials) and there are dynamics, such as beliefs about knowledge, that influence this 
interaction (Brown, 2004).  We draw on ideas from sociolinguistics (e.g., systemic functional 
linguistics) and sociocultural theory (e.g., Brown, 2004) to highlight the ways in which the 
teacher refers to and uses her textbook, thus closely examining the role of this tool in her 
classroom practices. 

As part of a larger project on middle grades mathematics classroom discourse, we observed 
one teacher during fall 2005 for two weeks in one of her 6th grade mathematics classes. The 
teacher has taught in a rural school for 20 years, of which she has been teaching the Connected 
Mathematics Project for the past five years. In addition to the observations, she also took part in 
three one-hour long interviews that focused on her textbook as well as how she uses it in her 
classroom. In the analysis, we identified instances in the classroom observations in which the 
textbook was either being referred to (e.g., “Let’s go over the ACE questions” or “Have out 
problem 1.3 from Bits and Pieces”) or explicitly being used (e.g., “Turn to page twelve” or “You 
should be on page 43.  Read that first paragraph.”). We describe the nature of these instances and 
account for the ways the teacher refers to and uses her textbook based on the information 
provided in her interviews. 

The preliminary findings show that this teacher uses the textbook everyday and often refers 
to it explicitly. One of the factors that influence her use of the textbook is how comfortable she is 
with the content that she presents that day.  When she feels comfortable with the mathematics, 
she tends not to rely on the textbook as much; if she is not confident about a mathematical topic, 
she will do exactly what the textbook recommends.  Other things that influence how she uses the 
textbook are the feelings of parents and others in the community (e.g., Parents have complained 
that they don’t know what their students should be doing in math, so she now gives very explicit 
instructions to the students on each problem).  In this poster, we will give examples of the 
different ways she refers to and explicitly uses the textbook in her classroom.  We connect these 
linguistic elements to the construction of the textbook as a tool in her classroom. We also report 
some of the reasons she provides for her textbook use and reference. 
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Connecting Theory and Practice in school mathematics is a crucial issue for investigation. This 
report focuses on the role that theoretical models, as emerged from the observation of students at 
work, can play on the part of the teacher. In other words, how teacher training can orient 
teachers in studying and using some theoretical findings coming from research. 

Introduction and theoretical framework 
For a long time, theory and practice (i.e. the theoretical approach to the discipline and its 

transposition in school practice) have been considered as opposite poles. In recent decades, the 
dialectic nature of the theory-practice relationship has become increasingly recognised and 
embodied in research studies, which have highly fostered the dialogue between the two poles 
(Bartolini&Bazzini, 2003). There is general consensus on the assumption that the theoretical 
education of perspective and in-service teachers must not separate theory and practice, but has to 
try to develop the teacher’s theoretical abilities to look beyond  the practical surface of the 
problems they will encounter later in their teaching practice.  In the search for boundary 
conditions to mediate knowledge between the two poles, there is evidence that any conception 
which assigns “theory” the instructing role, dooms “practice” to fail (Steinbring, 1998). The 
necessity of developing the notion of cooperation comes as a consequence. Following this 
position, existing literature provides interesting contributions supporting the idea of blending 
mathematical content with pedagogical knowledge (Ponte et al.,1994). We add that findings of 
research in Mathematics Education are of basic importance in teachers’ education.  As we will 
discuss later, this issue is of special use in the proceedings of our experiment, both during teacher 
training and in teaching practice.  In our study we have adopted the modality of co-learning 
partnership (Jaworski, 2003), i.e. a tight co-operation between academic researchers and school 
teachers, which is a long-time shared component of our research methodology (Bazzini, 1991).  
Concerning the teachers’ knowledge of learning theory, following Jaworski’s suggestions, we 
addressed the question of how the teacher’s knowledge on research findings is surfaced and used 
in practice.  

The research problem: position and proceedings 
We focus our attention on some theoretical models, which emerged from the analysis of 

students’ behaviours and are reported in literature. We are concerned with the role they play on 
the part of the teacher during the teaching process. We assume that such theoretical models, 
when deeply owned by the teacher, can influence the teacher’s behaviour and produce valid 
interventions in the teaching phases (i.e. planning, acting and reflecting). 

This report develops an analysis of the professional behaviour of a teacher, after a given 
instruction on theoretical issues, as provided by existing literature in Mathematics Education.   
The teacher under discussion graduated in Mathematics and has been teaching in junior 
secondary school for several years. She is smart, open minded and sensitive to new ideas and 
suggestions.  She was selected to attend a two year training course on “Approaching Algebra in 
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Junior Secondary School”, organized by the Regional Institute for Research and Teacher 
Training (IRRE Lombardia) and held in Milan, 1998-2000.  This course treated general issues on 
the didactics of algebra, theoretical reflections on the nature of algebraic thinking and practical 
suggestions for teaching. Special attention was given to the work by Sfard (1991) on the dual 
nature of mathematical concepts (i.e. procedural and structural aspects) and to the work by 
Arzarello, Bazzini and Chiappini (1994, 2000) dealing with the distinction between sense and 
denotation of algebraic expressions.  

According to Sfard, true understanding relies in mastering the passage from operational 
aspects to structural ones and vice versa. The dialectic relationship between the two aspects 
pervades learning in all of its phases: procedures prepare the ground for the “reification” of 
mathematical objects and, in turn, mathematical objects and their relations allow the student to 
look at procedures from a more general perspective. 

Arzarello, Bazzini and Chiappini, point out that algebraic thinking, as any other kind of 
thinking, lives in the interplay between mental activity and linguistic expressions. In a more 
general perspective, representations and symbols of mathematics establish semiotic systems 
which are of fundamental importance in doing algebra. The denotation of an expression is the 
object to which the expression refers, while the sense is the way in which the object is given to 
us. The dialectic between sense and denotation allows one to consider algebraic reasoning as a 
game of interpretation: a given formula can activate different senses and symbols' manipulation 
is promoted by the passage from one sense to another depending on to the goal of the problem. 

Finally, from a methodological point of view, the training course emphasized the role of 
mathematical discussion as powerful instrument for knowledge construction in social interaction 
(Bartolini Bussi, 1996). 

The teaching experiment: an overview 
The teaching experiment we are going to review is framed in the above references. It is part 

of a wider research study which was carried out in the 8th grade in the period January-March.  
During the three year course (grades 6th-8th), the teacher conceived an early approach to 

algebraic thinking: activities have been already planned in the first year of the course. Those 
activities were developed slowly and carefully, thus permitting students to grasp the meaning of 
what they were learning.  

We underline that the students already knew the software Cabri Géomètre and were familiar 
with such practices as verbalizing, expressing opinions, formulating conjectures, doing critical 
comparison of products and procedures, sharing results and discoveries. 

 Thanks to this way of conceiving mathematical lessons, the teacher had created a group of 
“young mathematicians” willing to take part in the social 
construction of knowledge.  

Furthermore, we observe that the students were already 
aware of the symbolic manipulation of symbolic expressions: 
this made the proposed activity particularly fruitful.  

Our teaching experiment consisted of 7 lessons (totally 14 
hours). During the lessons, the students were proposed 
activities, which took place in different environments (paper & 
pencil, Cabri Géomètre) and which were realized in different 
forms (individual work, group work, classroom discussion). The 
starting point was a geometric problem (see figure): the pupils 
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were given the figure of a square inscribed into another square and were required to inscribe 
other squares and to reflect on possible configurations. The activity was guided by 5 schedules, 
which proposed: 

� construction of geometric figures  
� exploration  of their characteristics 
� determination of variables and constants  
� determination of relations between the variables in question 
� analysis of a phenomenon (how the area of the squares inscribed in the square 

changes) 
The first series of activities (schedules 1, 2, 3 and relative class discussions) dealt mostly 

with geometric arguments and took place in the two environments: paper & pencil and Cabri 
Géomètre; (for a first analysis of the integration of the two work environments see Bazzini, 
Bertazzoli, Morselli 2003). This series of activities was conceived to make the students  to get in 
touch with the problem, to think carefully on the configurations, to find out the variables and to 
make hypothesis on the relations between variables. During these activities the students singled 
out variables and made the first remarks on covariance (relationship between the length of AP 
and the area of PQRS) and on the existence of special cases (the so called limit-cases): minimal 
area and maximal area. 

The subsequent activity (schedule 4) focused on the calculation of the area of PQRS. 
Students were asked to calculate the area in different situations (i.e. when AP is given different 
values). The students were required to calculate the area of squares built under given conditions. 
Then they were asked to reflect on the data in order to find the minimum value for the area.  

The schedule no. 5 introduced the use of the sign x to name the length AP and to condense in 
one formula the calculation of the area of PQRS.  

Case study: focus on the classroom discussion 
For the aims of this report, we focus on two different but intertwined issues related to the 

introduction of Algebra in junior secondary school: first, the symbolic translation of a given 
geometric situation and, second, the mastery of symbolic expressions.   Our attention focuses on 
activities 4 and 5, which mark the passage from practice (construction and analysis of 
geometrical configuration, calculation of the area) to the sign (introduction of the algebraic 
notation to represent and to study the phenomena of area variation and covariance).  

In the schedule 4, students were asked to calculate the area of PQRS, for given (integer) 
values of AP. The schedule is aimed to guide the students in the passage from the geometric 
situation to its algebraic representation. A careful work on calculation procedures is aimed at 
finding the meaning of the subsequent algebraic formulation. Furthermore, the reflection on the 
schedule stimulates considerations on covariance and induces to consider the configuration in its 
global structure.  

 Here we report some extracts from the groups work (the calculation refers to the following 
values: AB=8 and AP=2): 

Group 1 (Marta and Andrea): 
We use Pythagoras √22+62=√40 
In order to find the area [of PQRS] we should work out the square root, but it would be 

useless because, after, in order to get the area we should work out the square.  
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Group 2 (Pietro and Paolo): 
We can do it in different ways. 
We can do:  √62+22=√40=6.32 
Area=6.322=39.94 
Otherwise:  82-6*4=64-24=40 
We may observe that two different procedures were adopted by the students: 

� difference of areas (square ABCD - 4 triangles)  
� using the Pythagorean theorem to calculate PS and, then, calculating the area of 

PQRS directly 
In the schedule 5, the teacher asked the students to name x the value of AP and to create an 

expression for the area.  
In this way, students arrived at the expression through computation (procedural aspect, in 

Sfard’s perspective) and successively could reflect on the expression as a mathematical object 
(structural aspect).  

The whole process developed differently with different students and different expressions are 
given. This is due to the fact that different procedures of calculation emerged during the work on 
the schedule 4.  

At this point the teacher profited from the situation and, following Arzarello, Bazzini & 
Chiappini’s model, stressed the point that different expressions can be seen as carrier of different 
senses for the same denotation.  

The  discussion consists of two parts: at first the teacher asked the students to report the 
expressions used for calculating the area, and  fostered a careful reflection on the algebraic 
formalization of the various elements of the area. Thereafter, the teacher promoted a reflection 
on the various expressions which were found and asked the students to verify – through symbolic 
manipulation – if different expressions  (and different senses corresponding to the different 
methods of calculation) can  represent the same area, i.e.  the same denotation.  The students 
succeeded in grasping the equivalence of the two expressions. 

Here we report some excerpts from the discussion transcript. 
12. Teacher: You know that the measure of the side is 8. If you indicate with x the length of 

the side AP, you can use the letter x to express the length of the side AS. What did you 
answer? Paolo?  

13. Paolo: 8-x 
14. Teacher: did you all answer like that?  
15. Thomas: I did AB-BP=x 
16. Teacher: Yes, but using the letter x, if AB is 8 you can express AS as 8-x. Afterwards… 

the area of the triangle APS.  
17. Anna: (8-x)x/2 
18. Teacher: very well. I would like that you read me your expressions for the area of the 

square PQRS. This is the part that interests me the most.  
19. Francesca: 64-(8-x)x2 
20. Teacher: are your expressions all alike? No? Then, I would like to hear them. Valentina 

and Maria? 
21. Valentina: 64-[(8-x)x/2]4 
22. Teacher: I ask: are these expressions equivalent? Paolo? 
23. Paolo: finally, the result doesn’t change.  
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24. Teacher: ok, but I would like also a formal equivalence, not only that finally the result 
doesn’t change. Doing (8-x)x or doing x(8-x), does something change?   

25. Andrea: dividing by 2 and multiplying by 4, is the same as multiplying by 2.  
26. Teacher: ok, multiplying by 2 or dividing by 2 and multiplying by 4 is the same thing, I 

agree, all right. Another thing: the parenthesis and the x have their place inverted. Is it 
allowed?  

27. Andrea Z: it is the same, it is the commutative property.  
This first excerpt shows the choice of the teacher to exploit the fact that the students 

proposed different methods. She wants to exploit this richness of methods in order to make the 
students to work on the algebraic equivalence of the expressions.  She encourages the work of 
algebraic transformation of an expression into another one. The geometric situation warrants the 
validity of the expressions and gives meaning to the transformation (from a geometrical 
standpoint, the two expressions are equivalent, then they must be equivalent also from an 
algebraic standpoint). 

28. Teacher: ok, then these two expressions are equivalent. Are all your expressions 
absolutely equivalent? No? Marta, Andrea? 

29. Andrea S.: √(8-x)2+x2  
30. Teacher: I don’t write the square root, we’ll discuss why, later.  So, listen, it is very 

different for the other expressions. Can you understand what are they doing? While the 
first two expressions were easily changed one onto the other, we understood that they are 
equivalent,  this one is really different, it has a completely different style. Do you agree? 
How did they reason?  Why did he told me a square root and I didn’t write it?   

31. Andrea Z.: 82 for me is 64 
32. Teacher: of course. But they write x2+(8-x)2. What do they want to say? What does 

remind us this expression? Pay attention, in your worksheet x is AP and 8-x is…? 
33. Andrea Z.: PB 
34. Teacher: No, in your worksheet x is not PB, it is AS, which has the same length as PB….., 

AP is x and AS is 8-x. but those two, AP and AS, what are they?  
35. Francesca: they used the theorem of Pythagoras.  
36. Teacher: very well. Actually the theorem of Pythagoras would have the square root, but … 

you should use the square root in order to find what?  
37. Andrea: the side. 
38. Teacher: Yes, the side. Why did I take it away?  
39. Anna: because in order to find the area we should do the square.  
40. Teacher: perfect. Then, these two are more or less the same, this is different. Let’s go on. 

Good  idea, the fact that  82 is 64, but we’ll come back to that later …. Pietro and Paolo? 
In [30] we may have the impression that the teacher acts in a very traditional way, omitting 

the square root (thus, correcting the pupil’s answer!). Actually, she wants to be sure that all the 
pupils understood the method that is linked to the expression, that is the meaning of the 
expression. Once she is sure of that, she takes into the discussion the matter of omitting the 
square root. 

In [40], we see the micro-decision of the teacher: for the moment, she wants to keep the 
focus of the discussion on the meaning of the expressions. She plans to focus on algebraic 
equivalence afterwards. She asks to Pietro and Paolo, because she knows from their worksheet 
that they wrote a different expression. We note here the importance, for the teacher, of having at 
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disposal the worksheets of the groups before the discussion, in order to have a clear idea of the 
situation of each group. 

41. Paolo: we wrote like the first:  64-... 
42. Teacher: You did not do 64 but 82, I’ve got the proof, but basically  it is the same. 

Francesca and Simone? 
43. Francesca: 64-4[(8-x)x/2] 
44. Teacher: basically it is still like that by Valentina, we just have top ut things in a different 

way. So, we have these three expressions ( 64-(8-x)x2 ; 64-[(8-x)x/2]4 ; (8-x)2+x2 , our 
note): which is the most economic, between the first and the second?  (VOICES: The 
first). Then, I do not offend anybody if I erase the second one, we understood that they are 
logically equivalent. Now I ask you: litteral calculation,  we can write it in a better way. 
Because: we have 64-(8-x)x2, instead of x2 what can we write? (VOICES: 2x), well, I 
write it before the parenthesis. Who is going to write it in a cleaner way, without 
parenthesis?    

45. Stefano: 64-16x+2x2. 
46. Teacher: is it ok? Can somebody write this one differently? (she now refers to (8-x)2+x2 ) 
47. Thomas: 64-x2. 
48. Teacher: minus? The squares? 
49. Thomas: 64+x2+x2. 
50. Teacher: pay attention! I just said to the observer that you are good in algebra… here, 

another term is missing. When I square…  
51. Stefano: Ah, we must write it twice! 
52. Teacher: yes, it is true, we should think of it as… then, check what is missing. 64… are all 

the terms there?  
53. Thomas: +8... 
54. Teacher: Plus ? 
55. Thomas: ah, the sign after… 64x, I guess.  
56. Teacher: No, 64x no because 8*8=64, that is what Andrea Z. said before. Yes, Paolo? 
57. Paolo: -8x-x2 
58. Teacher: Not minus, it is x2. but one term is still missing. 
59. Thomas: 8x. 
60. Teacher: 8x is still missing, that’s true. Are they all there now? Well. But are these two  

expressions alike? (VOICES: Yes). Why, Anna? 
At this point, on the blackboard there are different signs (the expressions) and different 

senses (the methods). The teacher introduces here [44] the algebraic work (transformation).  
61. Anna: because -8x-8x is –16x and x2+x2 is 2x2. 
62. Teacher: Perfect, then I keep this one that is already fine. But what is this, then? It is the 

area, isn’t it? (VOICES: yes). And how did we state to call the area? In algebraic 
language. (VOICES: A). NO, in our worksheet we did not call it A. (VOICES: y). y, very 
well. y=     Write it on your sheet, it is very important.  

Here the two expressions are clearly recognized as being equivalent, thanks also to their 
geometric interpretation (the area of the same square). 

In [62], the teacher stresses that the algebraic expression stands for the area. She also corrects 
the students’ answers as regards the “name” of the area (the area is y and not A). Why? Not just 
in order to set authoritatively the conventional use of letters, but because A had a different 
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meaning on the worksheet (A was one of the vertexes of the square); she tries to prevent 
misunderstandings.  

Discussion  
The analysis of the lesson transcript gives evidence of the basic role of the teacher in 

planning, leading and coordinating the classroom discussion. 
First of all, we discuss some macro-decisions of the teacher. We point out here the influence 

of theoretical tools (namely, the theory of Sfard) in planning the sequence of schedules (4 and 5) 
that guide students form the calculation to the reflection on the mathematical object.  

Other theoretical tools (namely, Arzarello et alii.’s model) influenced the choice of the 
teacher to foster a reflection on the different expressions having the same denotation. 

Furthermore, the theoretical tool concerning the potentialities of mathematical discussion 
helped the teacher to choose the suitable scenario for the reflection.  

It is also interesting to compare what has been planned (before the classroom experiment, in 
co-operation with the university researchers) and what really happened in the classroom, when 
the teacher has to face “classroom life”, including students’ reactions, sometimes not foreseen. 
Within the overall perspective of long-term decisions, micro-decisions play a very important role 
(Malara, 2005), and reveal the inner knowledge of the teacher. 

The analysis of our case study shows that the teachers’ interventions are very helpful in 
grasping students’ intuitions, fostering their potential and orienting classroom discussion towards 
profitable reflection.  

There is clear evidence that the teacher acquired and elaborated the theoretical models 
studied during the course; this allows her to suitably use such models in the classroom activity.  

The analysis of this case study provides useful suggestions to identify strategies which are in 
accordance with theoretical models (and probably inspired by them). However we do not exclude 
that similar situations can produce different strategies, in accordance or not with the previously 
shared theory. This is usually due to a variety of reasons, including tacit beliefs, original imprint, 
school constraints and so on. 

The study of these variables is very interesting for us, but in need of further investigation. 

References 
Arzarello F., Bazzini L., Chiappini G. (1994) L’Algebra come strumento di pensiero:  analisi 

teorica e considerazioni didattiche.  Progetto Strategico del C.N.R. "Tecnologie e 
innovazioni didattiche", Collana Innovazioni Didattiche per la Matematica, Quad. N.6.  

Arzarello F., Bazzini L., Chiappini G. (2000) A model for analizing algebraic thinking, in 
Sutherland R., Roiano T., Bell.A. (Eds) Perspectives on School Algebra, Kluwer, (61-81). 

Bartolini Bussi, M.G. (1996) “Mathematical discussion and perspective drawing in primary 
school”, Educational Studies in Mathematics, 31, (11-41). 

Bartolini Bussi M., Bazzini L. (2003) Research, Practice and Theory in Didactics of 
Mathematics: towards Dialogue between Different Fields, Educational Studies in 
Mathematics,  54, (203-223). 

Bazzini L. (1991) Curriculum development as a meeting point between research and practice, 
Zentralblatt fuer Didaktik der Mathematik, 4, (128- 131). 



Teacher education – Inservice/Professional Development Vol.2-585 

 

Bazzini L., Bertazzoli L., Morselli F. (2003) “Paper&pencil and Cabri Géomètre: a sinergie for 
promoting students’ mental dynamics”, Proceedings of CIEAEM 55, Plock, Pl, in press. 

Javorski B. (2003) Research Practice Into/Influencing Mathematics Teaching and Learning 
Development: Towards a Theoretical Framework Based on Co-learning Partnerships, 
Educational Studies in Mathematics, 54, (249-282). 

Malara, N.A. (2005) Leading In-Service Teachers to Approach Early Algebra, International 
Meeting in Honour of Paulo Abrantes, Proc. Conv. Int. Mathematics Education: Paths and 
Crossroads, Lisboa, (285-304). 

Ponte J., Matos J.F., Guimares Leal C., Canavarro A.P. (1994) Teacher’ and students’ view and 
attitudes towards a new mathematical curriculum: A case study. Educational Studies in 
Mathematics, 26, (347-365). 

Sfard A. (1991) On the Dual Nature of Mathematical Conceptions: Reflections on Processes and 
Objects as Different Sides of the Same Coin, Educational Studies in Mathematics, 22, (1-36). 

Steinbring H. (1998) Elements of Epistemological Knowledge for Mathematics Teachers, 
Journal of Mathematics Teacher Education,1, (157-189). 

 
 



Vol.2-586  PME-NA 2006 Proceedings 

 

STUDENTS’ THINKING ABOUT DOMAINS OF PIECEWISE FUNCT IONS 

Charles Hohensee  
San Diego State University and Crawford High School Complex  

charleshohensee@sbcglobal.net 

This two-phase study investigated high school student difficulties with graphing and 
understanding piecewise functions, with a focus on how students thought about multiple domain 
statements for a single function.  The report on the first phase details the essential aspects of 
student thinking and highlights underlying reasons that begin to account for the difficulties that 
students encounter.  The report on the second phase outlines how modifications to classroom 
instruction, based on the findings from the first phase, impacted student thinking about piecewise 
functions and multiple domain statements. 

This two-phase study investigated student difficulties with graphing and understanding 
piecewise functions.  The focus was on how high school students thought about multiple domain 
statements for a single function, with the perspective that multiple domains may be central to the 
confusion that they encounter with piecewise functions.  In phase 1 of this report, essential 
aspects of the students’ thinking about piecewise functions are detailed, as are the emerging 
themes surrounding their difficulties.  In response to the implications of phase 1, instruction of 
function was modified for an Intermediate Algebra class.  In phase 2, the thinking of several of 
those students is outlined. 

Many students struggle with graphing piecewise defined functions.  This is a finding 
supported by the literature (Chazan & Yerushlamy, 2003; Markovits, 1986) and by my 
experiences as a secondary school mathematics teacher. 

Learner’s difficulties with piecewise functions often occur in spite of the students possessing 
necessary prerequisite skills, such as the ability to graph individual functions from equations and 
the ability to apply the vertical line test for functions.  Graphing calculators also tend to be 
limited in their support for graphing and hence, reasoning about piecewise defined functions.  
Even when graphing calculators are used for displaying piecewise function graphs and tables, 
“…graphing representations are not transparent” and “…graphing representations are complex” 
(Chazan & Yerushlamy, 2003, p. 131). 

Graphing and reasoning about piecewise defined functions is important for at least two 
reasons.  First, analysis of discontinuous functions and one and two-sided limits found in 
Calculus cannot be fully appreciated without an appreciation for piecewise functions.  Second, a 
strong understanding of piecewise functions is important because it leads to a deeper 
understanding of domain that more regular functions cannot offer (Oehrtman, Carlson & 
Thompson, in press). 

My personal motivation for investigating student difficulties in this area is based on my work 
as a classroom teacher, watching students struggle.  I have witnessed what could describe as a 
paralysis of action.  Students see the piecewise function equations and begin to graph one of the 
pieces.  But then, they seem to encounter a block and they soon stop, unable to manage the 
additional pieces.  Multiple domain statements appear to be a main source of confusion. 

For most functions that students encounter in high school, the domain statement is a singular 
expression.  It states what the entire domain is or in some cases what the domain is not.  Even 

_____________________________ 
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with periodic functions like f(x)=tan(x) the domain can be represented in one statement by 
making reference to periodicity.  As a result, multiple domain statements may seem foreign to 
learners, which may lead them to ignore multiple domain statements. 

This study was created to address the following goals:  (1) To gain a better understanding of 
student thinking on how domain, in general, is related to its range,  (2) To determine how 
students view multiple domain statements for one function and (3) To gain insight into how 
students think about the domain of one piece, in the context of multiple domains. 

Theoretical Background 
Several theoretical considerations have influenced this study.  The first is a radical 

constructivist perspective on learning, in which learners form schemes about the external world 
based on experiences, activities and reflections (von Glasersfeld, 1995).  From this perspective, it 
is the researcher’s job to build viable models of student thinking. 

The second theoretical influence on this study is previous research on student understanding 
of function.  Markovits (1986) found, for example, that translations of most functions were easier 
for students going from equation to graph than from graph to equation.  However, for piecewise 
functions the translations were equally difficult.  Markovits also found that students showed a 
lack of attention to the domain and range restrictions when asked to decide if a discrete function 
was in fact a function and whether the points of a discrete function should be connected.  This 
lack of attention may compound in graphing piecewise functions.  In another study by Bell and 
Janvier (1981), it was shown that students focus more on individual points than on functions or 
graphs in a more global way, such as by considering the domain. 

The third theoretical consideration is that many students have more of an action conception 
of functions than a process conception, a classification system developed by Breidenbach et al 
(1992).  According to Oehrtman, Carlson, & Thompson, “from an action view, input and output 
are not conceived except as a result of values considered one at a time, so the student cannot 
reason about a function acting on entire intervals” (p. 8).  Alternately, with “a process view, 
students are freed from having to imagine each individual operation for an algebraically defined 
function” (p. 9).  Students would most likely experience difficulties in understanding piecewise 
function domain statements if they thought about each input value separately. 

Methods 
The subjects for phase 1 of this study were two high school Precalculus students in a mixed 

Precalculus/AP Calculus class from an inner city school with highly diverse ethnic 
representations.  The students that participated would be rated as average, in mathematical 
ability, in relation to the rest of the class.  Both students’ algebra skills seemed to be founded on 
memorized procedures rather than on conceptual understanding. 

Interviews were conducted one-on-one, with the interviewer presenting 4 tasks/activities and 
the student thinking aloud as she/he attempted each task.  Interviews were audio taped and 
transcribed for subsequent analysis.  Transcripts were coded for student difficulties and emergent 
themes were identified through cycles of searching for confirming and disconfirming evidence 
(Strauss & Corbin, 1990). 

The first task was for students to look at a piecewise discontinuous graph, a piecewise 
continuous graph, a discrete graph and a table of values that strongly suggested a discontinuous 
piecewise function.  The students were asked to decide which examples depicted functions.  The 
second task was for students to look at a piecewise function equation and to explain their 
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thinking around the domain statements.  The third task was for students to examine three 
continuous smooth-curve functions that had been drawn on a whiteboard.  They were instructed 
to erase some of each function so that what remained could be one function.  They were also 
asked to explain and write down their ideas about the domain for each “piece.”  The fourth task 
involved three transparencies with a different function graphed on each one.  The three 
transparencies were stacked and the graphs lined up and stapled together.  The students were 
instructed to make two vertical cuts in the transparency stack and then to take one piece from 
each graph and create a new graph.  They were also asked to share their ideas about the domain 
for each piece. 

 

Activity 1 – How, if at all, do the following relate to functions? 

 

 
 

Activity 2 - Look at the following.  What does x 
represent in each domain “zone?” 

  

f(x) =  

x2 + x     x ≤ −2

x – 2       0 < x≤ 3

x3           x> 3

 

 
 

 
 

 

Activity 3 - Study these three functions (drawn on the same whiteboard in three 
different colors). Erase some of each function so that what remains is a function.  Write down 
the domain for each piece that remains. 

f(x) = (x+4)2 g(x) = -(x+2)+4 h(x) =   x – 4 
 
In light of the emergent themes from phase 1 and conjectures about what would improve 

student understanding, which will be discussed later in this paper, I designed an alternative 
approach to teaching functions to my Intermediate Algebra class, in the same school that the 
phase 1 data collection occurred in.  I devoted the majority of class time to investigating 
piecewise function notation, piecewise function domains and ranges, boundaries between pieces 
of a piecewise function, piecewise graphs, piecewise tables and piecewise distance/time graphs.  
I also created activities that resembled the phase 1 tasks, where students created piecewise 
functions by cutting and pasting.  I anticipated that this would aid in their developing a process 
view of piecewise functions.  Only after exposing students to piecewise functions did I introduce 
the definition of a function, function notation, operations with functions, composite functions 
and the vertical line test.   

In phase 2 of this study, I chose three Intermediate Algebra students to participate in similar 
interviews as in phase 1.  Based on their unit tests on functions and on their classwork, I chose 
one student that showed proficiency with functions, one that showed basic skills and one that 
showed below-basic skills.  I also chose students that I felt would be able to communicate their 
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ideas well.  The interviews in phase 2 occurred approximately three months after the unit on 
functions was taught and no review of piecewise functions was conducted prior to the interviews. 

Discussion 
In phase 1 of this study three themes emerged with respect to student difficulties with 

piecewise functions.  The first theme was that students relied on recognition of functions more 
than they did on a definition of function.  This was clear in several instances.  During the first 
activity, L concluded that the discontinuous graph was not a function because “…it just looks 
like lines.  I’ve never seen a function like this before.”  Similarly, L was looking for a pattern in 
the table.  “It looks like one [a function] up to here.”  But then she pointed to the pattern change 
and concluded, “if it would be graphed out it would look crazy.”  L was looking for recognizable 
features rather than applying a definition or a criterion for what makes a function. 

D also used recognition to determine which representations in the first activity were 
functions.  For the continuous piecewise graph, he recognized the parabolic piece and concluded 
that this was also an example of a function.  He also concluded that the discrete graph, “looks 
like a polynomial function,” because it went “up and down.” 

In activity 3, D created a graph without discontinuities.  However, his graph violated the 
vertical line test for functions.  When asked about how he decided where to erase, D said, “I tried 
to make it look like a parabola…(pointing) part looks like a parabola.”  He also said, “I know it’s 
a function because it crosses the x and y.”  These remarks are similar to his responses to activity 
1, where he was looking for recognizable features to help him make choices for what to erase. 

Surprisingly when both students were asked for a definition of function, L responded that, 
“…a function is something that you can put into a problem.  If you put something in, a function 
will come out.”  She started to draw a picture to represent a machine as metaphor for a function 
and also spoke about a relation between x and y.  D had a more formal definition.  He stated that 
a function is “an equation with a domain and range in it…always a different output for a 
function.”  It seems he had some notion of mapping. Nevertheless, both students failed to enlist 
these ideas in their discussion of the graphs and table. 

The second theme that emerged with respect to student difficulties with piecewise functions 
was that students felt overwhelmed when dealing with multiple domain statements.  This sense 
of being overwhelmed manifested itself in the students as tentativeness.  As a result, both 
students employed simplification strategies, which I took to be a sign of coping with the 
overload. 

For example, although L showed that she had some understanding about multiple domain 
statements, when she was asked to write domain statements for her piecewise functions in 
Activities 3 and 4, she was very hesitant.  After thinking for quite a while, she chose to write just 
one number in each domain.  If a root was present, she chose that as the domain and if there was 
no root she chose a boundary point or the maximum value.  She knew that x should represent 
more than one number, but still simplified the task to finding one number.  It seemed that L was 
still engaged in considering functions as an action, dealing with one number at a time and that 
multiple domain statements were overwhelming. 

At first D was also very tentative and unsure about multiple domain statements.  He viewed 
the inequality statements in step 2 as a system of inequalities where there was one number that 
satisfied each statement.  Rather than having to think about sets of numbers, D reduced the task 
to thinking about one value.  However, when D realized that the domain zones did not overlap 
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and thus no solution was possible, he changed his mind and said “No, three numbers, one in 
each…because it can’t be greater than three and less than three. 

Interestingly, during Activities 3 and 4, D changed his mind.  When asked to write the 
domains for the piecewise functions he had created, he now thought that x represented many 
numbers. He was also able to write the domains of each piece in both activities, although he was 
not confident enough to write them as inequality statements.  For example, for one piece he 
wrote “-5 to -2,” which suggests that he may still not have been connecting the set of real 
numbers from -5 to -2 with x but may have been reducing the domain issue to one of determining 
the boundaries of a piece.  Also, D did not realize that the overlap of domains meant that one of 
his pieces violated the vertical line test.  But at least, it seemed like he was ready to shift his 
perspective whereas L did not seem as ready. 

The third theme that emerged was that the students did not consider domain when they 
thought about or graphed functions.  In Activity 1, neither student thought about domain in order 
to evaluate whether the tabular and graphical displays were functions.   In Activity 2, neither 
student was able to connect the domain statements with the function equations in a meaningful 
way.  To L, they were unrelated inequality statements.  To D, they were a separate problem to be 
solved.  In Activities 3 and 4, L clearly showed that she made no meaningful connection between 
the domain and the functions she created.  Although she had talked about inputs and outputs for 
functions and did complete both activities, domain was reduced to single values.  D showed 
some signs that he was beginning to think about domain in a new way, but more as an 
afterthought rather than as an important characteristic of a function.  His creations were mainly 
driven by a desire to create a familiar function and a continuous function. 

The three themes led me to make two conjectures about student experience with piecewise 
functions.  First, I felt that students being exposed to special functions or what Schwartz and 
Hershkowitz call “prototypical” functions (1999), like linear and quadratic functions, first, makes 
them less inclined to consider piecewise functions as functions.  Second, I felt that the way 
domain is normally taught, where regular graphs can be graphed without consulting the domain 
and often the domain is determined as a post-graphing exercise, leads students to view domain as 
superficial descriptor.  I therefore altered the way I taught function, so that students would be 
exposed to piecewise functions sooner and more often, with the conjecture that piecewise 
functions will be seen as more normal and that domain be seen as a vital component of a 
function. 

In the phase 2 interviews I reexamined the themes from phase 1.  The first theme, that 
students rely more on recognition instead of a definition of function, was far less evident in the 
phase 2 interviews.  The below basic student, Y, incorrectly rejected the three graphs in Activity 
1 as not being functions  “...’cause this one’s not like connected…and this one is not like a 
straight line…same with this one.”  However, when asked when a graph is a function, he 
responded, “I would say a graph that…have numbers that keep going up…as the x increases the 
y increases.”  This seems to show he had less of a reliance on the prototypical functions than the 
students in phase 1 had. 

Interestingly, the basic level student, M, was so comfortable with piecewise functions that his 
criterion for choosing all three graphs as functions, was based on the fact that they were 
piecewise. “This one is a function because it has three equations.”  “This one too…because it 
has…two starting points and two end points…A function should have one or two equations.”  It 
seemed that for M, a graph was a function, by default, if it was piecewise.  He was unsure about 
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the table however. “I am not sure about this one now…because it looks like the dots are just 
going up, I’m not sure.  I think no…because like I said a function should have two or three 
equations and…I think this one have only one equation.”  I can see the influence of the change in 
order of instruction in M’s responses.  While some of his thinking was flawed, there is a big 
difference between his criterion and the phase 1 students. 

The proficient student, T, showed a fairly advanced understanding of functions. “I think all 
of them are (functions)…’cause they don’t have repeat of the same numbers with different points 
(table) and this passes the vertical line test which no two points hit and the same with C and 
D…no two points on the same x axis when you draw a straight line down…if it has two points 
on x with a different y, yeah that’s not a function.”  T’s criterion relied on function 
characteristics rather than on recognition of familiar functions.  In summary, all three students 
showed more understanding about function then the phase 1 students, although Y’s 
understanding was only marginally so. 

The second theme showed a similar trend.  The two more advanced students showed less 
indication of being overwhelmed by multiple domain statements for functions that were 
presented to them and therefore relied less on simplification strategies.  Y, the weaker student, 
began thinking that x in the domain statements was an unknown to find.  “The x here you have to 
find out what is greater than three like four…x is like a number that you need to find.”  However, 
he later changed his mind. “Oh, four to infinity.  I’m just saying it couldn’t be a negative number 
or like two or less than three.”  His explanation for how the domain statements and the function 
equations are related was to say, “…it’s the same thing.  x could be this answer or this answer.”  
I took it that Y meant that the domain statement and the equation are just repeating the same 
information. 

M had no difficulty with there being three domain statements.  “If you graph it, this is just 
how they are showing you where you should start and where you should stop…no, where the 
line should stop.”  Where he got confused was in the inequality statements.  He was somewhat 
careless in reading the inequalities and made a conclusion that x≤-2 was superfluous since x<3 
overlapped x≤-2.  This would have been true except that x>3. 

T also showed no signs of being overwhelmed by multiple domain statements.  “I guess its 
trying to show you that any number you put in here…like negative five is lesser than negative 
two…and for the second one, whatever minus two is gonna be greater than zero but lesser than 
three or equal to, and x cubed, yeah, is always gonna be greater than three.”  He was the only 
student of the five who was able to talk about the equations and the domain statements 
simultaneously.  M and T’s responses indicated to me that they were on their way to developing 
a process view of function. 

The third theme, that students don’t consider the domain when graphing or thinking about a 
function, remained true for all three students.  In Activity 3, Y, M and T each created a graph 
that violated the vertical line test, which shows that they were not attending to domain issues.  As 
well, the students were unable to correctly identify the domains of each piece.  Y’s domain 
statements seemed to be an attempt to create similar looking domain statements with random 
numbers.  He was unable to justify or give reasons for his statements x<4, 3>x>5 and x<5 and 
the graphs did not reflect these values.  M identified a boundary point for each piece rather than a 
set of values, similar to L from phase 1.  For Activity 4, M again chose a boundary point for the 
left most and right most pieces and wrote x<1>7 for the middle piece (which should have been 
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1<x<7).  M was probably trying to express both end points in a way he had seen in a previous 
activity without a full understanding. 

T realized that his graph violated the vertical line test, even though the instructions said to 
create a function.  I interpreted this to mean that T saw the vertical line test and the domain as 
things one thought about after a graph was created, rather than before or during.  He also 
misidentified the domain, giving x and y coordinates of end points or local extrema instead of a 
set of values.  M and T had a much better sense of domain when presented with a pre-made 
piecewise function than when thinking about a piecewise function of their own making. 

Conclusion 
The new approach to teaching function seems to have had some impact on student thinking.  

The students in phase 2 were more inclined to apply function rules to determine what was and 
wasn’t a function then the phase 1 students.  The phase 2 students also appeared to be less 
overwhelmed with multiple domain statements for piecewise functions that were presented to 
them and thus did not employ simplification strategies.  However, when the phase 2 students 
were asked to create their own functions, the action view of function returned.  They seemed 
unable to maintain a more holistic perspective of their function.  This suggests the conjecture that 
it may be helpful for students to work in pairs.  One student could create a function and the other 
could describe the function, thus helping the first student see their function from a process view. 

While these conclusions are not completely positive, they are encouraging, especially in light 
of the fact that the phase 2 students were enrolled in a lower level class then the phase 1 students.  
It would be interesting to see the effect on student thinking of several years of a greater emphasis 
on piecewise functions and multiple domain statements. 
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The lack of current theories to guide analyses of the interplay between teaching and texts (cf., 
Ball and Cohen, 1999; Goldsmith and Schifter, 1997; Simon, 1997) became problematic in our 
ongoing professional development work with teachers.  In order to address this problem, we 
began the development of an interpretive framework and associated analytic constructs along 
with a data collection method that defines the data corpus needed for such an analysis.  As a 
result, our current work focuses on the refinement of the framework and associated constructs in 
the course of our ongoing analysis. Our goal is therefore to articulate by example our 
interpretive framework and constructs in the context of design research.  In doing so we provide 
tools for clarifying the relationships between teachers and text. 

Introduction 
Both current and historical approaches to textbook implementation have been premised on 

the belief that teachers can be trained to implement instructional texts with fidelity and that this 
fidelity to the curriculum will lead to increased student achievement (Fullan & Pomfret, 1977; 
Snyder, Bolin, & Zumwalt, 1992). Snyder et al. state that a focus on fidelity entails “(1) 
measuring the degree to which a particular innovation is implemented as planned and (2) 
identifying the factors which facilitate or hinder implementation as planned” (p. 404). In this 
approach, support resources are designed to ensure the developers’ intended enactment of the 
text. Teacher decision making is relegated to following scripted procedures outlined in teacher 
guides.  In these settings, teachers can be de-professionalized and the text can become the 
primary means of students’ learning. A fidelity approach to implementation gives agency to text 
resources and places strict adherence to the text as the goal of teaching.  This approach stands in 
stark contrast to the goals of an approach to implementation that characterizes the text as a tool 
(cf. Meira, 1995, 1993; van Oers, 1996, 2000) and teachers as designers.  In these latter settings, 
teaching is responsive to students’ contributions and the interplay of text resources, 
mathematically significant discussions, and teacher intervention creates the setting for learning to 
occur.  

When the emphasis of instruction is on building from students’ current understandings, 
classroom interactions cannot be scripted. As a result, this type of complex engagement cannot 
be reduced to manuals, text resources or guides. This sentiment is captured by Carpenter and 
colleagues when they claim, “teaching is complex, and complex practices cannot, in principle, be 
simply codified and then handed over to others with the expectation that they will be enacted or 
replicated as intended” (Carpenter, Blanton, Cobb, Franke, Kaput, & McClain, 2004). This 
makes the notion of codifying teaching and handing it over in the form of teacher guides as an 
image of implementation untenable.   

However, in this paper we argue that the degree to which administrators and designers (and 
teachers) hold a fidelity view influences the manner in which teachers are forced to grapple with 
implementation.  In our ongoing work in schools, we have in fact documented the tensions 
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inherent in conflicting views of implementation (cf. Cobb & McClain, 2004).  We have found 
evidence of these tensions in analyses of (1) administrators’ views and beliefs, (2) teachers’ 
perceptions of district expectations, and (3) teachers’ classroom instructional practices related to 
the use of text resources. 

The lack of current theories to guide analyses of the interplay between teaching and texts (cf., 
Ball and Cohen, 1999; Goldsmith and Schifter, 1997; Simon, 1997) necessitated our 
development of an interpretive framework and associated analytic constructs along with a data 
collection method that defines the data corpus needed for analysis.  As a result, our current work 
focuses on the refinement of the framework and associated constructs in the course of our 
ongoing analysis. Our goal in this paper is therefore to articulate by example our interpretive 
framework and constructs.  

In order to understand how the framework and constructs emerged from our work, it is 
necessary to situate our development efforts in the context of our commitment to a design 
research perspective (cf. Brown, 1992; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2004; 
McClain, 2004). We employ a design perspective in our work in schools so we naturally took a 
design perspective in the development of an interpretive framework.  Our perspective on design 
research entails the development of a conjectured trajectory to guide initial activity.  In the case 
of the development of an analytical framework, this involved conjectures about both the setting 
of teachers’ work and their orientation to mathematics instruction.  Our goal in the course of data 
collection was to document both of these aspects of practice.  The next step involved developing 
constructs to use in the analysis.  During the first round of analysis, we were able to 
operationalize the constructs.  However, it was only in the course of iterative cycles of 
conjecture, data collection and analysis that we were able to refine both the framework and the 
constructs.  As a result, we engaged in cycles of conjecture and revision.  This was made 
possible by our work in multiple sites.  A conjecture that resulted from analysis at one site was 
tested and refined in the course of subsequent analyses at another site as shown in Figure 1.  

Our framework has therefore been developed and refined in the course of three iterations of 
conjecture, data collection and analysis. diSessa and Cobb (2003) make a strong argument for 
design-based theorizing in their characterization of a genre of theorizing that they claim is 
“strongly synergistic with design-based research” (p. 177). What we offer here is then a mezzo-
cycle of design in building towards theory. 

Although the constructs we have used in our analyses have proved helpful, we find that the 
lack of theory to guide our analysis places our work in the space between analysis and anecdote. 
Remillard (in press) shares this concern in her review of the literature on research on teachers’ 
use of mathematics curricula.  

 
. . . a number of scholars over the last 25 years have studied how teachers use 

curriculum materials and the role that textbooks and curriculum materials have 
played in mathematics classrooms. However, findings from these studies have not 
been consolidated to produce reliable, theoretically grounded knowledge on 
teachers’ interactions with curriculum materials or to guide the work of those 
involved in the design or implementation of curriculum. 

 
She continues with a call for theoretical work in the field. “My primary assertion is that the 

current body of literature rests on under developed theoretical ground.” 
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Figure 1. The design research cycle of the development of constructs. 
 

We concur with Remillard and use our analyses and the development of constructs to 
propose an interpretive framework, or what diSessa and Cobb (2003) call an orienting 
framework. diSessa and Cobb make a distinction between orienting frameworks, frameworks for 
action and grand theory.  They note that the development of grand theory emerges from a series 
of testing and revising frameworks and constructs in multiple settings.  The strength of a 
framework or a construct lies in its ability to be predicable across settings.  Therefore, by 
continuing this iterative approach to analysis and theory development, we propose that this 
orienting framework has potential as a theoretical tool for analyzing the interplay of mathematics 
teachers’ practice and their instructional texts. We believe that all work should be in service of or 
in the development of theory. Hence our commitment to a design research approach to the 
development of a framework and constructs.   

Theoretical Perspectives that Guided Analyses 
We incorporated two theoretical perspectives into our analysis of the data in order to make 

sense of the complex dynamics involved in teaching and the institutional contexts through which 
it is enacted. First, we view teaching as a social practice. That is, we see the relationship 
between social structures (e.g. institutional settings – the classroom within the school and the 
school within the district), and local events (i.e. teachers’ enactment of current instructional 
decisions within the context of the classroom) as mediated by the social practice of teaching 
(Fairclough, 2004). Second, we view teaching as a distributed activity and therefore situate 
teachers’ instructional practices within the institutional settings of the school and school district.  

Development of initial 
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PD collaborations 
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We know from both first-hand experience and from a number of more formal investigations 
that teachers’ instructional practices are profoundly influenced by the institutional constraints 
that they attempt to satisfy, the formal and informal sources of assistance on which they draw, 
and the materials and resources that they use in their classroom practice (Ball, 1993; Brown, 
Stein, & Forman, 1996; Cobb, McClain, Lamberg, & Dean, 2003; Feiman-Nemser & Remillard, 
1996; Nelson, 1999; Senger, 1999; Stein & Brown, 1997). We therefore situate the analyses of 
the relationship between teacher and text in the broader analysis of the institutional context by 
drawing on the analytic approach proposed by Cobb, McClain, Lamberg and Dean (2003).  In 
particular, we focused on the relationships between groups (or communities) within the district 
by analyzing the boundary objects, boundary encounters, and brokers.  In each school district 
the analysis resulted in different institutional contexts. In two instances, there were no brokers.  
This made it difficult for the boundary objects to carry meaning across communities.  In 
addition, the lack of boundary encounters in these settings was therefore limited.  Our most 
successful setting was therefore the one in which brokers served a viable role in linking 
communication between teachers and administrators. 

Data Corpus 
Our data corpus is taken from three different school districts. One is from a southern east 

coast state, two is from a southeastern state, and three is from the west. Our data consists of 
modified teaching sets (cf. Simon & Tzur) of each teacher conducted twice a year.  This set of 
data consists of a pre-observation interview with the teacher in which we have the teacher outline 
the goals for the lesson and her expectations for her students.  We then conduct the observation, 
taking copious field notes.  The observation is followed by a post-observation interview in which 
we ask the teacher to reflect on the lesson. In particular, we are interested in modifications made 
to the lesson (if any) in response to students’ contributions.  All activities are audio- or video-
taped. 

Proposal of Constructs 
Although our primary work in each district is the ongoing professional development of 

communities of teachers, we have been unable to achieve our goals for teachers without 
understanding the role that text resources play in their instructional practice. We therefore placed 
the analysis of the institutional context in the background as we began to analyze the data in 
search of explanations for the relationships between the teachers and their text.  In doing so, the 
first construct that emerged was that of the teachers’ instructional reality.  [Elsewhere we have 
clarified in detail this construct (see Zhao, Visnovska, & McClain, 2004), so we will limit our 
discussion here.] By instructional reality we mean the teachers’ perceptions of their institutional 
context.  This included the constraints and affordances that they perceive as both supporting and 
hindering their ability to develop their practice according to their personal philosophies.  As an 
example, in many schools in the United States, teachers do not feel they are empowered to 
deviate in any way from the mandated curriculum due to high-stakes accountability testing – 
even when they perceive their current practices as not being in the best interest of their students. 

• While the notion of instructional reality was instrumental in our understanding our first 
site, it did not provide enough analytic power to explain the similarities and differences 
across sites one and two.  For this reason, the construct of agency was introduced in our 
analysis.  By agency we mean the location of authority as perceived by the teachers.  This 
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is directly related to instructional reality, but further teases out the role of texts in 
teaching. 

• At present, we have only introduced our third construct, professional status.  Again, the 
need for an additional construct emerged as we began analysis of the third site.  While 
there were many similarities in teachers’ instructional reality and where they placed the 
mathematical authority, we were unable to explain why the teachers at site three were 
willing to modify the text, delete sections of the text, and even introduce additional text 
resources.  Our current conjecture is that the difference can be explained in terms of 
professional status.  By this we mean the manner in which the district values or does not 
value teachers’ independent instructional decision making.   

• At this point it is important to clarify the interrelated nature of the three constructs.  The 
relationship between teachers and text cannot be separated from teachers’ instructional 
reality, nor from their placement of agency that is tied up in their professional status.  We 
therefore argue that while these constructs can be analyzed independently, it is the 
interrelated nature of these analyses that allow us to better understand the relationship 
between teachers and texts.  Further, at times it may be difficult to determine if an 
analysis of certain data lies within just one construct. For that reason, we propose an 
overlapping view of the constructs as shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2. The interrelated nature of the three constructs. 

Conclusion 
We view the offer of our interpretive framework or orienting framework as a first step toward the 

development of a guiding theory.  By taking a design approach to theory development, it then becomes 
possible for theory to “delineate classes of phenomena that are worthy of inquiry and specify how to 
look and what to see in order to understand them” which, in turn, “teach[es] us how to see” (diSessa & 
Cobb, 2003, p.79).  The development of theories to guide analyses of the relationship between teachers 
and texts therefore requires the field to engage in serious critique and analysis of our own and other’s 
work.  The cyclic process of analysis and critique allows the field to consistently build from what is 
already known and therefore move forward. This process then creates the opportunity for theory to 
emerge from practice in a systematic, disciplined manner. 
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Achieving the vision of standards-based curriculum is problematic for elementary school 
practicing teachers in urban school districts.  This study explored the salient instruction features 
of what goes on in classrooms that use a standards-based curriculum. This include lesson plan, 
activity sequence, questioning, classroom management, discipline, class environment, 
discussion, small group work, reflection, journaling, modeling, respect, humor, etc. This study 
found that teachers’ content knowledge, dynamic and vibrant use of artifacts, and respectfulness 
were important components of inquiry-based instruction perceived to enhance conceptual 
understanding in mathematics teaching and learning. Questioning, responding, negotiation of 
meanings, and active listening were other significant components for successfully 
implementation of a standards-based curriculum. It also found lesson debriefing vital no matter 
how stretched of time a teacher was 

Generally, in the USA, concerted efforts are under way to move students’ thinking from an 
instrumental and procedural understanding of mathematics to a relational and conceptual 
understanding (e.g. Senk & Thompson, 2003; Stigler & Hiebert, 1997). Studies have shown that 
inquiry-based instructional strategies enhance students’ conceptual understanding (Boaler, 1998; 
Flower, 1998; Reys, R. Reys, B., Lapan, & Holliday, 2003) and individual meaning-making. 
Inquiry-based instruction is better than traditional mathematics which is seen as dominated by 
teacher direction, student mastery of rules, and procedures learned by memorization.  

An important yet little understood question is - how do teachers negotiate the demands of a 
new curriculum with their established practice and their own pedagogical beliefs? What are the 
competing factors that teachers have to negotiate to effectively implement standards-based 
curricula? Several mathematics standards-based studies at all school levels (Cramer, Post, & 
delMas, 2002; Flower, 1998; Goodrow, 1998a; Mokros, 2000) profess that students who use 
these curricula materials attain higher test scores on examinations, as well as on measures of 
conceptual understanding.  These studies are concerned with the effects of curriculum on student 
achievement and fail to enlighten practicing teachers on the classroom cultures that existed for 
these achieving students. Current literature on standards-based curricula does not reveal the 
salient classroom features of what goes on in schools that have adopted these types of curriculum 
textbooks. 

Purpose of the Study 
The study explore modes of practice in implementing Investigations in Number, Data and 

Space [Investigations] (TERC, 1998) mathematics units by fifth grade teachers in an urban 
school district. Investigations is a K-5 standards-based curriculum whose objectives offer 
students connected and meaningful mathematical problems to promote in-depth thinking. The 
curriculum is designed to develop students’ conceptual understanding and critical thinking skills, 
and it encourages the use of inquiry-based instruction. Mokros (2003) notes that the 
Investigations require students “to develop their own strategies for solving problems, compare 
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approaches with their peers, and engage in serious discussion about differences in their strategies 
and results” (p. 113). Investigations has the dual purpose of also communicating “mathematics 
content and pedagogy to teachers” (Tierney, 1998, p. I-1).  

Implementing the Investigations requirements has created a dilemma since a majority of 
practicing teachers have learned, observed, practiced and taught traditional mathematics. 
Teachers are wrestling with shedding their old pedagogical beliefs, weighing the inquiry-based 
teaching strategies, mathematics content, and learning how to use Investigations (Putnam, 2003). 
The discrepancy between the implementers’ prior experiences, National Council of Teachers of 
Mathematics standards and principles, and Investigations’ objectives presented an important 
problem for study. How a teacher makes choices among the mathematical strategies in the 
textbook, plans a lesson, launches it, and sustains it were explored in this study. 

Theoretical Framework 
Inquiry-based instruction is multifaceted. It encompasses both subtle factors and non-subtle 

ones. This could be a teacher’s competency in mathematics content or a teacher having a highly-
structured class. This study postulates that a teacher facilitates inquiry-based instruction by 
planning out an activity, launching it, and creating a safe environment for exploration. This 
includes sharing and summarizing the activity either in a whole-class setting, or as collaborative 
small-group work, or between pairs of students. In organizing such groupings, each student is 
forced to rise above self by building on the contributions of other members. Both the teacher and 
students promote classroom discussion by asking probing questions, the ‘why’ and ‘how’ types 
of questions. Students influence one another, the teacher influences students, and students in turn 
stimulate the teacher’s ways of thinking by their divergent thoughts. In the process, students 
come to understand mathematics, make connections, and are enabled to communicate or use the 
new knowledge.  

 This study attributes any practice not perceived as inquiry-based to lack of teacher content 
knowledge, teacher pedagogical knowledge, and teacher pedagogical beliefs. Studies embedded 
in these three areas also points to that too. First, teacher content knowledge refers to subject 
matter, in this case mathematics (Ball & Bass, 2000). Shulman (1987) says that content 
knowledge is “the knowledge, understanding, skill and disposition that are to be learned by 
school children” (p. 8-9). Fennema and Franke (1992) remark that teaching become difficult 
without understanding content knowledge. Second, pedagogical content knowledge is seen as 
knowledge for teaching (Ball and Bass, 2000) a specific content. Shulman (1987) states that 
pedagogical content knowledge “represents the blending of content and pedagogy into an 
understanding of how particular topics, problems, or issues are organized, represented, and 
adapted to the diverse interests and abilities of learners, and presented for instruction” (p. 8). 
Third, teacher pedagogical beliefs do stem from prior school experiences (Brown & Borko, 
1992), including experiences as a mathematics student, the influence of previous teachers or of 
teacher preparation programs, and prior teaching episodes. According to van den Berg (2002), 
teachers pedagogical beliefs are personal truths that "typically reflect the teacher's opinions 
regarding the processes of teaching and learning" (p. 579).  

How well a teacher negotiates the content knowledge, the pedagogical knowledge, and 
pedagogical beliefs would make them effective at using inquiry-based strategies. Accordingly, 
the study employs negotiation of meanings in its theoretical considerations. This study views the 
instruction of mathematics as the negotiation of practices of school mathematics with the teacher 
as initiator. Negotiation in this study involves reasoning, interpreting, and making sense of 
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mathematical meanings. Frid (1994) defines negotiation of meanings in mathematics classrooms 
as “specific mechanisms of classroom interactions by which teacher conjecture, criticize, 
explain, test and refine ideas and procedures …” (p. 271). This study attributes any practice 
perceived as inquiry-based to teacher’s negotiation of meanings.  

Method of Study and Data Collection 
A qualitative case study research design was used to explore the teachers’ emerging practice 

models of implementing Investigations’ mathematics in urban fifth grade classrooms. Data were 
collected through open-ended interviews, classroom artifacts, audiotape and videotape of 
lessons, group meetings, lesson plans, lesson observations, and post-lesson conferences. Data 
were collected during fall 2003 from three fifth grade classrooms at Lake (pseudonym) 
Elementary School, with student ages ranging from 10-12 years. Lake is in a large city in a New 
York State school district.  

During preliminary analysis of data encompassing all elementary schools in this district, 
purposive sampling was used to identify this research site and the study’s participants. An 
assumption of the study was that if all the major extraneous school factors were the same and 
static then the methods teachers used in fifth grade would be similar. Thus of interest was a 
school known to have implemented the Investigations curriculum for over five years 
continuously. Lake Elementary School happened to be most suited to this study. The concept of 
inquiry-based instruction was not new in this school. Lake also had availability of Investigations 
materials, school administrators’ support, and equal distribution of students in class size and in 
their academic abilities, and so on. All the teachers at Lake used Investigations materials; 
additionally, teachers were focused on instructional issues, a key aspect of this study. These 
teachers concentrated on instruction using the Investigations curriculum and formed learning 
communities to develop professionally through lesson study. Another assumption of the study 
was that a teacher who closely taught at least six observed lessons as communicated by 
Investigations was seen as effectively employing inquiry-based instruction in this study. 

The study employs analytic induction in its data analysis (Bogdan & Biklen, 2003). For 
example, I analyzed the first five classroom observations by coding the field notes and listening 
to the tapes for recurrent themes and patterns. I further pursued those themes that emerged in-
depth. This helped me to focus my attention on issues pertaining to inquiry-based instruction. 
Post-lesson conferences were held with each teacher to understand their perceptions of the 
Investigations curriculum. Examples of questions posed in this meeting were: “How would you 
teach this lesson next time?” “Tell me about the lesson.” Also data were collected through in-
depth interviewing. This is a tool for studying phenomena. In this study the phenomenon is 
‘inquiry-based instruction’ and my interest was to understand the experience of the teachers and 
the meaning they make of the phenomenon. Once a month, I carried out a 30-minute interview 
with a participant, where they answered open-ended questions. Open-ended interview questions 
arose from the classroom observation notes and were connected to the purpose of this study 
except for the first interview. This is when I gathered demographic data about the teachers and 
familiarized myself with them to create a good rapport. All interviews, short conferences, etc 
were audio taped, transcribed and the data were analyzed to reflect the teachers’ voices and 
narratives. 
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Analysis and Interpretations 
Due to page limitation I will discuss only one of the analyses conducted. I used the 

components of inquiry-based instructions that were in the data to describe the emerging realities 
of inquiry-based instructional models. These were:  

• listening;  
• use of small groups;  
• partners;  
• responding;  
• teacher-led whole class discussion;  
• student-led whole class discussion;  
• questioning e.g. “How many dimes in a dollar?”;  
• discourse;  
• interaction;  
• use of games;  
• use of manipulatives;  
• choice time activities;  
• demonstration;  
• students’ work on “post-it”;  
• journal entry;  
• calculators; 
• charts; posters; 
• problem solving; problem posing; “redirecting them”; independent work; lecture;  
• discipline i.e. “What could you have done better?”;  
• and creation of a safe learning and teaching environment, among others.  
In analyzing the data, I summarized the inquiry components to include the following 

categories: launching a lesson, sustaining a lesson, summarizing a lesson, discussions, small 
groups, questioning, student reflections, humor, play-and-learn, and one-on-one interaction of 
teacher with student. Play-and-learn categories consisted of choice times and exploring 
classroom activity in the Investigations units. These aspects of inquiry-based instruction are 
based on this study’s purpose of: what are teachers’ ways of planning, launching, exploring, 
engaging students, sustaining students’ learning, and patterns of summarizing an Investigations 
activity? 

I analyzed six sets of classroom observation data that were collected from late October 2003 
to mid December 2003 in the three classes to quantify how the teachers used the above-
mentioned components in their instruction. These data were collected at a time of the year when 
everyone was comfortable with my presence in the classroom. The classroom’s 
sociomathematical norms and routines had been set and the teachers spent more time on 
mathematics instruction. I gave a score of one if a component was used on the observation day. 
A summary of this quantification can be seen in Table 1. A visual side-by-side bar chart of the 
Table 1 summary is given in Figure 1. 
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Inquiry Components Zsa Nora Jesse 
Launch Lesson (LL) 6 6 6 
Sustain Lesson  (SL) 2 6 6 
Summarize Lesson (SuL) 1 2 6 
Humor, play-and-earn/Explore Activity (EA) 5 3 6 
Discussion (Ds) 3 4 6 
Small Groups (SG) 5 0 6 
High-level Questioning (HQ) 2 5 6 
Student Reflection (i.e. journal) (SR) 0 2 4 
One-to-one student-teacher Interaction (OI) 4 1 6 

Table 1: Summary Table of Inquiry-Based Components  
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Figure 1: Bar chart of Inquiry-based Components 

Table 1, figure 1 and other analyses lead to three models of practice. The instructions in all 
the three classrooms were dissimilar despite several factors being the same at Lake. These were 
labeled as the partial inquiry-based instruction, traditional inquiry-based instruction, and 
inquiry-based instruction. I label Zsa’s practice as partial inquiry-based instruction model. I 
view her instruction as calling for more expert support to enable the inquiry components to 
become her day-to-day reflection-in and reflection-on practice. She understands the approaches 
implied in the Investigations curriculum, but she has not immersed herself in this type of 
instruction. She struggles not to fall back to traditional methods of instruction. She knows what 
she wants, but she has not observed enough of inquiry-based approaches to know all the 
components that have to be in place. I label Nora’s practice as traditional inquiry-based 
instruction model. Her instruction was teacher-centered even though her key curriculum unit was 
Investigations. She told the students what to do and gave little opportunity for the students to 
construct knowledge. I label Jesse’s practice as an inquiry-based instruction model. His model 
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matches existing research perspectives on inquiry-based instruction and he also used the 
Investigations materials as communicated by its developers.  

In implementing Investigations effectively, a teacher must facilitate the lesson launch, sustain 
exploration and summarize the lesson. A safe environment with humor is conducive for 
discussion. A culture of listening and responding to one another is easily created in such safe 
learning communities. Use of cooperative small groups, play, exploration, posing of high level 
questions, and reflection are key points. From this study, such an environment needs to be highly 
structured otherwise it would be chaotic. Jesse’s instruction illustrates the most effective inquiry-
based instruction, yet he is the one that had a highly structured learning environment. 

Conclusions and Suggestions 
Besides those studies conducted by curriculum developers, few studies to my knowledge 

have explored closely the various models of instructional strategies that practicing elementary 
school teachers use in implementing Investigations in fifth grade classrooms, which is the focus 
of this study. Ball (1996) observes that however clear and illustrative curricula materials are, 
they still fail to “provide guidance on the specifics of day-to-day, minute-to-minute practice” (p. 
502); what English (2002) refers to as “issues of significance to the classroom” (p. 7).   

In-depth competency in teacher content knowledge, teacher pedagogical knowledge, and 
teacher pedagogical beliefs enables a teacher to be versatile in using inquiry approaches. This 
causation is based on the assumption that all the major extraneous factors were the same and 
static for this study’s participants. Despite, several factors being the same such as availability of 
Investigations materials, school administrators support, equal distribution of students in class 
size and in their academic abilities, and so on, the teachers’ models of instruction varied. This is 
also in agreement with Remillard and Byrans (2004) study which found that teachers’ 
orientations impacted how they used standards-based curriculum.  

This study adds to the knowledge base, in that it focuses “on learners through focusing on 
teachers,” which is one of the PMENA (2006) goals. Classroom teachers are the implementers of 
a curriculum and how they negotiate its meaning impacts learner’s fluency and numeracy. This 
study assumed that inquiry-based instruction model as conveyed in Investigations materials 
would suit this study’s participants especially the newly graduated teachers from preparatory 
programs. However, the study found that teachers in each classroom employed different models 
of inquiry-based instruction and the novice teacher (Nora) was more inclined to use traditional 
methods of pedagogy.  

The study goes beyond looking at how teachers practice a standards-based curriculum. It 
found that the teacher preparation programs should align their courses to produce graduates who 
are capable to handle standards-based curriculum. Again, it found that teachers’ collaboration in 
learning communities assisted in narrowing the gaps in their practice. Teacher’s Zsa model of 
practice attests to this. She learned how to improve her instruction from peer collaborations and 
lesson study (a model of professional development) meetings. By the end of this study, she 
enacted Investigations materials as required.  

This study recommends more concerted effort should be put to pursue the lesson study model 
of professional development because it holds the key to narrowing gaps in classroom instruction 
with a hope of leaving no child behind. In considering this teacher-led model of professional 
development, the issues that influence inquiry-based learning, such as structuring the 
environment, using students’ thinking, and developing good questioning skills, should be 
addressed. 
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This research examines grantees’ work to improve mathematics teacher quality in a nationally-
funded program. The analysis employs qualitative methods using secondary source documents 
provided by 48 National Science Foundation Math and Science Partnership (NSF-MSP) 
grantees. Findings show that representations reported for mathematics teacher quality by the 
grantees mirror those used in previous research. Conditions used to influence mathematics 
teacher quality included research-based professional development, various roles for teacher 
leaders, and emerging collaboration between STEM and education faculty for the improvement 
of mathematics content knowledge for teachers at all levels.   

The No Child Left Behind (NCLB) Act of 2001 and related changes to educational policies 
for teachers have escalated the focus on teacher quality and the need for more well-trained 
mathematics teachers in the United States. Teacher quality in mathematics has a significant 
impact on the teaching and learning process. While there is agreement that teacher quality 
matters, there is less agreement on the variables used to measure teacher quality characteristics 
(Rice, 2003). As research, policy, and public interests converge around this issue there is a 
growing impetus to seek answers that improve teacher quality. These interests have resulted in 
funding for national initiatives focusing on the quality of mathematics teachers. The purpose of 
this study was to examine the work conducted by grantees in one of these national programs.  

Research on Teacher Quality 
To establish a background against which to examine what represents and influences teacher 

quality in a national program, we first examined the literature to determine how these constructs 
are discussed in research. We identified six primary variables researchers have studied as 
representations of individual teacher quality: subject matter (content) knowledge; pedagogical 
knowledge; teacher behaviors, practices and beliefs; certification status; experience; and general 
ability. We discuss three of these in the paragraphs that follow. 

Subject matter knowledge is a valued characteristic of mathematics teacher quality. Reviews 
of research indicate links between teachers’ subject matter preparation and teacher effectiveness, 
although these results are not always clear (Rice, 2003; Wilson & Floden, 2003). Results of 
studies examining the relationship between teachers holding subject specific degrees and student 
achievement vary, although mathematics results are generally positive (Goldhaber & Brewer, 
1997). Similarly, studies measuring teachers’ subject matter knowledge using undergraduate or 
graduate coursework in the subject generally show a positive relationship with students’ 
mathematics achievement. While the data suggests a generally positive relationship between 
coursework and student achievement, there is evidence of a curvilinear effect (Monk, 1994).  

Teacher education research often examines teachers’ pedagogical knowledge as evidence of 
teacher quality. These studies use measures such as degrees in education, educational 
coursework, and scores on exams measuring professional knowledge. Several studies indicate 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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the positive effects of teachers’ pedagogical knowledge (Ferguson & Womack, 1993). Generally, 
studies of teachers’ pedagogical knowledge have found positive relationships between education 
training and teacher effectiveness (Darling-Hammond, 2000).  

Teachers’ behaviors, practices, and beliefs are important characteristics of mathematics 
teacher quality. Although the observation of teachers’ behaviors and classroom practices 
provides a rich source of data, few large-scale studies have examined these practices. One such 
report (Weiss, Pasley, Smith, Banilower, & Heck, 2003) found that only 15 percent of observed 
mathematics lessons were categorized as high quality, while 27 percent and 59 percent were 
labeled medium and low quality respectively. Further results found that while teachers rarely 
make decisions about content, they often decide how to teach the content and those decisions are 
influenced by teachers’ beliefs about mathematics, about pedagogy, and about their students.  

Methods  
The present study is one sub-study of the Math and Science Partnership Program Evaluation 

(MSP-PE). The National Science Foundation Math and Science Partnership (NSF-MSP) 
Program is a major research and development effort with grants awarded to partnerships among 
preK-12 schools and institutes of higher education. One goal of the program focuses on 
improving mathematics teacher quality. The following research questions guided this analysis: a) 
How do grantees represent characteristics of teacher quality in mathematics? and b) What 
conditions do grantees identify as influencing teacher quality characteristics? 

The data sources in this study come from 48 grants awarded in three cohorts (FY2002-04) in 
three categories (Comprehensive, Targeted, and Institute awards). Grantees’ reporting 
requirements called for them to submit Annual and Evaluation Reports describing the grants’ 
yearly activities. These secondary documents were the source for the analysis. Data were 
obtained from documents available to the MSP-PE team between January 2005 and February 
2006. Researchers analyzed 123 reports. The examination was conducted using qualitative 
methods for a document analysis of secondary data sources (Miles & Huberman, 1994). The unit 
of analysis was the individual grant. Researchers analyzed documents in three phases. Six 
readers used an analytic protocol to code information and write summaries in the first phase. 
During the second phase, two PhD level researchers read and coded all of the written summaries 
using open and axial coding to examine themes (Strauss & Corbin, 1998). At the end of this 
phase, researchers identified main categories with examples from the reports. During the third 
phase, researchers used the categories in a key-word search process for the purpose of 
categorical aggregation (Stake, 1995) using the search tool on Adobe Acrobat Reader. By the 
end of this phase, researchers had created documents with lists of categories, examples from 
grantees’ reports, and frequencies of the main themes.  

Results 
The results are organized around two major themes: 1) how grantees represent characteristics 

of teacher quality in mathematics, and 2) the conditions they identify as influences on those 
characteristics. In this section, we discuss categories when their description was evident in at 
least 15 percent of the grants, showing the percentage of grants reporting a given category in 
parentheses. These percents are not meant to imply statistical relationships, but rather, to give the 
reader a sense of the proportion of grants reporting each theme and offer a “big picture” view of 
mathematics teacher quality in the program.  
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Representations that Characterize Teacher Quality 
Characteristics of mathematics teachers described by grantees focus on subject knowledge, 

pedagogical knowledge, and behaviors, practices, and beliefs. The most common representation 
of teachers’ subject knowledge was a score on a test of mathematics subject knowledge (63%). 
Twice as many projects used test scores to represent teachers’ subject knowledge as any other 
representation. Additional representations of subject knowledge included improved student 
achievement (29%), teachers’ subject preparation (including subject-specific degrees and courses 
taken in mathematics content) (23%), observations of the teacher that focused on subject 
knowledge (19%), and teachers’ responses to surveys about subject knowledge (19%). 
Approximately the same number of grantees reported representations for pedagogical knowledge 
as subject knowledge, although the representations differed in type and frequency. Grantees 
reported responses on surveys as the most frequently used representation of pedagogical 
knowledge (52%), followed by observations of teaching (42%). Other representations of 
teachers’ pedagogical knowledge included improved student achievement (27%), and teaching 
practices reported during interviews (25%). Unlike subject knowledge, where scores on tests 
were the most frequently used representation of teacher knowledge, scores on tests were the least 
likely representation used for pedagogical knowledge. However, several grantees used 
instruments that examined a combination of subject and pedagogical knowledge (i.e., Learning 
Mathematics for Teaching, Hill, Schilling, & Ball, 2004). The most common representation of 
mathematics teachers’ behaviors, practices and beliefs was responses on a survey (58%). Other 
representations of teachers’ behaviors, practices, and beliefs included observations of teaching 
(31%), and responses to interview questions (31%). Essentially these representations are how 
grantees operationalize teacher quality characteristics. 

Conditions Reported as Influences on Teacher Quality Characteristics 
Grantees report a variety of conditions that influence characteristics of individual teachers. 

All grantees identify Professional Development and Teacher Leadership as conditions 
influencing teacher quality characteristics (100%). Another commonly reported condition was 
Linking STEM Faculty with Teachers and Schools (48%). 

Professional development. Professional development focused on courses, workshops, and 
other training activities. The most common statements about professional development focus on 
content and pedagogy, and they are commonly described as intertwined. Grantees use 
terminology such as pedagogical content knowledge (Shulman, 1986) and mathematical 
knowledge for teaching (Hill, Schilling, & Ball, 2004) to show these interrelationships. While 
the focus on subject knowledge is traditionally emphasized for high school teachers, grantees 
focus on subject knowledge for teachers at all grade levels. Professional development frequently 
uses curriculum materials (71%) and includes work with student assessment items (54%) (i.e., 
developing various methods of student assessment, developing test items, and interpreting test 
item data). Grantees incorporate the use of mathematics standards documents (52%) in an effort 
to understand the contents of the standards documents and align standards with instruction. 
Professional development seminars also focus on analyzing students’ thinking using student 
products and videotaped episodes of students working (50%). Professional development uses 
teacher networks (48%) including peer observations and feedback, peer coaching, peer support 
structures, and study groups. Additional properties of professional development include the use 
of technology and other mathematics tools (46%), learning to conduct action research in one’s 
own classroom (27%), and lesson and unit planning (23%).      
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Teacher leadership. All grantees describe some form of teacher leadership and a majority 
discuss formal teacher leader positions (94%). The largest responsibility of teacher leaders 
described by grantees was to provide professional development for other teachers (96%). To a 
lesser extent, teacher leaders engaged in aligning curriculum, selecting and reviewing 
curriculum, and designing curriculum (35%). About one-fourth of grantees report teacher leaders 
engaged in setting, sustaining, and achieving school or grant goals (23%). Because the work of a 
mathematics teacher leader reaches beyond the work of a mathematics teacher, training for 
leaders was reported in many grants (81%). The most common attributes of leadership training 
included development of subject knowledge (42%), leadership skills and dispositions (42%), and 
pedagogical strategies (42%). Leadership training included such topics as conflict management 
and strategies for leading change in a school setting. About one-third of grantees include 
standards and curriculum (31%), coaching and mentoring strategies (29%), and how to provide 
professional development (27%) as part of leadership training sessions. Grantees are building 
capacity by developing local mathematics teacher leadership expertise for professional 
development and teacher induction. Examples of their leadership roles include coaches, mentor 
teachers, lead teachers, department chairs, curriculum specialists, master teachers, and locally-
based staff developers. Teacher leadership was described in all grade bands (elementary, middle, 
secondary). In some cases grantees utilize teacher leadership roles already in place in the school 
system, while other roles were constructed as part of the grant. 

Linking STEM faculty with teachers. Almost half of grantees report linking disciplinary 
faculty in the fields of science, technology, engineering and mathematics (STEM) with K-12 
mathematics teachers as a condition influencing teacher quality (48%). STEM faculty worked 
with education faculty, teachers, and teacher leaders to design, revise, and teach courses for 
teacher education programs, summer workshops, and in-service teacher programs (33%). 
Reports discuss STEM faculty serving in management roles, such as directing project activities 
(27%), and advisory or “expert” roles, including attending professional development sessions to 
provide on-site support (25%). The increased presence of STEM faculty in programs for 
mathematics teachers was reported as a means for increasing teachers’ subject knowledge. In 
some grants it appeared that STEM faculty were engaged in the grant in name only. Courses 
taught by STEM faculty as part of the grant were sometimes the same ones taught before the 
grant began. STEM faculty “involvement” is often recorded in numbers of hours of participation. 
However, rather than being engaged in teaching or designing teacher workshops, STEM faculty 
may attend a workshop where they learn more about the grant itself. There are also reports that 
allude to concerns among STEM faculty and education faculty showing misunderstandings about 
each others’ professions, philosophical differences on pedagogy, and resistance by STEM faculty 
(and/or their departments) to engage in education work.  

Discussion 
These results provide one view into the work of grantees in a nationally funded program 

focused on influencing mathematics teacher quality. Although the descriptive nature of grantees’ 
reports was a limiting factor in the analysis, researchers believed the selection of what to include 
in the reports was indicative of what grantees found to be important. While certain aspects of 
reporting are required across the program, there is still great latitude in what the grantees are 
permitted to submit, as evidenced by the range in the length of the reports (29 to 707 pages). 
These findings illustrate how grantees represent teacher quality characteristics in their work and 
conditions they report as influences on those characteristics.  



Vol.2-612  PME-NA 2006 Proceedings 

 

Improving Teacher Quality  
Grantees’ language on teacher knowledge emphasizes the importance of subject knowledge, 

similar to recent policy and professional organization statements. Their descriptions of 
representations used (i.e., scores on tests, surveys, observations) for teachers’ subject and 
pedagogical knowledge closely align with variables used to measure teacher quality in research. 
The importance of subject and pedagogical knowledge as an influence on the quality of 
individual teachers is clearly based on research and policy statements (Monk, 1994; Wilson & 
Floden, 2003). It is clear from the findings that grantees have adopted research-based practices in 
the design of professional development (Loucks-Horsley, Hewson, Love, & Stiles, 1998). Their 
work includes core features (content knowledge, active learning, and coherence) and structural 
features (type of activity, duration, and collective participation) that have been shown to have a 
significant positive effects on teaching (Garet, Porter, Desimone, Birman, & Yoon, 2001). 
Findings in the present study show that grantees report a strong emphasis on subject preparation. 
They report active learning, the use of standards, and the analysis of student work. Grantees 
foster coherence and collective participation by using teacher networks in the same subject areas, 
grade levels, and schools. It seems clear from the reports that grantees are knowledgeable on the 
conditions shown to be effective in improving individual teacher quality characteristics.   

Negotiating New Relationships  
Almost half of grantees described the involvement of STEM faculty in education activities 

for teachers. The results show that linking STEM faculty with K-12 teachers and schools is used 
to bolster the content of teacher learning activities. STEM faculty are involved in planning and 
teaching courses and workshops and participating as content experts. Grantees’ reports hint at a 
disconnect between some STEM and education faculty. In another report on the MSP, issues 
arose in one grant over differences of opinion about pedagogical strategies between STEM and 
education faculty (Zhang et al., 2006). Differences of opinion between STEM and education 
faculty on education issues are not isolated to the grants. In a publication of the American 
Mathematical Society, an opinion piece suggested taking the following approach to supporting 
the work of standardized testing: “If you have an opportunity to discuss K-12 pedagogy, pass. 
There are exceptions to this of course, but at the moment alienation is more likely than progress” 
(Quinn, 2005, p. 399). In contrast, other academic mathematicians have described their 
involvement with school mathematics and how essential it is that they be involved with K-12 
education efforts (Bass, 2005). Bass highlights the importance of mathematicians developing an 
understanding of the work of K-12 mathematics so that they can see ways that their own 
mathematical knowledge can contribute to solutions for problems in mathematics education.  

Traditional university reward structures for STEM faculty often hinder their involvement in 
mathematics education work. In the MSP Program, STEM and education faculty across the 
country are working together to improve mathematics education. These parallel efforts have the 
potential to influence the structure of future collaborative work in K-12 mathematics education. 
In addition to the teacher retention challenges faced by educators, reports show that the 
proportion of students earning degrees in STEM fields has declined, and that factors contributing 
to this decline include subpar teacher quality at the high school and college levels, among other 
factors (Ashby, 2006). These are interrelated challenges that face STEM and education faculty. 
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The Promise of Teacher Leadership 
The findings suggest that grantees view teacher leadership as an important means of 

influencing teacher quality. While teacher leadership is a construct that has been examined in the 
literature for several decades (Rowan, 1990), recently, there has been increased interest in 
teacher leadership, including broader views of the construct, and its effects on teaching and 
learning (Spillane, Halverson, & Diamond, 2001). Much of the existing literature on teacher 
leadership focuses on formal roles of leadership, characteristics of teacher leaders, and 
conditions that facilitate teacher leadership development; less research focuses on the effects of 
teacher leadership, particularly on other teachers and students (York-Barr & Duke, 2004). 
Descriptions of teacher preparation and professional development programs which are, in part, 
intended to develop teacher leadership include three major foci: ongoing knowledge 
development of pedagogical issues; knowledge development of methods of school change; and 
knowledge and skill development of techniques for supporting colleagues’ growth (York-Barr & 
Duke, 2004). These elements are evident in the reports with 81 percent of grants describing 
teacher leadership training which includes these key features. 

Teacher leaders in the present study are viewed as sources of local outreach for the grant by 
assisting in the development of, facilitating the implementation of, and communicating the goals 
and activities of the grants and they serve. There is an underlying assumption in the reports that 
teacher leaders influence teacher quality in this more systematic way. For example, when teacher 
leaders with subject specific skills mentor new teachers in their schools who are teaching in the 
same field, new teachers may be more likely to be successful in their beginning years of 
teaching. In this example, the teacher leader has the potential to influence new teacher induction. 
Most of the existing research on the effects of teacher leadership has focused on the effects on 
teacher leaders themselves. Evidence of the effects of teacher leadership outside the individual 
leader is more unclear. The grants in the present study are in a unique position to contribute to 
this research.  

Conclusion 
Several important insights have emerged from this examination. The representation of 

characteristics of individual teacher quality for mathematics teachers and the conditions 
identified as influencing those characteristics, in particular, professional development, appear to 
be well defined by the grants and are consistent with research findings. There is collaboration 
among STEM and education faculty for the support of K-12 mathematics teaching 
improvements; however, institutional structures, evidence of STEM impact, and intensity of 
STEM faculty engagement, are still being sorted out as faculty negotiate new roles and 
relationships. Teacher leaders may play an important role in influencing the conditions that 
influence teacher quality, and there is much research to be done in this area. Documenting and 
disseminating the new knowledge gleaned in these initiatives is the key to ensuring that others 
will learn from grantees’ experiences. 

Endnotes 
1. This research is part of the Math and Science Partnership Program Evaluation (MSP-PE), 

supported by Contract No. 0456995 from the National Science Foundation. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the authors 
and do not necessarily reflect the views of the National Science Foundation (NSF). 
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2. This paper is an abridged version of a report submitted to the NSF for the MSP-PE June 
2006 Quarterly Report. 
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This study reports the results of research on the effects of peer coaching on two dimensions 
closely linked to student achievement: teachers’ instructional practice and teacher beliefs about 
their capacity to impact student achievement. The study tracked 12 grade 3 and 6 teachers as 
they participated in a professional development program over a six-month period. The mode of 
in-service delivery consisted of peer coaching, workshops on standards-based teaching, and self-
assessment. The study found that 1) teachers implemented peer coaching largely as intended. 2) 
They enacted key elements of standards-based mathematics teaching in their own classrooms.3) 
Teachers changed their practice in intended directions with regard to student-student interaction 
and tasks assigned to students.4) Effects on teacher practice can be attributed to a combination 
of peer coaching with content specific in-service sessions.  

Research Objectives 
The focus of this study was to measure the effects of peer coaching and related in-service on 

grade 3 and 6 teachers’ instructional practice and their beliefs about their instructional capacity 
teaching mathematics.  

Perspectives/Theoretical Framework 
Our theory of teacher change (described in Ross & Bruce, in press) is based on a model of 

teacher self-assessment developed within the broader framework of social cognition theory 
(Bandura, 1997). In this conception, teacher willingness to experiment with instructional ideas, 
particularly techniques that are difficult to implement, depends on teachers’ expectations about 
their ability to bring about student learning; i.e., teacher efficacy. Of the four sources of teacher 
efficacy information identified by Bandura (1997), the most powerful is mastery experience – 
teachers’ judgments about being successful in the classroom. The primary data for such self-
assessments are teacher perceptions of changes in student performance gleaned from student 
utterances, work on classroom assignments, homework, and formal assessments.  

Teachers who anticipate that they will be successful set higher goals for themselves and their 
students. High expectations of success motivate classroom experimentation because teachers 
anticipate they will be able to overcome obstacles and experience the benefits of innovations. 
Teachers with high efficacy produce higher student achievement (Mascall, 2003; Muijs & 
Reynolds, 2001; Ross, 1992; Ross & Cousins, 1993; Watson, 1991), provided that teachers have 
access to powerful innovations. Teacher efficacy contributes to achievement because high 
efficacy teachers: use classroom management strategies that stimulate student autonomy; attend 
to the needs of low ability students; and, positively influence students’ perceptions of their 
abilities (evidence reviewed in Ross, 1998).  

Peer Coaching 
Norms of privatized practice limit peer opportunities for influencing teacher self-

assessments. Isolation can be overcome by creating professional school communities with shared 
values, collaborative decision making, and reflective dialogue (Louis & Marks, 1998). A 
_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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structured approach for building such a community is peer coaching where pairs of teachers of 
similar experience and competence observe each other teach, negotiate improvement goals, 
develop strategies to implement goals, observe the revised teaching, and provide one another 
with feedback. Coaching has reported positive effects when the appropriate climate is developed 
(McLymont & da Costa, 1998). In a review of peer coaching literature, Greene (2004) found that 
teachers in peer coaching programs implemented new instructional strategies more than control 
group teachers, used the new strategies in more appropriate ways, had longer term retention of 
new strategies, and understood the purposes of instruction. Peer coaching increases teacher 
implementation of reform-based teaching practices and contributes to increases in teacher 
efficacy (Kohler, Ezell, & Paluselli, 1999; Licklider, 1995; Wineburg, 1995).  

Peer input can influence teacher self-assessments in multiple ways. For example, peers can 
influence self-observations by directing teacher attention to particular dimensions of practice. 
Peer feedback can also influence teacher judgments about the degree of their goal attainment. 
Further, peers can influence teacher practice by suggesting and implementing specific strategies 
together. These opportunities for positive peer influences on teacher self-assessment involve 
recognizing teaching success (valid mastery experiences). Peers also have opportunities to 
influence teacher efficacy through three other sources of efficacy information proposed by 
Bandura (1997): social persuasion (persuading colleagues that they are capable of performing a 
task), vicarious experience (observing successful performances of a similarly capable teacher 
peer), and physiological and emotional cues (increasing positive feelings arising from teaching 
and connecting them to teaching ability or reducing negative feelings arising from teaching 
experiences). 

Peer coaching is not universally successful however. For example, Perkins (1998) found that 
teachers had difficulty with communication skills when interacting with their peers in coaching 
settings. They asked few open-ended questions, paraphrased infrequently, and used limited 
facilitative probes. Busher (1994) reported a study in which teachers were randomly assigned to 
peer coaching and control groups. Training consisted of sessions on supportive skills, 
questioning, nonverbal communication, modes of learning and thinking skills. The treatment had 
no effect on instructional practice, most likely because there was no attempt to provide teachers 
with specific instructional skills. These findings suggest that an effective peer coaching program 
needs to combine training of the peer coaching process with training in curricular content.  

Integration of in-service on peer coaching and mathematics instructional training 
In this study, a four-session in-service series was designed to heighten and direct peer 

influences on instructional decisions with the goal of increasing teachers’ implementation of 
standards-based mathematics teaching and enhancing their perceptions of their ability to enhance 
learning using a reform curriculum. The key challenges were reducing teacher isolation to make 
peer influence accessible (through peer coaching opportunities) and providing teachers with the 
conceptual and strategic tools to move toward mathematics reform implementation.  

The in-service brought peers together and provided strategic tools to enable teachers to move 
toward a more constructive approach to mathematics teaching. The central tool was a rubric for 
mathematics teaching that focused teachers’ peer observations and their improvement goals on 
dimensions of mathematics teaching of highest priority to subject experts. We developed, from a 
research synthesis (Ross, McDougall, Hogaboam-Gray, 2002) and NCTM policy statements 
(NCTM 1989; 1991; 2000), ten characteristics of standards-based mathematics teaching. The 
rubric was constructed from observations and interviews with teachers who ranged from 
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traditional to innovative (McDougall, Lawson, Ross, MacLellan, Kajander, Scane, 2000; Ross, 
Hogaboam-Gray, McDougall, & Bruce, 2001; Ross, Hogaboam-Gray, & McDougall, 2003). For 
each of the 10 dimensions, we identified four levels, arranged in order of increasing fidelity to 
NCTM Standards. The validity of the hierarchy of levels was established by a panel of content 
experts (Ross & McDougall, 2003) and by a series of studies that tested the validity of a self-
report survey and the related rubric (Ross et al., 2003).   

Methods & Data Sources 
The in-service program was based on the Professional Development Standards for 

Elementary Mathematics (Hill, 2004): teachers constructed mathematical meaning by engaging 
in tasks and content comparable to those undertaken by their students; the in-service focused on 
classroom practice (e.g., teachers examined examples of student work); teachers worked 
together, rather than individually, on in-service tasks; in-service presenters modeled the 
recommended instructional practices; the in-service illustrated how students learn mathematics; 
teachers participated in the design and delivery of the in-service. These standards directly 
contribute to teacher learning (Brandes & Erickson, 1998; Garet, Porter, Desimone, Birman, & 
Yoon, 2001; Loucks-Horsley & Matsumoto, 1999; Ross et al., 1998). 

Participants were 12 grade 3-6 teachers reflecting a range of mathematics teaching from 
traditional to reform. Four pairs were grade 3 teachers; two pairs were grade 6. All were 
volunteers. Sources of data included:  

(a) Teacher observations at the beginning and end of the project with regard to three sets of 
teaching strategies that were the focus of the in-service: selection of mathematical tasks, 
construction of mathematical knowledge, and support for student-student interaction. Five 
observers were trained using the Classroom Observation Guide which provides observers with a 
definition of the three dimensions of mathematics teaching and specific probes to guide the 
observer’s collection of information. Observers recorded specific examples of teacher actions 
relevant to each dimension. The observer training sessions emphasized the importance of 
detailed descriptions of teacher practice, consistency in application of the observation template, 
and collecting sufficient information to make a rubric placement decision on the four point scale.  

(b) Teachers completed an online assessment at the beginning and the end of the study. The 
assessment provided a global score representing commitment to standards-based teaching.  

(c) Each teacher was observed by his/her peer on three occasions. Each pair compared peer 
observations to self-perceptions, negotiated improvement goals, devised strategies to implement 
goals, and provided feedback on instructional changes. Each teacher brought a summary of their 
peer coaching experience to the following in-service.  

(d) Each teacher pair was interviewed at the end of the study. The interview guide focused on 
whether teachers perceived change to have occurred, the identification of specific examples of 
teacher and student activity that illustrated changes in practice, and teacher theories about which 
aspect(s) of the in-service contributed to the change. These interviews were transcribed verbatim. 

(e) Three researchers recorded their observations of teacher responses to the in-service 
sessions in field notes that were compiled immediately after each session. 

Analysis was qualitative, relying primarily upon pattern matching (Mark et al., 2000). 

Results and Conclusions 
The coaching reports indicated that in virtually all pairs in each of the three sessions, teachers 

observed their partner teaching mathematics; gave feedback to their partner on the lesson 
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observed; obtained feedback from their partner on their own teaching; helped their partner set 
mathematics teaching goals; and, were given help on goal setting from their peer.  

The main finding of the study is that teachers moved their mathematics teaching toward 
reform. The observational data summarized in Table 1 found that the 12 participants moved 
toward a more constructivist approach in the support they gave for student-student interaction 
(D8). In addition, teachers’ assignments of student tasks were more likely to include rich 
problems that encouraged multiple solutions. Although there were no pretest to posttest changes 
in construction of knowledge (D5) during observations, teacher reports of encouraging students 
to construct their own meaning in mathematics class were clearly described in peer interviews. 

 
Pretest Posttest Dimension of Mathematics Teaching 

Mean SD Mean SD 
D5: Construction of Knowledge 2.92 .76 2.96 .66 
D4: Tasks: Multiple Solutions 2.75 .87 3.08 .82 
D4: Tasks: Multiple Representations 2.46 .66 2.46 .72 
D8: Student-Student Interaction: Explicit Instruction 2.33 .78 2.85 .82 
D8: Student-Student Interaction: Task Assignment 2.79 .89 3.60 .84 
D8: Student-Student Interaction: Communication 2.21 .94 2.70 1.25 

Table 1 Pre and Post Teacher Ratings (N=12) 

Teachers attributed the improvements in their practice to peer coaching and to the 
information about mathematics teaching presented at the in-service sessions. Contrary to our 
expectation, it was not an either-or situation in which one factor was clearly more powerful than 
the other. The two core processes reinforced each other. Conceptually, 1) the peer coaching 
process awakened in teachers the need for change; 2) the workshop presentations provided 
explicit models of alternative practice; 3) the between session activities provided opportunities 
for experimentation, and 4) the debriefing conversations provided opportunities for teachers to 
establish ways to integrate new practices into their existing styles. These four stages correspond 
to the model of professional reflection in Ross and Regan (1993a). They argued that teacher 
change occurs through four processes embedded in professional reflection: 1) dissonance, 2) 
synthesis, 3) experimentation, and 4) integration. 

The second key finding of the study is that the in-service had positive effects on teacher 
beliefs in their capacity as mathematics teachers. The initial response of some teachers to both 
the peer coaching process and the workshop presentation was depressed confidence. By in-
service end most teachers reported that they felt more capable of teaching mathematics 
conceptually. Teacher interpretations of their effectiveness were elevated through several 
affirmations of their competence, such as recognizing that some of their existing practices were 
similar to those recommended by presenters, by receiving positive feedback from their partners, 
and by acquiring and successfully using new instructional strategies in their own classrooms.  

In some instances peer coaching was more successful than previously attempted strategies for 
dissemination of teaching ideas. Jill reported that prior to the coaching session she had been 
trying for some time to persuade her partner, Janice, to adopt a specific strategy for mental 
mathematics that worked really well in Jill’s class [Int-Jill]. It was only when Janice saw the 
method in action in Jill’s class during the peer coaching session that she decided to use it in her 
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own classroom. By the end of the project, Janice reported that she was using it on a regular basis 
[Int-Janice].  

Teachers frequently reported that they were able to put their observations into immediate use. 
For example, Susan watched Karen teach a patterning activity, was deeply impressed (“I was in 
awe” [Int-Susan]) and then used the same lesson with her own students. Susan was particularly 
appreciative of the opportunity to observe an experienced peer because Susan was teaching grade 
3 for only the second time—most of her experience was as a kindergarten teacher. 

Teachers also cited student evidence (enthusiasm, quality of student discourse, effort seeking 
multiple solutions) for their claims of improved teaching performance. The evidence of increased 
mastery experiences was extensive and explicit. The in-service also provided teachers with 
vicarious experiences. By observing teachers like themselves successfully enacting standards-
based teaching, teachers felt more capable. 

A less anticipated third finding was that the opportunity to engage in peer coaching led 
participants to self-reflect more frequently and deeply. Participants reported that they normally 
have little opportunity to reflect on the success of lessons, beyond the private ruminations that 
occur “on the fly…as you are driving home” [Int-Janice]. In contrast the peer coaching process 
provided an opportunity for teachers to explicitly share their interpretations of lesson outcomes 
with a knowledgeable colleague who provided feedback. For example, Helen’s observations of 
William using a new text resource led her to think about how she was using that same resource. 
Helen saw that William’s implementation was more advanced than hers but she felt that she had 
incorporated some elements into her teaching. Helen concluded that although she was not 
“following it as strictly as” William, she was on the right track [Int.-Helen]. Simultaneously, 
William, as the observed, was questioning his own teaching: “I find myself questioning things 
that I am doing more and more...critically looking at the way I'm teaching and evaluating.” [Int-
William] Both Helen and William believed that self-questioning led to higher quality instruction. 

Limits of the peer coaching relationship 
Some teachers had difficulty making contact and sustaining conversations about their 

teaching [Field notes-S3]. A key impediment was that five of the six pairs involved cross-school 
groupings. This resulted in considerable travel to get to the partner's school. Difficulty in the 
debriefing component of peer coaching may have also been related to the anxiety some teachers 
felt about being observed. For example, Janice remembered asking herself during a peer 
observation lesson: “Why can’t I understand what that student is saying? I bet Jill [the peer 
observer] knows what that student is saying.” [Field notes-S2] Further, some peers were 
reluctant to suggest substantive changes unless their partner suggested it first. 

Recommendations/Implications 
The in-service had a positive effect on teachers, demonstrating that professional development 

combining peer coaching with carefully designed input on instructional strategies is a fruitful 
approach to the development of teacher capacity. We recommend that the procedures used in this 
study be used in subsequent in-service but we also think they could be strengthened in several 
ways: 1) Consider a whole school approach by moving in-service to the school. We believe in-
service effects would be heightened if teachers worked in same grade pairs embedded within a 
school staff. A key part of this strategy would be to link the peer coaching process directly to the 
school plan. 2) Extend the treatment to five coaching sessions rather than three. Since the initial 
reaction to the peer coaching process for some teachers was a reduction in confidence, which 
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subsequently rebounded, extending the number of coaching cycles would maximize teacher 
learning. 3) In subsequent sessions we suggest sharing more control with teachers by inviting 
them to self-select goals from among the ten dimensions in the rubric.  

Relevance of Paper to PME-NA Goals 
This paper addresses the core goal of deepening the psychological aspects of teaching and 

learning mathematics by connecting a key mathematics education problem (how to increase 
teacher implementation of standards-based mathematics teaching) to a psychological theory 
(social cognition) and to a key theme in psychology (teacher beliefs about their capacity). 
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While past research supports that students experience difficulty developing deep understandings 
of exponential functions (Confrey & Smith, 1995), little research efforts have focused on how 
students come to understand this function family. Moreover, little is known about how in-service 
secondary mathematics and science teachers think and reason about exponential functions. The 
intent of this study is to describe the various ways in which high school mathematics and science 
teachers build their knowledge of exponential functions using covariational reasoning as a tool 
for understanding exponential behavior. 

Understanding the concept of exponential functions and multiplicative rate of change is 
critical for students as they progress through mathematics. Not only are exponential growth and 
decay topics encountered in our everyday world, these functions are embedded in the sciences as 
well as mathematics, and they provide a model for representing multiplicative growth and decay 
patterns for real world phenomena. The National Council of Teachers of Mathematics Principles 
and Standards (NCTM, 2000) advocate for high school and college mathematics curricula to 
include the topic of exponential functions and emphasize the importance of developing this 
functional understanding and multiplicative behavior conceptually through the use of real world 
contexts. Research has shown that students experience difficulty developing a profound and 
robust understanding of exponential functions (Confrey & Smith, 1995; Weber, 2002). However, 
irrespective of these findings, more research is needed to investigate the process of coming to 
understand exponential functions. This paper will discuss the role of covariation in learning 
exponential functions and in the development of building a profound, flexible knowledge base of 
multiplicative structures. Findings from a study will be discussed on the various ways that high 
school mathematics and science teachers use covariation when performing exponential function 
tasks. 

Theoretical Framing of the Study 
Many researchers have investigated covariational notions using rate (Thompson, 1994a, 

1994b), multiplicative structures of exponential functions (Confrey & Smith, 1994, 1995), 
quantities varying simultaneously (Saldanha & Thompson, 1998), and functions modeling 
dynamic events (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). Beginning with Thompson’s 
(1994a) study of images of rate, it is evident that his description of rate involves aspects of 
covariational reasoning and proportionality. Consider the case of constant speed in his example 
that illustrates speed as emerging out of the activity of coordinating distance and time. Total 
distance traveled can be imaged as accumulations of accrued intervals of time, which lead to the 
idea that “the total time of the trip is the same as the accrual of distance in relation to the accrual 
of time” (p. 235). The concept of rate emerges from the mental activity of covarying distance and 
time proportionally. 

Additional research supports that students experience difficulty developing a profound and 
robust understanding of exponential functions (Confrey & Smith, 1994, 1995; Weber, 2002), 
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which could be connected to impoverished understandings of rate and multiplicative 
relationships. Many textbooks and mathematics curricula present this topic by first introducing 
formulas and rules of exponents while emphasizing conventional algorithmic methods devoid of 
context (Confrey & Smith, 1995). Confrey and Smith (1994) argued that this conventional 
correspondence approach is counterintuitive for students given the emphasis of curricular 
materials on creating a correspondence between x and y without understanding the progression 
of the output values in relation to the input values. Both Confrey and Smith advocate a more 
covariational approach to learning functions where students move flexibly from one output value 
to the next while coordinating with moves from corresponding input values. 

Furthermore, Carlson et al. (2002) define covariational reasoning “to be the cognitive 
activities involved in coordinating two varying quantities while attending to the ways in which 
they change in relation to each other” (p. 354). In this study, Carlson et al. proposes a covariation 
framework encompassing detailed mental actions that students exhibit as they engage in 
mathematical activities. As a result of this study, the covariation framework was extended to 
include a dimension that describes the mental actions of coordinating input and output values in 
the context of exponential functions. Certain questions were at the forefront of this analysis, such 
as what do the mental actions of reasoning covariationally look like in terms of exponential 
functions and to what extent do in-service high school mathematics and science teachers apply 
covariational reasoning when attempting to solve mathematics situations in the context of 
exponential functions. Carlson et al.’s framework was used to analyze data gathered from this 
study and attempts were made to describe the mental actions of reasoning covariationally within 
the context of exponential functions. The results of this study are summarized in this paper. 

Methods 
The subjects of this study were 15 in-service secondary mathematics and science teachers 

with a wide range of teaching experience, as well as mathematical ability. These teachers were 
participating in a graduate-level mathematics course, uniquely named the Functions Course, 
which was designed to promote the concept of functions (i.e. linear, quadratic, exponential, and 
trigonometric functions). Particular emphasis was directed to building a deeper understanding of 
rate of change through covariation for each of these function families. The researcher for this 
study was also one of the Functions Course instructors and curriculum designers for materials 
used in the course. 

A 25-item Precalculus Concept Assessment (PCA) instrument was given both as a pre-test 
and post-test to all 15 mathematics and science teachers participating in the Functions Course. 
The assessment instrument was designed to capture subjects’ knowledge of functions in general 
and each item on the assessment is grounded in past research (Engelke, Oehrtman, & Carlson, 
2005). PCA pre-test and post-test scores for these teachers were analyzed with the lens focused 
on three exponential function tasks. The results of these tasks will be discussed and two of these 
questions will be explored in detail (Bacteria Question and Decreasing Question). 

In addition to the PCA analysis, videotaped clinical interview sessions were conducted to 
gain further insights on mathematics and science teachers’ ways of thinking about exponential 
functions. For this discussion, the focus will be on one interview question (Half-Life Question) 
that provided interesting insights into the role of covariation when reasoning through exponential 
tasks. We will see in the results section of this discussion that exponential decay proved to be a 
larger obstacle than was first expected. 
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These interviews were conducted after completing a 3-week unit on exponential functions in 
the Functions Course, but before the PCA post-test was given. Each interview session was 
transcribed and initially coded using open and axial coding to build potential categories. After 
potential categories were constructed, the analysis concentrated on teachers’ use of reasoning 
covariationally through each of the responses to the questions above. Carlson et al.’s (2002) five 
general levels of covariational reasoning were used to help further code utterances and to 
characterize the mental actions involved in applying covariational reasoning when responding to 
exponential function tasks. The process of portraying each teacher’s reasoning abilities on these 
tasks provided insights for extending the covariation framework to include a dimension that 
characterizes the reasoning abilities central to learning and understanding exponential functions. 

Results Quantitative Analysis and Results 
The results for the quantitative portion of the study (PCA analysis) revealed that both 

mathematics and science teachers have difficulty with function-related tasks. The mean score for 
the PCA administered to the subgroup of 15 teachers was 11.6 (out of 25) for the pre-test and 
15.3 (out of 25) for the post-test. Focusing specifically on the three exponential tasks of the PCA, 
the mean score was 1.27 (out of 3) for the pre-test and 1.87 (out of 3) for the post-test. Itemized 
results of the scores for the exponential tasks are detailed in Table 1. 

 
Exponential Tasks Correctly Completed (n = 15) 

 Bacteria 
Question 
Pre-test 

Bacteria 
Question 
Post-test 

Inverse 
Question 
Pre-test 

Inverse 
Question 
Post-test 

Decreasing 
Question 
Pre-test 

Decreasing 
Question 
Post-test 

Mathematics 3 5 3 4 6 5 
Science 3 6 1 1 3 7 

# Correct 6 11 4 5 9 12 
% Correct  40.00% 73.33% 26.66% 33.33% 60.00% 80.00% 

Table 1. PCA Data (Version H) 

Each of the exponential tasks emphasizes various levels of general understanding of 
functions, as well as specific exponential behavior. The Bacteria Question, for example, 
highlights algebraic and contextual components of an exponential task: 

Bacteria Question: The model that describes the number of bacteria in a culture after t days 
has just been updated from P(t) = 7(2)t to P(t) = 7(3)t . What implications can you draw from 
this information? 

� The final number of bacteria is 3 times as much of the initial value instead of 2 times 
as much. 

� The initial number of bacteria is 3 instead of 2. 
� The number of bacteria triples every day instead of doubling every day. 
� The growth rate of the bacteria in the culture is 30% per day instead of 20% per day. 
� None of the above. 

From the table above, only six out of 15 teachers were able to identify the correct response of 
‘c’ during the pre-test implementation. Of the remaining nine teachers who answered incorrectly, 
four chose response ‘a’ as correctly describing the variation between P(t) = 7(2)t and P(t) = 7(3)t. 
This finding reveals the difficulty with interpreting exponentiation within functions as a dynamic 
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process where the new growth factor is raised to the input power (days) and the effect this 
process has on the final output number (number of bacteria). Perhaps it can be conjectured that 
the ability to reason more covariationally (i.e., the ability to coordinate two varying quantities 
while attending to the ways in which they change in relation to each other) using algebraic 
models could lead to clearer insights of the effects of the output values when changing the 
growth factor in an exponential function. 

Post-test scores for the Bacteria Question improved significantly resulting in 11 out of 15 
teachers responding correctly. Three of the remaining four teachers who answered incorrectly 
again chose response ‘a’ as the correct response. Two of these teachers (one mathematics and 
one science) had also chosen this incorrect response during the pre-test implementation, thus 
demonstrating their deep-seeded misconceptions despite interventions designed to promote 
accurate conceptions. 

 
 
 
 
 
 
 
 
In reference to Table 1, nine out of 15 teachers were able to correctly identify I and II as the 

desired descriptions during the pre-test implementation. Of the remaining six teachers who 
answered incorrectly, two chose only description II while ignoring the activity of f as x decreases 
to zero. Perhaps this response could be contributed to an inability to view the graph from right to 
left, which leads to an inability to reason covariationally in the same direction. This issue raises 
the question as to whether we should be striving to build a multidirectional covariation ability 
where teachers and students can describe function behavior as x increases and as x decreases. It 
seems that this ability would prepare teachers and students for the concept of limit as 
approaching from the left or from the right. Incidentally, the other four teachers who answered 
this task incorrectly either did not answer the question at all or choose other distracters such as 
III only or II and III. 

Consistent with the Bacteria Question results, the post-test scores for the Decreasing 
Question also improved significantly resulting in 12 out of 15 teachers responding correctly. The 
increase from 60% accuracy to 80% accuracy for this task demonstrates a stronger ability to 
reason through graphical behavior with an awareness of how one quantity is changing in relation 
to another, yet the ability to reason covariationally still eludes many teachers as they grapple 
with exponential tasks. The remaining three teachers (two mathematics and one science) who 
answered incorrectly each chose different distracters. Interestingly, all three of these teachers 
who answered this question incorrectly on the post-test actually answered correctly on the 
pretest. 

Qualitative Analysis and Results 
The results for this portion of the study reveal that teachers exhibit difficulty with using (or 

relying upon) covariation as a tool for building an understanding of exponential functions. 
Coordinating images of two quantities changing in tandem over time proves to be a weakness for 
many of the teachers in this study. Reasoning covariationally within the context of exponential 
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growth appeared to be less difficult than attempting to reason through exponential decay 
behavior. As we will see in the following transcript excerpts from the Half-Life Question, 
teachers had difficulty in reasoning through exponential behavior between half-life intervals 
despite their understanding that the situation did indeed represent exponential decay: 

Half-Life Question: Suppose a radioactive substance is decaying exponentially so that 
there are 20 grams at 1:00 p.m. and 10 grams at 2:00 p.m. What would you expect the 
mass of the radioactive substance to be at the midpoint in this time period, at 1:30 p.m.?  
This question involves an understanding of multiplicative rate of change for exponential 

decay contexts. Focusing on teachers’ ways of reasoning and covariation offers a glimpse into 
how these teachers build conceptions of rate of change of exponential behavior. Surprisingly, 
three teachers during their explanations believed this problem did not provide enough 
information to say how many grams of the substance remained at 1:30 p.m. While two of these 
teachers ultimately changed their mind, one teacher settled with this reasoning as noted in the 
following interview transcript: 

Jada (Mathematics): So we started at twenty [begins to draw a linear graph], this is ten 
and this is zero and this is one o’clock and here is two o’clock. That is linear but I know 
it is not and I don’t know if it is because I don’t have enough data 
I don’t know where it was so I don’t think I have enough data. Jada seems to be experiencing 

a mental tug-of-war between the incorrect graph she has drawn and the fact that she knows the 
situation is not linear; thus she settles on her “not enough information” conclusion. Jada’s faulty 
reasoning stems from her initial decision to reason through the pattern of the decaying substance 
as being a constant decrement of 10 grams until zero is reached after the third time interval. Her 
belief that zero grams is obtained appears to have caused the conflicting conceptions. Jada did 
not attempt to consider the covarying quantities of time and grams in this half-life situation. 

More linear reasoning was evident when seven of the 15 teachers initially offered 15 grams 
as the amount of substance remaining at 1:30 p.m. Another teacher, Piper, offers her explanation 
below which demonstrates an example of covariational reasoning captured by Carlson et al.’s 
MA1 (coordinating the value of one variable with changes in the other) despite her incorrect 
conclusion: 

Piper (Mathematics): It’s probably at fifteen. 
Interviewer: How did you decide on fifteen? 
Piper: I decided because if I were doing this at one o’clock and two o’clock, if I did my 
in and out table…if I took twenty and ten here and one and a half would be here, I would 
take, there is a difference of ten here, so half of that would be five so it will be fifteen.  
Minimal covariational reasoning was evident in Piper’s response, yet her reasoning illustrates 

the lack of reasoning power when attempting to think through situations where reasoning 
covariationally can be a helpful tool. Another teacher, Dale, also guessed that 15 would be the 
amount at 1:30 p.m. but he was able to offer a glimpse into his reasoning of rate: 

Dale (Science): …we went from 20 grams to 10 grams. So at 3:00 it will be 5 and then at 
12:00 if we back up we’re going to be at 40. So we want to know what the grams are here 
at 1:30. So let’s see every 60 minutes we are using ½. I guess I’ll go with the 15.  
Clearly, Dale understood that this situation illustrated half-life and he was successful in 

extrapolating the values of the past (12:00 p.m.) and future (3:00 p.m.). However, interpolating 
between known values, such as between 1:00 p.m. and 2:00 p.m., proved to be an obstacle for 
him. His misconception that exactly 15 grams would be left at 1:30 p.m. demonstrates linear 
reasoning even though he was aware of how many correct grams of the substance remained at 
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each one-hour interval. His thinking of rate appeared to be more of a discrete, static image 
whilecoordinating the correct effect of each half-life time interval with amount of substance 
remaining. Despite his incorrect response, Dale’s reasoning in this problem seems to point to 
Carlson et al.’s MA2 (coordinating the direction of change of one variable with changes in the 
other variable) given that he was able to double the amount of 20 grams to obtain the previous 
amount of 40 grams and also continue halving 10 grams to obtain the future amount of 5 grams. 
He is able to reason covariationally as the independent variable (time) increases, as well as when 
the independent variable decreases. This is evidenced by his calculation of the amount of grams 
available at 12:00 p.m. (deceased independent variable from given information) and 3:00 p.m. 
(increased independent variable from given information). 

Evidence of more advanced covariational reasoning within the context of the Half-Life 
Question can be seen in the following transcript excerpts from another teacher, Claire: 

Claire (Science): Well if it was fifteen it would be linear, this is exponential. It is not 
gonna be fifteen because fifteen is gonna mean that every minute it loses the same exact 
amount, so at halfway through it would have lost half of its mass, so I would say it has 
got to lose more in the first, I would say it has got to be more than fifteen at one thirty. 
Just because it is exponential decay and that it has got to loose more at the beginning, it is 
decaying more at a faster rate at the beginning, it is decaying at the same rate but the total 
amount of substance is decreasing much faster at the beginning than it is at the end. 
In this explanation, Claire offers a glimpse of her understanding of rate in the context of 

exponential decay. Based on Carlson et al.’s covariation framework, it appears that Claire’s 
actions point to somewhere between MA3 and MA4 reasoning (coordinating the amount of 
change of one variable with changes in the other variable and coordinating the average rate of 
change of the function with uniform increments of change in the input variable). Reasoning at 
MA4, which specifically calls for coordinating the average rate of change for functions, cannot 
be determined because it is not clear if Claire views this situation as a function. 

Discussion 
While the results of this study were interpreted using Carlson et al.’s covariation framework, 

it appears that more refinement of this framework is necessary for capturing the reasoning 
abilities and mental actions specific to exponential functions. The results of this study will be 
used to further revise the exponential function unit in future implementations of the Functions 
Course to further promote additional covariational reasoning abilities and ideas of 
proportionality. Additional research will continue in order to further investigate the role of 
covariational reasoning in building a deep, robust understanding of exponential functions. 

Conclusion 
Consistent with Confrey and Smith’s (1994; , 1995) assertions, the results of this study 

illuminate many cognitive obstacles apparent when attempting to solve exponential tasks. Even 
high school mathematics and science teachers who often teach this topic in their courses 
experience difficulty when reasoning through exponential situations, especially decay and half-
life. Not only did teachers in this study struggle with ideas about finding midpoint values of half-
lives as in the Half-Life Question, they also failed to connect how these values are proportionally 
related to previous and future values (i.e., the ratio of the midpoint amount to 20 grams is 
precisely the same as the ratio of 10 grams to the midpoint amount or in other words,  

gramsmidpt

grams

grams

gramsmidpt 10

20
=
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). No one in this study offered such an explanation nor realized that enough information was 
provided in the Half-Life Question to determine the exact amount of the substance present at 
1:30 p.m. 

Additional evidence demonstrated that covariational reasoning plays a minimal role when 
teachers grapple with exponential ideas, despite the powerful insights into understanding 
function phenomena provided by the ability to reason covariationally. It also appears that 
building a multidirectional covariation ability (e.g., interpret graphs from right to left as well as 
left to right) where teachers and students can describe function behavior as x increases and as x 
decreases could provide a powerful mechanism for increasing the ability to reason through 
exponential function behavior. 
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In this paper we characterize and describe the growth of collective mathematical understanding 
as a process of improvisational coaction. Drawing on the theoretical work of Sawyer (2003) in 
improvisational jazz and theatre, we explain how mathematical understanding can be observed 
to emerge from the complex, improvisational ways that a group of learners work together 
mathematically. We also distinguish coaction from interaction to highlight the importance in 
improvisational flow of acting with the contributions of other group members, rather than merely 
acting on these, suggesting that the growth of collective mathematical understanding is a truly 
shared process. 

Mathematical Understanding as a Dynamical Process 
In discussing mathematical understanding, we are influenced by, and employ in our analysis 

of data, elements of the Pirie-Kieren Theory for the Dynamical Growth of Mathematical 
Understanding. This theory is well established and has been extensively presented at previous 
PME meetings and elsewhere (e.g., Pirie & Kieren, 1994, Martin, Towers, & Pirie, 2000). The 
theory characterises mathematical understanding as an on-going process in which a learner 
responds to the problem of reorganising his or her knowledge structures by continually revisiting 
existing understandings to generate ‘thicker’ understandings. Pirie and Kieren have termed this 
process ‘folding back’. The theory considers understanding in terms of a set of embedded levels 
or modes of knowledge building activity. (Towers & Davis, 2002, p.318) 

It is important to note that although the levels or layers of the model grow outwards from the 
local to the general, this does not imply that understanding grows in this way. Instead, growing 
mathematical understanding occurs through a complex movement backwards and forwards 
through the layers of understanding. Thus, mathematical understanding is not a static outcome or 
product, but instead is seen to emerge through the actions of the learners, moment by moment, as 
a process of mathematical engagement. 

The theory also draws significantly on the notion of “images”, meaning any ideas the learner 
may have about the topic, any “mental” representations, not just visual or pictorial ones. When 
Image Making, learners are engaging in specific activities aimed at helping them to develop 
particular ideas about a concept or topic. Image Making often involves the drawing of diagrams, 
working through specific examples or playing with numbers. By the Image Having stage the 
learners are no longer tied to actual activities, they are now able to carry with them a general 
mental plan for these specific activities and use it accordingly. This frees the mathematical 
activity of the learner from the need for particular actions or examples. 

Collective Mathematical Understanding 
Collaborative working, whether in small groups or as a whole class, and the associated 

practices of interaction and discussion, continue to be strongly advocated organisational 
strategies in the mathematics classroom. However, whilst it is now widely recognised that 
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discussion is an essential part of developing mathematical understanding, and collective 
mathematical action is an area in which there has been significant research interest in recent 
years, we still know relatively little about how collective actions contribute to students’ growth 
of understanding. Drawing on socio-cultural and distributed views of learning, a range of 
theories for characterising mathematical thinking as “an inherently social process” (Bowers & 
Nickerson, 2001, p.2) have emerged, and continue to be developed. (See, e.g., Cobb, 1999; 
Crawford, 1999; Lave, 1997; Saxe, 2002; Sfard & Kieran, 2001). Whilst important, and widely 
applicable, much of this existing work is not explicitly concerned with the growth of collective 
mathematical understanding as such, nor does it offer to the researcher or teacher a means to 
document this at a detailed level of emergence – something that the Pirie-Kieren Theory offers 
for individual learners. Thus, to more fully make sense of the observed growth of understanding, 
it becomes necessary to move beyond merely focusing on the individual learners, and to also 
look at what we term the “coactions” of the group, and the ways in which mathematical 
understanding emerges from these. Our research (Martin, Towers, & Pirie, 2006; Martin & 
Towers, 2003) therefore attempts to contribute to the field by systematically exploring the 
interplay between the individual and collective in the mathematics classroom through the 
development of a new theoretical perspective and through the analysis of the implications of the 
application of that perspective to classroom practice. In this paper we will focus on one element 
of our developing framework, that of coactions, and illustrate how this, together with elements 
from the Pirie-Kieren Theory, can be used to describe the growth of collective mathematical 
understanding as it is seen to emerge moment by moment. 

Collective Mathematical Understanding as an Improvisational Process 
In a recent paper (Martin, Towers, and Pirie, 2006) we offered the beginnings of a theoretical 

framework that proposed a way to look at, and account for, the growth of mathematical 
understanding at a collective level. We defined collective mathematical understanding as the 
kinds of mathematical actions and learning we may see occurring when a group of learners, of 
any size, work together on a piece of mathematics. More specifically, we suggested that by using 
the lens of improvisational theory, it was possible to observe acts of mathematical understanding 
that could not simply be located in the minds or actions of any one individual, but instead 
emerged from and existed in the interplay of the ideas of individuals, as these became woven 
together in shared action, as in an improvisational performance. We thus suggested that, as when 
listening to or watching an improvisational performance, in considering the growth of collective 
mathematical understanding the observer’s attention should focus on the group as a whole, and 
not simply on what each of the participating individuals is contributing. 

Coactions and the Growth of Mathematical Understanding 
In elaborating the notion of creative, improvisational group performances, Sawyer (2003) 

talks of improvisational activity as being conceived of “as a jointly accomplished co-actional 
process” (p. 38). For us the use of the term coaction rather than interaction emphasises the notion 
of acting with the ideas and actions of others in a mutual, joint way. More precisely we use the 
term coaction as a means to describe a particular kind of mathematical action, one that whilst 
obviously in execution is still being carried out by an individual, is also dependent and 
contingent upon the actions of the others in the group. Thus, a coaction is a mathematical action 
that can only be meaningfully interpreted in light of, and with careful reference to, the 
interdependent actions of the others in the group. (Martin, Towers & Pirie, 2006, p.156) 
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Sawyer (2003), in talking about improvisational performance, suggests that when an idea is 
offered to the group, they can respond in a variety of ways. In particular, they collectively have 
the option of accepting the innovation (by working with it, building on it, making it “their own”), 
rejecting the innovation (by continuing the performance as if it had never occurred), or partially 
accepting the innovation (by selecting one aspect of it to build on, and ignoring the rest). This 
evaluative decision is a group effort, and cannot be identified clearly with any single individual. 
(Sawyer, 2003, p.92) 

This notion places a responsibility on those who are positioned to respond to an offered 
action or innovative idea, as much as on the originator, and it is this “social process of 
evaluation” (p.92) wherein the group collectively determines whether, and how, the idea will be 
accepted into the emerging performance, that we suggest is the key to the emergence of 
collective mathematical understanding. We therefore see coaction as being a specific kind of 
interaction, but whereas interaction allows for reciprocal, complementary collaboration, without 
the requirement to be mutually building on the just offered action, coaction goes beyond this and 
requires mutual joint action. This is an important distinction in our work, as it must also be 
recognised that collective mathematical understanding is not an automatic or simple occurrence 
whenever two or more people are collaborating or working together. In such cases, what is 
observed may instead be a set of individual understandings occurring simultaneously, even 
though there is a high level of interaction. It is the nature and form of the collaboration which 
may (or may not) give rise to the growth of mathematical understanding at the collective level, 
and it is on this process that we focus in this paper, by offering some necessarily brief examples 
of coactions and explaining how collective mathematical understanding emerges from these. 

Coactions in action: The emergence of collective mathematical understanding 
We now turn to some extracts of data to illustrate both the improvisational character of the 

growth of collective mathematical understanding and how this can be seen to emerge through 
coactions. The examples we offer are drawn from a set of video data, collected with the aim of 
seeing cases of collective mathematical understanding, and with the purpose of facilitating this. 
We worked with a number of students preparing to be elementary school teachers. The students 
were invited, over a series of one-hour lunchtimes, to come and work on some mathematical 
problems, which, we hoped, as well as serving our research purpose, would also help them with 
their own mathematical and pedagogical knowledge. They were allowed to form their own 
groups of three or four, and to choose tasks from a booklet supplied, which contained nine tasks 
covering different areas of mathematics. In this paper we shall discuss one of the videotaped 
sessions, with three students known here as Mary, Shauna and Hilary. Our discussion will focus 
on the observed growth of mathematical understanding of the students, and will employ elements 
of the Pirie-Kieren Theory, with a specific focus on the ways in which it is coaction that leads us 
to characterise the growth as collective in nature. The group has chosen a task that requires them 
to label sixteen different triangles as equilateral, isosceles or scalene. The question asks them to 
do this by considering “side length properties”. Each triangle is drawn on a 3 x 3 grid of dots. 

Extract One: “None of them are equal…” 
We join the group as they start the task. There is a short pause as they seem to consider 

where to start: 
Shauna:     It’s all coming back to me 
Hilary:      I don’t remember scalene or isosceles 
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S: Isosceles is this, okay? (drawing) where two are equal? 
Michelle:  Yeah 
S: Equilateral is when they’re all equal? 
H: Hm hm 
S: And scalene is? 
M: they’re all wonky? 
H: This must be scalene 
S: OK 
H: When it has one, one sss…(pause) 
M: One longer? 
S: Isos, eq and scale. So the scale none of them are equal? 
We see the three students begin the task at the Image Having layer. The initial statement of 

Shauna suggests that properties of triangles and their associated names are not new to them, and 
they have an existing understanding of these. However, none of the three students seems 
immediately able to simply recall and restate the definitions for the three different kinds of 
triangles, and instead what we see is individual students’ definitions, posed mainly as questions, 
inviting the other students to accept and confirm these. For example, Shauna gives correct 
definitions of isosceles and equilateral, but looks for agreement from the others that her ideas are 
viable for the group. However, in the case of the scalene triangle, she is not sure (suggesting 
perhaps she either does not have or can not recall her image for this particular shape) and invites 
(and requires) the others to participate in what becomes a collective act of Image Having. No one 
student is able to simply offer a complete definition and instead the three students each offer 
what can be characterised as partial fragments of an image for the scalene triangle. Mary talks of 
it as being “wonky”; Hilary and Mary both develop the idea of “one longer”, whilst Shauna 
extends this idea to the conception of “none of them [the sides] are equal”. We suggest the 
students are mutually coacting on the ideas of each other, and building on what has been offered 
to attempt to collectively work together to have (or even re-have) a useable image. This Image 
Having is not located in the understandings of any one individual, but instead emerges from the 
way that the individual mathematical ideas are starting to intertwine, as the group collectively 
accepts ideas. 

Extract Two: “Because of the way the pins are…” 
Following this, they begin work on the task and start to label each of the triangles as 

equilateral, isosceles or scalene, using their definitions. However, they decide that in the case of 
some triangles they need to measure the sides to be able to determine their type. But, they do not 
have a ruler, and prior to the extract below have been trying to determine the type visually. What 
we now see is the emergence of a new approach for deciding what kind of triangle they are 
looking at. As they cannot accurately find the length of sides, they instead turn to examining the 
relationship between the dots (what the students call pins or dots) and the sides of the triangles: 

H: I don’t think there are any equilateral 
M: Yeah, I was just going to say, I don’t think any of them are equilateral 
H: Because of the way the pins are actually... 
M: …but..like that distance should be the same as that, if they’re, wouldn’t these dots all 

be equal distance  
H: Yeah, but distance (pause) yeah that’s what I’m thinking, this should be the same as 

this 
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M: So, this distance, this one would be then, yeah right, don’t you think? 
H: Yeah, but they’re not..see look 
S: (laughs) 
M: This one right here. No, this one down here, where this is ‘cos this is one peg away 

and this is one peg away 
H: But that’s not the same 
M: Oh but.. 
H: OK, but if you have a square. See this is a square [indicating the geoboard on which 

triangle 2 is drawn. See Figure 1], so if you have a square. This is two and this is two 
and this is two and this is two. But that is not two [indicating the hypotenuse of 
triangle 2] and that’s what the triangle is. 

M: Yeah. So none of them are equal. 
 
 

 

 
 
 

Figure 1. Triangle #2 

In the above excerpt we see the students folding back to construct an image of length that is 
based on being able to compare the distance between different pairs of pins. Hilary begins by 
conjecturing that none of the triangles are equilateral “because of the way the pins are”. Mary 
agrees, and this prompts the group to move from thinking explicitly about sides of triangles, and 
instead to work with the concept of length on a pin grid. In particular, we see Hilary and Mary 
coacting as they offer fragments of ideas that are picked up and developed by the other. Towards 
the end we see Hilary drawing on, and offering to the group, an image for the properties of a 
square and using this to establish that two pins that are vertical or horizontal neighbours are not 
the same distance apart as two that are diagonal neighbours. She links this to the triangle, and at 
this moment the thinking of the group is returned to the task in hand, and the image they have for 
characteristics of triangles. However, the image they now have for an equilateral triangle is 
thicker than that prior to folding back. Whereas initially their image only considered the visual or 
measured length of sides, it now also allows for the comparison of sides in terms of pins on the 
grid. At the very end of the extract we see Mary using this image to state that “none of them are 
equal” meaning that none of the triangles in the task are equilateral. 

Extract Three: “An equilateral can’t have a right angle in it” 
Later in the session the students became confused about which distances were actually equal 

on the board, and were struggling to use their “pin based” image to confidently label the 
remaining triangles. We join them as they try to label the triangle shown in Figure 2. 
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Figure 2. Triangle #9 

M: Like if that’s not an equilateral triangle then what is? (She is referring to triangle #9, See 
figure 2)  

H: No, see to me, this one looks like its longer, shorter, shorter. To me an equilateral 
triangle is more like a yield sign. 

M: But that’s a right angle [indicating the right angle in triangle #9]. (pause). Does that have 
anything to do with it? 

H: An equilateral can’t have a right angle in it, I don’t think. 
M: No..it can’t 
S: It couldn’t. Yeah, you’re right. Perfect. 
M: It’s like sixty, sixty, sixty. 
S: That helps. 
H: (laughing) 
S: It’s all coming back to me! 
M: Slowly but surely (all laughing) 
Here we see the emergence of a focus on the interior angles of the triangle and a new ‘rule’ – 

the idea that “an equilateral triangle can’t have a right angle in it.” Although Mary initially 
suggests that the triangle is equilateral, this is an idea that is rejected by Hilary, who indicates 
how the triangle has two shorter sides and one that is longer. To illustrate her idea she offers a 
visual representation of her image – that an “equilateral triangle is more like a yield sign”. Mary 
picks up on this, and notes that triangle # 9 has a right angle, though she isn’t sure what this 
means. Hilary responds and the group collectively agrees, including Shauna, that an equilateral 
triangle cannot have a right angle, and should have three angles of sixty degrees each. This is a 
collective moment of Image Having for the group, where there is a sense of confidence now that 
they have now recalled what they know about triangles and together re-have an image for an 
equilateral triangle. Again, although individuals clearly contributed to this process, the image 
they now have cannot be simply attributed to any one student. Their image having was 
collective, involving a process of offered ideas being built upon. Each student offered parts of 
the image, which the group collectively interweaved to have something that was acceptable to 
them all. Using this new image, the three students confidently and correctly identified the 
remaining triangles in the task. 

Discussion 
In all of the short extracts above we see the three students collaborating and working 

together. Further, we suggest that their activity can usefully be seen in terms of coactions. There 
is a sense of unpredictability about the pathways their collective mathematical actions, and 
emerging understandings, will follow. In fact, the image they make and have for an equilateral 
triangle in terms of the size of interior angles is not one that is hinted at by the task instructions, 
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which instead suggest working with the length of sides. Also, no one student is able to offer an 
image that is immediately viable to use in completing the task. Instead, what occurs throughout 
the session (and as illustrated in the extracts), is a continual process of the offering of ideas or 
“innovations” and the collective coacting on these. There is a sense in the extracts that no one 
student simply wants (or is able to) tell the others what to do, or to merely state a mathematical 
idea without expecting some response. Equally, those listening to the idea seem to accept their 
responsibility to do something with what is offered, and not merely receive it. The ways in which 
the group is able to interweave fragments of each individual’s knowing, to allow a shared (rather 
than taken-as-shared) image to emerge from their coactions, is what enables their collective 
mathematical understanding to grow, and is what ultimately enables them to successfully 
complete the task. 

In theoretical terms, and to emphasise the value of researchers’ attention being oriented to 
coactions (rather than simply individual’s statements or even interactions), we note that the 
students’actions can only be meaningfully interpreted in light of, and with careful reference to, 
the interdependent actions of the others in the group, and hence we propose the notion of 
mathematical coactions as a fruitful tool for enabling a more fine-grained analysis of the growth 
of collective mathematical understanding. 
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Two different activities were designed and used in professional-development collaboration with 
middle school mathematics teachers where the goal was developing instructional practices 
centered in students’ reasoning. The activities resulted in qualitatively different learning 
opportunities for teachers. We examine these activities with respect to their (1) pragmatic 
usefulness to teachers’ daily instruction, and (2) legitimacy within the teachers’ institutional 
setting, as perceived by the teachers. Considerations of these dimensions of teachers’ work can 
contribute to the effectiveness of professional-development designs that capitalize on teachers’ 
current instructional practices. 

We use our1 experiences from a five-year collaboration with a group of middle-school 
mathematics teachers to ground the discussion of building on mathematics teachers’ current 
instructional practices to achieve a professional-development (PD) agenda. Researchers working 
with teachers argue for pragmatic importance of positioning teachers as professionals whose 
instructional decisions and ways of participation in PD sessions are reasonable from their 
perspective (Simon & Tzur, 1999). Many are committed to taking teachers’ current instructional 
practices “as a valuable starting point, not as something to be replaced, but a useful platform on 
which to build” (McIntyre & Hagger, 1992, p. 271). Fulfilling such commitment is a nontrivial 
task, especially when teachers’ current instructional practices differ significantly from those 
envisioned by PD designers. However, in PD settings where constitution of activities critically 
relies on interpretations of participants, teachers’ instructional practices necessarily provide 
grounding for teachers’ interpretations. This is because teachers’ interpretations are informed by 
their views of teaching and learning developed in and through their own practice. Understanding 
of teachers’ current practices is then critical for designing effective interventions.  

To illustrate the complexity of building on teachers’ current practices toward those 
envisioned we examine two attempts made by the research team at different points in our 
collaboration to support teacher learning. We focus on two activities that were each intended as a 
point of departure within a sequence designed to support teachers’ development of instructional 
practices centered on students’ reasoning. We illustrate that in both cases the teachers’ 
interpretations of the intent of PD activities were grounded in their practices at that time. What 
differed were researchers’ insights into and anticipation of specific teachers’ interpretations. This 
difference was important because it had consequences for what the research team envisioned as 
feasible means of supporting teacher learning over extended periods of time.  

We then revisit the researchers’ design conjectures for the two activities and introduce a 
heuristic that, in retrospect, shed light on their differential viability in the PD setting. We 
examine closely two aspects of teachers’ practice that highlight differences in conjectured 
starting points for the PD activities from teachers’ perspectives – pragmatic relevance of the 

_____________________________ 
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issue under discussion to teachers’ current classroom instruction, and its legitimacy within the 
institutional context of teachers’ work. We propose that attention to these aspects when planning 
PD activities can enhance designers’ capacity to capitalize on teachers’ current instructional 
practices while pursuing PD agenda. 

Theoretical Framework and Methodology. 
The analysis is guided by a framework described by Cobb and colleagues (Cobb, McClain, 

Lamberg, & Dean, 2003) that coordinates individual teachers’ learning with the development of 
collective practices of the Professional Teaching Community (PTC) as they are situated in the 
institutional setting of a school and school district. This framework was developed out of a 
practical need to account for teachers’ learning in the social context of the PTC as it is enabled 
and constrained by the broader context of the institution.  

The overarching goal for our collaboration with the group of teachers was to investigate how 
teachers’ development of instructional practices that place students’ reasoning in the center of 
planning and decision making can be supported. For that purpose we engaged in cycles of design 
and research where conjectures about the learning route of the teachers and the means of 
supporting it were continually tested and revised in the course of ongoing interactions. The 
methodology falls under the heading of a design experiment (Brown, 1992; Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003). Following from Brown’s characterization of design 
research, the collaboration with the teachers involved engineering the process of supporting 
teacher change. In this highly interventionist activity, decisions about how to proceed were 
constantly analyzed against the current activity of the teachers. 

Method of Inquiry and Data Sources. 
The data are taken from a collaboration with a group of 9-12 middle-school mathematics 

teachers that work in a large urban district in the southeast United States. The school district 
serves a 60% minority student population and is located in a state with a high-stakes 
accountability program. During each of the five years of our collaboration, we conducted six 
one-day work sessions and a three-day summer session. In the first 19 months of the 
collaboration, the group evolved to a professional teaching community (Wenger, 1998) with a 
joint enterprise, mutual engagement, and a shared repertoire (Dean, 2004).  

A central principle guiding the analyses was to assume that teachers’ participation in work 
sessions as well as instructional practices they develop in their classrooms are always reasonable 
and coherent from their perspective (Zhao, Visnovska, Cobb, & McClain, 2006). Our 
retrospective analysis of the data involved a method described by Cobb and Whitenack (1996), 
an adaptation of Glaser and Strauss’ (1967) constant comparative method.  The tentative and 
eminently revisable conjectures that were developed both prior to and while actually interacting 
with the teachers were continually tested and revised while working through the data 
chronologically, resulting in the formulation of claims or assertions that span the data set yet 
remain empirically grounded. In this paper, we focus on teachers’ participation in several PD 
sessions in which researchers envisioned two types of activities to provide a viable starting point 
for teachers’ further learning. We look at these sessions with hindsight, taking into account the 
retrospective analysis of the entire data corpus, which consists of videotapes of all work sessions 
accompanied by a set of field notes and copies of all teachers’ work.  The intent of this paper is 
not to present the analysis (for that purpose refer to Zhao et al., 2006) but rather to discuss 
distinctions highlighted by the analysis. Modified teaching sets (cf. Simon & Tzur, 1999) were 
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also collected on each teacher at least twice a year.  This entailed videotaping each teacher’s 
class and then conducting follow-up audio taped interviews that focused on issues that emerged 
in the course of instruction.  

Student Work 
In the third year of our collaboration, we initially attempted to support teachers in focusing 

on their students’ reasoning by engaging them in activities centered on analyzing their students’ 
work. Student work has been characterized as an important means of supporting teachers in 
focusing on students’ reasoning (e.g., Kazemi & Franke, 2004). We conjectured that through 
examinations and guided discussions of students’ written solutions in PD sessions, opportunities 
would arise for the teachers to gain insight into the diversity of their students’ reasoning that 
would be useful when they attempted to build on their students’ solutions while conducting 
whole class discussions. In this way, we conjectured, the teachers would develop a need to 
capitalize on students’ mathematical ideas in their instruction. Because of the teachers’ daily 
experience with student work in their classrooms, we saw enhancing teachers’ capacity of using 
student work in supporting their students’ mathematical learning as an extension of their current 
instructional practices.  

The specific questions that we posed in order to orient the teachers’ analysis of their 
students’ work and test our conjectures were as follows: 

� What are the different solutions that you can identify from your students’ work? 
� How would you categorize students' solutions according to their levels of 

sophistication? 
� How would you, as a teacher, build on these different solutions? Which solutions 

would you choose to talk about in class and why? 
Our design conjectures around the use of student work proved to be unviable despite our 

detailed preparations. The teachers seemed to find the activity engaging and discussed their 
interpretations of the student work openly. Furthermore, most were able to discriminate between 
students’ solutions in terms of levels of sophistication. However, the teachers’ primary 
orientation was evaluative in that they assessed whether the instructional activity had been 
successful or not. This orientation that teachers took toward students’ work was particularly 
evident when the researchers’ question of “how are you going to build on students’ different 
solutions?” received almost no response (and puzzled looks) from the teachers. The conversation 
within the work group came to a halt at this point in several consecutive PD sessions where the 
teachers discussed their students’ work.  

The teachers’ orientation toward the use of students’ work in PD session apparently deviated 
from our original expectation. This incident indicated that our design conjecture involving the 
use of students’ work was ill-founded. Taking seriously that the activity, as constituted in the 
session, made sense from the teachers’ point of view led us to realize that there was something 
about these teachers’ classroom practices that we had yet to understand. We thus conducted an 
unscheduled series of teaching sets (Simon & Tzur, 1999) with all the participating teachers. The 
analysis of collected teaching sets revealed that within the teachers’ current instructional 
practices, student work was primarily used as an evaluative tool of whether students “got it” or 
not. Teachers’ instructional planning did not involve students’ reasoning; rather, it was guided by 
objectives that had to be covered. Therefore, researchers’ repeated attempts at renegotiating the 
purpose of looking at student work in terms of prospective instructional planning did not find 
grounding in teachers’ experience.  
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This illustration is significant to our discussion. The use of student work as envisioned by the 
research team was not aligned with the teachers’ views of student reasoning or the use of 
students’ work in the context of their classroom instruction. For the teachers, the activity as 
constituted in the PD session was an extension of their classroom instructional experience albeit 
in ways that we did not expect. The research team’s failure to support the teachers in focusing on 
students’ reasoning resided in our failure to understand which interpretations of the designed PD 
task might be a viable extension of teachers’ practices.  

Student Motivation. 
As the research team collected the teaching sets to understand teachers’ unexpected 

orientation toward student work, we also sought to understand more viable foci for PD activities. 
We focused particularly on topics that the teachers were likely to consider problematic and 
worthy of further understanding. Additionally, when discussed and examined with our support, 
these topics should generate a need for teachers to look at instruction from students’ perspective. 
The analysis of teaching sets revealed that the teachers perceived student motivation to be one of 
the most pressing issues in their classroom instruction (Zhao et al., 2006). The teachers viewed 
student motivation as intimately related to students’ attention and engagement – issues with 
which they struggled in their daily instruction. They accounted for students’ lack of attention and 
unwillingness to engage in instruction in terms of their inherent lack of motivation. Because the 
teachers felt motivation was out of their control (i.e., determined by factors outside of school) 
they viewed this issue as highly frustrating and problematic, preventing students from learning 
mathematics. 

In order to capitalize on the teachers’ instructional challenge of motivating students, the 
research team developed a conjectured trajectory of teachers’ learning in which teachers’ initial 
interest in student motivation could be supported to evolve into interest in student reasoning as a 
key instructional resource. First, we saw an opportunity to challenge the notion among the 
teachers that motivation is inherent, determined mainly by societal and cultural factors beyond 
the classroom (Zhao et al., 2006). We viewed this notion of motivation as problematic in that it 
deprived the teachers of opportunities to effectively teach children they saw as “unmotivated” 
and thus deprived these children of opportunities to learn. The research team conjectured that, in 
their planning and orchestrating of instruction, the teachers would benefit more from 
understanding student motivation as situational, reflecting whether the students could (or could 
not) see the relevance of particular classroom instructional activities in which they were required 
to participate. Second, we conjectured that once teachers developed a situational view of 
motivation they would consider building instruction on students’ reasoning as an important 
aspect of math classroom that students find relevant and worthy of their engagement. In this way, 
adopting students’ perspectives when examining issues of student motivation would have 
become a vehicle for supporting teachers in seeing students’ reasoning as a key instructional 
resource.   

To test the design conjectures we developed a sequence of PD activities. The teachers first 
discussed and examined their initial ideas about student motivation and instructional strategies 
that they used to encourage students’ engagement in mathematical activities in their classrooms. 
We then presented the teachers with a case, developed from our prior NSF-funded research 
(Cobb, McClain, & Gravemeijer, 2003), in which the same group of middle-school students 
participated in two mathematics classes in the same school term but came to engage with the 
mathematics in sharply contrasting ways. Teachers were asked to analyze interview data in 
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which the students described their obligations in each of the two mathematics classes and their 
valuations of those obligations. In their analysis, the teachers built on their own expertise and 
experiences with “motivated” and “unmotivated” students to evaluate the students’ participation 
in the two mathematics classes. To their surprise, the same students who appeared quite 
unmotivated in one class seemed highly motivated in the other. The surprising finding 
challenged the teachers’ notion that motivation is inherent to students and determined out-of-
class. The teachers thus saw a need to understand what it was about the classroom instruction in 
one of the classes that helped to motivate the students. 

In contrast to the previously discussed activity in which student work was the focus, this 
activity, as constituted in the session, reflected research conjectures. The researchers not only 
knew that student motivation was relevant to instruction from teachers’ perspective, we could 
also envision ways in which it was meaningful, from the teachers’ perspective, to approach the 
topic in ways that had face validity within their current instructional practices. Importantly, the 
preliminary analysis of the ensuing years of collaboration suggests that, by grounding the initial 
discussions in the context of student motivation, it was possible to support the teachers in 
changing significant aspects of their instructional practices in envisioned ways. Upon conclusion 
of the collaboration two years later, the teachers routinely adapted instructional materials that 
had proven effective elsewhere to their local setting. In doing so, they justified their decisions 
about including and modifying instructional activities by referring to the opportunities that the 
activities afforded for their students’ mathematical reasoning. This was an important 
development given that the teachers’ planning was previously primarily oriented by the 
objectives that they had to cover.  

Revisiting Viability of Conjectured Starting Points. 
Reflection on viability of design conjectures is a critical component in design research. It 

enables researchers to capitalize on contingencies that arise as the design unfolds (Cobb, Confrey 
et al., 2003). The fact that the research goals in the two conjectured learning trajectories were the 
same enabled us to look at differences in how the two interventions were initiated. In the 
remainder of this paper we discuss the identified distinctions in relevance of the conjectured 
starting points from the teachers’ perspective. We examine the conjectured starting points of the 
discussed trajectories along two complementary dimensions of teachers’ instructional reality. 
The first of these dimensions relates to teachers’ daily classroom experiences, while the second 
one concerns the institutional setting in which the teachers work. We outline two aspects of 
relevance of PD activities from teachers’ perspective – pragmatic usefulness of the issue under 
discussion to teachers’ current classroom instruction and its legitimacy within institutional 
context of teachers’ work. We use this distinction to discuss how teachers’ experiences from 
“inside” their classrooms, as well as those from “outside,” can be seen as shaping teachers’ 
interpretations of relevance of different PD activities to their instructional practice. 

In the following discussion, we do not attempt to explain how teachers actually rationalized 
their engagement (or lack of it) in the designed PD activities. We suggest that the teachers were 
always engaged in activities that made the most sense from their perspective. They did not 
consider alternatives that would be, in their view, unreasonable. Our goal here is to hypothesize 
why one of the envisioned activities did not make sense from the teachers’ perspective while the 
other one did. We do so to enhance our ability to formulate more viable design conjectures. 
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Pragmatic usefulness. 
Analysis of teaching sets revealed that, from the teachers’ perspective, students’ learning was 

a somewhat mysterious process where the same instruction leads to different learning outcomes 
with different students. It was therefore the students who should be responsible for their own 
learning and who should be held accountable to make the most out of the teacher’s instruction. 
Teachers felt they had limited control of students’ learning; nevertheless they were in charge of 
creating situations where it could happen. Thus, from the teachers’ perspective, it was important 
that they (1) provide enough opportunities for their students to engage in mathematics outlined in 
state objectives, and (2) ensure that students pick up the opportunities and engage in 
mathematics instruction in desired ways (Zhao et al., 2006).  

Against these findings, it became apparent why the teachers did not view the activity in 
which students’ work would be used as a resource in planning as relevant to their classroom 
instruction. From the perspective of teachers who felt they had limited control over their 
students’ learning, understanding students’ reasoning did not seem most useful. Pragmatically 
useful issues that these teachers needed to consider when planning instruction were how to cover 
a specific objective in a way that would provide students with a variety of opportunities to 
engage with the mathematical idea, so that eventually the most students could “get it.” Focusing 
on students’ reasoning in planning instruction had unclear benefits to teachers and required 
compromising on what they saw at the time to be the best ways of planning and orchestrating 
instruction.  

On the other hand, the teachers perceived issue of students’ motivation as critical to their 
classroom instruction. They experienced difficulties in engaging their students in mathematics on 
a daily basis. Many of them developed explanations for this experience in terms of students’ lack 
of motivation, which was predominantly determined by socioeconomic factors beyond their 
school. It is not surprising that these teachers saw activities that could help them address this 
critical aspect of their current practice as pragmatically useful.  

Legitimacy. 
In addition to teachers’ classroom experiences on which they drew when interpreting 

meaning and intent of PD activities, we looked specifically at out-of-classroom activities within 
teachers’ institutional setting as another resource for teachers’ interpretations. The institutional 
setting in which the participating teachers worked can be generally described as a setting in 
which administration responds to the accountability pressures of state testing by attempting to 
monitor and assess teachers (Cobb, McClain, Lamberg et al., 2003). To understand issues that 
were constituted as a legitimate part of teachers’ institutionally shaped jobs we analyzed school- 
and district-wide activities that were an inherent part of being a teacher in the district. We looked 
for issues that were treated as important in teachers’ interactions with their principals, math 
coordinator, or one another.  

Principal’s visits in teachers’ classrooms, faculty meetings, and district-organized PD serve 
as illustrations of activities in which teachers participated on a regular basis. During their routine 
(at times weekly) visits to teachers’ classrooms, principals checked for teachers’ coverage of the 
prescribed objectives, as well as for students’ engagement. In doing so, they equated students’ 
engagement with students’ good behavior and appearance of attention to teacher’s instruction. 
Among issues addressed at faculty meetings were pacification of misbehaving students and 
strategies for enhancing state test performance of borderline-failing students. District-wide PD 
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for mathematics teachers focused on enhancing teachers’ understanding of mathematical intent 
of newly adopted, reform-based instructional materials. 

The contrast between opportunities created for teachers to reflect upon issues of student 
reasoning and student motivation as topics for professional discussion within their institution was 
apparent: Student reasoning as a resource for instructional planning was not a part of discussion 
in any school- or district-wide activities, and was not part of a vision for mathematics instruction 
in the district. Student motivation, on the other hand, was a persistent concern, as it presented a 
legitimate way to explain a lack of student attention during mathematics instruction and student 
misbehavior.   

Discussion. 
We characterized two aspects of design starting points that might impact viability of the 

designs in PD setting – pragmatic usefulness and legitimacy – by examining relevance of the two 
conjectured learning trajectories from teachers’ perspective. Attempting to characterize the 
differences is important given that the two respective initial activities resulted in different 
opportunities for teachers’ learning. The initial focus on student motivation allowed the research 
team to progress with the PD agenda to the extent that the teachers became proficient in 
anticipating students’ reasoning when they planned for instruction. In contrast, the initial focus 
on student work did not result in comparable progress. However, the ways in which the PD 
activities were constituted in the sessions were grounded in the teachers’ instructional practices 
in both cases. It was thus upon the research team to anticipate the viable extensions of teachers 
practices on which to build teachers’ further learning.  

Understanding key aspects of the setting in which student work did not prove to be a viable 
means of initiating teachers’ focus on student reasoning is equally important. In juxtaposition 
with a wealth of studies in which student work was critical, this understanding could enhance 
theories of supporting changes in mathematics teachers’ instructional practices.  

Endnotes. 
1. The analysis is part of a larger project focused on analyzing the commonalities and 

contrast between two sites. The collaborators are Paul Cobb, Kay McClain, Chrystal Dean, 
Teruni Lamberg, Qing Zhao, Jana Visnovska, Melissa Gresalfi, and Lori Tyler. 
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In the present study, we focus on the ways in which five urban middle school teachers interacted 
with their students in order to help them build representational fluency, with a particular 
emphasis on the ways in which the students moved toward increasingly abstract representations 
and generalizations. We document advances or changes in students’ representational fluency, or 
facility with generalizations and abstractions, how teacher interventions impact this, and how 
the corresponding changes in students impacts teachers. 

Introduction and Theoretical Framework 
This paper addresses one component of a five year longitudinal study in which Rutgers 

University researchers partner with teachers, teacher educators, and administrators in the Newark 
Public Schools1 in order to help students in grades kindergarten through eight develop a deeper 
and more meaningful understanding of mathematical concepts. In the current study, we focus on 
the ways in which teachers interact with students as they build, extend, link, and refine 
representations.  In particular, we extend prior research (e.g. Schorr, 2004; Schorr & Lesh, 2003) 
in which the reciprocal relationship involved between teacher behaviors and actions on student 
behaviors and actions, and vice versa, is documented.   This paper extends that work to include 
student development of representational fluency leading toward generalizations and abstractions.   

Schorr, 2004; Schorr & Lesh, 2003; Schorr, Warner, Gearhart & Samuels, (in press) report 
that as teachers develop new knowledge, they notice new things about their students as well as 
their teaching practices. This, in turn, causes them to revise their approaches to teaching. As this 
happens, their students also change, thus resulting in further changes on the part of the teacher. 
Our central hypothesis is that when teachers encourage students to make sense of different types 
of representations (both their own and their peers) in a way that elicits meaning and sense 
making, students move toward increasingly abstract representations and generalizations.  As this 
happens, teachers modify their behaviors, which elicits further changes in students’ movement 
toward generalization and abstraction. Before continuing, we define, in a broad sense, the ways 
in which we use the words representation, abstraction, and generalization. 

Representations:  Broadly defined, the term representation “refers both to process and to 
product—in other words, to the act of capturing a mathematical concept or relationship in some 
form and to the form itself” (p. 67, NCTM, 2000). Some well recognized forms of representation 
include pictures, tables, graphs, diagrams, and strings of symbols.  These forms of representation 
have a long established and highly stable place in school mathematics, and in many cases, are 
often taught for their own sake (NCTM, 2000; Kaput & Schorr, in press). Representations also 
take place in the context of spoken, kinesthetic, physical or cybernetic formats (Kaput & Schorr, 
in press), and can include mental representations, although it often happens that one makes use 
of physical materials in the process.  Goldin & Shteingold (2001) offer a broad view of 
representation by describing it as sign or a configuration of signs, characters or objects.  They 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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note, “the important thing is that it can stand for (symbolize, depict, encode or represent) 
something other than itself” (p. 5). Speiser & Walter (1997) add a very important dimension in 
their description of a representation as “a presentation, perhaps to oneself, as part of an ongoing 
thought; or perhaps to others, as part of an emerging discourse.”  

The development and use of various representations, whether verbal or written, are important 
for many reasons. For example, Lesh (1998) underscores the importance of representations that 
are well known to students by stating that students can build and use sophisticated constructs 
when these understandings are grounded in familiar modes of representation. Yackel (2002) 
shows how actions, diagrams and notation, as well as verbal statements, can function as an 
important component of argumentation.  Kaput (1999) notes that when students use their own 
representations to reason and argue, link their own representations to abstract representations in 
an effort to justify ideas and use other representations to justify their generalizations, they 
develop a sense of ownership of the mathematical ideas. 

Abstraction and Generalization: Abstraction and generalization are two of the most 
important aspects of mathematical thought (see Bochner, 1966, as cited in Kaput & Schorr, in 
press).  Abstraction, which the NCTM Standards (2000) refers to “the stripping away by 
symbolization of some features of a problem that are not necessary for analysis, allowing the 
‘naked symbols’ to be operated on easily.  In many ways, this fact lies behind the power of 
mathematical applications and modeling” (p. 69, NCTM, 2000).  

Kaput (1999) describes generalization as "deliberately extending the range of reasoning or 
communication beyond the case or cases considered, explicitly identifying and exposing 
commonality across cases, or lifting the reasoning or communication to a level where the focus is 
no longer on the cases or situation themselves but rather on the patterns, procedures, structures 
and the relationships across and among them” (p. 136). Mason (1998) notes that generality is at 
the heart of all mathematics and states, “Explicitly getting students to specialise from 
generalities, and to generalize from particular cases supports them in processes which are often 
left below the surface of awareness because they are so fundamental, so important” (p.3). 

Teacher actions and behaviors leading toward abstraction and/or generalization:  Mason 
(1998) notes that some types of teacher questions can lead students toward or away from 
generalizing.  In particular, he notes that teacher questions can be used as springboards upon 
which students simply try to guess what is in the teacher’s mind while at other times, teachers 
can ask questions in a manner that genuinely supports students as they learn to analyze, 
generalize, and justify conclusions. Martino & Maher (1999) note that, “teacher questioning that 
is directed to probe for student justification of solutions has the effect of stimulating students to 
re-examine their original solution in an attempt to offer a more adequate explanation, 
justification and/or generalization” (p. 75).  Questioning, however, is not the only mechanism by 
which teachers can help students to link representations, generalize or abstract ideas. Other 
researchers (e.g. Speiser & Walter, 1997; Warner & Schorr, 2004) note that when used 
appropriately, teachers can use students’ own representations to focus emergent explanations and 
justifications. One of the practical implications is that students need to be given the opportunity 
to construct their own representations of mathematical concepts and relationships, as well as the 
time and support needed to develop and use symbolic representations. Beyond that, Warner & 
Schorr, (2004); and Warner, Schorr, Gearhart & Samuels, (2005) note several other types of 
teacher behaviors that can impact students’ ability to link representations and move toward 
increasingly abstract representations and generalization.  These include, for example, 
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highlighting student ideas, encouraging students to build on their own and/or others’ ideas, and 
setting up hypothetical problem situations based on an existing problem.  

The research questions that will be addressed in this paper are: How do teachers interact with 
their students as they build, modify, and link representations and move toward abstraction and/or 
generalization; and, how do teacher actions impact student actions, and vice versa?  

Methodology 

Background 
The research reported on in this study takes place in Newark, the largest urban school district 

in the state of New Jersey.  It is based upon a pilot project in which the work of several middle 
school teachers was examined over the course of several years (Schorr, Warner, Gearhart, & 
Samuels, in press; Warner, Schorr, Gearhart & Samuels, 2005). The teachers who were involved 
in this study participated in professional development sessions with researchers both at the 
University and within the context of their own classrooms.  During all aspects of the professional 
development, teachers had the opportunity to consider, amongst other things, mathematical 
ideas; classroom implementation strategies; student knowledge development; and, building a 
classroom culture in which proof, justification, sense making, and high cognitive demand are the 
norm (Stein, et al, 2000).  Two key components of the professional development involved 
weekly meetings at a university and on-site support to the teachers as they implemented project 
activities in their classrooms (see Schorr et. al. in press, for a more complete description). 

Subjects 
The subjects for this research were five middle school teachers (teachers of grades 6, 7, or 8).  

In all instances, the teachers had participated in at least three months of professional 
development. See Table 1 for details2. The reader will notice that two teachers were relatively 
new to the project while the other three were involved for at least one full year.  

Teacher Total length  
of time  

teacher was 
involved in study 

Grade level 
taught  

during the 
study 

Duration of time  
the observations 

took place 

# of actual  
minutes of 

videotape used  
for analysis3 

# of sessions  
@ # of minutes 

each 

Ms. A 3 months 6th 3 months 450 minutes  5  @ 90 min  
Ms. J 7 months 7th 3 months 540 minutes  9 @ 60 min. 
Mr. C 1.5 years 8th 3 months 810 minutes  9 @ 90 min. 
Ms. E 2.5 years 7th & 8th 1.5 years 1260 minutes  9 @ 100 min. 

& 4 @ 90 min. 
Mr. R 3 years 8th 6 months 960 minutes  5 @ 120 min. 

& 5 @ 90 min. 

Table 1:  Information for each Teacher 

Data 
The data that forms the basis for this study consists of at least three months of actual 

classroom sessions (University students videotaped the sessions). In each case, at least two video 
cameras captured different views of the teacher, students’ group work, students’ presentations, 
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etc. In addition, the teachers were asked to provide written reflections immediately after each 
session. All student work was collected and descriptive field notes were compiled.  

Analysis 
The classroom episodes were analyzed (using observations, field notes and videotapes). We 

identified episodes by students’ movement toward abstraction and/or generalization.  These were 
then summarized, transcribed, and coded for instances of behaviors that appeared to impact the 
growth of student representations, abstractions, and generalizations.  These were checked and 
verified by at least two researchers.   

Results 
The results will be presented according to several overarching themes that emerged from 

close analysis of the data.  The themes represent some of the many types of interactions that took 
place between teachers and students regarding the development and use of representations, 
especially those that resulted in abstractions and generalizations.  We note that while all teachers 
were unique in their development, there were many instances in which one or more exhibited 
similar types of behaviors.  These are described in the sections that follow.  

Overall reactions of teachers 
In the early months of our observations, all five teachers allowed their students to solve 

complex problems in small groups. The two teachers (Ms. A & Ms. J) that had joined the project 
later on, appeared to be uncomfortable spending too much time on any one task—time that 
would be needed for students to move beyond their initial conceptualizations toward abstractions 
and generalizations.  Ms. A actually noted that she had trouble understanding where the students’ 
representations might lead.  During the last month however, Ms. J became more comfortable 
with providing additional time for the students to explore a task, although she noted that she 
wasn’t sure what to look for or to ask.  

We also found, initially, that while the teachers allowed students to have extended periods of 
time to work on tasks and would go from group to group observing students and questioning 
them about their work, some of the teachers  (Ms. E & Ms. J in particular) spent very little time 
with each group and tended to ask questions based upon their own thinking rather than on their 
student’s. Over time, however, this decreased for all teachers.  Further, the number of instances 
in which the teachers interrupted or interfered with a student’s way of thinking decreased as well. 
Not coincidently, teachers appeared more able to follow students’ ideas and build upon their 
thinking.  In all cases there was an increase in teachers encouraging students to explain, question, 
use, justify, and build on their own or others’ representations, and a corresponding increase in the 
students’ willingness to actually talk about their ideas with their peers. 

As the weeks progressed, Ms. A, Mr. C, Ms. E & Mr. R began to pose hypothetical problem 
situations (e.g. “What if…” scenarios) to the students as a way to stimulate movement to 
generalization.  The students responded by posing their own hypothetical situations.  The 
instances of this increased over the course of the observations (for a more complete description 
of what is meant by “raising hypothetical problem situations” see Warner, Coppolo & Davis, 
2002). Ms. J. also began to raise hypothetical problem situations, but only at the end of the 
observation period.  Several of her students began to raise hypothetical problem situations 
shortly thereafter. This appeared to contribute to students’ movement toward abstraction and 
generalization in several cases for Ms. J & Ms. A and even more so for Ms. E, Mr. C & Mr. R. 
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Linking representations and the movement toward abstraction and generalization 
A central tenant of the professional development involved encouraging teachers to build, 

extend, and link the representations that they had built for a particular idea.  Early on in the 
study, several of the teachers expressed a desire to have their own students do the same. Mr. R, 
Mr. C and Ms. E all noted that by doing this, their students would most likely be able to 
formulate more succinct and convincing justifications. Early on in the observation period, Mr. C. 
noted: “I also like to investigate how students ideas and/or depictions of their ideas interrelate… 
I asked them, when all the groups were done presenting, was if they saw any relationships 
between each other’s models, if so, what were they and if any one model would be sufficient to 
answer the question.  If every student sees every other student's methodology and has it 
explained by the creator then solving this problem and other subsequent problems will become 
easier" (personal communication, March 24, 2005). In a similar vein, Ms. E writes:  

I had an aha moment today while watching … [videotapes of another class].  I think I 
know what I need to be doing when the students are starting to generalize….In the past, I 
thought if one student found the rule or the formula or the shortcut (whatever the students 
want to call it), that that student should present and everyone in the classroom will get it by 
listening from that one student. I realized … that the students do not internalize the rule if 
they do not find it themselves through exploration. The fact that only one or two students 
have generalized says to me that the class in general is not ready to see the formula. Thus, I 
should try to ask the students to "link the representations".  This is what you [referring to the 
researchers] told me before, but like the students I have not internalized what you mean by 
that. The goal is not for one student to find a formula and to present it to the class, but for all 
the students to try to link different kinds of representations such as diagrams, reports, 
mathematical representations, and so on (personal communication, September 25, 2005). 

As Mr. R, Mr. C & Ms. E discussed this idea with the researchers, and each other, there was 
an increase in their students linking representations and movement toward generalization.  

Encouraging students to justify their generalizations 
Early in the study, Mr. R wrote, "Looking back… I see now that a lot of my students did get 

it, but I didn't allow them to explore what they had....If I had allowed them to vocalize their 
solutions and come to some real ownership, then several months later when asked to express 
these ideas in a different context, they'd be able to apply it" (personal communication, May 24, 
2004). In the earlier part of our observations, Mr. R, Mr. C & Ms. E began to encourage the 
students to continue to explore even after they developed a generalized solution to the problem. 
They also encouraged the students to create more than one type of generalization or express their 
generality in different formats (when appropriate). Mr. R and Mr. C also asked students to justify 
their generalizations or general statements and look at the relationships between them.  At the 
end of the observation period, the students in Mr. R’s classroom appeared to be dissatisfied 
unless they could generate multiple generalizations, and convince each other of the efficacy of 
each.  Indeed, at a certain point in time, Mr. R. no longer had to instigate these discussions.  The 
students spontaneously asked each other to explain and link their generalizations and 
justifications. 

Allowing students to assume ownership of their ideas 
We noticed that at the beginning of the observation period, students in all classes sought their 

teacher’s approval for their ideas, questions and solutions. Mr. R and Ms. E dealt with this by 
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encouraging the students to challenge, question, and direct their responses to each other. They 
shared that they often used cues determined by “reading” the body language, facial expressions 
and/or gestures of the students as a way to encourage them to talk directly to each other. Their 
students did talk directly to each other, but this did not happen consistently, except in the case of 
Mr. R, where by the middle of the observation period, his students consistently directed their 
comments to each other, without using him as an intermediary. Further, his students challenged 
each other to explain all representations and ideas, demanded that these be connected, and felt 
that they could and should try, when possible, to build generalized formats that connected 
solutions to the problem and hypothetical extensions of the problem.  Mr. R. noted that, "the 
questions that we ask serve as models for the students.  They begin to ask the same types of 
questions of each other as we do of them.  Students are no longer satisfied with the answers to 
the problems that are posed, rather they seek proof and justification and question until they are 
satisfied.  As students began to question each other with skill, tasks took on a whole new life." 
(personal communication, June 7, 2004).  The other two teachers (who were newer to the 
project) did not encourage this to the same extent, and their students did not tend to “talk” 
directly to each other.  

Finally, we note that as Lannin, Barker & Townshend (in press) point out, there can be great 
benefit in having students investigate their own errors as a way to deepen their understanding 
and ability to generalize.  All five teachers attempted to use errors as a way to probe students, 
and they also tried to minimize the number of instances in which they actually “told” students 
that they were incorrect. Rather, they tried to let students investigate their errors by encouraging 
them to justify their solutions. All of the teachers noted the importance of not “telling” students 
the answer, but many had difficulty in actually doing this. There were many occasions, 
particularly at the beginning of the observations, where they used facial expressions, intonations, 
or body gestures, to let students know exactly what they were thinking, even when they did not 
directly tell students the answers.  Once again, Mr. R. was unique in that by the middle of the 
observation period, his words, voice, posture, and facial expressions suggested neutrality.  

Conclusion 
Teachers in our study appeared to proceed through several steps as they helped students link 

representations and move toward abstraction and generalization.  In the beginning, many did not 
see the advantage in having students engage in lengthy explorations wherein such activity could 
take place.  Once they recognized the importance, they had difficulty in actually making it 
happen.  Some would ask students questions that they felt would stimulate representational 
fluency, generalization, and abstraction, but upon reflection, noticed that their questions were 
often based on their own preconceived notions about what a “correct” representation should be.  
Some teachers used subtle cues (i.e. facial expressions), while others actually felt the need to 
more directly steer students in their problem solving process.  As teachers encouraged students 
to, for instance, investigate hypothetical problem situations, link representations, etc., we found 
that the students actually started demanding this themselves.  This, in turn, served as a feedback 
mechanism for the teachers, wherein they felt a sense of affirmation for their new practices.  Ms. 
E, one of the teachers involved in the study, and an author of this paper, best sums it up by 
saying, “It is when the teacher models certain behaviors such as requiring students to justify their 
answers, pose hypothetical situations, provide opportunities for them to generalize and abstract 
representations, that students emulate them to the extent of even owning these behaviors after 
several times of being on the receiving end of the experience…the possibilities of exploring and 
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learning mathematically challenging ideas are extended way beyond the finding of a 
generalization that is derived from the problem initially posed” (personal communication, 
January 29, 2006). 

Endnotes 
1. The material contained herein is based upon work supported by the U.S. National Science 

Foundation (NSF) under grant numbers 0138806 and ESI-0333753. Any opinions, findings and 
conclusions or recommendations are those of the authors and do not necessarily reflect the views 
of the NSF, Rutgers University or the Newark Public Schools. 

2. Multiple camera views do not add to the number of minutes.  
3. The number of minutes varies by school and year. 
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This study investigates the relationship between middle school students’ academic self-efficacy 
and performance on the TAKS high- stakes mathematics test.  The baseline sample was 
(n=2,508) middle school students. Self-efficacy scores did not have a significant interaction with 
gender, but were found to decrease significantly (as do TAKS passing rates) as the grade level 
increased – a sobering trend.  This study has major implications for pedagogy and curricular 
approaches and interventions. 

This study aimed to explore the possible relationship between middle school students’ 
academic self-efficacy and performance on a high stakes mathematics test. Researchers are 
beginning to recognize that both the cognitive and affective aspects of learning are present when 
students construct mathematical understandings. Affective influences are hard to measure, but 
clearly influence students’ participation in mathematics study and careers. Research indicates 
that self-efficacy influences academic motivation (Pajares 1996; Schunk 1995). Self-efficacy is 
one’s self-judgments of personal capabilities to initiate and successfully perform specified tasks 
at designated levels, expend greater effort and persevere in the face of adversity (Bandura 1988, 
1986). Self-efficacy is grounded in a larger theoretical framework known as Social Cognitive 
Theory which supports human achievement as dependent on interactions between one’s 
behaviors, personal factors and environmental conditions (Bandura 1986, 1997).The work of 
Bandura concerning self-efficacy indicates that students’ perceptions of their abilities to perform 
tasks, greatly influences their success.  Self-efficacy beliefs influence task choice, effort, 
persistence, resilience, and achievement (Bandura 1997; Schunk 1995). Compared with other 
students who doubt their learning capabilities, Pajares and Schunk find that those who feel 
efficacious for learning or performing a task participate more readily, work harder, persist longer 
when they encounter difficulties, and achieve at a higher level. The stronger the perceived self-
efficacy, the higher the goal challenges people set for themselves and the firmer is their 
commitment to them (Bandura 1991).  Ability is not a fixed attribute residing in one’s behavioral 
repertoire. Rather it is a generative capability in which cognitive, social, motivational, and 
behavioral skills must be organized and effectively orchestrated to serve numerous purposes 
(Bandura 1993).   

The measures used were the Middle School Self-Efficacy Scale (validated in Fouad, Smith, 
Enochs 1997) and the Texas Assessment of Knowledge and Skills (TAKS). Regression and two-
way ANOVA were used for analysis.  

Baseline data was collected from 1,148 students at Jackson Middle School and from 1,360 
students at Waldo Middle School (names are pseudonyms for schools in El Paso County). Based 
on TAKS passing rates in each subject for all students (and for each ethnic student subgroup 
meeting minimum size), schools are monitored and classified as “academically unacceptable”, 
“academically acceptable. One school is considered a “high performance” school and the other is 
a “low performance” school. Scores were matched on ethnicity and grade levels. A subset of 
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students from Jackson Middle School was selected to match individual scores on both 
instruments using a regression to determine the relationship between academic self-efficacy and 
math scores.  

High self-efficacy scores were consistent with mean TAKS scores across both schools and 
among grade levels. TAKS scores and self-efficacy scores decreased across the middle school 
experience with both schools.  However, there is a decrease in mathematics test scores as 
students progress through the middle school grades. This pattern is evident in both the lower 
socioeconomic and the higher socioeconomic middle school samples. There is a decrease in 
students’ self-efficacy scores as they progress through the middle school experience across 
socioeconomic status variables. These patterns are consistent with both sample populations. 

A two-way ANOVA indicated that self-efficacy scores were significantly influenced by the 
school attended:  F(1,790) = 5.181, p = .023.   There was not a significant influence from gender 
(F(1, 790) = .049, p = .825), nor was there significant interaction between school and gender 
(F(1,790)=1.879, p = .171). The positive correlation (r = .215) between individual students’ 
TAKS and self-efficacy scores is highly statistically significant (n = 406, p < .001). 

This study supports the PME goals by seeking to further a deeper understanding of major 
psychological aspects of learning and teaching mathematics. Additional related detail appears in 
Blake, Lesser, Perez, Fonseca, Jablonski, and Gallo (2006). 
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Teachers may draw upon a variety of curriculum resources, including the teacher guide (TG), 
when planning for and during instruction. As it is designed to support teachers in making 
pedagogical decisions, teachers potentially vary in their use of the TG. Accordingly, this study 
examines how teachers use the TG as a resource to inform their planning and instructional 
decisions. 

In response to national reform efforts (NCTM, 1989), some curriculum developers have 
designed mathematics curricula to help teachers integrate these reform ideas into their practice. 
Such curricula, however, place new demands on teachers and teacher learning. Accordingly, the 
designers of the Connected Mathematics Project (CMP), in particular, have developed materials 
with the specific intent to help both teachers and students learn mathematics, as well as to 
provide teachers with the necessary pedagogical support to help students learn. Little is known, 
however, about how teachers use these materials to inform their teaching decisions and actions. 
This study examines how four middle school mathematics teachers use the CMP teacher guide 
(TG) to inform their planning and instructional decisions. 

There are a variety of factors that potentially influence teachers’ use of the TG. Researchers, 
in particular, have pointed to experience as influencing the nature of teachers’ decisions and 
actions in the classroom (Borko & Shavelson, 1990; Leinhardt & Greeno, 1986; Livingston & 
Borko, 1990). As mathematics teaching is inherently complex and uncertain, experienced 
teachers seem better able to manage such complexities and uncertainties as they arise in the 
course of their practice. Accordingly, this study examines four experienced (5+ yrs. teaching 
experience, 3+ yrs. curricular experience) teachers’ use of the CMP TG in planning for and 
enacting mathematical tasks. 

Ethnographic methods in combination with grounded theory methods were employed in this 
study.  Four experienced 6th grade mathematics teachers who were currently using CMP  
volunteered to participate in this study. Individual teacher interviews and classroom observations 
constitute the data sources for this study. The interviews and observations were then used to 
inform the writing of case studies for each teacher, highlighting patterns and themes in terms of 
teachers’ use of the TG in order to make comparisons across teachers. 

Results and Discussion 
Findings from this study indicate that a variety of factors mitigate experienced teachers’ use 

of the TG in planning for and enacting tasks. For example, teachers’ views of mathematics 
teaching influenced, in most instances, the content and ways in which teachers engaged students 
with the task. In addition, teachers’ underlying conceptions of the CMP materials, their teaching 
experience, and their curricular experience (or curricular inexperience) in having previously 
taught the task impacted how teachers used the TG in planning for and enacting tasks. Other 
factors also emerged as influencing teachers’ use of this curricular resource, though not as 
consistently or to the same extent. Teachers’ perceived time constraints, for example, impacted 
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their enactment of tasks, and hindered them from enacting the task as they had intended and 
often led to a decline in the level of classroom discourse and mathematical activity.  

Looking across the four teachers’ practice in light of their enactment of the different tasks, 
teachers’ particular conceptions of and orientations towards mathematics teaching, in large part, 
explain the extent to which their enactment of different tasks reflected the ideas underlying 
CMP. For example, Alicia stated and displayed a more conventional orientation towards 
mathematics teaching, leading much of the class discussion and focusing students’ work on 
practicing computations. Despite her use of the TG in planning for tasks, Alicia enacted the tasks 
in a more conventional fashion. Thus, it appears that Alicia’s overall view of mathematics 
teaching has become somewhat cemented throughout her teaching career and seemed to have 
hindered her from planning for enacting CMP tasks in accordance with the underlying principles. 
Similarly, Tiffany exhibited a more conventional orientation towards mathematics teaching, 
despite her stated philosophy of mathematics teaching and professed agreement with the CMP 
approach to learning and teaching. Although she regularly used the TG in planning for tasks and 
largely planned to discuss the central ideas of the task, Tiffany resorted to more conventional 
teaching methods and focused on the procedural aspects of the task, thus constraining the 
learning opportunities afforded by the task. As with Alicia, Tiffany’s views of mathematics 
teaching appear to have been continually reinforced over the course of her career, and these 
views seemed to prevent her from enacting the curriculum in accordance with its underlying 
principles. 

Richard, on the other hand, exhibited a strong orientation towards non-conventional teaching 
practice. Despite his limited use of the TG, Richard largely enacted tasks in ways that reflected 
the ideas espoused in the curriculum. Richard’s approach to mathematics teaching may also have 
been cemented over time, and despite the fact that his views differ from Alicia’s and Tiffany’s 
views, they strongly influence his implementation of the curriculum. Susan similarly exhibited a 
strong orientation towards non-conventional teaching practice. Unlike Richard, however, Susan 
regularly used the TG as a prescription for enacting tasks. Even when enacting old, familiar 
tasks, Susan’s enactment largely reflected the TG suggestions as described in the LES section. 
Unlike Richard, Tiffany, and Alicia, Susan’s use of the TG and her enactment of tasks seemed to 
be driven largely by the text of the TG itself and not her views of mathematics teaching.  

In short, teachers’ conceptions of mathematics teaching are readily apparent in the presence 
of extensive teaching experience. Teachers who do not have such extensive teaching experience 
consider the curriculum, particularly the TG, as more of a script for enacting tasks. However, 
even when less experienced teachers view the TG as a prescription for instruction, their views of 
mathematics teaching play a more prominent role in their enactment of tasks when faced with 
various teaching problems. Even for experienced teachers whose particular views of mathematics 
teaching are regularly apparent in their practice, their views also underlie how they manage 
teaching problems in the course of their work. Thus, it seems that neither teaching experience 
nor curricular experience impacts the ways in which teachers use the TG to manage teaching 
problems. Instead, teachers rely on their personal resources to manage teaching problems as they 
arise in their practice.  
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This paper documents the experiences of four mathematics professors as they incorporated 
cooperative learning into their entry-level mathematics courses.  Using an autoethnographic 
approach, the participants documented changes in how they used cooperative learning in their 
classes as well as how their beliefs and understanding about cooperative learning changed over 
the course of the study. 

The traditional college mathematics classroom was dominated with teacher-centered teaching 
(Rogers, 2001) until recently.  As various pedagogical approaches made their way into 
elementary and secondary schools, American universities began to investigate if these 
alternatives to lectures would be valuable in the post-secondary classroom.  One such approach 
was cooperative learning. In the 1990s, publications and studies were published suggesting how 
cooperative learning could be used in the university classroom (Foyle, 1994; Johnson, Johnson, 
& Smith, 1991), and specifically in the university mathematics classroom (Dubinsky, Matthews, 
& Reynolds, 1997; Rogers, 2001).  While these publications address various aspects of 
cooperative learning, including basic elements of effective cooperative learning, implementation, 
assessment, the role of the teacher, and classroom strategies, none of them address the 
experience of professors as they work to implement cooperative learning in their own 
classrooms.  This paper documents the experiences of four university mathematics professors as 
they began to implement cooperative learning into their entry-level mathematics courses. 

Methodology 
Because the participants in the study were the researchers themselves in their own 

classrooms, and the data collected was from the self-reflections of the participants as they 
interacted in their own classrooms, it was natural for this study to be an autoethnography.  An 
autoethnography is “an autobiographical genre of writing and research that displays multiple 
layers of consciousness, connecting the personal to the cultural. Back and forth 
autoethnographies gaze, first through an ethnographic wide angle lens, focusing outward on 
social and cultural aspects of their personal experience; then, they look inward, exposing a 
vulnerable self that is moved by and may move through, refract, and resist cultural 
interpretations.” (Ellis & Bochner, 2000) Autoethnographies can give deep reflective accounts of 
one’s personal experiences while immersed in a new situation.  

Each of the four professors in this study chose an entry-level mathematics course in which to 
use cooperative learning as an integral aspect of the course design. In preparation of this, we read 
relevant articles and met as a group over the summer of 2005 to discuss these articles and reflect 
upon our concerns and curiosities. As the fall semester approached, we designed our courses to 
reflect various aspects of cooperative learning, including regular group interaction, 
interdependence on assessments, and group accountability. 
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Data Collection and Analysis 
Before beginning our research on cooperative learning, each participant kept a journal to 

document initial feelings, beliefs and attitudes regarding cooperative learning.  As the project 
progressed, we maintained these journals to document changes in our use of cooperative 
learning, along with our struggles, successes, and changes in beliefs.  We also met as a group 
throughout the process to talk about our experiences and support each other during the process. 

Each meeting was recorded so they could be later transcribed. The journals were maintained 
electronically and shared with the group at the end of the study.  After two semesters of using 
cooperative learning in entry-level mathematics courses, these meeting transcriptions and 
journals were analyzed using constant comparative analysis. (Denzin & Lincoln, 2000) 

Findings and Conclusions 
Several trends in the data emerged after analyzing the data.  The first was that each of the 

participants initially stated that they had used cooperative learning prior to the study.  After 
reading formally about cooperative learning in preparation of the study, each of the participants 
made a distinction between “students working together” and “true cooperative learning.” This 
distinction relied on whether students began to take responsibility of the learning of the members 
of their group.  As the study progressed, the participants recognized noticeable differences 
between what they had called cooperative learning in the past and how they utilized cooperative 
learning during the study.  However, each of the participants documented the challenge of 
adapting true cooperative learning and having students take responsibility for their own and their 
groups’ success. A second theme was that each of the professors initially had doubts about fully 
immersing their class in a cooperative learning environment. Each questioned if some lessons 
were best left to individual learning, if some lessons were too easy to benefit from cooperative 
learning, or if some students would resist the process and disrupt the experience for the class. At 
the end of the study, each of the participants reiterated these concerns, documenting that some 
lessons were more natural for cooperative learning than others, and that struggles with individual 
students disrupting the cooperative process were common.   The third noticeable trend was that 
each participant recognized the importance of a supportive group of other professors with which 
to study cooperative learning and to share their experiences and difficulties. 

While cooperative learning has proven itself worthwhile in many different learning 
environments, little research has documented the experience of the professor. The stories of these 
four professors may be of benefit to others as they begin to experiment with cooperative learning 
in their classroom. 
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This paper describes how the Technology in Mathematics Education Project impacted 
participating middle grades and secondary mathematics teachers' preparedness to teach via 
technology.  Results indicated that the project positively impacted participants' in that regard.  
Accordingly, the methods employed in the TIME Project appear to be viable avenues for 
preparing middle level and secondary mathematics teachers to teach with technology. 

Many teachers do not believe that they are well-prepared to infuse technology into their 
pedagogy.  Accordingly, the Technology In Mathematics Education (TIME) Project was 
developed to help middle and secondary mathematics teachers enhance their knowledge of 
resources and methods for teaching mathematics via technology.  It was believed that such 
learning would foster significant improvement in: 

1. Participants’ perceptions of their knowledge of a wide variety of technological resources 
(videos, software, calculators, Internet, etc.)  and methods of using them to teach 
mathematics, and  

2.  The frequency with which participants incorporated technological tools into their 
mathematics instruction. 

Hence, this paper relates to the conference theme of integrating theory and practice in that the 
paper concerns methods of preparing in- and pre-service teachers to infuse technology into their 
pedagogy, which is a practice that has been endorsed on theoretical and logical grounds.  Further 
the instructional methods employed in the project are consistent with contemporary theories 
concerning best instructional practice.  Accordingly, this paper highlights the effectiveness of 
efforts to use theoretically sound educational strategies to empower mathematics teachers to 
teach via technology. 

Participants 
Nineteen middle level or secondary mathematics teachers participated in the TIME Project.  

Four of the participants were certified (1) or seeking certification (3) in middle level 
mathematics, 1 was certified in elementary education but taught at the middle level (4th grade), 
and 14 were certified in secondary (7-12) mathematics.  Eleven of the participants had at least 5 
years of teaching experience, five had from 1 to 4 years of experience, and three participants 
were pre-service teachers and therefore, had no teaching experience.  The participants 
represented 10 school districts, 3 rural districts and 7 urban districts.   

The Context 
Participants completed a course that focused on exploring resources and methods for 

teaching mathematics with technology.  Eleven of the secondary participants completed a five-
day course during the summer of 2003 and 8 middle level (4-8) teachers completed a 12 week 
course during the fall of 2003.  Both courses entailed 35-40 contact hours and focused on 
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methods of teaching mathematics via technology, but some activities were different in order to 
better meet the varying needs of the middle and secondary participants.  Constructivism was 
used to inform the course instructors’ instructional methods.  Therefore, a premium was placed 
on engaging participants in activities through which they could explore a variety of mathematical 
topics and problems relevant to middle and/or secondary mathematics through a variety of 
technological resources.  These methods allowed participants to become familiar with 
technological resources while experiencing the use of those resources from a student’s 
perspective.  The methods also afforded participants opportunities to explore how multiple 
resources could be used to teach a single topic.  In addition, participants constructed lesson plans 
and technology infused activities that allowed for independent exploration.  Writing was also 
incorporated into the curriculum by having participants explore and write critiques of 
technological resources, usually software.  It was believed that such experiences would better 
prepare participants to teach via technology.  Technological topics addressed in the course 
included using videos and multimedia programs to enhance instruction; evaluating resources; 
using resources such as Geometer’s Sketchpad, graphing calculators and spreadsheets to solving 
problems, teach concepts, and link mathematics to realistic contexts.  The course was structured 
to approach such topics by setting them in explorations of mathematical topics such as 
probability, patterns and sequences, linear regression, data representation, distance-rate-time 
problems, limits and mathematical modeling.  Participants not only completed the course, but 
attended follow-up meetings intended to support participants’ efforts to teach with technology.  
Support was provided both by providing participants with a forum in which to reflect on and 
discuss their efforts to infuse technology into their pedagogy and by exposing participants to 
additional activities and resources for teaching mathematics with technology. 

Methods & Data Sources 
Both quantitative and qualitative data were collected and analyzed, and results associated 

with both data types of will be addressed.  The primary data collection instrument was a 
questionnaire developed by the investigator that contained both five-point Likert scale and open-
response items.  Participants could choose from a standard 5-point scale of responses ranging 
from strongly agree (5) to strongly disagree (1).  The survey was completed on the first and last 
days of the course.  Likert scale items focused on the frequency with which the participants 
integrated technology into their instruction, their perceptions of their knowledge of and 
preparedness to teach with various technological resources, and their perceptions of how the 
project impacted their ability to teach via technology.  Chi-square tests and one-sample tests of 
population proportion (z-tests) were conducted to determine if significant differences across pre-
and post-tests existed in the frequency of responses to Likert-scale items, with an alpha level of 
.05 used in all analyses.  To help establish consistency between participants perceptions of their 
preparedness and their knowledge of resources and methods of teaching with technology, open-
ended items asked participants to outline a lesson that incorporated the use of technology, to list 
technological resources that could be used to teach mathematics, and to explain both how the 
TIME Project impacted their ability to teach with technology and how the Project could be 
improved.  Data from the open-ended questions on both pre- and posttests were examined to 
identify trends in the participants’ responses, which was a very simple form of coding.    One-
time observations and interviews of three participants’ efforts to use technology as a teaching 
tool were conducted to verify that participants were teaching with technology in manners that 
were consistent with the vision of the project. 
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Results & Implications 
One hundred percent of the participants indicated that participation in the project enhanced 

their ability to teach with technology and 95.24% indicated that they would recommend the 
project to other teachers (One respondent was neutral on that issue.).  A z-test revealed that 
participants reported that the project had a positive impact and would recommend the project to 
others at rates that are significantly greater than 50% (p > 0.0001 in both cases, n = 19).  Two 
way chi-square analysis across pre- and post-course surveys of participants’ responses also 
revealed significant differences in the frequency with which participants chose SA or A versus 
all other responses on the following, among other, items (n = 19). 

� At this point in time, I am familiar with a wide variety of technological resources. (p 
= 0.0009) 

� At this point in time, I am familiar with a wide variety of methods of teaching 
mathematics through the use of technological resources. (p < 0.0001) 

The preceding results consistently implied that the TIME Project was positively impacting 
participants’ knowledge of methods and resources for teaching middle level or secondary 
mathematics via technology. 
Qualitative data also indicated that the TIME Project was attaining its goals.  The following 
statements are representative participant responses to the question of, “How has participation in 
the TIME Project helped prepare you to use technology as a teaching tool?” 

� I have learned methods of using spreadsheets and graphing calculators that I did fully 
not understand. (Fall Participant) 

� It made me familiar with the TI-83 calculators, CBR & CBL’s in my room.  I can 
now find many technology lessons on the Internet.  I can send email with 
attachments. (Fall Participant) 

� I knew almost nothing about the TI-83, Sketchpad, Power Point, and spreadsheets.  
Now, I feel confident to use any of these in teaching a lesson. (Summer Participant) 

� My knowledge of technology has been greatly increased.  I feel more comfortable 
with some technological tools that in the past, I would have been afraid to touch. 
(Summer Participant) 

Observations also indicated that participants were using technology as an instructional tool in 
ways that were compatible with the goals of the project.  A seventh grade teacher, Paula helped 
her pupils enhance their knowledge of  pie graphs, box and whisker plots, scatter plots and 
histograms by pairing students and having them input data into lists of TI-74 graphing 
calculators and then generate graphs.  Cathy, a 7-12 instructor, had her 7th and 8th grade 
students complete a culminating project that she created for a unit on interest that required pupils 
to use spreadsheets to calculate compound interest on an investment.   

Based on the findings noted herein, it appears that the TIME Project positively impacted 
participants’ preparedness to teach via technology as well as the frequency with which they do 
so.  Accordingly, it appears that a viable method for empowering middle level and secondary 
mathematics teachers to infuse technology into their pedagogy is to engage the teachers in 
activities in which a variety of technological resources are used to explore a variety of problems 
and topics that relate to the level at which the participants teach.    
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Ideas and expectations of 337 teachers of public primary schools in Mexico City related to 
students and their mathematics performance were studied. This investigation is part of a wider 
research carried out with 2 000 educators in the Federal District (FD) and three states of Mexico. 

The Research: Approaching Reality 
I. Teaching students in order to solve problems and to make decisions in different situations 

from their environment is one of the prime objectives of the national curriculum of mathematics 
in primary school. Nevertheless, the national and international assessments carried out in the 
country during the last six years show that student’s basic education is far from managing (see 
for example, SEP, 2001; OECD, 2003, and TIMSS, 1995). II. The authorities have impelled 
actions to improve the quality of education. Among others one can mention: courses and 
materials for teachers; textbooks for students; supply schools of electronic and technological 
resources, and diverse stimuli programs for teachers and institutions. One could ask, why all 
those actions do not reflect on the results? III. Few studies of the educational system and the 
effects that actions, like the aforesaid, have in students’ mathematics performance have been 
done in Mexico. Although, assessment of primary and secondary education have been carried 
out, it is until 2002, with the creation of the National Institute for the Assessment of Education 
(Instituto Nacional para la Evaluación de la Educación) (INEE, 2005) that an evaluation system 
of basic education at national level is designed and setup in order to understand educational 
achievement and to plan intervention strategies to enhance the quality of education. IV. Results 
from studies made in different countries show that teachers’ beliefs about mathematics and their 
purpose in basic education influence their teaching, their teaching expectations and their 
students’ learning (Thompson, 1999 and Gilian, Pehkonen & Torner, 2005).  

Research Purposes 
In this national context, in 2002, a research project was setup in the Federal District and three 

states of Mexico in order to obtain information about the factors that affect low performance in 
mathematics and are attributed by teachers to the students. To reach that goal, the attention was 
focused on the ideas that teachers have of good students in mathematics and those that are 
classified by them as low attainers. 

Survey Design 
Due to the fact that the working teams of researchers of the global study are distributed in 

states located in the center, south and northwest of Mexico, it was decided to make a survey 
using a paper and pencil questionnaire in order to control how the questions are posed and to 
apply it to a big number of teachers. The questionnaire was done in the following way: 1) 
questions were written and an internal validity process was carried out; 2) teachers from the State 
of Mexico were individually interviewed; 3) an opinion type survey based on a gradation scale 
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was buildup; 4) a pilot study was carried out in the four regions of the country; and 5) the final 
version of the questionnaire was made. This questionnaire is composed by 12 groups of 
questions. In this paper groups (V, VI) and (IX, X) designed to characterize ideas about good 
students in mathematics and group (VII, VIII) about low attainers are considered. 

The Study In The Federal District 
The results of the so called IDANIS test (Diagnostic Exam for First Grader Secondary 

Students - Instrumento de Diagnóstico para Alumnos de Nuevo Ingreso a la Secundaria) were 
used to choose a representative sample of primary school teachers that work in the FD. The 
IDANIS test consists of three parts; nonetheless, only the results of the mathematical ability part 
assigned to each school were used, the numbers associated are contained in the interval (12.50, 
88.33). This interval was divided in ten parts, which allowed the classification of the 2 260 FD 
public schools in classes. The sample size, 35 schools, was conditioned by the number of team 
members. The schools were chosen in the following way: 1) using proportional affix to 
determine the number of schools in the classes, and 2) the institutions of each class was selected 
randomly. Some classes had a small number of schools compared with others; for that reason, to 
analyze the data, the 10 classes were grouped in 4 strata: Ep+, Ep =, Ep-, and Ep--. This process 
determined the representative sample of teachers and its size. 

Data Analyses 
In the groups (V, VI) and (IX, X) part of the answers correspond to a gradation made by 

teachers according to levels of importance of characteristics associated to good mathematics 
students. In the other part of these groups of questions, teachers were requested to choose five of 
those characteristics and order them from more to less importance. Therefore, one of the analyses 
carried out with the data required the building up of two indices: Priority Index and Importance 
Index. For groups (VII, VIII) a scale of frequencies was used for statements related to low 
attainers behaviours. In the other part of this group of questions teachers were asked to choose 
five statements that could characterize better those students. 

Some Results 
I. Both, the Importance and the Priority indices allow a comparative interpretation of the 

data. With this view one can assert that teachers’ choices revel a representation of students’ 
mathematics performance they have buildup based on their teaching experience. II. Moreover, it 
was possible to identify that teachers adapt their professional knowledge to particular conditions 
of their working place and fit their expectations to what they believe is possible to obtain in their 
classroom; that is to say, practices in situation can be characterized for different strata, or to the 
accomplishments of the school as a whole. III. It is interesting to stand out that teachers’ image 
of good mathematics students goes beyond to what the school can provide. IV. Some teachers 
recognize low attainers’ behaviours that are successful and enable opportunities for them. In 
spite of this fact, negative aspects are enhanced without considering that more than not students 
are given tasks that exceed their capabilities, creating a vicious circle that confirms their poor 
image of those students. 
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This presentation introduces a conceptual framework for examining teachers' mathematical 
knowledge for teaching procedures and related concepts, which includes two dimensions: Three 
forms of mathematical knowledge (subject-matter, learner conception, didactic representation) 
and Three aspects of mathematical procedures (basic algorithms, alternative algorithms, related 
concepts and procedures). It is applied to analyzing secondary school mathematics teachers' 
knowledge for teaching algebraic equation solving. Some preliminary data and results are 
discussed. 

Background and Research Question 
Solving algebraic equations is a central topic in traditional school algebra curricula. Although 

there have been extensive studies on students’ understanding of equations and equation solving, 
few has been conducted with mathematics teachers. The knowledge that teachers employ for 
teaching equations solving becomes a particularly important issue for inquiry when the function-
based approach has been reshaping school algebra curriculum, teaching, and learning in the past 
decade, and challenging the conventional, formal rule-based approach to equation solving. 

This presentation provides a sketch of the presenter’s ongoing dissertation research on 
secondary school mathematics teachers' knowledge for teaching with specific focus on algebraic 
equation solving. The main research question is: What kind of mathematical knowledge do 
secondary school mathematics teachers draw upon when handling fundamental problem 
situations related to the teaching and learning of algebraic equation solving?  

Theoretical Framework 
A key piece at display is a conceptual framework for examining teachers’ mathematical 

knowledge for teaching procedures and related concepts. It is constructed based on several pieces 
of work: a summary of existing theories and conceptualizations of mathematics knowledge for 
teaching (e.g., Artigue, Assude, Grugeon & Lenfant, 2001; Ball & Bass, 2000; Burrill, Ferrini-
Mundy, Senk & Chazan, 2004), a review of research on students’ and teachers’ understanding of 
equations and equation solving, an analysis of the ways equation solving is treated in selected 
algebra textbooks, as well as the presenter’s own empirical experiences in working with 
mathematics teachers. The framework includes the following two dimensions: 

Forms of Mathematical Knowledge  
Subject Matter. Teachers’ knowledge of the mathematical content as the subject matter of a 

scientific discipline and a course of study.  
Learner Conception. Teachers’ knowledge of learners’ mental representations of the content, 

including learners’ typical pre-conceptions, misconceptions, errors, and learning trajectories.  
Didactic Representation. Teachers’ knowledge of the content as represented by instructional 

media and strategies, including sequencing of units and topics, various examples, metaphor, 
models, tasks, tools, and technologies used. 
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 Aspects of Mathematical Procedures  
Basic algorithms. The algorithm(s) that are most general and precise for carrying out the 

procedure, and most efficient for most cases. They are usually taught as the standard or major 
algorithm(s) in school mathematics curricula 

Alternative algorithms. Algorithms and strategies for the procedure that are less often or 
formally introduced in school mathematics curricula, or have lower generality, efficiency, or 
precision, compared to the basic algorithms 

Related concepts and procedures. The concepts and procedures that are built directly upon, or 
are closely tied to, the given procedure 

Research Instruments 
The framework is applied to analyzing the mathematical procedure in focus: algebraic 

equation solving. Based on the second dimension of the framework, about a dozen of concepts 
and algorithms are identified and selected for the study. Three sets of research instruments are 
being developed: 1) A demographic survey on the participating teachers’ academic background 
and algebra teaching experience. 2) A set of open-ended items on knowledge of algebraic 
equation solving, most of which embedded in teaching and learning contexts, and 3) A semi-
structured interview protocol. Each open-end item includes several questions focusing on one 
specific aspect of equation solving processes, while covering all three forms of mathematical 
knowledge. The interview questions will be revised based on results from administering the other 
two sets of instrument. 

Pilot Study and Preliminary Results 
In a recent pilot study, a draft instrument which consists of 7 open-ended items was 

administered to 20 mathematics teachers from 5 high schools in the state of Michigan. The 
teachers have an average of 13 years of mathematics teaching experience, and particularly, an 
average of 9 years of algebra teacher experience. Data from the pilot shows that 

1. These teachers have quite good understanding of the basic concepts and methods related to 
solving linear equations, for instance, the balancing method, equivalent linear equations, the 
connection among the graphical methods for solving linear equations of the forms ax + b = 0, ax 
+ b = c, and ax + b = cx + d, and the difference between the graphical solutions to the equation 

ax + b = cx + d and to the system of equations 
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+=
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. 
2. In explaining concepts and processes, teachers may be good at using examples and 

representations (e.g., solving certain linear equations with algebraic tiles or scale balances) given 
in the textbooks, but may not have the habit of thinking about the applicability of alternative 
examples (e.g., what kind of linear equations cannot solved with algebraic tiles or scale 
balances). Also, teachers tend to develop routines for students to follow (e.g., a well-formulated 
three-step model for solving equations by undoing operations.   

3. Not all teachers are clear about the subtle differences among some similar algorithms, e.g., 
the balancing method, the undoing method, and the method of transposition. An in-depth study 
need to be conducted through clinical interviews to generate details of teachers’ understanding. 
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To identify conditions that promote gains in the developmental and conceptual nature of 
mathematics instruction, a two-year professional development model was implemented and 
assessed. The model involved modeled lessons, reflective focus sessions, and workshops designed 
to promote consistent methods of teaching among grade levels Pre-K to 8. Analysis of pre and 
post data revealed gains in instructional design and student achievement.  

Purpose 
Cwikla (2003) states that the classroom is a learning environment for students in the same 

way as professional development activities are learning environments for teachers.  To identify 
conditions that promote gains in the developmental and conceptual nature of mathematics 
instruction, a two-year professional development model was implemented and assessed.  

Modeled lessons involved the teachers observing lessons in their classrooms as well as other 
teachers’ classrooms that engaged students in constructivist learning environments. Focus 
sessions held after modeled lessons provided opportunities to reflect and share feedback. 
Workshops engaged teachers in constructivist learning environments and promoted awareness of 
the similarity of techniques modeled throughout the grade levels. 

Theoretical Framework 
Efforts to support conceptual learning environments rely heavily on teacher learning and 

professional development (Hill, 2004). Researchers find that effective professional development 
characteristics include collaborative active learning opportunities that focus on content and 
student learning, involve modeled pedagogical practices, provide opportunities for reflective 
practice, span over a period of time, and are systematically assessed (Cohen & Hill, 2001; Garet 
et al., 2001; Shifter & Fosnot, 1993).   

Modes of Inquiry/Data Sources 
To extend current research concerning the effects of professional development on 

instructional design and student achievement, the professional development model designed 
using the above mentioned recommendations was systematically assessed. Eighty-six teachers of 
grades Pre-K to 8 in ten low socioeconomic inner-city schools located in the metropolitan area of 
New York participated.  The teachers were categorized into three grade level groups, namely 
Group 1 (teachers of grades Pre-K to 2), Group 2 (teachers of grades 3 to 5), and Group 3 
(teachers of grades 6 to 8).   

A pre/post survey was administered to the teachers that involved statements which gauged 
responses on a 5-point Likert scale.  Statements concerned use of pedagogical practices that 
fostered conceptual understanding of mathematics. A narrative response question included on the 
survey asked the teachers to indicate the challenges they face while teaching mathematics. The 
teachers were also asked on the post survey to assess the features of the professional 
development model.  The gathered data were recorded, and the pre and post overall mean 
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responses to the statements were compared using a (2x3) repeated measures ANOVA to report 
the interaction between time (pre/post) and group.  Narrative response questions were analyzed 
for patterns in responses. 

Pre/post interviews were conducted with each teacher to provide for more in-depth 
investigation into the challenges of teaching mathematics as well as teacher reactions to the 
professional development model.  The gathered data were transcribed and analyzed for patterns 
in responses.  Each teacher was observed on three separate occasions while teaching 
mathematics both prior to and after participation in the professional development. An evaluation 
form was used that consisted of two parts, namely Part I (Instructional Approach) and Part II 
(Instructional Focus).  Part I classified a lesson’s instructional approach as either developmental 
or explanatory. Part II classified a lesson’s instructional focus as either procedural or conceptual.  
The frequency of each type of instructional approach and focus among the groups of teachers 
were recorded.  A chi-square analysis was conducted both prior to and after the professional 
development to determine the existence of relationships between grade level and instructional 
approach as well as instructional focus. 

The Normal Curve Equivalent mathematics scores on the Terra Nova Standardized Exam 
achieved by the students prior to and after their teachers’ participation in the professional 
development were compared using a paired samples t test to determine any significant gains in 
student achievement.  

Results/Conclusions 
The repeated measures ANOVA showed significant gains in pedagogical practices (p<.05) 

for each teacher group.  Interviews and narrative responses revealed that the majority of all three 
groups of teachers viewed using manipulatives and an extensive curriculum as challenging 
aspects of developing conceptual understanding of mathematical topics. The majority of all 
groups viewed the professional development features as valuable steps towards relieving such 
challenges and supporting their efforts to create sound learning environments. A chi-square 
analysis revealed a relationship between the teachers’ grade level group and their instructional 
approach (chi2 = 21.654, df = 2, p<.01; chi2 = 22.966, df = 2, p<.01, respectively) as well as their 
instructional focus (chi2 = 38.894, df = 2, p<.01; chi2 = 37.494, df = 2, p<.01, respectively) prior 
to and after participation in the initiative. The teachers of grades 3 to 5 were consistently more 
likely than the other teacher groups to implement lessons with an explanatory approach and a 
procedural focus prior to and after the professional development. However, a paired samples t-
test indicated significant improvement in the teachers’ instructional approach and focus after 
participation in the initiative (p<.01) with the teachers of grades 3 to 5 using a developmental 
approach and a conceptual focus more often. The comparison of Terra Nova standardized 
mathematics achievement scores revealed significant gains (p<.01) in student achievement upon 
completion of their teachers’ professional development.  

Relationship of Paper to Goals of PME-NA 
The model and its effects are shared to serve school leaders and staff developers with 

effective action steps towards the continued implementation of reform based mathematics 
instruction.  The described professional development model furthers a deeper and better 
understanding of the psychology of teaching and learning mathematics. 
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We describe a professional development program with a focus on mathematics and mathematical 
pedagogy and connections to practice. Our analysis showed that the students of participants had 
significantly higher scores on a state-mandated test than a comparable group of students drawn 
from the same enrollment files. Further statistical analyses describe clearer connections between 
teacher professional development and student achievement. 

As part of a reform effort aimed at improving student achievement by improving teacher 
quality, mathematics educators at an urban university designed a professional development (PD) 
program for elementary school teachers. The program was designed to encompass aspects of 
effective PD–long-term engagement with teachers, focus on mathematics and student thinking in 
mathematics, and connections to practice (Garet, Porter, Desimone, Birman, & Yoon, 2001; 
Sowder, Philipp, Armstrong, & Schappelle, 1998).  Grossman, Wilson, and Shulman (1989) 
suggest teacher knowledge is a combination of mathematical knowledge and pedagogical content 
knowledge and connections must be made between PD and practice. One clear goal of PD 
programs is improved student performance and achievement.   

Setting and Participants 
Over a two-year span, this PD offers elementary school teachers the opportunity to re-

examine the mathematics they teach to come to a deeper understanding of content and its 
connections to other mathematical concepts. The PD is offered as six units of university course 
credit in undergraduate mathematics courses–Number and Operations, Geometry, and Algebraic 
Thinking. Another six units is offered in graduate teacher education courses that focus on 
providing a language and lens for looking at classroom mathematics teaching and children’s 
thinking about mathematics, with an emphasis on inquiry into practice.  

This study compares scores on the mathematics portion of the California Standards test 
(CST), a state-mandated standards test, of students of teachers who participated in the university 
PD with a comparable group of students whose teachers did not participate. The students are in 
the entire range of socio-economic status, encompass multiple ethnicities, and a range of 
abilities. The study also included measures of teacher knowledge, teachers’ self reports of 
changing practice and follow-up focus group interviews with participants. Here we report on 
improved student achievement. 

Methodology 
Approximately 90 teachers of grades 4–7 completed the 12 units in the year 2004. The 

treatment group consisted of students who were taught mathematics in the academic year 2004-
2005 by a participant teacher who had finished coursework in the prior year. A control group 
was constructed by randomly drawing from the group of same-grade students from comparable 
schools (in terms of Academic Performance Index (API)) whose scores matched in the 2002-
2003 academic year. (See Figure 1.) The control group had not had a participant teacher. 
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Because of the need to match on comparable scores two years prior, our treatment group was a 
subset of the teachers’ students. Finally, the standard error of proportion, a statistical analysis, 
was done to assure the treatment and control groups look sufficiently alike in terms of gender 
and ethnicity.  We then compared the 2005 scores of the treatment and control groups.  

 

Figure 1. Illustration of pairing of students. 

Results and Discussion 
We conducted a paired t-test (=.05) for a test of difference of means and report highly 

significant results (p= .01).  Also, a correlation was found between API and difference in the 
mean scores. Students attending lower-API schools had greater differences.  

For instructors, content test item analysis showed gains in content knowledge. In addition, 
93% of the teachers in this cohort completing a survey reported that they had a better 
understanding of the mathematics they teach. One teacher wrote, “Yes, it’s like learning to read.  
You can’t pinpoint exactly when and where you finally learned how, but [you develop] a 
continuous connection and build up of concepts.” In focus groups, two main themes emerged. 
The most enduring effects teachers reported as a result of their participation in our courses were 
a new belief that students can understand mathematics and an orientation toward teaching for 
understanding. 

Our analysis suggests that a program that focuses on connections between mathematics, 
pedagogy, and practice can support teachers in helping students better meet the standards of 
mathematics content knowledge. 
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This paper focuses on suggestions teachers use to support the development of multiple solution 
strategies by their students.  Lessons from six middle school teachers were coded for 
“suggestions”.  These instances of suggestions were then categorized and frequencies were 
calculated.  The most common types of suggestions identified were representations, procedures, 
and referent problems.   Vignette analysis was then used to provide a window into the ways in 
which suggestions unfolded in each teacher’s classroom. 

Background and Focus Statement 
The National Council of Teachers of Mathematics (2000) and the mathematics education 

community over the last fifteen to twenty years have called for changes in mathematics 
instruction. The role of the teacher is decidedly different within this new vision of mathematics. 
One difference is the way that teachers should choose appropriate tasks for students, assist 
students in the use of representations, comprehend student thinking and help students to justify, 
explain and connect the different solution strategies that occur in the classroom (NCTM, 2000; 
NRC, 2001). This study examines one of these new roles: the ways that teachers provide 
suggestions to support student constructed solution strategies. 

Method 

Participants 
Six middle school teachers from two metropolitan school districts participated in this study. 

These teachers were a subset of teachers who participated in a professional development that 
focused on Supporting the Transition from Arithmetic to Algebraic Reasoning (STAAR)1. The 
teachers were chosen because of their expressed desire to promote and encourage diverse 
solution strategies in their classrooms.  

Data Collection and Analysis 
Each teacher was observed on at least two occasions. Observations were scheduled for 

lessons during which teachers anticipated using tasks that would result in multiple solution 
strategies. Each lesson was videotaped and semi-structured post-observation interviews were 
conducted. All interviews and lessons were transcribed and the transcriptions were coded for 
instances of teacher suggestions2.  The suggestions were then categorized to identify the different 
types of suggestions used by the teachers.  In conjunction with this process of coding a vignette 
analysis was also performed to add contextual richness to the different suggestion techniques 
identified. 

Findings 
Findings from this study include frequencies of suggestion techniques and episodic 

descriptions that illustrate teachers’ implementation of these techniques.   Ninety-two instances 
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of suggestions were identified across fourteen different lessons. These 92 suggestions were then 
coded at a secondary level to identify different types of suggestion techniques.  Three distinct 
types of suggestions were identified: 1) representations, 2) procedures, and 3) referent problems. 
Procedural and representational suggestions each occurred 27 times (29.3%).  Referent problem 
suggestions occurred 22 times (23.9%)3.  

In addition to identifying and calculating the frequency of the three suggestion techniques, 
vignette analysis was used to identify characteristic episodes of the ways teachers make different 
types of suggestions.  One common theme was the repetitive nature of the suggestions made 
during lessons with a large frequency of suggestions.  These lessons would usually begin with 
the teacher guiding the students on possible representations (e.g., table, number line), procedures 
(e.g., factor, substitution) and/or referent problems (e.g., “this problem is similar to the snake 
problem”).  The students would then work in small groups and the teachers would make the 
same suggestions about how to approach the problem that they made during the introduction. 
During a lesson intended to promote multiple solution strategies, the repetitive nature of the 
suggestions used by the teachers may indicate that they were struggling to support diverse 
solution strategies in their classrooms.  

Conclusion 
In order to meet the needs of reform oriented approaches to teaching mathematics, one 

important pedagogical strategy is to suggest and support students’ construction of multiple 
solution strategies. This study uncovers three techniques that teachers used to support student 
thinking as they encouraged the development of students’ diverse solution strategies. Further 
research is needed to examine in more detail the impact of these different types of suggestions on 
the development of solution strategies by students.   

Relationship to PMENA 
This research study is aligned with the conference theme of focus on learning or focus on 

teaching. This study examines the way in which teachers support student development of 
multiple solution strategies through the use of three techniques: referent problems, 
representations, and procedures.  

Endnotes  
1. The research reported in this paper is part of the collaborative project entitled, “Supporting 

the Transition from Arithmetic to Algebraic Reasoning.” (http://algebra.colorado.edu).  This 
material is based upon work supported by the National Science Foundation under Grant No. 
0115609. Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. 

2. The study reported here examines just one technique, that of providing suggestions to 
students, in order to support students solution strategies. For more information on the larger 
study refer to Pittman, 2006. 

3. Sixteen of the suggestions were not classified as one of the three identified suggestion 
techniques. 
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Elementary school teachers are participating in a two-year long professional development 
course in standards-based mathematics. The course includes components of (1) a lesson 
planning framework, (2) content (task) instruction, (3) modeling/mentoring, and (4) lesson study. 
Attitude surveys, classroom observations, and psychological measures are used to identify traits 
that affect teachers’ ability to incorporate reform strategies into their practice. 

Teachers in the U.S. claim to be aware of the National Council of Teachers of Mathematics 
Standards; however, very little evidence of such instruction is actually found when teachers are 
observed. Efforts to rectify this gap between perception and practice are generally addressed by 
short-term professional development (PD) courses. But as Schifter & Fosnot (1993) point out, 
"... significant and enduring change in the way teachers teach cannot be induced by a course of 
lectures, a handful of workshops, or even books...no matter how informative or persuasive. 
Instead, teacher development programs will have to dig deeper, furnishing their participants 
opportunities to construct for themselves more powerful, alternative understandings of learning, 
teaching, and disciplinary substance" (p. 23).  

Perspective on Changing Teachers’ Classroom Practice 
Ma found that most practicing elementary teachers in the U.S. believed mathematics was “an 

arbitrary collection of facts and rules in which doing mathematics means following set 
procedures step-by-step to arrive at answers (1999, p. 123). Thus when teachers engage in PD 
that focuses on “understanding concepts,” they often face uncomfortable confrontations with 
their existing attitudes as well as their own knowledge of mathematics.  

Reconstructing beliefs is more complex than providing teachers with standards-based 
curricula and PD on implementation. Indeed, Remillard and Bryans (2004) found that a teacher’s 
orientation towards a curriculum influences how he or she engages those materials in the 
classroom as much as the curriculum itself. Instead, teachers change more readily “in 
ecologically embedded settings of real classroom practices, real students, and real curricula - 
elements that teachers define as central to their profession” (Confrey, 2000, p. 100). Learning 
occurs when teachers are given the opportunity to reflect on and communicate about the 
mathematical thinking of their students (Franke et. al., 2001; Margolinas et. al., 2005). And, 
since teachers’ beliefs can either support or constrain their students’ learning, mathematics 
teacher educators need “to attend carefully to these beliefs” (Warfield et. al, 2005, p. 453). 

Any change in practice is further affected by individual character traits. Research shows that 
factors such as psychological reactance, extroversion, independence, and self-control affect an 
individual’s ability to change (Bartram, 1995). For instance, therapy clients who are high in 
reactance have low expectations for change and low therapy outcomes (Dowd & Wallbrown, 
1993). Extrapolating from psychotherapy literature to education, it is probable that teachers who 
are high in reactance would be less likely to change teaching practices.  
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Research Purpose 
This research involves a long-term PD course in mathematics for elementary school teachers. 

The goal is to identify traits that affect teachers’ ability to incorporate standards-based strategies 
into their practice, leading to conclusions about ways to facilitate change.  

Participants, Methods, and Data Sources 
In 2004, 40 teachers began a 2-year PD course, with 90 more beginning in 2006. Five school 

districts are participating. The PD has components of (1) a lesson planning framework 
incorporating essential characteristics of standards-based instruction, (2) content (task) 
instruction, (3) modeling/mentoring, and (4) lesson study.  

Each participant takes the Integrating Mathematics and Pedagogy (IMAP) Beliefs Survey at 
the beginning and end of the course. In addition, teachers complete two personality measures: the 
Therapeutic Reactance Scale which gives scores on psychological reactance, and the 16 PF 
Questionnaire which measures normal adult personality dimensions (i.e. extraversion, anxiety, 
tough-mindedness, independence). Teachers complete self-assessments to rate their own 
progress at reforming their teaching practices. In addition, an outside evaluator makes formal 
observations of each teacher’s classroom practice during regular mathematics lessons twice a 
year. The collaborative lessons associated with the course are also formally observed. Teachers’ 
work and reflective journals are collected. Progress of students in participating teachers’ 
classrooms is monitored via the state standardized multiple-choice core test as well as the BAM 
(MARS) problem-solving instrument.  

Identical data is collected on teachers and students from control schools with similar 
demographics who are not participating in any mathematics PD. 

Use of Results Related to PME-NA Goals 
This study hopes to gain a deeper understanding of possible incremental changes in 

classroom practice that may occur during long-term in-service teacher PD courses with 
sensitivity to the social and emotional impact on teachers. These findings lead toward the end 
goal of improving student understanding: a focus on learners through a focus on teachers. 
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The initiative reported on herewith is designed to improve K-8 mathematics instruction in 
Newark, the largest city in NJ.  The goal is to encourage the development of mathematical ideas 
in students, particularly those whose abilities and achievements often go unnoticed. Results thus 
far indicate that the students are achieving at significantly higher rates throughout the district. 

Haberman, 1991; Ladson-Billings, 2003; Knapp et.al. 1995; and Ferguson, 2003, note that 
the poor achievement levels that have been documented regarding low income minority students 
may be due, at least in part, to differences in the ways in which they are taught. Haberman, 1991, 
talks about the “pedagogy of poverty” wherein he notes that while an observer of urban 
classrooms may see many different types of pedagogical practices taking place, there still 
remains a typical form that has become accepted as basic—one that is characterized by a 
directive, controlling pedagogy.  The work in this study is based upon the premise that if teachers 
teach in ways that encourage the development of mathematical thinking and reasoning, students, 
particularly those whose abilities and achievements often go unnoticed in inner city settings in 
which more traditional approaches take place, can achieve at significantly higher levels. Such 
teaching practices include:  having students share ideas and explanations; defend and justify 
solutions; solve challenging problem activities; grapple with complex ideas, probe each other for 
ideas, etc. (see Schorr and Lesh, 2003; and Schorr et. al for additional references).  Consistent 
with this goal, the initiative that is the subject of this paper, the Newark Public Schools Systemic 
Initiative in Mathematics (NPSSIM), was designed to provide professional development for K-8 
teachers to help them to encourage the development of mathematical ideas throughout the 
district. Based upon our research hypothesis, this should result in increased achievement for 
students across the district.  It is to this issue that we address this paper as we share results of a 
longitudinal analysis of student assessment data that documents the positive impact that has 
occurred thus far. 

Methods 
The school district is the largest district in the state of New Jersey, and serves a population 

characterized by, amongst other things, high poverty, high student mobility and poor student 
achievement on local and state assessments (approximately 85% were classified as not 
competent or minimally competent in mathematics before implementation of the initiative), and 
83% of the residents are African American or Hispanic (2000 U.S. Census).  

The initiative began in 2000 and is deliberately planned to stimulate all learners (teachers, 
students, teacher educators, etc.) to refine, extend, test and share their evolving models for 
teaching over extended periods of time. All professional development aspects involve multi-
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layered interactions amongst students from local schools, students at the University, teachers, 
administrators, and researchers, who work together to consider mathematical content, 
pedagogical content knowledge, as they consider how students build representations, formulate 
justifications, and build understanding (see Schorr, Warner, Gearhart & Samuels, in press).  All 
sessions use complex problem solving activities – for both students and teachers – that encourage 
answers that involve constructions or explanations that reveal aspects of the thought process. In 
addition, district and University researchers and/or mathematics specialists often accompany 
teachers as they implement ideas in the context of their own classrooms and discuss the 
mathematical ideas that may be elicited, implementation strategies, classroom culture, and 
maintaining high cognitive demand.  

Results and Conclusions 
While not presented here, qualitative analyses have been done to assess the nature and types 

of changes that have occurred in teachers’ classroom practices (see Warner, Schorr, Gearhart & 
Samuels, 2005, Schorr, et.al, in press, for examples). Quantitative results thus far indicate that 
indeed, district students are achieving at significantly higher levels.  For example, at the fourth 
grade level in 1999 (before implementation of the initiative), there was no statistically significant 
difference between schools who were participating in the program and those who were not. In 
subsequent years, the non-project schools did not improve at the same rate as schools involved in 
the Project.  By 2002, the differences between the groups of schools were statistically significant, 
i.e., schools involved in the Project dramatically improved and schools not involved showed little 
improvement, if any.  In 2004 at the request of both principals and teachers, all schools joined 
project NPSSIM.  Further, in grade 4, initial equivalence/differences across groups can be 
measured (and accounted for) using students' reading/writing achievement scores. 
Reading/writing achievement scores have tended to be highly correlated to mathematics 
achievement scores in Newark, and are not likely to be affected by NPSSIM; therefore, they 
serve as an ideal covariate. In 2004, the rate of change in reading/writing scores (9.3% increase) 
for the New Jersey Assessment of Skills and Knowledge of grade 4 (NJASK4) from 2003 was 
not significantly different than the rate of change in mathematics scores (11.1% increase). In 
both 2005 and 2006, the rate of change in reading/writing achievement scores (0.7% decrease in 
2005 and 2% decrease in 2006) for the NJASK 4 was significantly different than the rate of 
change in mathematics achievement scores (5.6% increase in 2005 and 3.8% increase in 2006). 
Considering the lack of improvement of reading/writing achievement scores and the significant 
gains made by mathematics achievement scores, this preliminary data suggests that the rise in 
standardized test scores can be attributed to the NPSSIM Project. In comparison to other school 
districts in the state of New Jersey, NPSSIM has had a significant impact on grade 4 and grade 8 
NPS students, as measured by New Jersey's state-mandated NJASK4 (Grade 4) and GEPA 
(Grade 8) assessments. 

The results gleaned thus far provide cause for great optimism.  We contend that such projects 
can and do make a difference in the classroom practices of teachers, and in turn, influence the 
overall mathematical achievement for students throughout the district. 

Endnotes 
1. This work was supported in part by National Science Foundation [NSF] grants. The material contained 

herewith is based upon work supported by the U.S. National Science Foundation (NSF) under grant numbers 
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0138806 and ESI-0333753. Any opinions, findings and conclusions or recommendations are those of the authors 
and do not necessarily reflect the views of the NSF, Rutgers University or the Newark Public Schools. 
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This paper will present a collaborative research project involving teacher preparation of math 
teacher educators on both sides of the US-Mexico border. The need to improve educational 
outcomes of students living on the US-Mexico border has become a mission for two neighboring 
universities across the US-Mexico border. Research about the internalization and globalization 
effects of mathematics education has opened the doors to new research paradigms (Atweh & 
Clarkson, 2002). Teacher education programs at both institutions are striving to make a 
difference in the lives of the future teachers and their pupils.  

 In keeping with the research based efforts to evaluate student learning outcomes, this study 
focuses on how mathematics education is addressed in teacher preparation programs and in 
actual classroom practice; and on the impact of the differences and similarities mathematics 
education may have on pupil learning along the U.S-Mexico border. By investigating how both 
teacher preparation programs address the teaching of skills and how culture influences teaching 
methods and strategies, researchers will discover how and whether cross-cultural differences 
may manifest themselves and how teachers can “capitalize on the performances students do 
exhibit” (Driscoll, 2005, pg. 243). Researchers will investigate the cultural influence of how 
teachers are prepared to teach the learning mathematics. Methods of data collection include focus 
groups, interviews, and observations in schools on both sides of the border.    

Our unique border research setting allows for collaborative research, crossing not only 
physical borders but theoretical constructs as well.  The constant crossing of borders of our 
students, pupils and faculty lends itself to the study of the relationships forged to build new 
paradigms for interactions and teacher preparation programs. 

One of the institutions is located in a city of 600,000 at the western most tip of the state. We 
are in a different time zone (Mountain) than the rest of the state. In fact, we are closer to San 
Diego, California than we are to Houston, Texas. We are also on the border with Mexico. Our 
Mexican sister city, whose rapidly growing population now stands at 1.8 million, joins together 
to form the largest bi-national metropolitan area in the world. 

Both institutions have experienced robust graduate program growth during the past ten years 
and are developing a binational research agenda. One of the key objectives of this development 
is to work with existing programs in recruiting a diverse student population, focusing particularly 
on the recruitment of students from Mexico.  The Hispanic (Mexican-American) student 
population at one of the universities is composed of 70% US-citizen Hispanics, of whom 10% 
are Mexican citizens who cross the international boundary every day to attend school. 

The Mexican counterpart’s student population of 18,000 is similar to the other with a 18,919 
student population. Recent political changes with reference to teacher education programs in 
Mexcio have impacted the this Mexican border university  programs of Education. Over the last 
three years the education programs have become the fastest growing programs at this institution.  
The need to expand research opportunities to public universities to has impacted the institution’s 
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research capacity. Notably, this university has been recently identified as one of the highest 
ranked public institutions in Mexico.  

The U.S. and México have clearly defined national standards for mathematics education. The 
teacher preparation program follows the National Council of Teachers of Mathematics Principles 
and Standards for School Mathematics (NCTM, 2000) to teach pre-service teachers math using a 
series of rich inquiry-based math investigations and in-depth discussions on selected topics. 
Group work and collaborative learning are embedded in class sessions. We try to reduce the 
approach where a teacher shows and tells students how to use certain math procedure without 
introducing its concept/meaning and foster conceptual understanding of the subject matter.   

How these standards are being taught to new teachers and how teachers are actually 
implementing these practices in daily classroom activities is a focus of this study.  Using the 
established national standards as benchmarks for comparison in both countries, the researchers 
will gain insight into how pupils are being taught mathematics in border schools.  Current 
research is confirming that knowledge is constructed differently by each student, based on his or 
her cultural experience, family backgrounds, and learning styles (Wardle, 2004).  Of critical 
importance is how teachers make choices to implement the curriculum, “based on acquired social 
patterns, ideas and values, including attitudes toward gender, race, ethnicity, language, religion, 
and social class” (pg. 180 in Wardel & Cruz-Janzen, 2004).  Another issue that is of utmost 
interest to teacher educators at UTEP is the role that language plays in second language learners.  
In this border city a large majority of students are English language learners. The opportunity to 
observe students learning mathematics in their own country and in their own language may 
provide educators in the US insights that can help inform future practices.  Often misunderstood 
is the notion that mathematics is a universal language. Yet research of the language of 
mathematics is described as precise, technical, and highly specialized by Cantoni-Harvey, 1987; 
Chamot & O’Malley, 1986, 1994; Dale & Cuevas, 1987 1992 (in Hernandez, 1997).  Results of 
this pilot project aims to reveal some of these misperceptions and realities.  
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The publication of the 1989 NCTM Standards (NCTM, 1989) marked the launch of extensive 
efforts to reform mathematics teaching and learning. These efforts have included the 
development and publication of curricula which implicate constructivist instructional practices. 
Implementing reform curricula in a way that changes core teaching practices has proven to be a 
difficult endeavor (Spillane & Zeuli, 1999), especially so in urban settings, which are typically 
stressed in terms of teacher turnover, lack of material resources, and funding for professional 
development.  

A number of researchers have noted the importance – if not necessity – of professional 
community in facilitating and sustaining teacher change towards constructivist-based pedagogy 
(Cobb, McClain, Lamberg, & Dean, 2003; Secada & Adajian, 1997; Stein, Silver, & Smith, 
1998). In this study I use Wenger’s (1998) three dimensions of community of practice (CoP) to 
analyze the extent to which core learning principles exist within the professional communities in 
my study. I focus on the learning principles of collaboration, reflection, recognition, and 
autonomy, which have been identified as characteristics of effective learning in communities of 
practice (Gee, 2003; Schon, 1983; Secada & Adajian, 1997; Wenger, 1998). This study describes 
characteristics of CoP’s in an urban school system implementing the Connected Mathematics 
Project (CMP) (Lappan, Fey, Fitzgerald, Friel & Phillips, 1998) curriculum.     

Theoretical framework 
The framework builds from the notion of communities of practice (Wenger, 1998), which 

implies the existence of groups of people organized around shared activities. Wenger identifies 
three dimensions of communities of practice: mutual engagement, joint enterprise, and shared 
repertoire. Mutual engagement refers to the rich diversity of interactions which reflects the range 
of interests, motives, experiences, and characteristics within a community. Through these 
interactions, the community collectively negotiates meanings and norms for the actions of its 
participants, which Wenger characterizes as the joint enterprise of the community. The 
community’s shared repertoire consists of ways of reasoning with tools and artifacts. For the 
purposes of this study, the focus of the CoP will be efforts to implement CMP. External 
resources or influences can be conceptualized in terms of focusing on the community of teachers 
within a school as its own entity but one that is influenced by district and state policies and 
mandates. The tools and artifacts will consist mainly of the CMP curriculum and policy 
documents related to the implementation of the curriculum.  

The intersections of communities of practice are defined by boundary objects and brokers 
(Wenger, 1998). The main boundary object for this study will be the Rochester City School 
District’s pacing chart for teaching CMP units. The pacing chart represents the negotiated 
meaning of mathematics learning of one community of practice (citywide mathematics leaders) 
but will be used as part of another’s (teachers in a school building) shared repertoire. Brokers, 
who serve to bridge communities of practice, include the school’s math specialist and 
administrator in charge of academics. 
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Research focus 
 The study focused on characterizing the professional community for the 8th grade 

teachers in an urban mathematics department. The initial analysis focused on characterizing the 
community by the three dimensions articulated by Wenger (1998); that is, I tried to identify the 
nature and extent of mutual interactions, joint enterprise, and shared repertoire. The next step 
was to determine the extent to which the four learning principles were evident in the professional 
communities. A goal for the analysis was to situate the learning principles within the three 
dimensions of communities of practice.  

Research Methods 
 I employed a case study methodology to investigate teachers in grade 8 at a school in one 

of the ‘Big Five’ New York state urban districts. This included mathematics certified teachers as 
well as special education teachers who assist in 8th grade mathematics classes. In addition to 
teachers, I also interviewed administrators in the building and the school district whose work 
influenced 8th grade mathematics teaching. I attended departmental meetings, observed classes, 
and collected documents related to the CMP implementation.  

Results 
 The data collection and analysis were in preliminary stages at the time of this proposal. 

The initial analysis shows that there was little opportunity for meaningful collaboration, 
reflection, or recognition within the professional community of 8th grade mathematics teachers. 
The set of mutual interactions were limited mainly to required departmental meetings, and the 
joint enterprise appeared to deal with minimal or superficial aspects of implementation, such as 
the timeline for implementing investigations. The shared repertoire consisted mainly of the 
district’s pacing charts and the written tasks in the curriculum. There were few signs that the 
professional community delved into deeper understanding of the tasks or philosophy of the 
curriculum.  

Much of the teachers’ formal mutual interactions consisted of departmental meetings focused 
on administrative or accountability concerns. There was virtually no discussion of strategies and 
experiences of teaching CMP at these meetings; that is, most of the joint enterprise of the 
teachers’ professional community consisted of establishing timelines for covering curricular 
content and for administrative activities not directly related to the teaching of mathematics.  

It was clear that artifacts related to accountability played a large role in how the teachers 
deliberated their enactments of the CMP curriculum. The district’s pacing chart, based on the 
state assessment, dictated the particular investigations and length of time for investigations. This, 
by itself, would not preclude a more expansive joint enterprise; however, other considerations, 
such as classroom management and understanding the logistics of the curriculum, dominated the 
mutual interactions.   

 One resource that had the potential to develop the learning principles within the teachers’ 
professional community was the district-wide professional development. However, this consisted 
of only a few opportunities and these did not ultimately nurture collaboration, reflection, 
recognition, or autonomy within the teachers’ professional community.  

 The classroom observations suggested that teachers were struggling to implement CMP. 
In a number of classes, teachers struggled to highlight the main mathematical ideas embedded in 
the investigations. At times, the logistics of the investigations seemed to dominate the classroom 
interactions.   
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Discussions and implications 
 Although the preliminary results are not surprising, they point to some larger issues. If 

one accepts the premise that effective CoP’s include the four learning principles, then the 
district’s implementation of CMP would be unlikely to change core teaching practices. That is, 
the development of professional community, such as it was, did not facilitate collaborative 
efforts to understand the curriculum or how to effectively teach with it. There were few 
opportunities to learn the curriculum and even when these opportunities were present, it was 
clear that the teachers were not accustomed to interacting with each other in a meaningful way.  

 In order to effectively implement reform curricula, much attention will need to be paid to 
the development of CoP’s that incorporate the four learning principles. The professional 
development literature has not sufficiently conceptualized how to grow communities of 
practitioners who effectively collaborate and reflect on their practice, who have the opportunity 
to observe and recognize effective reform teaching, and who can act autonomously to improve 
the mathematics learning of their students. This is especially true for urban school systems. 
Purely psychological accounts of teacher learning need to be complemented by a focus on the 
development of professional communities in order to scale up reform teaching practices.  
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Theoretical Background 
Several studies (e.g., Drake & Sherin, 2006; Remillard & Bryans, 2004) have documented 
teachers’ strategies for using and adapting reform-oriented curriculum materials. These studies 
have focused on teachers’ interactions with particular sets of curriculum materials. However, 
there is another significant aspect to teachers’ curriculum use that has been under-theorized in 
the literature – teachers’ strategies for integrating reform-oriented curriculum materials with 
other instructional resources. There continues to be a need for more detailed information about 
how in-service teachers use and learn from curriculum materials, as well as how to support pre-
service and in-service teachers in their use of these materials. In other words, there is a need for 
research-based ideas about how best to use and combine multiple sources of materials to support 
children’s learning, rather than relying on only one set or type of resources. While curriculum 
developers may have previously had a vested interest in preventing teachers from using 
curriculum materials other than their own, many publishers are now providing their own 
guidelines for helping teachers with this process of integration. An example is the web site, 
http://investigations.scottforesman.com/jup.html that details three different strategies for teachers 
to use in integrating Investigations in Number, Data, and Space with the Scott Foreman-Addison 
Wesley textbook series. 

A Framework for Understanding Teachers’ Curriculum Integration Strategies 
The framework described here was derived in large part through analysis of interview and 

observation data from twenty teachers piloting a reform-oriented curriculum in the early 
elementary grades. While these teachers were not asked directly about their strategies for 
curriculum integration, examples of curriculum integration were consistently identified as we 
coded for evidence of teachers’ reading, evaluating, and adapting the curriculum. In working 
with the twenty teachers, I identified four major kinds of reasons teachers cited for integrating 
the new reform-oriented curriculum materials with other resources – 1) addressing the need for 
different kinds of activities (e.g., manipulatives, games), 2) addressing the needs of different 
groups of students (e.g., those struggling or needing challenge), 3) addressing the demands of 
standardized tests and other policy mandates, and 4) a desire to maintain the use of activities that 
had been successful in previous years. To be clear, these are strategies for curriculum integration 
that were being used and described by teachers without prompting or support from either 
researchers or curriculum developers. In the poster, excerpts of teachers’ descriptions from each 
of these four categories of reasons will be provided. 
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This study examined the extent to which teachers could learn to take into account children's out-
of-school experiences in examining and adapting their mathematics teaching practice. Six 
teachers participated in a semester long professional study group which followed a protocol 
based on the Descriptive Review Process developed by Carini (Himley & Carini, 2000). The six 
teachers in the study, all from a single elementary school, each conducted a case study of a 
particular child from their respective classrooms. They explored this child's mathematical 
thinking in and out-of-school. Through activities which were built on the work of Moll and Civil 
(González, Andrade, Civil, & Moll, 2001; Moll, Amanti, Neff, & Gonzalez, 1992; Moll & 
Gonzalez, 2004), the teachers examined the students with particular attention to their 
mathematical thinking, abilities, and interests in multiple contexts within the school setting and 
at home. Each teacher observed the target child in the classroom, shadowed the student in the 
school for an entire day, and consulted with the students' mother who documented her child's 
experiences out of school with photographs. 

Five of the six teachers moved away from considering the home of their student as a possible 
impediment to learning and came to view it as a support. Three of the teachers identified specific 
out-of-school mathematics activities, interests, or competencies of their target students but they 
did not act on this information in their classrooms. One teacher not only saw and commented on 
these experiences, she also planned instruction to take advantage of it. Although five of the 
teachers began and ended the study focusing on in-school mathematics, all the teachers 
developed considerable specific knowledge of the mathematical performance of their target 
students. Four of the teachers established significant relationships with the student and took 
specific action in order to engage further with the target children. In addition, the teachers made 
and implemented plans for changing practice which were based in considerations of student 
thinking in mathematics. The results of this study demonstrate that professional development 
which focuses teachers' attention on individual learners and their in and out-of-school 
experiences can, at least in some cases, support teachers in reflecting on changing practice in 
ways that attend to the particular strengths and needs of individual children.  
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Grounded in action research as an approach for implementation of standards-based practice in 
mathematics education, we established a professional learning community (PLC), the Urban 
Teacher-Researcher Collaborative (UTRC). Our view is that a professional learning community 
is a group of people who share a common interest in a topic or area, a particular form of 
discourse about their phenomena, tools and sense-making approaches for building collaborative 
knowledge, and valued activities (Fulton & Riel, 2004).  Engaged in this study as a community 
of inquiry were eight middle and secondary mathematics teachers from two urban school 
districts, recognized as ‘high need districts’, and three university faculty.  

Our PLC model is designed out of common efforts and goals. In particular, we focus on the 
ways in which our collaboration influenced and impacted the teaching of middle and secondary 
mathematics teachers as well as university professors.  The UTRC began with the idea that the 
main benefit for teachers would be effective implementation of a new curriculum through action 
research. While the implicit gain for university faculty would be in learning and implementing 
the knowledge acquired through this process in teacher preparation programs. Ultimately, both 
believed they would benefit from working together to address their responsibilities in effecting 
positive changes in student learning.  Our approach of engagement was guided by a model of 
collaborative professional development (Rosaen, 1998), which included seven key practices: (1) 
talked about teaching; (2) shared in planning, teaching and reflecting on practice; (3) conducted 
classroom observations; (4) engaged in developing pedagogical skills; (5) immersed ourselves in 
studying curriculum design, communities of practice, reflective practice and action research; (6) 
conducted research; and (7) communicated with a wider audience through presentations and 
publications.   

We used the Social Theory of Learning (SLT) as the framework to guide our research and 
interactions as co-researchers (Wenger, 1999). Our research question is: In what ways are 
teachers and university professors impacted through collaboration in an urban PLC? In 
accordance with SLT, we analyzed our narratives through the lenses of meaning, practice, 
community, and identity. In the presentation, the process of analysis and excerpts from the 
narratives will also be examined.  Analysis of the impact of the collaboration shows that all 
components of the STL resonated with the members of our PLC.  However, the greatest impact 
was in “community” and “meaning.”  The data analysis validates our reflections on the 
interaction and comfort level of the members of our PLC with respect to sharing ideas and 
developing meaning and identity. The PLC members were fluent in describing the impact of the 
collaboration on their pedagogical knowledge, which was transformed through participation.     
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This poster extends earlier work on teacher development and describes a successfully 
implemented model for improving the teaching and learning of mathematics in schools.  It 
demonstrates how teachers, classrooms and schools can change toward implementing a more 
thoughtful curriculum in mathematics.  This view sees learning as arising in a problem-solving 
context in which students are engaged in investigations in mathematics that give them an 
opportunity to explore patterns, make conjectures about their character, test hypotheses for their 
effectiveness in problem solving, and reflect on the formulation of the concept for use in new 
situations (Maher, 1988).  The view that will be described makes the partnership of the principal 
and the teachers central.  It demands for teachers and teacher-leaders a high order of 
mathematical and pedagogical competence.  The model we propose provides a set of interrelated 
experiences for teachers, which enables them to develop a philosophic perspective on 
mathematics instruction (Maher, Alston, & Landis, 1986).  Our presentation will describe certain 
substantial changes in teachers and classrooms that can be achieved in schools when certain 
conditions are in place. These conditions include, but are not limited to, the following:  

For teachers and school leaders (principal):  
� Provide released time for workshops (long-term and connected) to work together on 

open-ended math problems 
� Develop rubrics and then use them to analyze problem solutions 
� Schedule time for teachers to visit classrooms of “master” teachers 
� Videotape classroom lessons (new and revised) and then study videotapes 

individually and collectively 
� Build a master schedule that includes common planning time for teachers and 

principal to discuss/plan math units as a team and reflect on videotape segments of 
children doing mathematics 

For school leaders (principals): 
� Build master schedule, maximizing length of time for math period 
� Provide for teacher release time to informally visit other classrooms 
� Creatively find budget sources to provide teachers with necessary tools and materials, 

including math literature, manipulatives, technology, etc. 
� Encourage the display of student math work/projects throughout the building 
� Communicate with parents about the benefits of active, thoughtful mathematics 
� Schedule evening sessions for teachers, parents and children to engage in thoughtful 

math activities 
� Support teachers to share their work locally, regionally, statewide and nationally 
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Intensive mathematics professional development incorporated the four teaching principles of 
Bransford, Brown, and Cocking (2000), being assessment-centered, community-centered, 
knowledge-centered, and learner-centered.  Guskey’s (2000) model was used to evaluate the 
program.  In this model, each step constrains the success of the next step.  Participants reacted 
positively to the institutes, their learning was significant on paper-and-pencil measures, and there 
was substantial, although sometimes uneven, organizational support at the participating sites.  
These elements suggested participants might be able to use their new knowledge.   

Through observations, written self-evaluations and semi-structured interviews, I sought to 
determine how and whether classroom teaching had changed.  Observations were coded for 
evidence of each of the four principles.  Then I compared observation data with teachers’ self-
reports (written and oral).  Teachers had made the most progress being community-centered, 
focusing specifically on using cooperative pairs or groups and developing the associated 
classroom management strategies.  The most successful teachers went further and developed 
sociomathematical norms (Yackel & Cobb, 1996) in which students were expected to justify and 
make sense of their answers.  Teachers positively appraised the changes and felt the classroom 
management was comparable to traditional teacher-centered lessons.   

An analysis of the professional development revealed characteristics that may have led to this 
element being more successful than others.  An analysis of the teachers’ classrooms and 
interviews revealed differences between successful and less successful teachers in terms of 
perceptions of the content. 

Our program utilized this data in designing the second-year institutes.  The application of the 
four principles to organize professional development and to analyze teaching has implications for 
other programs. 
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It is well documented that teachers’ content knowledge of mathematics is crucial for improving 
the quality of instruction in classrooms (An et al, 2004; Hill and Ball, 2004). Influencing 
teachers’ beliefs and values may also be essential to changing teachers’ classroom practices 
(Stipek et al, 2001). Hill and Ball feel that teachers can deepen their mathematics knowledge for 
elementary school teaching in the context of a single professional development program, and that 
a feature of successful programs is to foreground mathematical content (2004).  

This study examined whether changes in teachers’ knowledge and beliefs were measurable 
after an eight month period, and which measures were most useful. Fourty Canadian seventh 
grade teachers received three days of professionally delivered Number and Operation inservice 
training and about half also took one or two online courses for teachers. Multiple measures were 
used in a pretest and posttest format, and two showed significant changes. The CKT-M Middle 
School Form A (Hill, Schilling & Ball, 2005) showed change in Number and Operation (the 
strand in which training was provided) but not in the other strands. The beliefs portion of the 
Perceptions of Math (POM) Survey (Kajander, 2005) showed an increase in valuing conceptual 
learning, and a decrease in valuing procedural learning. 

These results indicate that mathematics content training can show change but is likely needed 
in all mathematics strands, as improvement was noted only in the strand addressed. Beliefs about 
the nature of mathematics itself also showed a shift to valuing conceptual learning. 
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The poster displays three models of practicing standards-based curriculum in an effort to add to 
the mathematics education knowledge base. It explores elementary teachers’ modes of practice 
in implementing Investigations in Number, Data, and Space [Investigation] (TERC, 1998) units. 
Investigation is a K-5 standards-based curriculum whose objectives offer students, connected and 
meaningful mathematical problems to promote in-depth thinking. 

A qualitative case study research design was used to study teachers’ emerging practice 
models of implementing Investigation mathematics in urban fifth grade classes. Data were 
collected through open-ended interviews, classroom artifacts, audiotape and videotape of 
lessons, group meetings, lesson plans, lesson observations, and post-lesson conferences in three 
classrooms. An assumption of the study was that a teacher who closely taught at least six 
observed lessons, as conveyed by Investigation was seen as effectively employing inquiry-based 
instruction. 

This study found that teachers in each of the three observed classrooms employed different 
models of inquiry-based instruction. These were labeled as the (i) traditional inquiry-based 
instruction, (ii) partial inquiry-based instruction, and (iii) inquiry-based instruction. 

Traditional inquiry-based model is a practice in which the teacher consistently supports 
student learning and construction of meanings. The students do not have an opportunity to 
explore an activity and make meaning of it on their own. For instance, if any activity is assigned 
for exploration, it is often weighed down with hints of what should be done. Good questions are 
occasionally posed to students but little wait time is provided before the teacher reveals 
everything. Partial inquiry-based model is a practice where the teacher is transitioning from 
traditional to inquiry-based paradigm. The teacher allows for cooperative learning but does not 
know how to manage it successfully. The teacher strives to be a facilitator, but at times when the 
unforeseen arises, the teacher falls back to the familiar traditional instruction. That is when the 
teacher delivers knowledge and does not give students an opportunity to share their thinking. 
Inquiry-based model is a practice characterized with high level of mathematical conversation 
among students, and the teacher is a facilitator. Students are fully engaged in a task where they 
take responsibility, and ownership of the activity. The teacher is seen as effectively addressing 
all classroom issues such as management, interactions, motivation, group work, discipline, 
humor, student or teacher questioning, reflection, and active listening.  

Remillard and Byrans’ (2004) study found that teachers’ orientations impacted how they 
used standards-based curriculum. Mathematics educators should design professional 
development courses to aid all standards-based practitioners to become effective at inquiry-based 
teaching and learning.  
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Many mathematics teachers of Spanish-speaking, English language learners (ELLs) in the United 
States are ill prepared to identify and meet the unique needs of their students (Khisty, 1995).  
Because most of these secondary mathematics teachers have never had to learn mathematics 
content in a non-English speaking classroom, they do not have first-hand knowledge of how 
ELLs engage with mathematics instruction or textbooks.  For example, though aware of the need 
to teach mathematical vocabulary (via word walls and the like), teachers often do not fully grasp 
that to access mathematics problems, ELLs must also make meaning from everyday language 
expressions, word order, and the mortar that connects distinct language chunks into a coherent 
text (Fillmore & Valadez, 1986).   

Though some professional development activities already exist that speak generally to the 
linguistic and affective needs of ELLs, very few are specific to mathematics and ELLs at the 
secondary level.  Of those few, almost none discuss the mathematics register (Halliday, 1974; 
Cuevas, 1986) or how multilingual students often shift back and forth between different language 
registers when doing mathematics (Moschkovich, 2000).  Therefore, a professional development 
activity was designed and facilitated to enable participants to encounter and feel, albeit briefly 
and temporarily, just some of the experiences and emotions that ELLs have on a daily basis in 
mathematics classrooms.  Asked to solve one mathematics problem in a Spanish-only 
environment, participants engaged with activity tasks that were intentionally created and 
sequenced to optimally parse out different linguistic and cultural aspects during the simulation 
and highlight their respective pedagogical implications in the concluding whole group 
debriefing.   

The paper itself is in five sections.  The first section introduces the need for such an activity 
and its study, the second documents the activity’s tasks and their facilitation, the third explains 
the methodology used to document the insights gained by participants during and after the 
activity, the fourth shares those insights, and the fifth proposes next research steps.   
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As educators, we struggle with finding (instructional strategies) ways to meet students’ 
interest, abilities, and learning styles.  We tended to ignore students’ cognitive abilities and fail 
to encourage them to reach their full potential in mathematics. In this regard, Bartolomé (1996) 
points out that the instructional methods used with subordinated(1) students are narrow and 
mechanical. She argues instead for the infusion of a humanizing pedagogy that respects and uses 
the multiple perspectives, histories and intelligences of students as an integral part of 
pedagogical practices. Instruction may be differentiated in content, process, or product according 
to the students’ readiness, interests, or learning style.  Differentiated Instruction is an organized 
yet flexible way of proactively adjusting teaching and learning to meet students where they are 
and help all students achieve maximum growth as learners (Tomlinson, 1999). We can no longer 
use the pedagogy of the dominant culture to reach the students teachers have marginalized for 
years.  

The purpose of this paper is to identify different instructional strategies to use for cognitively 
diverse(2) learners among African American students. These instructional strategies must 
include critical pedagogy, specifically, culturally relevant pedagogy and humanizing pedagogy.  
Our research question is, “what kinds of instructional strategies are used in bridging the gap of 
different content knowledge found among African American students in middle school 
mathematics classrooms?”   

In attempting to answer this question, we conducted a professional development workshop 
for teachers at a school in a local school district on how to implement differentiated instruction in 
their classrooms.  From the mathematics teachers that participated in the workshop, we identified 
two teachers from which to observe their classrooms as they implement differentiated 
instruction.  A total of six lesson periods were used for instruction during this project. The 
teachers and investigators met to plan the lessons used for this project.  The different levels of 
differentiated lessons will be displaced during the poster presentation.  During classroom 
implementation with the researchers present, teachers were encouraged to recognize and analyze 
students’ interpretations and thoughts about the types of problems presented at different 
cognitive level. Independently, the teachers reflected and revised their previously planned 
lessons based on the students’ feedback, and then shared their new ideas and thoughts with us.  

Interviews were conducted before and after instructions with the two teachers and six of their 
students (one from three differentiated levels in each class). The purpose of the interviews was to 
gain a deeper understanding into how the teachers’ content knowledge influence them in 
designing standards-based instructions and utilizing concept maps and the students thinking 
about these lessons. 

Our data sources consist of (a) the teachers’ curriculum concept, (b) transcripts from pre- and 
post- semi structured interviews of teachers and students, (c) the students’ work on the individual 
classroom activities at the different cognitive levels, (d) notes of classroom activities, (e) field 
notes taken while working with teachers during planning times, (f) transcript of the teachers 
planning times, and (g) the reflection of the teachers on their work.  
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It is our aim that our findings would reveal positive impact on student achievement in 
mathematics due to the attention given to the different cognitive abilities present among African 
American students in the two teachers’ classrooms when differentiated instruction is 
implemented.  Detailed results, conclusion, and implications for teachers and teacher educators 
will be presented during research poster presentation. 

Endnotes 
1. Subordinated refers to cultural groups that are historically, political, socially, and economically 

disempowered in the greater society. 
2. Cognitively diverse learners refer to students with different content knowledge within a single classroom. 
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ISSUES OF LANGUAGE: INSIGHTS FROM MIDDLE SCHOOL TEA CHERS’ 
PARTICIPATION IN A MATHEMATICS LESSON IN CHINESE 
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Teachers of English Language Learners participated in a mathematics lesson taught in Chinese, 
first with traditional lecture followed by a session infused with multiple representations.  This 
event set the stage for a discussion about students learning mathematics through a second 
language.  Teachers’ insights on the experience encouraged a cognizant sensitivity and a critical 
level of examination of their current practices 
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Research studies on the enactment of mathematical tasks (Doyle, 1988; Henningsen & Stein, 
1997; Stein, Grover, & Henningsen, 1996), reform-based mathematics curricula (Kim & Stein, 
2006; Remillard, 2005;) and technology-rich problem solving units (Cognition and Technology 
Group at Vanderbilt [CTGV], 1997) indicate that teachers face a myriad of barriers as they 
attempt to implement reform-based mathematical activities. Further, when teachers encounter 
these issues they teach in a didactic, teacher-centered manner. While the use of mathematical 
tasks, hands-on activities and technology has the potential to impact student learning, teachers 
must be given more support integrating these resources into the classroom. 

Research Design 
This paper shares the findings of two case studies of two elementary school teachers who 

participated in a professional development program. The program was designed to support their 
enactment of mathematical tasks, technology and manipulatives. This paper shares data about the 
research question, How are teachers’ use of manipulatives and technology influenced by 
participation in a professional development program? During the study, teachers were videotaped 
when they intended to use the instructional practices that were emphasized during the 
professional development. Semi-structured interviews were also conducted after each interview 
to examine teachers’ intended practices (what they planned to do) and espoused practices (what 
they thought they did). The videos were analyzed for evidence that supported teachers’ use of 
specific instructional practices or instances in which specific instructional practices. 

Findings 
Keisha. Keisha, a fourth grade teacher, views herself as a teacher who is “different” and 

“non-traditional.” Keisha allows her students to use both manipulatives and technology, but in 
both cases the emphasis is on using the tool for the sake of using it, not to help students learn the 
relevant mathematical content. In one instance her students used tangrams to examine geometric 
transformations. However, Keisha did not bring any mathematics into the activity, so the lesson 
was merely a time for students to play with tangram pieces. 

Selena. Initially, Selena intended and espoused that she was posing meaningful tasks to her 
students, since she was giving them problems and allowing them to use manipulatives. However, 
Selena gave students explicit procedures to follow with the manipulatives, which denigrated 
opportunities for students to develop their problem solving skills. As the study continued, Selena 
started to get away from the procedures and began posing more open-ended tasks along with the 
use of manipulatives, such as base-10 blocks and centimeter tiles. While Selena enacted the 
emphasized instructional practices more frequently towards the end of the study, when she 
attempted to use technology, Selena returned to a didactic approach, in which she had students 
follow a strict procedure to find their answers. 
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Conclusion 
This poster will present more data and further findings about each participant’s integration of 

technology and manipulatives into their mathematics classroom. 
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ASPECTS OF PRESERVICE TEACHERS’ UNDERSTANDINGS  
OF THE PURPOSES OF MATHEMATICAL PROOF 
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This qualitative study on preservice teachers found that preservice teachers are both sensitive to 
role of the intended audience and struggle with the trade-offs between rigor and explanation in 
proof writing.  Also discussed here is that preservice teachers may mean different things when 
they say they are "convinced" by a mathematical argument.  The results of this study have 
implications for the training of preservice teachers. 

The importance of proof to the practice of mathematics scarcely needs to be supported since 
reading and writing proofs occupies much of the time and energy of practicing mathematicians.  
NCTM (2000) recognizes the centrality of proof in school mathematics as well.  In spite of its 
importance to mathematics and the attention given to it by NCTM, many students at all levels 
find proof writing very difficult.  The research literature documents many of the barriers to 
consistent, successful construction of mathematical proofs among high school and college 
students. 

Some researchers (Knuth, 2002a; Lowenthal & Eisenberg, 1992) have suggested that 
teachers too suffer from some of the same inabilities and misconceptions as students.  Knuth 
reported that a third of his participants believed that counterexamples to proven theorems were 
possible.  In addition, most of his participants “genuinely did not seem to understand (or, at the 
very least, did not seem to be confident in their understanding of) the generality of a proven 
statement” (p. 389) and as a group, his participants could not reliably distinguish between valid 
and invalid arguments.  Selden and Selden (2003) reported that undergraduate mathematics 
students have difficulty distinguishing between correct and incorrect proofs.  They presented 
undergraduate mathematics students with a series of proofs and the students in their study 
correctly validated or invalidated them only 81% of the time.  Lowenthal and Eisenberg reported 
that after practicing teachers had derived some number theory facts, some indicated that before 
they could be considered as facts, they would have to be proved by mathematical induction.  This 
over-reliance on proof by mathematical induction is interesting and may be an indicator of the 
proof schemes being employed by these teachers.  The broadest categories in Harel and Souder’s 
(1998) taxonomy of students’ proof schemes are the empirical proof schemes, the externally 
based proof schemes, and the analytic proof schemes.  Students employing an empirical proof 
scheme would both accept and submit to others arguments based on either drawings or numerical 
examples.  Students employing an externally based proof scheme would both submit and accept 
arguments based on factors other than the correctness of a proof, such as (1) the form of an 
argument, (2) the authority of the book or teacher, or (3) the formal manipulation of symbols 
without comprehending the meaning.  Students who understand the meaning of symbols and are 
comfortable manipulating them without regard to their meaning or are comfortable building from 
axioms and definitions are employing an analytic scheme.  The teachers in Lowenthal and 
Eisenberg’s study who withheld their validation of the derivation of a fact until it had been 
checked by mathematical induction may have been employing an externally based proof scheme. 
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The concerns of mathematics teachers as both teachers and knowers of mathematics are 
important.  Knuth (2002a) investigated teachers’ understandings of proof as knowers of 
mathematics.  Knuth (2002b) investigated teachers’ understandings of proof as teachers of 
mathematics and suggests that some mathematics teachers believe that proof is a topic of study 
rather than a tool for studying mathematics and that it is not suitable for the majority of high 
school mathematics students.  His participants indicated that roles for proof in school included 
the development logical thinking skills, displaying student thinking, and communicating 
mathematics, and establishing results.  Understanding not only what practicing teachers but also 
what preservice teachers know and understand regarding both the mathematical and the 
pedagogical aspects of proof is important when considering how to better prepare them to meet 
the expectations of recent reform documents.  This report is part of a larger study of preservice 
teachers understandings of the purposes of proof and reports on the specific questions of (a) How 
do preservice teachers perceive the role of communication when writing proofs? and (b) What 
value do preservice teachers place on proofs that explain relationships? 

Methods and Data Sources 
Ten mathematics or mathematics education majors were recruited from upper division 

geometry courses at two colleges with preservice teacher preparation programs.  Twenty-one 
tasks were designed to probe participants’ perceptions of mathematical rigor in relation to three 
purposes of proof – explanation, communication, and conviction.  Participants were interviewed 
twice either singly or paired.  During the first interview, I asked participants open-ended 
questions about their mathematical histories and about their perceptions of the purposes of 
mathematical proof both in the discipline of mathematics and in mathematics education.  The 
second interview was task-based (Goldin, 1999).  Participants were shown a series of 
mathematical arguments that varied in rigor, clarity, and explanatory power and participants 
were asked to discuss whether or not the arguments were clear, convincing, and valid, and if they 
could or would submit them to their professors.  All interviews were audiotaped and later 
transcribed.  I used two coding schemes (internal and external) in the analysis of data.  My 
external codes included the purposes of proof (verification, explanation, communication), the 
role of rigor, the role of diagrams, and to what purposes proofs had been used in their 
mathematics courses.  Internal codes that emerged from the data included writing to the intended 
audience, the value of explanation in proofs, and the differences between abstract mathematics 
courses and the mathematics courses that preceded them. 

Two of the ten participants will be discussed in detail below.  Marilyn and Ken were both 
well reasoned and articulate and the views they expressed are important for different reasons.  In 
many respects, Marilyn’s responses are typical of the responses of the group.  In several 
instances, she expressed much more clearly the stated views of the other participants.  Ken’s 
responses on the other hand were atypical and frequently contrary to the responses of the group.  
Both Marilyn and Ken had been out of school for a few years and were returning to pursue a 
master’s degree in mathematics education.  Marilyn had a BS in mathematics.  Ken had a BS in 
business and after returning to school had completed the mathematics course requirements for a 
BS in mathematics as well.  

Results 
The results of the analysis yielded three main findings.  First, preservice teachers are 

sensitive to the role of the intended readers (or audience) of proofs.  Second, preservice teachers 
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place a value on proofs that explain over proofs that merely verify.  Finally, preservice teachers 
accept that proof by mathematical induction is a valid form of argumentation even though they 
don’t find these arguments personally convincing. 

All of the participants expressed concern for the intended readers of a proof.  These concerns 
included writing proofs that are both understandable and convincing to the uninitiated reader, 
and writing proofs that would receive high marks from professors. For Marilyn clarity and 
communication were very important considerations when writing proofs.  She stated that the 
proof entitled Summation (see below) and a proof by mathematical induction for the same claim 
were both valid but that they were best written to different audiences.  “If I’m showing 
something in class, for students of a lower skill level, I would go with [Summation]” but she did 
not think that she could turn in Summation to her math professors who, she believed would want 
something more rigorous. 

The proof Parity of Zero, “If zero were odd, then 0 and 1 would be two odd numbers in a 
row.  Even and odd numbers alternate.  So 0 must be even” (NCTM, 2000, p.59), was written by 
a first grader to establish that zero is an even number.  No respondent believed that this proof 
was sufficient to establish the claim that zero is even but when they were informed that the proof 
was written by a first grader, most indicated that it was an acceptable or even a “pretty hot” chain 
of reasoning for a first grader.  Marilyn went so far as to say that this argument constituted a 
valid proof at the first grade level and that it might be an acceptable argument up as far as high 
school. 

Marilyn’s concerns for the reader are not merely to write with less formalism to immature 
audiences, they include writing sometimes with less rigor to mathematically elite audiences as 
well.  The proof Hand Waving, “…assuming it is true for n=k, then it is easy to show that it holds 
for n=k+1…” was deemed insufficient by most participants as well.  Marilyn however, suggested 
a context in which this proof would be acceptable.  She would not turn Hand Waving in to a 
professor unless 

[It was] part of a larger work.  [If that was the case] I would feel safe leaving out the algebra 
to make it more clear...It depends on who your audience is.  If it’s something that you are turning 
in as like a senior project or a master’s project, your audience is pretty educated people so you 
can say, it is easy to show that it holds for a proof.  And by the time you’ve gotten there, you’re 
allowed to do that. 

Summation 

Claim:  
 

1+ 2 + 3+ggg+n =
n

2
n + 1( ) 

Proof:  If we add all the numbers from 1 to n twice as in the 
following fashion, the sum is twice the sum from 1 to n.  
So: 

  
 

     1   +    2       +      3      +   ggg   +  n

+   n  + (n − 1)  +  (n − 2)  +          +  1
 

   (n + 1) + (n + 1)  +  (n + 1)   +   ggg   +  (n + 1)  
 
  So twice the sum from 1 to n is n(n + 1) . 

  Therefore 
 
1+ 2 + 3+ggg+n =

n

2
n + 1( ). 
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She did not believe that the proof was complete or valid as written but she believed that there 
was a time and a place for “proofs” of that nature and provided not only the context but also a 
rationale for submitting such an abridgement.  For Marilyn, making an argument clearer by 
decreasing the level of rigor was sometimes allowable. 

All participants were convinced by proofs by mathematical induction but they seemed to be 
convinced based on a superficial belief in the form of argumentation rather than on a rich 
understanding of the argument.  When the proofs Summation and its mathematical induction 
counterpart were presented to the participants, it became apparent why they found this argument 
convincing.  One student reported, “I think [the proof by induction] is more convincing...because 
I know mathematical induction.”  Marilyn reported that she found the induction more convincing 
“because I’ve been indoctrinated that induction is a valid form of proof.”  Another declared that 
the inductive proof was valid “because I’ve learned that it’s valid...It’s gotten me good grades on 
tests,” and another reported that proofs by mathematical induction are convincing “probably 
because I have faith in the method.  Without having faith in the method, it’s a little harder to 
make that leap that assuming it’s valid for k, showing it’s valid for k+1.”  It seems these students 
wrote and accepted proofs by mathematical induction based on an externally based proof scheme 
– that is they believed that mathematical induction is a valid form of argumentation rather than a 
clear and personally convincing argument.  In Ken’s opinion, “because you can memorize this 
and regurgitate it and get credit for it [without] a true understanding” only students who really 
understood mathematical induction should be permitted to in hand such proofs.  It is difficult to 
say what these students meant when they said that proofs by mathematical induction are 
convincing.  They both accepted and submitted arguments of this form.  They exchanged these 
arguments like a mathematical currency, expecting that these mathematical communications 
would be understood and accepted by a reader but found these arguments convincing only 
because they had been “indoctrinated” into the method of mathematical induction, not 
necessarily because they found the arguments personally convincing. 

In analyzing the interview data, I found that communication and conviction as different 
aspects of proofs were almost impossible to separate.  It was difficult to determine what students 
meant when they used the word convincing.  For example, one student reported that while she 
believes analytic proofs, “I feel like you could use an analysis proof to prove things that aren’t 
true” and that “I’ll go along with it but I might make it a life’s goal to disprove it.”  This 
participant seems to be employing an externally based proof scheme because she accepts and 
even writes epsilon/delta proofs but isn’t truly invested in the method.  Marilyn reported that 
proofs by exhaustion are “not as rigorous... not as convincing” as other arguments.  Both these 
students accepted these forms of argumentation as valid but found them unconvincing on a 
personal level and seemed to be indicating that they believed that certain forms of valid 
argumentation are less convincing than others.  Other participants expressed the opposite view 
that certain proofs were convincing but not valid.  Six said that they could be convinced by a 
proof they did not understand if it was in a book, and all found proof by mathematical induction 
convincing although as discussed above, this seemed to be based superficially on the form of 
argumentation.  These examples reveal that the students mean different things when they say 
they are convinced.  It can mean that the student has come to believe on a level of personal 
meaning, or that the student is capable of suspending his/her disbelief, or that the student affirms 
that the argument is correct, or that the student sees no reason that the statement cannot be true.  
There may be many other meanings as well. 
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While some of the participants indicated that they would resort to working examples to 
persuade others if necessary, none of them reported that they found examples or diagrams 
convincing arguments.  Externally based proof schemes however, were common among the 
participants.  Six of the ten participants were willing to accept on authority a proof in a textbook.  
Marilyn, for example, indicated that she would accept a statement even if she did not understand 
the proof  

[If] it was published.  Someone checked it.  Someone out there has gone through that proof.  
I’d want to go through and see if I can put in the steps in between to explain to myself where that 
came from.  If I weren’t able to do that, I’d probably believe it anyway.  It’s in a book. 

The expressed belief is that somebody understands the proof and has lent their credibility to 
it.  That is – if a proof has been reviewed and accepted by those who publish textbooks, then the 
theorem is probably true and can tentatively be trusted.  In this respect, the behaviors of these 
participants are not all that different from those of practicing mathematicians. 

While some participants stated that the admissibility (or validity) of arguments is based 
partially on the mathematical level of the reader, and to a lesser extent the on the mathematical 
level of the writer, Ken assigned admissibility to the arguments in the proof items based in part 
on the sense they made and the insights they showed.  In other words, Ken evaluated proofs on 
how well they explained mathematical relationships or tied mathematics to real life situations.  In 
his comments below it is clear that he believed that a good explanation is a proof and that 
explanation should sometimes be given as much consideration when writing proofs as careful 
mathematical reasoning. 

The proof Transitivity, “A dollar can be made up entirely of coins of a single denomination 
and any dollar value can be made up entirely of one-dollar bills,” was an analogical proof of the 
claim that divisibility is transitive.  Only Ken and one other participant believed that it was valid.  
The one student believed that if the terms “dollar” and “coin” were carefully defined, then any 
holes in the proof would then be taken care of but Ken believed this argument was a proof just 
because of the sense it made.  He claimed that the proof was “about as clear cut as any proof I 
have ever read...[and] when in doubt, I’ll go in my pocket and get out my change and prove it to 
the students.”  In his view, this proof was not merely valid at some lower level, or only for 
certain audiences “if [my professor] didn’t give me credit, I’d be confused.”  His expressed 
belief was that the insights it provided should be appreciated and the argument acceptable at any 
level. 

Ken believed the proof of the Intermediate Value Theorem, “When you go from the northern 
hemisphere to the southern hemisphere, you have to cross the equator somewhere” (Davis, 1993, 
p. 337), was valid and that: 

If a student gave me that proof I would accept it and write excellent, you 
know, that’s using your brain.  Rather than just memorizing the theorem and 
regurgitating it on the paper, you’re applying it.  And that’s what we go to school 
for, to learn how to apply things and use them in life, or that’s what we’re 
supposed to be in school for...I probably wouldn’t [turn this in to my analysis 
professor] just because I would be concerned that it would be too simplistic but I 
can’t see how I wouldn’t get credit for it because…you’re just symbolizing...It’s 
just substitution really.  I think it would be accepted. 

For Ken, this argument if not general, could be generalized by substitution.  He believed that 
this proof is good for explaining the theorem to uninitiated audiences.  He also believed that it 
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shows insight into the theorem and while it might be too simplistic a proof for some, it should 
receive full marks at both the high school and college levels of mathematics instruction. 

Not only would Ken accept the proof Sum of Cubes (Nelson, 1993, p. 86), (see below) from 
students but he insisted that his teachers should accept it from him as well “because not only are 
you explaining what’s going on but you’re given a visual as well…I’m going to say yes, they 
should accept this damn it!  They should accept it.  I question whether they would or not.”  The 
picture in the proof is just the demonstration of the special case of n=3 but he insisted “Even 
though it’s finite picture here, it’s simple enough to take this out to n numbers.  I think it’s very 
clear.”  He recognized not only that a theorem cannot be proved by looking at a special case but 
also that this form of visual argumentation was not universally accepted.  Even so, the proof was 
valid nonetheless and should be accepted as a mathematical proof at the college level. 

 
 

In all, there were four proof tasks in which Ken was either the sole participant or one of only 
two participants that believed the proofs were valid.  The proofs in question (Intermediate Value 
Theorem, Transitivity, Sum of Cubes, and a proof by Venn diagram) differ significantly from 
what most would consider standard mathematical writing.  In each case, the argument had 
sacrificed rigor in favor of explanation.  Ken’s ideas, while unorthodox are not naïve.  Judging 
by the mathematical coursework of the participants, Ken had had more extensive training in 
mathematics than most of the other participants.  He understood why others might not accept 
these arguments but still believed that he could make a case for accepting proofs such as 
Intermediate Value Theorem, Transitivity, and Sum of Cubes from students and for submitting 
them to his teachers as well.  

Discussion and Conclusion 
When writing to a low level reader such as a grade school or even a high school student, 

Marilyn and most of the other participants wanted to be clear and convincing, but when writing 
to a high level reader such as their professors, they wanted to write proofs that they perceived to 
be more rigorous.  Marilyn’s belief that a proof by mathematical induction was more rigorous 
than the proof Summation and that she would feel safer submitting the induction to a teacher was 
representative of the group.  All participants in this study both accepted and submitted proofs by 
mathematical induction but their superficial “faith in the method” indicates that they were at 
times employing an externally based proof scheme. 

Ken on the other hand had a way of thinking about proof that ran counter to the rest of the 
group.  He preferred arguments that explained relationships or showed insight even if they fell 
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short of what he knew was accepted mathematical practice.  He would accept explanatory 
arguments from others and argues that he should be allowed to submit them at any level of 
schooling as well.  It should be noted that throughout both interviews, Ken interpreted questions 
in light of teaching high school mathematics more consistently than any other participant and in 
his opinion, proofs in high school mathematics should explain why a statement is true, not 
merely verify that it is, but when he states that he should be able to turn in some of these proofs 
to his professors he indicates that proofs that give good explanations or show some special 
insight should be acceptable at all levels. 

Preservice teachers’ ideas about what it takes to write a proof depend on many things 
including the purpose for which it is written and the reader for whom it is intended.  As students 
of mathematics, they are accustomed to seeing proofs that they don’t fully understand and so 
may have to employ externally based proof schemes such as accepting the word of an authority 
or borrowing a ready-made proof format such as mathematical induction without fully 
understanding its meaning.  As persons intending to one day teach mathematics, they are 
sensitive to the needs of an imagined reader and try to fashion arguments intended to meet those 
needs.  To understand the reasons for students’ failure to produce valid proofs, we first need to 
understand what proof schemes they employ and how they negotiate between arguments that are 
rigorous and arguments that explain, convince, or clearly communicate as they construct their 
ideas of mathematical proof. 
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The paper reports on a comparative study investigating the effects of a pedagogical approach 
(ICFB) on perception, attitude, and confidence in the context of mathematics. Three sections of a 
mathematics content course for prospective teachers participated in the study. The section with 
the pedagogical approach showed the most number of students changing their opinion on many 
of the 16 Likert scale statements toward a more positive view. The section with the traditional 
approach however showed no statistically significant positive change from pre- to post-survey.  

Students' concerns about mathematics can significantly affect their ability to learn and 
understand the subject. Furthermore, their anxieties and attitudes may greatly affect how they 
perceive their own mathematical competence (Hopko, Ashcraft, Gute, Ruggiero, and Lewis, 
1998; Mandler, 1989; McDonald, 1989). For instance, students may perceive mathematics as an 
incomprehensible set of abstract procedures and methods to follow, not being aware that there 
are reasons underlying these methods. Frustration due to the lack of in-depth understanding may 
discourage students from pursuing studies in mathematical sciences (Hopko and et al., 1998).  

These characteristics are commonly observed among pre-service teachers too. Many 
researchers reported findings indicating that majority of prospective teachers in the United States 
show high anxiety and negative perceptions toward mathematics (Ambrose, 2004; Battista, 
1994). Future teachers see mathematics as a highly abstract subject requiring rote memorization 
of procedures, symbols and formulas. Furthermore many have a lack of belief in the importance 
of mathematics, especially at the EC-4 level. Although pre-service teachers certainly have the 
ability to learn mathematics, their lack of self-confidence and the fear of failure distract them 
from learning, and adversely affect their performance in the classroom. Clearly, we must deal 
with the affect factors so that our prospective teachers may fully benefit from their experiences 
in learning mathematics (Ambrose, 2004; Battista, 1994; Fennema, 1989; McDonald, 1989). 
Affect factors range from emotions to attitudes to beliefs. There have been reports discussing the 
role of active learning environments in reshaping students’ perceptions and emotions about 
mathematics (Fennema, 1989; McDonald, 1989). 

Pedagogical Approach to Teaching and Learning Mathematics 
A set of mediating activities as part of a pedagogical approach, named An Integrated, 

Collaborative, Field-Based (ICFB) Approach, to teaching and learning mathematics has come 
about in order to address some aspects of the attitude and perception factors our pre-service 
teachers seem to hold, and consequently enhance their mathematical knowledge. The ICFB 
approach includes activities that are developed to support various components of a cyclic process 
of Learn, Develop, Practice, Reflect and Teach. The approach is modified from another approach 
that has been implemented into a block offered for prospective middle school teachers. The 
ICFB approach is implemented into a mathematics-focused block of courses offered for 
elementary pre-service teachers.  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
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There exist two block structures at the University: Bock I is a block with a focus on 
mathematics, and Block II focuses on science. Block I consists of three courses; pedagogy, 
mathematics methods and content mathematics offered as a cohort. That is, pre-service teachers 
take the three courses in their designated block sections as a cohort. In the past, even though 
these courses were still offered in a block section and taken as a cohort, they were taught in 
isolation with little to no collaboration between them. The mathematics content course was 
taught traditionally. The block structure also entails a field-based internship component. While 
taking the three courses, teachers get their internship at area elementary schools attending classes 
two days and interning three days a week. Figure 1 outlines the activities of ICFB and the 
involvement level of the three courses. For instance, the arrow between the math content and the 
methods boxes with “LEARN/PRACTICE” indicates that the learning of mathematical concepts 
and the practice of micro-lessons mainly occur as a result of a collaboration between the 
mathematics content and methodology courses. It also implies the existence of common 
assignments and requirements. Furthermore, the bubble with “Micro-TEACHING” indicates that 
all three courses involve in the micro-teaching process. It also indicates that mathematics is 
considered as the core subject for each block I course. 

      
     Math Focused Block 
 

 

                                                             

 

     

 

 

Figure 1. Diagram of a Pedagogical Approach to Teaching and Learning Mathematics.  

The approach demands that students first learn mathematics content, and next develop 
lessons on mathematics topics relevant to EC-4 teaching. Working in an active, collaborative and 
inquiry-based learning environment, they proceed to practice their micro-lessons during the 
mathematics methods and content classes at the same time reflecting on their progress and 
experiences during the pedagogy and mathematics content hours. Using designated elementary 
classrooms, students teach the lessons with the support of in-service teachers whose classrooms 
are visited. This process is repeated about four times a semester. A crucial component of the 
approach is that students receive timely and continual constructive feedback on their work from 
their classmates, the block faculty, and in-service teachers through out the semester. 
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Methodology 
The paper reports on the findings of a comparative study between the three groups of 

prospective teachers on their perceptions and attitude toward mathematics. Data consisting of 
pre- and post-surveys were collected from three sections of a mathematics content course 
required for pre-service teachers at a four year midsize southwest University in the United States. 
All three sections covered the same mathematics topics, and required similar assignments. 

 
Table 1. Three prospective teacher groups. 

Groups                                                                04       05        03     
Year                                                                  2004   2005   2003            
Sample Size                                                       21        28       41  
The same content coverage                                √          √        √      
The same content instructor                               √          √       
ICFB approach implemented                             √  
In Field-Based Block                                         √                    
Social, constructive, active learning                  √          √   

 
Table 1 outlines the primary components of the three groups. Group 04 was subjected to the 

ICFB approach implemented in a section of block I courses during the spring 2004 semester. The 
groups 05 and 03 took sections that were offered as stand alone during spring 2005 and fall 2003 
respectively. That is, the two groups were not integrated with mathematics methods, pedagogy or 
any other potential mathematics or education courses. 04, 05 and 03 consisted primarily of 
English speaking Hispanic students (approximately 85%). There were no male students in 04. In 
addition, everyone in this group was specializing in elementary education. 03 had three males, 
and 05 had two. In average ten students in groups 05 and 03 were specializing at the middle 
school level in either science or mathematics.  

       
S1 Math is simply a bunch of procedures to follow 

S2 Math is a tool used to solve problems and/or find solutions 
S3 Math is difficult 
S4 In order to do math you need to think and use logic and reasoning 
S5 I fear math 
S6 I become frustrated with math 
S7 I do not understand math 
S8 I like math 
S9 I do not like math 
S10 From this course, I expect to improve/improved my own math skills and abilities 
S11 From this course, I expect to learn/learned how to teach math 
S12 From this course, I expect to learn/learned how to make math fun for my future students 

S13 
From this course, I expect to become/became more comfortable/confident with my abilities in 

math 
S14 I believe I can learn and understand math 
S15 I am looking forward to teaching math 
S16 I have the ability to learn new tasks. 

Table 2. Sixteen statements from pre- and post-surveys. 
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The results reported in the paper come from a study investigating many dimensions of the 
ICFB approach through both qualitative and quantitative means. The quantitative analysis of 16 
Likert scale statements relating to perception, emotion and confidence are discussed in this 
paper. See table 2 for the 16 statements given in both pre- and post-surveys. Statements were 
ranked on a 5 point scale of 1=strongly disagree to 5=strongly agree. One-way ANOVA with 
α=0.05 and α=0.1 significance levels is applied in order to document differences in pre- to post-
survey responses within groups, and between groups. Furthermore, a Spearman-Brown Split-
Half reliability measure (Garrett and Woodworth, 1967) is applied to pre- and post-survey 
statements similar in content to test for the consistency of student responses. The measure ranges 
from .70 to .90. 

  
 04 05 03 

 
Statement Pre Post Pre Post Pre Post 

S1 SD 1.19 0.89 1.19 1.05 1.12 1.17 

 Mean 3.50 3.20 2.59 2.26 2.81 3.13 

S2 SD 0.61 0.60 0.75 0.65 0.80 1.04 

 Mean 4.50 4.16 4.25 4.35 4.37 4.27 

S3 SD 0.72 0.81 1.18 1.18 1.21 1.08 

 Mean 4.25 3.65 3.14 3.13 3.56 3.42 

S4 SD 0.59 0.72 0.51 0.67 0.74 0.67 

 Mean 4.35 4.25 4.46 4.52 4.40 4.37 

S5 SD 1.03 0.89 1.28 1.20 1.28 1.21 

 Mean 3.70 3.20 2.37 2.52 2.83 2.75 

S6 SD 0.86 0.88 1.29 1.33 1.28 1.24 

 Mean 4.00 3.65 2.96 2.96 3.28 2.97 

S7 SD 0.94 0.83 1.03 0.88 1.18 0.88 

 Mean 3.45 2.90 2.43 2.04 2.66 2.41 

S8 SD 0.95 1.00 0.96 0.97 1.03 0.91 

 Mean 2.80 2.76 3.50 3.87 3.51 3.56 

S9 SD 0.90 0.89 1.20 1.10 1.23 1.10 

 Mean 3.58 3.24 2.54 2.13 2.56 2.46 

S10 SD 0.50 0.48 0.57 0.94 0.55 0.94 

 Mean 4.63 3.86 4.39 4.17 4.56 3.54 

S11 SD 0.47 0.83 0.74 1.04 0.81 1.30 

 Mean 4.70 3.60 4.39 3.91 4.44 2.95 

S12 SD 0.44 0.96 0.74 0.98 0.74 1.22 

 Mean 4.75 3.71 4.46 4.04 4.56 3.03 

S13 SD 0.44 0.73 0.58 0.95 0.51 1.13 

 Mean 4.75 3.67 4.50 4.00 4.71 3.31 

S14 SD 0.45 0.50 None None 1.05 0.84 

 Mean 4.74 3.95 None None 2.71 3.95 

S15 SD 1.00 0.75 1.03 1.08 0.94 1.00 

 Mean 3.95 3.52 3.79 3.91 3.98 3.58 

S16 SD 0.51 0.54 0.49 0.42 0.63 0.64 

 Mean 4.55 4.24 4.36 4.22 4.40 4.33 
 

Table 3.  The pre- and post- survey SD and Mean Scores. 
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Results 
There has been a considerable difference observed among the groups. Compared to the other 

two groups, the group that was exposed to the ICFB approach (04) differed on many statements 
showing significantly positive changes from pre- to post-survey. Table 3 provides the means and 
standard deviations (SD) of the scores, and table 4 provides the p-values, from one-way 
ANOVA, for seven statements that showed notable changes by at least one group. In this section, 
we report the findings for the particular statements providing pairwise comparisons of the 
groups. We finalize the paper with the conclusion section including a summary of the results. 

Groups 04 and 05 showed a notable decrease on statement 1, “ Math is simply a bunch of 
procedures to follow,” as opposed to an increase 03 displayed on the mean scores of its students’ 
opinions from pre-survey to post-survey. The post-survey means of groups 04 and 05 showed a 
significant difference whereas the difference between 04 and 03 was not statistically significant 
(see tables 3 and 4). One should keep in mind that the pre-survey mean scores for the groups also 
differed significantly with the exception of the comparison of the groups 05 and 03. The two 
groups did not have a statistical difference on their pre-survey responses. Group 04 had a pre-
mean 3.5, and 05 had 2.59 while 03’s was 2.81. The most notable difference among the three 
groups on the statement 1 is that as opposed to the opinions of the groups 04 and 05, increasingly 
more students in the group 03 considered mathematics as a bunch of procedures to follow from 
pre-survey to post-survey. Recall that 03 differed in its traditional lecture style whereas the other 
two groups implemented a collaborative, active and inquiry-based learning. 

  
 Between Group Comparison  Within Group Comparison 
 

 04-03 04-05 05-03 04  05 03 
 

 Pre Post Pre Post Pre Post Pre-Post Pre-Post Pre-Post 

S1 0.03* 0.8 0.01* 0.003* 0.45 0.005* 0.3 0.3 0.2 
S3 0.02* 0.4 0.001* 0.1** 0.15 0.33 0.01* 0.9 0.5 
S5 0.01* 0.1** <0.001* 0.04* 0.15 0.47 0.1** 0.6 0.7 
S6 0.02* 0.03* 0.04* 0.05* 0.33 0.96 0.2 0.9 0.2 
S7 0.01* 0.03* 0.05* 0.002* 0.4 0.11 0.05* 0.1** 0.2 
S8 0.01* 0.003* 0.002* 0.001* 0.96 0.21 0.9 0.1** 0.8 
S16 0.5 0.3 0.1** 0.8 0.76 0.46 0.06** 0.2 0.6 

* Statistically significant at α=.05. **Statistically significant at α=0.1. 

Table 4. p-values for between and within group comparison of seven statements from 
one-way ANOVA.  

All three groups showed a decrease on statement 3, “ Math is difficult,” from pre- to post-
survey. Group 04 is the only group showing a statistically significant decrease on the number of 
students agreeing with the statement. The pre-mean of the group 04 is 4.25 whereas its post-
mean is 3.65. One however should point that the pre-means of the other two groups are notably 
lower than that of 04. This difference on the pre-survey may be attributed to the fact that the 
groups 05 and 03 had students specializing in middle school science or mathematics contrary to 
group 04 which was all female and specializing at the elementary level. 

Groups 04 and 03 showed a decrease on statement 5, “ I fear math,” and 05 showed a 
negligible increase from the pre-mean of 2.37 to post-mean of 2.52. As it was the case on 
statement 3, group 04 is the only group showing a significant (at α=0.1) change on this 
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statement. Compared to the number in the pre-survey, a significantly more number of students in 
04 disagreed with the statement in the post-survey. 

None of the groups showed a significant change on their opinion of the statement, “I become 
frustrated with math,” from pre- to post-survey. 04 and 03 however displayed a notable decrease 
on the number of students agreeing with the statement, and students in 05 did not change their 
opinion. Comparing the three groups, the pairs 04-03 and 04-05 differed significantly on their 
opinion both in pre-survey and post-survey. 

Groups 04 and 05 showed statistically significant changes on the statement, “ I do not 
understand math,” from the means of 3.45 and 2.43 in the pre-survey to the post-means of 2.90 
and 2.04 respectively. The group 03, on the other hand, showed a non-significant decrease 
indicating that many of its students did not change their judgment about the statement. 

Groups 04 and 03 did not seem to have very many students changing their opinion on liking 
mathematics (Statement 8). 05 on the other hand had notably more students changing their 
opinion favoring an agreement with the statement, “I like math.” Group 05’s post-pre mean 
difference is 0.37 which is significant at the α=0.1 level. 

On statement 16, “I have the ability to learn new tasks,” all three groups reflect similar 
opinions in both pre- and post-surveys. That is, the post-mean difference between the groups is 
not significant. Even though it is not statistically significant, group 04 starts with a higher mean 
in pre-survey, and shows the highest decrease from pre- to post-survey. Our observation and 
conversation with the students indicate that this decrease may be due to the fact that 04 was 
given an opportunity to teach mathematics topics in actual elementary classrooms leading to 
experiences and realization of the amount and depth of knowledge needed for effective teaching. 
Experiencing the importance of mathematics in EC-4, and realizing the inadequate mathematics 
knowledge held at the time of actual teaching, many of 04 students began to realize that 
“ learning new tasks” is not about recalling facts but about  gaining deeper understanding. This 
resulted in self-criticism of their knowledge leading to the feeling of inability to learn new tasks. 
Recall that 04 is the only group with significant number of its students disagreeing with the first 
statement, “ Math is simply a bunch of procedures to follow” at the end of the semester. Thus, 
learning did not seem to mean recalling facts any more for significantly many of 04’s students. 

Conclusions 
In this paper, we reported quantitative findings of a comparative study investigating the effects of 

a pedagogical approach (ICFB) on perception, attitude, and confidence in the context of mathematics. 
Only the ICFB group (04) showed notable changes on many of the statements. On the statements 
addressing negative feelings about mathematics, 04 had significantly fewer numbers of students 
indicating agreement. Group 04 also showed an increase in the number of students indicating 
confidence in their ability to understand mathematics on statements 3 and 7 having a post-pre 
mean difference of -0.55 on S7. Furthermore, many students in 04 changed their opinion on 
mathematics being a bunch of procedure to follow showing a notable decrease on its mean from 
pre- to post survey. Group 05 also showed a notable decrease on this aspect of mathematics. 
Group 03 however had increasingly more students considering mathematics as a bunch of 
procedures to follow. This may be attributed to the content delivery difference between this 
group and the other two groups. 03 implemented mainly a lecture mode as opposed to the active 
collaborative learning 04 and 05 implemented. As the case with group 04, increasingly more 
students in 05 also disagreed with the statement “I do not understand math,” indicating an 
increase in their confidence level. Here, we should however note that all three groups showed a 
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notable decrease in their means from pre- to post-survey on the course expectation statements 
(S10-S13). This decline is statistically significant at α=0.1 for the statements S11-S13.  

In summary, contrary to no significant positive change observed in 03, the groups 04 and 05 
showed notable positive changes on their opinion from pre-survey to post-survey. The ICFB 
group showed a statistically significant opinion change on four statements (S3, S5, S7 and S16) 
addressing emotion and confidence. Group 05 showed significant changes on two statements (S7 
and S8). The findings then may be interpreted as that for teachers to gain positive changes in 
their emotion, perception and confidence, one may need to implement an approach similar to 
ICFB. However, we should note that one needs to interpret the results cautiously since the 
sample sizes were small, and the groups differed on some of the factors. For instance, the three 
groups’ pre-survey scores on many statements differed significantly, and 03 had a different 
instructor than the instructor who taught the other two groups 04 and 05. 

The implications of the findings for the teaching of mathematics might be that an approach 
similar to ICFB can lead to changes in pre-service teachers’ perceptions and attitudes toward 
mathematics, and as a result lead to an increase in teachers’ confidence in their ability to learn 
and think mathematically (Fennema, 1989; McDonald, 1989). 
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Even and Tirosh (2002) suggested that research is needed to further our understanding of how to 
help secondary pre-service teachers gain the skills and knowledge necessary to advance student 
cognition. This study examined whether a secondary pre-service teacher’s reflection on the types 
of questions that he asked and his students’ responses would persuade him to ask questions that 
elicited students’ mathematical reasoning. Findings of this study indicate that an individual’s 
implicit beliefs may hinder the adoption of new practices even when presented with 
contradictory evidence.   

Even and Tirosh (2002) acknowledge the challenge of preparing secondary mathematics 
teachers in their discussion of the current state and future directions of research on teacher 
education. They summarize research findings to describe three different types of knowledge that 
teachers need to advance students toward more sophisticated mathematical thinking. First, 
teachers need knowledge about frameworks that describe student cognition to interpret students’ 
responses. Second, teachers need knowledge about learning theories to develop different forms 
of mathematical knowledge. Third, teachers need knowledge about the role of classroom culture 
to develop students’ mathematical thinking. Even and Tirosh suggest that while research has 
advanced our understanding of the complex nature of teacher knowledge in general, we do not 
yet understand how to help prospective teachers gain the skills and knowledge necessary to 
advance student cognition nor whether adopting the current advocated classroom culture in the 
secondary mathematics classroom facilitates students’ learning.  

Review of 56 research reports on elementary teachers from the Proceedings of PME-NA 
(2002-2004) indicate that while the process of change is difficult, some elementary teachers are 
enacting new practices. In general, these reports suggest that helping teachers interpret students’ 
responses, experiment with new discourse patterns, and engage with researchers as partners 
supports the adoption of reform teaching recommendations. During the same time period, 
research reports on secondary mathematics teachers are fewer (19) and indicate that teacher 
educators use many professional development strategies that supported change for elementary 
teachers.  

However, secondary mathematics teachers are different from elementary teachers in many 
ways and helping them recognize how their conceptions of teaching and learning impacts the use 
reform curriculum can be challenging (De Geest, Watson, & Prestage, 2003; Gutierrez, 2002; 
Olson & Kirtley, 2005). De Geest, Watson, and Prestage found that the mathematical proficiency 
of low-performing students was increased by nine secondary teachers who concentrated on 
developing key mathematical ideas and ways to think about them. Olson and Kirtley found that 
after a secondary teacher experienced cognitive dissonance learning and thinking about 
mathematics, she became committed to reform mathematics recommendations and changed her 
teaching practices.  

These findings suggest that preparing secondary teachers to be committed to increasing the 
achievement of low-performing students requires experiences that are safe environments for 
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experimentation and prompt cognitive dissonance. This study analyzed the teaching practices of 
a secondary pre-service teacher, using a framework of question types, and his beliefs about 
students’ potential to achieve in mathematics. Specifically, we wondered whether a pre-service 
teacher would change his commitment to the attainment of more sophisticated thinking by low-
performing students when the supervising teacher educator focused his attention on the types of 
questions asked of two different student populations.  

Theoretical Perspective 
The research question focused our attention on the psychological processes of a pre-service 

teacher as he considered how his actions influenced students’ opportunities to learn. From the 
perspective of symbolic interactionism, interactions between people are indications of their 
personally constructed meaning (Becker & McCall, 1990; Denzin, 1992). Communication is 
thought to be a symbolic process that consists of an ensemble of social practices (including 
language, intonation, gestures, and written symbolic representations) that portray an individual’s 
private construction of knowledge. Thus, an individual’s interactions can be analyzed and 
interpreted to indicate this constructed knowledge. The character and new uses of verbal 
language by an individual during social interactions indicates the assimilation of new ideas 
(Kumpulainen & Mutanmen, 2000).  

Proulx, Kieran, & Bednarz (2004) characterized pre-service teachers’ classroom discourse as 
(a) explanations that are technical and focus on procedures with precise vocabulary; (b) attempts 
to develop a concept but over-generalize a specific example; (c) explanations that follow 
prescribed steps; (d) reformulation and revoicing of students’ ideas to create a culture of 
mathematical reflection. In this study, we used these characterizations to analyse a pre-service 
teacher’s classroom discourse and create learning trajectories to advance his practice. 

Method 
This study used a single case-study design to investigate how a pre-service teacher used 

information about the types of questions that he asked students in two different geometry classes. 
Previously, Charles (pseudonym) completed his mathematics methods course with Hartter which 
included a two-week clinical experience in a secondary mathematics classroom. This study 
began as Charles assumed responsibility for remedial and grade-level geometry classes. Hartter 
observed him teaching three times during his semester-long student teaching assignment 
(beginning, midway, and end). Each observation included a pre-lesson conference in which 
Charles identified the lesson’s objectives and how he would assess student understanding. 
During the post-lesson conference, he identified what (a) surprised him, (b) went well, (c) he 
would change, and (d) he knew about the students’ understanding of the concept.  

Hartter used an activity-reflective cycle (Simon, Tzur, Heintz, Smith, & Kinzel, 1999) to 
engage Charles in a sequence of cyclical activities designed to develop his questioning 
techniques. The cycle consisted of five stages in which Hartter (a) assessed Charles’ knowledge 
of questioning through observation, (b) cited instances where students exhibited mathematical 
thinking and suggested types of questions that could be asked, (c) created a learning trajectory to 
help Charles realize that students could think about mathematical ideas during class discussions, 
(d) selected activities to help Charles identify and use conceptual questions, and (e) supported his 
reflection by providing specific feedback. Four data sources included (a) written reflections and 
lesson plans constructed by Charles, (b) field notes of conversations between Charles and 
Hartter, and (c) detailed field notes of classroom observations. These data were analyzed using a 
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time-ordered conceptual matrix (Miles & Huberman, 1994) to describe his professional growth 
as he implemented the suggested activities and reflected on the intersection between his actions 
and students’ responses.  

Results and Discussion 
Charles taught two geometry classes, one described as “remedial” and the other as a regular 

tenth-grade geometry class. Initially, he relied on the textbook as an authoritative guide that 
dictated the sequence of topics, discussion guide, and problem source for both geometry classes 
(observation, March 29, 2005). Hartter noted during an observation of Charles, “Was he afraid 
that the students won’t respond or that he won’t recognize the correct response?  In the regular 
tenth-grade geometry section, he seemed to ask a few more questions seeking explanation or 
clarification, such as: “How did you get that?” However, there was still very little student-student 
interaction in this class [regular section].” (field notes, March 29, 2005).  We characterized the 
questions that Charles posed as managing and clarifying questions that focused students’ 
attention on solving the problem following his demonstrated procedure. His discourse followed a 
pattern in which he initiated a question, listened to a student response, and evaluated whether the 
response was correct. This discourse pattern has been described by many researchers and was 
characterized by teachers (Kumpulainen & Mutanen, 2000) as an initiate-respond-evaluate 
pattern (IRE).  

Hartter wondered why this discourse pattern dominated his interactions after the extensive 
discussions on questioning in the methods course. Pre-service teachers had practiced developing 
questions that probed students’ mathematical thinking and pushed students to create 
generalizations from their observation of patterns. In class, Charles had created very insightful 
questions designed to help students articulate their observations: “Describe the difference 
between the area and circumference of a circle.” and “When is it appropriate to use the 
Pythagorean Theorem?” (after an investigation involving a variety of triangles).  

Analysis of Charles’ reflections about surprises during the lesson and students’ 
understanding about the concepts addressed revealed an assumption about his students. He 
wrote, “The first class was a remedial class; therefore, they just don’t respond to questions very 
well.” This statement indicated a belief that remedial students are unable to answer questions that 
require mathematical reasoning. When Hartter provided evidence that the type of questions and 
discourse pattern for the regular tenth-grade geometry class was similar, Charles responded, 
“Maybe I could get better responses from them [regular students], but open-ended questions 
should be saved for out-of-class projects.” These responses indicated two beliefs. First, the focus 
of questioning during class should be to help students learn specific procedures for solving 
problems. Second, questions eliciting students’ thinking are reserved for high-performing 
students outside of class discussions.  

Questions by teachers that direct students toward an expected response are described as the 
‘Topaze effect’(Brousseau, 1992).  Proulx, Kieran, and Bednarz (2004) also found that pre-
service teachers may use this type of questioning to help students understand a mathematical 
concept. In their study, Bertrand provided a context and asked students to write a linear equation 
that reflected the time it takes workers to pick strawberries. In contrast, Charles did not provide a 
context to develop a mathematical idea. He wrote “Simplify √75” on the board. 

Charles: How could we break this down? 
Student: 25 times 3 
Charles  What do we know about √25? 
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Student: 5 
Charles: Can we simplify √3? 
Student: No. 
Charles: (Wrote on the board √75 = √25 √3 = 5√3) See how we got this? (no response) 

Make sense? (no response from class and Charles went on to the next example). 
Clearly, Charles used directive questions that led students to a correct solution. He repeatedly 

asked, “Does anyone remember how to do this?” which was also met with a silence.  These 
silences were uncomfortable and he chose to go on to another example hoping that the students 
would learn the procedures through repetition. When asked what students understood about 
simplifying radicals he responded, “I think that they knew how to do it because they answered 
my questions.” Hartter probed, “What about the silences?” Charles replied, “They didn’t have 
any questions.” Charles concluded that his students could respond only to factual questions that 
led them to expected answers. His experiences in teaching reinforced his belief that his students 
could not reason mathematically.  

Hartter provided evidence from both classes that students did use mathematical reasoning. 
For example, in the remedial class Charles drew two similar right triangles on the board. The 
legs of the larger triangle were 3 inches and x. The corresponding legs of the smaller triangle 
were 1 inch and 2 inches.  

Charles: Can anybody think of a proportion that I can set up to solve for x? 
Student: 1/3 x = 2 
Charles: That’s not a proportion (wrote 1/3 = x /2). 
In this interaction we interpreted the student’s response to indicate his understanding of scale 

factor between the two triangles. Specifically, the student recognized that the smaller leg was 1/3 
the length of the larger corresponding leg. When Hartter provided this example as evidence of 
student’s mathematical reasoning, Charles commented, “Well, I was looking for a proportion and 
I did not want to confuse the students.” Then, Charles shifted in his chair and was silent for 
several moments before commenting, “I guess they can [think mathematically].” (field notes, 
April 26, 2004).  

The discomfort displayed by Charles indicated a level of cognitive dissonance as he realized 
that his students were able to reason mathematically even though his questioning did not 
encourage it. He recognized that his practices in the two classes suggested a belief that not all 
students can learn mathematics, a contradiction to discussions held during the methods course. 
Initially, we theorized that Charles would reconsider his questioning techniques in both classes 
and change the types of questions that he asked after the cognitive dissonance he experienced in 
his post-lesson discussions with Hartter.  

During subsequent observations, it was apparent that Charles was much more comfortable in 
the second classroom. He used the same lesson for both classes and drew a right triangle on the 
board with the hypotenuse as the base. An altitude was drawn from the right angle to the 
hypotenuse. In the remedial class, he told the students which triangles were similar and how to 
set up a proportion to find the missing pieces. One student offered the proportion z/10 = 16/z as a 
method for finding side z. Charles wrote 10/ z = z /16 on the board. The student asked, “Will my 
way give you the wrong answer?” Rather than accepting the student’s suggested proportion as 
one possible strategy, Charles ignored the question and solved his own proportion. In the second 
class, he began by asking students to consider which triangles could be compared. Then he 
prompted them to consider, “What are some different ways to find the missing pieces?” Various 
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solution strategies were proposed. One student questioned another student’s suggested 
proportion and Charles responded, “Either way, it’s fine.” His questions in the remedial class 
continued to be factual in nature with few requests for explanation or reasoning.  

Unlike Kirtley, who experienced cognitive dissonance while deepening her knowledge of 
mathematics content (Olson & Kirtley, 2005), Charles experienced cognitive dissonance while 
reflecting on his pedagogy. Kirtley reconceptualized her notions of teaching and learning and 
began to focus her questions to elicit students’ mathematical thinking for making instructional 
decisions. Cognitive dissonance allowed Kirtley to discuss her beliefs and eventually accept the 
data as she changed her theoretical stance on teaching and learning mathematics. Perhaps the 
context in which teachers experience cognitive dissonance influences their response to it. Kirtley 
privately experienced discomfort and addressed it by publicly asking questions and personally 
reflecting on her own beliefs. Charles experienced cognitive dissonance in a public forum as he 
reflecting on his practice with Hartter. Kirtley and Charles reacted to cognitive dissonance in 
different ways. Their responses exemplify three of seven ways that individuals react when 
presented with anomalous data (Chinn & Brewer, 1993). 

Chinn and Brewer (1993) characterized these responses as (a) seek to ignore the data, (b) 
reject it, (c) exclude it, (d) hold it in abeyance, (e) reinterpret it while retaining theory, (f) 
reinterpret it and make peripheral changes, or (g) accept the data and change the theory. Charles 
experienced significant cognitive dissonance while Hartter challenged him to consider how his 
actions influenced students’ opportunities to learn in the two geometry classes. In the remedial 
class, Charles rejected the data and held onto his belief that remedial students are unable to use 
mathematical reasoning to solve problems. In the regular geometry class, Charles reinterpreted 
the data and made peripheral changes. He began to encourage alternative solutions and asked 
more questions that prompted reflection. However, he still believed that student investigations of 
mathematical ideas and open-ended questions were not appropriate for in-class activities. Thus, 
he interpreted the data to indicate that students in the regular geometry class could create 
multiple solution strategies but that they were incapable of using mathematical reasoning to 
solve non-routine problems. 

In summary, this study illustrates how one individual responded to cognitive dissonance in 
very different ways and suggests that helping secondary pre-service teachers use reform 
recommendations is indeed challenging. We found that cognitive dissonance does not necessarily 
provide a context in which pre-service teachers can examine their practices from a new 
perspective. De Geest, Watson, and Prestage (2003) suggest that pre-service teachers include in 
their lesson plans tasks in which students create and solve their own examples. We theorize that 
this strategy would help teachers examine new data, accept it as legitimate, and change their 
beliefs about whether students can think mathematically. We also believe that asking students to 
create their own examples would provide teachers with data that is less threatening than having 
an outside individual provide student data. Olson (2004) found that evoking teachers’ curiosity 
also provided a non-threatening context in which teachers could collect data about their students’ 
mathematical thinking which may help them reinterpret their theories about student learning.  

Even & Tirosh (2002) encourage teacher educators to go beyond implementing one or two 
strategies that may help pre-service teachers develop questioning skills. They challenge teacher 
educators to build theory that guides practice. Additional research is needed to characterize 
different situations that prompt cognitive dissonance and pre-service teachers’ responses to 
dissonance. We suggest that Chinn and Brewer’s (1993) framework of responses to anomalous 
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data may be a useful tool to understand how cognitive dissonance can foster change in beliefs 
and practice.  
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What conceptions of mathematics learning and teaching might contribute to increased 
mathematics teacher effectiveness? I argue that identification of goals for mathematics teacher 
education is critical to both effective teacher education and productive research on teacher 
development. Based on empirical and theoretical work in the context of three major research 
projects, I propose a set of pedagogical concepts for consideration as goals for teacher 
education. These concepts are proposed both because they are important to mathematics 
teaching and because they are generally not part of the pedagogical understanding of teachers 
in the US that we have studied. Successful fostering of these pedagogical concepts through 
teacher education will depend on research investigating teacher development of these concepts. 

Underlying Assumptions 
The arguments advanced in this theoretical article derive from both a social and a cognitive 

perspective. The use of these perspectives is pragmatic rather than the result of epistemological 
commitments. In addition, the arguments are based on two assumptions: 1. Aspects of the 
knowledge base in mathematics education are critical content (goals) for mathematics teacher 
education (1). 2. Identification of goals for mathematics teacher education is critical to both 
effective teacher education and productive research on teacher education.  

Teacher education efforts, including those that are the context for research on teacher 
education, can be sorted into two categories: those with process goals only and those that have 
content and process goals. Highlighting the former category are programs that derive from the 
Japanese lesson study model (e.g., Yoshida, 1999)) and programs focused on teacher inquiry or 
teacher research (e.g., Dana, & Yendol-Silva, 2003). The basis of these programs is that the 
engagement of teachers in inquiry-based, reflective practices combined with appropriate support 
and communication structures can enable the ongoing professional development of mathematics 
teachers. These programs, which have demonstrated significant ongoing benefit for teachers of 
mathematics, are not focused on the learning of particular pedagogical principles (other than 
learning of the inquiry and communication processes). 

The second category of teacher education efforts involves courses for teachers in which 
teacher educators plan for teacher learning of particular mathematics education concepts, skills, 
and dispositions. Although teacher education courses are often criticized as removed from 
practice and unresponsive to the needs and interests of the teachers involved, these negatives are 
not inherent properties of such an approach.  

An assumption underlying this article (#1 above) is that there are understandings of 
mathematics learning and teaching that are important for teachers to develop. Therefore, 
although lesson study and teacher inquiry are important and useful, they are not sufficient. 
Courses that are designed to promote powerful ideas about learning and teaching are needed as 
well. This assumption (in conjunction with assumption #2 above) leads to the question, What 
pedagogical understandings would be useful foci for mathematics teacher education?  

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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In this article, I focus on teacher education that aims to promote teacher learning of particular 
aspects of the knowledge base on mathematics teaching; I discuss potential goals for teacher 
education of this type.  

Current Articulation of Goals for Teacher Learning 
Currently, the identification of goals for teacher education courses is largely a part of teacher 

educators’ practices and not the focus of theoretical and empirical reports. A perusal of articles in 
the Journal of Mathematics Teacher Education since its inception shows a scarcity of discourse 
on this subject. Some articles focus on process goals such as developing reflective practitioners 
(e.g., McDuffie, 2004). Hiebert, Morris, and Glass (2003) focused on learning to teach from 
practice. Within this broad objective, they identified specific requisite dispositions and skills. 

Literature that focuses more on specific learning includes reports of fostering teachers’ 
understanding of students thinking (e.g., Crespo, 2000). Schifter, Bastable, and Russell (e.g., 
1999) developed materials targeted at developing knowledge of students thinking as they learn 
particular mathematics and teacher reflection on related teacher interventions. The Cognitively 
Guided Instruction Project (Carpenter, Fennema, Franke, Levi, & Empson, 1999) focused on 
providing research-based information on students’ solution strategies to teachers.  

The Current State of the Knowledge Base in Mathematics Teaching 
Many countries of the world have been involved in a reform in mathematics education over 

the last 15-20 years. The formal start of the reform in the United States is recognized to be the 
publication of the Standards (National Council Teachers of Mathematics, 1989). The reform has 
generally been an effort to focus mathematics instruction on conceptual learning, mathematical 
thinking, communication, and problem solving for all students. These goals for instruction have 
led to a decreased acceptance of direct instruction (teacher telling and showing) as the primary 
mode of teaching. Mathematics educators have replaced direct instruction with a set of reform 
strategies, such as the use of collaborative group problem solving, whole class discussions, 
manipulatives, software environments, calculators, and probing questions. Lacking are models of 
teaching -- frameworks for guiding the fostering of students’ mathematical conceptions. As a 
result, teachers’ use of reform curricula and strategies is often unprincipled and ineffective. 

In many locales, there is neither a consensus model of teaching, nor a recognized set of 
alternative models. Rather teaching is implicitly defined by the curricula, the reform strategies, 
and the consensus “don’ts” (e.g., teacher telling, showing, giving answers) (2). The lack of 
clearly articulated, established models of teaching handicaps teacher education and research on 
teacher education. Without such models the goals of teacher education are at best under-defined. 
Teacher education tends to be directed towards broad skills (asking probing questions, focusing 
on students’ thinking, writing lesson plans) as opposed to the development of particular 
pedagogical principles. In the next section, I identify potential goals for teacher education based 
on our emerging framework on mathematics learning and teaching. 

Identifying Key Conceptions for Mathematics Teaching 
Through three major research projects on teacher development grounded in the research 

literature, my colleagues and I have identified pedagogical concepts that seem to be important 
for high-quality mathematics teaching. This work has been interwoven with theoretical work on 
mathematics conceptual learning and teaching (Simon, Tzur, Heinz & Kinzel, 2004; Simon & 
Tzur, 2004; Tzur, & Simon, 2004). The pedagogical concepts that we have identified derive from 
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the perspectives represented by this theoretical work. In this article, I identify key pedagogical 
concepts that derived from our work and the work of others in order to discuss goals for teacher 
education and agendas for research on teacher development. I make no attempt to provide an 
exhaustive list of concepts; rather I raise a subset for consideration. 

Briefly, our theoretical work involves both social and cognitive perspectives. We use social 
perspectives to account for the norms that are negotiated in the classroom (McNeal & Simon, 
2000) that afford and constrain the learning and communication in the classroom. We use a 
cognitive perspective to describe how new knowledge is developed from extant knowledge, 
particularly Piaget’s constructs of assimilation and reflective abstraction. 

Following are brief discussions of a set of five pedagogical concepts that are important to 
consider because of their impact on mathematics teaching and because we have found them to be 
generally lacking among mathematics teachers in US classrooms. Most of these concepts are 
overlapping and interrelated. Each of these concepts deserves extensive discussion. In lieu of 
space in this short article, the reader is referred to articles related to each of the concepts. 

� Negotiation of classroom norms. The notion that classroom norms are negotiated, not 
imposed (McNeal & Simon, 2000; Yackel & Cobb, 1996), allows teachers to be 
conscious of their contribution to the constitution of classroom norms. This 
understanding of their role allows teachers to engage intentionally in the negotiation 
of norms that support rich mathematical classroom learning. Although mathematics 
researchers introduced the construct ten years ago, it has generally not been an 
explicit goal for teacher education. 

� Assimilation. An understanding of assimilation is essential for teachers to understand 
the determinants of what students perceive and understand and to focus on the 
resources students bring to learning situations. Cobb, Yackel, & Wood (1992) 
described a representational view of mind to characterize educators’ lack of 
understanding of assimilation. Our study of teachers involved in the reform (Simon, 
Tzur, Heinz, Kinzel, & Smith, 2000) highlighted the distinction between teachers 
with perception-based perspectives (lacking a concept of assimilation) and those with 
conception-based perspectives. Understanding assimilation affords better anticipation 
of student responses to lessons and teacher reflection as to why lessons were 
unsuccessful. It allows teachers to question assumptions that students’ 
perceptions/experience are the same as the teachers’. 

� What it means to develop a new mathematical operation. Teachers struggle with what 
it means for students to develop a new operation, for example multiplication. 
Teachers tend to teach about multiplication to students who have no concept of 
multiplication to learn about. Missing is the idea that the term “multiplication” must 
label for the student a commonality (abstraction) that they perceive in their actions in 
particular situations. It is only when students observe that what I did in this problem 
about the cost of 5 candy bars is “the same” as what I did in this problem about 7 
boxes of pencils, that they have something to label as multiplication – that 
commonality. This perception of commonality builds on the learner’s anticipation of 
the activity needed and the effect of that activity. This pedagogical concept is based 
on the concept of assimilation and the concept of learning through activity discussed 
next.. 
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� Learning through activity. Teachers often focus on the dialogic aspects of teaching. 
Classroom discussions and small group conversations can be an important part of the 
learning process. However, teachers need to be able to do more than encourage 
participation in discussions of mathematical problems. It is helpful if teachers can 
think about how learners learn through their own goal-directed activity (Simon, et al, 
2004; von Glasersfeld, 1995). Students’ goals influence what they attend to. Their 
activity and reflection afford them a way to extend current conceptions and create 
new ones. Teacher understanding of learning through activity can contribute to 
effective selection, sequencing, and modification of mathematical tasks. 

� Reflective abstraction versus empirical learning. Learning of mathematical concepts 
is not an empirical learning process (Simon, in press; 2003); rather it is a result of 
reflective abstraction. An empirical learning process is an inductive process through 
which learners discover patterns by observing a set of inputs and related outputs. 
Through an empirical process, learners learn that a pattern exists. The phenomenon 
that underlies the pattern remains a black box to the learner. Reflective abstraction, 
according to Piaget (2001), is the process by which higher-level mental structures are 
developed from lower-level structures, a coordination of actions leading to a new 
conception. He described it as having two phases, a projection phase in which the 
actions at one level become the objects of reflection at the next and a reflection phase 
in which a reorganization takes place. Reflective abstraction develops anticipation of 
the logical necessity of a mathematical relationship. Teacher awareness of this 
distinction helps them make students’ abstracting the central focus of instruction, 
rather than pattern noticing. 

The five concepts identified in this section represent only a part of the knowledge needed for 
teaching. They represent concepts that emerged in our work as important and needed by current 
teachers. They provide examples of what might be meant by key pedagogical concepts and 
should provoke discussion of this particular set of concepts. 

An Agenda for Research on Mathematics Teacher Development 
Research on mathematics teacher development can be enhanced by the articulation of clear 

goals for teacher learning, goals that can help to define what counts as successful learning. 
Teaching experiments with teachers (Simon, 2000) can be structured around a clear set of 
learning goals. 

Although we have worked with and studied a number of fine, reform-oriented teachers, the 
teachers have generally not demonstrated an understanding of the concepts identified above. 
There is a need for research that can inform efforts to engender teacher learning with respect to 
these concepts. For each concept we can ask the questions: 

� To what extent can teachers at different stages of professional development come to 
understand this concept? 

� What is the process of development for each concept and how can development of the 
concept be fostered? 

� How are concepts related in terms of prerequisite concepts and co-developing 
concepts? 

The identification of pedagogical concepts that can serve as goals of teacher education is the 
first step in establishing and enacting a research agenda on mathematics teacher development. 
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Endnotes 
1. We use “teacher education” to include both pre-service and in-service education unless 

otherwise specified. 
2. Perhaps the most clearly articulated principled approach to mathematics instruction is 

Realistic Mathematics Education (RME) in the Netherlands (Gravemeijer, 1994). Its principles 
deal primarily with curriculum development, but they can be seen as providing a framework for 
mathematics teaching as well. 
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We report on a classroom teaching experiment around number sensible mental math in a 
semester-long content course for preservice elementary teachers. We designed, implemented, 
and revised an instructional sequence aimed at students’ development of number sense with 
regard to mental math. The data corpus included: a number sense test administered pre and 
post, interviews with 13 students pre and post, students’ written work, and the instructor’s 
journal. Analysis of the data suggests that students did develop greater number sense as a result 
of their participation in classroom activities. Particular pedagogical innovations, such as those 
involving the use of models for reasoning, seem to have supported students’ development of 
number sense.  Results can inform mathematics teaching at various levels. 

The development of number sense in students is a widely accepted goal of mathematics 
instruction (NCTM, 2000). Good number sense is especially essential for elementary teachers. 
Without it, they are ill-equipped to make sense and take advantage of children’s often 
unorthodox but very number sensible solution strategies. Mental math ability is considered a 
hallmark of number sense (Sowder, 1992). Much work has been done with the aim of identifying 
the characteristics exhibited and strategies used by individuals who are skilled at mental math 
(cf. Reys, Rybolt, Bestgen, & Wyatt, 1980, 1982; Hope & Sherrill, 1987; Markivits & Sowder, 
1994). Of note is flexibility in thinking about numbers and operations (Sowder, 1992). 

In two classes of preservice elementary teachers enrolled in a mathematics course focused on 
Number & Operations, we conducted a classroom teaching experiment (Cobb, 2000) in which 
the instructor attempted to foster students’ development of number sense with regard to mental 
math. In previous courses, the instructor had found that such development had not occurred. 
How could one design a class that supported the development of number sense? We undertook a 
classroom teaching experiment in the paradigm of Design Research (Stephan, 2003) to answer 
this question. The first author developed a hypothetical learning trajectory (HLT) aimed at 
students developing the characteristics of skilled mental calculators and estimators. We found 
that students developed greater number sense with regard to mental math. In addition, the actual 
learning trajectory that resulted can inform future pedagogy. 

We report here on the results of the classroom teaching experiment. This work was part of a 
larger study, which constituted the first author’s Master’s thesis. In this paper, we focus 
specifically on the role of models in supporting students’ development of number sense. 

Theoretical Perspective 
Our theoretical orientation can be characterized as sociocultural. Students’ individual 

mathematical activity is recognized as taking place in a social context, while the social 
environment of the classroom is constituted by collective mathematical activity. As such, the 
instructor concerned himself with the negotiation of norms and practices (Cobb, 2000). 

Reys & Yang (1998) state that “[n]umber sense refers to a person’s general understanding of 
number and operations” and “includes the ability and inclination to use this understanding in 
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flexible ways to make mathematics judgments and to develop useful strategies for handling 
numbers and operations” (p. 226). The perspective on number sense that we take is rooted in 
Greeno (1991)’s metaphor of situated knowing in a conceptual domain. Thus, the instructor 
focused on providing students with experiences that would enrich their ability to navigate that 
domain. According to Greeno (1991), in the environment/model view, “the main capability that 
we want students to acquire involves constructing and reasoning within models” (p. 212). The 
use of models became an important aspect of the classroom activity around mental math. 

Setting 
This study was conducted with undergraduates at a large, urban university in the United 

States. The participants were preservice elementary teachers enrolled in two sections of a first 
semester mathematics course, belonging to a four-course sequence. Of the 50 students who 
agreed to participate in the study, 42 were female. The first author was the teacher of the course. 
He had taught it for two prior semesters. Basic course topics included quantitative reasoning, 
place value, meanings for operations, and number sensible mental math. The instructor decided 
not to treat mental math as an isolated curricular unit but to integrate authentic mental math 
activity (Brown, Collins, & Duguid, 1989) throughout the curriculum. 

Hypothetical Learning Trajectory 
The formulation of the HLT was informed by a review of the literature around number sense 

and mental math, together with the first author’s previous experience teaching the course. We 
designed an instructional sequence with the goal that students would develop greater number 
sense with regard to mental math. The HLT was envisioned in terms of three layers. First, the 
course content was expected to support students’ understanding of the mathematics behind 
particular mental calculative strategies. Second, discrete tasks were devised as a means of 
assessing students’ abilities and the availability to them of various strategies, as well as of 
providing individual feedback. Students’ responses to these tasks would then inform the design 
of subsequent tasks. Third, mental math activity would be an integral part of problem solving 
and would provide the occasion for reflective discourse around students’ strategies (Cobb, Boufi, 
McClain, & Whitenack, 1997). 

The HLT can be briefly articulated in terms of the following sequence of conjectured 
outcomes: 

1) Students recognize opportunities for mental math, both inside and outside the classroom. 
2) Students make sense of place value and, as a result, the standard addition and subtraction 

algorithms. 
3) Students make sense of meanings for the operations and consider the use of new mental 

calculative strategies that build on their understanding. 
4) Students confront and make sense of unorthodox strategies and alternative algorithms 

that are radically different from the ones they know. 
5) Students recognize the difference between the use of standard algorithms and tools, such 

as the empty number line. 
6) Students develop their own number sensible mental calculative strategies. 

Note that the planned instructional sequence for the HLT was atypical. Typically, an HLT 
applies to an isolated unit in a curriculum (cf. Gravemeijer, Bowers, & Stephan, 2003; Simon, 
1995). In our case, the aspects of classroom instruction that related to number sensible mental 
math represented a strain of activity that ran through several curricular units. 
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Data 
The data sources drew from classroom events, written artifacts, and individual interviews. 

Specifically, the data corpus consisted of the following: 
a) The instructor’s journal, which included accounts of classroom events, as well as 

rationales for the teaching modifications made during the semester; 
b) Students’ written work, which included responses to mental math tasks, both in-class 

and take-home, as well as responses to exam questions; 
c) Transcripts of early- and late-semester clinical interviews with 13 students; 
d) An adapted version of the Number Sense Rating Scale (Hsu, Yang, & Li, 2001), used 

as a quantitative measure of number sense, which was administered to students at 
both the beginning and end of the semester. 

Methodology 
The general design of this study was that of Design Research, which is characterized by the 

reflective relationship between classroom-based research and instructional design encompassed 
in the Design Cycle (Stephan, 2003). As such, data analysis involved three distinct phases: 

Phase 1. During the course of the semester, the instructor engaged in formative analysis, in 
which the instructional sequence was revised in accordance with his interpretations of classroom 
events and written records of student thinking. 

Phase 2. At the end of the semester, data from the number sense test and individual 
interviews was analyzed in order to assess the effect of the program of instruction on students’ 
number sense. Interviews were structured and task-based (Goldin, 2000). Students were asked to 
solve one-step story problems mentally and to describe their thinking. Analysis of interviews was 
interpretive (Clement, 2000), seeking to identify the variety of mental calculative strategies 
students had employed. 

Phase 3. Having noted students’ improved number sense, the authors conjectured that certain 
features of the classroom activity had been particularly significant in supporting that 
development. These were then analyzed in terms of relevant theoretical constructs. 

Results 
Significant, selected results are presented here in terms of the three phases of analysis: 

Phase 1. The instructor’s interpretations of classroom events led to alterations to the instructional 
approach. A very significant alteration came about in the course of a particular teaching episode. 
The instructor made immediate innovations to address a local learning goal. Subsequently, 
aspects of the instruction related to mental math were altered as a result of the instructor’s 
reflections on the episode. 

The Teaching Episode spanned four class meetings. On the first day, four interpretations, or 
distinct meanings, for multiplication were discussed. (Rectangular array/area is one such 
interpretation.) On the second day, the instructor selected a homework problem for discussion, 
the solution to which required computation of 26 x 26. As was typical of the integration of 
mental math activity into the classroom instruction, the instructor asked students to compute this 
product mentally. A few students shared their solution strategies, which were discussed amongst 
the class. These suggestions (e.g. 20 x 20 + 6 x 6) seemed to point to a lack of understanding of 
the origins of partial products in multi-digit multiplication. Although only a few students made 
such suggestions, no student managed to refute any one of them in sense-making fashion. The 
instructor suggested making use of a meaning for multiplication and made drawings of 
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rectangles segmented place-value-wise. Students accepted this application of rectangular area 
and were then able to decide on correct and incorrect solutions. However, the instructor was 
dissatisfied with this outcome. Students had not made sense of the matter themselves. They had 
not thought meaningfully about multiplication. 

The outcome of the next day was similar. Students’ answers to an estimation question again 
suggested that they were not thinking in terms of partial products. Again, the instructor made 
sketches of rectangles to help students settle their questions. These were guided more by 
students’ suggestions than had been the case the day before. Still, however, students had not 
seemed to think meaningfully about multiplication on their own. They would need to understand 
the origins of partial products in order to reason about mental multiplication strategies. This 
became the local learning goal. 

The instructor designed a Geometer’s Sketchpad sketch and a short lesson around it. The 
sketch was a dynamic representation of a rectangle, segmented place-value-wise, with the areas 
of the partial rectangles shown. The lesson involved students being asked a sequence of 
challenging questions related to estimation of products. Students’ conjectures were confirmed or 
refuted either by the sketch, by drawings of rectangles, or by students’ arguments. In this 
context, students began to reason with rectangular area as a model for products (Gravemeijer, 
Bowers, & Stephan, 2003). 

Results on a midterm question connected to the sketch lesson were exceptional. Students 
seemed to have made an important connection between rectangular area and partial products, as 
well as acquired powerful tools for estimating products. This episode precipitated an important 
alteration to the greater instructional sequence. The instructor recognized that connections 
between mainstream course content and applications to mental math were nontrivial. He would 
need to address the process by which explicit connections could be made between the two. 
Models came to be emphasized as a means to that end. Rectangular area, in particular, 
represented an unanticipated tool, which became central to the collective activity around mental 
multiplication strategies. They empty number line had been used similarly for reasoning about 
mental addition and subtraction strategies. 

Classroom discourse around students’ strategies after the Teaching Episode emphasized 
reasoning with models. For example, commonly seen applications of additive distributivity were 
characterized in terms of breaking up a rectangle, usually place-value-wise. Figure 1 depicts an 
example of the strategy that students called “Break up, then make up.” In this example, the 
product of 15 and 24 is represented as a 15-by-24 unit rectangle. Initially, the value of this 
product is unknown. By breaking up the rectangle conveniently, it is shown to consist of two 
readily known products, the sum of which gives the total product. 

 

Figure 1. “Break up, then make up.” 
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As the use of models is the focus of this paper, we only mention significant results with 
regard to the other two layers of the instructional approach. The discrete tasks were 
deemphasized due to lack of practicality. Mental math activity evolved over the course of the 
semester. The instructor sought from the beginning to engage students in reflective discourse. 
Mental math activity seemed lacking until the practice of naming strategies was introduced. 
Naming facilitated reflective discourse. 

Phase 2. Though not the focus of this paper, we note that we found strong evidence in the 
individual interviews, as well as the number sense test, that students developed significantly 
greater number sense as a result of their participation in classroom activities. Interview subjects’ 
strategies for mental computation of sums, differences, and products were categorized via 
constant comparative analysis (Creswell, 1998). Six strategies were seen for mental addition, 
eight for subtraction, and eight for multiplication. In first interviews, most subjects used only one 
or two distinct strategies for each of the operations. In second interviews, 12 of 13 subjects used 
three or more addition strategies, 12 of 13 used three or more subtraction strategies, and 10 of 13 
used three or more multiplication strategies. 

Markivits & Sowder (1994) categorized their subjects’ strategies for mental computation of 
sums, differences, and products in terms of the degree to which each departed from the mental 
analogue of the standard algorithm (MASA). In this scheme, Standard refers to the MASA for a 
given operation, Transition refers to a method that is still tied to the standard algorithm but 
differs from it, Nonstandard with no reformulation refers to a method that is free from the 
standard algorithm but does not change the given numbers or operation, and Nonstandard with 
reformulation refers to a method in which the problem is altered to make the computation easier. 
For our purposes, the above taxonomy was used as an organizing framework. Interview subjects’ 
strategies were categorized as Standard (S), Transition (T), Nonstandard with no reformulation 
(N), or Nonstandard with reformulation (N w/R). This allowed for subjects’ strategies to be 
described in terms of number sensibility. Figure 1 shows the frequency of use of strategies from 
each category in first versus second interviews. 

Overall Strategy Use Summary by Category
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Figure 2. Overall Strategy Use Summary, Pre vs. Post 
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For each operation, there was a large decrease in the frequency that the MASA was used, 
accompanied by an increase in use of alternative strategies. Thus, given story problems that 
called for mental addition, subtraction, and multiplication, subjects exhibited greater flexibility 
by making use of a wider variety of strategies in second interviews than they had in first 
interviews. Furthermore, strategies used in second interviews were more number sensible. This is 
apparent in the movement we see along the spectrum from Standard to Nonstandard. It is 
compelling evidence for change in the direction of number sense that Standard methods were 
most common in first interviews, while Nonstandard with reformulation became most common 
in second interviews. 

Students also showed significant increases in number sense as measured by the adapted 
Number Sense Rating Scale. Average scores for the early section increased from 61% to 73%, 
pretest to posttest. Average scores for the later section increased from 66% to 77%. A total of 48 
students took the number sense test both times it was administered They were treated as one 
group in determining statistical significance. A paired t-test was used for a difference of means. 
Results were statistically significant (p < 0.005). 

Phase 3. In post-hoc analysis of the instructional sequence, the authors conjectured that the 
innovations of naming and the use of models had been keys to students’ development of number 
sense. Analysis showed that the classroom discourse around mental math was indicative of 
reflective discourse and that the practice of naming facilitated vertical mathematizing 
(Freudenthal, 1991). Cobb, Boufi, McClain, & Whitenack (1997) claim that students’ 
participation in reflective discourse “constitutes conditions for the possibility of mathematical 
learning” (p. 264). 

The use of models also seemed to be a key to the success of the instructional sequence. 
Although the use of the empty number line and rectangular area evolved differently, both can be 
said to have transitioned from a model of students’ informal activity to a model for more formal 
mathematical reasoning (Gravemeijer, Bowers, & Stephan, 2003). The model of to model for 
transition is conjectured to support students’ increasingly sophisticated mathematical reasoning. 
Our use of the empty number line and of rectangular area facilitated students’ reasoning more 
formally about shared mental calculative strategies. In this way, it seems to have supported their 
development of number sense with regard to mental math. 

Continuing the Design Research cycle, the actual learning trajectory that was charted during 
the classroom teaching experiment informed the construction of a new HLT for the following 
semester. The new instructional sequence incorporated the practices of naming and the use of 
models from the start. 

Conclusion 
The development of number sense in students is an important aim of mathematics instruction. 

Essential to this goal is that teachers, themselves, have good number sense. In this work, we 
begin to answer the question of how an instructor can support preservice teachers’ development 
of number sense with regard to mental math. Furthermore, the key practices that emerged in this 
study can be incorporated into instruction of elementary school students. Analyses such as these 
can benefit teachers, curriculum developers, and teacher educators. It is also significant that the 
integration of authentic mental math activity into an existing curriculum supported students’ 
development of number sense without any of the course content being sacrificed. 



Vol.2-742  PME-NA 2006 Proceedings 

 

References 
Brown, Collins, Duguid (1989). Situated Cognition and the Culture of Learning. Educational 

Researcher, 18, 32-42. 
Clement, J. (2000). Analysis of Clinical Interviews: Foundations and Model Viability. In A. 

Kelly & R. Lesh (Eds.), Handbook of Research Design in Mathematics and Science 
Education . Mahweh, NJ: Lawrence Erlbaum Associates, 547-589.  

Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In A. E. Kelly 
& R. A. Lesh (Eds.), Handbook of research design in mathematics and science  education 
(pp. 307-333). Mahwah, NJ: Lawrence Erlbaum Associates. 

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective 
reflection. Journal for Research in Mathematics Education, 28, 258-277. 

Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five traditions. 
Thousand Oaks, CA: Sage Publishing. 

Freudenthal, H. (1991). Revisiting Mathematics Education (China Lectures). Netherlands: 
Kluwer Academic Publishers. 

Goldin, G. (2000). A Scientific Perspective on Structured, Task-Based Interviews in 
Mathematics Education Research. In A. Kelly & R. Lesh (Eds.), Handbook of Research 
Design in Mathematics and Science Education. Mahweh, NJ: Lawrence Erlbaum Associates, 
517-545.  

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A hypothetical learning trajectory on 
measurement and flexible arithmetic. In M. Stephan, J. Bowers, P. Cobb,  & K. Gravemeijer 
(Eds.), Supporting students' development of measuring conceptions: JRME Monograph 12, 
(pp. 51-66). Reston, VA: NCTM. 

Greeno, J. (1991). Number sense as situated knowing in a conceptual domain. Journal for 
Research in Mathematics Education, 22, 170-218. 

Hope, J. A. & Sherrill, J. M. (1987). Characteristics of unskilled and skilled mental calculators. 
Journal for Research in Mathematics Education, 18, 98-111. 

Hsu, C.-Y., Yang, D.-C., & Li, F. M. (2001). The design of the fifth and sixth grade number 
sense rating scale. Chinese Journal of Science Education (TW), 9, 351-374. 

Markovits, Z. & Sowder, J. (1994). Developing number sense: An intervention study in grade 7. 
Journal for Research in Mathematics Education, 25, 4-29. 

NCTM (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM. 
Reys, R., Rybolt, J., Bestgen, B., & Wyatt, J. (1980). Attitudes and computational estimation 

skills of preservice elementary teachers. Journal for Research in Mathematics Education, 11, 
124-136. 

Reys, R., Rybolt, J., Bestgen, B., & Wyatt, J. (1982). Processes used by good computational 
estimators. Journal for Research in Mathematics Education, 13, 183- 201. 

Reys & Yang (1998). Relationship Between Computational Performance and Number Sense 
Among Sixth- and Eighth-Grade Students in Taiwan. Journal for Research in Mathematics 
Education, 29, 225-237. 

Simon, M. A. (1995) Reconstructing Mathematics Pedagogy from a Constructivist Perspective, 
Journal for Research in Mathematics Education, 26, 114–145. 

Sowder, J. (1992). Estimation and number sense. In D. A. Grouws (Ed.), Handbook of Research 
on Mathematics Teaching and Learning (pp. 371-389). NY: Macmillan. 



Teacher education – Preservice  Vol.2-743 

 

Stephan, M. (2003). Reconceptualizing linear measurement studies. In M. Stephan, J. Bowers, P. 
Cobb,  & K. Gravemeijer (Eds.), Supporting students' development of measuring 
conceptions: JRME Monograph 12, (pp. 17-35). Reston, VA: NCTM. 



Vol.2-744  PME-NA 2006 Proceedings 

 

CONNECTED REGISTERS FOR GEOMETRY: LEARNING TO GENER ALIZE 

Jeffrey Barrett 
Illinois State University 

jbarrett@ilstu.edu 

Sharon McCrone 
Illinois State University 

Norma Presmeg 
Illinois State University 

We are investigating the coordination of a dynamic geometry environment (DGE) with a 
traditional hand tool environment (HTE) for construction of 2D geometric objects as a basis for 
teaching an undergraduate, elementary teacher education course on geometric reasoning. This 
is a preliminary report of our project encompassing three foci: (1) describing the adaptive 
elaboration of a teaching trajectory for students’ geometric reasoning and understanding by 
examining generalization within a DGE, (2) describing connectedness among different modes of 
representation for 2D geometry, and (3) describing the development of argumentation through 
construction tasks in various media. This report addresses the first focus topic. 

Our theoretical outlook depends closely on Duval’s (1998) model of various registers for 
cognition. We envision students’ modes of representation for geometric concepts including 
registers for dynamic visual processes on a computer, for discursive (verbal) accounts of objects, 
for imagined or drawn images and for symbolic notational accounts. Thus, learning proceeds by 
an interaction among registers, through reflective abstraction, as the learner attends to an 
activity-effect cycle mediating progress toward a goal (Simon & Tzur, 2004). To account for the 
learning of geometric concepts, we adapt the phases of a learning process (van Hiele, 1986): (1) 
anticipate a context for a concept in discussion, (2) engage several representations in specified 
tasks to organize and integrate sub-concepts, (3) explicitly notice geometrical abstractions 
(structure) through reflection on task-effect relations, (4) meet conventional, formal language 
and symbols indicating structure and look across contexts at examples. Further, we rely on the 
theory of levels of thinking--recognition, analysis, ordering, deduction and rigor—to describe 
students’ levels of reasoning about geometric concepts. Lastly, we characterize mathematical 
learning of generalized concepts as a gradual integration of verbal definitional knowledge with 
imagistic, contextual history of one’s experiences (Arshavsky & Goldenberg, 2005; Vinner & 
Dreyfus, 1989). 

We ask the question: in what ways do students develop generalized argumentation and 
justification for 2D geometric concepts? We believe they learn to make explicit, generalized 
arguments as they learn to generate and coordinate extensive, comprehensive sequences of 
examples, especially by addressing boundary cases of relations or objects. We predicted that 
juxtaposing DGE and HTE tasks would allow a teacher to prompt students to reflect on an 
activity and its effect within a context, and within a collection of relevant activities, thereby 
emphasizing the abstract properties of objects and relations.  

Our methodology follows from our need to characterize learning within natural instructional 
contexts. We are engaged in a Teacher Development Experiment (Simon, 2000) as a means of 
testing our hypotheses related to students’ ways of learning to generalize within a cycle of tasks, 
discussion, and assessment. Further, we set out to characterize growth in understanding as it 
relates to task deployment, requiring the coordination of teaching and research. We have 
collected data throughout a 15-week course with 28 college students in a general education 
course on geometric reasoning. The data corpus includes videotaped records of bi-weekly 
classroom discussions, two rounds of case study interviews with five students, written and drawn 
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artifacts for case study students, and observational notes by a classroom observer. Our analysis is 
based on a history of the 36 tasks used as the curricular basis of an experimental section of the 
course. Here we present one central finding based on our concurrent analysis, with a 
retrospective analysis of the project to follow: we focus on generalization and justified reasoning 
to trace students’ learning of geometric reasoning. 

Our findings indicate the level of geometric thinking exhibited by most of the students at the 
outset of the experiment, dominating students’ discourse, as analysis or ordering (van Hiele, 
1986). Early in the course, students exhibited a view of justification that employed special cases-
-usually prototypical, standard images--to address and resolve tasks, lacking logical steps from 
the particular to the general. For example, the first task in the course consisted of placing a 
bridge at the best location along a river to give the shortest path between two towns separated by 
the river (purposefully non-specific). Students collaborated for several days and were prompted 
for more general solutions, yet their solutions and drawings were constrained by prototypical 
references to congruent triangles or in symmetrical ways. As a second example of this early level 
of generalization, students responded to a challenge to justify the formula for finding the area of 
a triangle (1/2*b*h) by drawing a square and creating a diagonal to show the square consists of 
two triangles (3rd week). One student, Mack, argued that the square case was more clear than a 
quadrilateral case while others argued that a rectangle would be best; they argued that an 
explanation should use a familiar case. During the third week, the class began an alternating 
pattern of using both a DGE and the HTE to address tasks. Students began hearing and using the 
phrase “unbreakable sketch” to describe constructed objects in the DGE that preserved intended 
properties for an object. By the end of the third week however, students began using the word 
general and the phrase special case as ways of challenging or evaluating claims made by fellow 
students. Mickey suggested that a construction of a right triangle would not be “general enough” 
if it relied on specific lengths of segments (3, 4 and 5 units).  

By the fourth week, a vocal majority of students began using argumentation that we 
characterize as ordering or deductive in level. For example, on February 7, students drew at the 
board to talk about an HTE and then used a DGE to explain a construction of a bisected angle. 
One student, Hessie, had suggested a sequence that would only work in a special case. Three 
other students intervened as they found ways to follow her sequence of verbal instructions, yet 
not produce a bisected angle. They used the phrases, “only a special case”, and “not generalized” 
as they offered other ways to work toward the construction. They justified their constructions by 
claiming that they would be unbreakable in the DGE. We found a pattern of increasing 
generalization associated with the use of the term “unbreakable” as a measure of a construction 
in a DGE. We found students gaining connected, integrated images and definitions for concepts 
as they reflected on actions across both environments. 
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The purpose of this paper is to report on research aimed at elementary preservice teachers’ 
understanding of variation. Other research has already begun to illuminate precollege student 
thinking about variation in several contexts, such as sampling, data and graphs, and probability 
situations (e.g. Reading & Shaughnessy, 2004; Watson & Moritz, 1999; Shaughnessy & 
Ciancetta, 2002). However, as the picture begins to get painted about how precollege students 
reason statistically, the research on how teachers reason about variation remains thin. In 
particular, there is a paucity of research about how preservice teachers think about variation, or 
variability in data. Therefore, doctoral research was undertaken to explore the following 
research question: How do elementary preservice teachers’ responses concerning variation in a 
probability context compare from before to after an instructional intervention? After describing 
the conceptual framework and methodology for the study, the results will next be presented, 
followed by further discussion. 

Conceptual framework 
Three key aspects of understanding variation that governed the overall study focused on how 

students were expecting, displaying, and interpreting variation. In dealing with expectations, 
students need an opportunity prior to conducting statistical investigations to express both what 
they expect and why. With displays of data, students need to create their own graphs to either 
highlight or disguise variation, depending on the context of the situation. They also need to 
evaluate displays and compare distributions in ways that take an aggregate view of data, 
considering shape and spread in addition to centers (Shaughnessy, Ciancetta, Best, & Canada, 
2004). From discussions about probabilistic and statistical situations, students’ interpretations of 
variation emerge as they speculate on both causes and effects of variation and also on ways of 
influencing variation and expectations.  

Methodology 
The thirty subjects in the study of EPSTs (24 women, 6 men) were enrolled in a ten-week 

preservice course at a university in the northwestern United States designed to give prospective 
teachers a hands-on, activity-based mathematics foundation in geometry and probability and 
statistics. During the first week of the course, prior to instruction in probability and statistics, 
subjects took an in-class survey (called a PreSurvey) designed to elicit their understanding on a 
range of questions about sampling, data and graphs, and probability. The probability question 
(PreSurvey Q7c) that relates to the current paper concerned six sets of fifty flips of a fair coin. 
For each of the six sets, students were asked how many times out of the fifty flips the coin might 
land heads-up. They were also asked why they had chosen the numbers they did. Following the 
PreSurveys but prior to the class instruction on probability and statistics, individual interviews 
were conducted with ten subjects to allow further probing of their thinking. After instructional 
interventions took place in class, a similar PostSurvey question (PostSurvey Q1c) was asked 
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concerning six sets of fifty spins of a fair half-black and half-white spinner. For each of the six 
sets, students were asked how many times out of the fifty spins the pointer might land on black, 
and also why they had made the choices they did. Finally, after the PostSurveys the same 
students who had been earlier interviewed were interviewed once again. 

Results 
Both parts of the probability question (what students expected and why) were taken into 

consideration for coding purposes, primarily to retain consistency with an analogous rubric 
derived for a similar question asked in a sampling context (Shaughnessy et. al., 2004). The rubric 
places a higher value on responses that integrate proportional reasoning as well as variation. The 
codes and class results for this subquestion are presented in Table 1.  

Table 1: Results for PreSurvey Q7c & PostSurvey Q1c 

Only inappropriate choices for listing what was expected (or blank answers) were coded at 
Level 0. Deciding what would constitute an appropriate choice for the results on six sets of flips 
or spins involves making a judgment call, and the subcodes used for this subquestion question 
help identify inappropriate choices as (W)ide, (N)arrow, (H)igh or (L)ow. Of the 30 students 
enrolled in the class, 27 were in attendance to complete the PreSurvey and 29 completed the 
PostSurvey. 

Conclusion 
If a goal is for teachers to provide students with authentic, inquiry-based tasks meant to 

develop children’s reasoning about variation, then a natural step in achieving this goal is to 
improve teacher training courses. Thus, by discerning components of preservice teachers’ 
reasoning, teacher educators can better design university experiences that promote an 
understanding of variation for preservice teachers, as well as an understanding on how precollege 

Code 

Level 

Description of Category Number of 
Students (Pre) 

Number of 
Students 
(Post) 

L3 Appropriate choice & Explanation explicitly 
involves proportional reasoning as well as 
variation 

2 

(7.4%) 

9 

(31.0%) 

L2 Appropriate choice & Explanation reflects 
proportional reasoning or notions of spread 

10 

(37.0%) 

15 

(51.7%) 

L1 Appropriate choice & Explanation left blank 
or lacks any specific reasons relating to 
details of the distribution 

4 

(14.8%) 

3 

(10.3%) 

L0 Inappropriate choice (Regardless of 
Explanation)                                  W(ide) = 
Range  > 19,                   N(arrow) = Range < 
2,                  H(igh) = Choices > 24,                   
L(ow) = Choices  < 26 

11 

(40.7%) 

2 

(6.9%) 
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students come to learn this topic. As research in the field of statistics education advances, one 
goal is that teacher education can improve not only the subject matter knowledge of EPSTs, but 
also the pedagogical content knowledge of teaching about variation. Steps toward improved 
pedagogical content knowledge can certainly be informed by recent research about how 
precollege students learn. Meanwhile, steps toward improved subject matter knowledge can be 
informed by a consideration of what are the conceptions of variation held by preservice teachers 
as they enter university programs. Collective discourse in the class, bolstered by activities and 
simulations targeted at eliciting conceptions of variation and developing these concepts, hold 
promise as ways of building EPSTs knowledge while also reflecting the kinds of practice they 
themselves will want to demonstrate in their own classrooms.  
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LEARNING HOW TO USE MATHEMATICS CURRICULUM MATERIAL S  
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Learning how to use mathematics curriculum materials to create opportunities for students to 
learn is, arguably, an important part of the work of teaching. In this session, the author will 
discuss elementary preservice teachers’ conceptions of curriculum materials in the context of 
both a mathematics content course and methods course. 

Efforts to reform the ways that mathematics is taught and learned in classrooms across the 
country also have implications for mathematics teacher education. As teacher education 
programs aim to develop teachers’ knowledge of mathematics and their knowledge of students as 
learners, these programs “…should [also] develop teachers’ knowledge of and ability to use and 
evaluate instructional materials and resources…[in order] to use these resources effectively in 
their instruction” (NCTM, 1989, p. 151). While using mathematics curriculum materials (MCM) 
effectively is arguably an important part of teachers’ work, it is an aspect of practice that is often 
overlooked in teacher education programs. 

In order to design mathematics methods and content courses to better help preservice 
teachers use MCM effectively, it is first necessary to understand preservice teachers’ conceptions 
of these materials and how they see themselves as using these materials in their future work as 
teachers. Teachers’ use of MCM, and ultimately their teaching practice, is shaped by their 
particular conceptions of how mathematics should be taught and learned (Manouchehri & 
Goodman, 1998; Thompson, 1984). Written in response to recent reforms, innovative MCM, in 
particular, present new modes of learning and instruction, and thus, place new demands on 
teachers (NCTM, 1989). Such curricula, however, are sometimes an affront to teachers’ own 
beliefs about what it means to teach mathematics (Manouchehri & Goodman, 1998). This fact is 
potentially exacerbated in the case of preservice teachers who have little, if any, knowledge of 
curriculum materials and who have spent limited time in the classroom formulating their own 
views of mathematics teaching. This situation raises concerns that preservice teachers can use 
these materials with an inattention to the actual content and nature of the tasks, activities, and 
pedagogical suggestions contained in these resources.  

This study focuses on how elementary preservice teachers think about and consider ways of 
using MCM in the classroom. Preservice teachers’ conceptions of three curriculum activities 
designed to help them learn to use MCM were tracked across their mathematics content and 
methods courses. These activities included determining the overall goal of a textbook lesson, 
evaluating different mathematical definitions in textbooks, and analyzing a textbook lesson with 
careful attention to the tasks, examples, problem contexts, and mathematical representations.  

Participants from this study were drawn from a group of elementary preservice teachers who 
were enrolled in an intensive, one-year Master’s and certification program at a large, Midwestern 
university. Fifteen students volunteered to participate in this study. Students’ class notebooks and 
individual interviews comprise the data sources for this study. Students were interviewed once 
after the first semester content course, and again after the second semester methods course.  
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Results and Discussion 
Students’ conceptions of MCM changed in relationship to the three curriculum activities over 

the course of the study. First, preservice teachers’ conceptions of what constitutes MCM fell into 
three primary categories: textual materials (e.g., textbooks, student notebooks); non-textual 
materials (e.g., paper, pencils); and manipulatives (e.g., Base 10 blocks, Unifix cubes). While 
few students considered MCM to be exclusively one of these three categories, a majority of 
students considered MCM to be a combination of all three categories. Notably, the number of 
students citing some combination of textual materials and manipulatives increased across both 
courses. 

Students also held strong, yet diverse, conceptions of how MCM can be used. Some students 
saw MCM as materials that children use to learn mathematics while other students viewed MCM 
as tools that are used to support teachers’ decisions. By the end of the study, all fifteen students 
viewed MCM as materials that support teachers’ decisions. This shift in students’ conceptions 
seems to indicate a move to more teacher-based conceptions of MCM. An interesting issue that 
arose during the course of the study was that students began to formulate particular views of how 
teachers use MCM, which fell into three categories: scripted use; modified or adaptive use; 
limited or narrow use (e.g., Remillard, 2004). Though these views of MCM use were not 
apparent at the beginning of the study, a majority of students adhered to a modified or adaptive 
view of use by the end of the study. 

Overall, the first and second curriculum activities seemed to have little effect on students’ 
conceptions, with only six students and four students, respectively, who even mentioned the 
activities as helping them learn to use MCM. In contrast to the first two curriculum activities, 
twelve students said that the third curriculum activity was very helpful to their learning how to 
use MCM. In short, it is unclear to what extent students’ changing conceptions can be attributed 
to the three curriculum activities. Moreover, the findings do not indicate the extent to which 
students were able to use MCM skillfully. Nevertheless, mathematics content and methods 
courses do appear able to provide students with some conceptions of MCMs in order to use them 
in skillful ways. It seems unreasonable, however, to think that the administration of three 
curriculum activities will equip students with the necessary skills to enable them to use MCM 
effectively, as evidenced in students’ comments about the different curriculum activities.  

For this reason, we need a more cohesive framework that integrates MCM into preservice 
coursework to a greater extent, and that includes several key components. First, content and 
methods courses should expose students to different mathematics curricula, and provide 
opportunities for students to learn about and familiarize themselves with the potential resources 
that are available to them. Second, students should have opportunities to select, develop, and/or 
adapt mathematical tasks and appropriate instructional strategies in ways that maintain the task 
complexity (Stein et al., 2000). Finally, students need to learn to use manipulatives that support 
and scaffold children’s learning, as opposed to superficially and seemingly making mathematics 
fun and applicable to children’s everyday lives (Moyer, 2001; Stein & Bovalino, 2001). 
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This study explored the change and lack of change of prospective elementary school teachers’ 
conceptions of and attitudes toward mathematics during the time the subjects were enrolled in a 
“teaching mathematics” course. The research involved 34 students who completed a 
Mathematics Inventory, a “What Is Mathematics?” journal entry, and a concept map of 
mathematics at both the beginning and end of the semester. Four students were also interviewed 
on two different occasions. A framework was developed to synthesize, analyze, and organize the 
data. Results showed a shift in positioning in the students’ relation to mathematics, an increased 
awareness of the usefulness of mathematics and the processes used in mathematics, and 
improved attitudes toward mathematics and teaching mathematics. 

The study of teachers’ conceptions of and attitudes toward mathematics has been an 
important part of research in the field of mathematics education for many years. This study 
specifically explores the role a “teaching mathematics” course might play in changing these 
conceptions and attitudes of prospective elementary school teachers. Following is a brief 
summary of this study. (A full report can be found in Tuft, 2005.) 

Description of the Study 

Rationale and Questions 
Many have suggested that two factors that influence how teachers teach mathematics are 

their conceptions of mathematics and their attitude toward it (Dossey, 1992; Ernest, 1991; 
Thompson, 1992). The literature is also replete with reports of research that conclude that many 
prospective elementary school teachers have negative attitudes toward mathematics (see for 
example, Becker, 1986) and conceptions of what mathematics is that differ from the view of 
mathematics espoused by The National Council of Teachers of Mathematics (2000). It would 
seem, therefore, that part of the aim of “teaching mathematics” courses should be to improve 
these students’ attitudes toward mathematics and change their conceptions of mathematics. But, 
does this happen? 

To answer that question, I designed a study to investigate the specific questions of what a 
group of preservice elementary school teachers’ conceptions of and attitudes toward mathematics 
were at both the beginning and the end of the semester in which they were enrolled in a 
“teaching mathematics” course. The other question that guided the study was what factors 
influenced whether these conceptions and attitudes changed or did not change. 

Methodology 

Subjects and Situation 
The subjects for this study were the 34 elementary education majors I taught in a “teaching 

mathematics” course at a large midwestern university.  
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Data Sources and Analysis 
Four data sources informed the questions of this study: a Mathematics Inventory which 

included both Likert-type questions and open-ended questions, a “What Is Mathematics?” 
journal entry, a mathematics concept map, and interviews of four focus students. The students 
completed each of these data sources at both the beginning and end of the semester. The Likert-
type questions were analyzed by using a matched-pairs t-test for independent means, and the 
other data were synthesized and organized qualitatively in various data displays with quantitative 
descriptors (see Tuft, 2005). 

Development of a Framework of Mathematics 
I originally expected to report the findings by determining categories that would best 

describe the students in relation to their conceptions of mathematics such as those suggested by 
Ernest (1991) or Cooney, Shealy, and Arvold (1998). However, as I began examining the data, I 
concluded that, for this study, labels would not adequately describe the many facets of the 
students’ conceptions and attitudes. Since most of the data sources were open ended, many of the 
students’ responses did not fit neatly into predetermined categories. I also found that the same 
participant could fall into different categories depending on the data source.  

As a result, I developed a framework to describe these conceptions and attitudes. This 
framework played a crucial role in the synthesizing, analyzing, and reporting of this study. It 
allowed me to organize the description of different facets of the students’ conceptions of and 
attitudes toward mathematics. It also allowed me to code virtually every statement in the 
students’ writings and every item in their concept maps as well as categorize every item in the 
Mathematics Inventory. (For a full description of this framework, see Tuft, 2006.) 

Discussion of the Findings of this Study 

Major Findings, Implications, and Contributions 
There were several noteworthy and significant findings that emerged from an analysis of this 

study. One of these findings is that the students shifted their position in relation to mathematics 
from that of an experienced student to that of a prospective teacher. Other findings were that the 
students’ awareness of the usefulness of mathematics and the processes used in doing 
mathematics was increased. The findings also indicated a more positive attitude toward 
mathematics and a more positive attitude toward teaching mathematics. 

This research provides some implications for mathematics teacher education. It indicates that 
students’ shift in positioning in relation to mathematics can serve as a vehicle for changing their 
conceptions of and attitudes toward mathematic. It also provides insight into areas where change 
is more likely to occur. This study also makes contributions to the field of educational research 
such as a study that shows there can be change, a new framework for looking at conceptions of 
mathematics, ideas for using concept maps as a data source, and understanding the significance 
of the shift in positioning.  
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In this report we introduce the notion of a pivotal example – an example that changes an 
individual’s mind or way of operation, an example that induces conceptual change. We present 
two episodes of interaction between a teacher and a learner and highlight the role of examples in 
these interactions.  

Swans are white. This is because all the swans I saw in pictures, photographs, 
lakes and zoos were white. Even the gray ugly duckling turned into a gorgeous 
white swan. And then, in my recent visit to Australia, I saw a black swan. This 
was a pivotal example. 

Conceptual change and cognitive conflict 
The term “conceptual change” is used to characterize “the kind of learning required when the 

new information to be learned comes in conflict with the learners’ prior knowledge usually 
acquired on the basis of everyday experiences” (Vosniadou and Lieven, 2004, p. 445). 
Conducting research with prospective teachers, rather than with young learners, our perspective 
on the notion of cognitive change highlights the importance of a conflict – a cognitive conflict – 
between information and experience. However, the information does not have to be “new”, but 
“newly realized” or “newly attended to”, and the experience may come from prior learning 
opportunities rather than from everyday engagement.  

A cognitive conflict is invoked when a learner is faced with contradiction or inconsistency in 
his or her ideas. It is important to mention that learners may posses conflicting ideas, and co-
existence of these ideas may not be acknowledged and thus will not create a dissonance. 
However, inconsistency of ideas presents a potential conflict, it will become a cognitive conflict 
only when explicitly invoked, usually in an instructional situation. Implementing a cognitive 
conflict approach has been reported in studies on a variety of topics, such as division (Tirosh and 
Graeber, 1991), or sampling and chance in statistics (Watson, 2002). 

When errors arise from some misconception, it is appropriate to expose the conflict and help 
the learner to achieve a resolution (Bell, 1993). However, while there is some understanding how 
a cognitive conflict can be exposed, once a potential conflict is recognized, there is little 
knowledge on how to help students in resolving the conflict. In this report we introduce the 
notion of “bridging/pivotal example” as a possible means towards conflict resolution. 

Pivotal and Bridging examples 
The central role of examples in teaching and learning mathematics has been long 

acknowledged. In particular, counterexamples may help learners’ readjust their perceptions or 
beliefs about the nature of mathematical objects. Further, the role of counterexamples has been 
acknowledged and discussed in creating a cognitive conflict (Klymchuk, 2001; Peled and 
Zaslavsky, 1997). However, counterexamples may not be sufficient for a conflict resolution. As 
teachers, we are to seek strategic examples that will serve as pivotal examples or bridging 
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examples for the learner. Pivotal examples create a turning point in the learner’s cognitive 
perception or in problem solving approaches; such examples may introduce a conflict or may 
resolve it. In other words, pivotal examples are examples that help learners in achieving a 
conceptual change. When a pivotal example assists in conflict resolution we refer to it as a 
pivotal-bridging example, or simply bridging example, that is, an example that serves as a bridge 
from learner’s naïve conceptions towards appropriate mathematical conceptions.  

Episode 1: Prime numbers: 

Setting: Clinical interview in a research project on learning elementary number theory.  
Int:  So you started to check whether 437 was prime  
Selina: Yes it is, because it’s two prime numbers [437 was calculated as 19 x 23], of 

course it is, because two prime numbers multiplied by each other are prime, 
(pause). 

Int:  Is 15 a prime number? 
We will discuss the conflict that is invoked with the interviewer’s choice of example and 

Selina’s pathway towards conflict resolution. We will show that while 15 is a “pivotal example” 
instrumental in invoking the conflict, it is insufficient for resolving the conflict.  

Episode 2: Comparing fractions 

Setting: Methods course for prospective elementary school teachers.  
After a thorough classroom discussion on a variety of ways to compare fractions, Tanya 

approached the instructor and introduced a “different strategy”: 
Tanya:  You simply take away the top from the bottom and see what is larger. 

Where the number is larger, the fraction is smaller, like 2/7 and 3/7, 5 is greater 
than 4, so 2/7 is smaller. 

In the following conversation with the instructor examples of 1/2 and 2/4, 5/6 and 6/7, 9/10 
and 91/100 were presented to the scrutiny of Tanya’s method. Having faced a counterexample, 
Tanya’s immediate tendency was to amend her strategy, to reduce its scope of applicability, 
rather than to abandon it. We will discuss Tanya’s struggle with disconfirming evidence, the 
conflict that she faced and her reluctance towards conceptual change.  

Discussion 
We note that the notion of bridging/pivotal example is learner-dependent, that is, a strategic 

example that is helpful for one learner may not be helpful to another. Further, in some cases a 
‘critical mass’ of examples may be necessary to serve as a pivot or a bridge. 
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Improving the preparedness of preservice teachers to teach mathematics and address equity 
issues begins with teacher educators’ ability to struggle with these issues themselves in their 
mathematics methods courses. “Teaching equity will not only empower beginning teachers, it 
will also begin to offer more strength to the overall shift in the acceptance and understanding of 
societal equity issues” (Kelly, 2002, p. 39). This is especially important with the changing 
demographics of our public schools. Given that public schools are becoming more diverse, 
preservice teachers need to be better prepared to teach students from a variety of backgrounds. 

The NCTM Research Committee (2005) suggests that equity as a legitimate object of study 
for mathematics educators can potentially move the field into new and significant directions. 
This poster presentation will add to the emerging literature by examining the beliefs and 
practices of teacher educators as they infuse equity issues in their mathematics methods courses. 
The presentation is designed for teacher educators, professional developers, pre-service and in-
service teachers, and administrators. It will allow audience members to better understand how 
equity issues may be addressed in mathematics education courses.  
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By the end of their teacher education programs, many preservice secondary mathematics 
teachers (PSMTs) lack a deep conceptual understanding of a variety of mathematics concepts 
which they will be expected to teach (Even & Tirosh, 1995), despite completing extensive 
coursework. Furthermore, many preservice teachers, who continue to comprise a fairly 
homogeneous group of White, female, lower- or middle-class and provincial persons, exhibit 
beliefs that may counter goals for educational equity, while the student population is becoming 
more diverse (Sleeter, 2001). Attaining equity in mathematics education requires an examination 
of expectations and beliefs about students who have traditionally underperformed (Allexsaht-
Snider & Hart, 2001). The aim of this study is to examine one PSMT’s expectations of students 
as well as his openness to issues of equity in mathematics education as a result of his 
engagement in mathematical tasks contextualized by issues of equity. 

The research questions are:  (1) What is the participant’s conception of equitable 
mathematics education and his expectation for poor students and students of color?  (2) What is 
the PSMT’s reaction to mathematical tasks addressing equity-related issues as they are employed 
in a secondary mathematics methods course?  (3) How does contextualizing these tasks within 
equity issues impact PSMTs’ willingness to engage equity issues within a methods course? 

Data sources include a survey, three 30-45 minute semi-structured interviews, and student 
solutions and reflections related to the mathematical tasks. The tasks employed in this study are 
designed to allow students to investigate mathematics concepts they will be expected to teach, 
and they are contextualized by equity related issues. The participant is a senior-level 
undergraduate student enrolled in a secondary methods course at a large university. Data are 
coded in order to determine emergent themes and undergo constant comparative analysis 
(Strauss, 1987). 

This study begins to add to our understanding of how PSMTs view traditionally 
disadvantaged students and how employing mathematical activities which address equity might 
respond to PSMTs’ resistance to equity issues.  Insights on ways to integrate equity issues into 
methods courses are provided.  
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Prospective secondary mathematics teachers encounter proof in university mathematics 
courses and are expected to prove, justify, and communicate in their secondary mathematics 
classrooms. Krummheuer’s (1995) description of argumentation captures the essence of a 
relationship among proving, justifying and communicating. Yackel (2002) suggests several 
functions a teacher might serve in the development of collective argumentation, such as 
negotiating classroom norms, providing support for students as they interact to develop 
arguments, and supplying data, warrants, or backings that are omitted from students’ arguments 
or are implicit in students’ statements.  

Drawing on the work of Krummheuer, Yackel, and others in argumentation, and research on 
proof and proving (e.g., Knuth, 2002; Weber, 2001), this study considers the relationship 
between a teacher’s conceptions of proof and his or her facilitation of classroom argumentation. 
In particular, this study addresses the following questions: 

� How do prospective secondary maths teachers support claims, data, warrants, and 
backings as elements of argumentation in secondary mathematics classrooms?  

� What characterizes the relationship between the argumentation observed in a 
particular classroom and the prospective secondary mathematics teacher’s conception 
of proof and justification? 

Major data sources include interviews and observations of three student teachers during their 
student teaching experience. Student teacher interviews addressed their conceptions of proof and 
expectations for students’ explanation and justification, while observations focused on their 
facilitation of argumentation in classrooms. Mentor teachers were interviewed to describe the 
classroom environments into which the student teachers had been placed. 

The analysis of the various data sources includes characterizing the participants’ conceptions 
of proof along three continua: ability to prove and analyze proofs, affective perception of proof, 
and perception of the purpose and need for proof. The analysis of argumentation uses Toulmin’s 
(1964) components of argumentation: claim, data, warrant, and backing. These components are 
diagramed and attributed to students or student teacher. The student teacher’s actions in each 
episode of argumentation are analyzed to determine how they change or support the 
argumentation. Analysis of data from this study is ongoing. 
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There is an abundance of literature on the need for highly developed, specialized content 
knowledge for teaching elementary mathematics (i.e., How People Learn and Knowing and 
Learning Mathematics for Teaching, National Research Council; Adding it Up, Mathematics 
Learning Study Committee).  There is also a large body of research on the important role beliefs 
play in teaching mathematics (Thompson, 1992; Cooney & Sealey, 1997; Tıerner & Pehkonen, 
1999). Study of the relationship of these factors to teacher development is the purpose of the 
Mathematics Endorsement Research Group (MERG).  This poster session shares results from the 
first year of a four year research project analyzing change in and comparison of the beliefs and 
mathematics content knowledge of two groups of undergraduate preservice elementary teachers.   

MERG is the outcome of a recently mandated four-course mathematics sequence required by 
the Board of Regents in the State of Georgia for undergraduate elementary teachers.  Previously, 
early childhood students were required to take two mathematics methods courses in early 
childhood and two mathematics courses in the mathematics department. With the new mandate, 
requirements changed to four mathematics courses and one mathematics methods course.  
Members of the mathematics education faculty in early childhood were curious about the impact 
of these changes on beliefs and content knowledge of preservice teachers.   

The project will follow four cohorts of students (n = 139) who matriculate through the old 
program and four cohorts of students (n = 180) who matriculate through the newly mandated 
program.  Data on beliefs will be collected for each cohort upon entry into the program, at each 
transition point between semesters, and at the end of the program.  Content knowledge data and 
demographic information for each cohort will be collected at the end of the program. 

As of Spring, 2006, the mathematics teaching efficacy survey (Enochs, Smith & Huinker, 
2000) and the beliefs about math pedagogy survey (Peterson, Fennema, Carpenter & Loef, 1989) 
were administered four times to two old program cohorts (n = 65). Four subscales within the 
surveys were used: self-efficacy (SE), outcome expectancy (OE), children construct their own 
math knowledge (CONST), and math teaching should facilitate children’s construction of math 
knowledge (FACIL). Mathematics content knowledge for each group was measured after student 
teaching using the Learning Mathematics for Teaching Instrument (Hill, Schilling & Ball, 2004).   

Using demographic data of age, race and high school background we asked: What are the 
predictors of initial mathematics teaching beliefs? What are the predictors of change in those 
beliefs? In addition, we asked:  Is there is a relationship between teachers’ beliefs and the 
specialized content knowledge necessary for teaching elementary mathematics? We also 
analyzed the effect of grade level placement and socio-economic status (SES) of the student-
teaching school on change in beliefs about teaching mathematics.  

Based on hierarchical linear modeling (HLM), we found that math teaching content 
knowledge was related to initial SE, CONST, and FACIL beliefs. None of the demographic 
variables were related to initial beliefs. Once content knowledge was included in the HLM 
models to explain initial differences in these beliefs, it was not related to change in beliefs. Age 
was a significant predictor of change in beliefs for all subscales with students older than 23 years 
showing slightly more growth in beliefs than students between 18 and 23 years. Finally, SES of 
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Seven professors from five universities formed a research team to implement lesson study. The 
literature suggests that lesson study can facilitate greater reflection and more focused 
conversations about teaching and learning than is often realized with other types of professional 
development (Lewis, 2002).  Specific and authentic conversations about management, student 
learning, the impact of significant and subtle changes in lesson design are often the result of 
lesson study. The authors found similar benefits in their own lesson study and presented it as a 
public research lesson at a national math and science education conference. This allowed 
conference attendees to join the lesson study process and challenged the culture of academic 
conferences. While many sessions at conferences have interactive elements, it is difficult to 
engineer a salient shared experience as a focus of the interaction. The result was a successful 
interactive session with authentic participant ownership.  The attendees became a part of the 
lesson study team and contributed to the process.   

To begin the process, lesson study team members set goals to help preservice teachers (PST’s) 
better understand the value of allowing children to invent their own strategies, realize the deep 
understanding of mathematics that they need to appropriately analyze and facilitate discussion 
about children’s strategies, and ultimately to become more skilled at implementing problem-
based mathematics instruction. Prior to the conference session, we completed four cycles of the 
lesson study at three campuses. At the conference, a local class of PST's was brought in and the 
lesson was taught a fifth time as a public lesson. Session participants observed while collecting 
additional data about the students’ responses to the lesson. A discussion followed the lesson and 
included issues about the lesson study process, problem-based mathematics teaching, children’s 
two digit multiplication strategies, and preparing teachers to facilitate children’s discussion about 
their invented strategies. 

Participants at the session were introduced to the lesson study process  (Stigler & Hiebert, 
1999).  Participants collaborated with the lesson study teachers for the afternoon, providing 
valuable feedback and reflection on the lesson. They observed the lesson in real time, rather than 
listening to lesson presenters retell their experiences. Participants focused their observations on 
students’ thinking and actions, rather than a focus on how well the teacher was teaching. The 
structure of the session allowed participants to contribute to the knowledge base and deepen their 
own understanding of teaching and mathematics. For example, one participant said, “I felt like I 
was finally able to just listen to the students’ thinking. In my own classes it’s too hard, but here I 
got to listen to the students as they discussed the problem.”  Another participant commented that 
being a part of the lesson team for the afternoon was “thought-provoking and invigorating”. The 
authors recommend including public lessons at teacher education conferences. 
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At the small 4-year liberal arts colleges in the northeast where I have worked in mathematics 
support and instruction (and across the U.S.), too many students withdraw from or fail 
introductory mathematics courses required for their general core quantitative reasoning 
requirement, or for their major. Not all have issues of poor preparation in mathematics though 
many do. Affective problems—beliefs, attitudes and emotions, (McLeod, 1992, 1997) have also 
been found to figure significantly in student achievement. Research in mathematics education 
has focused on understanding and reforming students’ preparation in elementary through high 
school. Understanding links between students’ mathematics cognition and their affect has also 
been a focus of research (Buxton, 1991; Skemp, 1987). I found, however, little research into 
combining mathematics counseling and constructivist tutoring, while students were engaged in a 
college course, to identify and remedy their mathematics blockages.  

I developed a brief relational assessment and counseling approach (cf. Mitchell, 1988) that I 
integrated with cognitive constructivist tutoring to help students identify counterproductive 
relational patterns with self, teachers, and mathematics, change their minds about their 
mathematics selves, change identified behaviors, become reattached to mathematics, and succeed 
in their course. As my doctoral project, I piloted this approach with students in an introductory 
statistics in psychology class at a small U.S. university in the northeast. I discovered that 
students’ experiences and level of prior mathematics preparation, relative to the current course, 
interacted with their sense of mathematics self (expressed in their state of mathematics self-
esteem) to determine their membership in one of three broad categories of student: Category I: 
well-prepared students with sound mathematics self-esteem; Category II: adequately prepared 
students with undermined mathematics self-esteem, and; Category III: underprepared students 
with low mathematics self-esteem.  

Effective assessment and tutoring required a change from the traditional focus on the student, 
to a focus on the student-tutor dyad and the interrelationship. As the tutor-counselor I needed to 
attend to and make explicit to the student the transference and countertransference dynamic 
between us. My approach helped students in all three categories. In particular, it helped Category 
II students repair their mathematics selves, restore a damaged attachment to mathematics, and 
succeed. It also helped Category III students who were willing to commit to the process, to repair 
their mathematics selves and develop their attachment to mathematics. 

References  
Buxton, L. (1991). Math panic (reprint of 1981 ed.). Portsmouth, NH: Heinemann. 
McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In 

D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New 
York: Macmillan Publishing Company. 

McLeod, D. B. (1997). Research on affect and mathematics learning in the JRME: 1970 to the 
present. Journal for Research in Mathematics Education, 25(6), 637-647. 

Mitchell, S. A. (1988). Relational concepts in psychoanalysis: An integration.Cambridge, MA: 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Vol.2-768  PME-NA 2006 Proceedings 

 

Harvard University Press. 
Skemp, R. R. (1987). The psychology of learning mathematics (Expanded American ed.). 

Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 



Teacher education – Preservice  Vol.2-769 

 

ANALYSIS OF EFFECTS OF TABLET PC TECHNOLOGY IN MATH  EDUCATION 
OF FUTURE TEACHERS 

Olga Kosheleva 
University of Texas at 

El Paso (UTEP) 
olgak@utep.edu 

Ana Rusch 
University of Texas at 

El Paso (UTEP) 

Vera Ioudina 
University of Texas at 

El Paso (UTEP) 

Judith Munter 
University of Texas at 

El Paso (UTEP) 

The concept of a “digital divide” separating those with access to computers and communications 
technology from those without is simplistic. Research (Peslak, 2005) shows that computers per 
students and total number of computers in a school significantly effects student learning, but 
surprisingly there is a negative impact of this metric on standardized reading and math scores. 
Another study (Warschauer, 2005) shows that students from a higher socioeconomic status are 
more likely to use computers for experimentation and critical inquiry, while students from a 
lower socioeconomic status usually engage in less challenging drills. To benefit from computers 
teachers should be familiar with the available software and should be able to create math 
activities that guide students to higher order thinking. 

The main focus of our research is the study of the impact of Tablet PC technology on 
mathematical content pre-service teachers. We also consider other dimensions involved, i.e., 
"instrumental" dimension (“taking into account that a student using a tool to do mathematics 
develops knowledge on the tool together with mathematical knowledge” (Lagrange, 2005)).  

Future teachers enrolled in math, math methods courses, and internships at local elementary 
schools were participants of this study: treatment group (15 students that regularly met in a 
professional development school and used Tablet PCs) and control group (23 students who were 
enrolled in the same courses with the same instructors, but met at different times and location 
and did not use Tablet PCs). We statistically compared the effectiveness of our technology-
enhanced method for teaching mathematics. This comparison was based on the results of two 
distinct items: Final Exam given at the end of a four month learning period and students’ Final 
Grade (cumulative grade based on all the investigations throughout the semester). Our analysis 
shows that the treatment group achieved significantly higher mean scores than the control group. 
These higher mean scores imply that the treatment group acquired greater understanding of math 
content when compared to the control group. This result can be directly contributed to the 
effective implementation of the Tablet PC technology in the math and math methods courses. 
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Culturally diverse pre-service teachers of mathematics are more vulnerable than other teacher 
candidates. They often have strong accent or can be described as visible minorities (in the 
Canadian school system). While Andrew, Cobb and Giampietro (2005) show that for 
“acceptable, good, very good, and outstanding teachers, there is no significant correlation 
between verbal scores and expert assessment of teacher effectiveness” (p. 343), such teacher 
candidates are often labelled by their associate teachers as low in verbal abilities and therefore 
less competent as teachers because “it is difficult for students to understand them.”  

Coming from other cultural and educational backgrounds, such teacher candidates may 
experience difficulty in following curriculum instructions about emphasising communication in 
mathematics classroom. Furthermore, similar to Costa et al. findings (2005), mathematics 
textbooks or curriculum materials may be written in language not sensitive for users (students 
and teachers) whose first language is not English.  

However, attracting teacher candidates from diverse backgrounds (in terms of social class, 
ethnicity and primary language as defined by Au, 1993) is recognized as important, since there 
are many students in Canadian schools with such backgrounds.  

Participants in this study were three pre-service mathematics high school teachers enrolled in 
the program at the Faculty of Education of the medium size Canadian university. Data were 
partially collected through onsite observations during their practice teaching in schools and 
individual interviews. The researcher observed the participants’ body language, gestures, use of 
“teacher voice,” selection of mathematics exercises, artefacts used during teaching mathematics 
and communication with the students. Data sources pertaining to the study were analyzed using 
methods of discourse and content analysis in order to find common themes and trends pertaining 
to the research questions. 

Preliminary data analysis showed that participants mostly found difficult to deal with issues 
of power and respect, which were different from what they experienced as teachers in their 
countries of origin. Also, they did not see much value in asking questions in class or organizing 
group work compared to drill and practice and assigning individual homework. This research 
will help shaping methods for working with mathematics teacher candidates from diverse 
cultural backgrounds. 
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The purpose of this study was to better understand the variation in preservice secondary 
mathematics teachers’ (PSMTs’) perceptions of their content preparation and how this 
mathematics instruction served as a resource in their process of learning to teach. PSMTs 
undergo rigorous education in mathematics, often completing coursework nearly equivalent to a 
mathematics major. Studies have demonstrated that the value teachers place on this coursework 
is variable (Goulding, Hatch. & Rodd, 2003), with some espousing great worth and others near 
irrelevance. Having documented a range of perceptions among a cohort of PSMTs (Hodge & 
Staples, 2005; Staples & Hodge, 2006), we sought to understand the variation among the 
PSMTs’ perceptions and how they were making sense of their experiences in their content 
courses in relation to their future work as teachers. 

Eight focal students were selected from a cohort of 16 PSMTs at a large, public university. 
All PSMTs had completed 37-45 units of mathematics and standard education courses. We used 
mathematics grade point averages to select eight focal PSMTs to represent the cohort range (2.4–
4.0). Data collected for the case PSMTs included two semi-structured interviews prior to and 
after student teaching (~1 hour each); two surveys on PSMTs’ perceptions of their mathematics 
coursework and feelings of preparedness; a set of mathematics problems; two concept maps; and 
academic transcripts. For half of the cases, a third interview was conducted during student 
teaching that was coupled with a classroom observation by the researchers. Data analysis 
consisted of multiple passes through the data corpus and followed standard qualitative and 
quantitative techniques.    

Analysis revealed the variation across the PSMTs’ perceptions of their experiences in 
mathematics classes was closely linked to their visions of the type of learning environment they 
were working to instantiate in their classrooms. The PSMTs’ “visions” shaped what they 
attended to and drew from their content courses. Consequently, their assessments of the value of 
a particular course, as well as the role it played in supporting their teaching work, were 
influenced by their visions. These cases were examined in-depth, juxtaposing the PSMTs’ 
experiences, and exploring implications for PSMT learning and teacher education program 
design. 
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Mathematics reform efforts emphasize the need for teachers to engage students in 
mathematical discussions. Discussions can support conceptual understanding and promote 
students’ participation in valued mathematical practices such as communicating and reasoning 
(NCTM, 2000). However, not all dialogue is created equal. Some classrooms evince high levels 
of student participation but demand little of students in terms of cognitive press (Nathan & 
Knuth, 2003). Others have a more rigorous focus and allow for exploration and extension of 
ideas (Kazemi & Stipek, 2001). One challenge for the educators is to support preservice teachers 
in recognizing and valuing “high quality” dialogue as they work to make sense of their new roles 
as reform teachers. Given the continued prevalence of traditional modes of instruction (Stigler & 
Heibert, 1999), teacher education may be a critical intervention point to help shape future 
teachers’ understanding of productive dialogue. 

This poster presents results from an investigation of preservice teachers’ perceptions of 
mathematical discourse and its relationship to student learning. Subjects included elementary and 
secondary preservice teachers enrolled in courses taught by the authors. The advanced methods’ 
group (master’s level) had completed student teaching. The second group was enrolled in their 
first mathematics methods course, allowing for comparison over time. Subjects read and 
responded to two excerpts of classroom discourse on fractions. One excerpt (Ms. C’s class), from 
Kazemi & Stipek (2001), provided an example of “high press” discourse. The second excerpt 
(Ms. R’s class), from Truxaw (2004), provided an example of “low press” or univocal discourse. 
We were interested in what the teachers noticed and how they derived their evaluative judgments 
of the dialogues in relation to student learning. 

The advanced methods teachers gave overwhelmingly positive evaluations of the Ms. C 
excerpt, but were split in their evaluations of the Ms. R excerpt. Thus while the teachers 
articulated the value of reform-oriented discourse, nearly half still valued many aspects of the 
low- press discourse and found the exchanges productive for student learning. Evaluative 
comments clustered around themes of the mathematical focus of the discussion, levels of 
participation, quality of student thinking, and perceived affective support provided to the 
students. Comparisons between the elementary and secondary teachers, as well as between 
groups entering and finishing the program, will also be presented. Implications include the need 
for teacher educators to focus not only on the ways in which reform-oriented classrooms support 
student learning, but also the limitations of more univocal discourse, as preservice teachers seem 
to be able to hold simultaneously both forms of discourse as productive.  
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This study followed 8 secondary mathematics teachers as they collaboratively designed, 
implemented, observed, revised and re-taught mathematics lessons for social justice, tracing the 
conversations teachers had around what it means to teach mathematics for social justice and the 
challenges that they recognized that they faced in implementing these ideas into practice. 
Analyses revealed that although teachers’ conversations of teaching mathematics for social 
justice were well-articulated and consistent with the literature on teaching for social justice, 
instantiating these ideas into practice proved difficult. Particularly, how to balance and 
integrate the social justice and mathematical pedagogical goals was challenging. Results 
suggest implications for professional development in this area. 

Education is intricately linked to differential patterns of economic, political, and social power 
structures in society that serve to perpetuate inequity and injustice in both schools and society 
(Kozol, 2005). The goal of increasing equity in mathematics education entails connecting 
schooling to these larger sociopolitical contexts of society (Gutstein, 2006) and shifting from 
preparing students to live within the world, as it currently exists, to preparing students to 
restructure those systems for the purpose of removing obstacles that women, minorities, the poor, 
and others experience (Secada, 1989). Mathematics education can play a role in this endeavor, 
serving as “a vehicle through which to accomplish this change” (Gutstein, 2006, p.13, emphasis 
in original), specifically in the form of mathematics teaching for social justice. Like all 
mathematics teachers, those employing social justice pedagogies recognize the necessity of 
mathematical knowledge and include mathematics-specific goals for their students 
(Frankenstein, 1995; Gutstein, 2006). Concurrently, they engage students in using mathematics 
to critically analyze their world, empowering students to take action in an effort to promote a 
socially just society (Frankenstein, 1995; Skovsmose, 1994). Little research exists, however, that 
examines mathematics teachers learning to teach for social justice, a necessary step in 
understanding the entailments of teaching mathematics for social justice. This research 
investigated secondary mathematics teachers’ conversations around learning to teach 
mathematics for social justice as they developed, implemented, observed, revised and re-taught 
mathematics lessons for social justice. In particular, this study examined the following research 
questions: “How do teachers’ conversations around teaching mathematics for social justice 
evolve through participation in the graduate course?” and “What challenges do teachers 
recognize that they face in teaching mathematics for social justice?” This report will present 
selected results from this investigation. 

Theoretical Perspectives 
This research draws upon situated, socio-cultural perspectives of teacher learning (Lave & 

Wenger, 1991). Socio-cultural theories of teacher learning center on the concept of learning as 
situated social practice, which includes discourse, social interaction and participation structures. 
This shifts the focus to people jointly engaged in mutual enterprise, with a shared repertoire of 
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actions, discourses and tools (Wenger, 1999). Teacher learning, then, is influenced not only by 
personal orientations, but also by teachers’ interactions within various social communities. 

Methods 
The context. To address the research questions, a graduate course was designed to provide 

secondary mathematics teachers an opportunity to explore their conceptions of teaching 
mathematics for social justice through assigned readings and written reflections, and through the 
collective development of a mathematics lesson incorporating social justice goals. Eight teachers 
participated in the graduate course, which met 15 times for 2 ½ hours per session. Of these eight 
teachers, seven were employed as mathematics teachers in one of four comprehensive high 
schools and the eighth was a licensed science teacher employed as a full-time substitute teacher, 
regularly substituting in mathematics classrooms. For scheduling purposes, these teachers were 
split into two groups of four. In Group 1 (Pat, Gerry, Chris, and Jamie), all four teachers were 
White, two were female and two were male, and their teaching experience ranged from 4 to 17 
years. In Group 2 (Ann, Roxy, Dana, and Holly), all of the teachers were White and female, and 
their teaching experience ranged from 6 to 16 years. The central activity for the first part of the 
course was discussion and analysis of readings focused on teaching for social justice in general 
and teaching mathematics for social justice specifically. To situate their study of these readings 
in the activities of mathematics teaching, the group also examined sample mathematics lessons 
and mathematics teaching cases. Verbal and written reflection prompts were provided in each 
session to focus the discussions and to support teachers in clarifying their conceptions of 
teaching for social justice. The central activity of each seminar in the second part of the course 
was the design, implementation, observation, revision, and re-teaching of a mathematics lesson 
for social justice.  

Data analysis. The primary source of data for this study was teachers’ discussions during the 
graduate course. All discussions were audio-taped and transcribed. Additionally, pre- and post-
seminar interviews were conducted with all participants to help understand how teachers’ 
conversations around teaching mathematics for social justice evolved. Teachers’ lesson plans and 
written reflections were also collected. A grounded theory methodology was employed (Strauss 
& Corbin, 1990) to identify recurring themes in the data. I began first by compiling a list of 
general framing codes drawn from my research questions, including teachers’ conceptions of 
teaching mathematics for social justice and challenges in teaching mathematics for social justice. 
Next, I coded all data and the emergence of additional codes occurred through multiple passes of 
the entire data set; four passes were required before categories began to stabilize. The coding 
scheme aimed to characterize the nature and content of teachers’ comments.  

Results 
Analysis of teachers’ conversations around teaching mathematics for social justice revealed 

that in Group 1, three of the four teachers had narrower conceptions of teaching mathematics for 
social justice that became more elaborated over the duration of the course. In the beginning of 
the course, Pat, Gerry, and Jamie’s conversations suggested that teaching mathematics for social 
justice was about relating mathematics to all cultures or relating math to society, with no explicit 
mention of students looking critically at how societal issues connect to their experiences or of 
students acting upon their world in order to transform it. For example, Pat suggested that 
teaching mathematics for social justice was “for the purpose of opening their eyes to different 
aspects of our society and what’s going on in the world and relating that to maybe mathematics.” 
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Pat’s notion of “opening [students’] eyes” is similar to Jamie’s notion that teaching mathematics 
for social justice would “enlighten [students] in a way that’s maybe different from just kind of 
like teaching the topic of mathematics.” Chris, on the other hand, suggested that it means 
students “use math as a tool for dismantling systems of oppression. It entails teaching ways that 
math can analyze and address societally-constructed inequalities.” 

Almost immediately after the course began, Jamie, Pat, and Gerry’s conversations around 
teaching mathematics for social justice broadened to include notions of students taking action 
and confronting inequities in society. These conceptions remained consistent throughout the 
course. Jamie, for example, maintained that teaching mathematics for social justice included 
students’ recognizing “that social injustices do exist” where, “once there’s awareness then there 
can be analysis and actions that follow those things.” Similarly, Chris remarked that teaching 
math for social justice “address[es] the social justice issues that [students] might run into in their 
lives. They’ll use [math] to examine racism, classism, sexism, as it pops up in their lives and in 
the larger society,” where students consider “what could develop with the knowledge [they] 
gained.”  

In Group 2, teachers seemed to come in with fairly well-articulated and previously developed 
conceptions of teaching mathematics for social justice that remained consistent throughout the 
course. Four themes emerged: teaching mathematics for social justice meant (a) confronting the 
gate-keeping role that mathematics education traditionally holds, (b) taking action, (c) raising 
students’ awareness, and (d) using mathematics as a tool to analyze and understand issues in 
society. These four themes reappeared at each stage of the data collection process, expressed by 
at least three of the four teachers at one time or another. In reference to confronting the gate-
keeping role of math education, teachers suggested that they “want to help students make 
themselves ready so that they can pass through those gates” (Roxy), arguing that “since math 
functions as ‘gatekeeper’ to many other opportunities, to teach for social justice must include 
students’ developing mathematical power…” (Ann). At the same time, teaching mathematics for 
social justice also means “students start seeing that they could use math to make an argument to 
change something about society” (Dana) and with such teaching “…we’re trying to make them 
go through that painful journey to become aware” (Holly) and “start to build consciousness of 
what the inequities are” (Roxy). Finally, teachers in group 2 saw teaching mathematics for social 
justice in terms of the utility of mathematics, stating that students “analyze [issues] 
mathematically” (Dana), “[seeing] like this is how you would actually use it in a real world 
setting” (Dana) and “students [would] step away from the lesson with a new outlook on how 
math can be an effective tool in their lives – it empowers them to solve critical, close-to-home 
problems” (Holly).  

Across both groups, teachers’ conversations that emerged were similar to the central tenets of 
teaching mathematics for social justice addressed in the literature: teachers’ saw teaching 
mathematics for social justice as students gaining awareness of social issues through critically 
examining their world, challenging students to the point that they would feel empowered to take 
action and transform their world. 

Analyses around the second research question revealed that instantiating ideas of teaching 
mathematics for social justice into practice proved difficult, particularly in integrating the social 
justice and mathematical goals of the lesson. Each group tended to focus more on one or the 
other, rather than both simultaneously. The results for this section also include descriptions of the 
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lesson design, implementation and revision process for each group to set the stage for 
understanding teachers’ conversations and for interpreting the results. 

In Group 1, teachers chose to focus more on the social justice goals of their lesson, agreeing 
that mathematics did not have to be tied in all the time. The teachers seemed content with this 
decision because this was their first time teaching mathematics for social justice. For instance, 
just after the first implementation of the lesson, Jamie said, “…we’re trying to get used to 
including these social justice goals...And if it takes a small step mathematically that’s fine for me 
but I think we should try to incorporate more ideas of the social justice.” Specifically, Group 1 
designed a lesson around the topic of prison populations and school achievement. The initial 
lesson design focused on students extracting necessary information from data presented to them 
in order to use mathematics to gain awareness of the costs associated with schools and with 
prisons. Using the data, students calculated the cost of a student for one day and of a prisoner for 
one day and discussed possibilities for why these costs might be similar or different. Upon lesson 
implementation, students did not get as far as the teachers expected, and no whole class 
discussion took place. In the debriefing session, teachers’ comments focused on the fact that it 
was a good lesson; they just didn’t have time to get through it all. I concurred that they had not 
met any social justice goals that day and that this needed to be a focus of their revisions.  

The group decided to add a component to the lesson that emphasized the relationship 
between prisons and schools, not just the costs, feeling that such a lesson would address a social 
justice goal. The revised lesson plan began as before with the calculation of the cost of a prisoner 
and of a student for one day, but reducing the number of questions asked. Next, the teachers 
decided to present students with a graph of local GPA data by race (White and Asian students 
had higher GPAs than African American, Hispanic, and SE Asian students) and the following 
quote: “More than 6 in every 10 persons held in correctional facilities were Black or Hispanic. 
Of all inmates: 48% of inmates were Black, non-Hispanic; 36% White, non-Hispanic; 14% 
Hispanic; 1% Native American; and 1 % Asian/Pacific Islander.” Once these data were 
presented, teachers planned to ask students whether there was a connection between the two, 
trying to bring out the teachers’ perceived relationship between prisons and schools. 

Teachers implemented this lesson the following week, and since I had been out of town, this 
was the first time I saw their lesson revisions. After sharing their reflections on the lesson 
implementation, which were again mostly positive comments about the lesson implementation, I 
asked the group to clarify what the goals were for the new part of the lesson. Their goal was that 
they wanted students to see the connection between academic achievement and the population in 
prisons. Jamie said that one student’s response that “maybe we should be spending more money 
in schools so that these people are better educated so that they don’t go to prison” reflected what 
they hoped students would get out of the lesson. I then asked the teachers what some of the 
student comments were at this point in the lesson. Gerry reflected that one student said, “A lot of 
people are doing bad in school and they’re going to jail.” Based on my field notes, what the 
student actually said, which I shared with the group, was that “Black people are doing bad in 
school and Black people are in prison.” As teachers started reading through student responses to 
the lesson’s question, “Is there a connection?” Gerry noted that students were not reacting the 
way they had expected. Jamie was particularly surprised, as evidenced by the following 
responses to students’ written comments: Student 1 Response: Yes, because since some African 
American students are not as wealthy as others, they don’t think that school is important so they 
will skip and maybe commit a crime. Jamie: “…pretty negative…it is more directed toward the 
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idea of the individual rather than the schools.” Student 2 Response: Yes, Black people do the 
worst in school and more black people are in jail. Jamie: “…so yeah, these are responses I 
wouldn’t expect.” Taking into consideration these unanticipated student responses, the teachers 
revised the lesson’s goals and the lesson plan itself. Instead of asking students, “Is there a 
connection?” the teachers created two multiple-choice questions, one for each piece of 
information presented, asking students what might explain the disparities. The goal of this 
section was to have students recognize that the racial disparities were not about individual 
student choice; rather, they are connected to issues of institutional racism and White privilege.  

In contrast, Group 2 teachers initially weaved both mathematics and social justice into their 
lesson plan design, having students use proportional reasoning to develop an understanding of 
the discrepancy between minimum wage and living wage. The lesson began with a pre-
homework assignment that had students calculate basic measures of central tendency for data 
and reason about which measure was most appropriate. The next day, the lesson design began by 
asking students to use local data to determine the average cost of housing for one person in 
Lakeview. Next, students calculated how much someone making minimum wage (working 40 
hours per week) could afford to pay in monthly rent. Students then calculated, using the average 
cost of housing for one person previously found, what hourly wage this person would need to 
make to afford that housing. In other words, teachers asked students to calculate the living wage. 
The subsequent class discussion centered on the discrepancy between minimum wage and living 
wage and students’ brainstormed possible solutions that might alleviate it. The goal in doing this 
was two-fold. First, teachers hoped students would get beyond thinking of this issue as a 
personal, cautionary tale about the need to do well in mathematics to make more than minimum 
wage. Rather, teachers wanted students to see beyond themselves, recognizing that no one should 
be working full time and not making a living wage. Second, teachers wanted students to see 
themselves as agents of positive social change, motivated to take action to address the economic 
injustices that result from disparities between minimum wage and living wage.  

In the first lesson implementation, students did not have much time for the discussion about 
the discrepancy between living and minimum wage, in part because the pre-homework had to be 
completed in class. The teacher who taught the lesson noted, “what didn’t happen, and it’s 
because I didn’t get to have that discussion, was we didn’t have the impact of, okay, what are we 
going to do? This isn’t right.” Upon reflection on the lesson implementation, the teachers made 
only minor changes in wording to clarify what they were asking students to do. During the next 
three weeks, the other three teachers implemented the lesson in varying classroom contexts (e.g. 
90-minute class periods and regular and Honors Geometry classes in contrast to the first lesson, 
which was an Algebra class), and the pre-homework was completed by students as planned. 
Again, none of the teachers felt like they got to enough, or any, of the social justice discussion 
anticipated for the end of the lesson. Ann reflected on the first two lesson implementations that 
“I guess one thought that I had in watching both these classes and then in thinking about me is 
that that’s where our comfort zone is. Is in going over this kind of stuff and talking about the 
mathematics…” The teacher who taught the lesson the fourth time similarly reflected that as a 
group, “none of us was able to escape the lure of multiple solution strategies to the same 
problem, unpacking the mathematical proof in student work, and displaying more than one 
student solution to a problem,” so “we never finished the piece of a living wage is important, not 
everyone has a living wage, how could we solve that problem mathematically?”  



Vol.2-780  PME-NA 2006 Proceedings 

 

To reiterate, these results were presented in the context of the lesson design, implementation, 
and revision process to illuminate what issues arose for teachers as they tried to both instantiate 
their ideas of teaching mathematics for social justice into practice and as they worked to balance 
and integrate the mathematical and social justice goals of the lesson.  

Discussion 
The goal of this study was to investigate teachers’ conversations around teaching 

mathematics for social justice to understand better the processes involved for teachers learning to 
teach mathematics for social justice. This section presents a synthesis of my conclusions about 
the results for each of the research questions of this study.  

Teachers’ evolving conversations. Teachers’ early conversations in Group 1 indicated that 
three of the teachers had narrower conceptions that became more elaborated and consistent over 
the duration of the course. The fourth teacher, and the teachers in Group 2, seemed to come in 
with fairly substantive understandings of teaching mathematics for social justice that remained 
consistent. This may have been because the teacher in Group 1 participated in a previous 
professional development course focused on equity, which included discussions of teaching 
mathematics for social justice, and because three of the Group 2 teachers were participating in 
concurrent graduate work. Across both groups, the conversations that emerged around math 
teaching for social justice were similar to the central tenets addressed in the literature. An 
important component in the literature that was not mentioned by teachers, however, is that 
teaching mathematics for social justice also includes the goal of students learning mathematics. 
Rather, teachers’ conversations suggested that teaching mathematics for social justice was easier 
the first time if they accessed students’ existing mathematics knowledge. It is possible for 
students to use mathematics to examine complex social issues with or without developing new 
mathematical knowledge (Gutstein, 2006), but the omission of building awareness and building 
mathematical knowledge is worth noting. Additionally, teachers’ conversations around teaching 
mathematics for social justice seem to suggest that students first learn or know the mathematics 
and then use that mathematics to learn about and analyze a social issue. This is reflected in the 
fact that the lessons they designed did just that. Moreover, the idea that students should learn 
math first, then apply it to understand social issues, implies that teachers’ conceived of teaching 
mathematics for social justice as something “added on” to a curriculum, rather than something 
that might be an integral part of the curriculum. The focus in this graduate course on designing 
only one lesson may have facilitated this notion of teaching mathematics for social justice as an 
“add-on” curricular piece.  

Balancing mathematics and social justice. Each of the groups dealt with the issue of 
balancing the math and social justice goals differently. Group 1 teachers focused primarily on the 
social justice component of the lesson, and Group 2 teachers, in the lesson implementation stage, 
focused on the mathematics and did not reach the intended social goals. Group 1’s focus on the 
social justice goal of the lesson, however, contributed to some significant issues related to 
mathematics teaching and learning. First, this focus may have contributed to teachers’ over-
simplification of the data. With their data, for example, one cannot simply say that the 
explanation for disparities in GPA values according to race is institutional racism in the schools, 
as a number of other factors affect students’ GPA levels. Additionally, it doesn’t seem that the 
teachers ever thought their data was problematic. Even when students responded in many 
unanticipated ways, rather than finding data that might support the goals of the lesson, teachers 
created multiple-choice questions to lead the class discussion in a particular way, almost 
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attempting to force students to the “right” conclusion. Not only is this problematic from a social 
justice standpoint, in that accepting only one view does not constitute an examination of a 
complex social issue, but structuring the lesson in this way could facilitate students’ development 
of misconceptions about data analysis.  

Group 2’s focus on the mathematics during the lesson implementation stage suggests that the 
teachers may have been more uncomfortable addressing social justice issues with their students 
than they realized. Additionally, perhaps teachers felt that since they had planned the lesson 
initially for one class day that this was the timeframe within which they had to work. Thus, 
adjusting the lesson to facilitate getting to the social justice component would mean sacrificing 
some of the mathematical discussion. These teachers were there to teach students mathematics, 
so in the end, the mathematics “trumped” the social justice (Roxy).  

My analysis of these data suggest that one important component of teachers learning to teach 
mathematics for social justice is an understanding of how to select and use appropriate data to 
examine complex social issues. To support teachers in the selection of appropriate data, teachers 
could first examine social justice issues, and then engage in the identification of appropriate data, 
asking questions such as, “What mathematics would I need to understand and examine this 
issue?” “What data do I need to support this conclusion, and why?” In learning to teach 
mathematics for social justice, teachers also struggled with integrating the mathematics with the 
social justice. The fact that the teachers in both groups each taught different mathematics 
subjects may have hindered them in the process of designing a lesson to match existing 
curricular goals, and hence integrate the social justice with the mathematics. Thus, to better 
support teachers in this integration, teacher groups could be content-specific. Additionally, the 
focus on one lesson may have prompted teachers to think of teaching mathematics for social 
justice as lessons to be inserted into a curriculum. As such, changing the grain size from one 
lesson to a focus on continued integration throughout the school year, in various ways, may be 
more appropriate.  

Teaching mathematics for social justice is not a matter of designing and implementing 
individual lessons, but is a process that pervades every aspect of the classroom. The challenges 
that arose for these teachers in balancing mathematical and social justice goals in lessons should 
not be viewed as a reason not to engage in this pedagogy, but instead as a natural part of the 
process of learning to teach mathematics for social justice. This study begins to speak to how 
teachers might begin to engage in the practice of critical pedagogy and how teacher educators 
might help teachers do so. Continued research in this area will help us understand the 
significance of supporting teachers in integrating mathematical and social justice goals, in terms 
of their teaching, student learning, and moving toward social justice. 
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The study examined the role of challenging content in the NSF Math and Science Partnership 
program. Within the grant program, individual grant programs have taken on some topic areas 
and not others. The program evaluation, of which this study is a part, investigated the types of 
content included in grants and how grants have interpreted challenging content. 

Purposes and Objectives 
What is challenging mathematics content? Who decides? Recent reports such as the TIMSS 

studies and the NAEP results reveal that the United States continues to struggle with 
mathematics achievement (Ferrini-Mundy & Schmidt, 2005; Hiebert et al., 2003; Lindquist, 
2001; Stein, Smith, Henningsen, & Silver, 2000). One reason cited is the lack of challenging 
content and the differences in curriculum across states and school districts. According to a study 
produced by the National Council of Teachers of Mathematics and the Association of State 
Supervisors of Mathematics, content standards vary significantly between states by grade level 
(Lott & Nishimura, 2005). Many interested constituencies (educators, mathematicians, parents, 
educational organizations, and school boards) have their own interpretations and standards for 
what mathematics students should learn. Finding and implementing a single definition of 
challenging content remains an elusive challenge. What is challenging for students varies by 
setting and interpretation. The goal of this study is first to analyze what content is being 
addressed by different grants in an NSF program (in particular content courses for teachers) 
through teacher development programs and second to consider how that content represents 
different interpretations of challenging in the K-12 setting. 

Background and Context 
This study is situated within the program evaluation of the NSF Math and Science 

Partnership (MSP) Program1. The MSP program is a grant program to fund large-scale grants for 
3 to 5 years. The program includes over $500 million in total funding. The MSP grants address 
five key features identified by NSF in the initial requests for proposals: challenging curriculum, 
teacher quality and diversity, partnerships, evidence-based design, and student achievement. The 
grants include math or science content, collaboration with K-12 schools and districts, 
collaboration with disciplinary faculty (e.g., mathematics, science) and education faculty, and 
span a wide range of grade levels and content areas. Within the MSP Program, there are 
curriculum initiatives that are designed to encourage the implementation of challenging content 
so all students have access to science, technology, engineering and mathematics (STEM).The 
focus here is on challenging content and curriculum in MSP and specifically mathematics 
content. Presented here are a few interpretations of challenging content and content within 
teacher professional development that is receiving attention in MSP projects. 

Addressing teachers’ knowledge of content and curriculum has been a focus of teacher 
development since Shulman’s paper on the different types of knowledge for teaching (1986). 
Related to the research emphasis on teachers’ knowledge is the theory that impacting teachers’ 
content knowledge will impact students’ learning of mathematics. While it may be obvious that 
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teachers’ should have deep knowledge of mathematics, it is not clear what mathematics they 
need to learn or how they should learn mathematics for teaching. It is also not clear how learning 
mathematics then impacts teachers’ practice. In MSP grant initiatives, there may be more focus 
on teacher development rather than direct work with students. Efforts to effect teachers’ 
knowledge of mathematics are intended to have a trickle-down impact on students’ learning. 

Within studies of curriculum, teachers’ role in implementing curriculum and the teacher’s 
mathematical knowledge have an effect on the nature of the classroom use. (e.g., Mokros, 2003; 
e.g., Remillard, 2000; Sarama, Clements, & Henry, 1998) The standards-based NSF-funded 
curricula such as Connected Mathematics have been incorporated into work by grants in the 
MSP program, and there are implications from the studies of curricula for teacher development. 
Namely, that teacher development plays a critical role in students’ learning with the materials, 
and teacher development is a critical component to the successful implementation of a reform-
based curriculum. 

Theoretical Perspective 
Capturing the role of challenging content appears elusive within the MSP program given the 

large scale, the diversity, and the complexity of each grant. A common measure of whether 
students have learned the mathematics is standardized achievement scores on state tests. 
However, challenging content can go beyond what is contained on statewide-standardized tests. 
Advanced Placement courses, cutting edge content (e.g., nanotechnology) and other content at 
the outer limits of what students can learn across K-12 can also be considered challenging. At 
other level, challenging content can also be challenging in terms of content an individual student 
should learn. This is the difference between external measures of challenge such as standards and 
tests developed by states or national organizations and individual measures of challenge related 
to an individual student’s abilities and knowledge. 

The perspective in this study is drawn from a modeling perspective (Lesh, Doerr, Carmona, 
& Hjalmarson, 2003) that has been applied to this study of content and curriculum. The language 
of modeling and the model as structure have been used to organize the analysis of the diverse set 
of MSP grant initiatives. When models are used to describe students’ mathematical thinking, 
they allow for multiple ways of thinking, representations, and conceptual systems generalizable 
beyond the local setting in order to categorize and classify student thinking (e.g., Carmona-
Dominguez, 2004). The model for curriculum includes three parts: a representation developed 
for a purpose with underlying conceptual systems. Examples of models for challenging content 
are courses developed for teachers. Such courses seek to address particular content (e.g., algebra) 
with a purpose (e.g., develop middle school teachers’ understanding of algebraic structures) and 
an underlying conceptual system or theory (e.g., development of pedagogical content 
knowledge). Though courses are developed for local conditions, they have common 
characteristics to analyze across grants. A model for content then includes why the content has 
been included, how the content was presented, and what theory underlies the development of the 
content within the course. 

Due to the diversity of perspectives and purposes within the MSP grants related to 
challenging curriculum, the modeling perspective helps to organize a diverse set of initiatives 
and characterize grant activity related to challenging content. This paper focuses on descriptions 
of content courses for teachers as one representation of the content viewed as important by the 
grants. The underlying purpose in most of the courses is to develop teachers’ content and 
pedagogical knowledge. The representations used for this study are the course descriptions 
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available in project reports and websites. The conceptual systems include theories about teaching 
and learning mathematics as well as methods for helping teachers develop their teaching 
practice. 

Methods and Evidence 
Data analysis at this stage has been primarily focused on annual reports and evaluation 

reports submitted to NSF with some supplementary data being collected from project websites. 
Document analysis (Miles & Huberman, 1994; Patton, 1990) is being used with such sources in 
order to gather a comprehensive picture of the scope and scale of the projects’ mathematics 
curriculum efforts.  The evaluation has been primarily qualitative (Greene, 1998) due to the types 
of data available; however quantitative data analysis may be possible at later stages. The focus of 
the analysis is on the development of categories and descriptors that can be used to analyze 
mathematics content efforts in the program as a whole. In addition, such descriptors should be 
used to analyze the progress of the grant projects over time. “Grants” is used throughout this 
paper to refer to a grant as a whole. “Project” is used to refer to project within a grant. Due to the 
size and complexity of the grants, there are often multiple, simultaneous, parallel projects 
occurring within one grant. To avoid mischaracterizing the nature of a grant and ignoring equally 
important, distinct activities, I make the distinction between “projects” and “grants”. For 
example, a grant may have one group developing content courses for teachers and another group 
developing learning units for students. Some of the content of the modules and courses may be 
new to K-12 (e.g., engineering) and some may rely on content historically within K-12 (e.g., 
algebra, chemistry).  

The data analysis is proceeding in two stages using two major sources of data. The two data 
sources are the project proposals and the annual reports (including evaluation reports as a subset 
of this data). In some cases, projects have designed websites with additional materials related to 
mathematics curriculum efforts or placed additional materials on MSP-Net (the online 
collaboration environment for MSP and supported by an MSP project). However, external 
dissemination of materials used in courses or developed for students is limited as are the 
publications (e.g., journal articles) at this early stage in the MSP projects. We are utilizing 
document analysis forms (Miles & Huberman, 1994; Patton, 1990) to code and summarize 
information from the data sources. 

Specifically for the teacher content course data, course descriptions were downloaded from 
publicly available websites developed by individual MSP grants. Based on information on 
websites gathered between August 2005 and February 2006, 30 grants listed at least one content 
course for teachers and 140 course descriptions were available (note that some descriptions 
described multiple courses). The data set represents a snapshot of activity during a period of time 
in the duration of the grants. An average of 4 courses were listed per grant with a range of one 
course to 26 courses. Projects update their websites periodically with some updates occurring 
more frequently and depending on course offering time and duration (e.g., summer or academic 
year, one session or multi-session courses). Additionally, not all grants post course descriptions 
on websites or include them in project reports.  

Mathematical Content 
For the purposes of MSP, each grant is determining for itself what mathematics is important 

and relevant for their project. In some cases, they are drawing on state standards as the definition 
of challenging content. In other cases, they are carrying out professional development focused on 
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NSF-funded curriculum materials (e.g., Connected Mathematics) in order to encourage and 
facilitate their use in K-12 classrooms. Regarding both groups of projects, another question we 
can use to classify the projects is whether they are introducing new content to the curriculum 
(e.g., introduction of new content such as nanotechnology in learning units), increasing the 
challenge of the curriculum (e.g., revision of the state standards for mathematics and MSP 
activities related to the revision) or working within existing standards and expectations while 
developing teachers’ content knowledge. Finally, the projects may have a particular content area 
emphasis (e.g., algebra or geometry). In some cases, this results from an intentional design and 
proposal decision (e.g., a project targeted on algebra). In other cases, the content emphasis may 
emerge over the life of the project. 

Broadly, the projects tend to fall into two groups. The first are projects working within 
existing content in K-12 and the second are projects that are developing new content. Working 
with existing standards and curriculum is a different type of activity than pushing for change in 
content and curriculum. Both activities represent “challenging courses and curriculum” but the 
goals, evidence, and objectives related to designing new content are different than the goals, 
evidence, and objectives for working within existing frameworks and materials. The 
development of nanotechnology units is new content for K-12 and an emerging field of 
engineering and research. Materials do not exist for the presentation of such content in K-12 
classrooms and teachers will likely have limited knowledge of the field. In contrast, a project 
working within a traditional topic such as Algebra may have less work to do in terms of finding 
resources for professional development or for implementation with students. 

As large categories, grants often follow the organization of content used in the Principles and 
Standards for School Mathematics (National Council for Teachers of Mathematics, 2000) 
including algebra, geometry, number and operations, measurement, and data analysis and 
probability. However, there is also focus on calculus concepts within some grants. There seems 
to be more emphasis on algebra and geometry than on other content areas at this point. Further 
data analysis will examine what aspects of these content areas are being emphasized as well as 
the grade levels. One question (when grants are closer to completion) will be why certain content 
was excluded. A second question to investigate is why grants placed content in a particular order. 
Was there a theoretical or research-based reason or was it a question of opportunity (e.g., the 
availability of instructors with the relevant expertise)? 

Content Courses for Teachers 
Most grants are offering course work and professional development opportunities for 

teachers. For content courses, one theory is that deepening teachers’ content knowledge (and 
specifically their pedagogical content knowledge for mathematics teaching) will increase the 
quality of mathematics education in the classroom and the mathematics learning of students. The 
goal of the study of the course descriptions was to determine how grants had interpreted what 
should be contained in a course for teachers. There was particular interest in what mathematics 
was the focus of professional development efforts as well as when courses were blending content 
and pedagogy. 

The content courses fall into three major categories. The first are courses purely focused on 
mathematics content (including process content and history of mathematics). The second 
category of courses is strictly focused on pedagogical strategies and issues (e.g., assessment, 
differentiation strategies). Such course descriptions do not have mathematics learning as a 
central focus (if it is mentioned at all). The third group is courses that blend content and 
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pedagogical knowledge. Such courses blend learning about mathematics with learning about 
mathematics teaching and learning by students. They are along the lines of recommendations that 
teachers’ knowledge of mathematics is different than mathematics for other professions  (Hill, 
Rowan, & Ball, 2005). The course descriptions vary in terms of emphasis on content or 
pedagogy. Determining how much mathematics enters the course content is not possible simply 
from the description. Establishing a continuum or a more fine-grained categorization of blended 
content and pedagogy courses is a goal for further research.  

Based on the course descriptions available, most of the courses cover algebra, geometry or 
statistics (including data analysis and probability). Courses were directed primarily toward 
elementary or middle school teaching. Neither of these results is surprising as a focus of 
standards documents and initiatives is on the increased learning of algebra and how algebraic 
ideas are developed throughout elementary and middle school. The emphasis at elementary and 
middle school mirrors the overall focus of the MSP grants where fewer grants have targeted high 
school. Geometry courses may have an emphasis on the use of technology tools such as 
Geometer’s Sketchpad ® in the classroom to provide a dynamic view of geometry and develop 
spatial and geometric reasoning further. A few courses focus on content new to or outside the 
typical K-12 subject matter including mathematical modeling, applications in industry, and 
mathematics history.  

Another distinction for content courses is the format of the course. An initial distinction 
among courses offered by the grants is in the administration of the course by either an institution 
of higher education or a school district. Related to this distinction is whether “course” refers to a 
workshop (lasting a few days), a summer workshop (lasting a few weeks), a semester-long 
course or year-long series of workshops. The nature of teachers’ learning in each context is 
different and the duration may impact the content and nature of the course. The development of 
content courses also occurs for both pre-service and in-service teachers as well as for district or 
school level mathematics specialists. Further analysis and data regarding the nature of the 
courses (e.g., syllabi or other materials) is necessary to continue the analysis of these 
distinctions. 

Finally, courses may also utilize standards-based curricular materials as part of course 
content (e.g., Connected Mathematics units and modules). The use of the materials may depend 
on whether the school districts in the partnership have adopted the curricula. The course may be 
organized around the development of content knowledge in connection with a particular 
curriculum in order to facilitate teachers’ use of the new curriculum by helping them understand 
the structure of the curriculum. Related to existing materials, grants may also employ materials 
developed by the grant or support teacher development of curriculum (e.g., by developing 
materials in workshops and providing ways to share them across sites on a website).  

The impact of content courses for teachers on students’ learning is still under evaluation and 
investigation. As many of the grants are still in their first two years, data about student 
achievement related to the content courses is still not available due to the time required for 
courses to be developed, for teachers to complete the courses and for teachers to develop their 
teaching practice following courses. As with the student achievement results, studies of teacher 
practice after a course (or series of courses) is still underway by the grants. Overall, the use of 
content courses is widespread throughout the program, but varied in purpose, content and intent.  
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Conclusion 
The study of teacher content courses is one slice of the role of mathematics content in the 

portfolio of MSP grants. The content courses cover the K-12 grade level spectrum of content, 
include new content (e.g., mathematical modeling), focus on developing content across multiple 
grade levels (e.g., algebra), and seek to develop teachers pedagogical content knowledge for 
teaching. The purposes and formats for the courses vary across grants, but there is consistency in 
the perceived need for them within endeavors to encourage challenging content and curriculum. 
However, the grants are still in progress and evaluations of the impacts on teaching and learning 
are still in progress.   

Mathematics content and curriculum play varying roles within the portfolio of MSP grants. 
The projects are designing curriculum, evaluating curriculum, and conducting teacher 
professional development efforts related to content and curriculum that should all lead to 
increased student achievement in mathematics. Projects are introducing new content, developing 
teachers’ content knowledge, and working with state standards and assessments to evaluate their 
impact. Further investigation will examine the role different purposes for content play in a 
project. More specifically, how does content drive (or not) grant activities? What are the 
implications for a focus on different content areas? For definitions of challenging content, it is 
then critical to ask how challenge plays a role in content decisions in a project. What is 
challenging for one setting may not be challenging for another. “Challenging” may mean 
introducing new content or ensuring all students have equal opportunity to content in order to 
reduce achievement gaps. The second definition is an equity question based on the need for 
challenging curriculum for all students.  
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We report on an instructional experiment designed to support K-12 teachers conceiving of the 
composition of linear functions as combining transformations in a context involving an 
imaginary elevator. We discuss the design and implementation of instruction in terms of a two-
phase cycle involving the formulation of an initial and then a revised local instructional theory 
for the concept of function composition. Our empirical results are embedded within this 
discussion and presented in two interrelated parts. We highlight teachers’ thinking regarding 
addition of integers in relation to the elevator context, their thinking regarding formalizing the 
composition operation in relation to this context, and we articulate our principled efforts to 
leverage the former in support of the latter. 

Introduction 
The reform-based Grade 3 Investigations Series curricular unit Up and Down the Number 

Line (Tierney, Shulman-Weinberg, & Nemirovsky, 1995) entails a context (an imaginary 
elevator) designed to support children’s thinking of integers as transformations and addition 
(implicitly) as composition. We report on our study that employed this unit as a point of 
departure for an instructional sequence designed to support K-12 teachers’ understanding of 
function composition.  

Our instructional sequence adapted and extended aspects of the Investigations unit to develop 
the concept of function composition in the elevator context. Our aim was to help teachers 
develop coherent conceptions of function composition - a concept that is not well represented in 
the research literature but with which college students apparently have difficulty (Engelke, 
Oehrtman, & Carlson, 2005).  

We first describe the setting for the implementation of the instructional sequence and 
elaborate initial conjectures about students’ conceptions and learning (Simon, 1995). We then 
provide selected findings from our retrospective analysis of the implementation of the 
instructional sequence. We discuss these findings with an eye toward revising our initial 
conjectures. Finally we describe the revised local instructional theory and our plan for further 
elaboration of it in order to support the development of the concept of function composition as 
combining transformations. 

Methodology 

Local Instructional Theory 
Although we expect our project to result in the production of an instructional sequence, our 

overall goal is to produce something more generalizable than a specific sequence of instructional 
activities – a local instructional theory. The purpose of the local (content specific) instructional 
theory is to provide a rationale for the instructional activities that draws on the researchers’ 
models of students’ emerging and developing conceptions in relation to their engagement with 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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designed instruction. Local instructional theories feature three key ingredients, the description of 
which is adapted from Gravemeijer (1998): 

• Identification of students’ informal knowledge and strategies on which the instruction can 
be built. 

• Design principles for instructional activities that can be used to evoke these kinds of 
informal knowledge and strategies. 

• Design principles for instructional activities that can capitalize on these informal 
understandings in order to meet the goals of instruction. 

We use this description as a framework for our research. Our results are presented in two 
sections. First, we describe the teachers’ (our students) informal ways of thinking about integer 
addition in the elevator context. We identify those ways of thinking that seemed to provide a 
starting point for developing the concept of function composition, and we discuss aspects of the 
instructional sequence that helped to evoke these ways of thinking (or seemed to evoke less 
productive ways of thinking). We then describe our efforts to capitalize on the teachers’ ways of 
thinking about integer addition in the elevator context in order to develop the notion of function 
composition. We also describe the teachers’ ways of thinking about function composition that 
emerged as they interacted with the instructional tasks. A retrospective analysis of this first cycle 
of design and implementation guided the development of a revised instructional sequence (and 
conjectures about the anticipated learning) on the way to developing a local instructional theory.  

Setting and Participants 
We engaged 4 cohorts of K-12 teachers with the sequence of instructional tasks over four 2-

hour-long sessions occurring on consecutive days. The sequence was part of a course designed 
for a three-week summer residential institute for K-12 mathematics teachers. Instruction 
generally featured an inquiry-based approach to concept development. The tasks were designed 
to evoke the participants’ informal understandings and strategies and to leverage these as the 
foundation for the development of the more formal or conventional mathematics. Activities 
typically began by having teachers first consider a problem or issue in private and then asking 
them to share their thinking with a partner in anticipation of small group interactions and whole 
class discussions. Participants were encouraged to compare and contrast ideas, to question ideas 
and explanations, and to offer or ask for elaborations of ideas. These classroom interactions were 
captured with two video cameras. The written work of individual teachers was digitally 
photographed, as were the posters created by each group.  

Preliminary Local Instructional Theory 

Step 1: Thinking of Adding Integers as Combining Changes (The Elevator Context).  
The exploration of the concept of function composition was grounded in the Investigations 

curricular unit already mentioned (Tierney, Shulman-Weinberg, & Nemirovsky, 1995). This unit 
develops the idea of net change in a context involving an elevator in an imaginary skyscraper 
that extends infinitely in both vertical directions. The elevator’s push buttons are labeled with 
integers representing changes (magnitude and direction) in position rather than positions (floors 
of the building). Thus, pressing a particular button can be seen as making the elevator move that 
many floors up or down the skyscraper, depending on the sign of the button’s numeral. The 
curricular unit employs this context to emphasize thinking of integers as transformations 
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(changes) in position and the chaining together of such transformations to obtain a net change in 
the elevator’s position.  

Our plan was to have teachers first conceptualize the operation of adding integers as the 
operation of combining changes. The rationale for starting the sequence in this way was two-
fold. First, this way of thinking about integers involves implicitly thinking of integers as 
functions. We expected this way of thinking to support both the transition to formulating the 
changes as functions and the eventual formulation of function composition as a way to combine 
changes. Second, we expected that the teachers’ understanding of addition as a binary operation 
(one that takes two integers as inputs and produces an integer as an output) would support their 
thinking of function composition as an operation that takes two functions as inputs and produces 
a function as an output.  

Step 2: Thinking of Changes as Functions 
The second part of our instructional plan was to have teachers formulate each change (or 

change button) in the elevator context as a function. This was to be done by first asking the 
teachers to articulate the relationship between a starting floor, a change button, and the resulting 
ending floor (i.e. START + CHANGE = END). The next step was to introduce function notation 
as a way to capture this relationship (for a specific button). For example, the change button, +2, 
can be associated with the function f+2(S) = S + 2. Our intent was for the teachers to associate this 
notation with 1) the change (process) associated with a given change button and 2) the number 
(object) used to label the button. Thus, the goal was to support the teachers’ ability to conceive 
of functions as both processes (that can be combined to form other processes) and objects (that 
can be combined to form other objects).  

Step 3: Thinking of Composing Functions as a Way to Combine Changes 
Our overall goal of instruction was to have the teachers develop the idea of function 

composition as the linking of processes in order to produce another process. The final step of our 
instructional plan was to engage the teachers in thinking about how to formulate a function 
associated with a combination of two change buttons. Our strategy entailed having teachers think 
of the combination of changes as a two-step process in which the result of the first step (the 
ending floor after pressing the first button) is seen as the starting point for the second step (the 
starting floor before pressing the second button). We conjectured that this line of reasoning 
would support their thinking of substituting the formal rule for the first function (say, f+3(S) = S + 
3) into the rule for the second function (say, f+2(S) = S + 2) in order to produce the new function 
rule, f+5(S) = S + 5, associated with the combination of the two buttons. This intended line of 
reasoning is expressed by the following string of equalities:  f+2(f+3(S)) = f+2 (S + 3) = (S + 3) + 2 
= S + 5 = f+5(S).  

Going into the implementation phase, we were aware that it is possible to produce a formula 
for such a combination simply by combining two changes to obtain a single change and then 
writing a function rule for this change. This approach does not involving thinking of function 
composition in the way we intended because it does not employ two function rules to produce 
the new function. Instead, the two changes are used to find the new change, which is then used to 
produce the new function. (This distinction will become clearer when we discuss our results.) In 
order to focus the teachers’ attention on the process of composing functions as we intended, we 
asked them to describe a mathematical way to combine the two function rules in order to obtain 
the new function.  
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In sum, our overall goal in this stage of the instructional sequence was to have the teachers 
develop the notion of function composition (and the associated symbolic operation of 
substitution) as a way to formalize the process of linking changes. The remainder of the paper 
will focus on the first and third steps of our instructional plan.  

Results Part 1: Ways of Thinking about Adding Integers in the Elevator Context  
As a first task, we asked the teachers to describe what it meant to add two integers in the 

elevator context. This task turned out to be quite challenging for them: They tended to impose 
their existing view of integers as positions on the number line onto the curricular unit. Most 
described an integer exclusively as representing a floor of the building and not as a change in 
position. This interpretation had a dramatic impact on the teachers’ ability to make sense of 
addition in the elevator context. From our perspective, the process of successively pushing two 
change buttons corresponds to adding two integers in the elevator context and so addition can be 
seen (at least implicitly) as the composition of functions. This way of thinking provides a good 
point of departure for developing the notion of function composition. It is also reasonable to 
think of integer addition in this context as combining (adding) a change and a position to obtain a 
new position. This way of thinking supports conceiving of a specific button as a function, but 
does not provide an informal way to think about function composition in the context.  However, 
many of the teachers struggled to develop a different interpretation - one in which both addends 
were positions. The teachers were not able to generate coherent interpretations of this type. 
While they interpreted integers as floor positions, they associated the operation of addition with 
the process of moving from one floor to another (see Alice’s response below). We coded the 
teachers’ responses to capture the apparent structure of their ways of thinking about adding 
integers in the elevator context. The three most common ways of thinking are presented below:  

 

Way of Thinking Example Response 

Integers are Floors: Addends are both 
floors, addition is loosely associated with 
moving from one floor to another.  

Alice: Adding two integers is like riding the 
elevator up from a start to an ending floor 
where the integers are the floor positions. 

Adding a Change to a Position: The 
start floor and the change are the addends. 
The sum is the ending floor. 

Erika: If you add the net change to the 
starting floor, you will get your ending floor. 

Combining Changes: Two changes are 
combined resulting in a net change. Pam: It is the combination of 2 movements of 

the elevator. It is the result after the elevator has 
gone through 2 movements.  

Discussion Part 1: Implications for a Revised Local Instructional Theory 
Our analysis suggests that a modification of the starting point for the instructional sequence 

is in order. In retrospect, the focus on integers and integer addition seemed to be unhelpful 
because it appeared to evoke the teachers’ conceptions of integers as positions not changes in 
position. However the change elevator context itself did turn out to be a productive one for 
developing the notion of function composition. Thus, we conjecture that it might be more 
productive to focus teachers’ attention initially on combining changes in the elevator context and 
not on interpreting the meaning of integer addition in this context. One possible argument against 
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such a revision is that the teachers’ conceptions of integer addition as an operation would not be 
tapped to support the development of function composition as an operation. However, it seems 
likely that 1) the teachers can think of the combination of change buttons as an operation and that 
this could support the development of function composition as a mathematical operation and 2) 
the teachers might still spontaneously draw on their understanding of integer addition even 
without our explicit attention to the fact that this system is isomorphic to the integers under 
addition.  

Results Part 2: Ways of Thinking about Composing Functions in the Elevator Context 
The final task situated within the elevator context involved representing each elevator change 

button as a linear function and thinking about how to create such a representation for a 
combination of two change buttons. After the teachers had some experience representing 
individual change buttons as functions, we asked them to consider the two-button changes given 
by the functions f-5(x) = x - 5 and f+3(x) = x + 3 and to write a single function rule to express the 
combination of these two changes. Because the study was conducted in a classroom setting, for 
the most part it was not possible to track individual students’ learning as they worked on these 
tasks. However, by considering snapshots of different individuals’ ways of thinking we are able 
to identify steps along a possible learning trajectory. 

Combining the Changes and then Constructing the Function 
Denise created the function for the combination of changes by first combining these changes 

to get a net change and then writing the function associated with this change: 
 

Denise: So it went down by 5 floors […] it started at any floor, and then came back up 3 […] and 
the net change between where you start and where you end is minus 2. So no matter what floor 
you start on, your net change is always going be -2. 
 

Denise does not use an algebraic procedure to combine the function rules. Instead, she 
proceeds by combining the transformations and then writing a function for the resulting 
transformation, effectively bypassing the symbolic process of substituting the rule for the first 
function into the second function. It is also important to note that Denise’s way of thinking 
appears to be deeply embedded in the elevator context. It seems that she is not reasoning about 
functions at all (at least explicitly), but is reasoning about changes in this context and then 
translating her results later into function notation. 

Augmenting the First Function with the Second Change 
Jim’s first attempt involved adding the two function rules: (x – 5) + (x + 2). He realized that 

he should not have 2x in his result and then reconsidered the task. He went on to develop an 
approach that was more symbolic than Denise’s. However, like Denise, his reasoning was more 
about combining changes than combining functions. 

 



Teacher Knowledge   Vol.2-795 

 

Jim’s Written Work 

 
 

Jim combined the two functions, but not by substituting the output of one into the other. In 
response to the task of creating a function for the combination of the two buttons, he essentially 
created a new function from scratch, adding the first change and then the second to the starting 
floor x (see Figure above). In response to the task of describing a procedure for combining the 
two functions rules, Jim used a two-step process. He first thought of the rule for the first 
function, x + (-5) as expressing the result of the first part of the trip, and then he considered the 
result of going up an additional 3 floors from this result, expressing symbolically as (x + (-5)) + 
(+3). We note that this way of thinking is subtly different from substituting the output of one 
function into the other – it involves seeing the first function rule as expressing the result of the 
first part of the trip, and then applying the transformation associated with the second function 
rule to this result.  

Using Notational Devices to Facilitate Substituting 
An elementary teacher, Susan, introduced subscripts to deal with the fact that the starting 

floor for the second part of the trip was not the same as the starting point for the first part of the 
trip. This allowed her to write an expression, n1 + (-5) = n2, that expressed the fact that this 
second starting floor was the ending floor of the first part of the trip. She then was able to use 
this expression to make a substitution that resulted in the desired function rule. After doing so, 
she was able to do the substitution without using this notational device.   

 

Susan’s Written Work 

 

Discussion Part 2: Implications for a Revised Local Instructional Theory 
The approaches that Jim and Susan developed to deal with the tasks are especially relevant 

for our revision of the local instructional theory. Our data suggests that these two students were 
not drawing on prior procedural understanding of function composition – in fact, the evidence 
suggests that they were not aware this was function composition until a later juncture in the 
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instructional sequence when this term was introduced. Note that, like Jim, Susan first attempted 
to combine the two functions by adding their rules.  

Since Jim and Susan’s reasoning was apparently based on the elevator context, we can learn 
something about how the symbolic procedure of substituting can emerge for students as they 
work in this context. From Jim’s response, we see that it is possible to develop a symbolic 
procedure in this case that does not explicitly involve substitution. Because the functions here are 
of the form, f(x) = x + b, it is possible to easily compose them without substitution. One merely 
augments one of the functions by adding the change part (the “+b”) of the other function. This 
suggests that it may be useful to introduce an additional function type that does not allow this 
approach.  

From Susan’s response we see that it may be difficult to think of the rule for the first function 
as an input for the second function. Note that a student needs to realize that this expression can 
stand for a floor (the ending floor) and not just a transformation associated with the function.  
They then need to combine this realization with a construal of this ending floor as the starting 
floor for the second part of the trip. We contend that construing this duality (Gray and Tall, 
1994) entails significant conceptual complexity and coordination. Susan was able to introduce a 
notational device to help her manage this complexity. The use of subscripts allowed her to 
encapsulate the rule for the first function and think of it as an input of the second function. Later 
she was able to set this notational device aside and perform the substitution in the more standard 
way.  

Revisions to Preliminary Local Instruction Theory / Directions for Further Research 
Our findings suggest a number of possible refinements of the instructional theory. First, we 

found that the teachers had difficulty setting aside their tendency to think of integers exclusively 
as positions, even in a context designed to support thinking of integers as transformations. This 
finding suggested a need to rethink the point of departure for the instructional sequence.  In 
preparation for further research to develop our instructional theory, we have designed a computer 
micro-world that aims to ground students’ thinking in the dynamic elevator context. In this 
micro-world, the dominant feature is the idea of change. The goal is that as a student works with 
this micro-world, it will become clear that the elevator buttons represent changes and that these 
can be combined to generate other changes. 

After the teachers became comfortable thinking in terms of combining changes in the 
elevator context, we found that they were able to leverage their ideas in different ways to think 
about function composition. These different ways of thinking may suggest plausible signposts on 
the way to developing a rich understanding of function composition. Two particularly important 
ways of thinking are expressed by the approaches of Jim and Susan. Jim’s approach makes it 
clear that students can resort to symbolic procedures other than substitution to compose the kind 
of functions associated with the change buttons in the elevator context. One possible approach 
would be to introduce multiplier buttons into the elevator context (e.g. the “×4” button would 
take the elevator 4 times as far from the 0 floor). This kind of button would give a function of the 
type, f(x) = ax. It is much more difficult to compose this kind of function with one of the type, 
f(x) = x + b, without performing a substitution. Susan’s approach suggest that it is important to 
make sure that students can see the rule of one of these functions as also representing a floor – 
the ending floor of the first part of the trip and the starting floor of the second part of the trip. Her 
approach also suggests a way to assist students in handling the complexity involved with 
thinking flexibly about, and working with, the rule of a function when composing two functions. 
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Introducing a notational device to help a student think of this expression as a floor may support 
their ability to link the two processes and compose the two functions.  

As we continue to work to develop the local instructional theory, the next step will be to 
conduct a series of teaching experiments (Steffe & Thompson, 2000) in order to more carefully 
elaborate a path by which students can develop the concept of function composition as a way to 
formalize the process of combining transformations.  
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Textbooks are use to convey the national curriculum. After observing and interviewing Mexican 
teachers on their use of mathematics textbooks, we realized that the majority did not fulfill the 
expectation educational authorities had. Main factors are the lack of mathematical knowledge, 
lack of understanding of both the educational approach proposed by the Ministry and the 
rationale the textbook authors had when writing and designing the books.  Research on this area 
is scarce and necessary. 

Introduction 
Textbooks are one of the resources most used by teachers in classrooms (Freeman et al, 

1989; Robitaille et al., 1989; Robitaille, 1995; Stodolsky, 1988; Moren, 1999; Schmidth et al, 
1997; Pepin et al, 2001; Boaler, 1997), as well as one of the most important means of conveying 
mathematics. Even considering the growing use of new technologies, a survey conducted in the 
United Kingdom revealed that about 90% of schools argued that a set of "good textbooks" was 
indispensable and effective to raise educational standards, while only a half of the schools judged 
the appropriate use of new technologies as valuable. (Schoolbook Spending, 2002).  Textbooks in 
Mexico, where this research took part, are free and compulsory for all children in elementary 
school, which reveals its importance in the National Educational System. 

In broad terms, a textbook serves two basic purposes: conveying educational reforms and/or 
curriculum (Amit and Freid, 2002), and providing support to teachers in conveying knowledge, 
organizing their classes and material, as well as being the source of activities and drills. In either 
case, there is scant research substantiating the achievement of such purposes. 

In the international sphere there has been very few research efforts addressing teachers' 
understanding and use of mathematics textbooks. For the most part, such research has been based 
on questionnaires, and not on observational work on the use of textbooks. 

In England, Moren (1999) observed how teachers use textbooks. Her findings reveal that: a) 
each teacher made use of the same material in his or her own way, a fact that contradicts the 
notion that books determine or impose a particular practice; and b) a single teacher was found to 
use the same material in different ways with different groups, primarily because of the 
characteristics of each group.  Ball and Feiman-Nemse (1998) found that although teachers were 
taught that the textbook is a source of activities to access knowledge, in practice they used it as a 
class organizer and guideline. This happened because teachers were unaware of the contents to 
be taught, because inexperienced teachers lacked the self confidence to design their own lessons, 
and because of school authorities’ stress on the use of the textbook. 

On the other hand, if a textbook writer is going to use research results in order to write about 
each topic, research will be focused on the topic itself and not on how the topic should be 
addressed within a textbook and how the teacher is going to use that textbook. Furthermore, 
designers and publishers do not make decisions based on textbook design research, and very 
rarely do they interact with the authors themselves (Evans et al, 1987). Ginsberg, Klein, and 
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Starkey (1998) reviewed the textbook production and dissemination process in the United States, 
and reported the complicated dynamics between researchers, government, professionals, 
publishers, authors, and teachers, and in consequence, the use of the textbook in a classroom 
becomes the least heeded factor when it comes to decision-making. 

In the case of Mexico, every year, the Ministry of Education (SEP) publishes a series of free 
books by grades and subject matters, which are distributed to all elementary schools in the 
country. This is one of the primary means of representing and conveying the proposed 
curriculum. 

The mathematics textbook has 5 units, each one with around 17 lessons.  Each unit has 
lessons of all seven areas that articulate the curriculum: Number, Measurement, Geometry, Data 
analysis, Statistics and Probability, and Proportionality. There is different amount of lessons for 
each area, and the lesson sequence relating the areas is not evident. 

Textbooks are based on a problem solving approach, as a “driving force that promotes 
mathematics learning and students capacity to think” and states “the need to start off from 
activities in which students use mathematics as a tool to solve problems; activities in which 
previous knowledge and informal procedures can be call for in order to solve mathematics 
problems; activities based on concrete experiences that encourage teamwork” (SEP, 1993, p. 15). 
Students should have the necessary tools to construct their own knowledge through problematic 
situation. 

The scheme proposed to use the textbook is to use its lessons as a starting point when giving 
a class. Each lesson has a problematic situation to be address, and does not explain or review the 
mathematical concepts needed to solve the situation, nor does it have exercises which will 
reinforce the ability or concept learned.  Children are expected to ‘do’ mathematics for the 
learning process to take place. 

The Ministry of education has not been able to convey how teachers should use the textbook 
in order to meet the target (Santos et al, 2004) thus leaving the responsibility on the teacher 
itself. By conducting an ethnographic survey, Carvajal (2001) verified that first-grade teachers 
modify the mathematics textbook and, as a result, the book took on different perspectives and 
scopes, according to each teacher’s personal background. Ruiz (2003) interviewed 29 primary 
school teachers in order to get their opinions on the free textbooks supplied by the government, 
and also to find out whether teachers were aware of the underlying approach of the math 
textbooks (based mainly on problem solving). Sixty per cent of responding teachers reported 
being unaware of the approach; the remainder knew the approach but reported having difficulties 
putting it into practice. Regarding textbook content, the responding teachers pointed out that, for 
the most part, it presented a degree of difficulty for them; most of them recognized they ignored 
how to use the books in the classroom, because their rationale was not easy to understand. 

Starting Point 
A teacher’s interpretation of the curriculum through textbooks and the use he/she makes of 

the material is closely related to multiple categories of knowledge that enable a teacher to, first 
interpret, and then mediate the curriculum in their practice by using the book as a means to 
achieve curricular targets. 

According to Shulman (1987), teachers transform curricular contents according to their own 
epistemological conceptions. Transforming the meaning of the curriculum results in using the 
textbook in a personalized manner, and not necessarily meeting the expectations of the 
educational authorities. 
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The present study is part of a research effort intended to find out how teachers use math 
textbooks throughout the primary school years, in order to propose teacher-support material, as 
well as potential changes to existing textbooks. The first stage, as reported here, seeks to 
determine the ways teachers use textbooks and clarify why they do so. 

Method 
To evaluate how Mexican teachers understand and use National Primary Math Textbooks, 

information was collected from four sources:  
� No-participant observation of 12 primary school teachers during a school year.  Five one 

week visits to their classroom where done, in order to register how teachers used the 
mathematics textbook.  An observation guide was designed in order to realize a 
qualitative analysis of the data collected. 

� Interviews to the same 12 teachers at the end of the year were carried out in order to 
know their opinion on the textbook, positive and negative aspects of the textbook itself 
and the way they used it with the students.  Results of the interviews were codified in 
order to complement the information gathered through the observations. 

� A survey to 400 elementary teachers was carried out in order to know: the use they gave 
the textbook (to introduce a topic, to exercise, to reaffirm knowledge, to asses, etc); the 
level of difficulty they considered the textbook had; the amount of time needed to 
accomplish the textbook lessons; the clarity of activities and instructions; the 
shortcomings and assets the textbook has; etc.  A non parametric analysis using chi 
square was done. 

� Opinion poll. Results from the above sources showed that the 6th grade textbook had its 
drawbacks.  Fourteen teachers and 21 students were asked to rank textbook lessons in 
order of difficulty, in order analyze if there is any sort of consensus on topics or lessons’ 
difficulty.  

Findings 

Observation and interview (12 teachers) 
Two teacher profiles were outlined from the way they used the textbook (Figure 1). The way 

they use it does not fulfill the authority’s scheme of using the textbook. 
Ten out of the twelve teachers could be describe with one of these two profiles. Only two 

teachers used the textbook as expected by authorities, that means, 1) using the problematic 
situation of each lesson as a staring point for each topic they had to address, 2) encouraging 
students to discuss and work in teams, 3) analyze the process and not only focusing on the 
answers, and 4) helping students construct their content knowledge through the activities. 

Survey (400 teachers) 
Primary school can be divided in three cycles: 1st cycle, first and second grade; 2nd cycle, 

third and fourth grade; and 3rd cycle, fifth and sixth grade. 
When asked about the length of each lesson of the textbook (Table 1), teachers of the 3rd 

cycle in comparison to the other cycles, considered them inadequate because they were very long 
(x2=10.39, significant level=0.034) 
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Use of textbook Profile 1 Profile  2 
Frequency of use Three or more times a week Two to three times a week 
How they use it Guide students throughout the 

lesson, reading it all together out 
loud. 

Answers are given for each 
activity only to rectify it they are 
right or wrong.  No process 
analysis. No discussion. 

Explains what the activity is 
about. 

Reviews or explains the 
concepts needed to solve the 
activities. 

 

Purpose of  working 
with the textbook 

Complete textbook lessons in 
order to fulfill authority’s 
demands. 

They teach mathematics with 
other printed material  

As an activity source. 
To decide the order of the 

topics to teach. 

Clarity on the content 
and goals of the lessons  

No clarity No clarity 

Clarity of activities and 
instructions 

No clarity, they need to be 
explained to students 

No clarity, they need to be 
explained to students 

Difficulty of lessons In general is the adequate 
level of difficulty, but often there 
are activities they have to skip 
because the teacher does not 
understand it.  

Level of difficulty higher 
than what students can do. 

Figure 1. Observation and Interview results 

 
 Adequate Long Short 

1st cycle 63.3% 11.9% 24.8% 
2nd cycle 65.8% 13.7% 20.5% 
3rd cycle 52.4% 26.7% 21.0% 

Table 1: Percentage of teachers that consider the lessons adequate, long, short. 

 
Teachers need at least four hours of work on each lesson, because the design of the latter 

does not provides the background information required to address the lesson or the drills 
necessary for students to practice what they have learned, or a closing to confirm the learning 

With regard to how clear teachers think the instructions to follow the activities are given in 
the textbook (Table 2), again teachers of the 3rd cycle find them more difficult than the rest of 
their colleagues (x2=5.185, significant level=0.07) 

 
 Clear Not clear 

1st cycle 78.5% 21.5% 
2nd cycle 75.0% 25.0% 
3rd cycle 65.0% 35.0% 

Table 2.  Percentage of teachers that think the instructions are clear or not 
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Table 3 shows that teachers of the 3rd cycle report that the difficulty level of the lessons is 
higher than what their students are able to understand, not being the same case for their 
colleagues (x2=49.349, significant level=0.00).  

 
 Adequate Lower Higher 

1st cycle 78.7% 10.2% 11.1% 
2nd cycle 70.6% 7.3% 22.0% 
3rd cycle 45.6% 1.9% 52.4% 

Table 3. Level of difficulty of the textbook lessons in relation to what their students are 
able to understand. 

The results of the survey revealed that 5th- and 6th-grade teachers exhibit a certain degree of 
mistrust in the use of the textbook, primarily for the following reasons: a) being unsure of the 
objectives and contents dealt with in each lesson, because of their high degree of difficulty; b) 
not understanding and consequently being unable to deal with the approach required to use the 
textbooks, and c) having difficulty to resolve the proposed problems and activities. 

Opinion Poll (14 teachers and 21 students) 
Because the level of the lessons is one of the main difficulties teachers reported in connection 

with not being able to use the textbook as expected by the authorities, an opinion poll on the 6th-
grade textbook was carried out to evaluate the level of difficulty teachers and students consider 
the textbook lessons had.  The textbook contains 87 lessons. 

Students and teachers used a scale from 1 to 5 (1 very easy – 5 very difficult) to evaluate how 
difficult each lesson was with regard to understanding it. Teachers also evaluated each lesson 
considering the level of difficulty when teaching it. Lessons were classified into: easy, ‘normal’, 
and difficult. 

Results showed that 50 lessons out of 87 were considered easy to understand by students and 
easy to understand and teach by teachers.  

Eighteen lessons out of 87 were considered difficult to understand only by teachers’ outlook 
but not by the students. 

All teachers and students agreed that 19 out of 87 lessons were difficult to understand and 
teachers thought as well they were difficult to teach. 

In table 4 it can be noted that the majority of lessons that work with fractions and 
measurement are regarded as difficult to understand by teachers and students.  Students and 
teachers have problems with half of the lessons that deal with proportionality and data analysis.  

Content / Area  % of lessons reported as difficult 
Fractions (as part of Numbers) 88 
Measurement 75 
Decimals (as part of Numbers) 50  
Proportionality 50 
Data Analysis 18 
Numbers 17 
Probability 12 
Geometry 9 

Table 4. Percentage of lessons (Sixth grade mathematics textbook) reported as difficult 
by teachers or students 
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Conclusions 
The factors preventing teachers from using the textbook as it was conceived by the author 

and the education authorities are as follows: 
1. Difficulty in mastering math contents, which might reveal either that math teachers are 

deficiently trained, as they are expected to optimally manage the contents they are meant to 
teach, or that the book does not fit the realities of Mexican teachers and students. 

2. One of the main factors why teachers do not fulfill the authority’s expectation on how to 
use the textbook is the rationale of it. The textbook is based on problem solving activities. Each 
lesson has a problematic situation to be addressed, and does not explain or review the 
mathematical concepts needed to solve the situation, nor does it have exercises which will 
reinforce the ability or concept learned. As well, the solving problem approach conveyed in the 
textbook, causes each lesson to comprise various math contents, an issue that confuses teachers 
and makes them miss the objective of the lesson. This approach to teaching and learning 
mathematics is not understood by the majority of the teachers. Teachers need to know what 
exactly are they teaching and what specific mathematical content their children are going to 
learn. 

3. The discrepancy existing between the teacher’s mastery and use of the book, and the 
conception of the latter by the educational authority reveals a need for both players to establish 
better communications supported by field research work. 

Discussion 
It is already stated that the success in using a textbook depends on teachers training. The lack 

of teachers’ expertise might make textbooks themselves not be the ideal medium to promote 
meaningful learning. Thus, the fact that teachers do not fulfill educational authorities and 
authors’ expectations when using the National Mathematics Textbook is not surprising.  

The rationale of the textbook is that mathematics is meant to be meaningfully learned 
through learning activities.  Based on Ausubel’s theory of learning, activities can range in a 
spectrum from being rote learned to being meaningfully learned; and the way to present the 
information to be learned can be of three styles: receptive learning, guided discovery learning, 
and autonomous discovery learning.  Novak (1977) allocated different learning activities in a 
matrix based on Ausubel’s theory.  Textbooks are found on the extreme of activities leading to 
reception learning, i.e. the regularities to be learned and their conceptual labels are presented 
explicitly to the learner. Textbooks presentations are also found to be almost in the middle 
between rote and meaningful learning, but tending more to the rote end.  This is no surprise and 
it would be difficult for it to be otherwise.  The author’s intention might be to structure the 
textbook lessons in order to guide to student to discovery learning, but, since the relationship 
between the learner and the textbook is static, the author’s influence on the material attempts to 
be meaningful by relying on generalizations of what is considered meaningful for students. 

It seems author’s write textbooks putting themselves in the teachers’ role, expecting the 
activities they design to fulfill the educational approach they support as they themselves would 
carry them out.  If this is the case, this mode of conceiving textbooks has not proven to be 
successful. Research on how teachers use textbooks should be the backbone of authors and 
authorities rationale for writing textbooks. 
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This research traces two years of one sixth-grade teacher’s developing pedagogical content 
knowledge defined as coupled student thinking and teacher assistance Discourses. Systemic 
Functional Linguistics coding is applied to a chronological string of student-teacher interactions 
about ratio. This provides detailed linguistic evidence that teachers develop PCK from their 
teaching, an often spoken claim that is not well documented or understood. 

This research traces two years of one sixth-grade teacher’s developing pedagogical content 
knowledge defined as coupled student thinking and teacher assistance Discourses. Systemic 
Functional Linguistics coding is applied to a chronological string of student-teacher interactions 
about ratio. This provides detailed linguistic evidence that teachers develop PCK from their 
teaching, an often spoken claim that is not well documented or understood. 

Introduction and Theoretical Framework 
This research will provide detailed linguistic evidence to support the commonly stated but 

not well documented claim that teachers develop pedagogical content knowledge (PCK) in the 
act of teaching. Some evidence supporting this claim indicates that unexpected student ideas 
trigger teachers to reevaluate their pedagogy (Sherin, 2002), and a teacher who recognized 
student thinking in video from her classroom used more effective assistance in subsequent 
teaching (Seymour & Lehrer, resubmitted). Systemic Functional Linguistic (SFL) (Halliday, 
1978; Lemke, 1990) is particularly useful for tracing PCK development because it systematically 
documents how people make meaning by coordinating three separate aspects of language 
integral to classrooms; the content, the interpersonal relationships, and the continuity of 
discussions across time. This fine-grained analysis is intended to enhance the trustworthiness of 
previously used coarser-grained discourse analyses, and also better understand linguistically how 
PCK emerged across classroom conversations.  

To provide detailed convincing evidence that PCK developed from classroom teaching, SFL 
coding is used to trace the linguistic features of chronological strings of teacher-student 
conversations. The participants are Ms. Gold (all participants names are pseudonyms) and two 
cohorts of her sixth-grade students who were engaged in a design experiment (Cobb, 2003) with 
an innovative curriculum unit uses multiple representations to ground understanding of slope as a 
ratio. This string of conversations was developed based on a model of PCK as interanimation 
(Bakhtin, 1981) between two Discourses (Gee, 1999) recognizable to the teacher. In this model 
(Seymour & Lehrer, resubmitted) a teacher with PCK recognizes the ways in which students talk 
(and act) during mathematical activity, and can recognize/predict teacher’s talk (and actions) 
effective for orchestrating students’ thinking toward accurate mathematical understanding. This 
previous research focused on orchestrating student understanding of slope. The current string of 
conversations capture Ms. Gold interacting with students who are thinking about ratios in two 
distinctly different ways called between and within (Lamon, 1994; Lehrer et al., 2000) across 
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different representations of ratio. These representations include mathematically similar rectangle 
cutouts, equations, coordinate graphs, function tables, and slope (Seymour & Boester, 
submitted). The overall goal is to coordinate the student thinking and teacher knowledge research 
emanating from this design experiment, and bolster it with a more detailed linguistically-based 
body of evidence to better support the claim that Ms. Gold’s PCK did indeed emerge from 
classroom interactions. SFL analysis can also provide a better description of how this happened. 

Method 

Participants 
The primary research participant, Ms. Gold had multiple advanced degrees and 16 years of 

experience at both the elementary and middle school levels. She won several teaching awards 
during this time, and participated in several university-affiliated research projects investigating 
teaching and learning in subject areas including mathematics and science which she published. In 
each cohort of students of approximately 20 students the socio-economic status spanned the 
range from homeless to upper-middle class, the ethnicity was mixed (Caucasian, Hmong, 
African American, Asian), and some received special education services.  

Classroom procedures  
Teaching routines consisted of summarizing previously learning, laying out the task for the 

day, and sharing findings from the task in full class discussions. During the first year, teaching 
varied in length from one to three hours for 30 days across 10 weeks beginning in March. During 
the second year, sessions varied from one to two hours for 14 days during three weeks beginning 
in May. This two-fold increase in instructional efficiency is often characteristic of sequential 
design studies (Cobb et al., 2003).  

Data 
Data sources for both years include video-taped planning sessions, field notes, videotaped 

classroom instruction (with debriefing interviews when possible), the teacher’s journal, and a 
video-stimulated structured interview during which the teacher viewed video episodes from her 
classroom. The video camera always followed the teacher. During the first year of the study, 
each class lesson was videotaped. During the second year, six lessons were videotaped twice at 
the beginning, twice in the middle, and twice at the end of the unit.  The analysis here draws 
upon all of these sources but focuses on the interviews and SFL analyses of the videotaped 
instruction.  

Video-stimulated interview collection and analysis 
During each interview, Ms. Gold viewed the same episodes using software that enabled her 

to view a transcript of the classroom conversation and the video simultaneously. The interviewer 
(JS) interrupted each episode at points immediately preceding assistance was rendered to 
students by Ms. Gold. At each point, the interviewer asked: (a) At this point, what do you believe 
the student(s) in the clip were thinking?, and (b) Today, what would you do to assist this student? 
Ms. Gold was interviewed three times during the second year, twice before she began teaching 
the unit and once after instruction was completed.  

This analysis focuses on Ms. Gold’s reactions to one of five video episodes viewed in each 
interview. The student in the clip understood slope as a repeating pattern of steps, for example, 
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rise 4 and run 1 between points on a line. This student’s understanding was challenged with a 
fraction: rise 2 and run ½ . This did not appear on the surface to fit the expected rise 4, run 1 
pattern (although it too is a 4:1 ratio). Ms. Gold attempts to help the student understand using 
several different representations. The student understands when Ms. Gold asks her to measure to 
find the ratio within the sides of a single 1 ½ × 6 rectangle cutout (6 is four 1 ½ units).  

The interviews were coded for themes that the teacher discussed when viewing this video 
episode each time. These thematic codes were used to generate a collection of videoclips in 
Transana 1 from both years of classroom videotape. 

SFL Analyses 
A longitudinal collection of clips focusing on between and within ratios were selected.  SFL 

was used to separately code and then coordinate three different aspects of meaning in context: 
the disciplinary content, the relationships among people, and the continuity of meaning over 
time. Each of these three categories have multiple aspects that are coded linguistically to build a 
coherent picture of the meanings Ms. Gold built over time through her interaction with her 
students. The analysis of the disciplinary content are called ideational and includes coding of 
different types of processes (verbs), nouns, circumstances, and logical connections. The 
relationship analysis is called the interpersonal analyses and includes coding of the modality, 
intonation, mood, evaluation and attitude. The continuity is called the textual analyses and 
includes coding cohesion, conjunction, clause-combining, thematic development, and 
nominalization. These three aspects build a coordinated detailed picture of the meaning the 
teacher is making in and across her interactions with students. 

Results and Discussion 
Preliminary results illustrate that despite knowing about between and within strategies 

beforehand, Ms. Gold had to go through a process to come to understand that the rectangle 
cutouts were pivotal for connecting students understanding of the ratio, and interpreting between 
and within ratio strategies as different. In addition, Ms. Gold’s learning continued across both 
years of instruction. In the first year, she appeared to be frustrated and focused on students’ ideas 
about ratios and equivalent fractions. Later in the first year, and during the second year Ms. Gold 
can be characterized as encouraging and interested in how students used between and within 
ratio ideas to explain translations among the representations (Lesh et al., 2003). Results in the 
paper will trace this evolution linguistically across the two years focusing on how the PCK 
developed through changes in the content (equivalent fractions to between and within ratios), 
mood (frustrated to interested), and continuity (topics to threaded discussions of between and 
within ratios in different representations) of the classroom discussions. Understanding this 
process is essential to validating that PCK does emerge from teaching, and uncovering the ways 
of talking that could help build the PCK that help teachers navigate the sea of student ideas. 
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The Boston Public Schools is engaged in a system-wide effort to strengthen mathematics 
teaching and learning. This short oral report uses the communities of practice framework to 
examine teacher collaboration and learning within schools across the district. Preliminary 
findings suggest that communities of practice that include engagement, imagination, and 
alignment contribute to communities of practice that support teacher learning. 

Objectives and Purposes 
The Boston Public Schools is currently engaged in a system-wide effort to strengthen 

mathematics teaching and learning K-12.  This effort includes the adoption of standards-based 
curricula, ongoing professional development for teachers and administrators; formative 
assessments district-wide; and school-based support from mathematics coaches.  In addition, 
mathematics leadership development is underway in every elementary school.  These efforts, 
supported by an NSF-funded Urban System Initiative project and an NSF-funded Teacher 
Retention and Renewal project focusing on leading while learning, reflect many of the research 
findings related to teacher learning and the process of mathematics education reform (e.g., Ball, 
1997; Ball, 2002; Louks-Horsely, 1997; Schifter, 2001). It is becoming increasingly clear that 
mathematics education reform does not take place one teacher at a time.  Rather, it is of critical 
importance that schools have in place structures that support teacher collaboration and learning. 
We are finding that the communities of practice framework is a useful tool for examining how 
mathematics teaching and learning is strengthened within the context of these structures that 
support teacher collaboration.   

Theoretical Framework 
According to Wenger (1998), communities of practice have three dimensions that give them 

coherence: (1) participants are engaged in actions whose meanings they negotiate with one 
another over time; (2) they share a joint enterprise through which they create relations of mutual 
accountability; and (3) they develop a repertoire, or a shared set of resources that serve as 
internal reference points.  As Wenger (1998) notes, communities of practice are not in and of 
themselves beneficial or harmful forces in our lives; but they are nevertheless significant. 
Wenger suggests the following three modes of belonging fuel the development of a community 
of learners: engagement, where individuals are actively involved in a mutual process of 
negotiating meaning, forming trajectories that together unfold into histories of practice; 
imagination, in which participants disengage from the time and space of their regular endeavors 
to form new images of the possible; and alignment, in which activities and energy are 
coordinated to contribute to broader enterprises in a coherent fashion. All of these need to be in 
the proper balance if they are to create a rich context for learning.  Our goal is to use this 
framework, focusing on the three modes of belonging, to examine teacher collaboration and 
opportunities for teacher learning.  
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Data and Methods 
In our research, case study methodologies are being employed to investigate interactions that 

take place during opportunities for teacher collaboration using the context of school-based and 
cross-school-based classroom visits, where teams of teachers and their mathematics coaches visit 
designated classrooms in order to observe mathematics lessons, with structured opportunities 
before and after these visits to discuss the mathematics at play in a lesson and how students 
engaged in that mathematics.  This context is one that provides an opportunity to focus on 
teacher learning through a focus on student learning.  Data sources are qualitative, using an 
interpretative approach, assuming that “interpretation is an act of imagination and logic” that 
entails “perceiving importance, order, and form in what one is learning” (Peshkin, 2000, p.9). 
Data sources include formal and informal interviews with teachers and mathematics coaches 
along with any accompanying correspondence; observations of previsit and postvisit discussions 
as well as observations of the classrooms visited; and artifacts designed to support mathematics 
teaching and learning within the context of the classroom visit (e.g., the  elementary math 
curriculum, district mathematics assessments, the scope and sequence pacing guide).  These data 
were collected using regularly maintained field notes. Any ideas, actions, and interpretations that 
appeared significant were recorded.  

Results and Implications and the Goals of PME-NA 
Preliminary results from the examination and analysis of cases of teacher collaboration 

during structured visits to each other’s classrooms with a focus on the examination of student 
learning suggest the three modes of belonging—engagement, imagination, and alignment— 
contribute to the creation of communities of practice that support teachers’ opportunities to learn.  
These preliminary results, because they allow us to reflect on the nature and quality of these 
modes of belonging, allow us to consider how communities of practice that support teacher 
learning might be constituted and supported. What is learned from these findings has 
implications for how opportunities for teacher collaboration and learning, grounded in reflection 
on student learning, are structured within schools and districts. 
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Preservice elementary teachers' mathematical knowledge and beliefs about teaching and the 
learning of mathematics can be developed by focusing on how children learn and think about 
mathematics in content courses.  A study using a Likert survey, with control and treatment 
groups, found significant differences in prospective teachers' beliefs and knowledge using an 
approach that focused on children's mathematical thinking. 

Preservice elementary teachers’ mathematical knowledge and beliefs about teaching and the 
learning of mathematics can be developed by focusing on how children learn and think about 
mathematics in content courses.  This mathematical knowledge entails an understanding of the 
conceptual nature of procedures such as standard algorithms—understanding why they work, 
making sense of children’s unique self generated algorithms for computation, and having the 
mathematical knowledge to explain procedures and concepts (Feikes & Schwingendorf, 2004).  
Teachers’ beliefs about how children learn mathematics and how to teach children mathematics 
impacts teaching and might also be more fully developed by focusing on how children learn 
mathematics.  A goal of the NSF supported (DUE 0341217) Connecting Mathematics for 
Elementary Teachers (CMET) project is to develop the beliefs and knowledge of preservice 
teachers in mathematics content courses. This approach is unique in that these are typically 
freshmen level mathematical content courses rather than professional development with 
practicing teachers (Hill, Rowan & Ball, 2005). 

CMET attempts to help preservice elementary teachers connect the mathematics they are 
learning in content courses with how children learn and think about mathematics thus tying 
research on children’s learning of mathematics with practice. To this end, a supplement was 
developed that parallels the typical mathematics content course topics.  The intent in helping 
preservice teachers make these types of connections is that they will both improve their own 
understanding of mathematics and eventually improve their future teaching of mathematics to 
children.  The CMET materials primarily consist of descriptions, written for prospective 
elementary teachers, on how children think about, misunderstand, and come to understand 
mathematics.  These descriptions are based on current research, and some of the connections 
include:  how children come to know number, addition as a counting activity, and the importance 
of concept image in understanding geometry. 

Methods 
Evaluation of the CMET project is ongoing and considers multiple areas besides the focus of 

this paper including: teacher self-efficacy, teaching, and parents’ use of these materials.  For the 
study, 168 Likert survey questions were developed to correspond with the typical content in the 
mathematical content courses for elementary teachers.  An analysis of the most popular 
textbooks for these courses was done to determine the content of CMET and the survey 
questions.  The Likert questions were developed by two team members and two different 
members suggested revisions and verified the reversed worded questions.  The control group 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
 
 



Vol.2-812  PME-NA 2006 Proceedings 

 

consisted of 301 students who were given the survey the semester prior to the use of the CMET 
materials. The same survey was given to 249 students who had used CMET materials. In 
addition, instructors completed on-line surveys and students were interviewed.  Because each 
university in the study organized the mathematics content courses differently, a separate 
questionnaire from the 168 beginning questions was developed for each course at each 
institution.  The surveys ranged from 33-44 questions depending upon the content being taught 
in each course.  The CMET materials were piloted at five sites, all in the Midwest.  Control 
group data was obtained from three sites; all sites provided treatment data.  

Results 
The following preliminary analysis compares the data from one course with the same course 

the previous semester (treatment versus control). Later analyses will aggregate the knowledge 
data across institutions and make cross comparisons with results from the beliefs, self-efficacy, 
instructor, and interview data.  The Likert items possible responses ranged from Strongly Agree 
to Strongly Disagree, responses were given numerical values accordingly from 5 to 1. The 
negatively worded questions are in bold and the scores have been reversed for these questions.   
For all reported data higher scores up to 5 would be closest to our theoretical position or may be 
an indication of the beliefs and knowledge that we believe are most important.   Questions that 
have significant differences between the control and treatment groups using a simple t-test are 
presented in the following table.   

 
Question     Control Group 

Mean     SD           (n) 
 Treatment Group 
Mean      SD         n 

If children can count, they understand 
the concept of number. 

3.41       1.125     (56) 4.14       .363      (14) 

Children best learn the addition facts 
through extensive drill and rote 
memorization. 

2.75       1.066     (56) 3.57       .938      (14) 

Children do not need to understand 
the mathematics behind the standard 
algorithms.  

3.46         .934     (56) 4.00       .555      (14) 

To find the percent of a percent, one 
can add the percents. 

2.91         .880     (56) 3.57         .852    (14) 

Children who cannot divide can find the 
mean. 

2.27         1.086   (44) 2.93          .829   (16) 

Significant at p =.05 

Discussion and Conclusion 
These limited results suggest that prospective elementary teachers can develop the 

mathematical knowledge and beliefs for teaching by focusing on how children learn and think 
about mathematics in content courses for elementary teachers.  Other analyses indicate that using 
knowledge of children’s mathematical thinking may also influence students’ self-efficacy.  More 
significantly, this approach may also improve students’ future teaching of mathematics to 
children. 
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The purpose of this study was to better understand both the beliefs and perceptions of  
mathematics professors who teach content courses populated in part by pre-service secondary 
mathematics teachers (PSMTs). Interviews revealed that the professors deemed strong content 
knowledge necessary for teaching. However, the professors did not envision a role for 
themselves to help PSMTs value this training for their teaching. 

Researchers and policy makers (e.g., Ball, 2003; Conference Board of the Mathematical 
Science, 2001) are giving increased attention to the content education of pre-service secondary 
mathematic teachers (PSMTs) and the critical role it plays in their development as effective 
teachers. The purpose of this study was to better understand both the beliefs and perceptions of 
university mathematics professors who teach content courses populated in part by PSMTs. In 
particular, we sought to determine the mathematical skills, understandings and dispositions that 
professors believed necessary for PSMTs and their views on how PSMTs’ mathematics content 
preparation supported the PSMTs’ future classroom work.   

Previous research, conducted at the same university, investigated the role PSMTs ascribed to 
their advanced mathematical coursework (Staples & Hodge, 2006). Despite the fact that most 
PSMTs experienced the same professors and coursework, and that most professed to value this 
coursework, the PSMTs’ perceptions of the role their mathematics coursework played in their 
student teaching varied greatly. Thus, we were also interested in comparing the mathematicians’ 
perceptions to those of the PSMTs. 

Data sources and modes of inquiry 
Seven mathematics professors at a large, Midwestern university participated in the study. The 

professors selected had all (a) taught one or more upper-division mathematics courses in which 
pre-service teachers typically are enrolled within the past two years and (b) taught for more than 
one year at this university. Each participant took part in an hour-long semi-structured interview 
with one or two of the researchers to help us gain insight into the mathematicians’ perceptions 
regarding appropriate mathematics preparation for future secondary mathematics teachers. These 
interviews were audiotaped. 

Data analysis was conducted using standard methods of qualitative research. We coded all 
interviews to bring out emergent themes in the professors’ perspectives across the interviews. To 
ensure reliability, two researchers independently coded each interview. Coding discrepancies 
were resolved through group discussions, and we revisited the tapes when there were questions 
about the interpretation of an interview. This analysis allowed us to develop each professor’s 
stance in relation to our research questions as well as the overall stance of the professors, the 
latter of which is in the focus of this paper.   
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Results 
In general, mathematicians felt that a strong background in mathematics as well as the ability 

to use this preparation was necessary for teaching secondary mathematics. The professors 
seemed to embody similar visions of the role of a secondary mathematics teacher, viewing it as 
requiring the skills of proof, problem solving, and abstraction. However, 3 of the 7 professors 
reported uncertainty regarding the mathematical demands and specific tasks required of 
mathematics teachers in the secondary schools. Although the professors’ understandings of the 
secondary schools varied, their perceptions of the mathematics coursework required for PSMTs 
were similar. 

The mathematicians reported that the preparation for undergraduate mathematics majors was 
equally appropriate for future secondary instructors, and the program at their university was 
designed to ensure that PSMTs developed a broad base of mathematical knowledge, comprising 
essential components such as geometry, algebra (linear and abstract) and statistics. They felt that 
courses not required for a mathematics major, such as history of mathematics, physics and non-
Euclidean geometry, could also contribute positively to PSMTs’ teaching, but all were reluctant 
to replace courses in the current curriculum. These same “elective” courses had been noted by 
PSMTs as particularly valuable for their education and future work (Staples & Hodge, 2006).  

Most professors also agreed that PSMTs should value and use their higher-level mathematics 
coursework in their teaching. They also felt flexible thinking was critical for good teaching. 
However, some of the professors did not view themselves as having a role in helping PSMTs 
discover this value of mathematics for teaching or develop this flexibility.  

Implications and conclusions 
Prior studies (Staples & Hodge, 2006; Kehle et al., 2005; Goulding et al., 2003) have 

demonstrated that many PSMTs do not inherently value their higher-level mathematics 
education. If we assume PSMTs should place value on their extensive mathematics coursework, 
it begs the question as to whose responsibility it is to help them understand this value. Perhaps 
mathematics and mathematics education departments might collaborate to create course offerings 
that help PSMTs make explicit connections between higher-level mathematics and that which 
they will be teaching. An awareness of one another’s goals and contributions may help these 
departments collaborate to best meet the needs of PSMTs.   

As mathematics educators and researchers continue to strive to improve the quality of 
PSMTs’ undergraduate education, continued attention to its mathematical components is needed. 
By further examining the facets of knowledge mathematics professors deem useful for PSMTs, 
mathematics educators may be able to design courses that develop these facets simultaneously or 
ensure that content courses are meeting more of PSMTs’ educational needs. Mathematics 
professors who share responsibility for the education of PSMTs might familiarize themselves 
with the unique requirements, constraints, and challenges of teaching in secondary schools. Once 
this familiarity is obtained, professors may also be able to recognize that their teaching can make 
a difference in the quality of secondary mathematic teachers who are in a sense “keepers of their 
own field [mathematics]”. 
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Researchers are debating how pre-service secondary mathematics teachers (PSMTs) can best be 
provided with experiences that will prepare them to teach mathematics at the secondary level 
(Floden & Meniketti, 2005). A course which offers PSMTs the unique experience of teaching a 
college algebra course in conjunction with a  tri-weekly seminar has the potential to address 
some of these issues. A case study investigates the potential mathematical and pedagogical 
experiences for PSMTs from the novel opportunities offered in this course. Data collection will 
include multiple modes of inquiry: (1) questionnaires, (2) interviews, and (3) field notes. 

The undergraduate education of secondary mathematics teachers, both their education and 
mathematics coursework, is under examination (e.g., Conference Board of the Mathematical 
Sciences, 2001; Darling-Hammond, 2000; Goldhaber & Brewer, 2000, 2001; Monk, 1994; 
National Research Council, 2001). Specifically, the education coursework is intended to educate 
teachers in pedagogy (Darling-Hammond, 2000), and the higher-level mathematics coursework 
is intended to help teachers learn the mathematics deemed necessary for teaching secondary 
mathematics (Floden & Meniketti, 2005). However, some studies have concluded that the 
separation of pre-service secondary mathematics teachers’ (PSMTs’) pedagogical and content 
instruction hinders their development into successful secondary mathematics teachers (e.g., Ball 
& Bass, 2000; Ball, Lubienski & Mewborn, 2001; Ma, 1999; Shulman, 1986). Furthermore, from 
a situative perspective, this separation of content and pedagogy limits the authentic experiences 
teachers are provided in their undergraduate education (Wenger, 1998). Currently researchers are 
debating how PSMTs can best be provided with experiences (e.g., mathematics coursework, 
education coursework, field experiences) that will help them to become better prepared, 
mathematically and pedagogically, to teach mathematics at the secondary level (Floden & 
Meniketti, 2005).   

There exists a course at a large, Midwestern university that may have the potential to address 
the inadequacies in PSMTs’ educational development. This course offers PSMTs the unique 
experience of teaching a college algebra and trigonometry course (secondary mathematics 
material) that is supported by a mathematics faculty member in the form of a tri-weekly seminar 
that runs concurrently with their teaching of the course. In this short oral presentation I will 
reveal preliminary results from an in-depth case study regarding changes in PSMTs’ 
participation in the seminar course related to the cognitively defined construct of pedagogical 
content knowledge, with respect to the content basis for the course (algebra and trigonometry).  

These results will be obtained from multiple modes of inquiry: (1) questionnaires, (2) 
interviews with the students and the course instructor, and (3) field notes from regular 
observations of the seminar course. Data from these sources will be analyzed using processes of 
coding to reveal emergent themes in participation that arose related to the construct of 
pedagogical content knowledge.  
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This short oral presentation will serve as a chance for the mathematics education research 
community to begin to understand the atypical mathematical and pedagogical learning 
opportunities for pre-service secondary mathematics teachers (PSMTs) that are taking place in a 
seminar course on teaching college algebra at a large, Midwestern university. It is important that 
the findings from this research are shared with the mathematics education community, since the 
results could shed light on nuanced ideas relating to the currently debated undergraduate 
education of pre-service secondary mathematics teacher.  
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This research considers factors influencing teachers’ mathematical compass for deciding on 
mathematical directions in classroom teaching. Particularly examined in this research are the 
factors that create a compelling draw for mathematics teachers to adhere to the more traditional 
features of textbook-prescribed curriculum. We further examine how deferral to the textbook 
might be transformed through collaborative professional teacher development.  

Authoritative and internally persuasive discourse 
Our interpretive lens is framed by the theoretical assertions of Bakhtin. According to Bakhtin 

(1935/1981) the negotiation between self and other, between teacher and curriculum, teacher and 
student, teacher and policy, and so forth, is one of dialogue between those discourses that are 
authoritative and those that are internally persuasive. Authoritative discourses, according to 
Bakhtin are dogmatic discourses eliciting adherence in often a subversive and compelling way. 
The adherence to authoritative discourses sees teachers’ choices simply parroted and minimizes 
teachers’ personal expression and decision making.  

In contrast, internally persuasive discourses are, according to Bakhtin (1935/1981), 
conceptually reflective of autonomous thought and action. Internally persuasive discourse 
represents a dialectic relationship between ‘our’ discourse and that of others. Developing an 
internally persuasive discourse is a process of distinguishing between our own and someone 
else’s discourse – it is a process of developing an individual consciousness, of ‘ideological 
becoming,’ to use Bakhtin’s term. In our study we (1) identify factors that affect the 
acquiescence to an authoritative discourse, and (2) examine other factors that might influence a 
more autonomous internally persuasive discourse.  

Our conceptual framework of ‘discourse’ draws from Gee (1999) who describes “D”iscourse 
(Gee’s uppercase of “D”) as “socially accepted associations among ways of using language, of 
thinking, valuing acting, and interacting, in the “right” places and at the “right times with the 
“right objects” (p. 17). In contrast, “d”iscourse (lower case “d”) is restricted, according to Gee, to 
“languages in use or stretches of language (like conversations or stories)” (p. 17). We examine 
asynchronous (i.e. the reading of a text or context) interpretation of discourse in our examination 
of the mathematics textbook as an authoritative discourse (consistent with Gee’s “D”iscourse) 
(Ben-Yehuda, Lavy, Linchevski, & Sfard, 2005). 

Method 
This research was conducted in a single academic year, in two fifth grade classrooms. Data 

in the form of taped transcribed recordings and researcher field notes was collected during in-
class observations of mathematics classes in a variety of mathematics strands: numeracy, 
algebra, measurement and data management and probability. 

Data was also collected from 4 focus groups held throughout the year, which included 
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teachers and researchers. Our subsequent content analysis adhered to the “stage model of 
qualitative content analysis” defined by Berg (2004, p. 286). This model articulates a process 
that begins with the determination of “sociological constructs” (p. 286) as preliminary categories 
or themes emerging directly from the analysis of the data. The data is then sorted according to 
these categories or themes. The emergent categories or themes are then analyzed according to 
relevant theories or related research with the intent of establishing explanatory potential. These 
themes are listed below as factors that influence authoritative discourse. 

Factors influencing authoritative discourse 
Our analysis of the data suggests that there are potentially five different factors influencing 

the extent to which a teacher’s mathematical compass defers to the textbook as an authoritative 
discourse. These are: (1) mathematics textbook as a privileged discourse, (2) curricular demands 
and time constraints, (3) parental pressures, (4) teachers’ mathematical identities, and (5) 
students’ privileging of mathematical discourses.  

Developing a mathematical ‘compass’ 
Some changes in the pedagogical practices of the classroom teachers were observed. We 

found that the interaction and collaboration of the research project team (teachers and 
researchers) encouraged the teachers to rethink some of their mathematics teaching and their 
own mathematical experiences that may be re-enacted in their own classrooms. Collaborative 
professional teacher development seemed to amplify internally persuasive discourse however, 
the teachers’ mathematical compasses continued be off course, so to speak. Consequently, their 
teaching decisions and pedagogical directions are mapped by the sanctioned textbook as the 
ultimate authority.  

Kang and Kilpatrick (1992) suggest that “the effective use of mathematics textbooks . . . 
depends [our emphasis] on the mathematics teacher’s epistemological vigilance” (p. 6). 
Epistemological vigilance makes unequivocal requisite of a deep understanding of mathematics 
and pedagogy. Our findings suggest that the potential to enable more autonomous internally 
persuasive discourses through collaborative professional teacher development serves to unravel 
persistent authoritative discourse whilst simultaneously facilitating a deeper understanding of 
mathematics for teachers. 

References 
Bakhtin, M. M. (1935/1981). The dialogic imagination: Four essays by M. M. Bakhtin (M. 

Holoquist & C. Emerson, Trans.). Austin, Texas: University of Texas. 
Ben-Yehuda, M., Lavy, I., Linchevski, L., & Sfard, A. (2005). Doing wrong with words: What 

bars students' access to arithmetical discourses. Journal for Research in Mathematics 
Education, 36(3), 176-247. 

Berg, B. L. (2004). Qualitative research methods for the social sciences, 5th edition. Boston, 
MA: Pearson Education, Inc. 

Gee, J. P. (1999). Discourse Analysis: Theory and method. New York: Routledge. 
Kang, W., & Kilpatrick, J. (1992). Didactic transposition in mathematics textbooks. For the 

Learning of Mathematics, 12(1), 2-7. 
 



Teacher Knowledge   Vol.2-821 

 

THROUGH THE LOOKING GLASS: PERSPECTIVES ON THE EVOL UTION OF 
LEARNING COMMUNITIES THROUGH THE LENS OF INTERSUBJE CTIVITY 

Patrick Thompson 
Arizona State University 

Chris Miller 
Arizona State University 
christina.miller@asu.edu 

This paper illustrates the application of a theoretical framework that has as its aim to 
understand mathematics teachers' professional interactions so as to better support them. The 
interactions are analyzed under the framework of intersubjectivity as defined by Steffe and 
Thompson (2000) and Thompson (2000).  For this paper, we illustrate the application of our 
intersubjectivity framework by focusing on the events in one Reflecting on Practice (RPS) 
session involving four high school teachers who are trying to re-conceptualize their teaching of 
the idea of function.  

Theoretical Framework  
Intersubjectivity is a state of dynamic equilibrium among participants in a conversation in 

which each person sees no reason to believe that others think differently than he or she presumes 
they do (Thompson, 2000). The idea of intersubjectivity, then, is not about consensus or 
agreement.  

Instead, it is a pattern of interactions among participants' intended and attributed meanings 
that, for the moment, do not alert them to rethink either their own meanings or their 
understandings of others' meanings.  

A state of intersubjectivity can be sent into mild ("ruffled") or severe ("punctured") 
disequilibrium in several ways, two of which are: (1) one or more participants detects that 
someone does not mean or believe what they had presumed she means or believes; (2) 
participants detect that the interactions of intended and construed meanings are incompatible, but 
they cannot locate the source of incompatibility. Equilibrium can be re-established in several 
ways, including: (1) individual teachers rethink their own meanings so that they become 
compatible with their new understandings of others' meanings; (2) individual teachers rethink 
their understandings of others' meanings so that they are more compatible with their own; (3) 
both (1) and (2); (4) individual teachers accept the disequilibrium as a persistent state.  

Method 
The RPS session discussed in this paper was one of 15 sessions that took place over the Fall 

2005 semester of the Teachers Promoting Change Collaboratively (TPC2) project at ASU.  Each 
session was guided by a facilitator and was videotaped.  Various members of the research project 
then analyze the videos.  We use our framework to analyze RPSs in three interleaved phases: (1) 
understanding each teachers' basis in meaning; (2) examining interactions among meanings and 
their repercussions; (3) considering how we might perturb the group's intersubjectivity to move it 
to states that are more closely aligned with our goals.  At the first phase of analysis the discourse 
of the sessions is used to create a map of teachers’ meanings and the interplay among teachers’ 
meanings.  Statements made by the teachers, their reactions to other teachers’ statements and 
written artifacts are used to construct our hypotheses about their meanings.  The second phase 
focuses on the interactions that dynamically reveal the meanings behind statements teachers 
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make and reveal the assumptions held by other members of the RPS.  Finally, discourse 
surrounding perturbations of the intersubjectivity reveal incompatibilities in teachers’ 
understandings of each others’ meanings; these perturbations also create an opportunities for 
teachers in the RPSs to re-evaluate their held meanings in relation to their images of how others 
understand them.    

Example (Teachers' 8th RPS)   
The teachers, at the behest of a facilitator, discussed a research article on the concept of 

function (Carlson & Oehrtman, 2005; hereafter “C&O”).  The teachers appeared at the outset to 
be in a state of intersubjectivity with regard to the meaning of "being a function". A ruffle in the 
group's intersubjectivity began with a teacher, Kathy, expressing concern with her understanding 
of what that concept of function entailed.  The other teachers in the RPS attempted to reassure 
Kathy that she did in fact understand the function concept because she emphasized the “one 
input, one output” relationship. That is, their understanding of Kathy's understanding was quite 
compatible with their own and their understanding of C&O.  Kathy, however, was aware of an 
incompatibility, but she could not locate its source. The site of the incompatibility was C&O’s 
statement that x+y=4 does not represent a function, whereas Kathy claimed that it did represent a 
function—any time you substitute a value for x, you get precisely one value for y. The other 
teachers said that this is true, but “x+y=4” represents a function only if you rewrite it as 
“x+f(x)=4”. Kathy objected, saying this was only a matter of notation, writing f(x) instead of y. 

 We, as observers, detected that Kathy did, indeed, have a meaning for function that was 
incompatible with the others' meanings. Her meaning for function entailed the restriction that one 
only substitutes values for “x”, no matter the proposition’s form. With this restriction, “x+y=4” 
does indeed represent a function. The other teachers presumed that, without an agreement on 
what variables are defined implicitly as functions of other variables, the statement “x+y=4” is 
ambiguous—either variable could be defined in terms of the other. But they presumed that Kathy 
understood this, when she did not. She presumed they held the same restriction on “x” as she did, 
and they did not. The group’s intersubjectivity was ruffled by what the group took as a puzzle, 
Kathy’s claim of not understanding the concept of function when the others thought she did. It 
was later punctured when she claimed to not understand the idea of covariation when, again, 
based on her description of covariation they thought she did. Our presentation will explicate 
these interchanges and their effects on the group’s lack of progress in regard to drawing 
implications for classroom instruction. It will also point out how the facilitator’s insensitivity to 
the interpretations at play disable him from intervening productively to help teachers renegotiate 
their meanings. Our presentation will also provide an example of how, in later RPSs, the 
facilitator’s increased sensitivity allowed him to intervene in subsequent sessions in ways that 
made renegotiation of meanings an explicit topic of discussion.  
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Preservice teachers need the opportunity to engage in learning that bridges theory and practice. 
With the Japanese lesson study, we show how teachers made sense of the theory of the five 
strands of mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001). The study found 
that through collaborative planning, teaching, assessing student learning, and reflecting, the 
teachers integrated the theory into their practice. 

Perspectives 
In order for teachers to successfully engage in the profession of teaching, two types of broad 

knowledge are required, namely theoretical and practical. The two may seem disconnected to 
those just starting to learn the craft of teaching. Rarely do preservice teachers gain the 
opportunity to engage in deep learning that bridges theory and practice. Yet, most seasoned 
teachers would agree that the melding of the two is crucial. Rarely do preservice teachers get the 
chance to participate in an inquiry process that allows them to work closely with others while 
focusing on the enhancement of their own skills and understanding of subject matter. It is 
important that teacher education programs provide such meaningful learning experiences for 
their preservice teachers. A primary focus should be on the development of reflective 
practitioners (Dewey, 1904). 

Lesson study is one such way to help create an inquiry stance in teachers. Lesson study is a 
form of collaboration-based teacher professional development that originated in Japan (Lewis and 
Tsuchida, 1998). In lesson study, teachers collaboratively (1) set a goal for their student learning, 
(2) plan a lesson, (3) teach a lesson while being observed, and (4) discuss student learning with the 
data collected during the lesson. This professional development tool ties both theoretical and 
practical learning together in a most authentic way - through teaching. 

Theoretical Framework 
Understanding student thinking is what binds different parts of the lesson study process. By 

experiencing how students learn mathematics, teachers learn how to bring about mathematical 
proficiency in their students. Adding It Up (2001) proposes five strands of mathematical 
proficiency: conceptual understanding, procedural fluency, strategic competence, adaptive 
reasoning, and productive disposition that “are interwoven and interdependent1” (p. 116). These 
strands may sound important in theory, but preservice teachers lack experiences to readily see how 
these aspects are expressed in their teaching and in their students’ learning. Lesson study provides 
experiences that support the building of such connections. The purpose of this case study is to 
describe how four elementary preservice teachers in a teacher education program make sense of the 
theory and integrate the five strands into their practice through participation in lesson study. 

Methods 
The four focus preservice teachers were part of a group of twenty, all enrolled in a teacher 

education program at a major research institution in the western United States. The data were 
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collected in the elementary math methods courses that were structured around lesson study. 
Several forms of data were collected: (1) field notes of the lesson study planning meetings, (2) 
iterations of teachers' collaborative lesson plans, (3) materials (curricula and worksheets) used to 
plan lessons, (4) student artifacts (pre- and post-assessments), and (5) teachers’ reflections. 

Results and Discussion 
By following the four elementary preservice teachers through the process of lesson study on 

the topic of multiplication, the value of this professional development tool was revealed in four 
vital components: planning, teaching, assessing student learning, and reflecting. We found that 
teachers integrated the two types of knowledge (theory and practice). Many changes in teacher 
beliefs and practice were identified as being the result of lesson study participation. Broadly 
speaking, lesson study enabled teachers to view the mathematical proficiencies as interconnected. 
The teacher discourse that resulted during the lesson debrief was of great value, as was the 
examination of student work. 

In terms of conceptual understanding, the teachers displayed several grand shifts in thinking. 
First, teachers experienced a transformation in their conceptual understanding of multiplication. 
Second, lesson study showed teachers the value of using student misconceptions as a window into 
students’ thinking to plan effective lessons. Third, the process allowed them to grapple with the 
conflict between procedure and concept, ultimately resolving the goal of the lesson to be 
conceptual understanding. Finally, lesson study underscored the need to use assessment to 
inform future instruction, rather than as a teacher evaluation tool. 

Teachers' conceptions of procedural fluency also shifted over time. This occurred in two 
ways: (1) Teachers more fully understood the importance of the unit plan and how lessons 
should build from conceptual understanding to procedural fluency; and (2) Teachers came to 
understand the reasons for using a variety of strategies to solve a multiplication problem. 

Teachers' ideas of strategic competence and adaptive reasoning also changed as a result of 
lesson study. Although the teachers had initially planned to have a problem-based lesson, they 
truly appreciated its value at the end of the process. Teachers saw their role as the facilitator in a 
student-centered classroom. Lesson study also highlighted the importance of using the lesson 
time to identify trends in student thinking. Thus, teachers came to value student discourse after 
witnessing the students identify efficient strategies as a community. 

In regards to productive disposition, teachers started to acknowledge the power of student 
motivation in the facilitation of learning. They also recognized the need for students to be placed 
in an environment of discomfort for true learning to occur. 

Lesson study helped the teachers to see that students are active participants in their own 
learning. It also enabled them to see teaching as a highly complex process requiring thought, 
planning, and reflection. 

Endnotes 
1. Conceptual understanding speaks to the ability of students to go beyond memorization of 

facts and deeply connect to the underlying mathematical concept. Procedural fluency is the 
efficient and accurate use of a specific algorithm, while strategic competence emphasizes 
problem-solving. Adaptive reasoning is used when identifying the utility of a particular approach 
to solving a problem. Finally, a productive disposition, or healthy attitude, is necessary in order 
to see math as useful. 
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Studies on beginning teachers have focused on induction programs or districts, ignored the role 
of subject matter in learning to teach, and disregarded the voice of novice teachers. This paper 
adopts the perspective of two beginning teachers to explore the challenges of learning to teach 
mathematics and how its complexity makes subject-matter specific induction desirable and 
essential. 

Purpose/Theoretical Framework 
In spite of national concern for the teaching of high quality mathematics to all students, we 

understand very little of how to support the on-going development of content knowledge for 
beginning teachers. When studies have focused on this issue, they have assumed the perspective 
of induction programs or districts and have not included the voice of novice teachers. 
Additionally, literature on beginning teachers often ignores the role of subject matter in the 
learning to teach experience (Britton, Raizen, Paine, & Huntley, 2000). This paper is an attempt 
to address these two issues by focusing on the cases of two beginning teachers and exploring the 
challenges of learning to teach mathematics and how its complexity makes subject-matter 
specific induction both desirable and essential. 

Our analysis of the concerns of beginning teachers draws upon Lampert’s (2001) model of 
the three-prong problem space. Lampert proposes that the work of teaching requires establishing 
and simultaneously maintaining three relationships: (1) the relationship between teacher and 
students, (2) the relationship between teacher and content, and (3) the relationship students have 
with the mathematical content. Learning to teach mathematics then requires more than 
effectively managing a classroom and delivering content knowledge. New mathematics teachers 
are faced with the enormous challenge of learning how to manage each of the points of the three-
pronged problem space as well as the relationships between them.  

Methods/ Data Sources 
This project is part of a larger NSF-funded study of content-specific induction programs from 

across the United States. We selected six sites with content-rich induction for secondary 
teachers. Within each site, we chose six or more new teachers to interview and observe on 3-4 
occasions during the 2003-04 and 2004-05 school years. Data collection methods included 
interviews with program directors, coaches and mentors, school principals, and new teachers; 
observations of program events and new teachers in their classrooms. Data analysis involved 
collective reading of data and emerging analytic memos. Based on these memos, two teacher’s 
cases were selected for further analysis. For each teacher, a series of memos were written that 
sought to present their concerns, worries, strengths, and struggles. Through our analysis, we 
identified subject specific needs that were voiced by these two teachers and corroborated by 
voices of other new teachers in the larger study.  
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Findings and Implications 
The two beginning teachers, Helen and Ona, are, according to their mentors, “good teachers.” 

Each works in a different context and with the support of a well-regarded (but different) 
induction program. The conditions under which they work could be considered supportive, and 
each comes to teaching with strong content preparation in mathematics. Ona has a wealth of 
school- and district- based resources to support her; Helen works in a far more challenging 
school environment, but has a school-based mentor. In spite of these supports, each teacher has 
articulated and enacted the need for additional support around three areas: understanding 
students, their mathematical thinking, and the family/community contexts; understanding the role 
of the mathematics teacher; and constructing and using productive learning tasks. When mapped 
onto Lampert’s three-prong problem space, two of these areas, understanding role and the 
creation and use of tasks, focus on the same prong, managing the relationship between students 
and content. In this paper, we will elaborate upon these two areas. 

Much of the support for beginning teachers offers advice for managing students (e.g. Wong 
& Wong, 1998). This advice is typically generic, implying that what is to be taught is not an 
important factor in thinking about student behavior in classrooms. However, we found that both 
Helen and Ona had significant concerns about their role in managing students’ relationship to 
content. For example, Ona wrestled with her role of teacher as content provider. She felt the need 
to have answers to student’s mathematical questions and to mediate students’ interactions with 
content, yet she also wanted to support students in their desire to wrestle with mathematical 
challenges. Mapping Ona’s concerns about her role on Lampert’s three-prong problem space 
illustrates (1) how generic advice about managing students is insufficient for supporting Ona in 
resolving her concerns and (2) how Ona’s concerns might be addressed by helping Ona reframe 
her understanding of her teaching role.  

From Helen we learn how difficult it can be for new teachers to create lessons and tasks that 
“cover what they [students] need to know” to perform well on standardized assessments, while 
also providing students with opportunities to engage with mathematical ideas and create 
important connections between them. In the struggle to provide appropriate learning 
opportunities to support her students’ conceptual understandings of slope, Helen, like Ona, finds 
herself trying to manage the relationship to content her students are negotiating. This work is 
particularly challenging for any teacher, and new teachers in particular, because it exists at the 
intersection of students, contexts, content, and the teacher role. 

No one would deny that beginning teachers face many challenges. However, frequently new 
teachers are provided with some basic classroom management tips and an orientation to their 
schools and then left to their own devices (Feiman-Nemser & Parker, 1993; Wang, 2001). This is 
particularly true for beginning teachers who have adequate classroom management skills and can 
keep students “under control” and out of the principal’s office. Our study demonstrates that even 
strong new teachers still have needs, and these needs are directly connected to mathematical 
content. We urge districts and induction programs to strongly consider the ways in which all new 
mathematics teachers could benefit from additional content-specific support. 
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FRACTION MULTIPLICATION: TEACHER AND STUDENT UNDERS TANDING 
AND INTERPRETATION IN A REFORM-BASED CLASSROOM 
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The data used for this poster is part of the CoSTAR (Coordinating students’ and teachers’ 
algebra reasoning) project. The fundamental goal of CoSTAR is to gain access to and analyze 
teachers’ and students’ understandings of shared classroom interactions, and the teaching and 
learning that results. In particular, the project coordinates analyses of taken-as-shared classroom 
problem-solving practices with individual teachers' and students' understandings of those 
practices. Our strategy is to videotape classroom interactions and to pursue the sense that 
teachers and students make of those interactions during subsequent videotaped interviews. Thus, 
the project examines the sense that students make of their opportunities to learn and teachers’ 
sensitivity to the core learning issues for their students.  

The poster presents an analysis of lesson, teacher interview, and student interview data on 
fraction multiplication from the Bits and Pieces II unit in the Connected Mathematics Project 
(CMP) materials. The notion of three-levels-of-units forms the theoretical framework for the 
study (Steffe, 1993, 2003). I look at the teacher’s understanding of three-levels-of-units, her 
flexibility within the three-levels-of-units domain as demonstrated by her teaching of the 
multiplication of fractions section, her understanding of student learning, her ability to support 
student thinking with three-levels-of-units, as well as students’ understanding and sense-making 
of her explanations. I used classroom videos, teacher-interview videos, and three sets of student-
interview videos in this analysis. 

The poster focuses on the teacher’s use of the number line as a form of representation when 
teaching multiplication of fractions. It also focuses on some students’ use of the number line in 
their solution of fraction multiplication problems. The poster will discuss a variety of interesting 
teaching scenarios, teacher-student interactions, and student learning around the topic of fraction 
multiplication. 
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Mathematical Proficiency as described in Adding It Up: Helping Children Learn Mathematics 
(National Research Council [NRC], 2001, p. 116) was used as a way to interpret Brenda’s 
mathematical knowledge. Mathematical proficiency, according to the NRC, has five strands: 
conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition. Reflective thinking was viewed from Dewey’s (1933) perspective. 
Reflective thinking occurs in two phases. First, a person recognizes a situation as problematic 
and then searches for solutions to the problem. The demand for a conclusion is the definitive 
characteristic of reflective thinking.  

The data sources included artifacts from Brenda’s content and methods coursework and 
student teaching, her reflections about teaching, university supervisor observations and notes, 
and a qualitative survey.  Inductive analysis (Patton, 1990) was used to interpret the data. 

Although other factors were found to affect Brenda’s lesson design and teaching, her 
mathematical proficiency and ability to think reflectively are the focus of this poster. Even 
though Brenda lacks procedural fluency and strategic competence, she values and continually 
seeks to develop conceptual understanding, adaptive reasoning, and a productive disposition. 
Brenda values aspects of mathematical proficiency that allowed her to develop high quality, 
inquiry-based instruction.  She believes that in order to know mathematics, one must see 
mathematics as a logically connected web of facts and concepts and the most important thing is 
to understand the connections. Once you do that, you can move around in the subject, use your 
own judgment, recover from errors, decide for yourself what needs to be done, and solve more 
difficult problems. In the long run, understanding the principles is also more efficient than 
memorizing formulas and recipes (survey). 

Brenda used reflective thinking as she designed her lessons. She viewed learning 
mathematics as problematic, and searched for ways to make sense of mathematics. She was able 
to examine her own learning and apply her analysis to her lesson design. She used student 
feedback to view the content through students’ eyes and improve her instruction.  

This research suggests that some aspects of mathematical proficiency may be more important 
than others with respect to teachers’ abilities to develop high quality mathematics lessons. 
Further research could provide insights into the relative importance of each strand of 
mathematical proficiency and reflective thinking as they relate to teachers’ lesson planning. 
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Studies on learning number theory have paid attention to students’ understanding and recognition 
of primes (Zazkis & Campbell, 1996, Zazkis & Liljedahl, 2004). Researchers observed that 
students’ possessed the belief that a very large composite number should be divisible by a small 
prime. For example, students concluded that a (large) number was prime after checking its 
divisibility by a trivial number of small primes. This report echoes an interest in identifying 
sources that influence students’ use of prime numbers; however, a subjective probabilistic 
framework was used as a lens in addressing these issues of interest.  

Representativeness is a heuristic that is used to determine the probability that a particular 
object (A) belongs to a given set (B). Tversky & Kahneman (1974) found that probabilities are 
evaluated by the degree to which A would resemble B. The probability that A originates from B, 
or that B generates A, is high when the resemblance is strong and low when the resemblance is 
weak. 

One of the tasks, administered in a clinical interview setting, invited students to simplify the 
fraction 448188/586092. The representativeness heuristic was witnessed in students’ choices of 
primes, as possible factors. The “stereotypical” list of primes includes 2,3,5,7,11. Tversky & 
Kahneman (1974) showed that using the representativeness heuristic to evaluate probability 
leads to insensitivity to prior probability of outcomes. Students were aware that there were more 
primes greater than 11, than those less than 11. However, this fact was not taken into 
consideration in an attempt to reduce the given fraction. Numbers like 13 and 17 did not conform 
to the students’ image of the stereotypical primes and were not taken into consideration. A 
second bias of the representativeness heuristic, the illusion of validity, states that as redundant 
input continues the accuracy of prediction decreases while a simultaneous confidence about the 
prediction is gained. This bias was also witnessed in the report.  

Using the framework of subjective probability provides further insight into participants’ 
responses and into implicit reasoning that guides their decision making. 
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In Adding It Up, a major report from the National Research Council (NRC), the authors 
concluded that three major components of mathematics teachers’ knowledge are necessary for 
effective mathematics teaching: knowledge of mathematics, knowledge of students, and 
knowledge of pedagogy (Kilpatrick, Swafford, & Findell, 2001). This poster reports results of a 
study of pre-service secondary school mathematics teachers’ knowledge of trigonometry. The 
study took careful account of the accumulated data and theories of teacher knowledge that point 
to the complexity of knowing (Ball, Bass, & Hill, 2004; Ball, Lubienski, & Mewborn, 2001; 
Dossey, 1992; Even, 1990; Fennema & Franke, 1992; Glasersfeld, 1996; Hiebert et al. 1997; 
Hiebert & Carpenter, 1992; Koehler & Grouws, 1992; Leinhardt & Smith, 1985; Ma, 1999; 
Shulman, 1986, 1987).  

In phase 1 of the study, 14 pre-service secondary school mathematics teachers (participants) 
at a large university in the Midwest of the United States completed two concept maps from emic 
and etic perspectives, two card-sorting activities, and a test of trigonometric knowledge (TTK). 
In phase 2, five of the 14 participants partook in two interviews. Results from the study 
indicated, as a group, the participants’ knowledge of trigonometry was uneven and that several 
fundamental ideas of trigonometry were poorly understood. In particular, their knowledge of 
periodicity, radian measure, co-functions, reciprocal functions, 1-1 functions, inverse 
trigonometric functions, identities, and sinusoids lacked depth. The findings support a conclusion 
that pre-service teachers’ knowledge of school mathematics may not be sufficiently robust to 
support meaningful instruction on some key trigonometric ideas. 

The focus of this poster presentation is pre-service teachers’ conceptions and conceptual 
organization of co-functions, and the interferences presented by other notions such as inverse 
trigonometric functions and reciprocal trigonometric functions. The aforementioned study 
revealed that, as a group, the participants’ knowledge of co-functions was particularly limited. 
The concept maps and the interviews showed that the participants possessed weak understanding 
of the meaning of the prefix co in the following co-function pairs (sine – cosine; tangent – 
cotangent; secant – cosecant). For example, 10 of the 14 participants used connectives (linkages) 
such as inverse, reciprocal, and co-functions to relate the co-function pairs in the concept maps; 
indicating that they confused inverse, reciprocal, and co-function as equivalent ideas.  

A focus on understanding co-functions is reasonable given the flexibility, versatility and 
adaptability that such understanding can afford in problem solving situations. Knowledge of co-
functions is helpful in simplifying trigonometric expressions to yield equivalent, yet simpler, 
expressions that facilitate writing proofs and enhance the process of resolving problems. The 
participants’ limited understanding of co-functions inhibited their flexibility in resolving 
trigonometric questions involving analysis of inverse trigonometric functions and their 
properties, triangle resolution, and proofs. Therefore, this poster raises questions about what can 
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and should be done at both the high school level and at the post-secondary level to help pre-
service teachers grapple with such fundamental notions as co-functions. The criticality of high 
school experience in trigonometry cannot be overemphasized because pre-service teachers’ 
opportunity to learn fundamental trigonometric concepts occurs in high school. 
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We examined how mathematics graduate student teaching assistants (TAs) gained knowledge of 
student thinking. Research on K-12 teacher professional development (PD) provides insights into 
teachers' practices and relationships of those practices to student learning. In particular, 
knowledge of student thinking shapes teachers' instruction (Franke et al, 1998). Improving 
teachers' knowledge of student thinking can improve student outcomes (Fennema et al., 1996). 
For some teachers, the ways they interact with students are "generative" of new knowledge in 
that they create opportunities to learn more about student thinking (Franke et al, 2001). We 
extend this K-12 work to the undergraduate level by examining college teachers' knowledge of 
student thinking about limits. For mathematics TAs, who receive minimal PD, "learning while 
teaching" may represent their main method of learning about student thinking. We studied two 
groups: current/former TAs with some experiences that routinely provided them with access to 
student thinking through facilitating collaborative group work (CL group) and those whose 
teaching experiences were more traditional (lecturing, presenting problems, answering questions; 
TR group). Findings indicate that differences in teaching experiences correspond to differences 
in knowledge of student thinking.  

Each of the 18 current and former mathematics doctoral students was interviewed 
individually using tasks modeled after research on student thinking about limit. Participants 
solved the tasks and described strategies they believed students would use and difficulties they 
anticipated students might encounter. Analysis focused on cataloging knowledge of strategies 
and difficulties graduate students had for each task as well as cross-task analysis to more 
generally examine the depth and breath of their knowledge. We also compared participants' 
knowledge to findings from research on student thinking for the topics.  

Knowledge of student thinking differed substantially between the two groups. Participants in 
the CL group described in detail many methods students might use. TR group participants were 
typically unable to describe more than one strategy (the one they used to solve the task). Both 
groups generated lists of potential student difficulties, however, the nature of those difficulties 
differed. For example, many in the TR group anticipated only procedural errors while CL 
participants anticipated those difficulties as well as many of the common misconceptions 
detailed in the research literature. Since the two groups of participants did not differ significantly 
in other ways, we attribute these differences to variation in types of teaching experiences they 
had. We conclude that the two groups differed in the extent to which their teaching experiences 
were generative of new knowledge of student thinking.  
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Significant changes in secondary mathematics curricula involving more opportunities for 
students and teachers to mathematize situations through talk, texts, stories, pictures, charts and 
diagrams have arisen from the National Council of Teachers of Mathematics (NCTM) Standards 
(NCTM, 2000) and several curriculum projects funded by the National Science Foundation.  
These changes pose great challenges to secondary mathematics teachers who are generally 
underprepared to mediate the intersections between mathematics and literacy (Muth, 1993), and 
even greater challenges to teachers and students in urban settings, where achievement in literacy 
and mathematics often lags behind achievement of students in other settings (Schoenbach, 
Greenleaf, Cziko, & Hurwitz, 1999).   

In this poster, I address the question:  How do one high school mathematics teacher’s 
practices evolve as she seeks to understand and support her students’ mathematics and literacy 
development through reform-based mathematics curricular materials?   

The theoretical perspective of sociocultural research on mathematics and literacy frames this 
interdisciplinary research.  Recent research has attended to the complex intersections of 
adolescent learners, texts, and contexts (Hinchman & Young, 2001). Literacy has come to be 
seen as multifaceted, involving reading, writing, speaking, listening, and other performative 
acts—all taking place in certain social settings for certain purposes (Hicks, 1995/1996).   

Like other domains of study, mathematics classes at the secondary level require teachers and 
students to use various kinds of literacies and to participate in various discourse communities 
specific to the domain (Hinchman & Young, 2001; Hinchman & Zalewski, 2000).  Recent 
studies have used a sociocultural frame (Atweh, 1993; Borasi & Siegel, 2000; Lerman, 2001; 
Sturtevant, Duling, & Hall, 2001) since it accounts for aspects of learning mathematics in 
complex classroom contexts that a focus on thinking processes alone may not.  Understanding 
how teachers’ practices evolve as they strive to teach in ways that engage students in 
communicative practices is the overarching goal of this research study. 

We are using the methodology of the multi-tiered teaching experiment (Lesh & Kelly, 1999), 
which allows us to collect and interpret data at the researcher level, the teacher level and at the 
student level.  Our research team is comprised of university-based researchers in mathematics 
education and literacy education, mathematics teachers, and their school administrators, 
including both principals and other instructional leaders, in a mid-sized urban district in the 
northeastern United States.  

This paper, specifically, draws on data collected as classroom observations, planning and de-
briefing meetings, interviews, and bi-weekly study group meetings with the mathematics 
teachers at a high school.  Our analysis yielded a story of one teacher’s evolving practices in 
supporting her students’ mathematics and literacy development.  The story begins with this 
teacher recognizing that her students were not meeting the literacy demands of the textbook, and 
moves through iterations of this teacher’s learning about literacy informing her practices, and her 
practices informing her literacy learning.  I offer several illustrations of the evolving practices of 
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this teacher:  (a) “templates”, and (b) activity structure for engaging students in oral 
communication. 
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Research indicates that teachers who experience reform-based methods of mathematics 
instruction not only develop conceptual understanding but also effectively change their beliefs 
about the way mathematics is learned and taught (Chapman, 1999; Crespo, 2000; Quinn, 1997; 
Schoenfeld, 2000; Timmerman, 2003).  Teachers who get exposure to learning mathematics 
through cooperative learning small group study not only form a complete understanding of the 
mathematics but also believe that cooperative learning is an effective mode of instruction 
(Quinn, 1997; Timmerman, 2003).   

A group of sixteen inservice middle school (n=3) and secondary (n=13) mathematics teachers 
participated in a yearlong professional development program focused on mathematical problem 
solving (MPS). The integration of mathematical content and alternative forms of pedagogy were 
central to the professional development program. Data collected throughout the program 
included interviews, journal entries, class work, pre- and post-measures of baseline skills, 
pedagogical strategies and a problem solving.  

We focus on the analysis of four questions from the pre- and post- survey results to 
determine several factors regarding teacher confidence, attitudes and beliefs about using 
cooperative learning groups. Findings suggest that mathematics professional development 
programs aiming to impact teachers’ use of cooperative learning in the classroom must also 
address related issues of  time management and availability of lesson materials to facilitate 
translation to instructional practice.  
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Introduction 
Teachers need appropriate experiences and materials from which to build new models of 

instruction, learning and assessment. Researchers generally agree that teachers of Mathematics 
need adequate training and teaching experience in order for them to construct a deeper 
understanding of the mathematical concepts they are expected to teach. Additionally, various 
studies show the need to study how mathematical concepts are understood and used in day to day 
learning by students. (Carpenter & Lehrer, 1999; Schorr, Maher, & Davis, 1997; Janvier, 1996; 
Cobb, Wood, Yackel, & McNeal, 1993).  Research studies have shown that the personal beliefs 
and level of mathematical knowledge that teachers of Mathematics possess strongly influence 
their method of instruction. (Ball, 1990). These knowledge and belief systems are generally 
acquired prior to actual classroom experience, and held through years of teaching.  In this study 
we specifically focused on the role of content knowledge in helping middle grade teachers of 
Mathematics to develop standard-based activities, particularly problem solving activities, 
through the use of concept maps. 

Objective of the study 
The objectives of the study were as follows: (1) to examine the nature and scope of the 

mathematical knowledge of middle grade teachers of Mathematics; (2) to study the way they use 
their knowledge to develop reform –oriented instruction; and (3) to analyze how our findings 
might be used to help teachers to develop their professional skills.  

Perspectives 
The framework that was chosen to examine the role that the content knowledge of teachers 

plays in helping them to develop standard-based instruction is the Mathematics Teaching Cycle 
[MTC] (Simon, 1997). As a conceptual framework, the MTC “describes the relationships among 
teacher’s knowledge, goals for students, anticipation of student learning, planning and interaction 
with students” (Simon, 1997, p. 76). Simon (1997) explains that changes in the learning 
trajectory are based on interactions with students, which impacts teacher’s knowledge, thus 
impacting goals, plans, and/or hypothesis of the teacher in a cyclical fashion. According to 
Schon (1983), changes in teacher’s knowledge impacting the hypothetical learning trajectory 
[HLT] might occur during a lesson, not just between lessons, particularly if the teacher is 
reflecting while teaching.  

Methodology 
Our experimental subjects were three middle grade mathematics teachers selected from one 

of the public schools in Atlanta. Before using them as case studies, we met with them for a week, 
from 9 a.m. to 3 p. m. daily, to discuss underlying concepts and skills, to map concepts and to 
identify performance standards and important mathematical ideas that were embedded within 
rich mathematical problems.  Additionally, the teachers had two weeks of professional training 
from Atlanta Public School Mathematics Coordinator to help them understand the underlying 
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concepts and skills, design concepts maps to illustrate their ideas, and execute reform oriented 
instruction.  Furthermore, we analyzed the teachers’ focused attention on their students’ 
mathematical thinking for the purpose of uncovering how this is used in designing their lessons.  

A total of four lessons were used for instruction during this project. The teachers used the 
national, state, and school standards to document the types of concepts represented in each 
lesson. After sharing their own ideas and representations during planning times, they then used 
these concepts in their own classrooms.  During classroom implementation with the researchers 
present, teachers were encouraged to recognize and analyze students’ interpretations and 
thoughts about the types of problems presented. Independently, the teachers reflected and revised 
their own concept maps and shared their new ideas and thoughts with us and their colleagues. 
The teachers (along with other participants not reported in this project) critically analyzed each 
other’s mappings. This helped them to see how their colleagues developed mathematical ideas, 
and it enabled them to discuss their students’ understanding of mathematical concepts and the 
implications of their findings on their teaching.  

Interviews were conducted before and after instructions with the three teachers and six 
students (two from each class). The purpose of the interviews was to gain a deeper understanding 
into how the teachers’ content knowledge influence them in designing standards-based 
instructions and utilizing concept maps and the students thinking about these lessons 

Research Goals 
We wanted to find answers to the following questions: (a) how do our chosen subjects (the 

three teachers) identify connected concepts and skills in a given problem when developing 
concept maps? And (b) how do they endeavor to teach their students mathematical concepts that 
are beyond what they already know?  Accordingly, we focused on how the teachers understood 
the underlying concepts and skills found in selected problems and how they use concept maps to 
illustrate their ideas and design curriculum in order to execute reform-oriented instruction. We 
also examined how they use the feedback they get from their students to revise and refine their 
instruction. 

Data Sources 
The following were the data sources for the research: 
1. The teachers’ curriculum concept maps;  
2. Transcripts from pre- and post- semi structured interviews of students and teachers; 
3. The students’ work on the individual classroom activities;  
4. Notes of classroom activities;  
5. Field notes taken while working with teachers during planning times;  
6. Transcript of the teachers planning times; and 
7. The reflection of the teachers on their work.  
Our collection of data followed the model that Ball and Lampert (1999) used. By collecting 

multiple perspectives on classroom practice, namely those of the researcher, teachers, and 
students, and the perspective gained from audiotapes, a rich collection of data emerged that 
revealed the complexity of standard-based instruction. 

Findings 
The study revealed that the teachers benefited tremendously from using concept maps to 

illustrate underlying problem and skills needed to solve particular problems. It added to their 
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understanding of the middle school curriculum they teach. It helped them to see the 
interrelationship between mathematical skills and concepts. The depth of thought between the 
skills and concepts and how they might play out in the classroom was evident. Teachers 
considered new ways of teaching and learning while collaborating during planning times to 
discuss content and pedagogy. 

Also, results show that as teachers listened to students’ ideas and documented their thinking, 
they were able to progressively make sense of student work, make better pedagogical decisions 
based on their analysis of the problem, and created more detailed concept maps both globally and 
locally.  

Moreover, teachers were able to construct and provide students appropriate problem sets or 
assessments that more accurately reinforced the problems done in class. As the teachers gained a 
deeper understanding of their curriculum, they were also able to explain and justify their 
curriculum goals and their alignment with textbooks and state standards in a variety of 
innovative ways. It appeared that the teachers’ content knowledge, pedagogical knowledge, and 
knowledge of student’s thinking deepened simultaneously. Their concept maps and 
documentation of student thinking served as conceptual tools that aided in their growth. 

Conclusion 
By gathering accounts of these middle grades teachers’ practice, we developed an understanding 

of their development as mathematics teachers and added to the larger body of knowledge on 
mathematics teacher development in work done by Simon and Tzur (1999).  Also, by using 
middle grades teachers, we gain experience that would be useful in the training of pre-service 
mathematics teachers. 
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The Syracuse City School District (SCSD) is the 5th largest school district in New York State, 
serving more than 22,000 students from diverse cultural and socio-economic backgrounds. The 
University-District partnership has the goals of deepening the mathematical knowledge of 
elementary and middle school teachers including those in Special Education; establishing 
teaching practices supporting all children’s learning of worthwhile mathematics; improving 
students’ scores on standardized tests, and closing the achievement gap between diverse groups 
of students both within a school and across the district.  The partnership is based on four 
projects:  A Math Science Partnership project, Beyond Access to Mathematics Achievement 
(BAMA), a Teacher/Leader Quality Partnership project, Using Assessment and Supportive 
Technology to Strengthen Mathematical Learning and Teaching, A New York State 
Wallace/Gates Foundation Leadership project, and a Title IID Enhancing Education through 
Technology project.  The partnership also draws the expertise of the technology development 
center, the Living SchoolBook (lsb.syr.edu). 

To meet the goals of the partnership, the partnership targets 300 teachers each year for 60 
hours of professional development based on their choice of experience.  The key structural 
characteristics are:  prolonged contact, a combined professional development model type, site-
based, embedded coaching, availability of follow-up support, and continuous assessment.  
Activities used content specific materials, an inquiry approach, collaborative groupings, and 
established learning communities (Loucks-Horsley, Hewson, Love, and Stiles, 1998).  From the 
data, support networks for teachers to move forward in change, and support networks for school 
change have emerged. Data is analyzed looking at the nature of both formal and informal 
relationships between participants and between participants and events, in order to interpret and 
understand this complex system.  Findings on the relationships needed for capacity building and 
sustainability are discussed. 
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The word “curriculum” is used widely among teachers, researchers, and policy makers with a 
variety of meanings (Gehrke, Knapp & Sirotnik, 1992; Porter & Smithson, 2001; Remillard, 
2005). We investigated the relationship between intended curriculum and implemented 
curriculum by analyzing state standards, textbook lessons, and lessons taught. We found the 
existence of an “extra curriculum,” which we defined as textbook lessons not aligned to the 
intended curriculum. This work was funded by a grant from the Office of Educational Research 
and Improvement (OERI), U.S. Department of Education (# R303T010735). 

We identified the intended curriculum to be the Minnesota Academic Standards in 
Mathematics (2003), the intended-written curriculum to be district adopted textbook lessons 
aligning to the standards, and collected data from five 7th grade teachers in Minnesota. Each 
teacher completed a Table of Contents Diary to self-report which lessons were implemented 
during one complete school year. Our first analysis examined how three textbooks (two 
textbooks were used by multiple teachers in one district) aligned with the state standards. Both 
MATHThematics Book 2 and Glencoe Course 2 textbooks aligned with 96% of the intended 
curriculum, while Glencoe Course 1 aligned with 79%. 

Our second analysis determined the intended-written curriculum, or the percentage of lessons 
in each textbook that aligned to the intended curriculum. We found MATHThematics Book 2 to 
have 55% lesson alignment, while Glencoe Course 2 had 49% and Glencoe Course 1 had 48%. 
Approximately 50% of the lessons in each textbook did not align with at least one state 
standard—the extra curriculum. Our third analysis determined the percentage of intended-written 
curriculum, as well as extra curriculum, which was implemented. We found both teachers using 
MATHThematics Book 2 implemented 46% of the intended-written curriculum and 32% of the 
extra curriculum. The teacher using Glencoe Course 2 implemented 39% of the intended-written 
curriculum and 28% of the extra curriculum. Finally, the two teachers using Glencoe Course 1 
textbooks implemented 32% and 27% of the intended-written curriculum and 30% and 27% of 
the extra curriculum, respectively. 

From our results, we determined that students in these five teachers’ classrooms were not 
experiencing the entire intended curriculum (based on the district adopted textbooks and their 
implementation). More research is needed to determine if this is true for a larger population, as 
well as the effects of limited and inconsistent implementation of intended and extra curricula. 
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The focus of the study 
Teachers’ mathematical and pedagogical knowledge have received increased research 

attention in recent years (Ball & Bass, 2000). However, most work in this area has focused on 
primary or early secondary education. Our study attempts to explore teachers’ mathematical and 
pedagogical awareness in higher secondary education and most specifically calculus teaching 
and the concept of derivative. It needs to be noted that although there is a large amount of 
research on calculus education this looks into students’ learning and not the actual teaching 
practices and the way that this affects students understanding learning. In particular, the main 
research questions that this study aims to answer are: a) what is the nature of teachers’ 
mathematical knowledge concerning derivative? b) what are the teachers’ pedagogical practices 
and views about teaching and learning calculus? and c) what kind of interrelationships can be 
identified between teachers’ mathematical and pedagogical activity.  

Theoretical background 
The notion of teacher knowledge has been recognized as an increasingly complex 

phenomenon (Cooney, 1999). A number of studies have attempted to describe this knowledge 
and it seems that there is some consensus in regard to three of its most important elements: 
mathematical knowledge, knowledge of students and knowledge of mathematical pedagogy 
(Lappan & Lubienski, 1994; Even & Tirosh, 1995). Different labels have been used to refer to 
these elements such as subject matter knowledge, pedagogical knowledge, pedagogical content 
knowledge (Shulman, 1986), knowledge about mathematics (Ball, 1991), or mathematical know-
how (Boaler, 2003). Ball, Lubienski and Mewborn (2001) emphasize the need to investigate how 
teachers’ mathematical understanding affects their practice.They suggest that this should be 
investigated through the observations and analysis of actual teaching. Mason (1998) elaborates 
further the notion of teacher knowledge and talks about awareness in action, in discipline and in 
counsel both in mathematics and in mathematics teaching. In addition to this, mathematical and 
pedagogical knowledge constitutes not only knowing- that, knowing- how, knowing –why but 
also knowing to act and knowing to act in the moment (Mason and Spence, 1999). Although 
research on teachers’ knowledge of mathematics as it is extrapolated through actual teaching 
practice is gaining ground, examples from the area of advanced mathematical thinking are very 
limited. This is in striking contrast to the large amount of research to calculus education 
concerning students’ learning. 

Methodology 
The study is a qualitative research within an interpretative framework. The data was collected 

from three different schools in Cyprus. The data is comprised by classroom observations, 
informal discussions before and after teaching and audio-taped semi-structured interviews with 
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each teacher after the school visits (their duration was about one hour). The researchers observed 
and took field notes from three teaching sessions conducted by each of the nine teachers. Field 
notes were taken by two researchers and summaries were constructed immediately after each 
observation from a combination of the researchers’ field notes. The summaries included a 
general description of the lesson and important issues that emerged. Specific examples from the 
field notes were given as evidence to the identified issues. The interviews focused on a) teachers’ 
experience concerning learning and teaching mathematics b) teachers’ views about teaching and 
learning mathematics in general and calculus and derivative in particular and c) teachers’ 
interpretations of specific pedagogical actions that were identified during the observations.  

The data collected was analyzed systematically based on the grounded theory approach 
(Strauss & Corbin, 1998). The analysis of the summaries aimed at identifying elements of 
teachers’ knowledge as they emerged from their practice according to Shulman’s (1986) three 
categories: subject matter knowledge, pedagogical knowledge and pedagogical content 
knowledge. These categories comprised the general framework for the analysis but they started 
to get a special meaning for the specific content area under investigation. The analysis of the 
transcribed interviews was initially done vertically for each particular teacher and then 
horizontally across the nine teachers in order to identify general patterns and relations among the 
different elements of knowledge. 

Results 
In this paper, we focus on two teachers who were not pleased from their teaching of calculus 

in high school but they could not see any other alternatives. Their teaching was mostly teacher- 
centered while students’ participation was limited to the performance of routine exercises or to 
their responses to teachers’ close questions. Below, we briefly discuss how they introduced the 
concept of the tangent of a curve and we attempt to identify mathematical and pedagogical 
aspects of their knowledge both from the observations and the interviews. The teachers started 
with the tangent of a circle and discussed its critical property, that it has only one common point 
with the circle. The teachers gave two examples of curves that exemplified the inappropriateness 
of the above geometrical property as a definition for the tangent of a curve. However, the image 
of the tangent of the circle seemed to dominate students’ responses. The teachers did not seem to 
build on these responses and they continued the lesson by introducing on the board the formal 
definition of the tangent of a curve. In this part of the lesson the teachers presented the new 
concept while the students did not actively participate. In some cases where the teachers asked 
some questions to encourage students’ participation, the students seemed to have difficulties to 
make sense of the situation. A question that emerges is “why the teachers did not develop ways 
to face students’ difficulties and how this is related to their mathematical and pedagogical 
knowledge?”. A first analysis of the interviews allowed us to approach this question and offer 
possible interpretations.  

Teachers’ mathematical knowledge about the relationship between the tangent of a circle and 
the tangent of a curve seemed to be rather fragmented. For example, teacher A stated that “the 
concept of the tangent in a circle is not the same concept as in a curve…in a curve it is the 
tangent to a certain point”. Teacher B was wondering about this relation not only in the final 
interview but also in the informal discussion before teaching: “Can we give a global definition 
for the tangent of a curve like in the case of circle?... I looked for a definition, as we say this is… 
but I did not find one in the textbooks..”. Teachers had difficulties in seeing the tangent of a 
circle as a special case of the tangent of a curve because they expected to find a “general” 
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definition for the curve of the same type as the one for the circle. In the case of the tangent of a 
circle they recognized a global characteristic property- exactly one common point – while in the 
general case of the curve such global characteristic does not exist. This fragmented nature of 
teachers’ mathematical knowledge was also identified through their explanations why teaching 
the concept of tangent is essential for students’ mathematical development. The main reason they 
offered was that it would help them in their future exams. The fact that the two teachers could 
not identify epistemological differences and commonalities between the tangent of circle and 
curve, and they could not also see the importance of the concept of tangent in mathematics and in 
science, is possibly an indication that their mathematical awareness had not reached the level of 
awareness in discipline.   

In terms of teachers’ pedagogical awareness both teachers seemed to realize that students had 
difficulties in understanding the particular concept: “Four or five students understood it. The 
others cannot understand… but these (concepts) need to be taught even for those 
students.”(teacher A). However, even when they were asked to give specific reasons for these 
difficulties they mostly described a number of external factors (eg. the curriculum, lack of 
interest, tests, private lessons) and sometimes their own teaching: “they might have not 
understood yet the concept of tangent but I had not particularly analyzed it in my 
teaching.”(teacher B). We could argue that their knowledge about students’ mathematical 
understanding of the concept of tangent remained at a superficial level. They needed to integrate 
their practical knowledge with the theoretical- research based knowledge of Mathematics 
Education in order to be able to develop interpretive tools for teaching and learning.  

Coming back to our initial questions about teacher knowledge and its role on teacher’s 
practices, the first findings indicate that both have an effect on actual teaching as the teacher has 
to go deeply in mathematical and pedagogical aspects of her teaching in order to take “effective” 
decisions.  
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Some difficulties which are often present when learning calculus using paper and pencil is 
understanding that the accumulation of a quantity is closely related to its rate of change. To help 
students overcome these difficulties and understand these relations we designed a program 
which simulates the inflow and outflow of water in a tank. The study documents the behaviors of 
two students who were exposed to these dynamics situations. 

Introduction 
What kind of dynamics situations can we design to promote the understanding of calculus 

concepts? In the Principles and Standard for School Mathematics (NCTM,2000) point out 
“Technology should not be used as a replacement for basic understanding and intuitions; rather, 
it can and should be used to foster those understandings and intuitions.”(p.25). Considering this 
recommendation our research shows how the technology can be used as a means  to favor these 
understandings and intuitions in calculus contexts. The main aim of this study is to document the 
potential of dynamic situations to develop the basic intuitions that support the  understanding  of 
the essential calculus concepts, for example, the relation between  the accumulation  of a 
quantity and its rate of change ( The fundamental theorem of calculus). The questions  which 
served  as a guide for  this research were: at what level does the dynamics setting promote 
intuitions or  reasoning  to support the understanding of the relation between  the accumulation 
of a quantity and its rate of change?, what type of connections do the students establish between 
the ordinate of the accumulation function and its rate of change?, at what level are the students 
able to identity that the ordinate of the accumulation function in each point represents the area 
below the graph of its rate of change?; what type of difficulties do the students show when 
interacting with dynamic situations? 

We must point out that this investigation is  continuation of a study (Estrada,2005) presented 
in the XXVII- PMENA. Now this research  puts emphasis on the relation between the 
accumulation of a quantity and its rate of change. 

Conceptual Framework 
The basic intuitions, reasoning or thinking considered necessary to understand the more 

complex ideas of calculus, for example the fundamental theorem of calculus, was addressed by 
Thompson (1994). The author interpret this theorem as being an intrinsic relation between the 
process of accumulation of a quantity and its rate of change. In the same vein, Carlson et al 
(2001) designed curricular subjects to develop covariational reasoning and its  role in acquiring 
the concepts of limit and accumulation. One of these tasks shows a graph which represents the 
rate of change of volume of water entering  a container and ask questions related to the 
accumulation of the water in the container; but this task was presented  in a static context (paper 
and pencil). Kaput et al (1999, 2002) also studied this relation between accumulation  and rate of 
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change by designing a software (Simcalc). In this environment, an elevator moves at a constant 
speed represented by a function defined by broken line forming steps and then to determine the 
location of the elevator. These ideas served us  to design a program (Simulator)  which imitates 
different dynamic situations in the filling and/or draining of water in a tank. 

Methodology 
This research followed the qualitative approach. We chose a pair of first semester 

engineering students from a public university who had already taken a course in differential 
calculus. The pair were videotaped working on tasks in one session of 2.5 hours. The 
investigators did not intervene, that is, the two students worked alone. The program is described 
below. 

The program simulates the inflow 
and/or outflow of water in a tank with a 
capacity of 1000 liters. There are two taps; 
one controls the inflow and the other the 
outflow. The amount of  inflow and/or 
outflow is controlled by two  bars (taps)   
which are shown in the screen as 
CONTROL TAPS. For example, when  
the bar that controls the inflow is moving 
(open) y then is left fixed at 70 % it means 
that the flow of water is entering in the 
tank at 70 liters/sec regardless of the 
position of the other tap. If a moment later 
the tap that controls the outflow is opened 
in 50% (each bar has the percentage indicated at the right) that means, outflow is at the rate of 50 
liters/sec, therefore the amount of water  that entered into the tank is 20 liters/sec. In this context, 
the first derivative is represented by the net consumption (= inflow minus outflow). This 
difference seen as a variable is very important because it represents the behaviors of the volume 
of water in the tank. There are two windows on the left hand side of the screen. The top 
represents the REGISTRY OF QUANTITY OF WATER; here appears a graph representing the 
quantity of water in the tank as the tap is manipulated. At the bottom window titled REGISTRY 
OF TAP HANDLING , there is also a graph that represents the net consumption. This two graphs 
are generated simultaneously . It is very important to observe that below the graph of  net 
consumption we see shaded areas ( yellow on the screen). The vertical axes in the top window 
represents the quantity of water in the tank for  each  100 liters. The zero in this scale marks the 
initial quantity of water in the tank. In the lower window the vertical scale represents the 
percentage (rate of change) the tap was opened. Both horizontal scales mark the time for each  10 
seconds. It is important to state that the outflow tap remains fixed during  the dynamic event, this 
permitting using the horizontal line (out flow tap) as the axes for reference to observe the net 
consumption . 

The simulator has seven keys: programmed, start, pause/continue, stop, end, see water and 
consumption. 

To interact with the simulator we also designed nine written activities which were scaled 
from easy to conceptual difficulties. Before beginning the experience the students were given a 
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period to become familiar with the program. As an illustration we present below one of the  
activities used. 

Activity 6. 
Run the program PROG005.TXT  that appears in the program windows by a “click” on the 

button marked PROGRAM. Observe carefully what is happening and answer the following 
questions, ifyou wish to reexamine the situation in order to observe in greater detail the 
characteristics of the task you may run the program again. 

• 6.1 Give a description of   what occurs during the dynamic event 
• 6.2 Based on the graph  that appears in the lower window answer the following questions 

and explain you reasons: 
What  quantity of water accumulated between t = 10 and t = 40 ? 
What is the value of the net consumption at t = 30 ? 
What is the value of the net consumption of the water at t=70 ? 
What is the quantity of water in the tank at t=50 ? 
What happens  to the quantity of water in the tank between t=50 and t=90 ? 
How much water is there is the tank at the end of the dynamic event ? 

• 6.4 Draw a graph which represents the net consumption of the water in the tank during 
the dynamic event 

• 6.5 Once you have finished,  “click”  the key SEE NET CONSUMPTION compare the  
graph which appears with the graph you drew. Based on this comparison explain what 
you observed 

• 6.6 Now analyze the graphs which  appear (on the register of Handling of taps and 
Quantity of Water) and explain if you find any relation between the shaded areas in the 
lower graph and the upper graph, what is it ? 

When the students run one of the programs chosen, the simulator only   showed only one 
graph, for example, the graph for the water quantity or the graph for handling the taps, which 
will be referred to as R1 and R2 respectively. In the above task, the  PROGRAM 005 only the  
graph  of the quantity of water (R1: accumulation) appeared. The first task of students was to 
give a verbal description of what happened with the net  consumption based on R1 , answer some 
questions and draw  the graph for R2 . When the students finished the task  they were asked to 
click the key NET CONSUMPTION a graph appeared, thus the students were able to receive 
feedback comparing this graph with they had drew. Finally, they were asked to identify the 
relation between both graphs. For the next task they were given the graph for handling the tap 
(R2) and the task was similar to the above, but they were asked to draw the graph for R1 and also 
to answer a series of questions. Generally speaking, there were two  types  of activities; one 
involved situations were the net consumption (rate of change) was constant (positive or negative) 
during certain intervals, which were represented in R2  as a straight  horizontal line and shaded 
areas below these graphs were in  yellow if net consumption was positive and green if negative. 
The second one showed net consumption as not constant, others were a combination, that 
constant  or not constant. These were represented in R2 by increasing or decreasing straight lines. 

Discussion of Results 
When analyzing the information particular attention was given the most outstanding 

behaviors (forms of thinking or reasoning, understanding connections, difficulties or patterns) 
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shown by the pair. In the tasks of the first type ( positive, constant or zero net consumption at an 
interval) the explanations given by students were as follows: 

• Pupil 1: “What are we going to see ? They are the same and nothing is happening and 
time is passing, no net consumption, consumption is zero, blast, what happened. It 
increased 10%, yes, look they were the same and it went up 10%” 

• Pupil 2: “it went down, well the consumption is going to be the same at zero, but the 
quantity of water went up 

• Pupil 1: (run the program again) “I want to see when there is a change” 
The pair noted the essential characteristics of the dynamic event and were able to establish a 

connection between R1  and R2 . However, they were not able, at this phase, to see the areas 
generated below the graphs for net consumption and its relation with R1 . In order to make them 
aware about these relations further on, we asked “what does the ordinate  represent in the graph 
for the quantity of water in t=70”. The answer was “the increase in the quantity of water, because 
the volume is represented by the area” (pupil 2). However, at this stage the students still could 
not clearly distinguish between the quantity of water in the tank (= initial quantity + accumulated 
quantity) and accumulation (= what was added to initial amount).  Here was a tendency to base 
their answers on the numerical data supplied in the window for time and the quantity of water 
which appeared on the screen and not to base the answer on the graph in R1 . When the students 
were asked expressively “What relations can you identify between the graphs  in R2 and R1 ? 
They gave the following answers “here you moved the tap for an interval and then you left it, 
that is why the graph is the same, lets say no peaks, no movement”. Note that these comments 
refer to what happened in the dynamic event and not the relations between R2 and R1 , for 
example, be aware of the slope of R1 and associated it with net consumption R2 . In addition the 
students noticed global aspects of the graphs. 

In later  activities, the students were confronted with situations that involved positive and 
negative constant net consumption alternately with consumption equaling a zero. These activities 
helped the students to establish global connections between negative and positive net 
consumption  graphs with increasing or decreasing straight line in R1 . During this stage the 
students were able to attend the shaded areas and it  relation to the quantity of water (“the shaded 
zone is water entering”, pupil 1) or “it is the area below the curve” (pupil 2).  However, they still 
observed global aspects and not specific properties of the graphs. Neither were they able to see 
the graphs in R1 as lineal functions in broken lines 
but as “triangles”. Here the students made some 
comments which recalled some concepts they had 
seen in their calculus course: “well here it is 
positive, it is as  the derivative in calculus that 
graph (R1 ), if you could get the derivative it 
would be positive, therefore the inflow (net 
consumption) is positive …in this interval it 
would be negative; therefore, the consumption is 
negative”(pupil 1). Nevertheless, these ideas were 
not used to understand the tasks. The final 
activities included a combination of  constant ,  
not constant, positive and/or negative net 
consumption. Here is an activity worked by the 
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students. 
As we can see, on the screen only a the graph that represent the handling of the taps (R2) 

appears. We requested a description of what happened during the time lapse of the dynamic 
event and to draw a graph which represents the quantity of water (R1). The most outstanding 
behaviors in the description given by the pupils are as follow: 

• Pupil 2 “it goes up 20 it goes up a hell of a lot …its not going…the consumption is 
speeding up” 

• Pupil 1: “hey, this is tough” 
Note that students identified a relevant characteristic here which were not present in the 

initial activities. It seems that  the pupils were able to see that the net consumption increased with 
certain speed and therefore, the accumulation of water in R1 was not seen as being represented 
by an increasing straight line, if this were the case, it would means that the consumption was 
constant in this interval. But lets hear what the students say: “this is crazy it goes until zero” 
(pupil 2), calculate the green areas and I will do the yellow”(pupil 1). They realize that there is 
something new here: “generally speaking we calculate the consumption because its easy, but 
here it speeds up because the consumption is not constant, here we see its going up…if it could 
have been other graph the consumption would have been constant, but here no, it went up as fast 
as pace” (pupil 2). To solve this problem pupil 1 insisted on calculating the areas. But before 
this, pupil 2 insisted on reviewing the situation 
(“lets check what is being asked”). This allowed 
them to clarify what happened, for example, pupil 
2 said “from 10 to 35 the consumption was not 
constant…it was changing therefore,…” the pupil 
1 finishes the idea “it had a constant increase”, 
pupil 2 “ yes, until it reached 35 seconds then it 
abruptly went down until it became negative, 
from –20 during 40 seconds. To resume, the 
students were able to provide an adequate description of the relevant aspects of the dynamic 
situation, but were not able to draw the graph representing the quantity of water were the 
consumption was not constant. Here, while calculating the areas, they were almost able to 
establish relations between the shaded areas and the accumulated volume of water, but then 
changed their minds: “well, we get the area of the triangle which are equal, ah no, it is directly 
proportional to the volume of water which is entering”. In order to draw the graph they 
calculated the respective areas of the “triangles”, and this was the graph they draw. 

In spite of being aware of the relevant characteristics in this new situation (“net consumption 
was never constant, it kept going up fast”) they drew an increasing straight line in the first 
interval, contradicting what they said before. 

Conclusions 
In spite of the difficulties shown by the students in this last activity, from the evidences 

gathered we can state that dynamics situations have potential  to promote  the students making 
connections between the accumulation of a quantity and its rate of change. The research carried 
out in this phase  shows that it is important to design activities which  would be of aid to students  
to take the steps which they were not able  to take in the last task. At the same time we should 
include more activities to strengthen  the relations between accumulation and its rate of change, 
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which are not very robust in the students. 
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We describe some of the results of a study that has as its main objective to find out the changes 
that are propitiated in the learning and teaching of math by the use of a computer and a 
projector inside the classrooms of elementary schools. This educational and research project is 
sponsored by the Ministry of Education of Mexico. For this purpose 120 activities were 
designed. The study showed that the mode of the teacher’s instruction is a very critical factor in 
the whole learning and teaching process. However, this article will concentrate on describing 
the progress of the students’ conceptual understanding. We will show that the students acquire 
visual images of the content matter treated in the activities which are helpful to guide their 
thinking, in some cases, noticing specific properties and making generalizations. 

Introduction 
In this paper we describe an educational project that has the purpose of using computers 

inside the math classrooms of elementary schools in Mexico. To do this effectively, a parallel 
research project consisting of a didactical experiment was conducted to evaluate the students’ 
progress and teachers’ influence. We will describe here some of the results of this study. 

For the last ten years, the Ministry of Education of Mexico has being sponsoring, a national 
program to teach math and science with technologies at the secondary level (Mochon and 
Rojano, 1999; Mochon, 2001). This more recent project is an extension to the elementary 
schools, with some modifications. In this project, a single computer with a projector is used 
inside the normal classroom. The work is done cooperatively by the whole group of students to 
enrich the learning process. This makes the teacher’s role even more important as a mediator. 

The educational project 
The teaching practices in elementary schools tend to give a lot of emphasis to the procedural, 

mechanical aspect of math. Also, the teaching method is based on the teacher as an “explainer”. 
Our didactical proposal tries to change this, centering the learning process on the students and 
paying more attention to their conceptual development and their thinking. 

For this purpose we designed a total of 120 activities, using the programming language Java. 
To illustrate the type of activities developed, Figure 1 shows an activity in which a block has to 
be weighed in several ways by fractional weights. These are dragged from the right side and 
placed on the right plate of the scale. The block changes when the “Start” button is clicked. 

The different elements that this project introduces are: 1) A computer and a projector to show 
ideas dynamically and interactively. 2) The activities have a strong conceptual component. Each 
one has a specific content, but allows many diverse explorations. 3) A pedagogical model 
centered on the students, allowing them to reflect and interchange ideas. 

_____________________________ 
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North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
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Teacher Knowledge   Vol.2-857 

 

 

Figure 1: An activity of the fraction set developed for the project. 

The research project 
A series of studies are being conducted not only to evaluate the materials developed, but also 

to observe the changes in students’ learning, the interaction between them and the teachers’ 
acceptance and ways of working with them. 

Theoretical Framework 
There are four general aspects we are focusing on in our studies. 1) The use of the technology 

and the applicability of the activities designed. 2) The students’ cognitive advances in the 
different topics. 3) The interaction and discussion between students generated by this 
pedagogical model. 4) The role of the teacher and his adaptation to this new form of teaching. 

These aspects are strongly interconnected, so we will have to be aware of the effect of each 
one on the others. For example, the mode of teaching can influence the advance of the students, 
their interaction, etc. 

For the second aspect, we will base our analysis on the categories of growth in mathematical 
understanding formulated by Pirie and Kieren (1994). As the authors mentioned, these can 
actually be seen by an observer. Although they give a list of eight different levels, we will 
describe briefly below the first five, since we do not expect students of elementary schools to 
achieve the last three: 

Primitive knowing . It is the starting point. What the student knows and can do initially (we 
could add: assuming the concept has not previously formed). 

Image making. The student does something to get a particular notion. Need to act on objects 
to form an image. 

Image having. The image is formed and there is no need to do something or act on objects. 
Property noticing. Can use or combine aspects of previous images to construct specific 

properties. 
Formalizing. Moves into general or abstract statements, identifying common features. 
In an article by Warner and Schorr (2004), these five categories were used to analyze student 

to student interactions that contributed to the development of their ideas. These middle school 
students were prompted to explain their thinking and justify their solutions. This article shows 
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that this learning strategy is helpful to improve their conceptions about the topic discussed. In 
our own research we would like to observe, through this framework, the students’ conceptual 
changes produced by our technological-didactical model. 

The third aspect about interaction of students will be analyzed through a sociocultural 
approach based on the works of Vygotsky (1978) and Wertsch (1991). The book by Newman, 
Griffin and Cole (1995) describes some of the notions of Vygotsky’s theory adapted to the 
school environment. 

For the fourth aspect, we will base our analysis on several similar frameworks. In an article 
about cognitively guided instruction, Carpenter et al (2000) stresses the importance of the 
teacher’s knowledge about the mathematical thinking of children. The authors identify four 
levels of teachers’ beliefs that correlate with their mode of instruction. 

Another study by Jacobs and Ambrose (2003) looked into how interviews applied by 
teachers to their students can improve instruction, developing their questioning skills. These 
authors proposed a classification of the different modes of teachers’ interaction during an 
interview. The list of these categories is as follows. A) Directive. B) Observational. C) 
Explorative. D) Responsive. We believe that these categories can be use to analyze the mode of 
instruction of teachers within our project and with this, define the teachers’ interactions that are 
more appropriate to work with the activities designed. Other similar studies in this line of 
research are Moyer and Milewicz (2002), Crespo and Nicol (2003) and Haydar (2003). 

Methodology 
With these different frameworks in mind (for each of the aspects that we would like to 

study), we planned several didactical experiments, working inside normal classrooms with some 
of the activities designed. For this, an elementary, middle economic class school (in the north of 
Mexico City) was chosen and each of four research assistants selected a grade level, a topic and 
ten activities from this topic to work with (“Car” chose second grade and Additive problems plus 
Decimal system. “Let” chose third grade and Geometry. “Ili” chose forth grade and Fractions. 
“Vic” chose fifth grade and Mental calculation and estimation.) These four assistants centered 
their observations primarily on the “students’ cognitive advances” aspect of their particular topic. 

Two stages of the studies were planned. In the first one, the same four research assistants 
would test the activities in a classroom as teachers. In the second one, the teachers of those 
groups will use the activities and the research assistance will become only observers. In each of 
the two stages and for each of the four topics, the method would consist of several steps as 
described below. 

� An initial evaluation of the topic based on interviews of five students. For this, a 
guiding questionnaire was designed, containing the notions that will be touched upon 
during the experimental teaching. 

� An initial interview with each of the four teachers to find out their beliefs about using 
computers in the classroom. 

� A didactical experiment within the classrooms, testing some of the activities 
designed. This consisted of eight sessions. In the first two, the students got acquainted 
with the mouse through activities of the Start set. In the other six, the students worked 
on the activities of that particular topic (one or two per session). 

� A final evaluation of the topic based on interviews with the same five students. The 
initial questionnaire was used with some small modifications. 
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� A final interview with each of the four teachers to find out the changes in their 
beliefs. 

All these interviews and classroom sessions were audio taped (a few of these were also video 
taped, mostly for future presentations of the project). An additional research assistant was always 
present during all the sessions to write down important observations. 

Results 
The first stage of these studies was carried out between April and June 2005. The second 

stage took place during the months of October and November 2005. At this point, we can give 
the results of the first stage and some partial results of the second stage (we expect to have a 
more complete picture of the results by March 2006). 

In this paper we will concentrate on the results of the students’ development in their 
mathematical understanding. However, since the dynamics of the activities and therefore, the 
students’ advancement greatly depended on the teacher’s mode of working, we describe briefly 
first the teachers’ behaviors found and the interaction between students. 

One of the four teachers was classified as “Explorative” and “Responsive”. In this case, we 
observed that the activities were conducted very efficiently and that the students progressed in 
their interpretations and conceptions of the topic. The other three teachers were classified as 
“Observational” or “Directive”. In these cases, the students became restless more often and their 
progress was less effective. 

Also the interaction and discussion between students, was influenced by the teacher’s mode 
of working. However, in all the sessions, the students demonstrated great interest in the activities 
and we observed in general, an increase in the interchange of ideas and discussions. 

Due to the amount of the data collected in each of the four didactical experiments, we will 
describe here only our findings on the students’ cognitive advances of one of the teachers (the 
first one described above who worked on the topic of fractions) and concentrate on selected 
items and answers of the questionnaire. We must stress that the experiment time was very short 
(six sessions) and therefore, we did not expect significant advances on the children’s 
conceptualizations. However, we were looking for some indications of progress and its 
characteristics (we are planning to make a follow up of this research during a full year). 

The questionnaire for the initial and final students’ interviews consisted of six tasks of the 
specific topic. The notions contained were: fractions as part-whole, as measure and as ratio, 
partition and equivalence within these contents and estimation of fractions. 

The first task of the interview requested the student to give the fraction represented by the 
shaded area in each of the two squares shown in Figure 2. We will describe below the answers of 
three of the five students interviewed. 

Fernando –in the initial interview– expressed the left shaded region as “two fourths”. –In the 
final interview– he expressed that “each is one fourth and together they are two fourths or one 
half”. We noticed here an advance to the level of “Image having”. 

Agustin –in the initial interview– divided the shaded regions of the left square with a 
horizontal line and stated that the top portion “was one eighth plus the bottom piece could be in 
total one ninth” (here we can see the misconception of: bigger piece corresponds to bigger 
denominator). For the right square, he initially called each shaded piece as “one half” but later he 
indicated that it was one eight since it is half of one fourth. –In the final interview– Agustin, for 
the left square stated: “two fourths because each triangle fits four times and there are two which 
is also a half”. We observe here an advance to the level of “Image having”. 
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Figure 2: Diagram of task 1 of the questionnaire for the interview. 

Ian –in the initial interview– expressed the left shaded area as “a half” and for the right 
square he mentioned that each shaded piece “is a third since it is smaller than a fourth” (here 
again we see the same kind of misconception). –In the final interview– Ian not only solved 
correctly the two parts but stated, referring to the names of the fractions stated that “the bigger 
the number is, the smaller the fraction”. This demonstrates an advance up to the level of 
“Formalizing”. 

The second question of the interview asked to weigh in different ways, packages of 2 and 3½ 
kilograms with weights of 1, ½ and ¼ kg. –In the initial interview– the students employed mostly 
weights of a single type (“½ and ½ and ½ …”) and used extensively diagrams and drawing to 
show their answers. Agustin, for example, drew 4 weights of ¼ and one of ½ to represent 2 kg. 
When asked to explain, he said: “4 of ¼ make a kilo plus ½ make 2 but since they are halves, it 
would be two and a half”. His way of adding is: “one and one half is two … halves”. –In the 
final interview– all the students were able to do more combinations and with different weights. In 
particular, Agustin constructed 3½ kg as follows: “I put two halves, one integer and four fourths. 
We already have three and it is missing a half”. When asked about the different representations, 
one of them said that “they are the same quantity but in different forms”. This shows that they 
achieved the level of “Image having” and in some cases the one of “Property noticing”. 

The figure of the fourth task of the questionnaire showed 2 or 3 whole oranges and 3 halves. 
The student was asked to divide this set between two children. –In the initial interview– three 
students divided each piece in two and expressed their answer like: “to each one, I give half of an 
orange, half of another and three times the half of a half”. Two other students cut one half orange 
to obtain two fourths. When they saw this result (“fourths”), they divided the next half orange 
into four pieces to obtain the “same” type of fraction! (This shows a mix-up with the unit). –In 
the final interview– we observed different procedures all showing a significant advance in the 
conceptualization of fractions. 

Two students joined two halves to obtain in total 4 and a half oranges and stated: “each gets 
two oranges and half of this half which is a fourth”. This can be characterized as “Property 
noticing”. However, it is interesting that they expressed the result as “each gets two fourths”. 
Later on, Ian said: “it is not like I said because two fourths is only half an orange and they got 
more, but I don’t know how to join the quantity, each gets two oranges and another fourth of an 
orange”. This shows that symbolic expressions like “two and a half”, “two and a fourth” might 
not have the expected meaning to students. 

The figure of the fifth task of the questionnaire showed 20 small faces. The student was 
requested to find 2/5 of this set. –In the initial interview– Fernando, cut the set in 4 parts and 
said: “I think that 1/5 is half of ¼ because it is smaller. Since it is two fifths then it is equal to 
one fourth”. Two other students signaled a fifth as five elements. Ian said: “each whole has five 
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fifths but I don’t know how to cut it”. –In the final interview– all students were clear that they 
have to divide the set into 5 pieces: “I have to cut this in 5 parts to obtain fifths”. This partition, 
which caused difficulties to all of them, was accomplished by trial and error: “if we take five for 
each group there is not enough for five groups; if three in each group, we have 5 left over; if we 
give four to each we have all”. Agustin reasoned as follows: “I counted 20 in total, for five equal 
parts I remember that 5 times 4 is 20, so I enclosed four by four and got the five groups”. Here 
we observed an advance to the category of “Image having”, and in the case of Agustin, he 
showed signs of “Property noticing”. 

The sixth question of the interview asked to color 8/10 of a rectangular bar representing the 
unit (two rectangular bars were given in the figure). –In the initial interview– three students just 
divided the rectangle into 8 pieces ignoring the denominator. Other two students used the second 
bar because “there are too many pieces”. –In the final interview– all the students stated that they 
need 8 of ten parts which is less than the whole bar. The difficulty appeared in the partition. 
Some try to fit the ten parts with a “good eye” and shaded 8 of them. Ian divided the bar into 4 
pieces and then reduced the size to get a fifth. He stated: “more or less I looked at the size of one 
fourth to get five and then I divided each into halves to get ten. Then I counted eight”. Here 
again we can observe a significant advance to the levels of “Image having” and “Property 
noticing”. 

During the didactical experiment of six sessions, we observed continuously that the children 
moved in and out of the three levels: “Image making”, “ Image having” and “Property 
noticing”. For the sake of completeness we will give a few examples where the children showed 
to be situated in the fourth level “Property noticing” and even in the fifth “Formalizing”. 

In the first session, the students worked with a screen that had in its center a square (the unit). 
Into it, the students could drag fractional pieces of 1/2, 1/4 and 1/8 in the shape of triangles, 
rectangles and squares. For example, a student said that “two fractions, even that they don’t have 
the same shape, are equal because of the number of times that fit into the unit”. Another student 
stated about an arrow constructed inside the square unit that: “It is a half because the square is 
one fourth and each triangle is an eight and the two are one fourth plus the other fourth makes a 
half”. 

In the second session, the students worked with the screen of the scale shown at the 
beginning of this article. For a block that weighed 3 kg, one of them said: “It is also equal to 
twelve fourths since one kilogram has four, plus four, plus four makes twelve”. For a block of 
four and a half kg, somebody else said: “An equal fraction would be nine halves since in 4 
kilograms there are 8 halves, plus the other one makes nine”. 

In the fifth session, the objective was to construct equivalent fractions on two bars in the 
screen by dragging fractional pieces. One student remarked that: “There are three sixths in one 
half because six can be divided into two to get three”. 

In the last session the students have to estimate the size of fractions. For the fraction 7/8, one 
said: “It is close to the unit because it missing only one eighth and it is a small piece before”. For 
the fraction 6/4, another one said: “It is more than one because four fourths make one integer and 
the other two make another half”. 

Conclusions 
We observed in general that the students’ interaction improved as well as their cognitive 

development by acquiring images that guide their thinking. In the final interviews the students 
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referred to the images of the activities when giving their answers. Their explanations showed that 
they have advance to higher levels of the Pirie and Kieren’s classification. 

We believe that this project, not only can improve what it is learnt by students in several 
aspects, but at the same time, it can develop communication and expression skills of students and 
teachers. One important advantage of this teaching method is that it helps the teacher to pay 
more attention to the thinking process of the students instead of simply looking at the final 
results. Another very significant benefit is that the evaluation of students becomes an integral 
part of the teaching process. In fact, the teacher observes directly and constantly the students’ 
thinking, strategies and difficulties and can use this knowledge to improve their conceptions. 
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In this paper we report on differences on mathematical classroom cultures where computer 
programmes from Enciclomedia, a Mexican national project, are used. Classroom cultures are 
characterised through the following aspects of students’ behaviour: Active/Passive, 
Attentive/Inattentive, Working with others/Working individually, Freedom/Constraint, Giving 
correct answers/ Formulating explanations, Understanding/ Remembering. Results show that 
changes in classroom cultures are shaped by the kinds of digital resources used. Mathematical 
learning was observed in relation to the use of a programme that gives students’ freedom to 
explore and which successfully promotes asking questions, reflecting and formulating 
explanations. Another programme, which restricts students’ activities, reinforces already 
existing tendencies of giving answers automatically. 

Introduction 
Enciclomedia is a large-scale Mexican project that has been devised with the purpose of 

enriching primary school teaching and learning by working with computers in the classrooms. 
An electronic version of the mandatory textbooks that are used in all primary schools in Mexico 
is being enhanced with links to computer tools designed to help teachers with the teaching of all 
subjects. As members of the Mathematics group in Enciclomedia, we create resources and 
strategies which can help teachers and students in their teaching and learning of mathematical 
concepts. An additional and extremely important part of our work is to investigate how students 
learn mathematics as they use the computer tools that Enciclomedia provides them with. 

One way of approaching the way in which students learn with an innovative tool consists in 
following, by means of careful observation, the interactions between teacher and students, 
amongst students and with the resources from Enciclomedia. Patterns in interactions constitute 
what we call classroom cultures. The purpose of this paper is to report on differences observed in 
mathematical classroom cultures as students interacted with two different programmes from 
Enciclomedia. 

Some Ideas about the Learning of Mathematics 
Our theoretical ideas about mathematics learning are based on enactivism, a theory of 

knowing which considers learning as adequate or effective action in a given context (Maturana 
and Varela, 1992). Learning occurs when individuals interact with each other, changing their 
behaviour in a similar way. In a particular context or location, the participants create together the 
conditions that will allow actions to be adequate. As members of a particular community interact 
with each other, patterns of behaviour are created; constituting a classroom culture (see Maturana 
and Varela, 1992). With these ideas in mind is that we are interested in investigating the way in 
which patterns in effective behaviour emerge in mathematics classrooms as teachers and students 
use Enciclomedia. 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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Learning mathematics with computer tools 
From an enactivist perspective, the use of computer tools is part of human living experience 

since ‘such technologies are entwined in the practices used by humans to represent and negotiate 
cultural experience’ (Davis et. al., 2000, p. 170). Tools, as material devices and/or symbolic 
systems, are considered to be mediators of human activity. They constitute an important part of 
learning, because their use shapes the processes of knowledge construction and of 
conceptualization (Rabardel, 1999). When tools are incorporated into students’ activities they 
become instruments, which are mixed entities that include both tools and the ways these are 
used. Instruments are not merely auxiliary components or neutral elements in the teaching of 
mathematics; they shape students’ actions. Every tool generates a space for action, and at the 
same time it poses on users certain restrictions. This makes possible the emergence of new kinds 
of actions. 

When students and teachers work with the tools provided by Enciclomedia, their behaviour 
inevitably changes. Investigating the way in which students’ actions are shaped when they use 
the programmes we create is a crucial part of the process of development of the tools themselves. 

Some Ideas about Methodology 
The choice of methods used in our investigation of mathematics learning is also inspired by 

the enactivist approach. ‘Enactivism, as a methodology [is] a theory for learning about learning’ 
(Reid, 1996, p. 205). Research is considered to be a way of learning, and therefore researchers 
are seen as individuals developing their learning in a particular context. The interdependence of 
context and researchers makes the research process a flexible and dynamic one. Research does 
not occur in a linear fashion; rather, it is seen as a recursive process of asking questions. The 
work reported in this paper is only the first part of a complex process of interaction and 
development of ideas. The methods we have started using to investigate mathematics learning 
will change in the future according to what we observe in the classrooms and to the feedback we 
receive from colleagues. 

With the purpose of researching the learning of mathematics with Enciclomedia, we 
contacted a school in Mexico City where we worked with two Year 5 and two Year 6 groups of 
about 25 students each (aged 11-13). Two of us visited the classrooms at a time and our role was 
that of participant observers. When digital technologies are used, these change the way students 
and teachers interact with each other and therefore particular classroom cultures emerge. 
Teachers and students worked with the same interactive programme, associated to a particular 
textbook chapter, during several sessions. This allowed us to observe how behaviour changed 
gradually. 

In order to register the characteristics and the development of the classroom cultures, we 
carried out detailed observations of students’ and teachers’ actions. We recorded whole group 
discussions as well as interactions that occur between two or three students and/or between 
students and teachers or researchers. So far we have video taped the teacher and different pairs of 
students on every session. 

Teachers’ actions are extremely important in that they shape the classroom culture in 
particular ways: for example, teachers decide what computer programmes will be used in the 
classrooms, and they encourage some of the students’ actions while they reject others, they also 
decide when an explanation or a discussion is needed. Teachers can also create relationships 
between formal and informal mathematical actions. Their behaviour influences deeply the 
dynamics of the interactions in the classrooms. In this paper, we focus on students’ actions; 
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however, we acknowledge the fact that these are inevitably influenced by those of the teachers. 
Teachers’ behaviour will be reported and analysed in more detail elsewhere. 

With the intention of monitoring students’ actions in the classrooms, two different 
observation sheets were used during each one of the lessons we observed. The first instrument 
intends to register students’ activities in the classroom in a general way, and includes the 
following aspects of students’ behaviour: Active/Passive, Attentive/Inattentive, Working with 
others/Working individually, Freedom/Constraint, Giving correct answers/ Formulating 
explanations, Understanding/Remembering. These aspects had emerged in a previous study in 
which they had been helpful in analysing students’ mathematical actions (Lozano, 2004). We 
decided to start investigating our classroom cultures by looking at these categories, keeping in 
mind that some of them might turn out to be irrelevant, while we might need to add others. 

A second instrument was used to keep records of those actions that can be considered 
mathematical, especially the ones related to the mathematical concepts in the textbooks’ chapters 
that were addressed during the lessons. This observation sheet includes the following headings: 
Initial mathematical behaviour (which refers to students’ actions related to mathematics during 
the whole group introductory discussion at the beginning of the lesson), Mathematical actions 
(those observed during the rest of the lesson, which are related to the mathematical concept(s) in 
the textbooks’ chapter) and Other mathematical actions (they do not explicitly address concepts 
in that chapter). Particular incidents, where mathematical behaviour is observed, were written at 
length under each heading. In addition, we have kept records of students’ work with paper and 
pencil. Acting mathematically does not necessarily mean, to us, solving a problem in a 
conventional ‘correct’ manner. We collectively decide on what is mathematical by having 
discussions in which we talk about our notes, our transcripts from the audio tapes, and about 
what we observe on the videos. To support our interpretations about mathematical actions, we 
also read the literature on the teaching and learning of the different areas or mathematical 
concepts which are being explicitly addressed in each lesson. We use the textbooks to identify 
these concepts, and to learn about the purpose of the chapters in them. We are working on the 
development of criteria for identifying mathematical actions, which are not fixed but ever-
changing. 

Both observation sheets were filled in by those two researchers acting as participant-
observers in the classrooms. These records, together with the audio and video tapes were 
analysed during joint sessions in which the three authors of this paper participated. 

Results and Discussion 
After a great number of classroom observations, which we carried out during a whole school 

year, we found that, when interactive programmes from Enciclomedia are used, certain patterns 
of behaviour emerge. These patterns of behaviour, however, vary according to the resources used 
during the lessons. Based on the data we obtained during classroom observations and on the 
records we kept from the observation sheets, we can say that: 

� Students were active when they worked with the digital resources from Enciclomedia. 
They constantly interacted with the programmes and with their peers. This behaviour 
was observed during whole sessions. It was difficult to organise whole-group 
discussions as students were often absorbed in their work with the digital resources. 

� Once a whole-group discussion was organised, students were eager to participate and 
most were attentive. 
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� Students sometimes got distracted when, working with an interactive programme, 
they could not solve a problem after many attempts. 

� Individual work was frequent when students were working with activities from the 
textbook; when they start exploring the problem with the interactive programme; and 
when their solutions are giving them unexpected feedback (due to incorrect answers). 
Students appear to work in groups more frequently once they have an understanding 
of the problem. 

� Students and often want to explain or show things to the teacher and researchers. 
� Sometimes students’ explanations include phrases such as ‘that is the way we were 

taught’ ‘that is how the formula goes’ which indicate memorisation. Particular 
patterns of behaviour were observed when certain programmes were used in the 
classrooms. In what follows we report the results from the use of two programmes: 
‘Perimarea’ and ‘The Balance’: 

Perimarea 
Perimarea is a programme in which students are asked to find the area and/or the 

perimeter of different geometrical shapes which are shown on a grid. 
Students write numerical answers and immediate feedback is given in different 

ways. The programme tells the users whether their answer is correct or whether they 
have ‘too many’ or ‘too little’ units or square units. (See Figure 1). 

 

Figure 1. Perimarea 

In addition, visual feedback is given by means of shades that show, on the 
geometrical shape, the area or the perimeter which reflect the students’ answer. (See 
Figure 2). 
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Figure 2. Activity with Perimarea  

When students have worked with the programme “Perimarea”, we have observed 
that: 

� The main strategy was the use of a ‘trial and error’ approach. Initially, students 
worked with natural numbers, following the feedback given by programme and 
adding or subtracting accordingly, until they got the correct answer. When they 
noticed that the correct answer was not a whole number, students clicked on one of 
the three fractions that are shown on the numerical keybord from the programme (1/4, 
½, ¾) to complete their response. Choosing an adequate fraction was done randomly. 
When questioned, students did not show awareness of the relationship that exists 
between these numbers and the gometrical shapes shown by the programme. 
Feedback given by Perimarea seemed to give further emphasis to students’ already 
existing strategies of working towards correct answers without reflection. Perimarea 
did not generate the need to refine or change such strategies or to look for efficient 
ways of calculating the area or the perimeter of geometrical shapes. 

� Changes in students’ initial conceptions on area and perimeter were not observed. 
Some of these initial ideas, in relation to area were the following: 

51 - The area is the center of the shape. 
52 - It is the inside of the shape. 
53 - It is the background, what is not part of the edge of the shape. 

Some students obtained the area of the shapes by counting the number of squares in 
them. 
However, when, after a few sessions of working with the programme, students were 
asked about their ideas about the concept of area, they responded in the same way 
they did before they used the programme. 

The activities provided by the programme Perimarea did not generate in students the need to 
develop their initial conceptual ideas or change their problem-solving strategies in relation to 
area and perimeter. Students had some knowledge about the conventional formulae used to find 



Vol.2-868  PME-NA 2006 Proceedings 

 

the area and the perimeter of geometrical shapes such as triangles, squares and rectangles. They 
did not relate, however, that previous knowledge to their ‘tying random numbers’ or ‘counting 
squares’ activities. Adequate behaviour included very limited activities and therefore we 
conclude that mathematical learning did not take place. We believe this was because feedback 
from Perimarea restricted students’ actions and did not encourage them to act reflectively. 
Activities done through the programme do not allow for exploration and did not provoke in 
students changes in their mathematical behaviour. 

 The Balance 
With the interactive 

programme The Balance users can 
create balances with different 
numbers of weights and on 
different levels. On each weight, 
natural numbers, fractions and 
decimal numbers can be written. 

The programme indicates, in 
real time, visually and with 
sounds, whether the balance is in 
equilibrium or not, according to 
the values which are assigned to 
the scales.Figure 1. The Balance 

When working with the Balance students were asked, to equilibrate a balance that showed a 
weight of 1 ½ kg on one arm and two blank weights on another arm (See Figure 2). In relation to 
this and other similar activities we observed that: 

� Students asked questions such as ‘what happens if we write 1 and ½?   Can we use 
decimal numbers? What about 3/6 and 1/6? 

Figure 2. Activity with The Balance 

� Students’ initial attempts included the use of ‘trial and error’ strategies aimed at 
getting correct answers. With time, however, strategies were refined and explanations 
were formulated, as students explored with different numbers. The following is an 
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example taken from the video transcripts. Students are trying to equilibrate a balance 
which has a 2 ½ on one arm and, on the other arm, two ‘empty’ weights: 

51 Let’s see, which number will make it even? 
52 This number (1/2) cannot be … because this would end up being heavier. 

We need a bigger number… (They do some sums) 
53 We need big numbers, like 2 and ½ 
S5 Yes, but listen… we need to add up these two so that we get this, but these 

tow have to be the same, so that this side is also okay.  
� As they used The Balance, students worked with fractions in different ways. For 

example, they added, subtracted and divided fractions in the process of equilibrating 
the weights in the programme.  They used concepts such as  ‘equivalent fractions’ 
and their work included the use of mixed numbers and decimal numbers. 

� Sophisticated explanations, that involved complex mathematical ideas, were given by 
some students. These explanations often included the use of previous knowledge from 
students. Examples of these explanations are: 

52 You have a pizza, and you divide it in 4 parts, we will keep 3 and eat 
one…whatever. Now, we want to half this… We can’t do it, we divide each 
bit in 2 parts…so we have eights… we have three eights. 

S1 Divide by 2, and then by 2 again, 8/5 divided by 2 is 4/5, if I half 4/5 I get 
2/5’. 

53 We just divide 3/2 by two (Writes 3^2^3^) 
� Mathematical algorithms were discussed whenever there was a need for them to be 

used. Different non-conventional strategies were initially proposed but students were 
able to modify their initial intuitive ideas in order to make them more efficient. 
Adequate behaviour included conventional mathematical actions. 

� Students used The Balance to work with problems from the textbooks, however, the 
programme was used when working with a variety of problems, including those 
posed by students themselves. 

� We observed students using The Balance for several sessions. In this way, we were 
able to observe how some of the students’ initial ideas about fractions changed. In the 
beginning, it was very common to hear students say that, for example, ¼ is greater 
than ½ because 4 is greater than 2. With time, however, students were able to 
compare fractions and decimal numbers adequately, even without the use of the 
Balance.  

Mathematical learning occurred, and we believe this was partly due, on the one hand, to the 
fact that the programme gives immediate and useful feedback to the students, thus inviting them 
to reflect on their answers, and on the other, because it provides students with freedom to explore 
with different situations and to experiment with different strategies. 

Some Conclusions and Directions for Future Research 
Several materials have been developed for Enciclomedia. The decisions taken in their design 

have been based on specific criteria developed in the curriculum for different concepts, and on 
results of the research literature on mathematics education about those concepts. Most materials 
developed are designed to enhance interaction and reflection, however the observations in the 
classroom show evidence of important differences regarding the nature of students’ 
mathematical actions as they use the different programmes. 
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So far, we have found that some programmes in Enciclomedia by restricting students’ 
activities and options for answers, reinforce the students’ tendency to try out responses without 
giving much reflection to them. Others, seem to invite students to act mathematically, using 
concepts form the textbooks in a variety of ways. 

Different patterns of behaviour emerge when different programmes are used, that is, changes 
in the classroom cultures occur. More investigation is needed to explore, in more detail, the 
nature of those changes. In particular, research is needed to find out the way in which students 
interact with the tools and how they become instruments in that process of interaction. Our 
research instruments will need to be refined, so that the impact of the programmes on students’ 
mathematical actions can be recorded in more detail. 

References 
Freudenthal (1983). Didactical phenomenology of mathematical structures. Holland: D. Reidel 

Publishing Company. 
Davis, B., Sumara, D. and Luce-Kapler, R. (2000). Engaging Minds: Learning and Teaching in a 

Complex World. London: Lawrence Erlbaum.  
Lozano, M. D. (2004). Characterising Algebraic Learning: an enactivist longitudinal study. 

Unpublished doctoral dissertation, University of Bristol.  
Maturana, H. and Varela, F. (1992). The Tree of Knowledge: The Biological Roots of 

HumanUnderstanding. Revised Edition, Boston, Shambala. 
Rabardel,  P.  (1999).  Eléments  pour  une  approche  instrumentale  en  didactique  des 

mathématiques. Actes de l'école d'été de didactique des mathématiques, Houlgate 18-21 
Août, IUFM de Caen, 203 – 213.  

Reid, D. (1996). Enactivism as a Methodology. In L. Puig and A. Gutierrez (Eds.), Proc. 20th 

Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 4, 203-209). 
Valencia, Spain: PME. 



Teacher Knowledge   Vol.2-871 

 

PRE-SERVICE TEACHERS USE OF TECHNOLOGY AS A PSEUDO-
COLLABORATOR IN AN OPEN-RESPONSE, TASK-BASED ENVIRO NMENT 

Joshua D. White 
Brigham Young University 

Joshwhite8@gmail.com 

Hope H. Gerson 
Brigham Young University 

hope@mathed.byu.edu 

A research team in Australia argues that, under certain conditions, calculators can function as 
exploration partners for students (Goos, et al. 2000). We argue that, under very similar 
conditions, calculators can also be used in a collaborative task-based exploration setting to 
increase the Zone of Proximal Development of a group of students, thereby increasing the base 
knowledge of individuals in the learning group. Interaction between the calculator and the 
student becomes almost a conversation, suggesting that the calculator borders on becoming a 
collaborator. We use the term pseudo-collaborator for the role that the graphing calculator can 
play as it lacks several of the characteristics of a regular collaborator. Nevertheless, the 
calculator can aid in the assimilation of new base knowledge that would be more difficult to gain 
without it. 

Objectives 
This paper will provide evidence and explanation of how technology can aid in the 

acquisition of new mathematical knowledge in a task-based collaborative environment. We use 
the term pseudo-collaborator for the role that technology can play in the collaborative group. We 
argue that in this type of situation, students learn more mathematics faster than they would 
without the technology.  

Perspective 
Preparation of teachers must allow them to engage in mathematical sense-making and 

reflection through collaborative inquiry of challenging mathematics (NCTM, 2000, Zaslavsky & 
Leikin, 2004). As they collaboratively explore rich, open-response tasks, learners use 
questioning, reasoning, organizing, justification, and refutation to build meaning and to embrace 
a more robust conception of mathematics (Zaslavsky & Leikin, 2004). An environment where 
pre-service teachers are free to choose which tools (i.e. physical manipulatives, graphing 
calculators) they will use in their exploration further expands their abilities to engage in sense-
making. 

Electronic technologies—calculators and computers—are essential tools for teaching, 
learning, and doing mathematics. They furnish visual images of mathematical ideas, they 
facilitate organizing and analyzing data, and they compute efficiently and accurately…When 
technological tools are available, students can focus on decision making, reflection, reasoning, 
and problem solving. (NCTM, 2000; p. 24) 

Zone of Proximal Development 
Leon Vygostsky theorized that learners have a repertoire of knowledge which provides a 

foundation with which to build new learning. He argued that there are limits to both a learner’s 
base knowledge and the range of new learning one can comprehend. For example, a small child 
with a limited understanding of numbers cannot comprehend complex algebra even if it were 
explained in detail. Vygotsky defined the area between what a learner already knows and 

_____________________________ 
Alatorre, S., Cortina, J.L., Sáiz, M., and Méndez, A.(Eds) (2006). Proceedings of the 28th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Mérida, México: 
Universidad Pedagógica Nacional. 
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understands and what they are capable of doing, the Zone of Proximal Development (ZPD). 
(Rieber & Carton, 1987) This can be thought of as two circles: one representing the knowledge 
base and the other representing the ZPD. Any new knowledge which lies outside the ZPD is 
learned with great difficulty, if at all. Only knowledge within the ZPD can be assimilated into the 
actual knowledge case. Thus, “What lies in the Zone of Proximal Development at one stage is 
realized and moves to the level of actual development at a second. In other words, what the 
[learner] is able to do in collaboration today, he will be able to do independently tomorrow” 
(Rieber & Carton 1987, p. 211). 

 

 
Vygotsky also proposed that the individual ZPD of learners working collaboratively is the 

combination of both. 
What collaboration contributes to the child’s performance is restricted to limits which are 

determined by the state of his development and his intellectual potential. In collaboration, the 
child turns out to be stronger and more able than in independent work. He advances in terms of 
the level of intellectual difficulties he is able [to] face (Rieber & Carton, 1987, 209) 

Essentially, the ZPD of a learner working collaboratively is larger than the learner working 
individually.  

Technology as a partner 
It is also well-documented that technology can be used as a tool to increase learning. Goos, et 

al. (2000), assert that technology, especially calculators, in some instances can be used by the 
learner as an exploration partner. 

Here a rapport has developed between the user and the technological device – which may 
even be addressed in human terms. A graphics calculator, for example, becomes a friend to go 
exploring with rather than merely a producer of results. The user is still in control, but there is 
appreciation of the fact that calculator generated outcomes cannot be blindly accepted but need 
to be judged against mathematical criteria. Exploration, for example, in a graphical work, lead to 
situations where the output needs to be checked against the known properties of related graphical 
forms. It is possible for the calculator to be misleading, and a feature of its use in this mode is the 
way in which the respective authorities of mathematics and technology are balanced (Goos, 2000 
p. 312). 
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In this paper, we continue this line of thought and argue that technology, in particular a 
graphing calculator, can serve as a pseudo-collaborator to increase the ZPD of a group of 
learners and thereby increase the base knowledge of individuals in the learning group. We use 
the term pseudo-collaborator for the role that the graphing calculator can serve because, although 
technology can contribute in a community of inquiry in much the same way as a collaborator, it 
lacks several of the characteristics of regular collaborators; i.e. the ability to ask questions, make 
value judgments etc. Nevertheless, technology can aid in the assimilation of new base knowledge 
that would not be possible with out it.  

 

Setting 
Our research covered two sections of a course in mathematics task-development and 

assessment designed specifically for preservice-secondary and -middle school mathematics 
teachers. Both sections, one a spring term and the other a fall semester, contained only students 
who had declared mathematics education as a major or a minor. The spring term class met for 
two hours once a week for six weeks and the fall semester class met for one hour a week for 
fourteen weeks. Each class consisted of about 24 students seated, at most, six to a table. Most of 
the students were in the latter half of the four-year undergraduate program.  

In the summer course, a focus group was chosen from the four self-selected table groups 
because it was a particularly vocal group during collaborations. In the fall course, we chose the 
focus table before the students came in on the first day, so the focus group chose to sit at the 
focus table. In both cases, the same focus group was followed throughout the length of the 
course. 

In class, the students collaboratively explored a series of rich and challenging open-response 
tasks. At the conclusion of each task, each table presented their explorations and their results to 
the class as a whole. The syllabus required students to have a graphing calculator although they 
were never told how or when to use it. The classroom itself had several white boards, graph 
paper, rulers, markers, transparencies, and other tools available for student use as they deemed 
appropriate.  

Research Questions 
1. How is technology used by pre-service teachers in an open-response, task-based 

environment? 
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2. How can technology be used to increase Zones of Proximal Development in a 
collaborative open-response, task-based environment? 

Method 
The collection of data consisted of audio or video taping the same focus group during each 

class period and collecting their completed work submitted for grading. The tapes for each day 
were then recorded on a server and viewed by multiple researchers. One researcher transcribed 
and time-coded each tape and another researcher verified the transcript and time codes. 

The methodology of grounded theory was used in the analysis of audio and video data, 
wherein data was analyzed and reanalyzed until a theory, backed by strong evidence, was built to 
explain what happened in the class (Strauss and Corbin, 1998). Audio and video data were 
described, transcribed, and analyzed several times individually and in collaboration. Analyses 
were then triangulated with collected work.  

Data Sources 
In our research, we studied two particular tasks that each class explored. Each focus group 

spent about three hours in class exploring each task. The first task, the Timpanogos Cave Trail 
Task, was given as a project design request to the students in letter form from a fictional agency, 
as follows:  

Dear Student, 
We are trying to plan a new stroller and wheelchair accessible trail to the Timpanogos Cave. 

Your Teacher, Dr. Gerson, told us that you might be able to help us. We are placing the base 
camp at a place where the mountain is fairly smooth and evenly steep. We have enough room to 
make switchbacks up to 200 yards long, but they may be shorter than that. The difference in 
elevation between the cave and the base camp is 1100 feet. In order to be wheelchair accessible, 
the trail must have no more than 5% grade. We have found that a fit person can walk about 2.4 
miles per hour pushing a baby in a stroller on a 5% grade. We would like you to design a trail 
and model a person climbing the trail. How long will the trail be? How long will it take to climb 
it? What else can you tell us that would be useful to us? If you need any further information you 
can contact us through your teacher.  

Thank you in advance for your help. 
Sincerely 
Rock McCave 
The Committee for Greater Access 

Data Example: Timpanogos Cave Trail Task, Spring Term 2005 
In the creation of a model, the group designed a trail on paper that zigzagged up the 

mountain. They calculated the length of the trail as well as the time it would take a person, 
walking, to reach the cave entrance. They then struggled to model their trail on a graphing 
calculator. Mary decided that the model, using parametric equations, should be able to represent 
the position of a person walking up the trail at any given time. Derrick’s initial idea involved 
parametric equations using a periodic function such as sine or cosine. The group realized that the 
cosine function did not exactly model the straightness apparent in their model on paper. In 
collaboration, the group sought for a model that would more closely fit the design of their trail. 
In response, Mike proposed another idea to make the trail straight by including the function 
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( )n1−  as part of their equation. He hoped that this would alternate the slope of the model from 
positive to negative and back.  

 
Derrick But then, how do we get it so it bounces back and forth? 

That's the, that's the number one question.  
Ida We could just design our trail to be curved 
Mike Um, if you want to, if you want just a switchback can't you 

do to the negative to the, negative one to the power n? [(-
1)^n] … That goes positive negative positive negative. 

Mary Oh yeah, that is a… an oscilli 
Derrick So it would be, so what's that do on the calculator?  

Table 1. 

Mike suggested that incorporating ( )n1− in the parametric equations for their model would 
change the slope from positive to negative to positive and so on in such a fashion that one set of 
parametric equations would be sufficient to model the entire trail. With Derrick’s question, the 
students turned to their calculators. The students became distracted for several minutes, at the 
end of which, Derrick shared his graphing attempt. 

Derrick Ok this is, this is what I got 
Mike Did you do that ( )n1− thing? 

Derrick Yeah, this is what happened 
Mike Oh, that's piecewise 

Table 2. 

Mike was surprised by the graph he saw on his calculator. The other members of the group 
continued to discuss other aspects of the task while Mike worked independently to make sense of 

the graph of ( )n1−  on the calculator. After several minutes, Mike realized one of the problems 
with his idea was that the graph was not at all continuous. 

Mike It's not continuous 
Mary It wouldn't show up on my graph 
Mike I don't, no, it's not continuous 
Mary It's just points 
Mike It's piecewise 
Mary But it's a function though. How can it be a function? 

Table 3. 

After another brief interplay, Mike exclaimed, “It’s not going to work, this was a waste of 
my time.” He had finally realized that his idea would not model the trail as he had hoped. Mike 

discovered that the ( )n1−  idea that he had hoped would yield either 1 or (-1) for any value of n 
did not always yield real numbers. With this new knowledge, he came to the conclusion that his 
function was “useless.”  
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Mike I just find it hard to belief that that is correct… So this 
function, this function is useless isn't it? 

Table 4. 

As the group members worked independently and collaborated with each other, they used 

their calculators to make sense of the function( )n1−  and ultimately reject it as a possible model 
for the trail. This is a brief example where the calculator acted as a pseudo-collaborator. The 
calculator not only increased the group’s ability to thoughtfully explore ideas but broadened the 
scope of ideas they were able to explore.  Thus, the calculator increased the ZPD of the group, 
which served to broaden their base knowledge of mathematics.  

Data Example: Placenticeras Shell Task, Fall Semester 2005 
In the second task, the Placenticeras Task, students were each given a picture of a 

Placenticeras, a spiral fossil, and these instructions: 
Placenticeras: You have been given a copy of a Placenticeras fossil, an ammonite that fell to 

the bottom of a shallow sea 170 million years ago, found near Glendive, Montana. The shell has 
been enlarged by a factor of 3.5 in order to make the shell structure more visible. Carefully 
locate the center of the shell and as accurately as possible draw a set of axes. Find a way to 
represent the spiral as a function.  

 

 

Figure 1. 

The group worked together in an attempt to create their own version of the spiral. It seemed 
to be understood that the final model would be created on the group’s graphing calculators. They 
discussed the options of using either polar or parametric equations, finally deciding on polar 
equations. One student in particular, Taylor, used his calculator as a pseudo-collaborator to add 
to his limited knowledge of polar equations. He used his discoveries to find a way to construct a 
spiral that would model the placenticeras shell.  

At one point in his exploration, Taylor explored polar equations by entering a series of 
equations into his calculator. To build his knowledge, Taylor entered an equation into his 
calculator, viewed the graph for several moments, modified the equation, and viewed the results 
again. While building some initial knowledge of polar equations, Taylor followed this pattern 
and created a series of six equations. It can be seen from the figure that not all of these graphs 
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have the appearance of a spiral. However, Taylor gained an understanding of how to manipulate 
polar equations.   

 

 

Figure 2. 

Taylor gained a sense of how to manipulate polar equations from this exploration. He and his 
calculator collaborated to build this knowledge. In essence, Taylor put together a question in the 
form of an equation, asked it to the calculator, and created a new question with the results. The 
calculator served as a pseudo-collaborator in this process. It did not ask questions nor give 
suggestions but it did give responses to questions that Taylor asked. By using the calculator in 
this way throughout the class, Taylor was able to develop a spiral that very accurately modeled 
the spiral given to him.  

Conclusions 
In both of these examples, technology played an intricate part in the development of new 

knowledge for the students using it. As a pseudo-collaborator, the technology added to the 
breadth of learning the student achieved as it provided a place for the students to investigate 
ideas and to test assumptions. Often these results prompted the students to ask additional 
questions. This led to discovery that arguably would not have been attained without the presence 
of the technology. The technology literally functioned as part of the collaborative team. It was 
not accepted as the authority but almost as an individual who could provide information that 
aided in discovery.  

With this in mind, we would like to point out some of the commonalities between the 
situations where we observed technology acting as a pseudo-collaborator. First, obviously the 
technology needs to be in the hands of the students. An example from a teacher may serve as a 
teaching tool but without the students actually interacting with the technology, it cannot take on 
the role of a pseudo-collaborator. Second, a student must be familiar with the technology and its 

r = θ2         r = 6           r = 6 + θ 
 

r = cos (θ)           r = 6 cos (θ) + 6 sin (θ)  r = 6 cos (θ) + θ2   
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capabilities. The more familiar a student is with a particular technology, the more a student will 
learn through using it as a pseudo-collaborator. Third, prudent task selection increases the chance 
that technology can act as a pseudo-collaborator.  Tasks must be open-ended and exploration-
based in order to promote the use of technology as a pseudo-collaborator. Fourth, dynamic 
technologies are more likely to function as pseudo-collaborators. Dynamic capabilities enable 
students to engage in more discovery learning and exploration which heighten the chance of the 
technology becoming a pseudo-collaborator.  
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The study investigated the impact of virtual manipulatives on student achievement in integer 
addition and subtraction. Participants were 99 sixth-grade students in six mathematics classes. 
Results showed that students made significant achievement gains in both integer addition and 
subtraction using three different virtual manipulatives. The general conclusion is that the virtual 
manipulative environments supported students’ learning of these concepts.  

The purpose of this study was to investigate the impact of virtual manipulatives designed for 
integer addition and subtraction instruction on student achievement and to examine the effects of 
features available in virtual manipulative models. If used properly, technology allows the 
creation of a more student-centered learning environment that can promote greater understanding 
of mathematical concepts (Norum, Grabinger, & Duffield, 1999). Instructional media can be 
classified in two major categories: dynamic versus static media and interactive versus static 
media (Kaput, 1992). Dynamic media make it possible for notational objects to change; 
interactive media allow for a much stronger constraint and support structure than other types of 
media (Kaput, 1992). These features allow the learner to manipulate objects, observe changes, 
and make connections. Linked representations facilitate the transition from the physical to the 
abstract—a key area in the development of mathematical concepts (Kaput, 1992). Computer-
based environments, such as virtual manipulatives, support these features.  

While research on the effectiveness of virtual manipulatives is still in its preliminary stages, a 
recent review of the literature indicates that students using virtual manipulatives either alone or 
in combination with physical manipulatives demonstrate significant gains in mathematics 
achievement and understanding (Moyer, Niezgoda, & Stanley, 2005; Reimer & Moyer, 2005; 
Smith, 1995; Suh, 2005). Further, teachers involved in studies using computer-based and virtual 
manipulatives report that students appear to be more engaged, on task, and motivated than when 
using physical manipulatives (Drickey, 2000). Due to the accessibility of virtual manipulatives 
and the potential of these tools to impact student achievement, the question is less whether to use 
virtual manipulatives in mathematics instruction and more of when and how to use virtual 
manipulatives appropriately and effectively. Research must begin to explore the features of 
virtual manipulatives that have the most impact on learning as well as the best methods for 
taking advantage of those features. This study was designed to contribute to that process by 
examining the impact of using different virtual manipulatives on student achievement in integer 
addition and subtraction.  

The participants in this study were 99 sixth-grade students in six mathematics classes in two 
middle schools in the same public school system. The age of participants ranged from 11 to 12 
years. This study used a quasi-experimental pretest-posttest design. In the design six classes were 
randomly assigned to one of three virtual manipulative treatment groups: Virtual Integer Chips, 
Virtual Integer Chips with Context, and Virtual Number Line. Each group received instruction in 
both integer addition and integer subtraction using one of three virtual manipulative treatments. 
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Data were collected using integer addition and subtraction pre- and posttests and task-based 
interviews conducted with a subset of randomly selected students from each treatment condition. 
Analysis procedures examined differences in student achievement based on the results of the 
pretest and posttest measures. Overall findings revealed that students in each of the three virtual 
manipulative treatment groups made significant pretest to posttest gains (p < .01) on both integer 
addition and integer subtraction concepts with effect sizes ranging from medium (lowest Cohen’s 
d = .63) to large (highest Cohen’s d = 1.83). An analysis of the most difficult subtraction items 
showed that students made significant gains (p < .01) in all treatment groups with large effect 
sizes (lowest Cohen’s d = 1.26). Analysis of differences in the posttest scores among the three 
treatment groups indicated that students’ posttest performance on integer addition and 
subtraction items were similar. When the groups were examined by student ability, analysis 
revealed no significant main effects for treatment nor was there evidence of an interaction 
between these two variables on either the addition or subtraction tests. Qualitative analysis of 
students’ work in the task-based interviews revealed that students were able to work with 
integers using various representational forms (symbols, words, and pictures). In addition, 
students used various forms to facilitate, explain, and self-evaluate their work on integer addition 
and subtraction tasks. 

The results of this study indicate that these virtual manipulative environments supported 
students’ learning of integer addition and subtraction concepts. The virtual manipulatives were 
similar in that they employed several instructional design features proven to be effective across 
various media (Mayer, 2003). They differed in that they presented different models for integers 
and differed based on a few specific features. However, an analysis of differences in the posttest 
scores indicated that students’ posttest performance on integer addition and subtraction items did 
not significantly differ among the three treatment groups. The general conclusion based on these 
results is that the virtual manipulative environments supported students’ learning of integer 
addition and subtraction concepts. In addition, specific features shared by the three virtual 
manipulatives used in this study, including dynamic linked representations, interactive 
capabilities, multiple representations, and immediate feedback, appeared to be most important in 
supporting learning, and, in particular, enhanced student learning of the most difficult subtraction 
items.  
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Related rates problems in first semester calculus are a source of difficulty for many students. 
These problems require students to be able to visualize the problem situation and attend to the 
nature of the changing quantities. I have developed a sequence of teaching activities that 
employs a computer program designed to foster the students’ exploration of related rates 
problems in a covariational context. I investigated the impact of these activities on students’ 
abilities to understand and solve rate of change and related rates problems. I present the results 
of the first two activities which focus on rate of change here. 

Background 
Little research has been published on how students understand and solve related rates 

problems in first semester calculus. The research to date suggests that students have a procedural 
approach to solving related rates problems (Martin, 2000; White & Mitchelmore, 1996). When 
solving a related rates problem, students tend to focus on using an algorithm that essentially 
consists of the following steps: draw a diagram, choose a geometric formula, differentiate it, 
substitute in values, and solve (Engelke, 2004). A student may need to engage in covariational 
reasoning to construct a mental model that accurately reflects the problem situation and that may 
be manipulated understand how the problem situation works (Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002; Engelke, 2004; Saldanha & Thompson, 1998).  

The Study 
I conducted a teaching experiment consisting of six teaching sessions with a group of three 

students from my calculus class in the Fall 2005 semester. The participants were chosen from a 
group of volunteers and met for these teaching episodes outside of the regular class sessions. 
They did not attend the regular class periods in which related rates were taught to the 
complement of the class. The students were paid for each session they attended, and each 
teaching episode was videotaped and transcribed for analysis. 

Results 
In the first session of the teaching experiment, the students used a custom computer program 

to investigate the average rate of change and instantaneous rate of change for some common 
geometric problem situations. For example, the students were asked to consider the following 
problem: Suppose we have a plane that is flying over a RADAR tower, TA, and is on course to 
pass over a second RADAR tower, TB. Let u be the distance between the plane and TA, and let v 
be the distance between the plane and TB. What is the rate of change of u in relation to v? The 
computer program allowed the students to have a visual representation that may be manipulated 
to observe what happens as they make the plane move. The students decided that it would be 

helpful to have time given so that they may compute average velocities: t

u

∆
∆

and t

v

∆
∆

. To allow 
the students to do this, another version of the plane problem was opened in the computer 
program that allows the students to observe what happens to each variable, including time, as 
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they moved the plane and allows them to generate a table of values for the variables. After 
computing the average velocities, the students thought that they could relate u and v by flipping 
and multiplying to cancel out the t∆ ’s. 

The concept of rate as one quantity as opposed to the ratio of two independent quantities 
appeared to be difficult for students to grasp. Throughout the first and second sessions the 
students struggled with whether the delta t’s really cancel in the above plane problem. Ali chose 
to open the second teaching session with the question: “I know I can relate u to time and v to 
time but I don’t know how to relate them to each other.” Amy and Ben referred back to the 
previous meeting saying that you just “flip and multiply” to cancel out the t∆ ’s, suggesting that 
they may not have internalized the notion of rate.  

In the second teaching session, during a discussion of the chain rule, the students began to 
think about rate as one quantity versus two. The students argued about whether they could really 
cancel the deltas when multiplying rates. This shift in thinking allowed the students to begin 
relating rates in other situations. This exploration allowed the students to choose time as a 
common variable through which they may relate variables, a common practice in related rates 
problems which were the focus of subsequent teaching sessions. 

Conclusion 
Time as a variable was student generated in these problem situations. Students’ interactions 

with the computer program likely cultivated the students’ thinking about how each variable 
changes across time and may have helped them internalize the notion of rate. The ability to 
imagine each variable as it changes across time and as a function of time may also foster 
students’ understanding of the chain rule and its application to related rates problems. The data 
suggests that the use of the computer program to visualize problem situations and measure 
quantities can aid students’ development of mental models in future problem situations and their 
understanding of the concept of rate.  
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This study explored how teachers plan their lessons to accommodate multiple representations 
and how graphing calculators affect the teachers' approaches to teaching functions. Participants 
were four high school mathematics teachers, while data were collected via task-based interviews 
and classroom observations. Results showed that calculators influenced the teachers' selection 
and design of instructional tasks while the tasks mediated calculator usage. 

Purpose of the Study 
The concept of function has been widely recognized as being foundational to school 

mathematics and mathematics in general (Romberg, Carpenter & Fennema, 1993). Research has 
shown that graphing calculators can improve students’ conceptual understanding of functions by 
allowing the students to explore the various representations of a function (Penglase & Arnold, 
1996). The National Council of Teachers of Mathematics (NCTM, 1989, 2000) advocate a 
curriculum based on multiple representations, arguing that by encouraging students to 
incorporate many different types of representations into their sense-making, the students will 
become more capable of solving mathematical problems and understanding underlying concepts. 
In this paper, we explore how high school mathematics teachers use multiple representations 
when teaching functions in graphing calculator environments. We pay special interest to how 
teachers plan their lessons to accommodate multiple representations of functions when teaching 
with graphing calculators and how the calculators in turn influence the teachers’ approaches to 
teaching functions. We also seek to explore the effect of the teaching strategies and instructional 
tasks on the ways in which graphing calculators are used. 

Perspectives and Guiding Frameworks 
This study draws on a theoretical framework developed by Salomon, Perkins, and Globerson 

(1991) for studying the interaction between technology and the user. In this framework, Salomon 
et al. distinguish between two sets of principal effects that arise when works in partnership with a 
technology tool, namely (1) principal effects with the technology and (2) principal effects of the 
technology.  For purposes of clarity, we refer to the first set as planned effects, and the second 
set as emergent effects. The work of Goos, Galbraith, Renshaw, and Geiger (2003), which 
provides metaphors for studying the interaction between calculator and user, is closely related to 
this partnership framework and so we draw parallels to the metaphors when discussing some of 
the principal effects. Characteristics of planned effects include elaborate planning (laying out the 
specifics concerning how the calculator will be used), executing the plan (using the calculator in 
the desired ways), and interpreting the results. The teacher here predetermines exactly when it 
will be appropriate to turn to the calculator in the course of a lesson and in what ways this should 
be done 

Emergent principal effects on the other hand are characterized by spontaneity, that is, effects 
that the teacher does not intentionally plan for. These effects are then retained and may be 
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applied to other related but not calculator dependent mathematical activities (Jones, 1993). Using 
the metaphor of technology as partner, Goos et al. (2003) describe “cognitive re-organization 
effects” (p. 79) as those characterized by using technology to explore new tasks or new 
approaches to existing tasks and to mediate mathematical discussion in the classroom between 
students and teacher or between small groups of students. We contend that for meaningful 
principal effects of technology to arise in a classroom, the teacher must be willing to allow his or 
her students to explore new situations with the calculators and guide the students into discussions 
that will help them make sense of their findings. This study I investigated how principal effects 
that are planned for and those that emerge are manifested in secondary mathematics classrooms 
where graphing calculators are used. 

Methods, Data Sources, and Analysis 
Participants in this study were four high school mathematics teachers drawn from three high 

schools in a medium-sized city school district in northeastern United States. Data were collected 
through semi-structured and task-based interviews (Goldin, 1999) as well as classroom 
observations. The interview questions were divided into four major categories, namely (1) 
planning (what are the key things that teachers consider as they prepare to teach lessons on 
functions especially when they intend to use graphing calculators?), (2) sources of teaching tasks 
(where do teachers get their teaching activities/tasks and how do they use these tasks, i. e. do 
they modify them or not and what are the reasons for this?), (3) function representations 
(teachers presented with various tasks and asked to respond to the tasks as well as speculate on 
how their students might respond to those tasks), and (4) issues related to calculator usage. 

Categories (1) and (2) helped us develop some insights into how teachers envision a lesson 
on functions in which graphing calculators are used and what outcomes they might expect, thus 
shedding some light on the planned principal effects. Categories (3) and (4) helped shed some 
light on the teachers’ choices of representation in various situations, the kind of partnerships 
these teachers had developed with graphing calculators, and the kind of expectations the teachers 
held for their students when using graphing calculators. This was important to this study since 
the tasks provided a common ground for all the four teachers given that no two teachers taught 
the same lesson. 

During classroom observations we took note of both the teachers’ and the students’ 
interactions with graphing calculators, paying special attention to how the teachers facilitated the 
interaction between students and calculators. In this regard, we examined the kind of instructions 
the teachers gave to their students, the actions the students took and the questions they asked 
their teachers as well as their peers, and how the teachers responded to the students’ questions. 
All these helped provide data that would later be analyzed for emergent effects of technology. 

Data were analyzed in two phases. In phase I, we carried out a microanalysis of the interview 
data for all the teachers, identifying broad theme statements from the interviews based on 
dominant phrases in the teachers’ responses to items under the categories of planning and 
sources of tasks and also on the actions they took while attending to items under the categories of 
function representations and issues related to calculator usage. In phase II, we analyzed the data 
from classroom observations against the statements generated above. We tried to identify 
situations from the classes that could support these statements (or sometimes challenge them). 
We then refined the statements into three major themes, namely (a) teaching strategies, (b) types 
of instructional tasks, and (c) representational forms that emerge 
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Results 
While classroom organization varied from teacher to teacher, all teachers seemed to value 

involving students in decision making regarding calculator use. This would range from asking 
students to suggest what to do in order to get started with the calculator with respect to given 
information, to asking students to suggest how to modify various calculator menus in order to 
achieve various desired results. Often times the teachers encouraged students to share their work 
with the whole class using the calculator overhead projection unit. It was also common for 
teachers to ask probing as well as clarification questions. Occasionally the teachers would ask 
questions requiring students to compare solutions obtained using different representations and 
explain the differences if any. The teachers would also challenge students to interpret calculator 
results in the context of the problem situation and communicate their understanding of the 
calculator results to their peers. 

Although in most cases the teachers seemed to balance among the various representations, 
equations and graphs seemed to dominate more than tables. Most instructional tasks made 
specific reference to either an equation (18 of 41) for which a graph would be drawn and various 
explorations done on it, or a graph (13 of 41) on which various explorations would be done. Only 
10 of 41 tasks specified use of tables. In cases involving word problems, it was common to see 
equations being generated then graphs drawn. 

Our analysis indicated that the choices for instructional tasks and teaching strategies are not 
unique to particular teachers; what seems to be unique however, is the pattern of representation 
forms that the teachers use. While some teachers will prefer to move from equation to graph and 
possibly to tables, others prefer going from equation to tables then graphs.  

The first step towards developing intelligent partnerships with technologies is for the user to 
be able to plan on how to use the tool, execute the plan, and interpret the results. Results of this 
study indicate that teachers can help their students towards this end by guiding them to actively 
participate in the process of working with calculators either in small groups or as individuals. 
The teachers in this study had plans on how they wanted their students to use the calculators in 
the classroom, but they often times gave the students a chance to suggest their own approaches 
first. 

The second step towards forming intelligent partnerships with technologies is for the user to 
gain new insights that can be transferred to other situations where the technology tool is not 
necessarily used. The teachers in this study tried to help their students towards this end by 
requiring them to interpret their solutions to real life situations and also to explain their answers 
to their peers. This would ensure that the student develop some kind of ownership to the 
knowledge they were acquiring and hence be in a better position to retain it beyond the 
classroom. 
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Purpose 
While the traditional lecture dominates college and university classrooms, research shows 

that students need to do more than just listen. Much has been written about the need for active 
learning in postsecondary classrooms (Sutherland and Bonwell 1996; Chickering and Gamson 
1991; McKeachie, Pintrich, Lin, and Smith 1987). A student who is actively involved in the 
learning process (rather than sitting in a room passively listening while an instructor lectures) 
will have improved learning and retention of that knowledge. Including instructional technology 
in this paradigm has led to even more success in improving student learning. In order to 
implement such a shift in the learning paradigm in our large enrollment mathematics classes, a 
redesign of how these courses were taught had to be undertaken. The College Algebra and 
Precalculus courses were redesigned based on the mathematics replacement model (Twigg, 
2003). This model replaces traditional lectures with a variety of learning resources such as 
interactive software that encourages active learning, prompts ongoing assessment, and provides 
individualized assistance.  There are significant failure rates in College Algebra and Precalculus.  
Redesigning these courses has allowed us to take advantage of computer technology available on 
campus and to provide students with options of choosing their best learning conditions and with 
opportunities to enhance their learning using resources beyond boundaries of time and space.  
Our goals were to significantly reduce the DWF rate in College Algebra and Precalculus and to 
better prepare students for subsequent courses in mathematics. 

Theoretical  Framework 
The major focus of this study is to investigate the effects of the technology-rich environment 

of the redesigned course on students’ learning and retention of mathematical concepts as they 
progress into successive mathematics courses, in particular, Calculus. It was determined that a 
guiding philosophy was needed to suggest principled changes in the curriculum and effective 
uses of technology as part of these changes (Forman & Pufall, 1988). Bruner’s constructivist 
theory is the framework that guided these curriculum changes.  

Constructivism is a theory of cognitive growth and learning. According to Bruner (1960), 
one fundamental idea of constructivism is that students actively construct their own knowledge. 
Students assimilate new information to simple, pre-existing notions, and modify their 
understanding in light of new data. Educational applications of constructivism exist in creating 
curricula that match, but also challenge, students’ understanding, fostering further growth and 
development of the mind. Learning must be interactive (Cobb, 1994). The technology used in the 
redesigned course allows the students to assemble and modify their ideas, access and study 
information. The instructor engages the students by helping to organize and assist them as they 
take the initiative in their own self-directed explorations, instead of directing their learning 
autocratically.  
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Methods of Inquiry 
The redesigned courses were College Algebra and Precalculus, both introductory courses 

enrolling over 2000 students each year in 41 sections. This study follows a quasi-experimental 
design because the participants cannot be randomized. The treatment group contains students 
who have completed an entire cycle through the redesigned College Algebra and Precalculus 
courses and are now in Calculus. As a part of the redesigned courses, these students divided their 
time equally between a classroom and The Mathematics Interactive Learning Environment (The 
MILE), a technology-driven facility that provided an array of interactive materials and activities.  
The control group consists of students previously enrolled in the traditional lecture-driven 
College Algebra and Precalculus courses and are now also in Calculus. 

We will employ the following assessment techniques suggested by Peter Ewell, Senior 
Associate at the National Center for Higher Education Management Systems (Twigg, 2003): 
matched examinations, student work samples, behavioral tracking, and interviews.  Both groups 
will complete a pre- and posttest designed to assess changes in their content knowledge. During 
previous semesters, the control group attended the regular classroom meetings in which the 
instructors primarily use the lecture method. The treatment group’s intervention employed 
numerous classroom and web-based activities (available in The MILE).While working in the 
MILE, students worked one-on-one with instructors, graduate research assistants, and peer 
tutors.  

The course redesign appears to be successful, but we now have the charge of thoroughly 
evaluating the redesign for several effects.  We are currently analyzing data in order to:  (i) 
investigate the variables that affect student learning in the successive courses and; (ii) analyzing 
the students’ perceptions of their own preparedness for subsequent mathematics courses.  Below, 
these steps are described in more detail. 

i. Investigate the variables that affect student learning in the redesigned courses; 
To answer the question “Did they really learn?” we will employ the following assessment 

techniques suggested by Peter Ewell, Senior Associate at the National Center for Higher 
Education Management Systems (Twigg, 2003): 

Common Examinations:  This refers to a final examination with selected common items that 
is administered to students to allow us to analyze instructor and student effects. 

Student Work Samples:  We will select a few examples of work that students complete as a 
part of the course.  Once a reasonable sample (n=20 or so) from each class is assembled, the 
pieces can be cross-scored by a reading team using a scoring guide to look at things like 
communications ability, mastery of particular areas of knowledge, and so on. We will compare 
the two groups’ performance on tasks in Calculus, based on their previous preparation. 

Behavioral Tracking:  This approach relies on following students who were enrolled in 
parallel sections (innovative and traditional) through student records to see what happened to 
them later.  Several dimensions of behavior are especially useful to look at here, including: 

� Course completion rates;  
� Program completion/graduation; 
� Grade performance in subsequent courses for which College Algebra and Precalculus 

are prerequisites.  
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ii. Research the students’ perceptions of their own preparedness for subsequent mathematics 
courses; 
The team will conduct interviews of students who have completed an entire cycle through the 

redesigned College Algebra and Precalculus courses and are now in Calculus.  The purpose of 
these interviews will be to investigate how these students perceive how the redesigned courses 
prepared them for Calculus.  We will also collect data on the students’ performance in Calculus.  
We will collect data on the DWF rates and compare them to the past years in these courses.   

Results and Conclusions 
The data for this study is still being collected. The researchers will combine qualitative and 

quantitative methods to develop the instruments for data collection in future semesters. The 
results of the research studies will be used for revision of initially developed materials, 
development of new materials and for assessment of the success of the whole program in 
general. The researchers will determine the impact of the redesigned, student-centered learning 
environment on student achievement in successive courses.  

This study is aligned with the goals of PME-NA to further a deeper and better understanding 
of the psychological aspects of teaching and learning mathematics. There are opportunities for 
further studies on topics such as students’ understanding of specific algebraic concepts, 
appropriate and effective technology use in the mathematics classroom, improvement of 
instruction and undergraduate mathematics education.  
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In this report we document and analyze the ways of reasoning and types of proofs employed by 
high school mathematics teachers to validate conjectures and to justify procedures in order to 
solve problems, which emerge when they work in a dynamic geometry environment. 

Proof is a fundamental activity in mathematical practice (Hanna, 2000; Weber, 2001), also is 
a key element in school mathematics (National Council of Teachers of Mathematics, 2000). 
However, research in mathematics education evidences that students have serious difficulties in 
understanding and presenting deductive proofs (Harel and Sowder, 1998; Schoenfeld, 1985). 

Why do students experience difficulties in constructing mathematical proofs? One reason 
may be related to the way used to introduce aspects of proofs in mathematical instruction. 
Balacheff, 2000 argues that instructional methods rely on asking students to imitate their teachers 
behaviors. 

In this context, we consider that in order for students to identify the proving activity as a 
central in their mathematical experiences, teachers need to have solid understanding of what the 
concept of proof entails (Stylianides, 2005), not only deductive proof, but also the use of 
arguments and justifications in general. In this context, it is necessary to carry out research 
studies that provide information to design instructional strategies and activities that encourage 
students to use distinct types of mathematical proofs, as well as observing dimensions and 
aspects that characterize them, this implies to focus on learners through studying teachers’ 
behaviors. 

Objectives 
The goal of this study was identify the proof schemes (Harel y Sowder, 1998), showed by 

high school mathematics teachers, when they pose and solve problems using a dynamic 
geometry software (Cabri Géométre). This is, we were interested in documenting the rationality 
in which justification processes are based on, and to characterize the ways that teachers used 
certain type of reasoning when they employed dynamic software as an important part of the 
activity of doing mathematics. 

Theoretical Perspective 
The theoretical perspective of this work is based on the construccion of proof schemes (Harel 

& Sowder, 1998), and theory of problem solving (Polya, 1945; Schoenfeld, 1985). We use Harel 
and Sowder’s taxonomy to explain types of convincing process used by students to construct 
their proofs (Harel & Sowder, 1998, p. 241) and because the appearance of those schemes is in 
accordance with the cognitive continuity among the discovery of mathematical relations, 
conjectures formulation and proof construction. 
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Method 
Participants in this study were seven high school mathematics teachers (two males and five 

females), graduate students of mathematics education in México. None of the teachers had used 
Cabri before participating in this study but they had studied geometry at the high school or at 
university level. 

Starting with either open geometric situation (e.g. simple dynamic configurations) or open 
problem, teachers were asked to pose problems using Cabri, solved them and justify their 
observations, as well as solutions procedures. These activities took place during fifteen sessions, 
ninety minutes each. 

Data Sources 
The data sources consisted in the Cabri electronic files of the activities developed by each 

teacher, in weekly written reports, a final report in which the participants were asked to put in 
writing their conjectures or theorems, and videotaped interviews. 

Results 
Main results of this work were that teachers often used in consistent way several proof 

schemes, mainly perceptual proof schemes and inductive proof schemes; likewise, the software 
supported significantly the use of transformational proof schemes and constructive proof 
schemes, which are related with the use of heuristics such as “considering a partial solution”, 
“working backwards” and “taking the problem as solved”. 

Intuitive axiomatic proof schemes were also used in a consistent way, though with significant 
differences among teachers. Besides, it was identified a low performance in the written 
formulation of conjectures as conditional sentences; as well as a tendency to associating 
intuitive-axiomatic proof schemes with conviction on the truth of mathematical facts, leaving 
aside, apparently, the importance of empirical proof schemes. 
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A longitudinal study is being carried out with two groups that started first grade of secondary 
school in the Telesecundaria System: an experimental group that uses the spreadsheet as part of 
the mathematics class, and a control group that does not work with it.  These two groups will be 
studied through out the three years of secondary school.  

In this first phase of the study, both groups were given a mathematics test, as well as a Likert 
scale (AMMEC: Ursini et al, 2004) in order to measure attitudes toward mathematics. Attitudes 
were studied under the tripartite model which states that attitudes are conformed by affective, 
cognitive and behavioral components (Hernández and Gómez-Chacón, 1997; Ruffel et al, 1998). 

Results show that the mathematics level and the attitude towards mathematics are slightly 
different in both groups: one that uses the spreadsheet in mathematics class and one that doesn’t. 

In the mathematics test, an average percentage of correct responses were observed slightly 
higher in the group that works with the spreadsheet than that of the group that does not.  

Through a correlation test, a slight correlation was found between the mathematics score and 
the attitude towards mathematics.  

Data was also gathered through interviews, which show that students that use computers in 
mathematics class are more self-confident when doing mathematics. 
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Virtual manipulatives (Moyer et al., 2000) are an alternative approach to the use of 
manipulatives to represent abstract concepts in mathematics. Currently, there are several Internet 
sources that contain virtual manipulatives, such as Illuminations at NCTM website and the 
National Library of Virtual Manipulatives at Utah State University website. There are also a 
considerable number of researches showing positive students’ achievement results using virtual 
manipulatives in the classroom (Moyer, 2005; Moyer et al., 2005; Moyer & Bolyard, 2002; 
Reimer & Moyer 2005; Suh et al., 2005). A difficulty with virtual manipulatives is that there are 
not yet clear guidelines in the literature to design and develop these innovative tools. 

In this poster presentation, I show the design of three different virtual manipulatives to help 
students to construct the concept of part-whole representation of rational numbers (Kieren, 
1976). These virtual manipulatives follow the generative learning theory proposed by Merlin 
Wittrock (1974a, 1974b). Basically, the generation process points out that students need to 
generate two different types of relationships: first, among the different parts of the information 
that are being perceived; and second, between the new information and the learner’s prior 
knowledge. 
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Recent research on virtual manipulatives has shown the utility of these new technological tools 
to construct mathematical knowledge (Moyer, 2005; Moyer & Boyard, 2002; Moyer, Bolyard, & 
Spikell, 2002; Moyer, Niezgoda & Stanley, 2005; Reimer & Moyer, 2005; Suh, Moyer & Heo, 
2005). But, as Baroody (1989) stated, “simply using manipulatives does not guarantee 
meaningful learning” (p. 4).  In addition, multimedia instructional messages, presented in virtual 
manipulatives, have also been a source of recent research from the educational psychology field 
(Mayer, 2001, 2005). Using these two concepts based on generative learning theory (Wittrock, 
1974a, 1974b), we suggest that the SOI (Selecting, Organizing, Integrating) instructional model 
(Mayer, 1989, 1999) would help students to use virtual manipulatives to learn the fraction 
concept. These activities are motivated by the curriculum, teaching, learning, and technology 
principles stated by the National Council of Teachers of Mathematics (NTCM, 2000). 

Based on different constructs (Kieren, 1976; Behr, Lesh, Post & Silver, 1983), 
“personalities” (Behr, Harel, Post & Lesh, 1992), or practicing representations (Greeno & Hall, 
1997) of fraction concept, this study is focused on part-whole representation. As stated by Behr 
and Post (1988), “the part-whole notion of rational numbers is fundamental to the other 
interpretations” (p.192). For the current poster presentation, we use virtual manipulatives from 
the National Library of Virtual Manipulatives (http://nlvm.usu.edu/en/nav/index.html) to show 
three developed activities based on each step of the SOI model and the cognitive theory of 
multimedia learning. These activities are: generate notes to select the main information, generate 
summaries to organize the selected information, and generate examples to integrate the 
organized information with students’ previous knowledge.  
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