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PME–NA History and Goals  
The International Group for the Psychology of Mathematics Education (IGPME) was founded in 

1976 at the Third International Congress on Mathematical Education (ICME-3) in Karlsrühe, 

Germany, with the first conference held in 1977 in Utrecht in the Netherlands. The North 

American Chapter of PME (PME-NA) was organized not long after with the first conference  

held in Evanston, Illinois in 1979. This initial meeting was organized and chaired by Dr. Richard 

Lesh following the initial National Council of Teachers of Mathematics (NCTM) Research 

Presession held in 1978 (Boston, Massachusetts). The plenaries at the NCTM meeting (Heinrich 

Bauersfeld, Efraim Fischbein, & Hans Freudenthal) were instrumental in the founding of IGPME 

and encouraged Lesh and others to create a North American chapter. The initial meeting in 1979 

may have only featured plenary speakers. However, with the second meeting of PME-NA being 

a joint meeting with IGPME, individual papers published in the conference proceedings became 

a mainstay of the conference. Early conferences for both IGPME and PME-NA were focused on 

exploration of various areas of psychology in the teaching and learning of mathematics. Since 

their origins, PME and PME-NA have expanded and continue to expand beyond their 

psychologically oriented foundations. For example, the 1981 PME-NA conference focused on 

“the influence of modern technology upon mathematics education and related research” (p. 11) 

in addition to areas of psychology.  

 

The major goals of the International Group and the North American Chapter are: 

1. To promote international contacts and the exchange of scientific information in the 

psychology of mathematics education; 

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the 

cooperation of psychologists, mathematicians, and mathematics teachers; and 

3. To further a deeper and better understanding of the psychological aspects of teaching and 

learning mathematics and the implications thereof. 

 

PME–NA Membership 
Membership is open to people who are involved in active research consistent with PME-NA’s 

aims or who are professionally interested in the results of such research. Membership is open on 

an annual basis and depends on payment of dues for the current year. Membership fees for PME-

NA (but not PME International) are included in the conference fee each year. If you are unable to 

attend the conference but want to join or renew your membership, go to the PME-NA website at 

http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 

visit the “Membership” page. 

 

 

 

 

 

 

 

 

 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

iv 

PME–NA Steering Committee  
 

Elected Members 

Ayman Aljarrah (Chair)–Acadia University (2023-2026) 

Paulo Tan–University of California Santa Cruz (2023-2026) 

Verónica Vargas Alejo–University of Guadalajara (2023-2026) 

Leslie Dietiker–Boston University (2022-2025) 

Christopher Kurz–Rochester Institute of Technology (2022-2025) 

Zareen Rahman–James Madison University (2022-2025) 

Angeles Dominguez–Tecnológico de Monterrey (2021-2024) 

Doris Jeannotte–Université du Québec à Montréal (2021-2024) 

Xiangquan (James) Yao – Pennsylvania State University (2021-2024) 

Aida Ailbek (grad student rep) – University of Georgia (2023-2024) 

Alexa W.C. Lee-Hasan (grad student rep)– University of Illinois Chicago (2023-2024) 

 

Appointed Members 

Aaron Brakoniecki–Boston University (2017-2023) 

Winnie Ko Indiana State University (2022-2025)



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

v 

Conference Chairs 
 

Past Conference Chair and Coordinator (2021-2024) 

 
Teruni Lamberg (Chair) 

University of Nevada, Reno 

terunil@unr.edu 

Shera Alberti-Annunzio (Coordinator) 

University of Nevada, Reno 

shera@unr.edu 

 

 

Current Conference Co-Chairs (2022-2025) 

 

Karl W. Kosko 

Kent State University 

kkosko1@kent.edu 

Joanne Caniglia 

Kent State University 

jcanigl1@kent.edu 

Scott A. Courtney 

Kent State University 

scourtn5@kent.edu 

Maryam Zolfaghari 

Kent State University 

mzolfagh@kent.edu 

 

 

Future Conference Chair 
 

Xiangquan Yao 

Penn State University 

zzy73@psu.edu  

Rose Zbiek 

Penn State University 

rmz101@psu.edu  

Andrea McCloskey 

Penn State University 

avm11@psu.edu  

Ricardo Martinez 

Penn State University 

rfm5798@psu.edu  

 

mailto:terunil@unr.edu
mailto:shera@unr.edu
mailto:kkosko1@kent.edu
mailto:jcanigl1@kent.edu
mailto:scourtn5@kent.edu
mailto:mzolfagh@kent.edu
mailto:zzy73@psu.edu
mailto:rmz101@psu.edu
mailto:avm11@psu.edu
mailto:rfm5798@psu.edu


Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

vi 

PME–NA 2024 Conference 

 
Local Organizing Committee 
Karl W. Kosko, Kent State University 

Joanne Caniglia, Kent State University 

Scott A. Courtney, Kent State University 

Maryam Zolfaghari, Kent State University 

 

Strand Leaders  
The Local Organizing Committee is extremely appreciative of the following people for serving 

as Strand Leaders. They managed the reviewing process for their strand and made 

recommendations to the Local Organizing Committee. The conference would not have been 

possible without their efforts. 

 

Aida Alibek 

Seyedehkhadijeh Azimi  

Anastasia Betts 

Pavneet Kaur Bharaj 

Amanda Brown 

Patricia Buenrostro  

Anna Fricano DeJarnette  

Leslie Dietiker 

Tracy Dobie  

Angeles Dominguez 

Allyson Hallman-Thrasher  

Hamilton Hardison 

Cody Harrington 

Silvia Elena Ibarra Olmos 

Doris Jeannotte 

Laura B. Kent 

Winnie Ko 

Karl W. Kosko 

Alexa Lee-Hassan 

Alyson Lischka 

Jennifer Lovett 

Beth MacDonald 

Allison McCulloch 

Deborah Moore-Russo 

Jill Newton 

Christine Phelps-Gregory 

Rani Satyam 

Jo Towers 

Veronica Vargas 

Corey Webel 

Tracy Weston 

Nicholas Witt 

Xiangquan "James" Yao

 

 

SPONSORS 
Kent State University School of Teaching, Learning and Curriculum Studies 

Kent State University College of Education Health and Human Services 

 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

vii 

Past PME–NA Conferences 

 
 

1979  Evanston, Illinois 

1980  Berkley, California* 

1981  Minneapolis, Minnesota 

1982  Athens, Georgia 

1983  Montréal, Canada 

1984  Madison, Wisconsin 

1985  Columbus, Ohio 

1986  East Lansing, Michigan 

1987  Montréal, Canada* 

1988  Dekalb, Illinois 

1989  New Brunswick, New Jersey 

1990  Oaxtepec Morelos, México* 

1991  Blacksburg, Virginia 

1992  Durham New Hampshire* 

1993  Pacific Grove, California 

1994  Baton Rouge, Louisiana 

1995  Columbus, Ohio 

1996  Panama City, Florida 

1997  Normal, Illinois 

1998  Raleigh, North Carolina 

1999  Cuernavaca, Morelos, México 

2000  Tucson, Arizona 

2001  Snowbird, Utah 

2002  Athens, Georgia 

2003  Honolulu, Hawaii* 

2004  Toronto, Canada 

2005, Roanoke, Virginia 

2006  Mérida, Yucatán, México 

2007  Lake Tahoe, Nevada 

2008  Morelia, Michoacán, México* 

2009  Atlanta, Georgia 

2010  Columbus, Ohio 

2011  Reno, Nevada 

2012  Kalamazoo, Michigan 

2013  Chicago, Illinois 

2014  Vancouver, Canada* 

2015  East Lansing, Michigan 

2016  Tucson, Arizona 

2017  Indianapolis, Indiana 

2018  Greenville, South Carolina 

2019  St. Louis, Missouri 

2020  Mazatlán, Sinaloa, México 

2021  Philadelphia, Pennsylvania 

2022  Nashville, Tennessee 

2023  Reno, Nevada 

 
* IGPME / PME Joint Conference 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

viii 

Reviewers 
 

Abbaspour Tazehkand, 

Shahabeddin 

Acevedo, Carlos Ivan 

Acharya, Bed Raj 

Acharya, Srujana 

Adiredja, Aditya 

Aga, Zareen Gul 

Aguilar, Alexandra Rene 

Aje, Comfort Temitope 

Albert, Lillie R. 

Aldi, Marco 

Alegre, Fernando 

Alexander, Anita N. 

Ali, Sikunder 

Alibek, Aida 

Aljarrah, Ayman 

Alkas-Ulusoy, Cigdem 

Allahyari, Ela 

Alshuli, Tasnim 

Altshuler, Mari 

Alvarez, Marcela 

Aly, Geillan 

Alyami, Hanan 

Alzaga Elizondo, Tenchita 

Alzoubi, Sujude 

Amador, Julie 

An, Tuyin 

Anderson, Robin Keturah 

Anthony, Monica 

Antonides, Joseph 

Aqazade, Mahtob 

Arcilla, Harviel Kyle 

Armstrong, Amber Gelena 

Aryal, Harman Prasad 

Asare, Martha 

Asempapa, Reuben 

Aswad, Maryam 

Atabas, Sebnem 

Austin, Christine Kathryn 

Austin, Christopher 

Azimi Asmaroud, 

Seyedehkhadijeh 

Baah, Faustina 

Baas, Andrew 

Bailey, Marizza 

Bailey, Nina Gabrielle 

Bajwa, Neet Priya 

Baker, Courtney K. 

Balady, Steve 

Baldinger, Erin E. 

Baniahmadi, Mona 

Barrett, Jeffrey 

Barron, Victoria 

Basu, Debasmita 

Beauchamp, Theodora 

Beisiegel, Mary 

Belbase, Shashidhar 

Belcher, Michael 

Ben-Dor, Naama 

Bermudez, Hillary 

Bernacki, Matthew 

Berry, Betsy 

Bertolone-Smith, Claudia Marie 

Betts, Anastasia 

Bisaillon, Nathalie 

Bishop, Jessica Pierson 

Bloodworth, Anna 

Blunk, Merrie 

Boerst, Tim 

Bofferding, Laura 

Boles, Kelly L 

Bondurant, Liza 

Bontrager, Bailey Joan 

Borden, Margaret Leak 

Bostic, Jonathan David 

Bourrie, Heather Dawn 

Bowen, Brian 

Boyce, Steven 

Brady, Corey 

Brown, Amanda 

Brown, Chelsea 

Brown, Rachael Eriksen 

Brown, Yuriko Hoshiya 

Bruce, Anna 

Bruner, Olivia 

Brunner, Megan 

Budhathoki, Deependra 

Buenrostro, Patricia M 

Bui, Mai 

Burch, Lori 

Burkett, Katie 

Burt-Davies, Kaja 

Bush, Jeffrey 

Butler, Rebecca 

Bye, Jeffrey K. 

Byers, Jelena 

Calabrese, Stephanie C 

Callard, Cynthia H 

Calvin, Scarlett 

Campbell Reed, Carolynn 

Campbell, Tye 

Candela, Amber Grace 

Caniglia, Joanne 

Cannon, Susan 

Cantillo-Rudas, Benilda María 

Carney, Michele 

Carpenter, Camilla 

Carson, Cynthia 

Caviness, Stephen Lewis 

Cayton, Charity 

Champion, Joe 

Chandler, Kayla 

Chao, Theodore 

Chapman, Katherine Carr 

Chapman, Olive 

Chavez, Oscar 

Chen, Grace A. 

Chen, Lizhen 

Chicalote Jiménez, Tania 

Azucena 

Choppin, Jeffrey 

Chua, Meveryn 

Clark, Daniel 

Closser, Avery Harrison 

Cobb, Paul 

Colen, Jung Youn 

Contreras, Norman 

Cordero Aguilar, Mont 

Correa, Priscila D 

Corven, Julien 

Cosby, Missy D. 

Cox, Dana Christine 

Crawford, Angela R 

Cribbs, Jennifer 

Crosley, Elena 

Cuadra, Alexandra 

Cudd, Michele Denise 

Cullen, Craig J. 

Czocher, Jennifer A. 

Daniel, Amy L 

Darrah, Marjorie Anne 

Darwin, Taylor Kirkpatrick 

Davis, Catherine 

Davis, Jon D. 

Dawkins, Paul Christian 

de Alba, Carlos Alejandro 

de Araujo, Zandra 

DeFino, Rosalie 

DeJarnette, Anna Fricano 

Dick, Lara 

Dietiker, Leslie 

Dimmel, Justin 

DiNapoli, Joseph 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

ix 

Dirker, Bianca 

Dominguez, Angeles 

Duarte Mejia, Iris Mariela 

Dubbs, Christopher 

Dubeau, Katryne 

Dufour, Sarah 

Dyer, Elizabeth B 

Edgar, Shekira Larnica 

Edson, Alden Jack 

Edwards, Michael Todd 

Egbedeyi, Temitope 

Ellis, Amy 

Ellis, Brittney 

Emre-Akdogan, Elcin 

Erskine, Abigail 

Fabry, Ashley 

Feikes, David 

Fender, Tierra Dan 

Fesli, Emily Emine 

Flores-Gasca, Carlos Enrique 

Flynn, Samantha 

Folger, Timothy Donald 

Fonger, Nicole L. 

Font Moll, Vicenç 

Ford, Lucinda L 

Freeburn, Ben 

Fukawa-Connelly, Timothy P 

Fulwider, Doris 

Galanti, Terrie 

Gallagher, Melissa Ann 

Gantt, Allison L. 

Garcia, Nicole 

Gargroetzi, Emma Carene 

Gehrtz, Jessica 

Geller-McKee, Ricki Lauren 

Gerami, Saba 

Gerardo, Juan Manuel 

Gillespie, Ryan 

Going, Taren 

Goldberg, Elizabeth R. 

Gomez Marchant, Carlos 

Nicolas 

Gómez-Árciga, Adrián 

Gonzalez, Mario 

Gonzalez, Monica Lyn 

Gooden, Micayla 

Gordon, Evelyn M 

Gorton, Elizbeth 

Goyer, Alysia 

Grant, Melva R 

Graysay, Duane 

Greenstein, Steven 

Gresalfi, Melissa 

Griffin, Camille 

Griffin, Casey 

Guajardo, Lino 

Gucler, Beste 

Gustaveson, Anna 

Gutierrez de Blume, Antonio 

Partida 

Guven, Semra 

Hackenberg, Amy J 

Hahn, Marjorie M. 

Haiduc, Ana-Maria 

Hall, Elisha 

Hall, Jennifer 

Hamilton, Michael 

Hamm, Jill V 

Han, Jaepil 

Han, Simon Byeonguk 

Hanan, Adam 

Harbour, Kristin E. 

Harper, Suzanne R. 

Hawley, Lisa 

Hawthorne, Casey 

Hearne, Lindy 

Heck, Daniel 

Hegedus, Stephen 

Herbst, Pat G 

Hernandez Zavaleta, Jesus 

Enrique 

Hertel, Matthew 

Hidayat, Angga 

Hillman, Susan L. 

Hinden, Anna 

Hird, John T 

Hjalmarson, Margret 

Hodkowski, Nicola 

Hoffmann, Anna 

Holl-Cross, Cathy 

Hong, Dae S. 

Hong, Yuhwa 

Hornburg, Caroline Byrd 

Houle, Julie 

Howell, Jermaine Ryan 

Hughes, Diana 

Hummer, Jenifer 

Hunt, Jessica H. 

Hwang, Jihye 

I, Ji Yeong 

Ibarra Olmos, Silvia Elena 

Jackson, Brent 

Jackson, Pelin 

Jacobs, Jennifer 

Jarry-Shore, Michael 

Jeannotte, Doris 

Jeon, Soobin 

Jiang, Nan 

Johnson III, Michael N 

Johnson, Amy Rae 

Johnson, Ashley 

Johnson, Heather Lynn 

Johnson, Sheri E. 

Joswick, Candace 

Jung, Hyunyi 

Kalinec-Craig, Crystal 

Kamaldar, Azar 

Kamlue, Nitchada 

Kanbir, Sinan 

Kang, Bona 

Karagöz Akar, Gülseren 

Karanevich, Peter 

Karim, Salima 

Kartal, Ozgul 

Karyağdı, Banu 

Kasahara, Alyssa 

Kasahara, Sophie 

Kastberg, Signe 

Keiser, Jane M. 

Kent, Laura Brinker 

Kerrigan, Sarah 

Kessler, Meghan 

Keyes, Madeline 

Kim, Taik 

Kim, Youngjun 

Kimball, Kyle 

Kirkland, David 

Kirwan, J Vince 

Kline, Kate 

Kling, Gina 

Knurek, Robert 

Ko, Yi-Yin 

Kocabas, Sezai 

Kochmanski, Nicholas 

Kohar, Ahmad Wachidul 

Koskey, Kristin 

Kosko, Karl Wesley 

Krejci, Brooke 

Kress, Nancy 

Kroesch, Allison M 

Kruger, Jennifer 

Krupa, Erin E. 

Küchle, Valentin Alexander 

Balthasar 

Kularajan, Sindura 

Kulp, Kelly 

Kursav, Merve N. 

Kurutas, Busra Sumeyye 

Kurz, Christopher A 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

x 

Kwon, Faith 

Kyler, Cindy 

Lamb, Lisa 

Lamberg, Teruni 

Lambert, Claire 

Larison, Sarah 

Larnell, Gregory 

LaTona-Tequida, Talia 

Leatham, Keith R. 

Leatherwood, Christopher 

Lee, Boram 

Lee, Hea-Jin 

Lee, Hwa Young 

Lee, Hyunjeong 

Lee, Inyoung 

Lee, Ji-Eun 

Lee, Soo Jin 

Lee-Hassan, Alexa W.C. 

Leonard, Helene 

Leshin, Miriam S 

Lew, Kristen 

Li, Ellen 

Liang, Biyao 

Lim, Su San 

Litster, Kristy 

Liu, Jinqing 

Livers, Stefanie D. 

Lo, Jane Jane 

Looney, Bridget 

Lozano, Guadalupe 

Lu, Olivia 

Luo, Fenqjen 

Ma, Yue 

Mainzer, Emily 

Malzahn, Kristen 

Mannix, Joshua P 

Margolis, Claudine 

Martin, Tami S. 

Masingila, Joanna O 

Mask, Walker 

Mason, Erica N. 

Matney, Gabriel 

Mauntel, Matthew 

Max, Brooke 

Mbewe, Rose 

McCloskey, Andrea 

McCulloch, Allison 

McDougall, Douglas 

McGathey, Natalie 

McKie, Kelly 

Meagher, Michael S 

Melhuish, Kathleen 

Melville, Matthew 

Memmolo, Rebecca 

Méndez Huerta, Dinorah 

Menke, Jenna 

Merkeley, Rebecca 

Miller, Claire 

Miller, Mikhail 

Mirin, Alison 

Mitchell, Corinne 

Mkhatshwa, Thembinkosi Peter 

Monastra, Jennifer Crooks 

Montero-Moguel, Luis E 

Moore, Kevin 

Moore-Russo, Deborah 

Moreno, Juana 

Morrissey, Susie 

Morrow-Leong, Kimberly 

Moss, Diana L. 

Munson, Jen 

Muthitu, Purity 

Nagar, Gal Gili 

Nagle, Courtney 

Namakshi, Nama 

Naresh, Nirmala 

Nathan, Mitchell J. 

Newton, Jill 

Nolan, Kathleen Theresa 

Norton, Anderson 

Nti-Asante, Emmanuel 

Nusser, Tegan 

Obielodan, Florence F 

Odiwuor, Brian 

Odondi, Asenath 

Ogden, Lori 

Olaguro, Modiu 

Olarte, Royce 

Oliwe, Ruth Nneoma 

Olmez, Ibrahim Burak 

Olshefke, Allison Juliana 

Olson, Emily 

Omoze, Hillary Ongoyo 

Oppland-Cordell, Sarah 

Orozco-Santiago, José 

Orrill, Chandra Hawley 

Orsini, Arielle 

Ortiz Galarza, Mayra Lizeth 

Osamau, Emmanuel 

Osana, Helena P. 

Oslund, Joy Ann 

Osuna, Jennifer 

Otten, Samuel 

Oyewole, Peter 

Özgün-Koca, Asli 

Ozturk, Ayse 

Pak, Byungeun 

Paoletti, Teo 

Park, Matthew 

Park, Sangyeon 

Park, Sarah 

Park, Sunyoung 

Pate, Kaleigh 

Perlander, Annika 

Peterson, Blake 

Peterson, Franziska 

Phatak, Jaai Uday 

Pittalis, Marios 

Plaster, Karen 

Popovic, Gorjana 

Postma, Jessica L 

Prasad, Priya Vinata 

Proffitt, Tracy 

Prough, Sam 

Prummer, Katherine 

Pujiyanto, Fnu 

Pynes, Kristen D'Anna 

Qazi, Muhammad Zulqurnain Ul 

Haq 

Quaisley, Kelsey 

Raja, Waleed Ashraf 

Ramos-Duke, Mary Frances 

Recore, Joshua 

Reinsburrow, Amanda 

Rhodes, Sam 

Rich, Erin 

Rigby, Lauren 

Rigsby, Bronwyn Kate 

Ritter, Kenley Bailey 

Roberts, Amanda 

Roberts, Sarah A. 

Robinson, Molly L 

Rodríguez, Flor Monserrat 

Rodríguez, Sofía Paz 

Roh, Kyeong Hah 

Roman, Christopher Orlando 

Roman, Kathryn E. 

Romero Castro, Offir Neil 

Romo Becerra, Arely 

Ronau, Robert 

Rose, Mary 

Roth McDuffie, Amy 

Roy, George J. 

Rudow, Sasha 

Ruiz, Steven L 

Rupe, Kathryn Mary 

Rygaard Gaspard, Brandi 

Safi, Farshid 

Salem, Wesam 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

xi 

Sanchez Gutierrez, Gerardo 

Sánchez, Ernesto Alonso 

Sanders, Miriam Marie 

Sapkota, Bima Kumari 

Sarmiento-Quezada, Brenda 

Satyam, V. Rani 

Sayed, Jennifer 

Schwarts, Gil 

Selbach-Allen, Megan 

Sencindiver, Benjamin D. 

Sharpe, Sheree 

Shaughnessy, Meghan 

Siebert, Daniel 

Skultety, Lisa 

Smallenberger, Kelly 

Smallenberger, Michael 

Smith, Amy 

Smith, Ethan P. 

Son, Ji-Won 

Son, Kyunghoon 

Sorto, M. Alejandra 

Soto, Hortensia 

Stack, Kamala 

Stepnowski, Waldemar 

Stevens, Irma 

Stewart, Maria Elizabeth 

Nielsen 

Stockero, Shari L 

Store, Jessie C 

Stroup, Walter M. 

Sturgill, Derek 

Suh, Jennifer M. 

Sumner, Tammy 

Sung, Yewon 

Swartz, Micah 

Sztajn, Paola 

Tasova, Halil Ibrahim 

Tegeler, Sarah 

Tellos, Alison 

Thacker, Ian 

Thames, Anthony Terrell 

Thanheiser, Eva 

Thomas Zapata, Johana 

Elizabeth 

Thomas, Casedy Ann 

Tillema, Erik S 

Tjoe, Hartono 

Tobias, Jennifer M. 

Topham, Taylor 

Trivedi, Monika 

Tsutsui, Matthew C 

Ugiagbe, Uyiosa Osarumen 

Uhing, Karina 

Umeh, Emmanuel 

Chukwuebuka 

Utley, Juliana 

Valenzuela, Carlos 

Valero, Jonathan 

Van Zoest, Laura R. 

Vargas-Alejo, Veronica 

Vomvoridi-Ivanovic, Eugenia 

Vroom, Kristen 

Wagner, David 

Walker, William 

Wang, Kun 

Wang, Xiaohui 

Ward, Jennifer 

Warshauer, Hiroko Kawaguchi 

Washington, Julianna 

Waters, Samuel 

Webb, David C 

Weiland, Travis 

Whitacre, Ian 

White, Isabel Alejandra 

Wiest, Victoria 

Wilhelm, Annie 

Willett, Brooklynn 

Wilson, Aaron Thomas 

Wilson, Joshua 

Winsor, Matthew 

Wisittanawat, Panchompoo 

Witt, Nicholas 

Wladis, Claire 

Wonsavage, F. Paul 

Wood, Erin 

Wood, Marcy B 

Woods, Dawn M. 

Wrightsman, Elizabeth 

Wu, Qiong 

Xenidou-Dervou, Iro 

Xu, Hanyi 

Yakubu, Sumaila 

Yao, Xiangquan 

Yasuda, Sohei 

Yeh, Cathery 

Yilmaz, Zuhal 

Yovanov, Cindy 

Yu, Karmen 

Yu, Paul Woo Dong 

Zarza, Sabrina 

Zelkowski, Jeremy 

Zhang, Guili 

Zhang, Si 

Zhao, Yilang 

zhou, Lili 

Zhu, Li 

Zhu, Yi 

Zhuang, Yuling 

Zolfaghari, Maryam 

Zwanch, Karen 

 

 



Kosko, K. W., Caniglia, J., Courtney, S. A., Zolfaghari, M., & Morris, G. A., (2024). Proceedings 

of the forty-sixth annual meeting of the North American Chapter of the International Group for 

the Psychology of Mathematics Education. Kent State University. 

xii 

Preface 
 

On behalf of the 2024 PME-NA Steering Committee, the 2024 PME-NA Local Organizing 

Committee, and Kent State University, we welcome everyone to Cleveland, Ohio, USA, for the 

Forty-Sixth Annual Meeting of the International Group for the Psychology of Mathematics 

Education – North American Chapter, held at the Hilton Cleveland Downtown hotel and 

convention center.  

 

This year’s conference theme is Envisioning the Future of Mathematics Education in 

Uncertain Times. The past several years have seen significant change across North America and 

the world resulting from the pandemic, war, technological, political and social shifts. When we 

selected this theme in 2022 (two years ahead of the conference), there was no war in Ukraine or 

Israel, ChatGPT was virtually unknown, and each nation represented by scholars at PME-NA 

faced very different political landscapes. As the context of our world around us changes and 

evolves, mathematics education will also change – either solely from the pressures of the world 

around us, or through mathematics educators’ engagement with the world. Thankfully, our field 

has a history of considering the profession in the midst of change across and within various 

contexts (society writ large, classrooms, academia, etc.). Engagement with the world for 

meaningful change must be informed by rigorous theory and research regarding the teaching and 

learning of mathematics. Additionally, because education is a caring activity, such engagement 

with others (students, teachers, the public, politicians, etc.) must be oriented towards not only 

teaching but learning from others for it to be meaningful. We encourage attendees and presenters 

to reflect on this as they attend various sessions at PME-NA and engage with others beyond these 

doors. 

 

This year’s conference will be attended by 511 researchers, faculty members, and graduate 

students, with presenters from around the world including Canada, México, the United States, as 

well as Australia, Cyprus, Denmark, the Netherlands, Norway, and Turkey. Submitted papers 

were reviewed in a double-blind process by multiple reviewers. After initial reviews were 

submitted, Strand Leaders examined feedback and provided recommendations for paper 

acceptance to the proceedings and conference. The local conference committee made final 

decisions based upon Strand Leader recommendations and reviewer comments. Overall, there 

were 423 submissions. The table below outlines the number of submitted proposals across each 

strand. Following the review and decision process, these proceedings include 81 research reports 

(41.8% acceptance), 170 brief research reports (73.0% acceptance), 111 posters (79.3% 

acceptance), and 16 Working Groups (88.9% acceptance).  
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A COMPARISON OF STRANDS AND COGNITIVE DEMAND LEVELS: EXAMINING 

UNIVERSITY ENTRANCE EXAM QUESTIONS ACROSS THREE COUNTRIES 
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University Entrance Exams (UEEs) serve as the primary criteria for university admissions into 

universities in many countries. Given the significant impact of assessment types on teaching and 

learning, analyzing UEEs in different countries can reveal factors that influence students’ 

learning. This study examined the content and the Cognitive Demand Levels (CDL) of UEE 

questions in Iran, Turkiye, and the United States. The results indicated that algebra was the most 

frequently featured content area in UEE questions. Moreover, the majority of algebra questions 

in all countries were categorized under procedure with connections and procedure without 

connections cognitive demand levels. Iran and Turkiye’s UEEs included topics not covered in the 

NCTM strands for high school in the United States, such as set theory, graph theory, and logic. 

Furthermore, the SAT emphasized real-world scenarios within specific subject areas, whereas 

the UEEs in Iran and Turkiye integrated multiple subject areas within single questions. The 

paper discusses the implications of these findings. 

 

Keywords: university entrance exams, cognitive demand levels, assessment, algebra, NCTM 

strands 

 

Many high school students take the national UEEs in different countries, and their 

performance outcomes indicate admission to universities (Davey et al., 2007; Yildirim, 2007). 

Thus, it is essential that UEEs, as assessment tools, effectively measure students’ knowledge and 

skills. Furthermore, since the assessment type greatly influences teaching and learning (Shepard, 

2001), the university entrance examination plays an important role in shaping mathematics 

education in countries (Hong & Choi, 2011). Building on prior findings on how assessment tools, 

such as UEEs shape mathematics instruction, examining these assessment tools could assist 

educational researchers in understanding the necessities of curriculum development (Chang & 

Silalahi, 2017). This study is part of a larger research project that examines and compares 

textbooks and assessments across various countries and reports the results from comparing the 

mathematics sections of the UEE in Iran, Turkiye, and the United States.  

 Below are the research questions we aim to address in this study: 

1- Which mathematics topics were included in the UEEs in Iran, Turkiye, and the United 

States? 

2- In what ways do the cognitive demand levels of questions in UEEs differ or align 

across Iran, Turkiye, and the United States? 

 

mailto:mzolfagh@kent.edu
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Literature Review and Theoretical Perspective 

This study relies on the framework established by Smith and Stein (1998) to examine the 

CDL of UEE questions. Building on Doyle’s (1983) work, Stein and Smith (1998) proposed the 

Task Analysis Guide comprised of four categories of tasks at different levels of cognitive 

demand: (1) memorization, (2) procedures without connections (PWOC), (3) procedures with 

connections (PWC), and (4) doing mathematics. According to this framework, memorization 

tasks involve producing previously learned facts, rules, formulae, or definitions, which are highly 

dependent on memorizing. PWOC tasks require using procedures specifically called for the 

previous instruction. These tasks do not require students to understand how the procedure works 

or to explain their thinking. These two levels of tasks are named low-level tasks. The next two 

CDL comprise high-level tasks. Although there may be some suggested pathways in the PWC 

tasks, these tasks require a deeper understanding of the mathematical concepts and a higher level 

of cognitive effort. Doing mathematics tasks requires complex and non-algorithmic thinking in 

which students explore and understand the nature of mathematical concepts, processes, or 

relationships. Studies have found that high CDL tasks provide students with more opportunities 

to learn (Smith & Stein, 1998). 

Methods  

The present study reports on the analysis of the UEEs of Iran, Turkiye and the United States. 

For Iran and Turkiye we selected the most recently released UEEs in 2023. However, due to 

restricted access to the actual SAT questions (the UEEs in the U.S.), the latest available released 

practice questions (Test 1) by the College Board for SAT were used for the study.  

The UEE of Iran and Turkiye each comprised 40 multiple-choice questions, while the SAT 

practice questions comprised of 54 items, including both multiple-choice and short-answer 

questions. The first two authors conducted the analysis of Iran’s UEEs questions, while the next 

two authors carried out the analysis of Turkiye’s UEEs due to their proficiency in the language. 

For the SAT exams, all authors participated in the data analysis.  

Initially, the authors employed the NCTM strands to classify each question into one of the 

subsequent topics: Algebra, Numbers and Operations, Data Analysis and Probability, Geometry, 

and Measurement. Next, the authors narrowed the focus to algebra strand questions, applying the 

CDL framework. To ensure consistency in the interpretation of CDL, the authors first selected a 

random sample from all questions (10%) for joint discussion. Prior to reconciling the analysis, 

they assessed the percentage of agreement as an indicator of inter-rater agreement. The results 

indicated high agreement rates for CDL: 87.5% for Iran, 86.67% for Turkiye’, and 84.61% for 

the U.S.  

Results 

Initially, the study will explore the subject areas addressed in the exam questions using 

NCTM standards (Table 1). Following this, the analysis of the CDL of algebra tasks will be 

presented, with corresponding data available in Table 2. Lastly, a detailed exploration of the 

differences observed in algebra tasks among the three countries will be provided. 

 

 

 

 

https://satsuite.collegeboard.org/sat/practice-preparation/practice-tests/linear
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Table 1: Frequency of the UEE Questions in Each NCTM Strand 

     Strands from NCTM 
The U.S. Iran Turkiye 

# 

Percent

age # 

Percent

age # 

Percent

age 

Numbers and Operations 5 10% 3 7.5% 9 22.5% 

Algebra 39 72% 16 40% 15 37.5% 

Geometry 4 7.5% 8 20% 6 15% 

Measurement 3 5.5% 3 7.5% 7 17.5% 

Data Analysis and Probability 3 5.5% 4 10% 1 2.5% 

Other topics 

Set Theory 0 0% 3 7.5% 1 2.5% 

Graph theory 0 0% 2 5% 0 0% 

Logic 0 0% 1 2.5% 1 2.5% 

Total 54 100% 40 100% 40 100% 

 

In the SAT, the data indicates a heavy concentration on Algebra, 72% of the questions. In 

other countries, while Algebra remains the most dominant category, it represents a smaller 

portion of the overall exam, accounting for 40% and 37% of the questions in Iran and Turkiye, 

respectively (Table 1). Interestingly, the second most prominent category in Iran’s UEEs was 

Geometry (20% of the questions), in Turkiye Numbers and Operations (22.5% of the questions), 

and in the U.S. Numbers and Operations (10% of the questions). A few questions in Turkey and 

Irans’ UEEs pertained to topics not covered in the NCTM strand (Table 1) 

 

Table 2: CDL of the Questions for Algebra Tasks in UEEs 

CDL Algebra Tasks US Iran Turkiye 

 # % # % # % 

Low Level 
Memorization 1 2.50% 0 0% 0 0% 

PWOC 23 59% 5 31% 10 67% 

High Level 
PWC 15 38.50% 10 63% 5 33% 

Doing Mathematics 0 0% 1 6% 0 0% 

 Total 39 100% 16 100% 15 100% 

We selected Algebra as our primary topic of evaluation of its CDL since it was the largest 

category. As Table 2 shows, in Iran’s UEEs, the majority of the algebra questions were at a 

higher CDL (69%), while in Turkiye and the U.S., most questions were at a low level (67% in 

Turkiye and 61.5% in the U.S.). Furthermore, the majority of algebra questions in all countries 
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fell within the procedural level, with or without connections (94% of the questions in Iran, 100% 

in Turkiye, and 97.5% in the U.S. 

Notably, no questions in Iran and Turkiye, and only 2.5% of the questions in the SAT were at 

the Memorization level. Also, only 6% of the questions in Iran’s UEEs were classified at the 

doing mathematics level, whereas in Turkiye and the U.S., this percentage was 0% (Table 2). 

Furthermore, Algebra questions were contextually framed in different ways. For instance, the 

SAT exam emphasized real-world scenarios within a specific subject area more than the UEEs in 

Iran and Turkiye. Conversely, the UEEs in Iran and Turkiye integrated multiple subject areas 

within a single question (see examples in Table 3).  

 

Table 3: Comparison of Different Approaches to One Subject among Different Countries 

Country/Test Content Area CDL  Question 

USA/Sample 

SAT Test 1 

Module 1 

Quadratic function 

 

PWOC Q4. The function g is defined by𝑔(𝑥) =
𝑥2 + 9. For which value of x is 𝑔(𝑥) = 25? 

USA/Sample 

SAT Test 1 

Module 2 

Quadratic function PWC 

 

Q7.  

 
The x-intercept of the graph shown is (x,0). 

What is the value of x? 

 

Iran/2023 UEE Quadratic function PWOC Q6. What is the sum of the root for the 

following equation? 
1

𝑥2 +  
1

(1−𝑥)2= 
160

9
 

 

Iran/2023 UEE Quadratic function PWC 

 

Q14. If the function is f is strictly 

decreasing and its domain is a set of 

negative values, and if 𝑓(𝑚2 − 𝑚 − 5) <
𝑓(−3 + 2𝑚 − 𝑚2) how many integer 

values can m take? 

 

Turkiye/2023 

UEE 

Quadratic function 

 

PWOC 

 

Q15. If x and y are real numbers,  

𝑥2 + 8𝑥𝑦 = 60 

𝑦2 − 3𝑥𝑦 = −15 
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What is the product of x.y? 

 

 

Turkiye/2023 

UEE 

Quadratic function PWC 

 

Q20.  Uncle Ahmet had a rectangular field 

with side lengths of x+20 and 2x+30. As 

shown in the figure in the square-shaped 

part of his field, he grew sunflowers with a 

side length of x meters. 

If 

the area of the remaining part of the field is 

1400 square meters, how many meters is the 

perimeter of the entire field? 

 

Discussion and Implications 

In summary, the UEE questions in Iran, Turkey, and the U.S. predominantly focused on 

procedural levels, both with and without connections. Additionally, many UEEs in Iran and 

Turkey covered topics not typically included in U.S. high school curricula. However, the SAT 

featured more questions related to real-world applications. This trend might mirror the nature of 

the mathematics curriculum in these three countries (Chang & Silalahi, 2017) which is the future 

studies undertaken by the authors. This way, we hope to learn more about how UEE exams align 

with the school curriculum and also the intricate relationship between curricular materials and 

expectations from students as they transition into college-level mathematics. 

There were no queries at the memorization level in both countries, which provides a 

promising snapshot of how the focus of the examinations was not on memorizing mathematical 

concepts, but instead required students to apply a procedure at least. Nonetheless, it is crucial to 

emphasize the inclusion of doing mathematics level questions in the UEEs, which was not 

emphasized in any country. This emphasis aligns with the goal of preparing students to become 

problem solvers and preparing them to navigate situations where they may encounter unfamiliar 

mathematics problem-solving processes. 

This study reported the content and CDLs of UEEs in three countries. The outcomes of similar 

studies could offer a valuable overview of mathematics education across various countries, 

aiding our understanding of potential factors contributing to differences in students’ 

achievements.  
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Assessment is a part of teaching and learning, and recent efforts seek to improve assessment 

practices within K-12 education (Harris et al., 2023). There has also been a substantive shift from 

paper-and-pencil assessments to technology-delivered assessments (Thompson, 2017). Fairness 

and bias considerations are an important aspect of the assessment validation process (AERA et 

al., 2014; Herman & Cook, 2022). Exploring fairness and bias issues related to technology-

delivered mathematics tests is necessary. This study’s purpose is to synthesize bias and fairness 

validity evidence related to a technology-delivered, computer-adaptive mathematics problem-

solving test called the PSM-CAT. The PSM-CAT is composed of standards-aligned, mathematics 

word problems. It is designed for students in grades 6-8 (age 11-14) and is intended to be 

formative in nature (see Bostic et al., 2024 for more information). 

Potential respondents as well as possible test administrators and users can provide useful data 

regarding issues of test bias and fairness (Lane, 2014). Our team conducted 1-1 and small-group 

interviews with students and adults from a broad sample over two years. We purposefully and 

representatively interviewed (i) students and (ii) teachers, administrators, or curriculum 

specialists, and (iii) STEM Education faculty and professionals representing different (a) 

geographic regions, (b) school communities, (c) individuals with and without learning 

disabilities, (d) multilinguals and native English speakers, (e) genders, and (f) students 

representing BIPOC and White students. Interviews were audio recorded and transcribed. Data 

were qualitatively analyzed using a two-cycle approach to generate themes, with checks and 

balances throughout the analysis to promote trustworthiness (Miles et al., 2014). We report our 

findings from student-data (potential respondents) and adult-data (potential test users) separately.   

One theme emerged from students’ data: Items’ contexts, language, and content were broadly 

accessible to peers; nearly all students did not perceive bias within items. We will present 

quotations in our poster and summarize the data as showing that 125 of 128 students (98%) 

reported items as fair, content-appropriate, and free from bias. A second theme came from adults: 

Readability, contexts, and standards-alignment was fair and appropriate for diverse learners. An 

implication from this two-year study is opening our test development scholarship on bias and 

fairness for scrutiny, which may be a call for other test developers to publicly share their 

findings. Bias and fairness are a cornerstone for a validity argument and should be explored to 

promote better, shorter tests and concomitantly, more time for teaching and learning (Bostic, 

2023).  
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This article introduces Combined Reading, a novel qualitative methodology for reciprocal 

analysis of curricular documents. We advocate that Combined Reading has the potential to 

highlight and unveil aspects of mathematics teaching and learning that may not be perceived in 

the ordinary and naturalized use of curricular orientation documents. Drawing on our previous 

and ongoing investigations, we underscore the richness of the process and the learning that 

emerges from it. We propose the Combined Reading methodology to encourage discussion about 

the necessary knowledge for teachers in teaching and learning mathematics. 

Keywords: Research Methods, Mathematical Knowledge for Teaching, Curriculum, Elementary 

School Education. 

Why the Combined Reading of Curricular Documents? 

Significant shifts in curricular guidelines for teaching mathematics in elementary education 

have been observed worldwide (Li & Lappan, 2014; Shimizu & Vithal, 2018; Thompson et al., 

2018). Curricular documents directly affect and shape the organization and structure of the 

mathematics taught in elementary school education. They highlight conceptions about 

mathematics and its teaching. Teachers interact with and use curriculum guidelines in their 

practice (Remillard, 2005; Sherin & Drake, 2009). This process allows teachers to grow their 

knowledge for teaching (Ball et al., 2008). Typically, a single curriculum document will guide 

teachers. The question that motivates us is to comprehend to what extent a combined analysis of 

curricular documents, one in relation to the other, offers a way of contributing to and expanding 

the discussion around teachers’ mathematics knowledge for teaching. 

What do teachers need to know and be able to do in order to teach effectively? Or, what does 

effective teaching require in terms of content understanding? (…) These are centrally 

important questions that could be investigated in numerous ways––[for example] by 

examining the curriculum and standards for which teachers are responsible (…). (Ball et al., 

2008, p.394) 

Combined Reading aims not to compare the teaching of a certain subject in curricular 

documents from two or more educational systems in search of best practices (e.g. Son et al., 

2017; Villalobos Torres & Trejo Sánchez, 2015). The intention is to identify similarities and 

differences between elements of the documents to understand the reasons that ground them and 

the implications of their implementation in the classroom, learning from this process. Following 

Remillard (2005), we believe “there is still much to learn about whether [the] use of unfamiliar curriculum 

materials might be viewed as a form of teacher development” (p.239). We acknowledge that social, cultural, 

historical, and economic aspects play different roles in the curriculum and its teaching (e.g., 

Bessot & Comiti, 2006; Bickmore et al., 2017). We also acknowledge that different countries 
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have different educational particularities and demands (e.g. Acar & Serçe, 2021; Cerqueria & 

Silva, 2020; Pires, 2013; Wang & McDougall, 2019). However, in this study, we do not consider 

these aspects. We understand that, regardless, every curriculum has something to learn from and 

contribute to the discussion. Hence, this paper presents Combined Reading as a methodology for 

document reciprocal analysis that seeks to promote discussion about teachers’ necessary 

mathematics knowledge for teaching based on the relational investigation of different curricular 

guidelines. 

We believe that considerations emerging from Combined Reading are of the same nature as 

those carried out by a teacher when deciding, based on curricular guidance documents, how to 

teach, what students should learn, or what pedagogical resources they should use. The premise of 

Combined Reading is the recognition of teachers’ leading role in the curriculum implementation 

process (Valverde et al., 2002). It is the teacher's work that ultimately “brings life” to the 

curriculum in the classroom. Therefore, the Combined Reading of curriculum documents 

encourages insightful reflections that can support translating the intended curriculum into the 

implemented curriculum (United Nations Educational, Scientific and Cultural Organization 

[UNESCO], 2016). Founded on an interactive process that promotes thinking through 

comparison, Combined Reading allows us to investigate alternating perspectives from different 

curricular documents. This integrated and comprehensive analysis reveals general aspects of 

mathematics teaching that go beyond the particularities of a specific curriculum. 

What is Combined Reading? 

As we designed, Combined Reading (Corrêa & Rangel, in press) is a methodology based on 

the reciprocal analysis of two or more curricular documents (Figure 1). The process foresees 

different sequential emphases with their own characteristics. Initially, the curricular documents 

under analysis must be read in parallel, that is, concomitantly, to provide a panoramic view of the 

documents. From this overview, correlated elements are identified in the documents, that is, 

elements with similar functions that allow for a correspondence to be established. In the absence 

of correlated elements, Combined Reading becomes unfeasible since correlations cannot be 

determined for document analysis. Correlated elements can have different natures, and their 

identification is tied to the research question. They can, for example, be structural, such as 

learning outcomes to be achieved, or they can have a foundational nature, such as principles, 

values, beliefs, and concepts that underpin the curriculum. 

 
Figure 1: Combined Reading Methodology (Corrêa & Rangel, in press) 
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Once correlated elements are identified and a correlation can be established between the 

documents, the analysis begins, seeking parities, contrasts, and singularities in the documents. 

Parities are identified when correlated elements present high similarity, equivalence, or 

convergence. This is the case, for example, of identifying that, in the analysis of learning 

outcomes, two or more curricula propose teaching fractions starting with unit fractions. Contrasts 

are identified when correlated elements present significant differences, divergences, or 

contradictions. For example, when the teaching of integers is covered in grade 6 in one 

curriculum and not mentioned in another one at the same grade level. Finally, singularities are 

identified when a document presents particularities not included in other documents under 

analysis. For example, a unique curriculum that proposes Financial Mathematics as one of its 

strands. Following the identification and categorization of parities, contrasts, and singularities, 

the subsequent emphasis involves the development of schematic representations that organize 

and portray the established relationships. These representations are visual and multidimensional, 

varying according to the objectives and nature of the investigation. This emphasis also supports 

the analysis, as it highlights the characteristics of one curricular document in relation to another 

one. Conclusions and considerations emerge from the schematic representations, revealing 

observations, conjectures, and learning relevant to mathematics teaching.  

Example of Combined Reading 

We have applied Combined Reading in investigations aimed at discussing the teaching of 

mathematics in elementary education based on different themes: the teaching of numbers (Corrêa 

& Rangel, 2021a), teaching approaches to fractions (Corrêa & Rangel, 2021b), the teaching of 

probability and statistics (Rangel et al., 2024), and curricular terms and expressions (in progress). 

To illustrate the application of the Combined Reading framework and highlight its potential for 

shedding light on mathematics knowledge for teaching (Ball et al., 2008), we describe the study 

focused on Statistics and Probability (Rangel et al., 2024), given that this topic has been a 

recommendation and a concern in elementary education (Zieffler et al., 2018). 

In Rangel et al. (2024), Combined Reading supported an investigation into the teaching of 

probability and statistics in elementary education. The analysis associated the probability and 

statistics strand from the Brazilian National Common Curricular Framework (BNCC) (Brasil, 

2018) with the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

(Franklin et al., 2005; Bargagliotti et al., 2020). GAISE, a United States reference, is not 

precisely a curricular document; however, it proposes a two-dimensional model to observe the 

development of statistical literacy (Gal, 2021) that relates the four steps of the Process for 

Solving a Statistical Research Problem (PRPIE) – formulation of an investigative statistical 

question, data collection, data analysis, and interpretation of results – with skills that distinguish 

three levels of statistical literacy – Level A, beginner, Level B, intermediate, and Level C, 

advanced. The levels that mark the GAISE model are not intended to be directly related to the 

stages of school education; still, they can coherently guide such an organization. 

The authors identified as correlated elements the BNCC skills (Brasil, 2018) for probability 

and statistics in the first six years of elementary school and the GAISE Level A skills 

(Bargagliotti et al., 2020). Thus, the study focuses on the initial stage of learning statistics. The 

qualitative analysis investigated to what extent the BNCC's probability and statistics skills can 

potentially develop statistical literacy following the GAISE model. The analysis was based on 
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identifying three categories, which reflected the intensity of the relationship between the skills 

compared: (i) parity – indicating a strong relationship between what was intended by the BNCC 

and what was indicated in GAISE. In this case, when having a BNCC skill as a learning 

objective, it is quite possible to achieve the corresponding skill of the GAISE model; (ii) 

conditioned parity – indicating that the relationship between what is intended by the BNCC and 

what is indicated in GAISE is not immediate, and is possibly conditioned by external factors, 

such as a didactic-pedagogical action that requires intentional teacher intervention. Therefore, 

when having a BNCC skill as a learning objective, it is not natural to also achieve the 

corresponding skill from the GAISE model; (iii) contrast – indicating that there is no relationship 

between what the BNCC intends and what is proposed in GAISE. Hence, the skills seem to have 

no relationship; when one of them is sought, it is unlikely that the other will be achieved. The 

schematic representation of this study portrays a table in which colours represent the different 

categories: green for parity, yellow for conditioned parity, and red for contrast (Figure 2). 

 

 

Figure 2: Extract of the Schematic Representation – Study on Probability and Statistics 

(Rangel et al., 2024) 

Emerging considerations from this investigation include the understanding that the BNCC 

has the potential to develop statistical literacy in the early years of elementary school through the 

proposition of problems of statistical nature in contexts of interest to students. However, the 

study highlights that the order in which BNCC skills are listed can compromise the approach to 

problems, for example, by leaving statistical investigations until last. Furthermore, it was found 

that the analyzed BNCC skills give little or no emphasis to summary measures, which usually 

emerge in the data analysis stage of investigations or problems of a statistical nature. Finally, it is 

noteworthy that the study points out that the BNCC skills regard probability as a separate 

discipline of statistics; it does not establish, as recommended, a clear connection with statistical 

investigation. These research considerations contribute to teachers’ knowledge for teaching and 

offer opportunities for improvement in probability and statistics teaching practices. 

Final Considerations 

Developing and implementing the Combined Reading methodology led to fruitful learning 

(Corrêa & Rangel, in press). We learned, for example, that the Combined Reading between 

curriculum guidelines can expand our understanding and perspective on mathematics teaching, 

addressing curricular requirements and teaching possibilities and opportunities at the elementary 

level. We learned that Combined Reading has a unique role in observing demands specific to 

mathematics teaching that are not evident in the individual reading of a curriculum, pointing out 

convergences, advances, and refinements in curricular documents. We learned that Combined 

Reading can contribute to converting intended curricula into implemented curricula. We 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

14 
 

understand that the emerging learnings offered by Combined Reading promote discussion and 

reflection, contributing to teachers' mathematics knowledge for teaching (Ball et al., 2008).  

As an exploratory methodology, Combined Reading also has its limitations. Perhaps the main 

one is linked to a feature that grounds and supports it: the ease of access to different curricula 

widely available in digital media. The digital dimension of curricular documents gives them life 

and dynamism. It is not uncommon for adjustments and changes to be detected in curricular 

documents amid a Combined Reading. We understand that this limitation does not compromise 

the value of the reflections emerging from the various studies. Our experience shows that it can 

even promote new pertinent and enriching reflections. We present a new methodological 

proposal that we believe may be promising. Publicization, discussion, and peer evaluation are 

essential for its improvement. In the spirit of collaboration and recognizing the nature and 

relevance of this conference, we present this methodology. We have learned a lot from it. 
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This study investigates how a mathematics teacher’s curricular conceptions and instructional 

orientations relate to their planned lessons as they interact with curriculum materials that reflect 

different design principles. An analysis of five interviews with six high school teachers from the 

Northeast revealed that all six teachers planned lessons with consistent orientations regardless 

of the alignment of the curriculum materials. However, the teachers’ interactions with the 

materials differed based on their instructional orientations and curricular conceptions.  

Keywords: Curriculum, Problem-Based Learning, High School Education 

Despite significant investment in improving mathematical learning by designing and testing 

new curriculum materials, little has changed in mathematics instruction at the high school level. 

Even with research-based curriculum materials and professional learning, the goal of engaging 

students in mathematical thinking is often unrealized (e.g., McCaffrey et al., 2001). One reason 

could be that when research-based curriculum materials are not aligned with the teacher’s 

assumptions about how mathematics can and should be taught (a teacher’s instructional 

orientation, Lloyd & Behm, 2005), the materials are largely abandoned (e.g., left on the shelf). 

However, it could also be that even when teachers plan lessons with curriculum materials that are 

not aligned with their instructional orientation, the resulting lessons remain oriented toward their 

existing assumptions for how mathematics lessons should play out (e.g., “I do, we do, you do”).  

This study investigates whether and how a teacher’s instructional orientation and their 

assumptions and perspectives about mathematics curriculum materials, what we refer to as their 

curricular conceptions, may influence the ways the teacher interacts with curriculum materials 

and the lessons they plan. We wonder how a teacher’s curricular conceptions might influence 

their interpretations of curriculum materials during the planning process, and whether these 

interpretations might explain how teachers use curriculum materials in different ways than they 

are intended. For example, a teacher who is oriented towards direct instruction and who views 

textbooks as a mechanism to deliver information might be inclined to interpret all problems in 

textbooks as opportunities to practice known procedures, even when they plan with a textbook 

that is primarily designed for students to learn through problem solving. In such a case, they 

might even adjust tasks so that they fit their instructional vision (e.g., shifting a task designed for 

students to become a demonstration by the teacher). On the other hand, a teacher who is more 

oriented towards fostering student exploration in their classes and who views curriculum 

materials as tools to promote student thinking might interpret exercises in curriculum materials 

centered on explicit statements of facts and demonstrations of procedures for their potential to 

inspire student thinking, and thus design a lesson to exploit this potential.  

Specifically, we explore the research question: How are a teacher’s curricular conceptions 

and instructional orientations related to their interactions with textbook materials and their 

planned lessons? Understanding whether and how these factors influence teachers’ interactions 
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with curriculum materials and the lessons they plan can enable future research to identify ways 

to support curricular change. 

Theoretical Framework 

In this study, curriculum materials (or textbooks) refer to intentionally-designed 

mathematical content for the purpose of learning. Although curriculum materials come in a 

variety of forms, we focus on commercially-available paper-bound textbooks since those are 

often adopted by school districts as mechanisms to influence instruction. Typically, curriculum 

materials for secondary mathematics courses contain teacher support as well as portions of text 

designed for student use. The student portion of curriculum materials often contain a variety of 

elements, such as tasks (all prompts designed to elicit student actions, including problems, 

activities, and exercises), exposition (expository text that provides information), and worked 

examples (problems with detailed solutions). Even when textbooks claim to address the same 

content goals, there is wide variance in how they are designed: some engage students in thinking 

and reasoning (thinking devices or “TD”), others expect students learn through explicit 

statements of facts and procedures (delivery mechanisms or “DM”) (Choppin et al., 2015), while 

others contain a mixture of both approaches. 

Dietiker and Richman (2021) demonstrated that even when two textbook lessons appear 

similar in style (e.g., exploratory) and content (e.g., same topic), they can have significant 

differences in how the mathematical content is designed to emerge and change as the lesson 

unfolds, what we call the mathematical story (Dietiker, 2015). The sequence of parts of a lesson 

through which it advances what is known mathematically (what we refer to as the story’s acts) 

impacts the potential for a lesson to inspire curiosity and support inquiry, and changing the 

sequence changes the mathematical story and its potential impact on students (Dietiker, 2016).  

Teachers who base their instruction on curriculum materials interact in ways that can 

influence their decisions, and thus, their planned lessons. Dingman et al. (2021) identified five 

types of curricular reasoning teachers employ while interacting with curriculum materials: 

viewing mathematics from the learner’s perspective, mapping learning trajectories, analyzing 

curriculum materials, considering mathematical meanings, and revising curriculum materials.  

As teachers draw from curriculum materials, they mediate the way content unfolds in their 

lesson plans. Teachers hold conceptions of curriculum, that is, their perspectives of the role of 

textbooks and assumptions about what constitutes a mathematical lesson to their curricular work 

(Behm & Lloyd, 2009; Brown, 2009). For example, some teachers may see curriculum materials 

as a script to follow (e.g., Lloyd & Behm, 2005), while others might make modifications while 

using the curriculum materials such as overly scaffolding tasks that are intended to be more 

exploratory in nature (Lloyd, 1999). In addition, teachers bring their instructional orientations to 

their curricular decisions (Lloyd & Behm, 2005); some teachers assume that to enable learning, 

students must be given information, often by the teacher or textbook (teacher- or text-centered 

instruction). In contrast, other teachers assume that students can develop understanding through 

opportunities to explore new ideas, solve problems, and negotiate meaning with other students 

(student-centered instruction). Still, other teachers assume instruction should include a mixture 

of both approaches. 
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Methods  

This is an exploratory qualitative study comparing the lessons a teacher plans with different 

types of instructional materials to learn whether and how their lesson plans are related to the 

design principles of the textbooks. To see if the patterns are related to the instructional 

orientations and conceptions of curriculum of the teacher, we compared patterns across multiple 

teachers with contrasting instructional and curricular perspectives.  

Data Collection 

To learn about the relationship of the design of curriculum materials on teachers’ interactions 

with the curriculum as well as their planned lessons, we selected six mathematics teachers who, 

as a group, had experience planning with a mixture of curriculum materials (i.e., DM, TD). The 

selected teachers had between 5-29 years of experience. Inviting teachers with extensive 

teaching experience increased the likelihood that they had established lesson planning practices. 

To explore teachers’ assumptions about the shape and sequence of content within a lesson, 

each teacher was interviewed five times for about 1 hour on each occasion. All interviews were 

conducted over Zoom and recorded. Interview 1 was conducted in a semi-structured fashion 

(Weiss, 1994) to learn about each teacher’s professional and curricular history. This interview 

prompted teachers to describe their “typical lesson” with questions such as, “If I picked a random 

lesson to observe, what types of activities would you expect I would see?” Interviews 2 through 5 

used the Staged Lesson Planning Interview Protocol, as described by McDuffie, Choppin, Drake, 

and Davis (2018), which involves asking teachers to plan a lesson with a given set of curriculum 

materials. No lesson plan templates or expectations of what a lesson plan would include were 

provided. Prior to each interview, participants were provided a PDF of a lesson to read before the 

interview. Then, in each interview, the participant was asked to make assumptions about what 

content preceded and followed the lesson and to plan a lesson for a group of students of their 

choice (such as one of their current algebra classes). As the teachers planned, they shared their 

screen with the PDF of the curriculum materials so the researcher could view which parts of the 

materials to which the teachers were attending. The researcher also asked follow-up questions to 

gain more information about the participant’s visions, intentions, and rationales. 

To identify relationships between the curriculum materials and the lessons that teachers plan, 

we selected lessons from four textbooks located at different points on the DM-TD continuum 

(see Figure 1). Lesson A, which introduces new content through exposition and worked 

examples, with student exercises, was selected from Glencoe’s Algebra 1 (Lesson 7-1, 2003). 

Lesson B, selected from Big Ideas Math Algebra 1: A Common Core Curriculum (Lesson 5.4, 

2015), introduces new content through a mixture of worked examples, exposition, student 

explorations. Lesson C, which develops new content through multiple scaffolded tasks, was 

selected from CPM’s Core Connections Algebra (Lesson 4.2.3, 2013). Finally, Lesson D, which 

introduces new content through an open-ended exploration, was selected from IMP Year 1 

(Lesson “Get the Point,” 2015). Since Lessons A and B introduce new content through worked 

examples and exposition, we refer to both as DM materials (even though Lesson B also contains 

explorations). Similarly, since Lessons C and D introduce new content through problem solving, 

we classify both as TD materials (even though Lesson C is more incrementally structured).  
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Figure 1: Categorization of Lessons A, B, C, and D along a continuum of DM to TD. 

 

From the teacher version of each textbook (which also includes student-facing materials), we 

selected a lesson focused on solving systems of equations. This topic was chosen because it is a 

central topic in Algebra 1 and any teacher with algebra teaching experience would have likely 

taught a lesson in this topic, minimizing the impact of teacher content knowledge on our results. 

However, although all lessons addressed systems of equations, each lesson had a different focus: 

solving by graphing (Lesson A), solving special systems with no solution or infinite solutions 

(Lesson B), solving using the Elimination Method (Lesson C), and solving using the Substitution 

Method (Lesson D). Interviews were paced with three or more weeks between each, and the 

textbook lessons were assigned to each teacher in a different, randomly-generated order.  

Data Analysis 

We started our analysis by segmenting the transcript of each teacher’s lesson plan into 

sequential acts. To be considered an act, the portion of the lesson must mathematically advance 

(e.g., moving between the different mathematical tasks or shifting to using elimination after 

substitution for the same system).  

Furthermore, for each act, we recorded its connection to the textbook materials, how the act 

was intended to be carried out (e.g., were the students expected to work in groups?), and the 

teacher’s rationale for their plan. In addition, we took notes about the teachers’ views of the 

textbook materials, key moments of consideration and decision-making, and their goals and 

lesson objectives. For Interviews 2 through 5, we listened to each recording at least twice and 

made additions and modifications to our spreadsheet. While conducting this analysis, we used 

the information from Interview 1 to see if the participants made significant changes to the typical 

lessons they usually have in their classrooms. Moreover, we used the Interview 1 data to resolve 

ambiguities we encountered while looking at the data from Interviews 2 through 5. For instance, 

when one of the participants told us that students worked on a particular problem in partners and 

didn’t give sufficient logistics about the role of the teacher during the partner work, we returned 

to their Interview 1 to learn what partner work means to them in their teaching. 

To reveal the patterns in the planned lessons, we coded each act based on two dimensions: 

who was expected to generate the math ideas (i.e., teacher/text or student) and whether the 

content in focus was new or review of previously-learned content (see Figure 2). After color-

coding the acts, we compared the overall patterns for all participants to group teachers based on 

whether their lessons contained more student-centered instruction, more teacher-focused, or a 

mixture of approaches (i.e., some of both). We then compared each group of teachers for the 

patterns of lesson designs and their relationship with the design of the textbook (e.g., usually 

having a teacher demonstration before independent practice with TD materials) and any patterns 
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of interactions with the curriculum materials (e.g., looking for opportunities for student 

exploration or solving problems and tasks as they read DM materials). 

 

 
 

Figure 2: Coding framework to compare the planned lessons. 

 

Findings 

Overall, all teachers planned lessons with consistent orientations regardless of the alignment 

of curriculum materials. Despite this similarity, those teachers oriented to using some exploration 

and problem solving interacted with DM and TD curriculum materials differently than those 

teachers who were more inclined to lecture. To explain these findings in more detail, we share 

patterns in the lesson plans and highlight relationships between the lesson plans and curriculum 

materials. We also describe how the teachers interacted with the curriculum materials to make 

sense of the content and to plan their lessons.  

Emerging Patterns of Lesson Designs and their Relationship to the Curriculum Materials 

Through analyzing patterns, we categorized teachers along a continuum from teacher-

centered to student-centered (see Figure 3). Teachers 1 and 2 intended new content to emerge 

through lecture and teacher-led discussion (dark blue). When they intended students to engage 

mathematically, it was to practice known procedures (light yellow). In contrast, Teachers 5 and 6 

designed lessons so that new content would primarily emerge through student-centered activity 

such as student small group problem solving on unfamiliar problems or student-led presentations 

(gold), along with some teacher summary of content (light blue) and student practice (light 

yellow). Finally, Teachers 3 and 4 planned new content to emerge through a mix of teacher-

centered instruction and student-centered learning (dark blue, gold), along with student practice 

of existing strategies (light yellow).  

What follows is an analysis for each subgroup of teachers. 
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Figure 3: Planned lessons by Teachers 1, 2, 3, 4, 5, and 6 with textbook lessons A, B, C, and 

D. Acts are color coded as shown in Figure 2. 
 

Teacher-centered teachers. In general, although there were differences, there were strong 

similarities between the lessons planned by Teachers 1 and 2. For both, portions of the lesson 

that were teacher-led (including both new and review content) were often followed by some 

student-led engagement on review (i.e., practice), and when new content emerged, it was almost 

always introduced through teacher-led instruction. However, although both teachers interpreted 

the DM materials as having new content, this only occurred for one of the four TD lessons 

planned by these teachers (namely, Lesson 1C). When Teachers 1 and 2 planned for students to 

engage in the tasks in each of the TD materials, the tasks were used as practice of prior 

knowledge. In Lesson 1C, the teacher introduced new content through teacher-led instruction, 

reframing the tasks in the textbook as practice. For example, when Teacher 1 encountered a task 

designed to have the Elimination Method emerge through student sense-making in Lesson C, she 

decided to teach the concept directly first: “Once I introduce the Elimination Method, that’s 

when I would move on to that hands-on stuff.” For Lessons 1D and 2D, however, these teachers 

instead interpreted the lessons as entirely reviewing prior content (i.e., no dark blue or gold).  

Mixed-focus teachers. In contrast with Teachers 1 and 2, Teachers 3 and 4 planned a 

majority of their lessons so that new content was introduced by both the teacher and through 

student-led solving of tasks. For Teacher 4, each lesson had at least one portion focused on 

having new ideas emerge through student-centered problem solving while for Teacher 3, this was 

the case for the three of the four lessons she planned. For Teacher 3, the only lesson that didn’t 

result in new content being generated through student sense-making was Lesson A, which was 

on the far-left end of the spectrum for DM materials. 

Intriguingly, these mixed-instruction teachers had different reactions to the TD materials than 

Teachers 1 and 2. Instead of interpreting all content as review, both Teachers 3 and 4 sought 

ways to keep the opportunities for content to emerge through problem solving. However, there 

were differences in their approach. Teacher 4 planned lessons that intended new content to 

emerge through student problem solving without much teacher intervention, particularly for 

Lesson D. In contrast, when planning with Lessons C and D, Teacher 3 planned to lead most of 

the efforts of solving the problems so that the new content would emerge. She expressed concern 

that students may not be able to generate the desired conclusions without teacher intervention. 

For example, while working with Lesson C, Teacher 3 commented “maybe I'm selling them 

TEACHER-CENTERED FOCUS MIXED FOCUS STUDENT-CENTERED FOCUS

Teacher 1's Lessons Teacher 2's Lessons Teacher 3's Lessons Teacher 4's Lessons Teacher 5's Lessons Teacher 6's Lessons

1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D 5A 5B 5C 5D 6A 6B 6C 6D
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short... There's not a lot of precedent for multiplying both sides by a –1” when expressing her 

disbelief about students generating a strategy to solve an unfamiliar system of equations.  

Student-centered teachers. Differing from the lessons of teacher-centered teachers and 

mixed-focus teachers, Teachers 5’s and 6’s lessons mostly had student-centered elements. Both 

teachers, whose pedagogical approach is centered around student sense-making and problem 

solving, afforded students with multiple opportunities to generate new content without explicit 

teacher guidance. Regardless of the textbook, both participants emphasized their preference for 

student-directed activities, such as Teacher 6 remarking, “But that’s for [the students] to figure 

out, not for me to tell them what to do” while planning with Lesson D and Teacher 5 stating, “I 

feel instead of sharing this table with the students, … it’s easier for students to remember or 

understand if they derived or did something with their team members to discover” while 

planning with Lesson A. All the lessons they planned included such narratives. In fact, instances 

of new content being introduced were rare or non-existent for both teachers’ lessons, regardless 

of the textbook materials involved.  

Interactions with Textbook Materials  

Although all participants read the curriculum materials (both student facing and teacher 

guidance) to make sense of the resource and to identify potential instructional opportunities, 

when we compared how the groups of teachers interacted with the textbook materials, interesting 

themes emerged that distinguished the ways the teacher-centered participants interacted with 

curriculum materials from those in the mixed and student-centered groups. 

Considering student perspectives. When interacting with the curriculum materials, both the 

mixed and student-centered teachers considered student perspectives at different points of the 

planning process. For example, these teachers often based curricular decisions, such as whether 

or not to select or adjust a task, based on how they predicted students would view particular 

tasks. For example, when planning a lesson with Lesson A, Teacher 4 avoided tasks that he felt 

would be boring for students and sought problems that he felt would be relevant to students. In 

addition, some teachers predicted the ways students would approach solving problems, identified 

challenges they might confront, and described potential ways students would interpret problems. 

For example, when planning with Lesson B, Teacher 6 reasoned that students might experience 

difficulty understanding what the variables represent in the word problems about systems of 

equations and thus decided to rephrase the problems in a way that asks students to define and 

explain their variables.  

Notably, both mixed and student-centered teachers mathematically solved the tasks when 

confronted with unfamiliar approaches within the textbooks. For instance, Teacher 3 analyzed 

the systems in Lesson D to determine if they encourage students to set y values to equal each 

other: “You’re going to get a lot of fractions in there, which is ok, but it’s unnecessary. It’s 

tedious.” From this, she decided the task needed adjustment and weighed whether to change the 

system’s numbers to allow for students to work with integers or to prompt them to substitute for 

y. In another case, when trying to figure out how students would use algebra tiles to solve a 

system with the Elimination Method in Lesson C, Teacher 4 solved the problem using this 

approach. As a result, he reconsidered his approach to this topic: rather than teaching students to 

“just add the other equation,” as he had in the past, he recognized how the textbook approach 

centered the additive property of equality. Still later, he reflected on the fact that although he 
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never teaches with algebra tiles, this lesson made him reconsider this stance: “I realize [using 

algebra tiles] takes some time, but I can see how that would be beneficial.”   

In contrast, teacher-centered participants did not solve tasks or otherwise analyze the 

mathematical affordances of tasks as they planned their lessons. These teachers tended to make 

rapid assumptions about the complexity or characteristics of tasks. For example, when planning 

with Lesson D, Teacher 2 selected systems of equations in the textbook indiscriminately. She 

explained, “maybe, the [task (a)] would be you had to solve it through Elimination, (b) would be 

Substitution, (c) might be Elimination, ….” By the speed at which she considered them, it was 

evident that the particular systems did not matter to her plan; this teacher did not pause to 

consider the ramifications of the selection, such as whether the systems contained any special 

cases (e.g., those without solutions) or other unexpected difficulties (such as those for which the 

Substitution Method might be particularly challenging). 

Reading for content development across the lesson. Another pattern that distinguished the 

groups of teachers involved how the teachers interpreted the textbooks. All teachers read the 

DM-oriented curriculum materials as potential components of lessons to draw from. However, 

with regard to TD materials, the mixed and student-centered teachers at times read the 

curriculum materials for how the mathematical ideas emerge and change across a lesson. For 

example, at the start of planning with Lesson C, Teacher 4 was not sure about its approach, but 

reading for the nuanced way the content developed enabled this teacher to ultimately make sense 

of and appreciate it. He noticed that the first task, a problem prompting students to solve a 

system using the Substitution Method, was designed to set up to motivate the Elimination 

Method. Then, as he read through remaining tasks, he acknowledged the sequence (“and then 

they do this…”) and described how the sequence might influence the ways in which the students 

might approach the problems. Another teacher (Teacher 6) interpreted Lesson D as a sequence 

when she compared it to curriculum materials she had used in the past, noting, “This is very 

different from a regular textbook. It doesn't have like a couple of examples and a bunch of 

stuff…Like this is, to me, a planned-out lesson.” 

In contrast, Teachers 1 and 2 did not analyze how the content developed over the course of 

any of the textbook lessons. Even when planning with Lessons C and D, in which content was 

designed to emerge as students solved a sequence of tasks, Teachers 1 and 2 interpreted subparts 

(a), (b), etc. as separate independent tasks (i.e., practice problems) and did not note their 

interrelationships. For example, when Teacher 1 encountered sequential subparts that contain 

clear links, such as a sequence of subparts of a task in Lesson C that sequentially develops the 

Elimination Method, she construed them as independent exercises. In another case, Teacher 2 

suggested that a sequence of systems of equations were interchangeable without regard to any 

mathematical features that subtly distinguished them (e.g., no solution, or infinite solutions).  

Discussion 

The results of this study help explain why reforming curriculum materials does not 

necessarily influence the intended ways mathematics is taught. That is, our data suggests that 

high school mathematics teachers often plan consistent forms of lessons no matter the design 

principles of materials with which they plan. Each group of teachers (teacher-centered, mixed, 

and student-centered) appeared to approach the task of planning with a preconceived image of 

how their planned lesson would flow. As Teacher 4 said, when explaining why he added a new 
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lesson component to what was offered in the textbook materials, “I had a routine in my head.” 

Since all the teachers’ planned lessons with consistent orientations (e.g., teacher-centered or 

student centered), we suspect that a teacher’s preconceived lesson image is closely related to 

their instructional orientations. Furthermore, since the interactions with the DM and TD 

materials differed for some teachers (the mixed and student-centered) but not others (the teacher-

centered), we propose that a teacher’s curricular conceptions may develop to support the 

teacher’s instructional orientation (e.g., learning to recognize tasks in TD materials as learning 

opportunities). Thus, changing instruction may require developing new curricular conceptions, 

which in turn can support shifts in instruction. 

However, this was a small exploratory study. Further research is needed to learn whether this 

phenomenon is found more generally, or whether it is limited to a particular grade band, 

geographic region, or other characteristic. If this pattern holds more broadly, however, then this 

would suggest that shifting instruction at a local level requires teacher education that aims to 

support mathematics teachers in developing expanded visions on what is possible in mathematics 

classrooms. Our data suggests three possible ways to expand this curricular vision. First, we note 

that both teacher-centered participants did not interpret problems in the IMP lesson as 

opportunities for new ideas to be learned. Given this, mathematics teachers need support in their 

curricular noticing (Dietiker et al., 2018), particularly in seeing familiar parts of textbook 

materials in new ways and recognizing instructional opportunities in unfamiliar materials that 

weren’t previously visible to them. Secondly, of Dingman et al.’s (2021) aspects of curricular 

interactions, two stand out in our study as ways to support instructional change: (a) our findings 

suggest that solving the mathematical tasks during the planning process can enable teachers to 

shift their ways of interacting with textbook materials by adopting a student’s perspective, and  

(b) since those teachers who designed lessons with student-centered approaches were the 

teachers who interpreted the curriculum materials for how the content emerged and changed 

across a lesson (i.e., mapping learning trajectories), we wonder if reading the curriculum 

materials for this quality supports instruction that is exploratory and student-centered. Future 

studies could learn whether having teachers learn to interpret curriculum materials as a 

mathematical story enables them to recognize and incorporate opportunities for student 

reasoning in their lesson plans.  
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This research is part of a larger project cataloging measures used in mathematics education 

research, and evidence of validity related to those instruments. This study examines the degree to 

which validity considerations for measures of mathematics teacher affect and/or behavior are 

consistent with the guidelines set forth in the Standards for Educational and Psychological 

Testing. Findings suggest validity evaluations largely rely on (a) evidence of test content and (b) 

evidence of internal structure. However, explicit claims of how such evidence supports the 

interpretation and use of test scores are typically absent from validity considerations.  

Keywords: Assessment; Teacher Beliefs; Affect, Emotion, Beliefs, and Attitudes 

Testing has significant implications for educational practices, research, and policy. Testing 

programs used in K-12 education influence both the content and pedagogy of teaching and 

learning (e.g., Kane, 2013), and inferences drawn from quantitative data are often used to inform 

decisions on education policy (e.g., Hill & Shih, 2009). Validity is a fundamental concern of 

testing. Validity is “the degree to which evidence and theory support the interpretations of test 

scores for proposed uses of tests” (AERA et al., 2014, p. 11), and validation refers to the process 

through which validity is evaluated. The term test is broadly defined such that rating scales, 

inventories, and observation protocols are all examples of instruments categorized as a test 

(AERA et al., 2014). For this study, we focus on tests of (a) affective characteristics of teachers 

(e.g., attitudes), and (b) constructs related to teacher behaviors (e.g., instructional practice). 

A vision for the future of mathematics education research includes promoting access to, and 

encouraging the use of, robust measures (i.e., tests) to engage in research that implicates 

mathematics teaching, policy, and teacher education (Bostic, 2023; Zelkowski et al., 2024). 

Currently, conceptualizing validity and validation is ambiguous in the mathematics education 

community (e.g., Bostic et al., 2021), despite guidelines for evaluating validity put forth in the 

Standards for Educational and Psychological Testing (Standards; AERA et al., 1999, 2014). The 

purpose of this study was to examine the degree to which validity considerations related to tests 

measuring mathematics teacher affect and behaviors are consistent with the Standards, and 

thereby gain an understanding of the aspects of instrument development for which we, as a field, 

need to continue to grow. Two research questions guided this study: (1) What source(s) of 

validity evidence were most commonly and least commonly used in evaluating validity related to 

measures of teacher behavior and affect? (2) To what degree have researchers reported evidence 

of validity in relation to claims underlying the intended interpretation and use of test scores?  
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Theoretical Framework 

The Standards represents consensus in conceptualizing validity among three leading U.S. 

social-science research organizations related to the field of measurement (Sireci, 2016). Validity 

is an attribute of a test-score interpretation and use, validity is not an attribute of a test (AERA et 

al., 1999, 2014; Messick, 1995; Shepard, 2016). For this study, the terms test, measure, and 

instrument are used synonymously. Validity is a unitary concept. Describing distinct types of 

validity, such as criterion validity, is an outdated practice (AERA et al., 1999, 2014; Folger et al., 

2023). However, distinct types of validity maintain merit as they are reflected in the Standards’ 

five sources of validity evidence: test content, response processes, internal structure, relations to 

other variables, and consequences of testing (AERA et al., 2014).  

Current best practices for validation include (a) clearly describing the intended test-score 

interpretation and use, (b) identifying claims underlying the test-score interpretation and use, and 

(c) gathering evidence in relation to those claims (AERA et al., 2014; Kane, 2013; Sireci & 

Benitez, 2023). Test-score interpretation reflects the meaning of test scores. Use statements may 

refer to actions or decisions arising from test-score interpretation, or use statements may denote a 

given purpose for testing (Folger et al., 2023). Consider, for example, a test designed to measure 

educators’ self-efficacy for teaching mathematics. Validation would begin with defining “self-

efficacy for teaching mathematics” and describing how to draw meaning from test scores (AERA 

et al., 2014). Next, several claims or assumptions about the test could be raised, such as 

assuming the items represent the construct (Folger et al., 2023). Evidence is then gathered to 

ideally warrant these claims (Kane, 2013). Data from subject matter experts, for example, can 

support the claim that items align to the construct (Sireci & Benitez, 2023). Subsequently, this 

evidence would be categorized as validity evidence based on test content (AERA et al., 2014). 

Not all five sources of validity evidence are needed to establish some degree of validity, nor 

does every possible claim underlying the test-score interpretation and use need to be examined to 

establish some degree of validity (AERA et al., 2014; Sireci & Benitez, 2023). It is generally 

accepted, however, that validation involves collecting evidence from multiple sources (e.g., 

Bostic, 2023; Kane, 2013; Sireci & Benitez, 2023). In particular, complex test-score 

interpretations produce more complex claims, which require greater validity evidence (Folger et 

al., 2023). Put simply, as the complexity of test-score interpretation and use increases, the need 

for more evidence from multiple sources also increases (AERA et al., 2014). The purpose of this 

study was to examine the consistency of validation practices related to measures of mathematics 

teacher behavior and affect with the guidelines set forth in the Standards.  

Method 

We are part of a larger team cataloging tests used in mathematics education. Our team built 

upon Thunder and Berry’s (2016) steps for a qualitative review (see Table 1) to systematically 

capture measures of teachers’ affect and behavior used in research published from 2000-2020.  

Data Collection and Analysis 

Approximately 2300 articles representing 24 mathematics education journals were reviewed 

to some degree (i.e., abstract, methods, full article) in an initial search for quantitative measures 

(i.e., tests) related to teacher behavior and affect. The qualitative review process yielded 255 

published unique tests. Six researchers were assigned specific tests for which they (a) searched 

Google Scholar for studies potentially using the test or reporting on the test, (b) selected studies 
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which potentially contained evidence of validity and/or reliability related to the test, and (c) 

documented validity and reliability evidence for the respective test. The search for evidence 

included reviewing peer-reviewed journal articles, conference proceedings, dissertations, and 

white papers. The goal of this stage was to capture any validity evidence for a respective test. 

Each test was assigned to two coders, and coders met periodically to discuss identified validity 

and reliability evidence and reconcile any differences.  

Our research team used descriptive statistics to evaluate the research questions for this study. 

We used frequency counts to determine the source(s) of validity evidence that are most/least 

commonly reported (i.e., RQ1). To examine the degree to which researchers present evidence of 

validity in relation to claims underlying the intended interpretation and use of test scores (i.e., 

RQ2), data were disaggregated by test to assess the presence of interpretation and/or use 

statements, claims, and the sources of validity evidence represented.  

 

Table 1: Comparison of Our Process with that of Thunder and Berry (2016) 

 
Step Thunder & Berry (2016) Our Process 

1 Determine a research question Same 

2 Determine search terms Same + verify multiple Boolean string searches 

3 Search databases Identify journals, test, and export to spreadsheet 

4 Select relevant studies a. Title & abstract review  

b. Verify interrater agreement, check for drift coding 

c. Continuous secondary coding of 20% of articles 

d. Monthly meetings to reconcile coding 

5 Assess quality of selected 

studies 

a. Review methods; if needed, review entire manuscript 

b. Verify interrater agreement, check for drift coding 

c. When identifying tests, secondary coding of 20% of articles  

d. When identifying validity evidence, all tests are double-coded 

e. Monthly meetings to reconcile coding 

6 Synthesize findings   Organize in spreadsheet based on coding 

7 Report findings   Presentations and publications 

Results 

The review process produced 239 resources containing validity or reliability evidence. For 

this study, we focus solely on synthesizing the evidence of validity. At times, multiple resources 

(e.g., two or more journal articles) presented validity evidence related to a specific test. In total, 

we identified 480 different instances of validity evidence for 158 of the 255 identified tests.  

RQ1: Most and Least Commonly Reported Sources of Validity Evidence 

Table 2 presents frequencies for each respective source of validity evidence located during 

the review process. No particular source was present for at least half (50%) of the tests. Test-

content evidence, most commonly reported, was found in relation to 96 tests. Evidence based on 

consequences of testing was rarely found, such evidence was identified for 8 tests.  
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Table 2: Summary of Validity Evidence 

 
 

Test Content 
Internal 

Structure 

Relations to 

Other Variables 

Response 

Processes 

Consequences 

of Testing 

Total Instances 189 126 119 37 9 

Instruments for which the source 

is represented (% of 255) 
96 (37.6%) 85 (33.3%) 67 (26.3%) 27 (10.6%) 8 (3.1%) 

 

RQ2: Evidence Related to Claims Underlying the Test-Score Interpretation and Use 

Of the 255 total tests we found, 23 tests (9.0%) included test-score interpretation statements, 

49 tests (19.2%) described use statements, and 38 tests (14.9%) provided explicit claims or 

assumptions. Moreover, we found 0 sources of validity evidence for 97 tests (see Table 3). Less 

than two sources of evidence were found for roughly 70% of the 255 tests, with a median of 1 

source of evidence per instrument. At least three sources of evidence were located for 

approximately 14% of the tests.  

 

Table 3: Sources of Validity Evidence Represented Per Instrument 

 
Zero Sources One Source Two Sources Three Sources Four Sources Five Sources 

97 instruments 

(38.0%) 

83 instruments 

(32.5%) 

39 instruments 

(15.3%) 

24 instruments 

(9.4%) 

10 instruments 

(3.9%) 

2 instruments 

(0.8%) 

Discussion 

Findings from this study suggest validity considerations for measures of mathematics teacher 

affect and behavior are largely not consistent with guidelines set forth in the Standards (AERA et 

al., 1999, 2014). Particularly, mathematics education research focused on teacher affect and 

behavior rarely details how test scores are intended to be interpreted and used. There is a 

preponderance of quantitative research focused on mathematics teacher affect and behavior that 

(a) omits any consideration of validity, or (b) relies on minimal evidence without explicitly 

describing the way(s) in which the evidence contributes to the validity of how test scores are 

intended to be interpreted and used. Some claims can be implicitly recognized—feedback from 

experts often supports the claim that items align to the construct (e.g., Folger et al., 2023). 

However, we found that the claims underlying test-score interpretation and use were seldom 

made explicit in scholarship. Claims help identify what validity evidence sources are important 

for validation, thereby communicating the importance of collected evidence (AERA et al., 2014).   

Researchers may consider modeling their evaluations of validity from robust validity 

considerations found in current scholarship. For example, Walkowiak and colleagues (2014) used 

the Standards (AERA et al, 1999, 2014) as a framework for a validation study of the 

Mathematics Scan, a measure of mathematics teaching practices; their study presented validity 

evidence based on (a) test content, (b) response processes, and (c) relations to other variables. 

Additionally, Bjerke and Eriksen (2016) presented a validity argument supporting the use of the 

Self-Efficacy in Tutoring Children in Primary Mathematics instrument. Examples of validity 

evidence found in that study include findings from cognitive interviews with test-takers as 

evidence of response processes, and results of Rasch analysis as evidence of internal structure.  
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Validation has been described as “equity-forward scholarship” (Bostic, 2023, p. 218). Test-

score interpretation(s), and how data are subsequently used, can implicate opportunities for 

others (e.g.,  Shepard, 2016). The intended and unintended consequences of test-score 

interpretation and use are validity concerns (AERA et al., 2014), yet evidence based on 

consequences of testing is seldom presented in relation to measures of mathematics teacher affect 

and behavior. We echo Cronbach (1988) regarding the importance of consequential 

considerations, “tests that impinge on the rights and life chances of individuals are inherently 

disputable” (p. 6). Consequences of testing warrant meaningful consideration (e.g., Shepard, 

2016; Sireci, 2016). This study shines a light on the need for validation practices to improve in 

the mathematics education community, while also providing examples and clarifying aspects of 

validity such that researchers may engage in more robust and meaningful evaluations of validity.  
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Conceptual understanding is an essential component of mathematical proficiency for all 

students, including students with disabilities. Yet, in the special education literature, conceptual 

understanding is a term often used but rarely defined. To gain insight into how conceptual 

understanding has been measured (and thus defined), we conducted a systematic review of the 

special education literature over the past thirty years. Using Skemp’s (1978) continuum of 

understanding, we found most tools and activities reflected instrumental understanding (i.e., 

disconnected bits of discrete information), employed scoring techniques that emphasized 

accuracy, or did not provide sufficient information to be coded. The findings suggest aspects of 

the special education literature base that warrant further exploration and highlight the need for 

increased opportunities for students with disabilities to develop relational understanding.  

Keywords: measurement, special education, students with disabilities 

Introduction and Background 

So that students with and without disabilities have equal opportunities in mathematics, 

professionals from mathematics education and special education fields must share disciplinary 

knowledge (Tan et al., 2019; Yeh et al., 2020). Sharing knowledge among interdisciplinary group 

members involves interrelating diverse views to gain clarity about concepts and terms 

(Akkerman et al., 2007). Because mathematical proficiency for students with disabilities has 

historically been limited to procedural fluency (Foegen & Dougherty, 2017; Lewis & Fisher, 

2016) as a measurement of understanding, we believe that gaining clarity about concepts and 

broadening perspectives about students’ demonstration of conceptual understanding (e.g., the 

comprehension of mathematical concepts, operations, and their relation to one another; 

Kilpatrick et al., 2001), has the potential to contribute to better opportunities for students with 

disabilities to develop a firm grasp of mathematical concepts. Exploring definitions of 

conceptual understanding and the various methods educational researchers have used to measure 

it is vital because how conceptual understanding has been measured and defined indicates the 

instructional tools, approaches, and orientations toward supporting the students being assessed 

(Treffinger, 2009). This study aimed to understand how mathematical conceptual understanding 

has been measured (and therefore defined) in special education literature over the past three 

decades.  

Study Design 

To understand the prevailing definition of conceptual understanding in our field, the authors 

of this study, researchers in special education, conducted a systematic literature review of 

existing literature in the top 25 special education journals published between 1990 and 2020.  
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Screening and Coding 

First, the authors formed a research team and screened articles by reading through the titles 

and abstracts of available volumes based on the method section to see if students' conceptual 

understanding was at least one stated outcome measure. A researcher external to the authors' 

research team conducted screening reliability on 20% of all issues to increase the 

comprehensiveness of the initial phase of the search. Second, the research team conducted a 

second-round screening by reading the method section of each article and determining if 

conceptual understanding was a dependent variable in the study. The inclusion criterion included 

if the article's author(s) described at least one outcome measure as assessing students’ 

understanding or reasoning. Given the range of conceptualizations around what counts as 

conceptual understanding, we relied on authors to explicitly identify understanding or reasoning 

as an intended outcome of the intervention. Third, the team recorded the name of the tool(s) 

authors used to measure understanding, the tool’s citation (if any), the reported mathematical 

activity students were asked to do to demonstrate understanding, and how researchers reported 

scoring the activity. Fourth, we developed codes for these activities based on Lesh and Doerr’s 

(2003) representations for demonstrating understanding, again relying only on the information 

provided in each article; thus, some activities had multiple codes (e.g., reflection and debriefing 

or model-eliciting). 

Categorizing Codes 

To categorize activity scoring, we coded each tool as using an (a) accuracy scoring 

framework, (b) understanding scoring framework, or (c) other scoring framework. We then used 

the collected data to create a set of subcodes based on how researchers described scoring 

mathematical activities. Scoring types included: (a) not specified, (b) scale (not specified), (c) 

computational accuracy, (d) process/procedural accuracy, (e) classifying mathematical 

behavior, (f) explanation, (g) reasoning/understanding accuracy, and (h) justification. Finally, 

once all activity and scoring codes were assigned, we analyzed the data in two ways: 1) we 

generated descriptive data about the tools the authors said they used to measure understanding 

and the scoring methods authors reported using and assigned codes to broader categories; and 2) 

given that measuring understanding typically necessitates the convergence of evidence (Wiggins 

& McTighe, 2005), we examined whether a tool included one or more mathematical activities, 

employing Skemp's (1978) spectrum of understanding (e.g., instrumental or relational), to 

determine whether the tool was conceptual in nature. If a tool included more than one activity, 

we applied the relational code; if it included one activity, we applied the instrumental code; and 

if the tool was not described with enough detail to know the number of activities, we applied the 

not specified code. Finally, we looked across the codes and applied the majority code to the 

whole tool. For example, if a tool was coded as relational-relational-instrumental, the final code 

would be relational.  

Findings 

We found that slightly more than forty percent of the tools reported using what we 

characterized as an Accuracy Scoring Framework, using at least one scoring procedure that 

either assessed an accurate answer or an accurate procedure (n = 29; 42.65%). Slightly less than 

forty percent (n = 26; 38.24%) of the articles did Not Specify scoring criteria. A small proportion 

of tools (n = 13; 19.12%) used what we characterized as one of two frameworks: an 
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Understanding Framework or Other Scoring Framework. The Understanding Framework 

reported scoring understanding based on students’ explanations, justifications, reasoning, or 

understanding accuracy. The Other Scoring Framework reported scoring using an unspecified 

scale or classified students’ mathematical behaviors. That is, across the three coding categories—

number of activities used, whether or not any of the activities were conceptual in nature, and the 

nature of the scoring framework used—tools in these studies attended to conceptual 

understanding in ways that we characterized as Instrumental. We coded fewer tools (n = 19; 

27.94%) as Relational and found that there were nearly as many tools coded as Not Specified (n 

= 18; 26.47%). Of the 68 tools used across these 52 articles, only three tools (4.41%) could not 

be neatly sorted into one of the three analytic categories, given that the tool they utilized earned 

one instrumental code, one relational code, and one not specified code. See Table 1 for the 

distribution of tools across the spectrum of understanding. 

Discussion 

Assessing conceptual understanding is notoriously difficult, especially when accuracy is 

conflated with understanding. Deep understanding is likely not easily evidenced by a one-time 

assessment but necessitates a convergence of evidence (Jin & Wong, 2021; van de Walle et al., 

2013; Wiggins & McTighe, 2005). Though researchers have developed instruments to measure 

understanding, these may be confounded by the realities of the measures’ administration 

intensity, required time commitment, and reliability (Jones et al., 2019). To address this 

challenge and the opportunity gap implicated, this systematic literature review aimed to 

understand how mathematical conceptual understanding has been measured (and thus defined) in 

the special education literature over the past three decades. We found that most tools and 

activities used in the included studies measured instrumental understanding, used scoring 

techniques that emphasized accuracy, or did not provide sufficient information to be coded. The 

kind of understanding the researchers in special education literature measured was notably 

oriented to instrumental rather than relational (and more conceptual) understanding.  

Our results suggest that conventional notions in special education research about measuring 

students with disabilities’ mathematical capabilities are limited and merit expansion. To support 

students’ mathematical proficiency through exposure to rigorous instruction, we must consider 

the tools we use to measure their understanding. We contend that the field of special education 

and students with disabilities would meaningfully benefit from a purposeful expansion of 

thought around the term conceptual understanding and, therefore, an expansion of our tools. In 

addition to advances in measurement, we encourage education researchers to expand the type of 

understanding included in mathematics intervention efforts. This expansion supports disabled 

students in meaningfully different kinds of mathematical activity and, ultimately, different kinds 

of mathematical learning. Such a definitional expansion broadens who can be counted as having 

an understanding of mathematics, including students who perhaps struggle with accuracy or 

computation but who, in fact, do understand the underlying mathematical relationships at play.  

The field of special education is positioned to take up new approaches, tools, and orientations 

in mathematics toward supporting disabled students in developing robust mathematical 

proficiency. Taking up an interdisciplinary and intersectional perspective, we look to our 

mathematics education colleagues, who have already charted some of these pathways. We 

believe that collaborating with mathematics education researchers has great potential and that 
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paving the way to a more equitable method of measuring understanding may require combining 

the distinct knowledge of each field to better support and enhance the mathematics learning of 

students with disabilities.  

 

 

 

Table 1: Distribution of Tools Across the Spectrum of Understanding  

 

Instrumental 

Understanding 

(n = 28) 

Relational 

Understanding 

(n = 19) 

Not Specified 

(n = 18) 

Bottge, Toland et al. 

(2014) 

Burns et al. (2015) 

Butler et al. (2003) 

Fuchs et al. (2004) 

Gavin et al. (2013) 

Gavin et al. (2018) 

Jitendra et al. (2016) 

Jitendra et al. (2018) 1 

Mabbott & Bisanz (2008) 

3 

Mononen et al. (2014) 

Montague et al. (1993) 

Morano et al. (2020) 

Nunes et al. (2009) 1 

Parmar & Signer (2005) 

Powell et al. (2015) 

Rodrigues et al. (2019) 2 

Schumacher et al. (2018) 1 

Sharp & Dennis (2017) 

Van Hoof et al. (2017) 

Van Luit et al. (2011) 

Wang et al. (2019) 2 

Woodward et al. (1999) 

Xin et al. (2008) 

Xin et al. (2020) 

Bottge, Ma et al. (2014) 

Casa et al. (2017) 

Foreman-Murray & Fuchs 

(2019) 2 

Ives (2007) 

Jitendra et al. (1999) 

Jordan & Hanich (2000) 

Liu & Xin (2017) 2 

Mabbott & Bisanz (2008) 

1 

Milton et al. (2019) 

Niemi (1996) 2 

Pagliaro & Kritzer (2013) 

1 

Van Herwegen et al. 

(2018) 

Wang et al. (2019) 1 

Woodward & Baxter 

(1997) 

Woodward et al. (2001) 

Woodward & Brown 

(2006) 

 

Aunio et al. (2005) 2 

Bryant et al. (2011) 

Cary et al. (2017) 2 

Clarke et al. (2019) 

Crawford et al. (2019) 

Dahlstrom-Hakki et al. 

(2019) 2 

Doabler et al. (2016) 

Doabler et al. (2019) 

Jitendra et al. (2017) 

Jitendra et al. (2018) 1 

Kritzer (2009) 

Opitz et al. (2017) 

Pagliaro & Kritzer (2013) 

1 

Proctor (2012) 

Schumacher et al. (2018) 1 

All Three Codes 

(n = 3) 

Helwig et al. (2002) 

Nunes et al. (2009) 1 

Parmar & Cawley (1994) 
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Note. Articles that contained more than one tool are identified by superscripts. Superscripts indicate how many tools, 

from that article, are in the respective category. For example, the Mabbot & Bisanz (2008) article used four total 

tools. The article appears in the instrumental column and has the superscript “3” to indicate their study used three 

tools, all of which we coded as instrumental; this article also appears in the relational column and has the 

superscript “1” because they also used one tool that we coded as relational. 
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Portraiture is an emerging methodology in mathematics education that could bring new 

insights and perspectives. This methodology involves capturing a distinctive story that reflects 

universal themes; the final product is a co-collaboration between the researcher and the subjects 

meant to inspire the reader. Listening actively for a unique story makes portraiture different from 

other qualitative research forms. For example, in ethnography, the researcher listens passively to 

a story, focusing on identifying patterns to generalize experiences across a culture, while 

portraiture concentrates on individuals or small group’s experiences to uncover unique, but 

universal stories that resonate with the readers (Lawrence-Lightfoot & Davis, 1997).  

Teachers’ curricular decisions from the mathematical care perspective have not yet been 

investigated. I define mathematical care as teachers’ holistic support for mathematics learners: 

mathematical development, emotional well-being, and sense of belonging in the mathematical 

community. Goodness is a particular feature of portraiture (Lawrence-Lightfoot & Davis, 1997). 

Exploring the goodness in portraiture is more than finding positive experiences. It is likewise a 

dialog between the researcher and the subjects “that allows for the expression of vulnerability, 

weakness, prejudice and anxiety” (p. 141). In exploring goodness as mathematical care, I am 

“searching for what is good and healthy” (p. 9) in teachers’ curricular reasoning.  

This research employs portraiture to showcase how teachers plan their curriculum by 

capturing into a narrative canvas the uniqueness and universality (Lawrence-Lightfoot & Davis, 

1997) of their thought processes during planning. The research question is: How does teachers' 

mathematical care influence them in their curricular decisions? I depict expressions of teachers' 

mathematical care, that results from their planning. Emphasizing internal, personal, and 

historical contexts provides a frame for teachers' actions, and this frame is a valuable resource for 

interpreting the subjects' "thoughts, emotions, and behaviors" (Lawrence-Lightfoot & Davis, 

1997, p. 59). Portraiture methodology allows the researcher to accurately portray teachers' 

reasoning using detailed descriptions by collecting data from interviews, field notes, visuals, 

artifacts, assessments, reflections, and memos.  

In portraiture, the researcher is more visible than in any other research because the 

relationship between researcher and participants plays a significant role in completing a portrayal 

research design in terms of “empirical, ethical and humanistic dimensions” (Lawrence-Lightfoot 

& Davis, 1997, p. 138). I am portraying teachers’ curricular reasoning framing the context, voice, 

relationships, emergent themes, and the aesthetic whole (Lawrence-Lightfoot & Davis, 1997). I 

start broadly, placing the school culture within the portrayal. I include the researcher’s context 

and then gradually zoom into the central aspect of the portrait: teachers’ thought process 

informed by mathematical care. Emergent themes in the context of curricular decisions result 

from how teachers negotiate tensions between a fixed curricula and students ‘mathematical 

needs. The final written portrait balances the voice, the context, and the emergent themes 

structured into a complete piece that reflects teachers’ multidimensionality of mathematical care. 
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The potential impact of this study on mathematics education is the focus on teachers as carers 

(Noddings, 2013, 2017) for the students as learners and individuals and the dynamic of their 

decisions to respond to students’ mathematical needs.    
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Despite the growing body of research on mathematics education, concerns persist about 

students' performance on assessments (Chand et al., 2021). Studies have shown that students 

’performance varies on mathematical modeling problems and open-ended questions compared to 

conventional tests and multiple-choice questions (Kartal et al., 2016; Danili & Reid, 2005; 

O'Neil & Brown, 1998).   Based on Scheiner's (2016) theoretical framework of multiple knowing 

and learning processes and Lesh et al.'s (1987) representation framework of mathematical 

problems, this study explores the impact of different mathematical representations on students' 

performance and reasoning the study examines the impact on students' understanding when a 

single mathematical concept is presented through various mathematical representations for a 

particular assessment item. 

Research Question: When given a variety of representations, how do 5th-grade students 

apply fraction concepts?  

Scheiner's (2016) theoretical framework of multiple knowing and learning processes in 

mathematics highlights the cognitive processes involved in concept construction. It further 

indicates conceptual understanding develops when a learner understands various ideas associated 

with the different representations of a concept. Whereas Lesh et al.'s (1987) representation 

framework of mathematical problems. Identifies five methods of representing mathematical 

problems: real scripts, manipulative models, spoken language, static pictures, and written 

symbols; these representations can be used in conjunction with each other to solve mathematical 

problems. Overall, these frameworks emphasize the crucial role of representation in developing a 

deeper understanding of mathematical concepts. To create the assessment items for the study, 

five methods of representation by Lesh et al., (1987) were integrated with the representation of 

concepts in Scheiner’s (2016) framework.   Through clinical interviews with four fifth-grade 

students, I explored how participants responded to different mathematical representations for 

parallel assessment items. The clinical interviews allowed me to learn about student thinking 

regarding fractions (Hunting, 1997) specifically if the children had difficulty conceptualizing the 

concept or its representation.  

The data analysis established the following findings: Children have difficulty connecting 

concepts between representations when presented in an algorithm or equation form but do not 

struggle when presented with static pictures or real-world problems. The study suggests that 

while children struggle to associate logarithms with manipulatives, they are more comfortable 

working with static pictures and manipulatives to solve real-world scenarios. 

The framework presented in this study is a valuable tool for educators to delve into diverse 

mathematical concepts. Additionally, it provides insights to standardized test developers, to offer 

students multiple avenues for expressing their understanding. 
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Textbook lessons present information with the aim of guiding students toward a common 

mathematical goal.  How textbooks guide students on that journey, however, can be remarkably 

different as the ways that mathematics knowledge is presented in textbooks reflect specific 

choices in how material is revealed. Thus, reading mathematical texts as narratives (Dietiker, 

2013) presents a valuable opportunity to better understand how variation in important contextual 

components among different textbook lessons on the same mathematical topic affects both the 

logic and aesthetic of mathematics lessons (Dietiker, 2015). The purpose of this project is to 

compare two Algebra I lessons from two distinct textbooks—the Interactive Mathematics 

Program (IMP) (Fendel et al., 2015) and Carnegie Learning (Finocchi et al., 2022a)—to explore 

the idea of quantities and relationships by connecting graphs and their related scenarios. 

The IMP and Carnegie Learning textbooks were selected for study due to some concrete 

differences in their approaches to curricular materials. IMP units are designed to have “a specific 

mathematical focus…most units are structured around a central problem and bring in topics as 

needed to solve that problem, rather than narrowly restricting the mathematical content” (Fendel 

et al., 1997, p. vii). The Carnegie Learning curriculum is rooted in cognitive science research 

based on the Adaptive Control of Thought-Rational (ACT-R) theory of human knowledge and 

cognitive performance, which treats “complex problem solving as the coordination, 

strengthening–and eventual proceduralizing–of a large number of relatively simple knowledge 

components” (Finocchi et al., 2022b, p. FM-39). Although problem solving and conceptual 

understanding are emphasized in both textbooks, they approach these topics in rather distinct 

ways. While the Carnegie Learning curriculum is firmly rooted in the cognitive science 

tradition—which has a long history of interconnectedness with mathematics education 

(Schoenfeld, 1987) and problem solving (Silver, 1987)—IMP’s design principles are connected 

to students’ personal validation, active involvement, and need for intrinsically-motivating 

reasons to solve problems (Alper et al., 1997). According to our research, these differences in 

orientation may have an impact on how the mathematical stories of these quantity and 

relationship lessons develop through variations in the dynamics between mathematical 

characters, plot, and sequencing (Dietiker, 2015; Dietiker, 2016). 

This investigation examines the relationship between mathematical characters, setting, and 

plot with a focus on how the orientation of textbooks may be influencing these relationships. It 

does this by using the theoretical framework proposed by Dietiker (2015) for interpreting 

mathematical curriculum as story. Initial findings highlight significant variations in the way the 

textbooks address and prioritize axis scaling on various graphs, as well as how much emphasis 

they place on students’ identification of independent and dependent variables. As we look toward 

the future of mathematics curriculum, this line of research represents an opportunity to 
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emphasize how different curricular approaches can impact a lesson’s narrative structure and 

therefore the ways that mathematics educators conceptualize story in mathematics curriculum. 
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K-12 assessment practices have been identified as needing advancement (Datnow & Hubbard, 

2015; Harris et al., 2023). Strategies for using assessment data to inform instruction is a key 

practice to advance (Wilson, 2018). Careful analysis of students’ errors on mathematical 

assessments in particular has been shown to provide insight into their conceptual understanding 

(Rakes & Ronau, 2019). In turn, information from incorrect responses is maximized to support 

teaching and learning (Lannin et al., 2006). Mathematical problem-solving skills are a needed 

area of study given the continued focus internationally (Mullis et al., 2016) and in the Common 

Core State Standards - content and practice (CCSSI, 2010). The aim of this poster is to share a 

process for analyzing incorrect responses to gain insight into targeted areas for development 

related to mathematical practices. Incorrect written responses (N=2,115) on the seventh grade 

Problem-Solving Measure CAT prototype items were analyzed collaboratively in coder pairs 

(≥90% inter-coder agreement). The PSM has substantial reliability and validity evidence (Bostic 

et al., 2015, 2017, 2024). Fifty-nine items were sampled to represent the content standards. A 

cyclical approach involving expert (n=5) and practitioner (n=16) feedback through surveying and 

interviewing informed iterative refinements to the process. Thematic analysis (Braun & Clarke, 

2006) of practitioner data revealed the usefulness of describing common errors. Expert data 

revealed a refinement needed was to re-frame error descriptions to reflect how students 

approached a problem to adopt a more asset-based lens. This resulted in a three-step process (see 

Figure). This process contributes to the call for advancements in assessment practices (Harris et 

al., 2023), namely offering a process for using results to identify targeted areas for learning.  

 

Figure 1: Three-Step Process 
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At the core of engaging students in mathematics is having them use their mathematical 

knowledge to solve personally relevant and authentic problems. We have created 

entrepreneurial-based design challenges (Authors, 2019) that engage students in rich 

mathematics. In this paper, we report on 30 students participating in one such challenge. 

Students were tasked with designing a business that helps users change unwanted behaviors or 

develop new healthy habits through tracking and visualizing their progress. We present results to 

show how the challenge provided opportunities for student autonomy in their solutions and in the 

mathematics they utilized.  

Keywords: Curriculum; Algebra & Algebraic Thinking; Affect, Emotion, Beliefs, & Attitudes  

Today’s K-12 students will be asked to tackle unprecedented environmental, economic, and 

social challenges (OECD, 2018). They will need to be able to work collaboratively and across 

disciplines to invent innovative, actionable, and empathetic solutions to messy problems that lack 

a clear solution path. “Education needs to aim to do more than prepare young people for the 

world of work; it needs to equip students with the skills they need to become active, responsible 

and engaged citizens” (OECD, 2018, p. 5). Novel curricular approaches are needed that allow 

students the autonomy to identify meaningful problems and innovative solution paths, establish 

connections between in-school learning and students’ out-of-school experiences, and engage 

students in learning and applying targeted disciplinary content knowledge.  

Researchers in STEM education have recently begun exploring strategies for leveraging 

entrepreneurship to connect students’ out-of-school knowledge, experiences, and interests to in-

school STEM learning (e.g., Authors, 2019; Moore et al., 2017). Given its popular appeal (e.g., 

the TV show SharkTank) and its emphasis on building actionable solutions to real-world 

problems, entrepreneurship has the potential to support engagement and learning in a STEM 

setting. The BLINDED project (Authors, 2019) is a novel curricular framework that situates 

mathematics learning within entrepreneurial pitch competitions. In this paper, we report on a 

group of 30 students’ solutions to the BLINDED TASK, one of 18 BLINDED challenges. 

Literature Review 

Strategies that support student engagement include: creating a supportive, collaborative, and 

cognitively demanding learning environment (Lamborn et al., 1992), making content and 

learning activities authentic (Blumenfeld, et al., 2006), and empowering students to exercise 

autonomy and authority in relation to the curricular content (Helme & Clarke, 2001; Marks, 
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2000). Deci and Ryan (1987) refer to autonomy as “supporting choice” (p. 1024) or 

“encouraging them to make their own choices” (p. 1025). Providing students opportunities for 

autonomy is important in a mathematics classroom, where students often perceive the subject as 

disconnected from their cultures, lived experiences, and future aspirations (Boaler, 2002; 

Gutstein, 2003). Authentic tasks can establish a purpose for learning (Blumenfeld, et al., 2006) 

and can help students connect the content they are learning in school to situations they find 

important, relevant, and worth pursuing (Reschley & Christenson, 2012). Authentic activities can 

also empower students to incorporate their unique out-of-school identities in mathematics 

(Attard, 2012; Bobis et al., 2011; Helme & Clarke, 2001; Marks, 2000; Yair, 2000), which 

further builds their autonomy, promotes self-monitoring and persistence (Helme & Clarke, 2001; 

Leon et al., 2015), and supports students’ “sense of control and self-worth” (Bobis et al., 2011, p. 

37). Thus, a learning opportunity that leverages authentic contexts and promotes autonomy could 

support improvements in students' confidence and growth mindset in mathematics.  

The Project Framework and Challenge 

Combining features of project-based learning (Krajcik & Blumenfeld, 2006), design-based 

learning (Kolodner, 2002), and entrepreneurial-based learning (Yuste et al., 2014), the 

BLINDED project framework (Authors, 2019) was developed to leverage authentic 

entrepreneurial practices and open-ended design challenges to motivate the learning of specific 

mathematics content. Students work collaboratively to: 1) define the problem and research the 

context (Krajcik & Blumenfeld, 2006; Rivet & Krajcik, 2004); 2) build, test, and refine prototype 

solutions (Fortus et al., 2004; Razzouk & Schute, 2012); 3) demonstrate the actionability of their 

solutions (Lackeus, 2015; Kolodner, 2002); and 4) deliver 5-minute pitches to panels of judges 

(Passaro et al., 2017; Krajcik & Blumenfeld, 2006). In the BLINDED TASK challenge, students 

are tasked with inventing a business that helps users (individuals or companies) set and achieve 

goals through tracking and visualizing their progress. Students had to build, evaluate, and 

interpret functions that map changes in performance onto changes in a visualization. BLINDED 

TASK uses design criteria to connect students’ real-world solutions to math-specific school 

learning and establish an immediate purpose for building functions. These criteria include: 

identifying relevant behaviors or habits to address, inventing visualizations to monitor progress 

towards the goal, and building functions that translate progress in the target behavior to changes 

in the visualization. These criteria were created to engage students in functional reasoning 

through the defining, testing, and refining of generalizable relationships between two co-varying 

quantities (Warren et al., 2006), namely student- defined measures of the target behavior and 

changes in the student-invented visualization.  

Methods 

A mixed-methods research convergent parallel design (Creswell & Plano Clark, 2017) was 

used to explore the students’ experiences with the BLINDED TASK implementation on student 

autonomy and functional reasoning. Quantitative and qualitative data were collected 

concurrently throughout the project, analyzed separately, and then merged together to answer the 

following research questions: (1) How does the autonomy afforded by the D&P framework 

manifest in students’ solutions?, (2) How do students demonstrate functional reasoning while 

participating in the BLINDED TASK challenge?, and (3) How does participating in the 

BLINDED TASK challenge affect students’ confidence and growth mindset in math? 
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Sample and Procedure 

The BLINDED TASK challenge was implemented across eight days in a Math 1 class with 

30 7th and 8th grade students in an urban setting. The school is 100% male, 28% low-income, and 

75% minority. Students participated in the challenge in teams of three or four. In launching the 

challenge, the teacher focused students on the United Nations Sustainable Development Goals, 

allowing students the autonomy to identify goals that they found relevant.  

Data Collection 

To allow for a complete picture of students’ experiences, we collected data from a variety of 

sources (Cohen et al., 2011), including daily written work samples and Pitch Decks (pitch 

presentation slides, animations, and handwritten prototypes). Students took a pre- and post-

survey with items measuring their growth mindset and confidence in math using a 6-point Likert-

scale. There were three growth mindset questions from Code et al. (2016), who adapted them 

from a measure on general intelligence mindset (Dweck, 2008). The survey also had one item on 

confidence, which was adapted from self-efficacy items in Usher (2007). 

Data Analysis 

Qualitatively this research draws on student artifacts, specifically their daily work samples 

and Pitch Decks. We analyzed the documents to describe the products each team designed and 

the mathematics in which they engaged. We coded student products into broad categories for the 

type of context they selected for their business. We collected exemplar quotes and pictures from 

their prototypes to highlight the functional relationships in their solutions.  

Quantitatively the survey data were analyzed using paired-sample t-tests to determine if there 

were significant differences in students’ growth mindset or confidence after engaging in the 

BLINDED TASK. 

Results 

Autonomy in Context 

During the BLINDED TASK challenge, students drew on their interests and their experiences 

with a number of social justice initiatives. Across the ten groups they selected the following 

contexts: mental health (n=4), school improvement (n=2), food waste (n=1), social media 

addiction (n=1), school violence (n=1), and health (n=1). The context for three student groups 

will be highlighted, followed by the functional reasoning for each group.  

The Against Waste team created a solution “to reduce food waste in schools and to make 

people more aware about conserving and recycling food,” after seeing the amount of daily trash 

in their school cafeteria. They used a visualization of a trash can to help schools reduce their 

food waste in the cafeteria. The Discover You team created a mental health app, because of the 

rising numbers they noticed in teen depression. The third team, PoGo, focused on school 

improvement, creating an app that, in their words, “...allows Teachers and Principals to track the 

percentage of all students in a school who are at an Economic Disadvantage (E.D.)” compared to 

overall performance. Their hope was that “schools will be able to see that the percentage of E.D. 

students at their school are struggling and make sure that students are receiving all the things 

they may need (such as breakfast/lunch, proper transportation, proper school materials).” 

Functional Reasoning 
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Students utilized a variety of strategies for building functions to allow users of their product 

to visualize data. Below we briefly describe the products designed by the three teams and the 

mathematics they utilized in their solution, including their functional relationship, input 

variables, output variables, and rule for connecting their function to a visual representation of 

their solution. The Against Waste group created a functional relationship for food waste and 

trash can visualization. They used the number of bags of trash for their input and the color and 

appearance of a trash can via an animation for their output variable. They were able to 

operationalize their input variables, based on observing data from their school cafeteria. Though 

they did not describe an explicit rule they had all the pieces, and the context was meaningful to 

them. They stated, “If you are wasting too much, the visual is heaping out foods and trash, and 

when you reach your goal, there will be a reward animation.” Discover You created a functional 

relationship for depression based on sleep, feeling of worth, and school stress. Their input 

variables were a measure of worth, happiness, and stress on a scale from 1-10 and number of 

hours of sleep. These measures come from polling their users in their app. Their output variable 

was a horizontal progress bar. The rule they created for depression was: [(School Stress)✕ -1 

+Worth+Happiness+Hours of sleep]✕ 10/3. Their equation accounted for the input variables 

they identified as important factors in depression and multiplying school stress by negative one 

shows the students knew they had to invert the scale for stress because it is a negative factor of 

depression. They created a Scratch prototype for their visual, which showed a depression score 

as the voltage in a battery. The PoGo team built a functional relationship for the academic 

achievement for students with Economic Disadvantage. based on input variables from state level 

School Report Card data. Their output variable was a wheel and thumb and the rule they created 

was based on regression analysis and the Scratch coding of a visual thumbs up and down based 

on residual values. In their words,  

Our app uses State School Report Card for middle schools in County to gather our data onto 

a graph, then it transfers that information on a graph to a wheel that is color-coded based on 

the subject and then has a thumbs-up emoji that changes color and rotates based on how 

much above, at, or below the line of regression they are at. 

This group used advanced functional reasoning to create their regression analysis and turn it into 

a convincing visual for their users. 

Confidence and Growth Mindset 

There were significant increases on students’ self reports from pre to post in growth mindset 

(pre=3.20, post4.29, t=-5.17, p<0.001), and non-significant increases in confidence (pre=4.33, 

post4.67, t=-1.62, p=0.058). This suggests after engaging in the BLINDED TASK challenge 

students had a stronger disposition towards a growth mindset.  

Conclusion 

By providing students with an open-ended task, they had the autonomy to create their 

product and create their own functions. Across the ten teams, students opted to tackle specific 

environmental, economic, and social challenges (OECD, 2018) that were both authentic and 

personally meaningful. The BLINDED framework afforded students the autonomy to identify 

personally meaningful problems and explore unique solution paths, while also bounding the 

mathematics content with which they engaged. By equipping students with this autonomy, the 
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framework created opportunities for students to see their place in the math classroom, which 

improved their confidence and willingness to persist when encountering difficult problems. By 

allowing students the autonomy to identify personally meaningful contexts, the challenge opened 

the space for them to actively engage in functional reasoning. Students drew on their experiences 

with their chosen contexts to identify, operationalize, and define relationships between authentic 

input variables and their corresponding output variables, namely visualizations that allow users 

to track progress towards a goal. Findings from this study demonstrate how providing students 

with the autonomy to create a solution to an authentic problem gave them confidence in their 

mathematical ideas and generated powerful solutions to emerging issues facing young adults.  
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This paper reports on the developments of a repository of quantitative assessments used in 

mathematics education contexts between 2000 and 2020. The repository is public and freely 

available, identifies validity evidence of associated measures, and has potential to inform future 

quantitative mathematics education scholarship., This paper discusses the types of instruments 

and reports the data analysis regarding the types of validity evidence found for the 1,034 

instruments where the validity evidence was categorized, and located across over 1,200 sources. 

Keywords: Assessment 

A vision for the future of mathematics education scholarship includes researchers having 

access to high-quality assessments, assessment developers providing robust validity evidence for 

the interpretation and uses of assessment scores, and users being able to reflect on their 

assessment options efficiently and effectively without challenges like paywalls and institutional 

access restrictions. Finding and selecting appropriate quantitative assessments to use for 

mathematics and statistics education research can be difficult. Institutional access to journal 

articles describing assessments, as well as limited descriptions of them, are two challenges to 

finding and selecting appropriate tools (Author et al., 2021). Therefore, a goal of this paper is to 

introduce scholars to a repository of quantitative assessments and their associated validity 

evidence. This repository is designed to make it easier for scholars to ascertain if there is a 

suitable assessment to measure a desired construct and to browse its associated validity evidence.  

Many manuscripts describe an assessment but do not provide details about the validity 

evidence related to the assessment's intended uses or score interpretations. That is, it is unclear 

the degree to which the assessment accurately and reliably measures what it intends (Author, 

2017). Broadly speaking, the Standards for Educational and Psychological Testing (Standards) 

characterize validity as the degree to which evidence supports an intended claim (AERA et al., 

2014). A goal to fostering quantitative mathematics education scholarship is building a robust 

knowledge base that uses assessments with strong validity evidence (Authors et al., 2022; Kane, 

2013). The authors of this paper built a publicly available database of mathematics education 

assessments and seek to address this goal. This paper will present the recently launched database 

of mathematics and statistics education assessments and their associated validity evidence and 

present some findings about the quantitative assessments found in it. In this paper, the terms 

assessment and instrument are used interchangeably, whereas measure and test have more 

narrow implications (Author, 2019).  
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Literature Review 

Prior to 2014, there was scant discussion of validity and quantitative assessment within 

mathematics education scholarship (Author, 2017). There has been a substantial increase in 

scholarship exploring the degree to which validity and validity evidence are discussed in 

mathematics and statistics education as well as scholarship focusing on how those validity 

arguments are communicated (e.g., Pellegrino et al., 2016; Walkowiak et al., 2019; Wilhelm & 

Berebitsky, 2019). Validation is a process that broadly includes (a) explicitly describing how 

assessment scores are intended to be interpreted and subsequently used, (b) identifying the 

claims, or assumptions, underlying the score interpretation and use, and (c) gathering evidence to 

evaluate those claims (AERA et al., 2014; Author et al., 2023; Kane, 2013). A use statement 

communicates how to appropriately use an assessment or its results. An interpretation statement 

informs others about how to effectively interpret an assessment’s results. Put simply, 

interpretation and use statements describe what the scores mean and how to use that information 

(Authors et al., 2023). Claims are “implied by a proposed test interpretation” (AERA et al., 2014, 

p. 12). They may reflect aspects of an assessment for a given test-score interpretation and use, 

such as claiming that a test adequately functions as a unidimensional measure of a given 

construct. Claims may also reflect assertions arising from the test-score interpretation; that a 

student has achieved some level of mastery (e.g., AERA et al., 2014, Authors et al., 2023; Kane, 

2013).  

The Standards highlight five sources of validity evidence: test content, response process, 

relations to other variables, internal structure, and consequences from testing (AERA et al., 

2014). For example, Rasch measurement or factor analysis can provide validity evidence based 

on internal structure supporting claims of an instrument’s unidimensionality. While the Standards 

do not consider reliability a source of validity evidence itself, it is an important related 

component (AERA et al. 2014). These sources have been adopted by the three largest 

educational research, educational measurement, and psychological communities, which suggests 

it is appropriate for scholars and their associated scholarship to align with these Standards. Better 

alignment with the Standards has potential to position quantitative mathematics education 

research as equity-forward scholarship that embraces and supports diversity, equity, and 

inclusivity efforts (Author, 2023). With a greater attention paid to the quality of information 

collected on quantitative assessments in mathematics and statistics education scholarship, there is 

a pressing need to provide researchers with a means to explore available measures efficiently and 

effectively for future scholarly use. 

Methods 

In the February of 2020, 41 participants attended the Validity Evidence of Measures in 

Mathematics Education (VM2Ed) conference. Participants had previously published or presented 

on quantitative assessments and were committed to fostering conversations around validity and 

assessment within mathematics and statistics education scholarship. Participants included 

mathematics education faculty, researcher scientists, psychometricians, assessment developers, 

and graduate students. The goal of the conference was to create an understanding of validity 

within mathematics education contexts and solicit recommendations from experts about 

information necessary to build a repository of quantitative mathematics education instruments. 

After building a solid foundation of how validity is conceptualized and operationalized using the 
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Standards, the committee of experts gave recommendations about a synthesis procedure to 

identify and categorize validity evidence, interpretation statements, and use statements of 

quantitative assessments. Following development of the synthesis procedure, participants were 

divided into six synthesis groups: (1) Elementary (K-6) Tests and Instruments; (2) Secondary (7-

12) Tests and Instruments; (3) Undergraduate and Graduate Mathematics Tests and Instruments; 

(4) Statistics Education (K-20) Tests and Instruments; (5) Teacher Education Tests (content 

knowledge); and (6) Teacher Education Instruments. Regarding Teacher Education Tests and 

Teacher Education Instruments, tests were defined as measures of content knowledge whereas 

instruments included all other constructs (e.g., affect and efficacy).  

After the conference, each group searched for instruments and tests that fell within their 

parameters. The search was standardized across all groups to include searching the top 24 peer-

reviewed mathematics journals (Nivens & Otten, 2017). After identifying the assessments, group 

members used all available scholarship to conduct a wider search for validity evidence, claims 

about the assessments, as well as interpretation and use statements associated with those 

assessments. Finally, the claims and evidence for each assessment were coded using the five 

sources of validity evidence and reliability (AERA et al., 2014) as an a priori framework.  

A codebook was developed, based on an analysis of data from the conversations and artifacts 

from the 2020 conference, to define and characterize different evidence types to serve as 

subcodes for each of the sources. This resulted in 89 unique evidence types (see Figure 1). Then 

each piece of evidence that was found received an "evidence source" code (i.e. five sources and 

reliability) and an "evidence type" subcode. Training was provided to participants to ensure 

reliability and promote trustworthiness in the coding process across synthesis teams. For 

example, evidence types for test content include data from experts or literature review. Examples 

of internal structure evidence types include exploratory factor analyses, item difficulty, and 

Rasch modeling. If additional types were discovered in the literature, then it was added to the 

codebook and shared with the other groups.  
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Figure 1: Validity Evidence Types 

 

When evidence was found, it was sorted into two categories: those that had an associated 

claim and those that did not have an associated claim. If there was a claim, then it was noted, and 

the same classifications of the evidence source and evidence type was linked with the claim. An 

example of a claim is, “The Cronbach’s alpha, 0.87, was found to be sufficiently high for the 

measure to be considered internally reliable” (Attridge, 2013, p. 103), and the source was 

classified as reliability and the type of evidence was coded as: Internal consistency or 

alternatives- Alpha.  

Similarly, it was noted as “yes” or “no” if an article with validity evidence contained an 

interpretation or use statement for an assessment. If there was an interpretation or use statement 

then it was noted, verbatim from the source.  

Every assessment in the repository was also tagged with key features such as the population 

being tested, construct measured by the assessment, and type of item in the assessment. Across 

all groups, each assessment was put into one of four construct bins: knowledge, affect, behavior, 

or classroom and instruction. The validity evidence coding, claims, interpretation and use 

statements, and key tagging features comprised the data used to create the repository.  

In the following section, broad information about the assessments collected by each group is 

provided. Then, a detailed analysis of the validity evidence disaggregated by evidence types and 

interpretation and use statements is provided. This analysis highlights the results regarding the 

validity evidence collected by all six groups, as well as provides an exemplar of the type of 

information users can find in the repository. Finally, details about the development and features 

of the repository are provided.  
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Results 

Categorization and Validity Evidence 

As of February 2024, 1,034 assessments were identified for inclusion in the repository. 

Synthesis groups found validity evidence for 764 of the 1,034 assessments (Table 1). Hence, 

validity evidence was located for 74% of the assessments. In total, group members reviewed 

1,206 different articles, proceedings, or book chapters between Sept. 2020-Aug. 2023 that 

contained information about a known quantitative assessment used in mathematics or statistics 

education. As an example, of the 379 instruments identified by the Secondary group, there were 

223 instruments (58.8%) for which validity evidence was found from 301 different papers. 

Table 1: Counts of Instruments in the Repository 
 

Synthesis Group 
Total Number of 

Instruments 

Instruments With 

Evidence 

Number of Papers 

with Evidence 

Elementary  109 105 159 

Secondary  379 223 301 

Statistics Ed. K-20  65 79 203 

Teacher Ed. Instruments 255 158 239 

Teacher Ed. Tests 45 44 149 

Undergraduate  155 155 155 

TOTAL 1034 764 1206 

 

In total there were 3,524 pieces of evidence in the 1,206 papers. Of the validity evidence 

found across all six groups, the most frequent source of validity evidence was test content 

(30.5%) (Table 2). Reliability evidence was present in 917 of the 3,524 pieces of evidence 

(26.0%). Results show consequences of testing had the smallest frequency of evidence in the 

articles at 1.7%.  

Table 2: Count of Each Evidence Type by Synthesis Group 
 

  

Conseq. of 

Testing 

Internal 

Structure 

Relations to 

Other 

Variables 

Reliability 
Response 

Process 

Test 

Content 

Elementary  14 82 74 115 29 77 

Secondary  23 165 162 268 53 354 

Statistics Ed. 

K-20 
11 175 137 158 32 245 

Teacher Ed. 

Instruments 
9 126 119 225 37 189 

Teacher Ed. 

Tests 
0 62 41 44 4 59 

Undergraduate  4 102 48 107 23 151 

TOTAL  61 712 581 917 178 1075 
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Of the 1,206 papers that presented validity evidence, 307 had an interpretation statement and 

only 345 had a use statement. Therefore, approximately a quarter of the articles with validity 

evidence contained statements about how to interpret assessment data (307 of 1,206; 25.5%) and 

38.6% had statements regarding how to use the assessment (345 of 1,206). Across all six groups, 

the Secondary group had the highest percentage of use statements (149 of 301, 49.5%) and the 

Undergraduate group had the highest percentage of interpretation statements (65 of 155, 41.9%). 

The lowest percentage of interpretation and use statements was found from the Teacher 

Education Instrument group (10.5% and 11.3% respectively).  

 

Table 3: Percent of Each Evidence Type by Synthesis Group 

 

  Interpretation Use 

Elementary 36 41 

Secondary 84 149 

Statistics Ed. K-20 78 57 

Teacher Ed. Instruments 25 27 

Teacher Ed. Tests 19 19 

Undergraduate Ed. 65 52 

TOTAL 307 345 

 

Repository Development 

From the synthesis group work products, a free online searchable repository was created to 

house the name, description, citations, interpretation and use statements, claims, and validity 

evidence associated with the identified assessments. To access the repository, users create a login 

and briefly acknowledge a user agreement. Once logged in, users can search for available 

assessments, peruse their associated validity evidence, and participate in training modules about 

validity. The website was designed to be user friendly and accessible with the help of a User 

Experience (UX) designer and computer programmer, and to display evidence in a way that is 

clearly aligned with the Standards (AERA et al., 2014). The repository has several important 

design features explained below: search features, researcher portal, and ease of adding new 

instruments. 

Design Feature: Search Features. The database has a search feature that allows users to 

input text and search for instruments. In addition, users can refine a search using the key features 

or tags assigned to the assessments (e.g. population, construct, item type, etc.).  See Figure 2 for 

an image of the advanced search by tagging feature. Tagging features were intentionally created 

to be consistent across all six synthesis groups, so researchers can easily sort through and search 

for instruments. The tagging features include: Synthesis Group, Population, Grade Level, 

Construct, Type of Instrument, Mode of Delivery, and Item Type. The main categories of 

assessment constructs used across all groups were: knowledge, behavior, affect, and classroom & 

instruction. Each group has more specific constructs tailored to particular assessments under 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

61 
 

each of these main categories. For example, sub-constructs of the knowledge category could 

include geometry, limits, measurement, algebra readiness, etc. The repository provides a page for 

researchers to peruse more specific subconstructs related to each group and more effectively 

search the repository for their needs. 

 

 

Figure 2: Search Engine and Tagging Features 

After a search is submitted, a list of instruments is returned in groups of 10. Additional pages 

for searches when results include more than 10 instruments. The instrument list page has the 

names of the returned instruments and contains information related to population, grade level, 

construct, and a count of the number of validity evidence items found for the instrument.  

If a user is interested in a particular instrument, then they can select it from the instrument 

results page. All the tagging features of the instrument are provided at the top of the page under 

the instrument name (Figure 3).  Then, the articles that were found to contain validity evidence 

for the instrument are provided, along with a citation, DOI, summary of the validity evidence, 

and abstract. There is a tab on the instrument results page (shown in the red box in Figure 3) for 

the main instrument information (described above) and then any source of validity evidence that 

was found for the instrument. For example, there was evidence found related to test content, 

reliability, and internal structure for the instrument in Figure 3. Clicking on any of those tabs 

would open a new page with all the associated validity evidence, evidence types, any potential 

claims, and any interpretation and use statements. This structure aligns with the coding 

framework used by the synthesis teams and allows users to several ways to find and explore the 

validity evidence found for an instrument. 
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Figure 3: Snapshot of Instrument Results Page 

Design Feature: Researcher Portal. There is also a researcher portal with training modules, 

both written and video based. These provide users with educative content pertaining to validity 

and validation, the proper use of the repository, and recently added or highlighted assessments 

the user may want to consider. Once logged into the researcher portal, users can save “favorites” 

or share results with collaborators. Users can also provide feedback on the results of an 

assessment or download the search results for a search.  

Design Feature: Ease of Adding New Instrument. Initially, assessments were added by the 

project leaders based on the synthesis groups’ work. Presently, users can submit a request 

electronically to upload an assessment to the repository. Users are asked to tag key features of 

the assessment as well as to identify and upload literature containing interpretation or statements, 

validity evidence, and claims associated with the assessment (Figure 4). Once an assessment is 

submitted, a repository curator vets the materials to ensure the inclusion criteria have been met. 

Once verified, the assessment is added to the repository. If inclusion criteria have not been met, 

then the project leader or curator communicates the additional information needed to include the 

instrument in the repository. 
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Figure 4: Adding a New Instrument 

Discussion and Conclusions 

PMENA session participants will explore the features of the repository. A goal of this five-

year project was to produce a repository that could be used by scholars seeking a quantitative 

assessment for use in mathematics or statistics education research. First, it was necessary to 

identify the quantitative assessments used since 2000 and to gather information about them. This 

required multiple individuals culling through numerous databases. The second step was to 

evaluate the information for each assessment and categorize that information within the 

Standards (AERA et al., 2014) framework. The third step was to develop a working repository, 

accessible to broad communities containing this information.  

The work across the six groups led to the creation of a repository with 1,034 instruments with 

validity evidence presented from 1,206 papers. Currently, about three-fourths of the instruments 

in the repository contain validity evidence. Most of the time that validity evidence was found, it 

was evidence of test content or reliability. There were very few reports of consequences of 

testing (1.7%) and response process (5.1%), which suggests future test scholarship should pursue 

these areas, which heeds previous calls (Author, 2023, 2021). In addition, approximately one-

quarter of the papers contained interpretation or use statements. Researchers need to be aware of 

the validity evidence for a measure before they choose to use it for their own purposes. These 

findings have substantial ramifications for researchers in mathematics and statistics education.  

Ultimately, this work makes it easier for scholars to locate assessments for a given construct 

or to evaluate the viability of assessments considering their known validity evidence and claims. 

Moreover, this repository allows scholars to gather further or more robust validity evidence for 

it. Proper validity arguments are foundational to robust quantitative research in mathematics and 

statistics education which makes this public repository of assessments and their associated 

validity evidence so beneficial to the research community. 
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Introduction 

Teacher acquisition of robust mathematical knowledge for teaching (MKT) is essential in 

pursuing a quality education. In the context of knowledge for teaching fractions, work like Steffe 

and Olive (2010) and Hackenberg et al., (2016) already support teachers’ knowledge growth. 

Nevertheless, less targeted has been the development of instruments for assessing teachers’ 

knowledge for teaching fractions (Van de Walle et al., 2022). Similar to other studies (e.g., 

Norton et.al., 2015), our study aimed to develop an instrument for assessing pre-service teachers' 

knowledge for teaching unit fractions using length models through two research questions: (1) 

What set of tasks can elicit evidence of teachers’ knowledge of teaching unit fractions using 

length models?; (2) How can teachers’ responses to the tasks be interpreted to gain insights into 

their knowledge of teaching unit fractions using length models? 

 

Methods 

We used Pellegrino et al’s (2001) Assessment Triangle Framework (which involves three 

elements: cognition, observation, and interpretation) to develop the instrument. As a cognition 

model, we used Silverman & Thompson’s (2008) 5-component framework for MKT. With this 

framework, we designed the first version of the assessment instrument and rubric, targeting two 

key developmental understandings (KDU): (a) all the 1/n parts that compose a whole must have 

equal length, and (b) To complete the whole, n parts of 1/n length are needed. Regarding 

observation and interpretation elements, we conducted two phases of data collection. In phase 1, 

we tested the designed instrument with 6 pre-service teachers, followed by a revision of both the 

instrument and the rubric. In phase 2, we tested the instrument and rubric again with 20 pre-

service teachers. This second round of data collection and analysis allowed us to test further 

validity and reliability based on intercoder agreement between the two researchers. 

 

Results and Conclusions 

In phase 1, we adjusted to the instrument and rubric. For example, we added clarifying 

sentences and asked for additional student models to ensure gathering sufficient data regarding 

this component. Additionally, we refined the two KDUs being considered in the rubric. In phase 

2, we tested for reliability. We computed Kendall’s tau between two raters finding that all five 

components’ tau was 0.676 (p<.001), representing positive associations between raters. 

Furthermore, we also calculated Cohen's kappa (weighted) value as a measure of inter-rater 

reliability. The two raters’ kappa scores were 0.558, which means that the reliability between the 

two raters is moderate and satisfactory (Landis & Koch, 1977). 

Through the process carried out, we were able to respond to the two research questions. 

Firstly, the set of open-ended tasks elicited meaningful evidence (e.g., drawings, explanations, 
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etc.) of the participants’ knowledge for teaching unit fractions using length models. Secondly, 

key features of the rubric include considering evidence of a specific component, across several 

items, allowing the raters to assess a bigger picture of the participants’ knowledge. 
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This study investigates teacher approaches to assessment in a detracked mathematics curriculum 

through semi-structured interviews. The detracked curriculum promotes inclusivity by 

accommodating students of all learning levels in mathematics. Assessments play a crucial role in 

addressing significant learning gaps. The study highlights leveled assessments as a common 

assessment practice used by the grade 9 math teachers. Further, the study unveils the various 

forms of assessments utilized by teachers and illuminates the challenges they encounter, 

encompassing time constraints, resource limitations, and the need for additional support. 

Keywords: assessment, detracked curriculum, student learning, mathematical practices 

Purposes and Framework 

The responsibility for teachers to uphold the expectations of the curriculum and demonstrate 

student achievement success can be represented by their assessment practices. The assessment 

practices of teachers often consider students’ wide range of interests, needs, and strengths, as 

well as personal interpretations of the curriculum (Horn, 2006; Venkakrishnan & Wiliam, 2003). 

The teachers’ assessment choice directly impacts various aspects of the student’s learning 

experience including (but not limited to): student inquiry, achievement, engagement, motivation, 

and autonomy (Herppich et al., 2018; Lovall-Jones et al., 2014; Quigley et al., 2020). The task of 

developing assessments can be daunting as the range of students' abilities and preferences vary 

from classroom to classroom, but one method that may aid teachers in accounting for all types of 

students is differentiation (Lovall-Jones et al., 2014; Marks et al., 2021). Generally, teachers rely 

on feedback and formative assessment to support differentiated instruction to adapt to and ensure 

students’ progress (Dayal, 2021; Herppich et al., 2018; Marks et al., 2021). The practices of 

catering to students’ individual needs, often related to differentiated instruction, are crucial in the 

transition of new curricula, especially with adapting to a detracked curriculum.  

In Canada and the US, a detracked curriculum can offer more equitable, inclusive learning 

environments for student success (Horn, 2006; Tereshchenko et al., 2019). Since September 

2021, a new detracked curriculum has been implemented in grade 9 mathematics classes in 

schools across the province of Ontario, Canada. Since the transition from the tracked to the 

detracked curriculum involves combining two previously segregated learning level courses, one 

of the greatest challenges teachers have experienced is closing the larger gaps among student 

abilities. Therefore, the modification of assessment preparation and implementation has been 
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critical in delivering curriculum content, particularly for varied self-assessments, tests, and 

grading (Bruce et al., 2010; Dayal, 2021).  

Specifically for the subject of mathematics, teachers must consider more particular aspects 

when differentiating to meet their students’ individual needs. These aspects may include adopting 

a holistic mathematics perspective, making crucial decisions about what mathematics knowledge 

should be prioritized, adapting both course-based and application-based assessments, and 

balancing professional and personal decisions (Horn, 2006; Quigley et al., 2020). In addition, 

during the preparation of assessments, teachers need to gain greater comfort with mathematics 

curricula content, collaborate with other colleagues, and contemplate the method of measuring 

the quality of student work and understanding (Horn, 2006; Ulusoy & Incikabi, 2020).  

As a result of the collaboration between OISE, University of Toronto and an urban school 

board in Canada, a multi-year project has been conducted about the experience of grade 9 

mathematics teachers with the new detracked curriculum. The project findings included teachers’ 

preparation of assessment, the newfound practices of levelled assessment, and the 

implementation of various forms of assessment. 

The purpose of the project was to investigate the following questions:   

• What are the assessment and evaluation practices of teachers in the new de-tracked 

mathematics curriculum? 

• How do teachers differentiate their assessment practices to meet the diverse needs of 

students in the detracked curriculum? 

• How do teachers prepare assessments with respect to the expectations of the new 

detracked curriculum? 

Methods 

Participants 

The participants from this study consisted of grade 9 mathematics teachers from different 

schools across the largest urban school board in Canada. The teachers are currently teaching 

destreamed or have taught destreamed in the past. In this paper, we include the perspectives from 

three participants who discuss their experiences as current grade 9 destreamed mathematics 

teachers, each given pseudonyms to maintain anonymity.  

Data Collection  

In this study, the data collection arose from semi-structured interviews during the Fall 2023 

semester. The participants’ interviews were transcribed verbatim and qualitatively coded using 

the NVivo 12 software. This paper provides a thematic review of the findings that emerged from 

teacher interviews. There were surveys administered based on The Attitudes and Practices for 

Teaching Mathematics Survey (McDougall et al., 2001), which informs teachers of their own 

perceptions towards mathematics teaching and learning, as well as their values and comfort level 

to mathematics curriculum changes.  

Interviews  

The semi-structured interviews took place individually through Microsoft Teams, where 

teachers attended remotely from their respective schools. The interviews ranged from 50 to 60 

minutes, which were audio recorded and then transcribed by the research team. 
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Results 

Leveled Assessment 

A popular assessment practice that the grade 9 math teachers interviewed in this study have 

been using to meet the varying mathematical abilities in their students is the leveled assessment. 

An example of how Hazel, a teacher in her third year of teaching, is doing leveled assessments in 

her classroom is by having a “Level 1-2 and a Level 3-4 version of the [math] question” (Hazel, 

2023). Catherine, a teacher with 15 years of teaching experience in various grades and subjects, 

also uses a lot of leveled assessments in her classroom, in which she says, “I try to do a lot of 

leveled assessments, and any task or assessments with multiple entry points” (Catherine, 2023). 

Among the benefits of using leveled assessment is that it provides students the opportunity to 

make choices in the assessment process, thereby increasing learner autonomy. As Hazel 

describes, it allows students to choose the level of assessment that “can show their best 

understanding because that’s what the test or quiz is about” (Hazel, 2023). Leveled assessments 

also allows the teacher to be more inclusive towards the varying levels in students’ mathematical 

abilities. Catherine shared her experience of leveled assessment as the following: “I think this 

made it more accessible to more of our students” (Catherine, 2023). Giving students choice in 

the level in which they wish to be assessed through leveled assessments, further increases student 

motivation. This year was the first year that Hazel started to implement leveled assessments more 

regularly. Once she started doing it at almost every evaluation, she witnessed a significant 

positive change in her students. She explains, “between the first task where I had no leveled 

assessment and the first or second quiz whenever I started implementing it about a month into 

school, I did notice kids were not leaving things blank anymore” (Hazel, 2023). 

What makes leveled assessments successful is students’ ability to self-assess what they know 

and do not know. Students’ self-assessment in determining the appropriate level of assessment 

they perceive to be suitable for them is, in fact, what makes the leveled assessment a possible 

assessment practice used in the classroom. In other words, implementing leveled assessments can 

be challenging if students lack in their self-assessment skills. Having experienced the benefits of 

implementing leveled assessments, Catherine started this year with many leveled assessments in 

her classroom. Although this method has worked well for her students in the past years, it was a 

different case this year. The main challenge, according to Catherine, is that her students “don’t 

seem to have an understanding yet of how to assess what they know and don’t know” (Catherine, 

2023). She continued by explaining, “And even when we tried a leveled assessment, they wanted 

to do all of the questions. They didn’t know which ones they could and couldn’t do. They didn’t 

actually know their own ability” (Catherine, 2023). 

Different Forms of Assessment 

Using various forms of assessments was another important assessment practice being used by 

the teachers. These included formative assessments, quizzes, non-testing quizzes, assignments, 

projects, class participation, math journals, and culminating tasks. 

In Rachel’s classroom, she uses most of the assessments. Rachel describes how she uses math 

journals in her classroom: “we essentially outline the practice work that’s been assigned for each 

lesson in that unit. And then we just asked some [students], oh have you completed any? Yes, no, 

if some, list how much?” (Rachel, 2023). She continues by describing how she asks her students 

to “then just reflect on if you had to assess your understanding for this topic from one to four, 
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and any additional comments that you want to add. And also share any struggles that you may 

have had, challenges, etc.” (Rachel, 2023). 

In another case, small and more frequent assessments that weigh less in marks such as 

formative assessments and quizzes were regularly used by Catherine and her colleagues. For 

Catherine and another math teacher at her school, many of their assessments are formative. Two 

other teachers at her school, as Catherine explains, “do a lot more short little quizzes that are not 

worth a lot but they do count towards their mark” (Catherine, 2023). 

When it comes to bigger assessments such as the grade 9 math exams, some schools are 

implementing non-traditional assessments. In Hazel’s school, aside from the EQAO, a 

culminating task is used in replacement of grade 9 math exam. According to Hazel, culminating 

task is “worthwhile and interesting and actually acts as a culmination of all their learning” 

(Hazel, 2023). Hazel shares her positive outlook: “I like culminating [tasks] better, I see value in 

them. Because you can complete a test in an hour doesn’t mean that you’re good at math. It 

means that you can mimic whatever you did in class” (Hazel, 2023). She continues by saying, 

“Everyone is good at math in their way…. if you can make connections and understand the 

meaning of math, that is what is most important” (Hazel, 2023). 

Challenges  

The interviews further revealed some of the assessment challenges experienced by these 

teachers, which involved teachers’ lack of time and resources. 

The issue of having lack of time and resources makes it especially harder for the grade 9 

math teachers who teach detracked math courses with such large gaps in students’ abilities. Hazel 

speaks about the limited amount of time she has to prepare: “When you have three preps, it is a 

lot of work, because even if I were to split my prep 75 minutes evenly it would only be 25 

minutes to do math and I definitely take more than that” (Hazel, 2023). Similarly, Rachel agreed 

how having more time will allow her to develop better assessments. 

Moreover, teachers lacked in resources and support in developing assessments that would 

effectively cover the expectations of the curriculum. For example, Hazel wishes to implement 

triangulation of assessment which are done in thinking classroom. The triangulation of 

assessment involves observations, conversations, and products. However, she believes she needs 

more support to be able to do so. She explains, “I just have not figured out exactly how to do 

that, and I think that is something I need little bit more mentorship on, a little bit more like 

collaboration because it is a lot to take on” (Hazel, 2023). Further, more resources are needed 

when it comes to developing culminating tasks in replacement of final exams. Hazel suggests: “I 

think it would be worthwhile to have some sort of group of people or something to develop 

exemplars of what you could do as accommodating that is successful” (Hazel, 2023). 

Conclusion  

The study explores grade 9 mathematics teachers’ assessment practices in Ontario’s new 

detracked curriculum. Leveled assessments emerge as a prominent practice, providing students 

autonomy in choosing their evaluation level and fostering inclusivity. Despite its benefits, 

challenges arise when students struggle with self-assessment, emphasizing the need for honing 

this skill in the curriculum. The study sheds light on the diverse forms of assessment, ranging 

from traditional tests to innovative methods like culminating tasks and math journals. These 
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varied approaches showcase teachers’ commitment to capturing the multifaceted aspects of 

students’ mathematical understanding.  

When it comes to challenges, time constraints and insufficient resources emerge as critical 

obstacles, hindering teachers in their pursuit of more engaging and comprehensive assessments. 

The study underscores the importance of collaborative efforts, mentorship, and the development 

of resources to support teachers in adapting their assessment practices to the evolving 

educational landscape. In navigating the complexities of the detracked curriculum, teachers play 

a pivotal role in shaping a more inclusive and equitable mathematics education. 
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While mathematical textbooks have been extensively analyzed and compared, few studies have 

explored the divergent learning pathways presented by textbooks and their implications. This 

study introduces an analytical framework and its visualization to elucidate these pathways, 

focusing on four key facets of instructional activities: scope, sequence, structure, and scale. We 

exemplify the use of the 4S framework and its visualization in comparing the learning pathways 

for congruent triangles in a Chinese textbook and a US textbook. Results suggest that these 

textbooks offer fairly similar learning pathways for students, particularly in terms of content 

scope. However, variations emerge in the instructional activities' sequence, structure, and scale. 

These disparities underscore the affordance of the 4S framework. We conclude by discussing the 

implications for curriculum development. 

Keywords: Curriculum, Learning Trajectories and Progressions, Geometry 

Mathematics textbooks are pivotal in connecting the intended curriculum, as defined by 

national standards, to its practical implementation in classrooms, a subject that has captivated 

researchers for decades (Valverde et al., 2002). However, despite the extensive scrutiny and 

comparison of mathematical content in textbooks, there needs to be more exploration into the 

divergent learning pathways various textbooks offer and the implications thereof. For instance, 

Fan et al. (2013) noted that approximately 63% of the literature they reviewed in mathematics 

textbook research studies primarily focused on textbook analysis and comparison, typically 

yielded descriptive findings from systematic coding using content analysis. While such analyses 

have made valuable contributions in revealing the similarities and differences between textbooks, 

they often fall short in providing insights into the unfolding learning pathways within these 

textbooks, resulting in a gap in comprehension of learning experiences facilitated by these 

textbooks. As such, this study endeavors to develop an analytical framework for examining 

learning pathways delineated in textbooks. This analytical framework composes four 

dimensions: scope, structure, sequence, and scale, which we refer to as the 4S model. According 

to this 4S model, a visualization of learning pathways is developed. In the following, we first 

introduced the 4S model. Then, we exemplified the application of the 4S model and its 

visualization by examining the learning pathways for congruent triangles as presented in a US 

textbook. Ultimately, we illustrated the affordance of the 4S model by answering the following 

research questions: what are the similarities and differences between the learning pathways for 

congruent triangles as presented in textbooks in different countries? 
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A 4S Framework: Scope, Sequence, Structure, and Scale 

An Overview of the 4S Framework  

We have adopted the term "learning pathways" from Kim and Remillard's (2020) research on 

curriculum comparison, where they define a learning pathway as "a sequence of student learning 

that outlines the development of related concepts in a structured order" (Kim & Remillard, 2020, 

p. 33). In line with this descriptive definition, learning pathways encompass three key 

dimensions: the main targeted mathematical concepts covered, which we refer to as "scope"; the 

developmental order of these mathematical concepts, which we define as "sequence"; and the 

underlying logical structure(e.g., mathematical structure, content organization structure), denoted 

as "structure." Since mathematical concepts often evolve through instructional activities, and 

various types of instructional activities demand varying levels of cognitive effort and time, we 

propose the inclusion of a fourth dimension, "scale," to broadly capture how different textbooks 

allocate learning resources to different mathematical concepts. As such, learning pathways can 

be examined from the following four dimensions: scope, sequence, structure, and scale. We name 

this framework the 4S framework. In the following, we will exemplify the use of this frame in 

comparing textbooks with the case of triangle congruency.  

Visualization and Application of the 4S Framework 

In this session, we demonstrate the application of the 4S framework to analyze learning 

pathways presented by textbooks and visualize each pathway by comparing the pathways for 

learning triangle congruency in two textbooks. We chose the topic of triangle congruency for two 

reasons. Firstly, triangle congruency is fundamental to geometry and is consistently included in 

upper-level geometry curricula worldwide (Jones & Fujita, 2013), enabling access to textbooks 

from different countries for comparison. Secondly, multiple conditions of triangle congruency, 

e.g.,  side-angle-side (SAS) and side-side-side (SSS), allow for various sequencing possibilities 

(author, 2023), leading to distinct learning pathways with diverse logical structures. This 

variability makes triangle congruency an ideal subject for comparing learning pathways in 

different textbooks. In this illustration, for convenience, we selected the Student Editions of an 

eighth-grade math textbook by People's Education Press (2013) in China (PEP Math) and 

"Discovery Geometry" (DG) by Serra (2008) in the US for analysis.  

Using the 4S framework, we examined the learning pathways designed by DG and PEP Math 

across four dimensions: scope, sequence, structure, and scale, and visualized each learning 

pathway (refer to Figure 1). Given that our goal is to demonstrate the application and advantages 

of the 4S framework, our analysis focused on the instructional activities employed, including 

expository texts, explorations, and worked-out examples in the lessons examining different 

congruency conditions.  

DG 

 

PEP 

 
Figure 1: The Learning Pathways Presented in DG and PEP Math. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

74 
 

 

We considered each lesson an analysis unit and used yellow arrows to connect different 

lessons. As depicted in Figure 1, the learning pathway presented by DG consists of two lessons, 

while there are three lessons in the case of PEP. We treated the instructional activities included in 

each lesson as sub-analysis units, distinguishing them with various shapes, colors, and sizes.  

Specifically, a large blue square represents an overarching inquiry question, such as "Are 

there congruence shortcuts?" in Figure 1. We employed green to indicate combinations of 

criteria, which we refer to as conditions in the above that work (e.g., SSS in Figure 1), red to 

signify conditions that cannot guarantee congruency (e.g., SSA in Figure 1), and yellow to 

demonstrate the application of a condition in problem-solving (e.g., SAS example 1 in Figure 1). 

We used various shapes and sizes to represent different types of instructional activities. A large 

rectangle was used for exploratory activities (e.g., using compass-and-straightedge construction 

to justify SSS can guarantee triangle congruency), while a small hexagon indicated brief 

instructional activities, such as a brief discussion or providing a counterexample for justification 

(e.g., use not all equilateral triangles are congruent to justify AAA won’t work). Additionally, a 

cloud shape, sized between a rectangle and a hexagon, represented worked-out examples in the 

textbooks. In the following sections, we illustrate each dimension and its connection to the 

visualization within the context of comparing two learning pathways for triangle congruency. 

Scope. Scope captures the mathematical content that has been covered in the textbooks, 

which is presented by the texts in Figure 1. These texts include the overarching inquiry questions 

and the main foci of the instructional activities. Figure 1 shows that both textbooks examine 

situations with less than three congruent and exactly three congruent criteria. Regarding exactly 

three congruent criteria, both DG and PEP math include exploring or discussing the following six 

situations: SSS, SAS, SSA, ASA, SAA, and AAA. Thus, the scopes of the learning pathways 

presented in the two textbooks are similar.  

Sequence. The sequence shows how a textbook organizes instructional activities to develop a 

learner’s understanding of the topic. Here, we sequenced the main instructional activities linearly 

covered in DG and PEP. As Figure 1 shows, DG and PEP math sequence the examination of 

situations similarly. Both textbooks open with an overarching inquiry question. DG asks if there 

are congruence shortcuts and PEP math inquiry, "Is it possible to identify various subsets of these 

six conditions (i.e., three pairs of congruent sides and three pairs of congruent angles) that will 

also make two triangles congruent?"  To answer this overarching question, both textbooks start 

with the situation when only one or two criteria are congruent, then transition to examining the 

conditions with three criteria. Both textbooks also sequence the six conditions of three criteria 

similarly. Both start with SSS and then move on to SAS and SSA. However, slightly differently, 

DG discusses the AAA condition before exploring ASA and SAA conditions, while PEP math 

discusses the AAA situation at the end. These sequence differences reflect and are influenced by 

the "structure," a construct we discuss next.    

Structure. We assume textbooks sequence instructional activities based on logical structures. 

The patterns reflected by the sequence suggest the underlying logical structures. DG and PEP 

math share some similarities regarding the structure of learning pathways. For example, both 

follow an inquiry mode; both open the topic with an overarching inquiry question and then 

devote a sequence of instructional activities to answer the question. One distinguishing structural 
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difference between them is that PEP math always follows the examination of a condition with 

worked-out examples, while DG seldom does. Another structural difference relates to the 

sequence difference we mentioned earlier: AAA goes before or after the exploration of ASA and 

SSA. Reading through PEP math and DG carefully, we found that this difference reflects a 

structural distinction that PEP math goes through the cases systematically with a clear underlying 

mathematical logic. It starts with three pairs of congruent sides, zero pairs of congruent angles 

(3S0A: SSS), then 2S1A: SAS and SSA, then 1S2A: ASA and AAS), and ends with 0S3A: AAA. 

However, DG separates the examination of the six conditions into groups, located in two lessons, 

with two categorical titles: "Are there congruence shortcuts?" and "Are there other congruence 

shortcuts?" without explicating the underlying logic.  

Scale. Scale is a dimension to capture the educational resources the curriculum developers 

distribute to a topic or a specific instructional task. It is reflected by the anticipated time spent on 

the instructional activity, the priority of the instructional activity in the lesson, and the cognitive 

demands for completing the instructional activities. As shown in Figure 1, PEP covers the 

content with three lessons while DG only devotes two lessons, reflecting that the overall scale of 

triangle congruency in PEP is more significant than in DG.  

The overall scale difference may be due to the differences between the instructional activities 

in PEP Math and DG. Firstly, while DG only mentions that a condition with fewer than three 

criteria won't guarantee triangle congruence, PEP requires students to use compass-and-

straightedge construction to test if a condition with one criterion (e.g., one side equivalent or one 

angle equivalent) or two criteria work. Regarding SSS and SAS, although both DG and PEP 

require students to engage in exploratory activities, PEP strengthens students' understanding of 

SSS and SAS conditions by providing worked-out examples immediately after each exploratory 

activity, resulting in a larger scale of learning resources devoted to the learning of SSS and SAS 

compared to DG. However, regarding SSA and SAA, DG allocates more learning resources to 

them than PEP does, as it expects students to engage in an exploratory activity rather than a brief 

discussion, as PEP does. One thing to mention is that although we assume the scale of 

exploratory activities in both textbooks is similar, they are different; many details differ, which is 

beyond the focus of this framework. 

Discussion and Conclusion  

In this study, we propose a framework for textbook analysis that complements the 

dominating focus on topic listings or task analyses in this research area. Using the 4S framework 

to explore four critical dimensions—scope, sequence, structure, and scale—has yielded nuanced 

insights into instructional activities concerning congruent triangles in Chinese and US 

mathematical textbooks. While the similarity in the overall content coverage implies a shared 

foundation in mathematical concepts, the analysis of sequence and structure dimensions 

highlights differences in content organization, suggesting potential divergences in students' 

learning trajectories. Notably, variations in scale were identified to impact the level of student 

engagement with the material, prompting considerations for educators to tailor teaching 

strategies to match the instructional activity scale. This disparity in learning pathways may help 

elucidate why eighth-grade students in the US struggled with the TIMSS items intended to assess 

their understanding of triangle congruency (Author, 2021). 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

76 
 

The 4S framework exhibits significant potential in navigating nuanced distinctions within 

instructional activities related to triangle congruency. We recommend that future researchers 

apply this framework to various mathematical topics in textbook analysis, further refining it. 

This framework can also analyze how a textbook evolves version by version (e.g., how DG 

presents learning pathways differently in 2003, 2008, and 2013 versions). Our analysis using the 

4S framework carries substantial implications for curriculum development, emphasizing the 

importance for educators, curriculum developers, and policymakers to address the breadth or 

depth of content and the intricacies in sequencing, structure, and scale. Such considerations are 

needed to construct a shared vision of mathematics curriculum that will equip future students 

with the mathematics understanding needed to be productive citizens in uncertain times.   
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Current research indicates introducing a detracked curriculum can bring about positive 

educational change, but there will always be challenges at the enacted level. In detracked 

mathematics courses, teachers must differentiate their students’ needs, adopt a connected 

perspective of mathematics, decide which key mathematics ideas take focus, and distinguish 

course-based and application-based evaluation. This research project examines the experiences 

of grade 9 mathematics teachers in the detracked classroom. The findings of this project display 

that teachers put great effort into acquiring class resources and time, preparing and designing 

courses, and developing new forms of assessment and evaluation. 

Keywords: Detracked curriculum, assessment, mathematics practices 

Purposes and Framework 

Although a new curriculum can bring about positive educational change, there will always a 

challenge with implementation at the enacted level: the teacher level. Detracked classrooms have 

a history of disrupting fluency and routine in the curriculum for teachers and students (Horn, 

2006; Quigley et al., 2020; Tereshchenko et al., 2019; Venkatakrishnan & Wiliam, 2003). 

Furthermore, teachers in detracked classrooms are responsible for making individual 

interpretations of the curriculum (Herppich et al., 2018; Horn, 2006; Venkakrishnan & Wiliam, 

2003). These curriculum interpretations about planning and evaluation are what directly impact 

students’ inquiry, development, and achievement (Herppich et al., 2018; McGee et al., 2013; 

Quigley et al., 2020). 

For countries like Canada and the US, the detracked curriculum encourages inclusivity for 

teaching and learning by creating more equitable environments for success (Tereshchenko et al., 

2019; Horn, 2006). As of September 2021, all schools in the province of Ontario in Canada have 

recently rolled out a new detracked grade 9 mathematics course. During this transition from the 

tracked to the detracked curriculum, there are several changes that teachers must consider, 

primarily, the broader scope of students’ mixed abilities. For teachers, meeting the student’s 

individual learning needs can be a great ordeal, as they must prepare/design a multitude of tasks 

and varied activities (Mellroth et al., 2021; Perkins, 2016).  

In addition to differentiating their students’ needs, teachers must contemplate many other 

factors particular to the subject of mathematics. These factors may involve teachers adopting a 

connected perspective of mathematics, deciding on focused key mathematics ideas, balancing 

professional and personal decisions, and distinguishing between course-based and application-
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based evaluation (Gottfried; 2014; Horn, 2006; Quigley et al., 2020). In addition, the Ten 

Dimensions of Mathematics Education (McDougall, 2004), present key components that 

contribute to successful mathematics teacher practices and approaches. Specifically, the 

components of program scope and planning and assessment are prominent areas of change for 

teaching detracked mathematics (Ferreyro-Mazieres, 2016). For this paper, we draw from the Ten 

Dimensions of Mathematics Education framework to guide our data analysis and findings. 

The Ontario Institute of Studies in Education and the largest school board in Canada have 

collaborated on a multi-year project with several grade 9 detracked teachers. From this project, 

our findings suggest that grade 9 mathematics teachers have put great effort into acquiring 

classroom resources, preparing and designing courses, and developing new forms of assessment 

and evaluation. Moreover, teachers expressed their hardships transitioning into the new 

curriculum, including lack of curriculum expectations, lack of preparation time, and the 

overwhelming amount of curriculum content.  

The purpose of the project was to investigate the following questions:   

• What do teachers perceive to be the biggest challenges in implementing the new 

mathematics-detracked curriculum? 

• How are teachers preparing their mathematics classes with respect to the expectations of 

the new curriculum? 

• How are teachers approaching assessment and evaluation with respect to the expectations 

of the new curriculum?  

Methods 

Participants 

Participants for this project were found from sixteen different schools across a large urban 

school district. All participants were required to be current teachers who were presently or 

previously teaching the Grade 9 detracked mathematics course. For this paper, we discuss the 

responses of eleven teachers relating to the themes of program planning, assessment, and teacher 

support/challenges.  

Data Collection and Analysis 

The data collected for this project came from semi-structured interviews taking place with 

teachers, once in the first semester and once in the second semester. Interviews were transcribed 

verbatim and coded for emerging themes through NVivo 12 software, guided by the Ten 

Dimensions of Mathematics Education framework. In this report, recorded themes emerged from 

the first round of interviews with participants as well as The Attitudes and Practices for Teaching 

Mathematics Survey (McDougall et al., 2001) was administered for interviews but was largely 

used to inform participants of their own perceptions of the importance and their degree of 

comfort in implementing reform mathematics teaching and learning strategies.  

Interviews  

Semi-structured interviews took place with participants in their individual schools after the 

second professional learning session. Interviews ranged in length from approximately 50 to 60 

minutes, which were audio recorded and then transcribed by the interviewer. 
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Results 

Program Scope and Planning  

Various planning strategies were mentioned among the teacher participants, ranging from 

spiralling the curriculum, concept-based planning divided into units, as well as daily on-the-go 

planning. Other considerations were also addressed such as preparing students for the grade 10 

academic mathematics course and planning for students with potential foundational mathematics 

knowledge gaps. 

Some teachers described using the spiralling approach for planning the Grade 9 mathematics 

course. One teacher found this approach very effective and described the process: “Everything 

weaves together, we go back and forth. There is a sense where all the units come together to the 

central big idea and having discussions that also go back to previous topics helps with retention” 

(Teacher 1). Other teachers used the unit-by-unit approach, which covered one concept after 

another. Teacher 2 explained their reasoning behind using this approach:  

 

So, for this year, our planning process was by unit. I think we decided that we wanted to 

try and just go by unit, because in order to spiral, [the students] have to have a certain 

amount of knowledge or consistency in the other areas before you can spiral things on 

top.  

 

A few teachers mentioned the challenge of planning day by day or week by week rather than 

having a long-range plan already in place. For example, one teacher described planning on a 

“catch-up basis” since she is “a little bit busy these days with three different courses and 

planning things week by week or month by month” (Teacher 3). 

The request to be given time to plan was made by almost every teacher in this project. The 

teachers value planning time and having the time to collaborate with other teachers to discuss 

different teaching strategies. Teacher 4 hoped to discuss topics “starting from how you review, 

how you engage students, and how you use those cooperative learning strategies”. Another 

teacher from the same school requested for planning time with “more guidance in the 

curriculum” (Teacher 5). Several teachers reported that the new curriculum was released too late 

in the previous academic year, leaving them not enough time to prepare. For example, one 

teacher from Mona Lavender noted: “It was not considerate of teachers to release the new 

curriculum almost at the end of June, leaving very little time to start preparing. Almost requiring 

teachers to spend their summer preparing if they wanted to get a head start” (Teacher 6). Another 

teacher expressed her frustration: “Considering when we got our curriculum – it was six pages, 

single sided, no exemplars, no examples. There was no structure, no timeline, there was nothing, 

and it was left to the teachers” (Teacher 7). 

Assessment 

Assessment is a topic of interest for many teachers and something that they can continuously 

improve upon. Several teachers mentioned formative feedback as a practice that they used in 

their classroom. For example, one teacher mentioned that, after the whiteboard group activities, 

the groups present their solutions to the class. She said that is when “we come back and talk 

about how they think they did, which parts were good and they receive feedback” (Teacher 1). 
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Another teacher explained that she is “constantly monitoring, giving feedback, doing formative 

assessment and figuring out how that can translate into evaluations” (Teacher 8). 

Several teachers reported using parallel assessments as part of their practice. One teacher 

from Mandevilla SS described her process: “I give two different questions. I say you either 

choose this one or this one. One is out of three, which is easier. One is out of five, which is 

harder. The students can decide on which question they want to do” (Teacher 7). A teacher from 

Ninebark SS called this process leveled assessments. She said: “I have learned this idea of 

leveled assessment from a colleague at our board” and “students can choose which leveled 

question they want to attempt for them to show their understanding” (Teacher 9). 

Project-based or performance-based evaluations were also mentioned by some teachers. 

Teacher 2 shared her practice: 

 

They have a little mini project or problem that they have to work on, and they may have 

to present that to the class or discuss their solution or provide feedback on somebody 

else's solution to show their understanding. Smaller tasks like that, plus regular 

contribution to class, and classroom conversations is how we can assess them that way as 

well. 

Challenges with Curriculum Implementation and Teacher Support  

The participants reported a lack of curriculum guidelines and specific expectations for each 

mathematics strand. For example, one teacher said: “We need more guidance in the curriculum. 

The curriculum is really loose and open, and it does not tell us what they want us to do. We are 

used to having more specific expectations” (Teacher 5). Another teacher said: “I felt like the 

Ontario Ministry strands were sometimes vague” (Teacher 1). The participant also reported 

having an excessive amount of content to cover with the new curriculum guidelines. One teacher 

honestly said: “It has been hard to fit everything in” (Teacher 10) and another teacher said: “At 

the moment, we have six sections of grade nine math. None of us will be able to complete the 

entire curriculum, given the fact that we are doing this for the first time” (Teacher 11). 

When asked if they felt supported by the board or education system, participants reported a 

lack of teacher support. One teacher responded with: “No, I feel pressured to try it out. We have 

to make this work but without necessarily a good plan of action” (Teacher 10). Another teacher 

expressed his frustration: “All the new stuff you would really want help with is marked under 

construction, and well, that is not very helpful because that is the stuff I really need help with” 

(Teacher 5). 

The participants also reported a lack of professional learning sessions. One teacher explained 

that having the resources themselves was not enough, she would have liked to see how the 

resources were implemented in a grade 9 classroom. She stated: “I feel like we were kind of 

thrown into the forest with a bunch of survival supplies and like, go, enjoy, and we were not 

really taught how to use these supplies” (Teacher 1). Professional learning sessions were 

requested by several teachers. One specifically noted that a session on coding might be helpful 

for some grade 9 teachers. She said: I have heard that coding seems to be a first exposure for 

many educators. So maybe some professional development might be needed there” (Teacher 4). 
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Conclusion 

The literature disclosed the difficulties that students and educators experience during the 

implementation of the detracked curriculum, especially with regard to the subject of 

mathematics. As well, prior research recognizes the challenges teachers face when considering 

the wide range of abilities within the detracked classroom. Our project findings reflect 

commonalities from these studies, as teachers experienced numerous frustrations and difficulties 

with curriculum design, course planning, and course evaluation.  

Among participants, there was one popular demand: additional time. Teachers expressed the 

need for more time to adjust to the curriculum, preparation time, and collaboration time. An 

additional common request was for the school board to provide extra professional learning 

sessions, as resources were not sufficient. Many teachers also employed newer approaches, 

including the spiralling approach for program planning and levelled or parallel assessment for 

course evaluations. The results of the project showed teachers experienced confusion and 

frustration when interpreting broad-based curriculum expectations, a disconnect from teacher 

implementation of the detracked course. These findings were consistent with previous literature, 

as it was notable that there was a lack of specific curriculum guidelines and teacher support.  
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Mathematics educators have written a great deal about cognitively-demanding tasks but this 
study of 141 lessons across 47 different algebra classes found cognitively-demanding tasks to be 
rare in practice. Of 2,378 coded tasks, 93% were low cognitive demand, predominantly 
procedures without connections to meaning. Only 6% were high cognitive demand, 
predominantly procedures with connections to meaning, not entailing the complex processes of 
doing mathematics. This article breaks down the cognitive demand of tasks by lesson segments 
(independent work, group work, homework) and also compares tasks in flipped lessons versus 
non-flipped lessons. We discuss the need for professional development that is aligned to these 
curricular realities and note discrepancies between these findings and other research. 

Keywords: curriculum; algebra and algebraic thinking; instructional activities  

For decades, mathematics educators have drawn attention to the importance of rich problem 

solving opportunities (e.g., Lesh & Zawojewski, 2007; Schoen & Charles, 2003) and 

cognitively-demanding tasks (e.g., Lappan et al., 2012; Stein et al., 1996; Stein et al., 2000) in 

the school mathematics experiences of students. Many textbook analyses (Glasnovic Gracin, 

2018; Hwang & Ham, 2021) and other curriculum studies (Arbaugh & Brown, 2005; Jackson et 

al., 2013) have attended to cognitive demand in various ways, yet the United States and certain 

other countries are still known to have a predominant procedural focus (Dolores Flores et al., 

2020; Hiebert et al., 2005; Lénárt, 2018; Litke, 2020). It is not clear that the cognitively-

demanding tasks common in mathematics education professional development programs, 

preservice teacher education courses, and the books and journals of the scholarly community are 

common or even easily detectable in typical mathematics classrooms. 

As part of a multi-year, non-interventionist project focused on understanding current algebra 

instruction, we observed 47 secondary algebra classes in a variety of school districts (de Araujo 

et al., 2017a). Based on three lesson observations in each class (n = 141), we compiled class 

profiles of the instructional patterns and classroom discourse (Otten et al., 2023). We also 

collected the student materials from each lesson, including any tasks that students were expected 

to work on during the class period as well as any tasks assigned as homework. Our research 

question in this brief report is the following: What levels of cognitive demand were entailed in 

the tasks assigned to students in these Algebra 1 classes? Furthermore, we were interested in 

how the cognitive demand varied across different parts of the lesson (e.g., in-class independent 

work time, in-class group work time, homework) or between groups of classes with different 

instructional models, such as classes implementing flipped instruction versus those implementing 

non-flipped instruction. Flipped instruction is defined by students being expected to watch 

videos (or read text or listen to an audio recording) as their homework rather than completing 

exercises (Bergmann & Sams, 2015; Otten et al., 2021). The broader project contained both 

types of algebra classes and it is worthwhile to examine potential differences in cognitive 
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demand because some teachers have stated that flipped instruction, by moving lecture to a video 

outside of class and freeing up class time, can allow for rich tasks or extended problem-solving 

endeavors to be incorporated into lessons (de Araujo et al., 2017b). 

Theoretical Perspective 

In our overarching project, we view students’ mathematical learning as a sociocultural 

process whereby they come to participate actively in a mathematical community (Vygotsky, 

1978). Thus, the lesson observation protocol (Otten et al., 2021) attended to the nature of the 

classroom discourse, the interactions of the students with one another and with the teacher, the 

authority dynamics at play with regard to the mathematical content, and some of the social 

patterns exhibited by the teacher. Because we view learning as occurring through and being 

defined by students’ participation in forms of mathematical discourse (Lemke, 1990), we 

identified various structural lesson segments such as whole-class discourse, independent work 

time, group work time, and non-instructional time. Note that group work here refers to time 

when the teacher explicitly expects students to collaborate with peers. 

It also matters what type of mathematical activities the students are engaging in within their 

mathematical community (Doyle, 1983). Thus, we used the well-known mathematical task 

framework (Table 1), which provides a classification based on the thinking required to complete 

the tasks—what Stein and colleagues (1996) called cognitive demand. Stein et al. (1996) 

emphasized the importance of students engaging in tasks at different levels of cognitive demand, 

though much of their work focused on the cognitive demand of tasks in “reform classrooms” 

because they noted, as we have, that there is an overabundance of low cognitive demand tasks 

implemented in U.S. mathematics classrooms. Other scholars have traced the difficulty of 

implementing cognitively-demanding tasks (e.g., Boston & Smith, 2009; Henningsen & Stein, 

1997). In the present study, we look not at all the tasks contained in particular textbooks but 

rather at the tasks selected by teachers to actually pose to students in our observed lessons. That 

being said, the analysis that follows was of those posed tasks as written, not as actually carried 

out to completion. 

Table 1: Levels of cognitive demand entailed in mathematics tasks (Stein et al., 2000) 

 

Level of Cognitive Demand Description Example 

Non-Mathematical Activity Task does not require students to engage 

with any discernible mathematical idea. 

Coloring a picture 

related to task context 

Memorization Task involves recalling definitions, 

terms, or formulae but not applying them. 

“Which term is the 

coefficient of x?” 

Procedure Without 

Connection to Meaning 

Task involves executing a known 

algorithm or producing correct answers 

based on previous instruction. 

“Find the roots of this 

quadratic equation 

using factoring.” 
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Procedure With 

Connection to Meaning 

Task involves a procedure with explicit 

connections to underlying mathematical 

ideas, multiple representations, or an 

explanation of why the procedure works. 

“Explain how you 

know that [this 

quadratic equation] 

has only one root.” 

Doing Mathematics Task involves nonalgorithmic thinking 

and self-regulated explorations or 

mathematical concepts, processes, or 

relationships. 

Determine end beha-

vior of a new poly-

nomial function and 

explain why it occurs 

For some portions of analysis, Memorization and Procedures Without Connection were combined as “low cognitive 

demand” and Procedure With Connection and Doing Mathematics were combined as “high cognitive demand.” 

Method 

The study involved 47 Algebra 1 (or equivalent) classes (Grades 8–9) in Midwestern U.S. 

school districts that ranged from rural to urban contexts and from small to large enrollments. The 

project focused on classes using flipped instruction (n = 23) and non-flipped instruction (n = 24), 

but this report focuses on all classes together and the mathematics tasks assigned to students 

during class time (independent work or group work) or as homework (tasks expected to be 

completed outside of class; distinct from those during class). 

We conducted three lesson observations throughout the school year for each of the 47 classes 

(141 lessons) and we collected the tasks, either as problems captured within the class (e.g., 

recorded from the front board) or as materials from the teacher (e.g., handouts or homework 

assignments). Tasks were enumerated based on how they were presented to students, though 

multi-part problems (e.g., a, b, and c) were coded as a single task. If the teacher completely 

solved the problem, with no expectation for students to devise their own solution (e.g., a worked 

example), then it was not included as a task for students. The classes used a variety of curriculum 

materials with the vast majority being either teacher- or school-generated resources or publisher-

developed textbook series. By design, the study focused on Algebra 1 courses and so there were 

no integrated curriculum series. Two team members observed each lesson and independently 

coded each task for level of cognitive demand (Table 1) based on the task as written, not 

implemented. After independent coding, coders met and reconciled any disagreements. If 

multiple levels of demand were discernible in a single task, it was coded at the highest level 

evident. For the analysis here, we simply report descriptive statistics as a means of summarizing 

the variability in cognitive demand. We also present findings broken into sub-categories, 

including the lesson segment in which it occurred (independent work, group work, homework) 

and the two instructional models observed (flipped instruction, non-flipped instruction). 

Findings 

Overall, our team coded 2,378 mathematical tasks (16.8 per lesson) and the overwhelming 

majority involved low cognitive demand (Figure 1), with 91% falling in the category of 

Procedures Without Connections to Meaning. These low tasks covered a vast array of algebraic 

topics (linear equations, quadratic equations, plotting graphs, writing functions from word 

problems) but were all characterized by the fact that the students had been shown a process for 

completing such problems and were not expected to justify their work or make conceptual 
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connections to other ideas. Across the 141 lessons, there was a grand total of 5 Doing 

Mathematics tasks (0.2%). Even in this brief report, we could almost print all of them in their 

entirety, but instead we will just mention that one was an open-ended project in which students 

made a budget for their hypothetical finances and then provided justifications for certain 

calculations within that budget, and another Doing Mathematics task occurred when a teacher 

asked students to try solving a new type of equation before the teacher showed the procedure. 

 

Figure 1: Total number of tasks from 141 algebra lessons, by level of cognitive demand 

 

With regard to lesson segments, 133 of the lessons (94%) had independent work time, lasting 

for an average of 45% of the total class time, though this varied from as brief as 1 minute to 

nearly the entire period. There were 13 tasks on average that students worked on during 

independent work time per lesson (if they did not finish, they could complete them after class or 

next day). These tasks were low cognitive demand 92% of the time and high cognitive demand 

7% of the time (1% non-mathematical). Group work was less common. Only 31 lessons (22%) 

contained any group work, and it involved 6 tasks on average. The types of tasks were roughly 

the same as during independent work, with 91% low cognitive demand and 8% high cognitive 

demand (1% non-mathematical). Homework tasks distinct from the tasks started in class were 

also relatively rare, occurring in 37 of the lessons (26%), with 13 tasks per homework 

assignment. We coded 96% to be low cognitive demand and 4% to be high cognitive demand. 

Therefore, the breakdown of task types was essentially the same across the different 

segments of the lessons, and the similarities continue when comparing flipped and non-flipped 

classes. Both groups had matching cognitive demand profiles for independent work (92% low, 

7% high) and for homework (95% low, 5% high), though non-flipped classes were more likely to 

have assigned homework tasks, as expected. A noticeable difference arose, however, between the 

flipped classes and the non-flipped classes in the area of group work. They had similar rates and 

durations of group work but the non-flipped classes had more cognitively-demanding tasks. 

Within flipped classes, the group work entailed low cognitive demand 96% of the time and high 

cognitive demand only 3% of the time, whereas non-flipped classes had low cognitive demand 

70% of the time and had high cognitive demand 27% of the time (3% non-mathematical). 

Discussion 

Across a wide variety of school districts and a diverse group of teachers, the Algebra 1 

lessons we observed involved an overwhelming proportion of low cognitive demand tasks 
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(93%). High cognitive demand tasks were extremely rare and Doing Mathematics tasks, in 

particular, were almost non-existent. This result should give pause to mathematics education 

innovation efforts that rely on an assumption of readily-available, cognitively-demanding tasks, 

at least in algebra. Because algebra is perhaps more procedural than other topics areas, these 

findings do not necessarily extend across secondary mathematics, nor do they extend to states 

with significant levels of reform-oriented curricula, but these findings are similar to what we 

have observed in other studies. Thus, it may be worthwhile to design professional development 

based on an assumption of teachers’ comfort with low demand tasks (Otten et al., 2022). 

It was surprising to us that, overall, group work was relatively rare (occurring in only 22% of 

lessons) and the tasks pursued in groups were not of higher cognitive demand than the other 

tasks. This finding was affected, however, by our over-sampling of flipped instruction. Looking 

only at the non-flipped classes, group work did post slightly higher rates of cognitively-

demanding tasks (though almost never Doing Mathematics). This did not translate to higher 

student learning scores, though, on the procedural or conceptual measures in our broader study 

(Otten et al., 2023). As noted in critiques of the cognitive demand framework (Otten et al., 2017), 

it is wise to be cautious of direct links between cognitive demand and student achievement 

measures, though it remains important for more diverse forms of student outcomes. 

With regard to flipped classes, we did not confirm teachers’ stated intentions for flipping (de 

Araujo et al., 2017). Rather than using the extra time in class for group work or rich tasks, the 

flipped classes focused on independent work and low demand tasks. Our other analyses have 

showed that this focus on independent work is associated with learning gains (Otten et al., 2023). 

Acknowledgments 

This study was funded by the National Science Foundation (#1721025). Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views of NSF. We thank Ruby Ellis, Courtney Vahle, Jaepil 

Han, Wenmin Zhao, and Jessica Kamuru for their help with data collection. 

References 
Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? Journal of Mathematics 

Teacher Education, 8, 499–536. doi:10.1007/s10857-006-6585-3 

Bergmann, J., & Sams, A. (2015). Flipped learning for mathematics instruction. International Society for 

Technology in Education. 

Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: Increasing the cognitive 

demands of instructional tasks used in teachers' classrooms. Journal for Research in Mathematics Education, 

40, 119–156. 

de Araujo, Z., Otten, S., & Birişçi, S. (2017a). Conceptualizing “homework” in flipped mathematics classrooms. 

Journal of Educational Technology and Society, 20, 248–260. 

de Araujo, Z., Otten, S., & Birişçi, S. (2017b). Mathematics teachers’ motivations for, experiences with, and 

conceptions of flipping instruction. Teaching and Teacher Education, 62, 60–70.  

Dolores Flores, C., Rivera López, M. I., & Moore‐Russo, D. (2020). Conceptualizations of slope in Mexican 

intended curriculum. School Science and Mathematics, 120(2), 104–115. 

Doyle, W. (1983). Academic work. Review of Educational Research, 53, 159–199. 

doi:10.3102/00346543053002159 

Glasnovic Gracin, D. (2018). Requirements in mathematics textbooks: a five-dimensional analysis of textbook 

exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 

1003–1024. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

88 
 

Hiebert, J., Stigler, J. W., Jacobs, J. K., Givvin, K. B., Garnier, H., Smith, M., ... & Gallimore, R. (2005). 

Mathematics teaching in the United States today (and tomorrow): Results from the TIMSS 1999 video study. 

Educational Evaluation and Policy Analysis, 27(2), 111–132. https://doi.org/10.3102/01623737027002111 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that 

support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics 

Education, 28, 524–549. 

Hwang, J., & Ham, Y. (2021). Relationship between mathematical literacy and opportunity to learn with different 

types of mathematical tasks. Journal on Mathematics Education, 12(2), 199–222. 

Jackson, K., Garrison, A., Wilson, J., Gibbons, L., & Shahan, E. (2013). Exploring relationships between setting up 

complex tasks and opportunities to learn in concluding whole-class discussions in middle-grades mathematics 

instruction. Journal for Research in Mathematics Education, 44, 646–682. 

Lappan, G., Smith, M. S., & Jones, E. (Eds.). (2012). Rich and engaging mathematical tasks: Grades 5-9. Reston, 

VA: National Council of Teachers of Mathematics. 

Lénárt, I. (2018). The pedagogy of mathematics in South Africa: Is there a unifying logic? Real African Publishers.  

Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester (Ed.), Second handbook of 

research on mathematics teaching and learning (pp. 763–804). Information Age. 

Litke, E. G. (2020). Instructional practice in algebra: Building from existing practices to inform an incremental 

improvement approach. Teaching and Teacher Education, 91. https://doi.org/10.1016/j.tate.2020.103030  

Otten, S., de Araujo, Z., Candela, A. G., Vahle, C., Stewart, M. E. N., Wonsavage, F. P., & Baah, F. (2022). 

Incremental change as an alternative to ambitious professional development. In A. Lischka & J. Strayer (Eds.)., 

Proceedings of the 44th annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education (pp. 1445–1450). Nashville, TN: PME-NA. 

Otten, S., de Araujo, Z., Sherman, M., & Birişçi, S. (2021). A framework for capturing structural variation in flipped 

mathematics instruction. International Journal of Mathematical Education in Science and Technology, 54(5), 

639–670. https://doi.org/10.1080/0020739X.2021.1958945 

Otten, S., de Araujo, Z., Wang, Z., & Ellis, R. L. (2023). When whole-class discourse predicts poor learning 

outcomes: An examination of 47 secondary algebra classes. In T. Lamberg (Ed.), Proceedings of the 45th 

annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics 

Education (pp. 1007–1011). Reno, NV: PME-NA. 

Otten, S., Webel, C., & de Araujo, Z. (2017). Inspecting the foundations of claims about cognitive demand and 

student learning: A citation analysis of Stein and Lane (1996). Journal of Mathematical Behavior, 45, 111–120. 

Schoen, H. L., & Charles, R. I. (2003). Teaching mathematics through problem solving: Grades 6–12. National 

Council of Teachers of Mathematics. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and 

reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research 

Journal, 33, 455–488. http://www.jstor.org/stable/1163292 

Stein, M. K., Henningsen, M., Smith, M. S., & Silver, E. A. (2000). Implementing Standards-based mathematics 

instruction: A casebook for professional development. Teachers College Press. 

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An 

analysis of the relationship between teaching and learning in a reform mathematics project. Educational 

Research and Evaluation, 2, 50–80.  

Vygotsky, L. (1978). Mind in society: Development of higher psychological processes. Harvard University Press. 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

89 
 

COMPARISON OF A GRADE 8 TOPIC FROM ONE U.S.-BASED AND ONE INDIA-

BASED MATHEMATICS TEXTBOOKS  

Jaai Uday Phatak 

Boston College 

phatakj@bc.edu 

Lillie R. Albert 

Boston College 

lillie.albert@bc.edu 

Leslie Dietiker 

Boston University 

dietiker@bu.edu 

Keywords: Curriculum, Middle School Education 

 

In this poster, we present a comparison of a mathematical topic from two mathematics 

textbooks for Grade 8 to learn how the topic is addressed in each country. The two textbooks 

were (1) Connected Mathematics Project (CMP) (Lappan et al., 2014), a research-based textbook 

used in the United States, and (2) National Council of Educational Research and Training 

(NCERT, 2022), a textbook used in India by the schools affiliated with the Indian National 

Educational Board. The mathematical topic was “Inverse Variation”, which was also referred to 

as “Inverse Proportions” in the NCERT textbook. Through this comparative analysis across two 

diverse international contexts, we highlight differences between these textbooks and identify 

their contributions toward rich mathematical learning experiences.  
The criteria used for comparison were: (1) flow, structure, and placement of the topic; (2) 

cognitive demand of the task(s); and (3) presence of realistic and relevant use of context. For the 

first criterion, we examined the mathematical story (Dietiker, 2015) of these topics in both 

textbooks. The second criterion focused on the cognitive demand (high or low) level (Smith & 

Stein, 1998) of the tasks and problems in each textbook. Additionally, providing relevant and 

realistic contexts while teaching mathematics is important so that students relate to these 

contexts and mathematically analyze them (Boaler, 2015). For this third criterion, we examined 

how each textbook provided relevant and realistic contexts for students.  
To analyze, the first author read in detail the topic of Inverse Variation (or Inverse 

Proportions, as in the NCERT textbook), applying each criterion to examine every statement, 

question, problem, and worked example in both textbooks. For this examination, a qualitative 

analysis was conducted to analyze these components, taking into account each criterion.  

Based on all three criteria, the CMP textbook had more positive elements than the NCERT 

textbook. The mathematical story of CMP enables students to reason through important 

mathematical concepts and relationships, thus helping them understand inverse variation using 

multiple dimensions, which was lacking in NCERT. Also, CMP had both low and high cognitive 

demand problems with more high-level, that is, “procedures with connections” (Smith & Stein, 

1998) types of problems. However, the NCERT textbook's problems had lower cognitive demand 

due to the excessive use of scaffolding and demonstration examples. Lastly, both textbooks 

included a substantial number of problems in relevant contexts. 

While both textbooks serve distinct student populations, we believe that students can greatly 

benefit from rich mathematical learning experiences when the CMP textbook is used (with the 

incorporation of a few improvements). To provide similar learning experiences, the NCERT 

textbook must fill in the gaps and make modifications based on the first two criteria. Thus, this 

curriculum comparison project highlights the offerings of a research-based textbook from the 
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U.S. and an Indian textbook prescribed by the Indian Educational Board, to their respective 

students and teachers, as well as the textbooks’ offering to each other, which may eventually 

contribute to the changing future of mathematical learning in diverse social contexts. 
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Elementary teachers are held accountable to multiple professional obligations when adopting 

curricular resources. We investigated how three elementary teachers prioritized and negotiated 

individual, interpersonal, institutional, and disciplinary obligations when making mathematics 

curricular decisions. We found teachers were drawn towards individual and interpersonal 

obligations more often, suggesting they prioritized their students. Meanwhile, their curricular 

decisions were influenced by school, district, and state policies, suggesting several nuances of 

institutional obligations. Teachers only occasionally responded to disciplinary obligations. 

Institutional and individual obligations often conflicted with each other while individual and 

disciplinary obligations complemented each other. We illuminate the multiple constraints that 

teachers navigate along with current educational uncertainties. 

Keywords: Curriculum, Elementary School Education, Teachers’ Professional Obligations 

The current teaching context is remarkably uncertain due to flourishing online resources, 

Artificial Intelligence, and changing student needs specifically since the pandemic. In addition, 

over the past decade, there has been a significant increase in teachers’ access to curricular 

materials, including virtual resources (Hodge et al., 2019). As a result, many teachers supplement 

their mandated materials with additional resources (Francom et al., 2021; Kaufman et al., 2018; 

Polly, 2017) “to fill needs perceived in their contexts, their students, or themselves” (Silver, 

2022, p. 459). Our prior studies showed that elementary teachers utilized up to 14 distinct 

mathematics curricular materials when preparing to teach (Authors, 2022). In creating, selecting, 

and implementing those resources, teachers consider multiple factors such as state, school, and 

district curriculum policies (Authors, 2023a; Remillard & Heck, 2014) and instructional contexts 

such as students’ access to curricular resources and students’ learning needs (Mutten et al., 2011; 

Keiser & Lambdin, 1996; Ormond, 2017).  

Herbst and Chazan (2011) sorted these multiple factors into categories of professional 

obligations, labeling four different kinds of obligations: individual, institutional, interpersonal, 

and disciplinary. Mutton and colleagues (2011) found that novice elementary teachers, facing 

limited time, often use existing materials instead of creating new ones that might better meet 

students’ needs. This illustrates the tension novice teachers experience between institutional 

obligations (limited time for preparation) and individual obligations (addressing students’ needs) 

when making curricular resources.  
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Other researchers have investigated the complexity of teachers’ curricular decision-making. 

For example, when analyzing curricular materials, teachers evaluate various aspects related to 

students, discipline, institutions, and context, including whether the materials align with 

standards, provide cohesive mathematics instruction, facilitate student interpretation and 

performance, promote mathematical understanding, and adapt to classroom context and content 

(Dingman et al., 2021). These aspects highlight the complexity of teachers’ mathematics 

curriculum decision-making, encompassing factors related to content (discipline), students 

(learners), institutions, and contexts (e.g., standards). However, less well studied is how 

elementary teachers prioritize and negotiate these factors when adopting mathematics curricular 

resources. We used the lens of teachers’ professional obligations to understand this 

underdeveloped area of research, as described below. 

 

Theoretical Framework 

To understand the factors influencing elementary teachers’ mathematics curricular decisions, 

we employed Herbst and Chazan’s (2011) Teachers’ Professional Obligations framework. Herbst 

and Chazan proposed that teachers’ curricular decisions are influenced by four types of 

obligations: Individual, Disciplinary, Institutional, and Interpersonal. Individual obligations focus 

on attending to each student’s well-being; identities; and behavioral, cognitive, emotional, or 

social needs. Disciplinary obligations pull teachers toward consideration of accurate and reliable 

representations of mathematical knowledge, mathematical practices, and mathematical 

applications. Institutional obligations involve fulfilling duties to institutions, such as adhering to 

calendars, examinations, and curricula. Chazan and colleagues (2016) also highlighted that 

teachers are drawn toward multiple obligations associated with institutions. They urged 

mathematics education researchers to focus on societies and institutional contexts to 

acknowledge complex and uncertain situations teachers need to work on that are shaped by 

society and institutional rules. Finally, interpersonal obligations acknowledge the teacher-

classroom relationship, especially focusing on how teachers’ decisions need to work in settings 

with limited resources that need to be shared across many students with different needs.  

Herbst and Chazan primarily discuss these obligations in the context of secondary 

mathematics teaching, while elementary teachers arguably negotiate these obligations in different 

ways. Elementary teachers make curricular decisions for a variety of subject areas (i.e., not just 

mathematics but also science, social studies, reading, and writing) to fulfill the needs of one 

group of students. Considering these differences, we interpreted teachers’ interpersonal, 

disciplinary, and institutional obligations specifically for the context of elementary instruction. 

We acknowledged differentiation of content as the core of interpersonal obligation, which led to 

the identification of two dimensions of differentiation, teachers may select different materials or 

assign different tasks from the same material for students with different needs at the shared time 

in the shared space. For the disciplinary obligation, we labeled what teachers think is disciplinary 

rather than researchers or mathematics specialists and experts. For instance, teachers may 

prioritize teaching math facts as disciplinary, considering the importance of foundational math 

skills regardless of broader mathematical practices. In addition, when attempting to do other 

types of obligations, some mathematical practices might not be seen in the classroom even 

though teachers prioritize those practices (Herbst & Chazan, 2020). Lastly, we incorporated the 
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role of standards (e.g., state and common core standards) as institutional obligations as teachers 

explained selecting curricular resources to meet those standards.  

Aligning with the purpose of this framework that “combined with the personal assets 

(including knowledge, skills, and beliefs) that an individual teacher brings with them to that 

position and that role, those norms and obligations can help explain teacher action and decision-

making” (Herbst & Chazan, 2011; p. 417), we identified how elementary teachers respond to 

these four types of obligations when creating, selecting, and implementing mathematics 

curriculum to optimize their students' mathematics learning in the current uncertain context. 

 

Objectives and Research Questions 

We investigated how different obligations influenced elementary teachers’ mathematics 

curricular decisions. The following research questions guided our study: (a) Which types of 

obligations do elementary teachers consider when making mathematics curricular decisions? and 

(b) How do elementary teachers negotiate decision-making among their multiple obligations? 

 

Methods 

Context, Participants, and Data 

This study was part of a larger national project on decisions made by elementary teachers 

regarding their mathematics curriculum. The larger project included a sequence of interviews 

with individual teachers. For this study, we selected three teachers from the same Midwestern 

school —Audrey, Jamie, and Kasie (pseudonyms)—due to their diverse teaching experiences 

across different grade levels. Audrey had six years of elementary teaching experience, with the 

last four years spent teaching fourth grade. Kasie and Jamie were third- and fourth-grade 

teachers, respectively, each with thirteen years of teaching experience. We collected data through 

a three-phase interview— two individual interviews and a focus-group interview. In the first 

interview, we asked the teachers what curricular resources they used for mathematics teaching 

and how much control they felt in adopting those resources. In the second interview, they shared 

how they created cohesion from a variety of resources they selected. In the third focus-group 

interview, the teachers shared experiences with curricular coherence and collaboration with each 

other. The data for this study consists of the transcription of the three teachers’ first and second 

interviews. We purposefully omitted the data from the third interview as the teachers focused on 

sharing their collaborations more and less about their obligations. 

Data Analysis 

Initially, we coded our data using a deductive coding method (Saldaña, 2016). Using four 

pre-defined categories of obligations (individual, interpersonal, disciplinary, and institutional), 

each author coded a set of data independently. We then conducted weekly meetings to resolve 

our discrepancies. In those meetings, we had extensive discussions about coding units, types of 

obligations, and relationships among various types of obligations. Below, we share a transcript 

from a part of our meeting in which three coders collectively engaged in resolving discrepancies. 
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Table 1: An Excerpt of Research Team’s Conversation to Resolve Coding Discrepancies 

 
Coder Excerpt 
1 Why did you put it under institutional? 
2 I don’t know if it’s an obligation to the [school district] or if it's like they have them because they've 

been provided by the institution, and they like them, so they use them. 
3 Yeah, right. And also I think the other thing is like she [the teacher] is saying pretty good. So you are 

not sure what she is referring to either, right? 
2 Okay, and I put it there because it said [school district]. 
1 Yeah, that was also my question about this one. I think I wanted to capture if they didn’t have if the 

[school district] didn’t give them these resources. It's not clear to me that they would use them. 
2 Yeah 
1 But you think of it in a way that we just talked about another quote: if the [school district] doesn’t 

provide them then the teacher would complain that because the [school district] does not provide that 

and they have to buy it, which is expensive, so they have to create their own then that make it 

institutional. What you said just now is in the previous sentence. We do find materials for all the 

subjects, and I feel like [she was saying] “We have the freedom overall to find what works best with our 

kids.” 
2 They're pretty good, meaning, they must align with the most things they must align with standards. But 

the main priority is their kids. 
1 Oh, okay. So, that made it individual. 
2 Cool. We agreed on the individual? Just making sure.  

 

In this excerpt, the three authors discussed a coding unit in which two authors had different 

codes. One author initially coded as an institutional because the teacher discussed the school 

district-mandated curriculum. However, after an in-depth analysis of the overall meaning of the 

teacher’s description, we concluded that the teacher indicated individual obligation rather than 

institutional. Our next process involved counting the number of codes for each obligation and 

identifying patterns. We looked for patterns of how teachers negotiated multiple obligations, 

including when two or more obligations complemented and/or conflicted with each other. 

 

Findings 

We organize this section by our research questions. In the first subsection, we describe the 

obligations teachers considered when making mathematics curricular decisions. In the second 

subsection, we share examples to illustrate how teachers navigated multiple obligations.  

Obligations Influencing Teachers’ Decision-Making 

All three teachers mentioned each of the four obligations: individual, interpersonal, 

institutional, and disciplinary (Table 2). For Audrey and Kasie, obligations to individuals were 

the largest category with institutional obligations as the next largest category. Jamie equally 

prioritized individual and institutional obligations, each at just over one-third of the total 

responses. For all the teachers, disciplinary obligations were a minor factor, at close to 15% of 

total responses. Finally, interpersonal obligations were consistently the least important. 
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Table 2: Frequency and Percent of Obligations Across Three Teachers 

 

  Individual Institutional Disciplinary Interpersonal Total 

Audrey 69 46 23 17 155 

  44.50% 29.70% 14.80% 11.00%   

Jamie 34 35 14 13 96 

  35.40% 36.50% 14.60% 13.50%   

Kasie 72 56 26 20 174 

  41.40% 32.20% 14.90% 11.50%   

Total 175 137 63 50 425 

  41.20% 32.20% 14.80% 11.80%   

 

Individual obligations. Teachers shared many different concerns relative to curriculum and 

their individual students. They mentioned multiple aspects of students’ experiences including 

enjoyment of activity, engagement, reading levels, understanding, background, and anxiety. 

When talking about enVision Mathematics (the mandated curriculum), Audrey responded: 

I don't think that it's grade-level appropriate, the words are very big. The book, itself, 

we have two different workbooks, which are probably three to four inches big. So, it's 

not useful for little kiddos' hands to be pulling pages out. Our fourth graders can't rip 

the pages out very easily. So, it's just, trying to use the actual resources that are 

provided for us. Those are, it's just very difficult. And, as a teacher, when I think, I 

have to teach enVision today, I have, like, that doom feeling overcome with myself, 

because it’s not fun. It’s not fun for the kids, they don’t get excited... It’s, yeah, it’s 

supposed to, kind of, be integrated, you see the same characters all the way through, 

from kindergarten to fourth grade, the characters will be on each page and they grow 

with you. And that’s about as inviting that book gets, is that there are characters. 

The teacher identified multiple aspects of her obligations to students. She reflected upon the 

level of vocabulary, students’ abilities to physically use curriculum resources, student fun and 

excitement, and storytelling features that persist throughout the curriculum.  

Jamie shared she “lik[ed] BrainPOP because they’re quick, concise videos that the kids can 

watch and understand, see visuals of some concepts, and they just don’t take a whole lot of time, 

but they’re fun, and the kids enjoy them.” Here, Jamie unpacked her reasoning for liking 

BrainPoP as those resources were comprehensible and engaging to students. Given that these 

were grade-level teachers, it is not surprising that they attended to students consistently. 

Institutional obligations. Audrey, Jamie, and Kasie shared that their curricular decisions 

were guided by rules and policies set by their school, school district, and state. These obligations 

appeared in the form of standardized test preparation, content standards, mandated textbooks, 

and time constraints for mathematics instructions. Interestingly, when responding to multiple 

institutional obligations, teachers’ decision-making was further complexified. For example, 

Jamie described why she used multiple curriculum resources in her teaching: 

[As a Midwestern State], we are special, and we have our own standards, so sometimes we’ll 

have a standard that doesn’t have a lot of materials available. Sometimes even in the 
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enVision textbook, it doesn’t have [a state] standard, and so that forces me, basically, to seek 

out other materials, or to create my own.  

Jamie had a district-provided curricular resource (enVision Mathematics) that she felt obligated 

to use, yet she also felt the need to move beyond this resource because her state had standards 

that the provided textbook did not address. 

Kasie also shared multiple aspects of institutional obligations, commenting: 

With their updates that they made with the new enVision that our [school district] adopted 

when we adopted new textbooks, I was like, okay, we're gonna actually give it a real shot 

with this. …overall, we’ve been pretty happy with the pacing guide following the enVision 

book, and, kind of, the order that it has gone.  

Here, Kasie explained how the district-mandated curriculum aligned with the district-mandated 

pacing guide, allowing her to use the curriculum to meet institutional expectations. In part, 

teachers’ curricular decisions were partly influenced by the extent to which the provided 

curricular resources adequately addressed institutional obligations across different levels. It is 

interesting to note that Kasie and Jamie taught in the same grade level and within the same 

instructional context, yet they interpreted mandated curriculum in different ways. 

Disciplinary obligations. The teachers only minimally attended to disciplinary obligations, 

including which resource would better present mathematics concepts and procedures. Jamie 

emphasized the importance of using specific vocabulary, commenting: 

I just try to make sure to use those correct vocabulary, like the acute angles, right angles, and 

we talk about how to line up with the vertex, and things like that, because across all of the 

curriculum, you usually see that same vocabulary being used, so once the kids are familiar 

with that, it’s usually pretty easy to make the connections. 

Jamie’s curricular decision-making was guided by students’ familiarity with certain 

terminologies as they would appear throughout the curriculum, thus students would make 

connections with mathematics taught across different topics and curricular resources. This 

suggests using consistent vocabulary as one way to better teach mathematics as a discipline.  

Kasie also shared similar disciplinary obligations when implementing given resources: 

With the perimeter, we’ve had, most of it has used enough models that the kids are catching  

on to the concept. We haven’t moved more to the abstract yet, but we’re getting to that closer  

now. So, so far, it hasn’t been as challenging, but now that we’re moving more to the 

abstract, or where hey have to make their own models, it’s gonna become more challenging.  

This quote unpacks Kasie’s interpretation that teaching concrete ideas and then transiting to 

abstract concepts is a good approach in mathematics instruction.  

Interpersonal obligations. The teachers responded to interpersonal obligations minimally in 

the form of differentiation needed for specific groups of students. Audrey shared how a specific 

curricular resource helped her to meet the needs of students who were at different levels:  

We are trying to meet students at all of these different levels. Where, in kindergarten and  

first grade, you’re usually at a kindergarten or a first-grade level. Very rarely do you have a  

first-grader that can do fourth-grade math. So, I think that’s why, two through four, we really  

do very similar resources. That’s how I found out about Super Teacher Worksheets, was our  

third-grade team expressing to me how much they enjoyed it.  
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Kasie shared she used “a little bit of IXL for [her] earlier finishers, but most of [her] students did 

not finish early and didn’t get on to IXL. So, most of them just used enVision Math.” 

Other obligations. Audrey, Jamie, and Kasie also cited contextual and personal factors in 

their curricular decisions. For instance, they mentioned changes brought about by the COVID-19 

pandemic and personal life events like having a baby, indicating that curricular decisions are 

influenced by factors beyond the four types of obligations we discussed. 

Negotiating Multiple Obligations 

All three teachers shared they negotiated multiple obligations, sometimes finding them 

complementary and other times conflicting, with individual obligations consistently either 

complementing or conflicting with other types of obligations. They supplemented institutionally 

mandated resources with other materials to engage students who struggled with the mandated 

resources. This reason for supplementation suggests a conflict between institutional and 

individual obligations. Audrey responded to this conflict in the following quote: 

The most challenging [thing] is trying to incorporate the enVision series… I did not like their 

graphing unit. It didn’t focus on exactly what our standards wanted. It was a lot of higher-

order thinking, things like that, which can be wonderful, but I have still a lot of students who 

are not at that level—yet. And so, it’s very overwhelming, and a lot of my students open that 

book and already are frustrated, just opening the book. 

In this quote, Audrey highlighted that while the institution-mandated curriculum (enVision) 

could offer opportunities for higher-order thinking, it did not match her students’ current 

mathematical understanding. In addition, she found it challenging to connect with given 

standards, suggesting another layer of complexity she faced within the same obligation. As such, 

she was obligated to use enVision math as it was institution-mandated despite its lack of 

alignment with another institutional obligation (meeting standards). 

Teachers also expressed conflicts between institutional and disciplinary obligations, noting 

they were challenged to balance students’ individual needs with institutional time constraints for 

mathematics instruction. Kasie highlighted this challenge, stating, “I don’t enjoy using 

[Dreambox], and the kids are burnt out on it by third grade.” Kasie’s comment illustrates the 

mismatch between the district-mandated curriculum (Dreambox) and the needs of her students. 

We found several instances in which teachers expressed multiple obligations complemented each 

other. When asked how she connected multiple resources, Jamie shared:  

When we use the curriculum maps, we have certain standards that have district-wide 

assessments, and then other standards, we have to choose whether we want to give a 

summative assessment on them. So, I use the data from those, then, to basically inform my 

instruction for intervention, which we have every day for 30 minutes. 

Here, Jamie expressed that institutional obligations such as using formative assessment results 

and standards, assisted her in identifying students who required extra support and specific type of 

support they needed, “infor[ing her] “instruction for intervention” (interpersonal obligation).  

The teachers also provided insights into how their selection of supplementary resources was 

influenced by individual, institutional, and disciplinary obligations, which were at times aligned 

and at others in conflict. They explained their rationale for incorporating supplementary 

resources when the mandated ones failed to meet their disciplinary and/or individual obligations. 

For example, Jamie explained that she opted to supplement her mandated textbook with 
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resources from Pinterest because activities like “Factor Ninja” on Pinterest were more effective 

for teaching “factors and multiples,” and students “[we]re more engaged.” 

Audrey discussed how four types of obligations—institutional, individual, interpersonal, and 

disciplinary—intersected when examining the usefulness of a mandated curriculum, DreamBox: 

I disagree with that app [Dreambox], as a whole. I don’t think my students benefit from it. 

The best thing I could say is the higher-order thinking, it does ask questions that really makes 

our students think, but …it’s to a point where they give up, because it’s too hard for them. It’s 

supposed to meet them where they are, and it can meet some of my students who are above 

average, pretty well, but any student that’s on grade level or lower, does not meet them. 

Audrey used Dreambox due to institutional requirements and it aligned well with her disciplinary 

obligations by promoting better student engagement and higher-order thinking. Yet, it did not 

serve well for her students overall because “it’s too hard for them,” (individual obligations) and 

did not address the needs of those students “that [are] “on grade level or lower” (interpersonal 

obligations). Similarly, Kasie mentioned: 

I use [Teachers Pay Teachers and Pinterest] for more engagement because those topics are 

ones that in the past kids zoned out on, especially elapsed time…So, telling time and doing 

elapsed time is a hard concept for them to grab onto and they don’t do a whole lot of elapsed 

time in the younger grades. It’s more like an hour or half-hour times not down to the minute, 

which is what they have to do in third grade. So, finding a more engaging way, made it more 

fun for the kids and I found that my kids did better with elapsed time than they had done in 

the past without that kind of engaging project-based learning that we found there. 

In this quote, Kasie articulated she opted for Teachers Pay Teachers and Pinterest because she 

could attain individual (for more engagement), institutional (“they have to do in third grade”]), 

and disciplinary obligations (“project-based learning”). This was an example of how three types 

of obligations complemented each other during her curricular decisions.  

Overall, our findings suggested multiplicated ways in which Audrey, Jamie, and Kasie’s 

mathematics curricular decisions interacted with individual, interpersonal, institutional, and 

disciplinary obligations. As evidenced by the examples above, institutional obligations often 

conflicted with individual and interpersonal obligations, whereas disciplinary and individual 

obligations typically complemented each other. In the next section, we delve into the potential 

reasons behind these complementary and conflicting obligations. 

 

Discussion and Implications 

In this study, we investigated how different obligations influenced elementary teachers’ 

mathematics curricular decisions. We found that elementary teachers primarily prioritized 

individual and interpersonal obligations, indicating a strong focus on student needs and 

interactions. In addition, teachers attended to policies over disciplinary and interpersonal aspects, 

navigating complex layers of institutional obligations at the school, district, and state levels. For 

instance, teachers faced challenges in fully implementing a district-purchased textbook within 

the limited time allocated for mathematics instruction. 

These findings may be attributed to the demanding schedule and workload of elementary 

teachers in the United States, who often teach multiple subjects to the same group of students for 

an entire semester. Consequently, they prioritize materials that engage students effectively and 
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efficiently prepare them for standards within the allotted time. We anticipate these obligations 

may differ for secondary teachers, who may focus more on disciplinary rather than individual 

obligations. This assertion is partly supported by Dingman and colleagues’ (2021) framework we 

mentioned earlier, which emphasizes middle school teachers’ consideration of mathematics 

(discipline) in multiple layers. These layers include anticipating how students might view 

particular mathematical concepts, understanding the contextual meanings of mathematical 

concepts, and ensuring the cohesive arrangement of mathematics topics. In our study, teachers 

described how students engaged with mathematics and whether the content presented in given 

resources aligned with given standards. However, their focus was not on unpacking mathematics 

as a discipline when making curricular decisions. Another reason for teachers’ minimal attention 

to disciplinary obligations could be because they trusted the curriculum as written. In another 

study, we found that teachers used textbook content as given without modification because it was 

research-based (Authors, 2023b). We recommend providing opportunities such as professional 

development for teachers to deepen their understanding of disciplinary aspects when evaluating 

curricular resources.  

Minimal reference to interpersonal obligations may suggest that teachers believed 

differentiation was adequately addressed before making curricular decisions. Alternatively, they 

may have perceived differentiation as less crucial due to their focus on all students or they may 

have been influenced by the content of the interview questions. Further investigation is necessary 

to better understand the reasons for the limited instances of interpersonal obligations. 

Overall, our study highlights the complexity of elementary teachers’ decision-making as they 

deal with multiple obligations in uncertain educational times. By highlighting multi-layered 

complexity within and across four types of obligations, our findings contribute to understanding 

the nuances of teachers’ professional obligations as proposed by Herbst and Chazan (2011). 

Aligning with Herbst and Chazan (2020), we recognize that teachers may have additional 

obligations beyond those discussed, such as adapting to online learning during the COVID-19 

pandemic. Thus, we acknowledge that teachers' obligations are also dynamic and contextual. In 

our next study, we will perform another layer of analysis, which will further unpack Herbst and 

Chazan’s theoretical framework (2011) on teachers’ professional obligations. 
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Teachers navigate a range of curricular resources to create mathematics learning opportunities 

for their students. We investigated how three components of teachers’ curricular reasoning (i.e., 

curricular knowledge, curricular vision, and curricular trust) interact with each other when 

elementary teachers navigate their available resources. Using a collective case-study design, we 

identified themes related to the complex relationships among elementary teachers’ curricular 

knowledge, vision, and trust at two U.S. schools. Our findings indicated multifaceted ways in 

which teachers’ curricular knowledge, vision, and trust are interconnected with and influence 

one another. The two teachers highlighted here acknowledged a long curricular “path” or 

“road,” both within and across grade levels, for learning mathematics. We discuss research and 

practical implications for the importance of understanding teachers’ curricular reasoning. 

Keywords: Curriculum, Elementary School Education, Instructional Vision, Teacher Knowledge 

The proliferation of curricular materials in the last decade has provided opportunities for 

teachers to supplement their mandated curriculum with a wide range of curricular resources 

(Polly, 2017). Following the COVID-19 pandemic (hereafter referred to as “pandemic”), online 

resources flooded the curricular landscape (Francom et al., 2021), which further challenged 

teachers to navigate a wide pool of mandated and supplemental resources in this new context 

(Giorgio-Doherty et al., 2021). Prior studies indicated that elementary teachers used up to 14 

mathematics curricular materials during and after the pandemic (Doherty et al., 2022). These 

developments and the context of uncertain times resulting from the pandemic prompted us to 

continue to investigate teachers’ use of curriculum materials given that little is known about how 

teachers navigate the ever increasingly complex curricular landscape. In this study, we explored 

elementary teachers’ curricular decision-making through the lens of curricular reasoning (e.g., 

Breyfogle et al., 2010) guided by the following research question: How do the components of 

teachers’ curricular reasoning (i.e., curricular knowledge, vision, and trust) interact with each 

other as teachers navigate the post-pandemic curricular landscape? 

Conceptual Framework 

We frame our study using Breyfogle et al.’s (2010) notion of curricular reasoning, which they 

define as “the thinking processes that teachers engage in as they work with curriculum materials 

to plan, implement, and reflect on instruction” (p. 308). They proposed three components of 

mailto:bima.sapkota@utrgv.edu
mailto:dfulwide@purdue.edu
mailto:aodondi@purdue.edu
mailto:rigsbyb@purdue.edu
mailto:janewton@purdue.edu


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

102 
 

curricular reasoning: (a) curricular knowledge (Grossman, 1990; Shulman, 1986), (b) curricular 

vision (Darling-Hammond et al., 2005), and (c) curricular trust (Drake & Sherin, 2009). 

Curricular knowledge indicates familiarity with curricular resources, including the curriculum’s 

philosophical perspective and its horizontal and vertical organization. Curricular vision involves 

knowing the path of learning—where students have been, where they are now, and where they 

need to go, along with the knowledge of how to get them there. Curricular trust builds upon, and 

reciprocally interacts with, curricular vision; it is the belief that a curriculum, as written, will 

satisfy a teacher’s vision. Breyfogle and colleagues developed a model illustrating the potential 

relationships among curricular reasoning, curricular knowledge, curricular vision, and curricular 

trust (see Breyfogle et al., 2010, p. 310). In our study, we aimed to continue to investigate these 

relationships in the context of elementary teachers’ curricular decision making. The authors also 

proposed that curricular changes and increased focus on mathematical standards warrant 

attention to these components of curricular reasoning; post-pandemic, we add the proliferation 

and increasing accessibility of a wide range of curricular resources to this justification for 

attention to teachers’ curricular reasoning.     

Review of Relevant Literature 

Many teachers draw from multiple curricular resources that are complex and layered to serve 

the diverse learning needs of their students (Doherty et al., 2022; Sawyer et al., 2020). During 

the pandemic, teachers were required to explore alternative resources (e.g., online practice 

programs) with the goal of providing equitable learning opportunities (Keldgord & Ching, 2022). 

For example, during the transition from face-to-face to remote modalities, many teachers 

considered students’ access to technology when selecting online resources (Huck & Zhang, 

2021). This suggests that the expanding landscape of curricular resources intensified the 

complexity of teachers’ post-pandemic curricular decision-making (e.g., Francom et al., 2021). 

How teachers navigate such complexity to create equitable student learning opportunities 

arguably influences and is impacted by their curricular reasoning. The connections and 

interactions among the components of curricular reasoning proposed in Breyfogle and 

colleagues’ (2010) framework (i.e., curricular knowledge, curricular vision, curricular trust) are 

complex because, for example, teachers draw on different categories of mathematical knowledge 

for teaching (e.g., Ball et al., 2008). We unpack the components of curricular reasoning by 

reporting on two elementary teachers' post-pandemic mathematics curricular decisions. 

Methods 

Two elementary teachers (Audrey and Mary, pseudonyms) from a midwestern U.S. 

elementary school participated in this study. We purposefully selected these teachers to provide 

representation of different grade levels (i.e., third and fourth) and teaching experiences (6 and 11 

years). Using a collective case study design (Yin, 2009), we report a collective understanding of 

how teachers’ curricular knowledge, vision, and trust were interconnected within the broader 

umbrella of curricular reasoning and are reflected in their curricular decisions. We collected data 

from a three-phase interview process— two individual interviews followed by a focus-group 

interview. In the first and second interviews, the teachers shared the curricular resources they 

used, their level of control in using them, and strategies they used to establish coherence among 

the selected materials. In the focus-group interview, the teachers reported how they adapted their 
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curricular materials and collaborated with one another. We drew both collective and case-specific 

meanings from these individual and focus-group interviews. We transcribed all interview data 

and used a top-down and bottom-up interactive data analysis (Chi, 1997) to explore the complex 

relationships between teachers’ curricular knowledge, vision, and trust. 

Findings 

Audrey and Mary’s curriculum knowledge was evidenced when they shared their level of 

trust for particular curricular resources and their vision about curricular coherence and student 

learning opportunities. In using their curricular knowledge, Audrey and Mary were purposeful in 

which resources they selected and how they implemented them to create students’ mathematics 

learning opportunities, which ultimately influenced their curricular trust. Audrey mentioned that 

enVision (their primary curricular resource) “didn't focus on exactly what [their] standards 

wanted,” requiring her to supplement with other resources. This finding indicated Audrey’s 

curricular knowledge influenced her curricular trust. As such, the teacher did not fully trust 

enVision because she had knowledge of the alignment of curricular resources with standards.  

Audrey and Mary also shared nuances suggesting how curricular vision and trust interact 

with each other. Mary mentioned that “having [a] set routine in [her] schedule helps kids make 

connections in math every day, because they build off of each other.” She also shared how she 

established the curricular map or routine in using enVision, stating, “the first day, [students] have 

a question [to] test their prior knowledge. Then, you read the question together as a class, and 

then give the students time to solve it however they choose…then we watch a video.” In this 

quote, Mary’s curricular knowledge of enVision is reflected through her vision about how 

curricular materials should be organized (e.g., checking on students’ prior knowledge, and 

presenting new materials).  

Interestingly, both teachers mentioned that after the pandemic they began trusting teacher-

created resources from Teachers Pay Teachers more than some of the other available 

supplemental resources. Mary shared that she often used Teachers Pay Teachers because she 

“could also look at ratings that other teachers had given to the product to see if a lot of teachers 

liked it that [she is] more likely to look more closely at it.” This quote indicated that Mary’s 

initial curricular trust was influenced by other teachers’ curricular use. We also found that the 

teachers’ curricular trust interacted with their vision related to creating appropriate student 

learning opportunities. For example, Audrey mentioned, “I'll pick a worksheet that is easier to 

read than enVision; enVison is very hard to do independently, where the Super Teacher 

Worksheet is very basic.”  

Overall, our findings align with Breyfogle et al. (2010), in that teachers’ curricular 

knowledge is foundational to their curricular reasoning, which generates their curricular vision, 

which influences their curricular trust. However, we acknowledge that the relationship among 

curricular knowledge, vision, and trust is not straightforward and other dimensions of the 

relationships are being explored in our ongoing studies. As an example of such complexity, we 

found that there are contextual and teacher-related factors that influence teachers’ curricular 

reasoning. Audrey mentioned, “I and [my colleague] are both moms of young children, and so it 

[enVision] is easier for us as far as planning and getting materials ready, because it's all already 

created.” This quote indicates that teachers’ curricular reasoning is also influenced by their 

personal circumstances and time constraints. 
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Scholarly Significance 

The current uncertain times in mathematics education impact all contexts in which our work 

takes place, and our collective effort is needed to support teachers in mathematics classrooms as 

expectations of them continue to change and increase on many different levels (i.e., local, state, 

federal) and from many different stakeholders (e.g., school administration, parents). Supporting 

their curricular decision making by better understanding the curricular context in which they are 

operating and the relationships among the components of curricular reasoning offers one such 

effort. A focus on curricular vision in which we strive for equitable and engaging mathematics 

experiences for all children requires attention to teachers’ curricular knowledge and trust. Our 

findings suggest multifaceted ways in which teachers’ curricular knowledge, curricular vision, 

and curricular trust are interconnected with and influence one another. This investigation of 

teachers’ curricular decision making is significant for mathematics teacher educators, policy 

makers, teachers, and curricular writers/developers. Understanding teachers’ curricular reasoning 

in relation to knowledge, vision, and trust contributes to knowledge needed to purposefully 

develop, adapt, and implement mathematics curricular materials in ways that are effective for 

creating equitable learning environments. Moreover, documenting and disseminating teachers’ 

curricular reasoning and noticing is valuable to acknowledge the extensive time and intellectual 

effort that teachers devote to mathematics teaching. 
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Consistent with this year's conference theme of envisioning the future of mathematics education 

in uncertain times, and as an extension of recent research presentations related to the 

implementation of pattern-based assessments in individual classrooms and at scale (Stroup, 

2020), this paper will contrast the responses of elementary and middle school students from a 

statewide implementation of the pattern-based items (PBIs) with the responses from two AIs to 

the same questions, and where the AIs hallucinate in ways that result in their performance being 

generally less robust than that of the students. The kinds of questions the AIs are less good at 

may be seen to point us toward what learners are better at and, consequently, could serve to 

refocus schools-based mathematics education on advancing meaningful student agency centered 

on uniquely human capacities for engaging structural patterns, exploring possibility, and 

modeling. 

Keywords: Modeling, Learning Theory, Curriculum, Assessment  

This paper developed from reflections on practice-focused discussions with in-service 

elementary and secondary teachers related to the role generative AIs could have in their teaching. 

The discussions took place as part of courses with titles like "Algebra for Teachers" or 

"Geometry for Teachers" included as part of degree programs at a public university. Some of the 

teachers were already experienced users of generative AIs, especially for tasks like writing short 

multiple-choice assessments related to a specific state standard, helping to draft the outlines of 

lesson plans, or assisting in managing their workload relative to authoring reports where 

"individual education plans" (IEPs) for students were frequently mentioned as an example. For 

other teachers, they had never "touched" a generative AI prior to enrolling in the course. The 

introduction of pattern-based questions (PBQs) was new for nearly all the students (some had an 

instructor for another course who used PBQs in their in-service courses). As part of considering 

various approaches to supporting classroom-based assessment, participants read a Report 

(Stroup, 2020) analyzing the results of implementing pattern-based questions statewide at scale 

(N > 400,000). Especially since some of the teachers had used the AIs to generate quizzes to be 

implemented with their students, the question arose: How would the AIs do on the same pattern-

based questions used statewide with elementary and middle-school students? This paper emerges 

from our efforts to engage this question. 

Although not part of the initial conversations with the teachers, the ability of generative AIs 

to outperform the corresponding late-secondary or adult test takers on many widely administered 

high-stakes tests (OpenAI, 2023) can serve as a contrasting case with the hallucinations and 

comparative low scores, relative to elementary and middle school students, the same AIs 

generated for pattern-based items.  The contrast was brought into the conversation as part of 

realizing that the hallucinated responses from the AIs could be used by the teachers to "both" 

teach math, by having the students "correct the AI", and teach about generative AIs, by 
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discussing how the "artificial" intelligence would not be able to see any of its specific responses 

as needing correction. The same probability-driven algorithms that might generate responses that 

are treated as correct – and that might even be submitted, in other contexts, by students as part of 

completing homework assignments – could also generate responses to the pattern-based 

mathematics items that were clearly "wrong" or, at a minimum, in need of correction or editing. 

On their own, the AIs have no way of determining the differences between one of their largely 

accurate or correct responses from responses that school-aged students would be able to identify 

as hallucinations.  

New questions to be discussed in relation to specific examples arise. What allows us to 

recognize mathematics-related hallucinations when each AI that generates the hallucination 

can't? How might the better results from many school-aged learners on certain types of questions 

– e.g., ones engaging with pattern, possibility, and modeling – provide an opportunity to move 

beyond the fear that AIs are better than us, as reinforced by their doing better on the traditional 

assessment items we currently use to evaluate the effectiveness of education, to focus on what 

we're better at. AIs, critiqued within a reflective frame provoked by our ability to identify 

hallucinations, can serve as tools in affirming human agency and might well advance our efforts 

to support meaningful forms of equitable learning outcomes for mathematics education.  

What matters about a hallucination? - Revisiting Chomsky's Green Ideas 

As a pioneer in the development of formal linguistics, Noam Chomsky began his career in 

the late 1950's and 60's by critiquing the sense that the word "grammar" might only denote sets 

of conventions within a given language (e.g., subject-verb agreement in English) and positioned 

his "transformational generative grammar" in opposition to probability-based, often behaviorist 

situated, models of language production, as well as language acquisition. Given this, it is not 

surprising that, more recently, Chomsky has engaged in a vigorous critique of the over-

attribution of significance to the capabilities of generative AIs. "[H]yperbolic headlines" 

notwithstanding, AIs based on large language models (LLMs) are, for Chomsky and his co-

authors, "lumbering statistical engines" that "become increasingly proficient at generating 

statistically probable outputs" that can, at best, appear "human like" (Chomsky, Roberts & 

Watumull, 2023). These probability-focused models contrast with Chomsky's longstanding 

commitment to "linguistic structure" (1956, p. 116) or what Howard Gardner and colleagues 

summarize as a "mathematically oriented analysis of language" (Gardner, Kornhaber, & Wake, 

1996, p. 127).    

The shared use of the word "generative" as part of the name for Chomsky's theory and as part 

of the name for LLM AIs is significant for this paper. For Chomsky it's not just that we can 

produce, or generate, novel sentences, any one of which might be seen as unlikely to happen by 

chance (or to be improbable in and of itself), but also that we can recognize a distinction between 

a phrase that is grammatical and meaningless and a phrase that is ungrammatical and 

meaningless.  

Generative AIs, when they hallucinate, don't generally produce the latter. Instead, 

hallucinations are text that is grammatical but also incorrect or wrong in what it means. 

Chomsky's best-known example of a grammatical but meaningless phrase is "colorless green 

ideas sleep furiously" (1956, p. 116). It matters both that Chomsky intentionally created this 
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expression to illustrate aspects of his larger analysis of how grammar works and that "an English 

speaker" would be able to "recognize" this expression "is grammatical" and meaningless (p.116).  

Generative AIs, based on existing LLMs, can do neither. These AIs can neither intend to 

generate a meaningless sentence nor can they, on their own, recognize when they have produced 

what might be seen by us as a semantic trainwreck. The fact that we are able to do both may 

begin to provide us with a way to think about what can, and possibly should, be the focus of 

schools-based mathematics education. Specific kinds of mathematical tasks or prompts where 

AIs tend to produce hallucinations may provide a way for us to begin to recognize, and thereby 

begin to refocus teaching and learning on, what we, including our students, are "good at."   

Methodologically, we need not embrace Chomsky's parsing of linguistic competence into 

categories of syntax and semantics to see how what we are uniquely able to do should be 

foregrounded. Moreover, most post-structural analyses and certainly much of equity-advancing 

critical theory allow us to reject any discussion of activities as vital to our sense of who we are as 

the production of natural language or the development of mathematical agency "really" work, by 

starting from a prior assumption that there must be a privileged or ultimately privileging point of 

view along the lines of a what Chomsky posited as a "universal" grammar.  

Avoiding any sense that a neutral, object-ifying, or outside-of-language type place to stand 

has to exist, we are free to make visible in our analyses of the ways AIs might be deployed, or 

become part of institutionalized practice in schools, how it is that issues of power, access, and 

identity are always already present, certainly, in the data used to train these AIs but also in terms 

of the who and the how of critiques of the output.  

Who gets to say an output isn't right or is a hallucination? Will school-aged students be 

allowed, or even encouraged, to make such judgments? Or is the possibility that AIs might be 

wrong to be hidden in ways that will have the effect of helping to preserve privileging, 

universalizing, and plausibly dehumanizing notions of schools-based curricula and assessment 

(sometimes advanced as part of what could well have been sincere commitments to improving 

equitable outcomes or, at the very least, not to leave any child behind)? Are teachers to be 

empowered to make judgments about how AIs might support in-class, and potentially group-

mediated, engagement with mathematics, or will AI-augmented tutoring environments be used to 

further constrain instruction to be about only the kinds of routines the AIs are able to support? 

The relatively brief considerations and comparisons that follow are meant only as an invitation 

for us to envision a future for mathematics education that is more, not less, fully humanized.  

Speculation on why pattern-based items might be more likely to cause hallucinations 

Although the pattern-based items that are presented in what follows may appear to be similar 

to standard multi-select assessment items, they are distinct in how they are meant to function, 

and this may (or may not) have something to do with how the generative AIs tend to hallucinate 

in attempting to respond to the examples that follow.  

Most high-stakes assessment items are developed with the goal of being able to produce a 

scale score related to a relatively stable (predictable) latent trait. Considerations of whether or 

not these assessments are effective in measuring what is intended would take us well beyond the 

scope of this paper. What does matter is that training AIs relative to an assessment paradigm 

centered on convergence to a latent trait will play to the sweet spot of what generative AIs do 

well. Stable traits, no matter what they may actually represent, are what make probabilities-
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driven, large language models capable of doing what they do, including, in this case, endorsing 

the most likely to be correct response, or set of responses, to latent-trait-focused items.  

In contrast, and as the name suggests, pattern-based items are developed, as will be seen in 

what follows, to use the full combinatoric space of possible selections to four-response (A, B, C, 

D) items (15 possible combinations if "no response" is not included). The modes appearing in the 

data (see below and Stroup, 2020) are meant to relate to patterns in how learners might 

understand or engage with a particular topic. Teachers, including those in the classes mentioned 

earlier, have found attending to patterns much more informative and useful to them 

professionally than attempting to make instructional decisions either based on sets of averages or 

based on difficult-to-interpret scale scores. Their situated knowledge about meaningful patterns 

in student reasoning also allows them to develop effective pattern-based items for use in their 

own classrooms.  

Although teachers have asked that the modes in responses (e.g., frequencies of AD or BC) be 

projected onto, and sorted relative to, (one of many possible) a partial credit score (similar, in 

this case, to the scoring of a True/False assessment), what matters most for pattern-based items is 

the relative presence of specific modes in the data. The fact that the frequencies (or percent 

presence) associated with specific modes ("bumps" in the data) are meant to, and do, shift based 

on changes in students' understandings, makes them distinct from traditional items centers on 

preserving stability in the ordered probabilities for specific students getting items correct. 

Hallucination 1: Seeing Possibility  

The item shown in Figure 1 was developed to assess the fifth-grade Texas Essential 

Knowledge and Skills standard focused on students being able to "classify two-dimensional 

figures" as this would include reasoning in terms of "the presence or absence of parallel or 

perpendicular lines, or the presence or absence of angles of a specified size" (TEKS 5.5A). A 

similar focus at the fifth-grade level can be found in the Common Core State Standards (cf., 

CCSS Math Content 5.G.A.1).  

Rather than ask about a given shape, the question shown in Figure 1 centers on "which is 

possible" as a description of geometric shapes.  In their critique of generative AIs, Chomsky and 

colleagues make the observations that their "deepest flaw" is the "absence" of what they see as 

the "most critical capacity of any intelligence: to say not only what is the case ... but also what is 

not the case" and, indeed in a logical sense related to this specific item, "what could and could 

not be the case" (Chomsky, Roberts, & Watumull, 2023).  
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Figure 1: Hallucinations of two AIs and the responses of 65,163 fifth graders 

The probabilities-based predictive patterning used by the AIs need not be seen as the same as 

the structural reasoning about patterns we can use to decide what's possible. Worth noting, the 

ability to "look for and make use of structure" is listed as one of the Standards for Mathematical 

Practice in the CCSS (2023). 

As discussed previously, the sentences from the AIs included in Figure 1 are grammatical.  

What is said in some of these sentences, however, can be judged to be false. The output of 

ChatGPT allows that a polygon with "fewer than four sides" could have "only 1, 2, or 3 sides" 

but doesn't recognize that a figure with three sides would be a polygon, and consequently 

concludes a polygon with fewer than four sides, response C, is not possible. ChatGPT selects 

only D. The assigned (or projected) partial credit, using a F/T-type matching partial credit model, 

would be 0.75.  

Bard (with a successor now called "Gemini") outputs the grammatical but incorrect statement 

that "A triangle with two obtuse angles is possible." Interestingly, the AI then goes on to 

conclude that, "the third angle" on this impossible triangle "must be acute." The partial credit for 

selecting only D would be 0.5, putting it below the overall student results of 0.57 as partial credit 

and well below the 13% of the students who would receive full credit for selecting CD. 

Although the AIs themselves would not, at the time this was done, be able to identify the 

elements in the hallucinations that are like Chomsky's "green ideas," it is certainly reasonable to 

expect that fifth-grade students would be able to engage with, and even enjoy (according to the 

one teacher who reported trying it out in their class), finding the "mistakes" of the AI.  The AIs 

are certainly powerful in what they do, but our ability to think about what's possible, and not just 

what is inductively probable, may exceed what they can do.  
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Focusing mathematics learning and teaching on explorations of what's possible, especially 

when contrasted with the hallucinations of the AIs, might well point us toward greater emphasis 

on what we, including our students, are good at. Seeing the possible can also be seen as related to 

modeling, the next contrasting case to be considered. 

  Hallucination 2: Modeling  

The ability to "model with mathematics" as associated with applying the mathematics 

students know "to solve problems arising in everyday life" is listed, like the ability to look for 

structure, as one of the "Standards for Mathematical Practice" outlined in the CCSS (2023). 

Attending to modeling has been a major area of research in mathematics education (cf. Lesh & 

Doerr, 2003) and a particular area of focus for a working group of PME-NA. To the extent that 

mathematics can be used to develop a "causal explanation" in a way that Chomsky and his 

colleagues do not see as true of the AIs, mathematical modeling reaches well beyond the 

mathematics classroom. Moreover, modeling has been a throughline for human cultures for 

millennia as a way to engage the harmonies and even the dissonances associated with a wide 

range of arts.  

These accounts, of course, can stand on their own as reasons for highlighting modeling.  But 

the hallucinations of AIs relative to simple forms of modeling that are readily managed by many 

fourth graders might serve to remind us of the sense in which this is something we can do well. 

This is also something we lose track of if we allow what AIs can do only on their own, or as part 

of updating tutoring platforms, to serve as a kind of upper bound on what mathematics education 

should emphasize. Modeling is creative in a way that may be seen as linked to the previous 

discussion of seeing possibilities.  

"Use Mathematical Models" as it is specifically referenced in the Texas fourth-grade 

mathematics standards (TEKS 4.1.A-D), served as the basis for the development of the pattern-

based item shown in Figure 2. Students are asked which equation "can be used" to describe the 

number and exchanges of cards. Bard correctly notes relative to this item that after "giving away 

6 cards" Maria will have "84 – 6 = 78 cards" but then goes on to immediately conclude that 

response B, "2 x 42 + 6" is a "correct equation" for this exchange (using + 6 instead of – 6 for 

"giving away" cards). Both A and D are rejected leaving only C, which does, as a response, 

closely align with the account of "giving away 6 cards" from 84. 0.25 would be assigned as 

partial credit.  

Then, like Bard, ChatGTP also suggests that "multiplying 2 by 42" and then "adding 6" takes 

into account "the fact that Maria starts off with twice as many cards as Mike" and "subtracts" the 

cards she gave away. The operation shown is adding six, but it is described as subtracting the 

cards she "gave away." ChatGPT would also be assigned 0.25 as partial credit.   
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Figure 2: Hallucinations for a modeling item 

 

As with the previous example, the AIs themselves would not be able to recognize the 

significant inconsistency in, as an example, representing subtracting 6 with "+ 6." It also seems 

highly likely, especially given the comparatively strong responses of 65,044 students, that fourth 

graders, as part of a classroom-situated discussion, would be able to recognize the inconsistency 

in the AIs' hallucinations.  Both "the math" of modeling and an understanding of aspects of AIs 

would be advanced through the critique of the AIs' responses. 

Hallucination 3: Reasoning Beyond Rote Procedures 

While part of the state standard for "understanding" systems of linear equations does include 

how the "solutions" to systems of two linear equations in two variables "represent points of 

intersection of the graphs of the equations" and "the meaning of the solution(s) in the context of 

the problem" can model " real-world contexts" that can be used to "assess the reasonableness" of 

solutions themselves (TEKS 8.8.A-D), the actual practice of solving systems, as revealed in part 

by the hallucinations of the AIs in Figure 3, tends to center on rote sequences of steps associated 

with phrases like "do the same thing to both sides" or "isolate the x."  Any links to modeling 

and/or to valid steps for solving equations that don't align with the well-rehearsed sequences are, 

most often, excluded from student sense-making.  

Whether or not the "first step" of the rehearsed sequences for solving begins with the 

constants or begins with terms involving x in moving toward what can be viewed as isolating x 

on one side of the equal sign, the possibility of "dividing both sides" by a factor that is common 

to the terms on either side of the equal sign is not considered viable (response A).  The reason 
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would tend to be that no matter how one starts in adding or subtracting from both sides, dividing 

is typically treated as (almost necessarily) the last step. 

The responses of the AIs (Fig. 3) reflect the more frequently occurring – the more 

procedurally probable – sequences for solving found in the data used for training the AIs. 

Consistent with the AIs' difficulty in reasoning, in what was called a structural sense discussed 

earlier, about what’s "possible," both AIs hallucinated in attempting to evaluate which of the 

responses "could" be used as a "first step" in solving "the given equation." 

 

Figure 3: Hallucinating and routines for solving equations 

Perhaps reflective of students' training that there needs to be consistency – to the point of 

near exclusivity –  in carrying out a first step, most students chose only one response or the BD 

response, the response allowing that adding or subtracting from both sides can involve either 

constant terms or terms with x as a first step.  The fact that AIs, in terms of a partial credit 

projection, did do better than the students on this item, distracts from the sense in which their 

respective responses used a version of "not isolating x" as a rationale for excluding one of the 

valid first steps.  

Interestingly, the students may want to come to the defense of the AIs because the AIs would 

be doing something close to what they were taught to do. They might see the hallucination as 

understandable and may not even want to treat the responses summarized above as 

hallucinations. We've even had teachers in previous versions of the courses mentioned earlier say 

this question is "unfair" because starting with division, while certainly valid as a first step, would 

not be consistent with what the students had (likely) been taught.  
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Conclusion: Returning to how we can know questions 

The hallucinations in the last example might be seen to bring us back to a sense meant to be 

illustrated across all the examples provided: that the hallucinations of generative AIs can serve 

both to foreground classroom-situated engagement with mathematics as part of students 

correcting the AIs and, especially as suggested in the last example, to raise subtle questions 

related to how the AIs function.  It is one thing to say that an AI doesn't know when it is 

hallucinating. It is a more interesting question to ask if and how we can know. What we might 

hope for is that activities more fully consistent with our own abilities to do, and create, 

mathematics will play a central role in engaging these sorts of "How we can know?"-type 

questions... for the AIs, for ourselves, and, even more importantly, for the futures of our students. 

Postscript for the reviewers 

Given that some of the issues raised by the thoughtful reviewers may be similar to those 

raised by our colleagues, here are some very brief follow-on thoughts and pointers to other 

resources. In addition to the examples provided above, more detailed accounts of pattern-based 

items, both as implemented (Stroup, 2020; Stroup et al., 2023) and as well their connections 

efforts to develop "constructivist statistics" (Stroup, 1996; Stroup & Wilensky, 2000), are 

referenced. An account of what is meant by the use of "hallucination" is provided in the text in a 

way that is largely consistent with normative AI-referencing definitions. For this work, however, 

the more central questions include who decides what is/isn't a hallucination (the generative AIs 

can't) and, relative mathematics learning, how are we, including our students, able to decide. 

Finally, it is accurate to note that "generative AI" is only one of an array of kinds of AIs, some of 

which have also been deployed in educational contexts. Given a reviewer's request for more of a 

theoretical framing, it is worth briefly noting there are deep and longstanding interactions 

between the application of ideas in (what has come to be called) artificial intelligence (often 

overlapping with aspects of cybernetics) research to learning-related accounts of the emergence 

of "intelligence," where the role of creativity is implicated (cf. Piaget's [1970, pp. 81-82] 

discussion of Chomsky's emphasis ), as well as structure (including recursion, central to 

Chomsky's transformational grammar as well as to how [perhaps ironically] the generative AIs 

work, to say nothing of its importance to Seymour Papert's development of LOGO as a LISP-like 

list processing language that only later acquired a "turtle"), as well as (child) "development" 

(e.g., Papert [1980, p. 160] notes, "the theory of mother structures {as discussed by Bourbaki} is 

a theory of learning"). Situated in relation to issues of access and equity – relative to what will be 

seen as mattering in mathematics education, for whom, and how it will matter – the emergence of 

generative AIs may provide an impetus for us to re-engage with some aspects of our own 

generative roots. 
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This study investigated how Japanese curriculum materials represent proportional relationships 

through the lens of quantitative reasoning. We examined the tasks, questions, and 

representations in the Japanese elementary and lower secondary level course of study, teachers’ 

guide, and Mathematics International textbook series. Findings showed that proportional 

relationships in the selected Japanese curriculum materials are intertwined with quantitative 

reasoning and covariation of quantities. Findings also showed that, starting from 5th grade, 

perspectives of both multiple-batches and variable-parts have been taken into consideration 

together with utilizing partitive and quotative division in Japanese curriculum materials. We 

discuss the implications of findings for teaching and learning of proportional reasoning. 

Keywords: curriculum, quantitative reasoning, covariational reasoning, proportional reasoning. 

Background  

Textbooks significantly influence classroom activities (Valverde et al., 2002) by building a 

pathway “… between the intentions of the designers of curriculum policy and the teachers that 

provide instruction in classrooms” (Valverde et al., 2002, p.2). Therefore, examining textbooks 

provides some possible insights about opportunities for students to learn mathematics (e.g., Son 

& Senk, 2010) and teacher’s teaching and learning (e.g., Son & Kim, 2015).  

The treatment of proportional relationships in textbooks is crucial to study. Proportional 

reasoning, involving core concepts of ratio, rate, and proportion, developed in elementary and 

middle school is essential for secondary and collegiate mathematics (Izsak & Jacobson, 2017; 

NCTM, 1989), supporting students’ multiplicative reasoning (Lobato & Ellis, 2010; Simon & 

Placa, 2012). However, students (Modestou & Gagatsis, 2007) and teachers (Pitta-Pantazi & 

Christou, 2011) often face challenges with proportional relationships. Research shows teachers 

struggle with understanding the covariation of quantities in proportional relationships (Orrill & 

Brown, 2012) and differentiating between directly and inversely proportional situations, as well 

as non-proportional scenarios (Arıcan, 2019). Preservice teachers who struggle to discern 

different meanings of division encounter difficulties in distinguishing perspectives on ratios and 

establishing proportional relationships (Ölmez, 2021).  

Beckmann & Izsak (2015) introduced multiple-batches and variable-parts perspectives, to 

expand research on multiplication, division, and proportional relationships. Multiple-batches 

perspective views 2 apples and 5 oranges as one batch and the covariation between the two 

quantities as multiples of the original batch. A person having multiple-batches perspective can 

think of ratio of 2 apples and 5 oranges and use partitive division to find how many apples per 

one orange or vice versa. This person can also think of the ratio, 2 apples and 12 apples, and use 

quotative division to find out that six batches are needed for the mixture. Thus, the person 

mailto:gulseren.akar@boun.edu.tr
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engages in partitive division of the quantities in within ratios and quotitive division of the 

quantities in between ratios (Karagoz Akar, 2010; Noelting, 1980). Whereas variable-parts 

perspective views 2-to-5 ratio as fixed and the size of each part could vary. A person having 

variable-parts perspective can think of the ratio, 2 apples and 5 oranges, and use quotative 

division to determine that 5/2 as much oranges as apples or 2/5 as much apples as oranges are 

needed for the mixture. This person can also think of the ratio, 2 apples and 12 apples, and use 

partitive division of 12 with 2 to determine that each part contains 6 apples since the size of the 

parts can vary. Thus, the person engages in quotitive division of the quantities in within ratios 

and partitive division of the quantities in between ratios (Karagoz Akar, 2010; Noelting, 1980a). 

Researchers emphasized the importance of both ratio perspectives for understanding proportional 

reasoning (Arıcan, 2019; Beckmann & Izsak, 2015). The multiple-batches perspective has 

garnered attention in mathematics education (Lobato & Ellis, 2010), whereas the variable-parts 

perspective is less explored (Beckmann & Kulow, 2018). 

Taking into account of Thompson and Carlson (2017)’s argument that Japanese curriculum 

materials have potential to study how quantitative reasoning can be integrated in curriculum 

standards and textbooks, we investigated “What potential do Japanese curriculum materials in 

Grades 5 to 7 have in promoting proportional reasoning through quantitative reasoning?”  

Conceptual Framework  

Quantitative reasoning is “the analysis of a situation into a quantitative structure—a network 

of quantities and quantitative relationships” (Thompson, 1990, p. 12). A quantity is a measurable 

quality of an object coming into being with a person’s conception of a situation by considering 

the measurable quality of an object (Thompson, 1994). For instance, if a person using 2 apples 

and 5 oranges to get a special taste of a juice wants to get more juice of the same taste, the person 

might use the quantities, 12 apples and 30 oranges. The change in the number of apples requiring 

a change in the numbers of oranges for getting the same taste, which is a simultaneous 

“bidirectional relationship” change, is called covariation (Thompson & Thompson, 1996). When 

we consider the taste itself and the measure of it, the multiplicative relationship between apples 

and oranges remains constant (2:5 and 12:30) and it is called invariance. In this regard, “the 

result of comparing two quantities multiplicatively” is called a ratio (Thompson, 1994, p.190) 

and “a reflectively abstracted constant ratio” is rate (Thompson, 1994, p.18). This definition 

indicates that a rate is a linear function in the form of 𝑓(𝑥) = 𝑚𝑥 (Thompson, 1994). Rate refers 

to the set of equal ratios (Lobato et al., 2010). Proportional reasoning is the reasoning in 

situations involving invariant relationships between two covarying quantities (Lamon, 2012). 

In juxtaposing Beckmann & Izsak’s (2015) perspectives on proportional relationships with 

quantitative reasoning, a person can understand and use both partitive and quotitive division for 

quantities in within ratios (e.g., 2 apples and 5 oranges) and between ratios (e.g., 2 apples and 12 

apples). It allows the person to recognize quantitative relationships as per-one and as a scale 

factor. The person can conceive an image of per-one and scale factor relationship operated on 

simultaneously covarying quantities both in within and between ratio situations regardless of the 

division type. Thus, a person considers the quantities through quantitative relationships 

constituting an intensive quantity, i.e., a measurable quality of object (Thompson, 1994). 
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Method  

In this study, we examined one of the six most widely used textbook series in elementary 

mathematics in Japan (Watanabe et al., 2017) called Mathematics International (MI), along with 

Japanese course of study (COS) (Takahashi et al., 2008), and the teachers’ guides (Isoda, 2010). 

The publisher of the MI textbooks, Tokyo Shoseki, collaborated with Global Educational 

Resources in 2011 and published MI in English in 2012. We used the English translated version 

of MI textbooks in this study. Utilizing the content analysis method (Krippendorff, 2018), we 

analyzed how quantities were introduced and how the relationships between them were promoted 

in the statements, how proportion and ratio is defined and presented in the tasks, questions, 

problem situations and representations in the course of study (COS), teachers’ guide (TG), and 

the relevant units from the textbooks.  

Findings 

Findings showed that Japanese curriculum materials emphasize both multiple-batches and 

variable-parts perspectives on ratios with a focus on both partitive and quotative division and 

build on direct and inverse proportional relationships with a focus on covariation of quantities. In 

lieu of word limit, we present examples from 5th grade and 7th grade.  

In 5th grade, ratio is mentioned for the first time in Quantities and Measurements domain of 

the COS with the objective stated as “Students will understand the average of measured 

quantities and the ratio of two unlike quantities.” (Takahashi et al., 2008, p. 13). A task about 

rabbit cages is presented in 5th grade MI textbook to investigate population density (See Figure1). 

 

 

Figure 1. Rabbit cage (Fujii & Iitaka, 2012, Grade 5, p. A93). 

Students are asked to decide what quantities are needed to compare crowdedness of cages at 

first. Then, a table involving area of the cages and number of rabbits in each cage is given (See 

Figure 2) and three different student ideas on crowdedness are modeled (See Figure 3).  

 

 

Figure 2. Table of crowdedness (Fujii & 

Iitaka, 2012, Grade 5, p. A94). 

 

Figure 3.  Ideas of students (Fujii & 

Iitaka, 2012, Grade 5, p. A94). 
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In this task, the multiple-batches perspective seemed to be used by Hiroki, Miho and Shinji. 

Hiroki seemed to use quotative division, while Miho and Shinji use partitive division. Notably, 

thinking of 6 m2 with 9 rabbits and 5 m2 with 8 rabbits as associated extensive quantities in 

groups, one might think of how many 6 there are in 30 and how many 5 there are in 30. Finding 

out the results as 5 and 6 respectively and thinking that the batches need to be kept the same for 

the crowdedness to stay the same, one can determine that she needs to multiply 5 with 9 and 6 

with 8, resulting in 45 rabbits and 48 rabbits. Miho seems to think partitive division that for the 

associated group of 6 m2 with 9 rabbits, for 1 m2, there are 1,5 rabbits; and for the associated 

group of 5 m2 with 8 rabbits, for 1 m2 there are 1,6 rabbits. These two division types are also 

emphasized in the teachers’ guide that teachers should use them in their teaching. 

As a follow up of rabbit cage task, a task involving attempts at a basketball game is presented 

in 5th grade MI textbook (See Figure 4).  

 

 

Figure 4: Basketball game (Fujii & Iitaka, 2012, Grade 5, p. B52). 

The variable-parts perspective seemed to be employed with quotitive division in the original 

ratio focusing on part-whole relationship (i.e., 8 baskets made and 10 total attempts). Students 

are guided to use a number line to calculate per unit quantities. Differently from the previous 

task, two quantities are classified as base quantity and quantity being compared utilizing 

quotitive division. The main objective seems to enable students to represent the situation using 

rates, defined in the textbook as “The number that expresses how many times as much a quantity 

is compared to the base quantity is called the rate” (Fujii and Iitaka, 2012, Grade 5, p. B53).  

In 7th grade MI textbook, direct and inverse proportional relationship between two variables 

and the continuous nature of their covarying relationship is represented visually (See Figure 5).  

 

 

Figure 5: y=2x and 𝒚 =
𝟔

𝒙
 graphs (Fujii & Matano, 2012, Grade 7, p. 117-118; p. 127-129) 

Students are asked to explicitly think about the interval for x values and corresponding y 

values getting smaller and smaller producing a straight line or a curve.  

Discussion and Conclusion 

Findings showed that proportional relationships in the selected Japanese curriculum materials 

are intertwined with quantitative reasoning and covariation of quantities and developed through 
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different perspectives of proportional reasoning and division types (Beckmann & Izsak, 2015). 

Considering the previous research showing teachers’ struggles in proportional and non-

proportional relationships and different division types (Arıcan, 2019; Orrill & Brown, 2012; 

Ölmez, 2021), we argue the sampled Japanese curriculum materials can be used by teachers and 

teacher educators to study and improve learners’ proportional reasoning. Previous research 

indicates that Grade 2-4 MI textbooks concentrate on the relative size meaning of division, 

which requires grasping one quantity’s measure relative to the other (Thompson & Saldanha, 

2003), for both partitive and quotative situations (Karagoz Akar et al. 2022). Although partitive 

and quotative division do not necessarily require multiplicative reasoning, relative size, as a third 

model for division, “requires students to reason multiplicatively” and facilitate their 

understanding of non-integer divisors (Byerley et al., 2012, p. 359). Promoting the relative size 

in early grades could enhance multiple-batches and variable-parts perspectives of proportional 

reasoning. Future studies can explore students’ understanding of relative size and its relation 

with/contribution to proportional reasoning perspectives. 
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There are currently no large-scale assessments to measure algebraic conceptual understanding, 

particularly among college students with no more than an elementary algebra, or Algebra I, 

background.  Here we describe the creation and validation of the Algebra Concept Inventory 

(ACI), which was developed for use with college students enrolled in elementary algebra or 

above.  We describe how items on the ACI were administered and tested for validity and 

reliability. Analysis suggests that the instrument has reasonable validity and reliability.  These 

results could inform researchers and practitioners on what conceptual understanding in algebra 

might look like and how it might be assessed.  

Keywords: Algebra and Algebraic Thinking; Equity, Inclusion, and Diversity; Undergraduate 

Education; Research Methods 

Algebra can be a barrier to degree completion in college (e.g., Adelman, 2006; Bailey et al., 

2010), and difficulties that K-12 students have experienced with algebra content has been 

extensively documented (e.g., Booth, 1988, 2011; Kieran, 1992). Understanding of key algebraic 

ideas has also been shown to impact college students in higher-level college courses like 

Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017).  Algebra courses in college 

tend to focus on procedures disconnected from sense-making (e.g., Goldrick-Rab, 2007; Hodara, 

2011), which may be one reason why college students in higher-level courses still struggle with 

algebraic ideas. It is important to connect procedural fluency with conceptual understanding 

(Kilpatrick, et al., 2001), and therefore, there is a critical need to better understand and assess 

students’ algebra conceptions. However, there are not yet any widely-validated assessments to 

measure college students’ algebraic conceptual understanding. Existing large-scale validated 

algebra assessments exist for K-12 students but focus primarily on computational skills, or only 

on a narrow subdomain of conceptions. Measures of computational skill are not necessarily valid 

measures of conceptual understanding, because 1) learners may have robust conceptual 

understanding, but make computational mistakes, particularly when they have math or test 

anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016; Namkung et al., 2019); or 2) 

learners may have little conceptual understanding, yet produce “correct” answers for the 

mathematically invalid reasons (e.g., Aly, 2022; Erlwanger, 1973; Leatham & Winiecke, 2014).  

This paper describes how we have developed and tested college students’ conceptual 

understanding in algebra using the Algebra Concept Inventory (ACI), in an attempt to address 

this gap. This process is ongoing.  
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Literature Review 

While various algebraic proficiency instruments have been created, currently there are no 

widely-validated instruments that focus on a broad range of topics in algebraic conceptual 

understanding. TIMMS and NAEP (Mullis, et al., 2020; National Center for Education Statistics, 

2023) have been widely validated nationally/internationally but have a broader focus and only 

contain a limited number of questions aimed at assessing algebraic conceptual understanding. 

There are also state-wide assessments that contain some items intended to measure conceptual 

understanding but that primarily focus on computational skills (e.g., Massachusetts Department 

of Elementary & Secondary Education, 2023; New York State Education Department, 2023). 

There are a few instruments that have been designed to measure a few specific algebra concepts 

in elementary or middle school (Ralston, et al., 2018; Russell, 2019; Russell et al., 2009), but 

these have not been tested with high school or college students, and the different population of 

interest means that the narrow range of conceptions do not include more complex or abstract 

conceptions that are critical to secondary and postsecondary mathematics.   

Some concept inventories have been developed to assess algebraic conceptions relevant to 

calculus and other higher-level courses (Carlson, Oehrtman, & Engelke, 2010; Carlson, Madison, 

& West, 2010); however these instruments are not appropriate for students in lower-level courses 

such as elementary and intermediate algebra (or Algebra I/II in high school), and their focus is 

not on some of the core conceptions from these lower-level courses that may be particularly 

critical to algebraic reasoning.  Further, while many of these have been tested extensively 

qualitatively, they have not to date published results of larger-scale psychometric validation.  

Recently, researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept 

inventory for college students, but includes algebraic objects that would not be familiar to 

students in a first-year algebra course and has not yet been tested through cognitive interviews or 

psychometric analysis.  Thus, an algebra concept inventory that has been validated in large-scale 

data collection is sorely needed, particularly one that is appropriate for administration to students 

at all levels of prior algebra experience, and not just those in higher-level college courses.   

Measuring Conceptual Understanding: Sample Item 

There is insufficient space to describe the design of the ACI here, but it focuses on assessing 

specific conceptions of algebraic concepts (e.g., equivalence, syntactic meaning, algebraic 

properties, variable, function, covariation), rather than other skills like computation.  For 

example, this item was designed to assess whether students can identify the existing syntactic 

structure of an algebraic expression vs. a procedure one might use to simplify the expression: 

Sample item:  Which of the following best describes the meaning of the expression  

      (2𝑥 + 3)(5𝑥 + 1) as it is currently written? 

a. 2𝑥 is being multiplied separately by 5𝑥 and by 1, 3 is being multiplied separately by 5𝑥 

and by 1, and these four results are being added together. 

b. The result of adding 2𝑥 and 3 is being multiplied by the result of adding 5𝑥 and 1. 

Method 

A total of 402 unique items were developed and tested for the ACI. Items were administered 

to 7,658 students enrolled in all mathematics classes at the algebra level or above at a large urban 
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community college campus. Data were collected from spring 2019 to fall 2022, in eight waves. 

Data collection followed a common-item random groups equating design, selected because it 

allows investigation of a large item pool while allowing simultaneous calibration across multiple 

forms (de Ayala, 2009; Kolen & Brennan, 2004). For the first wave of testing, the last ten items 

on each form were anchor items, all taken from the National Assessment of Educational Progress 

(NAEP) grade 8 item bank. For subsequent waves, six anchor items were included: three were 

NAEP items and three were ACI items that had performed well during the first wave. Each form 

had roughly 25 items. Forms were randomly administered within each class to ensure no 

association between test form and class or instructor. 

Just before answering inventory items, students were invited to participate in cognitive 

interviews, and paid for their time. In total, 135 interviews were conducted. Each was roughly 1-

1.5 hours long and structured as a “retrospective think-aloud” protocol (Sudman et al., 1996), 

which has been shown to reveal comparable information to concurrent think-aloud protocols, and 

is also less likely to have negative effects on task performance (e.g., van den Haak et al., 2003). 

Interviews were analyzed qualitatively to assess construct validity of the items, but there is 

insufficient space to report that analysis here, where we focus on quantitative results.   

To prepare data for item-response theory analysis, ACI items were dichotomized into 

correct/incorrect using the response key. Then, two-parameter logistic models (Birnbaum, 1968) 

were estimated using marginal maximum likelihood (MML) on each wave, using the R package 

“mirt” (Chalmers, 2012). Because of the planned missingness data collection design, the default 

number of model iterations was extended to allow for all models to converge successfully. Based 

on these models, we examined item parameters (difficulty and discrimination) and item 

information functions for item analysis, and computed person estimates using expected a 

posteriori (EAP) factor scores for convergent validity analysis. Reliability estimates were 

computed directly from IRT models. To investigate model fit, we computed item fit statistics, 

using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each item.  

To investigate measurement invariance, we used multi-group IRT models and a model 

comparison approach. Because of the planned missingness design (and sometimes small 

observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that 

starts from a fully constrained model and drops constraints for each item separately. More 

specifically, with respect to each examinee characteristic considered, we first estimated a fully 

constrained model (where, across groups, item discriminations, difficulties, latent mean and 

variance are constrained to equality). Then, for each item, the same model was estimated, but 

with unconstrained item parameters (difficulty and discrimination), thus “temporarily” allowing 

differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test 

if the model allowing DIF for the item had a better fit than the constrained model. This resulted 

in a series of tests of the significance of differential item functioning for all items. Because it is a 

multiple testing strategy, p-values were subsequently Bonferroni-corrected.  

Validating the ACI 

IRT Models: Item Discrimination and Difficulty 

Some items were dropped when issues were found during analysis (e.g., typographical errors; 

multiple correct answers); however, none were dropped due to unsatisfactory IRT parameters. 

2PL IRT models were run on all waves (Table 1). We considered 1PL and 3PL models but chose 
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2PL models because they allow discrimination to vary by item and are more useable for item 

selection than 3PL models because item coefficients are more interpretable, and less prone to 

calibration errors due to their lower number of item parameters (San Martin et al., 2015). 
 

Table 1. 2PL Model Coefficients Across all Eight Waves 

Discrimination parameter Proportion of Unique Items 

>=0.65 “moderate”a 63.4% 

>=1.35 “high” 31.3% 

>=1.7 “very high” 18.5% 

Difficulty parameter Theta 

mean 0.00 

1st quartile -0.85 

median -0.14 

3rd quartile 0.63 

Total number of unique items in 2PL models 399 
a Characterizations of categories of discrimination parameters are taken from Baker (2001).  

 

Discrimination is called as “moderate” if ≥ 0.65, “high” if ≥ 1.35 and “very high” if  ≥ 1.7 

(Baker, 2001). Based on these classifications, 63.4% of all items (253) have moderate or better, 

and roughly one-third have high or very high discrimination. Table 2 reports item fit for each 

wave using Chalmers’ 𝑃𝑉 − 𝑄1 test, chosen because it performs better than other fit statistics at 

controlling Type I error (Chalmers & Ng, 2017). Only 5% of items were significantly misfitted 

by the 2PL models where 𝛼 = 0.05, which suggests that this is likely due to random variation.  

 

Table 2. Measures of Item Misfit in 2PL IRT Models 

 

Number of Items With 

Significanta Misfitb Total Number of Items 

Percentage of Items With 

Significant Misfit 

Wave 1 1 33 3.0% 

Wave 2 5 125 4.0% 

Wave 3 4 66 6.1% 

Wave 4 3 72 4.2% 

Wave 5 8 100 8.0% 

Wave 6 5 99 5.1% 

Wave 7 2 39 5.1% 

Wave 8 0 31 0.0% 

Total 28 565 5.0% 
a Significant at the 𝛼 = 0.05 level 
b Misfit as measured by Chalmers’ Chi-Square Statistic (𝑃𝑉 − 𝑄1) 

 

Reliability 

In IRT, Theta represents the number of standard deviations above or below the mean an 
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individual is on the measure of the latent trait, and the reliability of an item varies based on 

values of Theta. Peak information values for all waves (Table 3) have excellent reliability (𝑅 ≥
0.9). For various waves excellent reliability (𝑅 ≥ 0.9) was obtained for values ranging from 𝜃 =
[−2.7,2.2] (assuming a standard normal distribution of knowledge, this corresponds to 

satisfactory reliability for ~98% of examinees). In addition, shorter tests can be constructed from 

a subset of items with the highest discrimination: for example, the 10 items with the best 

discrimination from Wave 1 yields a test with excellent reliability (𝑅 ≥ 0.9) for 𝜃 = [−2,1].   

 

Table 3. Reliability (R) for each wave of item administration of the ACI 

 

Theta at 

max infoa 
Info maxb 

R for info 

maxc 
theta w/  

𝑅 ≥ 0.8 

theta w/  

𝑅 ≥ 0.9 

Number of 

Items 

Tested 

Wave 1 -1.4 26.4 0.96 [-2.8, 0.4] [-2.4, -0.2] 33 

Wave 2 -1.5 37.8 0.97 [-3.0, 2.1] [-2.7, 0.9] 104 

Wave 3 -0.6 24.3 0.96 [-2.3, 1.5] [-1.8, 0.7] 57 

Wave 4 -0.6 30.1 0.97 [-2.4, 2.1] [-1.9, 1.2] 69 

Wave 5 0.7 177.1 0.99 [-2.3, 2.9] [-1.4, 1.8] 100 

Wave 6 -0.6 105.3 0.99 [-1.7, 3.0] [-1.0, 2.2] 99 

Wave 7 -0.1 21.7 0.95 [-1.5, 1.8] [-1.0, 1.1] 39 

Wave 8 0.1 11.3 0.91 [-0.9, 1.2] [-1.2, 0.3] 31 
a info = 2PL IRT model information function 
bd max = information function maximum for 2PL model 
e 𝑅 = 1 −

1

𝐼𝑛𝑓𝑜
 

c expected reliability in Normal(0,1) ability distribution for 2PL models 

 

ACI Score and Prior Algebra Course Completion: Convergent Validity 

To explore convergent validity of the ACI, we explored the relationship between scores on 

the ACI (using theta scores from the 2PL model) to various measures of mathematics course 

level. For example, correlation of students’ ACI scores with the level of algebra courses they 

have already successfully completed would be evidence of convergent validity. First, we 

consider linear regression models with level of student’s course (where “level” is defined based 

on the algebra course pre-requisite requirements of the course) as the independent variable, and 

ACI score as the dependent variable (Table 4).  

 

Table 4. Regression of course level as predictor of ACI scores (2PL model)  

Course Levela Coefficient SE p-value (vs. low) p-value (vs. high) 

mid 0.347 0.014 0.000 0.000 

high 0.700 0.017 0.000  

areference group: low; low = no algebra course prerequisite; mid = elementary algebra course 

prerequisite; high = intermediate algebra course prerequisite; score is Theta score 
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Differences in scores in Table 4 are significant for all pairwise comparisons (𝑝 < 0.001).  

Scores for students in each level course were on average 0.35 SD higher than in the next lower 

course (“mid” vs. “low”; “high” vs. “mid”),  providing strong evidence of convergent validity.  

We also considered a more nuanced course sequence based on prerequisites (see Table 5).  

 

Table 5. Sequence level of various courses in the sample, based on their prerequisites 

Various elementary algebra courses 1 

Various 100-level courses with an elementary algebra pre-requisite 2 

Intermediate algebra courses 2 

College algebra 2 

Discrete math with intermediate algebra prerequisite 3 

Precalculus 3 

Math for elementary teachers with intermediate algebra prerequisite 3 

Math for elementary teachers, second term 4 

Advanced statistics with precalculus prerequisite 4 

Introduction to geometry with precalculus prerequisite 4 

Calculus I 4 

Calculus II 5 

Calculus III 6 

Differential equations with Calculus II prerequisite 6 

Linear algebra with Calculus II prerequisite 6 

Abstract algebra 7 

 

Table 6 shows that linear regression models using this more refined set of levels again 

reveals a strong correlation between level and ACI score.  

 

Table 6. Regression of more nuanced course level in predicting ACI score,  

Course Position 

in Sequence 
Coef. SE 

p-value 

(vs. 1) 

p-value 

(vs. 2) 

p-value 

(vs. 3) 

p-value 

(vs. 4) 

p-value 

(vs. 5) 

p-value 

(vs. 6) 

2 0.504 0.017 0.000      

3 0.623 0.031 0.000 0.000     

4 0.888 0.023 0.000 0.000 0.000    

5 1.059 0.033 0.000 0.000 0.000 0.000   

6 1.232 0.041 0.000 0.000 0.000 0.000 0.000  

7 1.661 0.226 0.000 0.000 0.000 0.001 0.008 0.060 

 

The largest gain (one half SD) in Table 6 is between sequence level 1 and 2, or between 

students who have/have not satisfied an elementary algebra (Algebra I) prerequisite.  This 

provides further evidence of convergent validity, because the ACI has been designed to focus on 

concepts relevant to elementary algebra specifically.  

Differential Item Functioning: Measurement Invariance and Discriminant Validity  

Differential item functioning (DIF) related to irrelevant examinee characteristics was also 
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analyzed, one subtype of discriminant validity (or whether the ACI measures algebraic 

conceptual understanding and not something else, like English literacy). Each wave was tested 

for DIF in three separate 2PL models: one each for race/ethnicity, gender, and English-language-

learner status. There was no consistent evidence of DIF. Only a negligible number of items had 

significant DIF for 𝛼 = 0.05 (using a Bonferroni correction for the number of tests within each 

model and not across models, which is overly conservative). Many items were tested in multiple 

waves, and none of these had significant DIF in more than one wave, suggesting that significant 

DIF in one wave but not others for these items was likely due to random variation.  

Limitations 

The City University of New York (CUNY) where this instrument was tested is not nationally 

representative, and thus further research is needed to validate the ACI with less-diverse 

populations in other geographic areas; this research is currently underway with a larger national 

sample in the US.  However, CUNY’s diversity does make it a excellent candidate for initial 

validation with marginalized students who have often been neglected in large-scale assessment 

validation. Further studies are also necessary to determine whether the ACI may be valid for use 

with high school or middle school students. Finally, the ACI has been developed to make 

diagnostic judgements about groups of students—not high-stakes decisions for individuals—and 

thus the ACI should not be used alone to make high-stakes individual decisions such as course 

placement or successful course completion.  

Discussion and Conclusion 

This study suggests that algebraic conceptual understanding, as conceptualized by the items 

included on the ACI, is a measurable domain with reasonable validity and reliability. Item 

response theory (IRT) analysis resulting in large proportion of items with good discrimination 

parameter estimates, suggesting the ACI can differentiate well between students of various 

levels. Reliability was also excellent for all waves of data collection, and based on reliability 

estimates, even shorter tests can be constructed with excellent reliability for a range of levels of 

algebraic conceptual understanding. Students with higher algebra course prerequisites had higher 

ACI scores, providing evidence of convergent validity. Finally, differential item functioning 

analysis demonstrated that the ACI had satisfactory measurement invariance with respect to 

race/ethnicity, gender, or English-language-learner status.  

However, the ACI in its current form is a summative measurement that provides only one 

measure of students’ algebraic conceptual understanding.  Future research could expand this to a 

more nuanced diagnostic tool that provides more detailed information about the specific 

conceptions that students have and what kinds of instructional approaches may be best adapted to 

students with different conceptions about various algebraic concepts.  This work is ongoing, and 

includes in-depth qualitative analysis of student thinking to more comprehensively map out in 

more detail the various conceptions that students may hold of algebra concepts; work with 

cognitive diagnostic models on ACI items might provide more nuanced diagnostic information; 

exploration of different curricular materials and teaching techniques and the subsequent impact 

on the development of algebraic conceptual understanding.  Our hope is that the ACI will also 

enable other practitioners and researchers to explore these questions as well.   
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Chapter 2:  

Early Algebra, Algebraic Thinking, and Function 
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Mathematical models are powerful tools employed by experts to describe, predict and 

communicate the future course of environmental impacts (Barwell, 2018). I focus on how 

undergraduate students mathematically model solutions to a specific environmental issue: ocean 

plastic pollution. Mathematics provides a lens for students to visualize and quantify the rapid rate 

of plastic entering the ocean, as well as simulate possible solutions to the plastic pollution crisis. 

I provide a preliminary analysis of three groups of students who critically reflect on their 

mathematical model of potential global solutions to ocean plastic pollution. In this study, I ask: 

How do students reflect on the severity of ocean plastic pollution and the urgency for solutions in 

the context of constructing a mathematical model? 

Mathematical modeling tasks provide a realistic learning experience that helps students 

understand real-world applications through mathematics (Keril & Gurel, 2016). Mathematical 

modeling often consists of an iterative process through a sequence of modeling cycles that 

students express, test, and revise their interpretations of a problem (Abbassian et al, 2020). The 

specific type of mathematical modeling employed in this paper involves a socio-critical 

mathematics perspective, which is derived from Skovsmose’s (1994) critical mathematics 

education (CME) framework. Skovsmose’s CME contains the vision that mathematics can be 

used to help students explore issues such as environmental challenges, leading students to reflect 

on how to take action against such challenges. Such critical reflections are an integral part of 

CME and socio-critical mathematical modeling. 

This study took place over two 75-minute periods of an undergraduate college algebra course 

focused on modeling. Students worked in groups of 2-5 to develop mathematical models that 

represented solutions to ocean plastic pollution. At the beginning of the modeling task, students 

were given a prompt derived from real data provided by Ritchie and Roser (2018) on the state of 

ocean plastic pollution since the mid-twentieth century. After learning about the exponential 

growth of ocean plastic pollution and potential solutions to ocean plastic pollution, students were 

tasked with developing a mathematical model for their chosen solution. The data in this study 

consists of the students’ final modeling report, which was qualitatively analyzed to determine 

how students critically reflected on solutions to ocean plastic pollution. 

A preliminary analysis revealed that students noted the importance of both individual and 

collective/global action, as well as the urgency for more severe measures to curtail ocean plastic 

pollution. In particular, one of the groups acknowledged the importance of individual action, 

while the other two groups discussed both individual and global action. As an example, one of 

the groups compared a scenario in which nothing was done to combat plastic pollution to a few 

other scenarios of enacting global plastic bans of varying degrees, finding that such bans can 

prevent millions of tons of plastic from entering the ocean over the course of the next several 

decades. The students in this group noted the need for immediate, large-scale action. Overall, this 
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preliminary analysis provides a window into understanding how students make sense of solutions 

to ocean plastic pollution. This study is a step in the direction of understanding how students 

make sense of solutions to large-scale environmental issues. 
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Elementary students often only experience arithmetic problems with the unknown to the right 

of the equal sign, e.g., 3 + 5 = 8. These limited experiences may result in students thinking that 

the equal sign appears between two numbers or is a signal to complete an operation. Thus, 

arithmetic problems that do not match such thinking (e.g., 3 + 5 = __ + 4) are tricky because 

students often solve them inaccurately using their prior experience (e.g., Knuth et al., 2006; 

McNeil & Alibali, 2002, 2004, 2005). Having students analyze worked examples could expose 

them to thinking about the equal sign as a symbol of equality. Particularly, an incorrect worked 

example can draw students’ attention to why solving 3 + 5 = __ + 4 as 8 or 12 is not adequate. 

We explore whether first and third graders identified the incorrect part of an incorrect worked 

example of 3 + 5 = 8 + 4 and their reasoning. Twenty-seven first graders and 26 third graders 

from a public school in the Midwest, United States participated. We showed them the incorrect 

worked example and asked them whether 8 in 3 + 5 = 8 + 4 was correct and to explain their 

reasoning. Our analysis began with identifying whether students thought the answer of 8 was 

correct or incorrect. If they thought it was incorrect, we further classified their responses based 

on whether they found the correct answer or not.  Next, we analyzed students’ strategies by 

classifying them as having an operational (one side), an operational (two sides), or a relational 

view of the equal sign, or the equal sign as not relevant. We also coded for how students used the 

number four in the problem (i.e., ignores 4, notices 4, adds 4, considers 4+4, part of equality). 

Out of the 53 students, 58% identified that 8 was not correct, but only 40% of students provided 

the correct answer. Students’ uses of the number four in the problem often aligned with a certain 

interpretation of the equal sign and specific solution strategies. Out of the 53 students, 19 of them 

(36%) ignored the four on the right side of the equation, using an operational (one side) view of 

the equal sign. Likewise, these students interpreted the problem as 3 + 5 = __ and thought the 

answer of 8 was correct. Three students (6%) made some reference to the four on the right side 

of the equation but did not do anything with it, maintaining an operational (one side) view of the 

equal sign. Beyond noticing the four, five students (9%) added it on to their total, demonstrating 

an operational (two sides) view of the equal sign. Three students (6%) mentioned the addition 

fact 4+4 but did not use it in their final answer. For example, a third grader agreed that 8 would 

be the correct answer in the blank, explaining, “Yes, because if you have five fingers and you put 

up three, it’s eight.” However, she continued without stopping, “Four plus four equals 

eight.” Finally, 23 students (43%) used the equality of amounts on either side of the equal sign to 

determine that eight would not be correct, suggesting a relational view of the equal sign. Overall, 

students used similar strategies to those in previous studies (e.g., McNeil & Alibali, 2004, 2005), 

suggesting that responding to incorrect worked examples can provide similar information about 

students’ understanding as having students solve problems on their own.  
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Problem-posing can enhance math learning, but the effectiveness of different scaffolding 

approaches is not well understood. In this study, 120 College Algebra students posed problems 

related to their interests in popular culture (e.g., video games) or STEM careers (e.g., healthcare), 

using optional scaffolds (video, template, or example problem) for personalized problem-posing. 

The quality of the problems and measures of math interest were assessed. Results indicate that 

different scaffolds support different problem-posing outcomes, varying by learner and course. 

Keywords: Algebra and Algebraic Thinking; Undergraduate Education 

College Algebra is often the first college-level math course for many students. In Texas, 

many students take corequisite College Algebra courses, simultaneously enrolled in 

developmental and credit-level math due to not being college-ready based on assessments like 

the SAT (Texas Higher Education Coordinating Board, 2018). Approximately 60% of college 

students are in corequisite courses, with 66% being Black and Latinx and around 70% being 

first-generation college students (Grubb et al., 2021; Brathwaite et al., 2020; Nix et al., 2020). 

Making math content relevant is crucial, as students often view it as disconnected from real 

life (McCoy, 2005) and question its practical use (Chazan, 1999). Relevance interventions are 

essential in gatekeeper courses like College Algebra (Riegle Crumb et al., 2019). This study 

combines personalization and utility value (UV) interventions by having students create math 

problems based on their interests. Personalized learning has shown benefits for corequisite 

students (Darwin et al., 2022), but research on problem-posing interventions is limited. 

Problem-posing, where students generate new mathematical problems through inquiry 

(Silver, 1994), is enhanced by several approaches such as reviewing others' problems (Brown & 

Walter, 1990), interacting with an authentic audience (Crespo, 2003), receiving guidance and 

examples (Walkington & Bernacki, 2015), collaborating with peers (Walkington & Hayata, 

2017), and working within familiar contexts and artifacts (Bonotto, 2013; English, 1998). 

Problem-posing can be free, semi-structured, or structured (Stoyana & Ellerton, 1996), with the 

most effective strategy combining open-ended tasks with structured guidelines (Wang et al., 

2022). Further, it can outperform problem-solving if students solve the problems they create 

(Kapur, 2015). 

Problem-posing is key in mathematics education to promote productive struggle (Cai & 

Hwang, 2023). Personalizing problem-posing activities, such as allowing students to pose 

problems about personal interests (e.g., sports, social networking) or career interests (e.g., 
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nursing, IT), shows great potential in enhancing mathematics learning (Walkington et al., 2024; 

Walkington et al., 2022; Walkington, 2017; Walkington & Bernacki, 2015). 

We explored the effects of different scaffolds on students' math interest and problem quality, 

focusing on corequisite versus traditional students. Our research questions (RQs) were: (1) How 

does using instructional resources during algebra problem-posing relate to students' (a) STEM 

career interest and (b) math interest outcomes?, (2) How does resource use during problem-

posing relate to the quality of the problems posed?, and (3) How do these effects vary for 

corequisite students specifically? 

Theoretical Framework 

Problem-posing involves students creating novel mathematical problems through inquiry 

(Silver, 1994). Personalized problem-posing allows students to design word problems related to 

their career (Walkington et al., 2022) or personal interests (Walkington & Bernacki, 2015). 

Interest, defined as engagement and the tendency to re-engage with specific areas (Hidi & 

Renninger, 2006), is linked to improved performance and learning (Renninger & Hidi, 2022). 

Connecting content to students' interests, such as popular culture or career aspirations, can 

trigger and sustain situational interest. Personalization helps students appreciate and understand 

math's application in their interest areas (Walkington & Bernacki, 2015). 

However, students often find problem-posing challenging, needing to understand problem 

characteristics like formulating questions and ensuring mathematical relevance (Silver & Cai, 

1996; Van Harpen & Sriraman, 2013; Yu et al., 2005). Evaluating the quality of posed problems 

involves criteria such as originality, complexity (Silver & Cai, 2005), and realistic responses to 

constraints (Verschaffel et al., 2009). Problem-posing requires students to choose appropriate 

units, incorporate realistic quantities, and possess sufficient prior knowledge (Yu et al., 2005). 

Walkington and Bernacki (2015) found that students struggling with algebra problem-posing 

often had difficulty articulating the necessity of an intercept term, connecting independent and 

dependent quantities, and devising multiplicative scenarios. 

Methods 

In this study, n=120 students enrolled in College Algebra courses in the United States 

completed online activities in ASSISTments where they posed problems related to their interests. 

Sixty students identified as female, 52 as male, 8 as other/NA; 76 identified as White, 11 as 

Black, 8 as Asian, 1 as American Indian, 6 as Pacific Islander, 10 as Other/Multiple Races, and 8 

NA; sixty-one students identified as Non-Hispanic, 51 as Hispanic, and 8 as NA. Students were 

enrolled in online and in-person College Algebra courses, covering linear, quadratic, exponential, 

logarithmic, and power functions. There were 63 corequisite students and 57 students enrolled in 

a traditional College Algebra course. 

Students were randomly assigned one of four conditions (business-as-usual, career-posing 

[CP], career-solving, pop-posing [PP]). In the CP condition, the students would pose algebra 

problems based on a STEM career interest (i.e., Business/Finance, Earth/Space/Chemical 

Sciences, Engineering, Health Care Services, Information Technology, Natural Sciences, Social 

Sciences, STEM teaching). In the PP condition, students would pose algebra problems based on 

a chosen popular culture interest (i.e., Shopping, Social Media, Sports, Video Games). These 

categories were chosen based on surveys and interviews with students. In this study, we focus on 
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the PP (n=55) and CP (n=65) conditions, as these conditions had different scaffolds/resources 

tested (templates, examples, and videos; see Figure 1) for problem-posing. Students received 

three types of support: (1) a video showing the application of mathematics in their area of 

interest, (2) a template to help construct a problem with relevant quantities and units, and (3) an 

example problem using the unit's function in their interest area. Students then used these 

scaffolds to pose a math problem. Following each unit, students rated their interest in  

Figure 1: Scaffolds for problem-posing available to students in the present study 

mathematics using an eight-item scale (Linnenbrink-Garcia et al., 2010) and their interest in one 

of eight STEM careers using the CABIN scale (Su et al., 2019). The quality of the problems 

posed by students was assessed using a rubric from prior studies (e.g., Walkington et al., 2022; 

Table 1), which included 4 sections scored on a 0-1 scale with multiple indicators per section. 

 

Table 1: Overview of rubric for rating the quality of students’ posed problems 

Rubric Section Description  

Part A: Quality of Context Rich and authentic narrative story in posed context  

Part B: Mathematical 

Validity 
If posed problem is solvable and consistent 

Part C: Mathematical 

Complexity 

Complexity of terms, numbers, and parameters 

chosen. 

Part D: Mathematical 

Language 
Valid and precise mathematical language is used  

Part E: Originality 
How closely problem resembles scaffolded 

example  

Note. Contact the authors for a full rubric of how these parts were operationalized. 
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Results 

To address RQ 1, when examining all students, regression with a hierarchical linear model 

showed no overall association between students’ scaffold use and their post-unit STEM career 

interest. However, corequisite students specifically showed an increase in their post-unit STEM 

career interest per each video watched (β = 0.29, SE = 0.11, p = .009), but a decrease per each 

template used (β = -0.31, SE = 0.10, p < .001). For traditional and corequisite students, there was 

no significant association between scaffold use and post-unit math interest.  

To address RQ 2, analyses of problem quality dimensions indicated that, when examining all 

students, students’ use of the example problem scaffold was associated with an increase in the 

mathematical accuracy of the algebra problems they posed (β = 0.26 per example, SE = 0.12, p = 

.037) and an increase in overall quality of the problems they posed (β = 0.27 per example, SE = 

0.13, p = .032). After removing the set of posed problems where students directly cut and paste 

from the provided template, template use was still associated with a decrease in problem 

originality (B = -0.42, SE = 0.15, p = .004) per template used in both conditions. When looking 

at corequisite students and the interactions with treatment, we found that when using the 

template scaffolds, there was an increase in the mathematical complexity (β = 0.40, SE = 0.20, p 

= .041) and mathematical language used (β = 0.46, SE = 0.21, p = .027) of problems they posed. 

To address RQ 3, a comparison between the corequisite students and how they used scaffolds 

compared to traditional students can be found in Table 2; generally, corequisite students utilized 

the scaffolds more frequently, although this only reached statistical significance for the videos. 

 

Table 2: College Students’ Engagement with Scaffolds 

Variable Corequisite Traditional t(df) p Cohen’s d 

 M SD M SD    

AU Video .56 .50 .45 .50 -2.31(499) .02* .22 

AU Template .69 .46 .69 .47 -.07(499) .94 0 

AU Example .64 .48 .58 .50 -1.38(449) .17 .12 

U1 Video .76 .43 .79 .41 .44(140) .66 .07 

U1 Template .87 .34 .83 .38 -.64(140) .52 .11 

U1 Example .82 .39 .77 .43 -.73(140) .47 .12 

U2 Video .46 .50 .40 .50 -.60(113) .55 .12 

U2 Template .57 .50 .67 .48 1.10(113) .16 .20 

U2 Example .50 .50 .47 .51 -.35(113) .37 .05 

U3 Video .32 .47 .21 .41 -1.09(80) .28 .25 

U3 Template .50 .51 .53 .51 .24(80) .82 .06 

U3 Example .45 .50 .42 .50 -.30(80) .76 .06 

U4 Video .57 .50 .30 .47 -2.78(110) .01* .57 

U4 Template .70 .46 .67 .47 -.23(110) .82 .06 

U4 Example .68 .47 .60 .50 -.82(110) .41 .16 

Note. Engagement was calculated on a 0-1 scale if the student clicked on the scaffold; *p < .05. 

All Units = AU; Unit 1 = U1; Unit 2 = U2; Unit 3= U3; Unit 4 = U4. 

 

Discussion and Significance 
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This study examined various scaffolds for mathematical problem-posing and their effects on 

math interest, STEM career interest, and the quality of problems posed by college students. We 

focused on differences between corequisite students (those not deemed "college ready" in 

mathematics) and traditional students. Key findings include: (1) Corequisite students used video 

scaffolds more than traditional students, which increased their STEM career interest; (2) The 

template scaffold for corequisite students decreased STEM career interest but increased the 

complexity and use of mathematical language in their posed problems; and (3) Example 

problems improved accuracy and overall quality of posed problems for all students. 

The findings indicate that different scaffolds affect various outcomes: videos promoting 

relevance boost motivation, while templates enhance mathematical language use. Students with 

different mathematical backgrounds may need different supports; this intervention showed 

promise for corequisite students. Subtle differences in scaffold design significantly impact 

problem posing activities and interests, warranting further investigation in math education. 
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Texas higher education is transitioning to a corequisite model, where students take 

developmental and traditional mathematics classes concurrently. However, little is known about 

supporting corequisite students, particularly minorities and first-generation college students 

(FGCS). This study examined the impact of gamification on corequisite students’ mathematical 

self-efficacy (MSE) and games self-efficacy (GSE) in both online and in-person courses. Based 

on the course survey data, students exhibited gains in MSE and GSE overall, in the online 

modality, and among FGCS and female students. The results suggest that gamification has the 

potential to support algebra corequisite students, particularly females, FGCS, and online. 

Keywords: Affect, Emotions, Beliefs, and Attitudes; Algebra and Algebraic Thinking; Online 

and Distance Education; Undergraduate Education 

Texas House Bill 2223 transitioned developmental students to the corequisite model, where 

students take their developmental and traditional mathematics courses concurrently (Texas High 

Education Coordinating Board, 2018). While the corequisite model provides a framework for 

student support, primarily broad-based reforms currently exist (Texas Corequisite Project, 2020). 

Some studies have been conducted to see how interventions aid corequisite students in 

mathematics (e.g., personalized learning to students’ interest; Darwin et al., 2022) or how the 

instructor may influence student learning (Darwin & Ataide Pinheiro, 2023), but these studies are 

few. This model deserves attention because 60% of all college students will take a corequisite 

course (Grubb et al., 2021). Of those students, a disproportionate 66% are Black and Latinx, 70% 

of whom are first-generation college students (FGCS; Brathwaite et al., 2020; Nix et al., 2020).  

Course modality also contributes to corequisite students’ academic success. 97% of two-year 

colleges offered online courses (Community College Research Center [CCRC], 2013), and 

students deemed not college ready are more likely to fail/withdraw (62%) compared to face-to-

face students (43%) for online learning. Further, these students enrolled in online courses have 

lower academic success compared to face-to-face students (Coleman et al., 2017; Ryu et al., 

2022). 

One reform-based strategy that has been successful with college-level mathematics students 

is gamification (Faghihi et al., 2014; Lanuza, 2020), which is the process of using game-design 

elements in a non-game context (Putz et al., 2020). Gamification is often associated with 

increases in student motivation, engagement, and learning compared to traditional instructional 

strategies (Manzano-León et al., 2021) while reducing anxiety (Turan et al., 2016), especially in 

mathematics (Shyr et al., 2021). While gamification is a promising instructional strategy for 

college students enrolled in math courses (Faghihi et al., 2014; Lanuza, 2020; Putz et al., 2020), 

there is little research on the impact of gamification on corequisite courses in mathematics, both 

in general and specific to course modality. The purpose of this research project is to contribute to 

that knowledge by examining how gamification influences online and face-to-face corequisite 
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courses in terms of mathematical self-efficacy (MSE) and game self-efficacy (GSE) by pursuing 

the following RQ: What is the difference in students’ MSE and GSE after participating in a 

gamified College Algebra in-person or virtual corequisite mathematics course? 

Theoretical Framework 

Self-efficacy, an extension of Bandura’s (1993) Social Cognitive Theory, measures how 

students’ self-beliefs influence learning and performance (Chan & Abdullah, 2018). Self-efficacy 

is an individual’s perception of their level of functioning in a situated task by making “judgments 

of their capabilities to organize and execute courses of action required to attain designated types 

of performances” (Bandura, 1986, p. 1167).  

Self-efficacy and motivation are closely related (Bandura, 1993; Morris et al., 2017), 

particularly in mathematics (Skaalvik et al., 2015). According to Bandura (1989), “people’s self-

efficacy beliefs determine their level of motivation, as reflected in how much effort they will 

exert in an endeavor and how long they will persevere in the face of obstacles” (p. 1176). 

Klassen and Tze (2014) defined motivation as “a set of beliefs that influence people’s movement 

towards the attainment of valued goals,” which is obtained through choice, effort, and 

persistence behaviors (p. 1). According to Bandura (1977), self-efficacy is commonly understood 

as domain and context-specific, meaning one can have different levels of self-efficacy in 

different domains or for particular situations of functioning. For example, a students’ self-

efficacy in mathematics and towards games could be different, warranting the need for each 

construct (i.e., GSE, MSE) to be measured and explored separately. Therefore, this study 

examined how a mathematics gamification intervention influenced MSE and GSE. 

Methods  

Participants were 72 students (48 online, 24 in-person) enrolled in four algebra corequisite 

courses (two online and two in-person) at a community college in North Texas. Students 

completed a 36-question pre- and post-survey containing Likert-style questions addressing MSE 

and GSE at the beginning and end of the course. MSE questions were taken from Florella et al.’s 

(2021) Mathematics Motivation Questionnaire (MMQ) - a validated measure of intrinsic value, 

self-regulation, self-efficacy, utility value, and test anxiety (Cronbach’s alpha of α = .93). The 

authors designed GSE questions to determine the types of games (educational versus 

entertainment) and the extent to which students played games in and outside the classroom. The 

post-survey also included three free-response (FR) questions asking the students to describe their 

gamification experiences within the course. 

Games were implemented weekly and aligned with course material. The games were simple 

and typically based on common childhood or icebreaker games (e.g., Red Light-Green Light and 

Two Truths and a Lie). The authors purposefully opted for what Liberoth (2015) refers to as 

shallow gamification or framification, so the games selected were simple to learn, could easily be 

applied to any content or curriculum, and could be readily adopted by teachers for classroom 

use. Online students completed the games in teams selected randomly by the professor; in-person 

students chose their partners. The content and game elements were consistent between online and 

in-person classes; however, slight modifications were made for the different modalities (e.g., in-

person teams worked face-to-face, while online students collaborated through Google Slides).  
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Results 

Overall, 31 students completed both the pre-and post-survey (19 online students and 12 in-

person students; see Table 1). A two-way ANOVA revealed a statistically significant increase 

overall for both MSE and GSE from the pre to post-survey, and students in the online course 

demonstrated a significant increase in both MSE and GSE post-survey responses.  

 

Table 1: Pre and Post-Survey Data on Student MSE and GSE 

Variable (n) Pre-Survey Post-Survey t(df) p Cohen’s d 

M SD M SD 
   

MSE 
       

     Overall (31) 3.31 .71 3.53 .66 2.66(30) .012* .45 

           Online (19) 3.19 .68 3.48 .67 2.46(18) .024* .51 

           In-person (12) 3.51 .74 3.62 .70 1.08(11) .303 .35 

GSE 
       

     Overall (31) 3.63 .63 3.87 .60 2.63(30) .013* .52 

           Online (19) 3.55 .58 3.80 .65 2.21(18) .04* .50 

           In-person (12) 3.75 .71 3.99 .53 1.41(11) .187 .58 

Note. MSE = mathematical self-efficacy. GSE = games self-efficacy. MSE and GSE were 

measured on a 1-5 Likert scale. *p < .05. 

 

In addition to modality, an ANOVA was run to detect differences in gender, ethnicity, FGCS, 

and emerging bilinguals in the survey data. The ANOVA revealed a significant gender difference 

in the pre-MSE (F = 5.09, p = .032) and pre-GSE (F = 9.15, p = .005) surveys, with no 

significant difference in the post-MSE or post-GSE survey. Additionally, there was a statistically 

significant difference in the post-MSE survey for FGCS (F = -5.06, p = .032). No other 

demographics showed statistically significant differences. 

Free-Response Results 

Post-survey FRs by participants suggested the students overall enjoyed the intervention. 

Some online students appreciate the intellectual benefits of gamification (e.g., reinforcement, 

instructional support, and understanding of the material), as they reported: “We got to use our 

brains, and practice out problems in a low-stakes environment” and “I feel that it was easier for 

me to grasp the concepts we have learned via Google slide games as we were able to learn the 

materials enjoyably.” Further, some in-person students appreciated how gamification made the 

material fun and competitive, mentioning that “it was a fun experience, I learn better doing 

educational games” and “it helps me think faster since it’s a game.”  
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Generally, the in-person students enjoyed the collaborative aspect of the games, focusing on 

the benefits obtained from the learning experience. For example, “I loved how we were all able 

to collaborate and put all our brains together to figure out the problem,” and “it was something 

new and productive. It let me make conversations with new people while still learning and 

listening to new perspectives.” However, the online students reported mixed results in the 

collaborative component online, as there was a lack of consistency among teammate interactions: 

e.g., “It was ok, not many students this semester were really involved” and “I felt as if it was 

very interactive where we had to comment on our 3 group mates as to what we think as well. It 

was also encouraging when you got the answer correct and the 3 agreed.” 

 

Discussion 

Consistent with the studies done by Lanuza (2020) and Shyr et al. (2021), incorporating 

gamification in the college mathematics classroom saw an increase in MSE survey results and 

student enjoyment. Similarly, the results of this study showed an overall increase in survey 

results for MSE and GSE, suggesting that the students not only strengthened their mathematical 

knowledge and skills but also cultivated positive attitudes toward their perceptions of 

mathematics and gamification.  

The results of this study differed from the literature in terms of modality. Most studies on 

online and corequisite mathematics courses show students fare no better and often do worse in 

online environments compared to face-to-face (Ashby et al., 2011; CCRC, 2013; Ryu et al., 

2022). However, this study demonstrated that the online modality significantly increased MSE 

and GSE, whereas there was no significant difference in the in-person survey data. Therefore, 

gamification may be an effective intervention for online corequisite students. These results were 

supported by free-response data, where online students appreciated the support and 

reinforcement gamification provided, even if the collaborative aspects were not as strong as the 

in-person environment. Given the little research that exists on how to support online 

developmental mathematics students (Ashby et al., 2011), this study provides critical knowledge 

to those teaching online corequisite mathematics courses. 

The pre-survey for both MSE and GSE showed a significant difference between males and 

females, with males scoring higher in their MSE and GSE. This aligns with the research, where 

females often report less confidence in their ability to do mathematics due to societal factors 

such as the stereotype threat (Buck et al., 2020), and males are often perceived as better at games 

(Rice et al., 2015). While the pre-survey data confirmed these findings in the literature, the post-

survey data showed no significant difference between males and females for both MSE and GSE, 

suggesting that gamification can be a powerful tool in helping female mathematics corequisite 

students become more confident in their mathematics skills and abilities. 

An opposite pattern existed in FGCS MSE, with no significant difference between FGCS and 

non-FGCS in the pre-survey but a significant difference in the post-survey. FGCS became 

increasingly confident in their MSE at rates greater than their non-FGCS peers. Again, these 

results contradict the literature, which suggests FGCS have lower MSE and struggle in 

mathematics corequisite courses (Brathwaite et al., 2020). Yet, in this study, FGCS outstripped 

their peers in the MSE after the gamification intervention. High failure/withdrawal rates are 

among the greatest challenges plaguing mathematics students placed in developmental courses 
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(CCRC, 2013). The results of this study add to a growing body of knowledge that gamification 

can be an effective strategy for improving student motivation and self-efficacy. As students 

become more engaged and confident in their abilities to succeed in their mathematics corequisite 

courses, they are more likely to persist and complete these courses. Corequisite course 

completion rates are crucial as they are often considered gatekeeping courses to achieving an 

associate's or bachelor's degree (Brathwaite et al., 2020). While this creates a financial incentive, 

as college degrees are often considered essential to obtaining high-paying jobs (Crisp et al., 

2021), this is also an equity issue as the majority of students in corequisite courses are minorities 

and FGCS. This study demonstrated that gamification is an effective strategy to increase 

engagement and MSE, yet more research is needed to see if these gains translate into a reduction 

in corequisite course failure/withdrawal rates, particularly among marginalized students. 

Further, these findings are promising, but additional research is needed on the influence of 

gamification in mathematics corequisite minority groups and emerging bilinguals. Limitations of 

this study are the small sample size taken from a single community college. 
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En el presente artículo se exponen los resultados de una investigación cualitativa relacionada 

con el pensamiento funcional que exhiben estudiantes universitarios al describir una situación 

problema cercana a la vida real relacionada con la función escalonada. Se diseñó una tarea y se 

implementó en un ambiente online, mediante el uso de la plataforma Zoom. La revisión de 

literatura que se utilizó para el análisis de los resultados se basó en el Pensamiento Funcional. 

Los participantes en este estudio fueron 14 estudiantes de primer semestre de nivel universitario. 

Como resultado se observó la evolución del pensamiento funcional de los estudiantes exhibido a 

través de las representaciones verbales y gráficas, las cuales se fueron refinando y adaptando 

mejor a la situación problema. 

Palabras clave: Resolución de problemas, representaciones matemáticas, precálculo y tecnología. 

Introducción 

Dentro de los distintos tipos de funciones que existen, podemos encontrar la función 

escalonada. Varios investigadores (De Villiers, 1988; Kaput y Roschelle, 2013; Smith, 2008; 

Pittalis, Pitta-Pantazi, y Christou, 2020 y Vargas-Alejo, Reyes y Escalante, 2016) han 

identificado que los estudiantes -de distintos niveles educativos- presentan dificultades para 

resolver situaciones problema asociadas a esta función. Algunas de estas dificultades pueden 

deberse a que los estudiantes no suelen resolver problemas asociados a funciones de carácter no 

continuo y constante, así como también puede deberse a que necesitan desarrollar su 

pensamiento funcional [PF]. El objetivo de esta investigación fue analizar el PF que exhiben los 

estudiantes universitarios durante la resolución de una situación problema asociada a la función 

escalonada. La pregunta de investigación fue ¿Cómo es el PF que externan los estudiantes al 

resolver la situación problema “Campeonato Olímpico 2022”? La situación problema incluida en 

la tarea puede ser descrita mediante una función escalonada. La investigación se realizó en la 

plataforma Zoom, debido a la pandemia COVID-19.  

Revisión de Literatura 

Pensamiento Funcional 

Aprender matemáticas, con base en el PF, implica que los estudiantes busquen y generalicen 

patrones y relaciones mediante el uso de distintas representaciones (Kaput, 2008). El PF se 

define como “una actividad cognitiva que se centra en la relación entre dos (o más) cantidades 

variables, específicamente en los tipos de pensamiento que se derivan de una relación específica 

a generalizaciones de esa relación entre instancias” (Smith, 2008, p. 143). Smith (2008) propuso 

tres tipos de pensamiento funcional [TPF]: a) recurrencia, b) covariación y c) correspondencia. 

mailto:carlos.flores@unaq.mx
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Panorkou y Maloney (2016), con base en investigaciones de Smith (2008), extendieron esta 

clasificación a cuatro TPF: a) covariación cualitativa, b) covariación cuantitativa, c) covariación 

cuantitativa y visualización de la relación como una línea en el plano de coordenadas y d) 

correspondencia y covariación. 

Metodología 

La investigación se llevó a cabo con un enfoque cualitativo, ya que interesaba conocer los 

TPF exhibidos por los estudiantes y cómo estos se refinaron al resolver la situación problema. 

Los participantes fueron 14 estudiantes, de 18 a 20 años, quienes estaban cursando por primera 

vez el curso de cálculo diferencial de primer semestre de la Licenciatura en Ingeniería 

Mecatrónica, Industrial y Química. Por lo tanto, los estudiantes desconocían el concepto de la 

función escalonada. Los estudiantes fueron organizados en equipos (A, B, C y D). Para este 

estudio se diseñó una tarea que incluía la situación problema “Campeonato Olímpico 2022” la 

cual puede ser resuelta mediante el concepto de función escalonada. La duración de la 

implementación de la tarea fue de 110 minutos aproximadamente. Las fuentes de datos fueron: a) 

la videograbación de la sesión, b) procedimientos de los estudiantes y c) las notas del profesor. 

Para el análisis de los datos, se adaptaron los TPF propuestos por Panorkou y Maloney (2016) 

para describir el PF de los estudiantes (Tabla 2) durante la resolución de la situación problema. 

Debido al poco espacio en este documento se eligió presentar el análisis del trabajo del equipo D.  

 

Tabla 2: Niveles de Pensamiento Funcional (Adaptado de Panorkou y Maloney, 2016) 

 

TPF Descripción Comportamiento 

PF1 Variación El estudiante exhibe pensamiento de variación, es decir, 

puede identificar el patrón de cambio de una o más 

cantidades que varian. 

PF2 Covariación 

Cualitativa 

El estudiante no solo exhibe pensamiento de variación, 

sino que identifica y relaciona cualitativamente las 

variables que están involucradas en la situación problema. 

PF3 Covariación 

Cuantitativa 

El estudiante no solo exhibe covariación cualitativa, sino 

que identifica y relaciona cuantitativamente las variables 

que están involucradas en la situación problema. 

 

Resultados y Discusión 

En esta sección se describen y discuten, por episodios, los resultados del equipo D con base 

en los TPF que los estudiantes exhibieron (Tabla 3).  

 

Tabla 3: TPF exhibidos por el Equipo D 

 

Equipos Estudiantes Primer Episodio Segundo Episodio Tercer Episodio 
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D 𝑑𝑘 

𝑘 = 1,2,3 

PF1 con 

representación 

verbal y escrita 

PF2 y PF3 con 

representación 

escrita y verbal 

PF2 y PF3 con 

representación escrita, 

verbal y gráfica 

 

Primer Episodio 

Durante la resolución de la situación problema planteada, el Equipo D realizó una primera 

propuesta (Figura 1), la cual se caracterizó por una tabla de Excel y una gráfica de puntos. 

 

 
 

Figura 1: Primera tabla y gráfico del Equipo D  

 

El equipo D exhibió Variación [PF1] puesto que identificó el patrón de cambio en cada una 

de las variables: precio de hospedaje y días. Aunque detectó cierta covariación cualitativa y 

cuantitativa [PF2 y PF3], su PF fue inestable en esos niveles. Es decir, tuvo dificultades para 

describir y relacionar las representaciones gráfica y tabular; lo cual puede observarse en la 

siguiente conversación.  

𝑑2:  Si las gimnastas se quedan aquí [Hotel Tokyo Grand Palace], entonces pagan tres 

días a 7,500 y luego 4,500. 

P:   ¿Por qué son 7,500 y 4,500? 

𝑑1:  Es que son 2,500…2,500…y 2,500 [PF1] en cada día. No cambia. 

P:   Interesante, pero oigan ¿qué pasa aquí [Señaló el intervalo de cero a dos con el 

puntero a su gráfico] en el contexto del problema? 

𝑑3:  Pues lo que dijo 𝑑2, ah no… ¡Espere! No sé. Algo está mal. 

La interacción con el profesor permitió al equipo autoevaluar sus procedimientos y 

redireccionarlos. Esto coincide con lo mencionado por Pittalis et al. (2020), en el sentido que las 

primeras respuestas de los estudiantes tienden a tener un PF inestable, pero pueden refinarse. 

Segundo Episodio 

El equipo construyó una gráfica tipo poligonal (Figura 2) adaptada a su nueva propuesta con 

otro presupuesto que respondiera a la situación problema.  
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Figura 2: Carta y gráfico del Equipo D  

 

El equipo exhibió cierta Covariación Cuantitativa [PF3] en la descripción de su carta, puesto 

que no sólo identificó un patrón de cambio en las variables costo y noches [PF1], sino que 

también describió la relación entre las variables de manera cualitativa [PF2] y cuantitativa [PF3]. 

Parte del PF2 puede observarse en su carta cuando escribió “las siguientes tres noches baja el 

costo si se hospeda en el hotel dragón” y el PF3 se observa cuando en su carta escribió “sería 

aumentar a 6,600 las siguientes tres noches y sería $2,400 las siguientes tres noches”, además de 

en la gráfica. No obstante, cuando el profesor le preguntó al equipo “¿qué sentido tiene la unión 

de los puntos de su nuevo gráfico dentro del contexto del problema?”, presentaron dificultades 

para describirla, mencionaron que “la curva tenía que ser continua, por lo que no habían 

encontrado otra forma de describirla más que uniendo los puntos”. Esto concuerda con 

investigaciones previas de De Villiers (1988), Kaput y Roschelle (2013) y Vargas-Alejo et al. 

(2016), que señalan que los estudiantes tienden a resolver situaciones problema con funciones 

continuas y suelen unir puntos al intentar graficar este tipo de funciones o bien están 

acostumbrados a hacer gráficas continuas sin reflexionar sobre su significado. 

Tercer Episodio 

Después de que cada uno de los equipos expusieran sus resultados, el profesor les sugirió 

tomar en cuenta los comentarios recibidos. El equipo D modificó su gráfico (Figura 3), 

exhibiendo así Covariación Cuantitativa [PF3]. 

  

 
 

Figura 3: Gráfico del Equipo D  

 

El equipo expuso su nueva gráfica y le explicó al docente que “la función ya no tenía un 

carácter continuo y, por lo tanto, había intervalos donde la relación entre el precio y la cantidad 

de noches tenía un carácter de tipo constante”.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

152 
 

Reflexiones finales y conclusiones 

En respuesta a la pregunta de investigación se observó que, el PF de los estudiantes del 

equipo D, externado al resolver la situación problema, se fue refinando con base en las distintas 

interacciones en el aula. En el episodio 1, el equipo D exhibió un PF1. Presentó dificultades para 

explicar la covariación en su representación gráfica, y darle significado en términos del contexto 

del problema. La gráfica no se adaptaba a sus descripciones de tipo verbal y escrita. En el 

segundo episodio, redireccionó su forma de pensar y, no solo logró responder a la situación 

problema planteada, sino que exhibió un desarrollo de su PF. Finalmente, exhibió un PF3, ya que 

en el tercer episodio construyó un gráfico que se adaptaba mejor a su descripción escrita y 

verbal. Se concluye, por lo tanto, que el PF de los estudiantes asociado a la situación problema 

cambió y se refinó durante el proceso de resolución a partir de la interacción con el profesor y los 

compañeros. 

Reconocimiento 

La investigación tuvo apoyo de CONACYT mediante las becas de estudiantes de posgrado. 
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Mathematical equality and equivalence are critical concepts that span K-12 and tertiary 

education. Few studies use sociocultural approaches to examine thinking about equivalence in 

postsecondary education. This case study utilizes a discursive approach to explore how one 

student graduating from a developmental mathematics program at a community college thinks 

about equality and equivalence. We analyze this student’s word use, visual representations, 

routines, and narratives as components of her discourse to explore the patterns in her thinking. 

The results provide the student’s rich and nuanced thinking while revealing when and how 

consistencies and inconsistencies occur in her thinking. Questions allowing students to generate 

their own examples and definitions can be useful in eliciting their thinking and a discursive 

approach can have implications in enhancing communication in postsecondary classrooms. 

Keywords: Algebra and algebraic thinking, communication, mathematical representations, 

undergraduate education  

Introduction 

Mathematical equivalence is a critical concept that spans K-12 and tertiary education (Kaput 

et al., 2008) during which students form their realizations associated with equivalence and its 

signifiers (e.g., equal sign). College students’ thinking about equality and the equal sign can be 

consistent with those of middle school students (Fyfe et al., 2020) but the specific ways 

undergraduate students think about equality and equivalence are relatively unknown. More 

research is needed to explore how postsecondary students interpret equality, the equal sign, and 

equivalence (Kieran & Hernandez, 2019). Existing research on equivalence and equality 

predominantly uses cognitive lenses whereas we extend existing frameworks by using a 

sociocultural, discursive framework. Our approach reveals the rich thinking of students as well 

as identify consistencies and inconsistencies in their thinking about equality and equivalence, 

having implications for enhancing communication in postsecondary classrooms. We particularly 

focus on equality and the equal sign as aspects of equivalence (Emre-Akdoğan, 2023; Kieran, 

1981; Knuth et al., 2006; McNeil et al., 2006) and address the following research question: How 

does one student who graduated from a developmental mathematics program at a community 

college think about equality and equivalence in the context of single-variable equations?   

Theoretical Framework   

We use Sfard’s (2008) commognitive framework, which considers mathematics as a 

sociocultural activity and thinking as a form of communication with one’s self. From this 

perspective, examining participants’ thinking is tantamount to examining their communication 

through their discourses. Sfard (2008) views mathematics as a discourse and identifies the 

components of mathematical discourse as word use, visual mediators, routines, and endorsed 

narratives. Word use refers to colloquial and specialized vocabulary used for mathematical 
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communication; visual mediators are visual tools and signs participants generate and use to 

realize mathematical objects; routines are set of metarules that characterize the patterned actions 

participants use as they substantiate their mathematical discourses; endorsed narratives refer to 

the narratives that participants consider to be true about mathematical objects and their 

relationships (Sfard, 2008). Students’ endorsed narratives can be idiosyncratic and different from 

those endorsed by the experts in mathematical communities (Güçler, 2014, 2016). 

A metarule of focus in this study is saming, through which participants assign “one signifier 

(giving one name) to a number of things that, so far, have not been considered as in any way “the 

same” but are mutually replaceable in a certain closed set of narratives” (Sfard, 2008, p. 170). 

Saming is a critical component of realizing equivalence because a conceptual interpretation of 

equality and the equal sign requires viewing them relationally as signifying equivalence or 

sameness (Emre-Akdoğan, 2023; Kieran & Hernandez, 2019; Knuth et al., 2006). We explore 

our participant’s spectrum of characterizations of equality, the equal sign, equivalence and 

sameness through a discursive perspective in the context of equations involving single-variables.   

Methodology 

We use a qualitative case study design to examine how one student who graduated from a 

developmental mathematics program at a community college thinks about equality and 

equivalence. Rae (a pseudonym) completed her developmental mathematics coursework at a 

rural community college in Eastern U.S. and hoped to continue her education to become a 

paralegal. The data collection was based on a semi-structured interview that included open-ended 

questions and tasks about equality and equivalence to elicit Rae’s thinking. The open-ended 

questions focused on Rae’s realizations of equality and equivalence where she was asked to 

explain what those terms meant to her, generate examples for each, and define the terms in her 

own words. Due to space reasons, we only focus on the open-ended part of the interview about 

equality because it provided authentic information about Rae’s thinking based on her own 

discourse and examples. The interview was video-recorded and transcribed verbatim with a focus 

on Rae’s words (what is said) and actions (what is done) (Sfard, 2008).  

When analyzing data, we focused on the words and visual mediators Rae used as she 

communicated about how she realized equality and equivalence. We were particularly interested 

in her realization and use of the equal sign as a visual mediator. Whereas the visual mediators 

refer to the visual tools and signs Rae used, when and how she used them would indicate the 

routines in her discourse. We also explored whether and how she used saming as a routine during 

the interview. Finally, we explored explicit as well as implied narratives Rae generated about 

equality and equivalence to elicit her endorsed narratives.  

Results  

In the transcripts provided, I refers to the interviewer and R refers to Rae. Rae’s actions are 

provided in parentheses in conjunction with her word use and narratives. At the beginning of the 

interview, we asked Rae to explain what equality means to her. Her response was as follows:  

1. I: What does equality mean to you? 

2. R: Being equal, yeah, numbers being. Well, there are solution. Always a solution to a 

problem. Just equality and being equal, as I said. 
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3. I: Can you give me an example of equality? 

4. R: Um what is it…(laughter) zero equals zero.  

5. I: Do you mind writing that?  

6. R: (laughter) Yeah that’s fine. This is what was in my mind. (Writes what is in Figure 1. 

Writes 0. Underlines it. Then writes another 0 under the fraction bar and an equal sign to 

the right of 0/0. Then writes 0 to the right of the equal sign.) 

7. I: Can you give me another example of equality?  

8. R: Um see. I don’t know if this is going to be able to be distributed. Mmm (laughter). I 

don’t know. (Writes what is in Figure 2. Writes 25x and underlines 25x. Then, writes + 7 

and scratches it out and writes a 5 instead. Writes a 5 under underlined 25x. Writes = 30 

to the right of 25x/5 + 5. Then, underlines 30 and writes a 5 underneath. Writes =6 to the 

right of 30/5.) 

9. I: So you just did a lot of thinking there. Would you mind unpacking a little bit for me 

what you were thinking about?  

10. R: Well I was…I just had the 25 because I said this is what we’re learning. Well, the kids 

are learning, students are learning in class right now. And I just had fives in my head and 

just wrote 25x. And then I wanted to just add it and I was going to do a number, not five. 

Obviously, I was going to just do any random number, but then I tried to make it easier 

on myself and I picked five to make it 30 because five goes into 30. Six equally. I ended 

up adding the five into the 25x when I was dividing. I think…And then distribute, I tried 

using…tried making a math problem.   

 

 

 

Figure 1. Rae’s representation of her first example for equality  

 

 
 

Figure 2. Rae’s representation of her second example for equality   
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When talking about equality, Rae used the words “equal”, “numbers”, “solution” [2] and her 

word use indicated that she thought about equations when thinking about equality [4]. She also 

seemed to endorse the narrative that an equation always has a solution [2]. In her examples for 

equality, her visual mediators included numbers, a variable, fraction bars, and the equal sign 

(Figure 1, Figure 2). In both examples, Rae signified an equality as an equation. Rae’s use of the 

equal sign as a visual mediator was consistent with an operational rather than a relational 

approach in that it signified an arithmetic or an algebraic operation (Emre-Akdoğan, 2023; 

Kieran, 2004; Knuth et al., 2006). Her actions and routine of drawing fraction bars right after 

writing a number or an expression ([6], [8]) indicated that she thought about factoring the 

numbers before thinking about the next term on the left-hand side of her equations, before using 

the equal sign, and before completing the right-hand side of her equations. Although the visual 

mediator we inferred as a fraction bar could also be interpreted as an underline, Rae’s word use 

when she said “able to be distributed” [8], “Five goes into 30. Six equally” [10], “I was dividing” 

[10], “then distribute” [10] indicated that she was using the sign to signify division. Her actions 

indicated that she was using factoring, finding a common factor across numbers, and dividing as 

routines in her discourse when thinking about and generating equations. In Figure 2, Rae divided 

30 by 5 to reach 6, instead of stopping when she wrote 25x/5 +5=30, which suggested that she 

interpreted the equal sign as a signal to execute an arithmetic operation (Siegler, 2003). The same 

action also indicated that she viewed the left-hand side of the equation equal to the right-hand 

side if they had a common factor. This may also explain why she may have viewed 0 as a factor 

of 0 to write 0/0=0 in Figure 1. Rae implicitly endorsed the narrative mathematical objects are 

equal because they share a common factor and viewed this as the commonality required to 

identify the left-hand side of an equation as the same as right-hand side, demonstrating how she 

realized saming as a routine in her discourse. We also asked Rae to define equality and asked her 

to elaborate on the relationship between equality and equivalence, if she saw any. 

11. I: How would you define equality? 

12. R: Things…and numbers have to mesh. Coincide with each other or equal each other. 

13. I: In your opinion, is there a relationship between equality and equivalence?   

14. R: I feel like there is because they are both have the word equal in it…And like I said 

they have to mesh in order to go into each other numbers…from my perspective.    

Instead of defining what equality is, and treating it as distinct mathematical object, Rae 

provided phrases instead [12]. Rae’s word use included terms like “mesh” ([12], [14]), 

“coincide” [12], “equal” [12] to endorse the narrative that numbers need to have a common 

factor in order to be equal or equivalent. The word use and endorsed narrative in this excerpt 

were consistent with Rae’s discourse throughout the interview and aligned with her previous 

word use such as “distribute” [10], “dividing” [10], and “going into (evenly)” [10]. Rae 

identified the relationship between equality and equivalence through the commonality of the 

word “equal” in them [14] and the need for numbers to mesh or “go into each other” [14] for 

both of them. She seemed to consider equality and equivalence as relationships between 

numbers, where the numbers have a common factor, and one number divides the others evenly 

with no remainders.   
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Discussion and Implications  

While Rae’s discourse on equality and equivalence differed significantly from the discourses 

of mathematical experts, her discourse was mostly consistent. When she used the equal sign, she 

did so to signify an operation rather than a relation between mathematical objects, which is a 

finding that is consistent with the previous literature (Emre-Akdoğan, 2023; Fyfe et al., 2020; 

Kieran, 2004; Knuth et al., 2006; Siegler, 2003). We suggest teachers pay explicit attention to 

how their students use words, visual mediators, routines, and endorsed narratives in the 

classroom to address student difficulties and enhance communication in their postsecondary 

classrooms (Güçler 2014, 2016). We also recommend, as we have done in our work, teachers to 

provide opportunities for their students to generate their own examples and definitions of 

mathematical concepts before introducing these to the students.   
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Only 31% of 8th graders in the U.S. are proficient in mathematics (Irwin et al., 2023) and 

many students struggle to progress beyond Algebra I (Kena et al., 2015), potentially due to the 

increased need to attend to algebraic structure. In particular, many middle-school students 

habitually solve problems from left to right, often causing inefficiency (e.g., solving 46+72+54 

by first adding 46+72 instead of 46+54; Lee et al., 2022) and sometimes violating the rules of 

precedence, especially as new and varied problem representations prevent solving through left-

to-right (LTR) calculations (e.g., incorrectly adding 5+2 in 5+2×3; Gunnarsson et al., 2016). 

Whereas prior research has demonstrated general effects of perceptual cues on students’ 

problem-solving performance (Harrison et al., 2020; Landy & Goldstone, 2007), the current 

study systematically examines the effects of specific cues in math notation to compare the 

benefits of each (i.e., spacing [4×3 + 5 + 7], color [“4 × 3” highlighted in 4 × 3 + 5 + 7], or no 

cues) on 6th graders’ performance on order-of-operations problems, as well as potential 

moderators of these effects. We will present analyses from a planned sample size of 600 U.S. 

middle school students, with 80% power to detect a main effect of d > 0.20 at p < .05. In a series 

of regression analyses, we will examine student-level, perceptual-cue-level, and problem-level 

predictors of performance, with performance indicated by accuracy and response time (RT). 

Student-level predictors include prior order-of-operations knowledge, perceptual processing 

skills, math anxiety, and math value. Problems are of a variety of formats, including some in 

which LTR calculations would be valid (e.g., 5×6–2+10) and some in which it would not (e.g., 

4–7×2+9). We hypothesize that students with lower prior knowledge will benefit more (e.g., 

higher accuracy, faster RTs) from perceptual cues (either spacing or color) when faced with 

problems in a format in which the LTR process is invalid. Similarly, we hypothesize that students 

with lower perceptual processing skills, higher math anxiety, and lower math value will benefit 

more from perceptual cues, particularly on the invalid LTR process problems. This study will 

provide information about how perceptual processes can be leveraged to make learning 

mathematics easier for middle-school students through online platforms. 
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This case study investigates the thinking a student utilizes while exploring a task involving a 

linear function application. The study tracks the level of covariational reasoning and uses of 

slope a student applies while making sense of the situation contextually, on a Cartesian graph, 

and on a dynagraph. Although the thinking revealed aligns with past research findings that 

students often have conceptions of slope that are isolated from covariational thinking, the 

student in this case study demonstrates strong covariational thinking across representations that 

enables him to use slope for different purposes while never referencing the term “slope” and 

never displaying any signs of shape thinking. 

Keywords: Algebra and Algebraic Thinking, Mathematical Representations, Technology 

Background 

Most secondary students in North America are required to have at least one algebra course, 

with linear functions as a key topic of the course (Dolores Flores et al., 2020; Stanton & Moore-

Russo, 2012). With a functions-based approach (Yerushalmy & Chazan, 2002), instructors guide 

students to develop a solid foundational understanding of linear functions and their covariational 

relationships. In such an approach, there is a focus on understanding relationships and functional 

behavior before emphasizing symbolic manipulation. For this, students use and translate between 

different mathematical representations (Lesh, 1979) to understand what it means to be linear. 

Research suggests that linear functions and slope are typically introduced by eighth grade 

(Nagle & Moore-Russo, 2014; Nagle et al., 2022). These topics are often reduced to rote 

procedures (Stump, 1999) punctuated by mnemonics (Walter & Gerson, 2007), such as “delta y 

over delta x” or “rise over run.” Reiken (2008) described these student views of slope as number 

from formula, number from counting, and number in front of x; all of which could be performed 

as memorized procedures without any covariational reasoning. An instructional emphasis on 

such memorized procedures may be why students develop fragmented meanings for slope (e.g., 

Dolores-Flores et al., 2019; Hattikudur et. al., 2011; Postelnicu, 2011; Teuscher & Reys, 2010). 

Students often fail to see slope as a parameter denoting a constant rate of change between 

two variables and struggle to work with linear functions in different representations (Adu-

Gyamfi & Bossé, 2014; Tanışlı & Bike Kalkan, 2018) or in less familiar contexts (Moore & 

Thompson, 2014; Zaslavsky et al. 2002). Stump (2001) described physical (e.g., the steepness of 

a ramp or the pitch of a roof) and functional (e.g., the height of a candle over time) contexts for 

using slope and found students may be confident working with slope in one context type but not 

the other. As a result, it is widely acknowledged that the thinking students exhibit around slope 

may depend on the contexts used to engage that thinking (Byerley & Thompson, 2017). Even 

teachers can display certain limitations in their treatments of contextualized slope tasks. Paolucci 

and Stepp (2021) reported their sample of pre-service teachers tended to design contextual tasks 
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that emphasize static, physical uses of slope rather than the dynamic, functional uses Moore-

Russo et al. (2011) described. Rivera López et al. (2024) found that practicing teachers are quick 

to decontextualize applied linear situations focusing on algorithms rather than interpreting their 

real-world contexts. 

Davis (2007) looked at high school students’ understanding of y-intercepts in linear 

contextual situations and found that students had difficulty connecting different representations. 

If students are unable to move flexibly between representations of linear functions, they will 

have a hard time making sense of regression lines in statistics (Nagle et al., 2017), connecting 

slope as a measure of steepness with the tangent of an angle in trigonometric contexts (Nagle & 

Moore-Russo, 2013), navigating the extension of slope to understand situational instantaneous 

rates of change in calculus (Moore-Russo & Nagle, 2024), and applying linear relations as is 

frequently required in science classes (Planinic et al., 2012).  

Knuth (2000) reported that students often use algebraic approaches to linear tasks even when 

graphical approaches are more efficient, noting that most manipulate equations to be in the form 

y = mx + b. Adu-Gyamfi and Bossé (2014) found that even when students are able to move from 

a given representation of a linear function to another, they may still have limitations in how they 

understand linear functions. Results such as these have led to calls for a more concerted effort in 

connecting thinking about slope used for different purposes, with covariational reasoning as the 

link (Nagle & Moore-Russo, 2013).  

Dynagraphs are digital representations that use parallel number lines where students 

manipulate input values to see the corresponding output values. So, input and output variables 

are depicted separately, rather than in a single coordinate pair (Bailey et al. 2020). Research 

suggests dynagraphs may help direct students’ attention to how inputs and outputs change 

correspondingly and support covariational thinking (Antonini et al. 2020; Ozen et al. 2021). As a 

result, dynagraphs may be a powerful tool for exploring students’ thinking about covarying 

quantities and may challenge students to move beyond reliance on shape thinking to determine 

slope (Moore & Thompson, 2015). 

Framing the Study 

Lesh (1981, p. 241) stated, “The coordination of a system of ideas is achieved progressively, 

but its completion is marked by a qualitative ‘jump’ as the student shifts to a qualitatively higher 

level of thought. This is portrayed in the APOS-slope framework, in Figure 1, which was first 

introduced by Nagle et al. (2016) and later more thoroughly vetted (Nagle et al., 2019). The 

APOS-Slope framework builds on Dubinsky’s APOS theory (1984, 2014) to consider how 

geometric (G), algebraic (A), and functional (F) conceptualizations of slope converge into a 

linear constant (L) conceptualization as students develop a more robust understanding of slope. 

The APOS-Slope Framework also highlights the different purposes for which slope is commonly 

used in algebra (namely, to describe behavior, measure steepness, and determine relationships).  

Thompson and Carlson (2017), as well as Paoletti and Vishnubhotla (2023), have suggested 

hierarchies of covariational reasoning that expand on previous work (Carlson et al., 2002) to 

define levels of covariational reasoning for modeling dynamic events. We now give brief 

descriptions of Thompson and Carlson’s (2017) major levels, which we use for this study. No 

coordination involves no connection between the change of one variable with another. 

Precoordination of values involves attending to the change in one variable then to the change in 
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another without simultaneous consideration of the two. Gross coordination of values involves 

considering the direction of change for each variable simultaneously, e.g. this output decreases as 

the input increases. Coordination of values involves coordinating magnitudes of inputs with 

corresponding values of outputs being able to create a discrete collection of ordered pairs. 

Chunky continuous covariation involves simultaneous coordination of the output’s value with 

uniform intervals of change for the input; this involves both direction and magnitude, but the 

input increments are only considered in “chunks” of a fixed size. Smooth continuous covariation 

involves simultaneously coordinating outputs with input variables using both direction and 

magnitude but not being limited to fixed increments, rather understanding that within each 

interval both variables’ values undergo synchronized change that is both smooth and continuous. 

This study brings the APOS-Slope framework together with the levels of covariational 

reasoning to analyze a student’s thinking about a linear relationship. Past work indicates that 

students’ stages of slope reasoning and underlying covariational reasoning may vary based on the 

purpose for which they are using slope. For instance, in studies of students’ approaches to 

informally placing a line of best fit (Casey & Nagle, 2016; Nagle et al., 2017), students used 

gross coordination language when justifying whether the line increased or decreased, suggesting 

they were applying covariational reasoning while reasoning about slope to describe behavior. 

However, the same students struggled to explain how they chose the angle or tilt of their lines of 

best fit, providing explanations that were void of covariational language as they reasoned about 

slope in order to measure steepness. Similarly, a review of a standards-based secondary 

mathematics curriculum showed an instructional emphasis on covariational reasoning when 

using slope to describe behavior, but few opportunities to reason covariationally when using 

slope to measure steepness or determine relationships (Fisher et al., 2021; Nagle et al., 2022).  

 

 
 

Figure 1: APOS-Slope Framework (adapted from Nagle et al., 2019) 

 

In this study we consider one student’s covariational reasoning involving linear functions in a 

contextual situation as he encounters dynagraphs for the first time along with more familiar 

mathematical representations (e.g., Cartesian graphs, two-column number tables, and linear 

equations) he has already experienced in the algebra curriculum at his school. The following 

research questions guided the study. How does a student who successfully completed a high 

school algebra class reason about a dynamic, functional context involving a linear relation? What 
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level of covariational reasoning does the student display in this interaction? How does the 

student’s covariational reasoning vary depending on the representation or particular use of slope? 

 

Methods 

This case study looks at a task-based interview with Cyrus, a 16-year old male who was 

enrolled in an Algebra 2 course in a public high school in New York state after completing his 

Algebra 1 course earning a grade of A. The entire interview lasted over an hour and a half, but 

we will focus on the section of the interview related to one contextual task. The situation, which 

follows, involves a functional application of slope as a property of a dynamic linear situation that 

requires covariational reasoning. Maddy is a spunky, 5-foot tall, 16-year old girl who goes out 

and gets a summer job mowing yards in a neighborhood where all the yards are the same size. If 

each yard takes her the same time to mow, explore the relationship between the number of yards 

(x) she mows and the total time in hours she spends mowing (y). 

After being introduced to the task, Cyrus was asked to explain the relationship in terms of the 

real-world context, provide a graph of the relationship on a Cartesian plane, explore three 

dynagraphs to determine which one represented the same context, and then revisit the Cartesian 

graph initially presented. The interview was semi-structured in format, with pre-planned probing 

questions and additional questions to probe for understanding based on Cyrus’ responses. 

Findings 

Initial Contextual and Cartesian Graph Reasoning 

When introduced to the problem context, Cyrus demonstrated that he was able to reason 

about the functional context of the task. He applied gross coordination to describe the 

relationship between yards mowed and total time elapsed (i.e., “mowing more lawns will take 

more time”), and he translated this reasoning while using slope to describe behavior as he 

sketched a graph of the relationship on a Cartesian plane, starting at the origin. Cyrus explained 

the graph would be a “diagonal line going up because x increasing means you’re moving up the 

x-axis and y increasing means you’re moving up on the y-axis.” He was able to label and explain 

the units for both axes when asked. 

When asked to determine the slope of the line he sketched, Cyrus transitioned to 

coordination of values. He recognized a point near (1, 0.9) on his sketched line, explaining “the 

y-value doesn’t go exactly up 1 and the x-value goes up 1.” When asked how he would interpret 

that slope in the context, he confidently explained the unit rate, stating that “for every one yard 

that Maddy mows, it takes a little less than one hour to mow it.” This thinking demonstrates at 

least coordination of values reasoning in the graphical context extended to at least chunky 

continuous covariation reasoning in the real-world context. 

When asked to explain how the graph would change if the yards were not all the same size, 

Cyrus responded it “might be a little more wavy.” He added that “it might go up in one spot and 

then maybe dip back down.” When asked to try to sketch this behavior, Cyrus sketched a non-

monotonic, non-linear graph. At this point, Cyrus did not seem to be able to apply both gross 

coordination and chunky continuous covariation to make sense of changing slope while keeping 

the increasing relationship between inputs and outputs. A summary of Cyrus’ reasoning while 

engaging with the context and the Cartesian graph during this first part of the interview is 

provided in Table 1. Notice how gross contextual reasoning first translated to gross Cartesian 
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graph reasoning, which then supported coordination of values in the Cartesian setting that 

prompted chunky continuous covariation to make sense of unit rates in the context.  

 

Table 1: Covariation and Slope Reasoning in Context and Cartesian Graph Settings 
 Contextual Situation Cartesian Graph 

Gross  

Coordination 

Mowing more lawns 

will take more time 

[The graph will be] a diagonal line going 

up because x increasing means you’re moving 
up the x-axis and y increasing means you’re 

moving up the y-axis. [Describe Behavior] 

Coordination  

of Values 

 The y-value doesn’t go exactly up 1 and 

the x-value goes up 1. [Measure Steepness] 

Chunky  

Continuous 

Coordination 

For every one yard that 
Maddy mows, it takes a little 

less than one hour to mow it. 

 

 

Dynagraph Reasoning  

Cyrus had not seen dynagraphs previously. After a brief introduction to dynagraphs, Cyrus 

was then asked to explore three dynagraphs, representing a decreasing linear function, an 

increasing linear function, and a constant function, respectively. Cyrus was given time to explore 

the dynagraphs with the goal of determining which one might represent the context of Maddy 

mowing yards. Upon exploring the first dynagraph (of a decreasing linear function), Cyrus was  

moving toward gross coordination by explaining that when “moving the lawns mowed to bigger 

numbers, the total time is getting farther away.” But he seemed to be focusing on the distance 

between inputs and outputs rather than the direction that they were both moving, explaining that 

this dynagraph “sort of” made sense for Maddy’s context because “it kind of shows a 

relationship between the time and total yards mowed.” When prompted to pick two specific 

points from the dynagraph and explain how the inputs and outputs were changing, Cyrus stopped 

the dynagraph at an input of 5 and confidently (and correctly) identified this would be the point 

that is “over 5 on the x-axis and up 1.5 on the y-axis” on the Cartesian graph. He then dragged 

the dynagraph to an input value of 8 and explained (correctly) that “the x would be 8, and the y 

would be 0.” After making a connection between the dynagraph and Cartesian graph, Cyrus was 

then able to apply gross coordination to the dynagraph to explain that the inputs and outputs 

were moving in opposite directions but did not attempt to tie that back to Maddy’s context at this 

point.  

Cyrus extended his reasoning when exploring the second dynagraph (of an increasing linear 

function), immediately, saying that “as the x is increasing, the y is increasing but at a much 

slower rate.” This thinking implies Cyrus is comparing the amount of change in x with the 

amount of change in y, suggesting he seems to be using coordination of variables and may also 

be using chunky continuous covariation. Cyrus applied coordination of values with proportional 

reasoning to justify why this dynagraph made sense for Maddy’s context, explaining that “if 

every yard is around the same, then, like, if this is 2 [dragged input to 2] and it’s around 1 

[signaling to the output value] then if this is 5 [dragged input until output is 5 and signaled to 
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output] then it’s around 10 [signaling to the corresponding input value]. It just makes sense 

because every yard is similar.”  

On the third dynagraph (of a constant function), Cyrus applied at least gross coordination 

when indicating that “as I move the x back and forth, the y is staying the exact same.” He 

connects this to the context by explaining that it would mean that “if you mow ten lawns, it 

would take the exact same time as if you mowed five,” which showed coordination of values. 

After exploring all three dynagraphs, Cyrus reported that the second dynagraph was the best 

match to the context provided. He added that the third dynagraph “didn’t make sense at all” and 

applied gross coordination related to the first dynagraph to conclude it was not feasible because 

“as you increase the total number of yards mowed, your total time isn’t going to go down.” The 

researcher asked Cyrus to describe how the dynagraph might act differently if the yards varied in 

size. Cyrus applied chunky continuous covariation while explaining that “as you would move up 

the x-axis, the y would increase at different rates.” He continued, “one yard would be bigger; so, 

it (the y-value) would increase more because it would take longer.” Although he is not 

referencing slope, this thinking is consistent with using slope to measure steepness while 

applying chunky continuous covariation. A summary of Cyrus’ reasoning across the context, 

Cartesian graph, and dynagraph is provided in Table 2. 

Table 2: Covariation and Slope Reasoning in Context, Cartesian Graph and Dynagraph 
 Contextual Situation Cartesian Graph Dynagraph 

Gross  

Coordination 

If you mow ten 

lawns, it would take the 

exact same time as if you 

mowed five. 

As you increase the 

total number of yards 

mowed, your total time 

isn't going to go down. 

 As I’m moving the 

lawns mowed to bigger 

numbers, the total time is 

getting farther away. 

As I move the x back 

and forth, the y stays the 

exact same. [Describe 

Behavior] 

Coordination  

of Values 

If every yard is 

around the same, then, 

like, if this [input] is 2 

and it’s [the output’s] 

around 1 then if this 

[output] is 5 then it’s [the 

input’s] around 10. It just 

makes sense because 

every yard is similar. 

Explains movement 

is over 5 on the x-axis 

and up 1.5 on the y-axis. 

 

 

Chunky  

Continuous 

Coordination 

One yard would be 

bigger; so, it [the output] 

would increase more 

because it would take 

longer. [Measure 

Steepness] 

As you would move 

up the x-axis, the y 

would increase at 

different rates. 

As the x is increasing, 

the y is increasing but at a 

much slower rate. 

[Measure Steepness] 

 

Revising the Cartesian Graph 

At the end of the interview, Cyrus was asked again to graph the relationship between number 

of yards and total time mowing, where the yards varied in size. Cyrus first drew a “wavy” 
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nonmonotonic graph like he had at the beginning of the interview, and the interviewer asked him 

how he would interpret one of the waves if y represented total time. Cyrus quickly realized the 

error in his graph, explaining, “so now I’m thinking this is completely wrong because it’s [the 

decreasing segment of the graph] saying that...time is going backwards now which doesn’t really 

make sense.” Cyrus was initially unsure as to how to sketch the graph of the situation but said 

that “different lawns would take a longer time; so, it wouldn’t be like a constant line of the x and 

y increasing at a constant rate.” He continued, “it would be, the x increases one yard at a time, so 

that would be at a constant rate, but the y would be more sporadic because if they’re different 

lawns, they’re going to take different amounts of time.” At this point, we see evidence of chunky 

continuous covariation, where the inputs are changed one yard at a time and the corresponding 

change in outputs is known to vary since the yards are different sizes. Cyrus then applies this 

thinking while sketching the graph of this scenario one more time. 

 

 

Figure 2: Cyrus’ Sketch for the Variable Yard Size Context 

Cyrus transfers his chunky continuous covariation reasoning to the Cartesian graph, clearly 

delineating unit intervals of 1 yard and applying thinking consistent with using slope to measure 

steepness, but never using the word “slope,” even when pushed to verbalize what feature of the 

graph he was looking at. In particular, Cyrus drew the first segment of the graph and said “the 

first line is like that. It’s like a normal yard.” Then he sketches the next segment [with a smaller, 

still positive, slope] and explains that “the next lawn is a really small one; so, the time it takes is 

not significant. So, the y barely goes up, but you still get the lawn done; so, the x changes.” He 

then stated, “the next one is a big lawn; so, it goes up pretty significantly [drawing a steep 

segment as he talks], and you still get the lawn done.” He then said, “the next lawn is pretty 

normal” and explained that its y changes like the first one, drawing a line segment that appears to 

have the same slope as the first line segment he drew. Despite not using the words slope or 

parallel, through his words and drawing Cyrus displayed thinking consistent with using slope to 

determine relationships while using chunky covariational reasoning. He then goes on to explain 

that in the “normal lines” the y might change 1 to 1 with the x, points to the steepest segment and 

says the y might change 3 to 1 with the x and then points to the least steep line and explains that y 

changes something like ½ to 1 with the x. He is able to connect this thinking to the context by 

pointing to each segment on the graph and accurately identifying whether it is an average-, 

small-, or large- sized yard. Despite this rich, chunky continuous covariation grounded 

understanding of the context and its representation on the Cartesian plane, Cyrus never 

referenced the words slope, tilt, or steepness of the segments he drew. Instead, when asked by the 

researcher how he knew which lawns were larger or smaller, he responded “because, like, the....I 

don’t know what the right word is, but...let’s say, like, the angle, I guess, the angle of that little 

segment of this line.” 
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Conclusions and Future Study 

Although Cyrus reported no previous experience with dynagraphs, and despite never using 

the word slope throughout the interview, he demonstrated a strong understanding of the context 

grounded in covariational reasoning that enabled him to work flexibly with both the dynagraph 

and Cartesian graph representations. In fact, Cyrus demonstrated thinking consistent with all 

three uses of slope: describe behavior, measure steepness, and determine relationships. He was 

able to reason about a unit rate of change (amount of time it took to mow one lawn) and clearly 

explained how that unit rate was represented using both the Cartesian graph and dynagraph 

representations.  

By the end of the interview, Cyrus also sketched a piecewise Cartesian graph, where each 

piece was a linear segment with a different rate of change. The line segments he sketched (see 

Figure 2) show his attention to a unit change in the number of yards mowed and a strong 

understanding of the amount of change in the y-values based on the size of a yard. Cyrus clearly 

explained that a small yard would have little change in y for the set change in x representing one 

yard mowed, while a large yard would have a greater change in y. He also described yards that 

were the same size on his graph, applying thinking consistent with determining relationships.  

Cyrus’s thinking stands out considering past research that suggests students often rely on 

shape thinking (Moore & Thompson, 2015). Shape thinking related to slope is often seen in 

relation to the three purposes of slope, as outlined in Table 3, and contrasted to the type of 

reasoning Cyrus demonstrated in this interview. Shape thinking can be the result of learning 

slope applied to a Cartesian graph, void of covariational reasoning or connection with other 

relationships. Cyrus demonstrated the ability to reason covariationally about constant rate of 

change but had not connected that thinking to the concept of slope, despite earning an A in his 

high school algebra course. Even when pressed at what feature(s) of the Cartesian graph he was 

focusing on, Cyrus was unsure what to call it, settling on the “angle” of the segments as the best 

description. 

Table 3: Shape Thinking Compared to Cyrus’ Thinking of Slope 

 
 Describe Behavior Measure Steepness Determine Relationships 

Shape  

Thinking 

Lines that go up have positive 

slope; lines that go down have 

negative slope; horizontal lines 

have zero slope. 

Steeper lines have greater slope; 

less steep lines have smaller 

slope. 

Parallel lines have equal 

slopes; perpendicular lines 

have negative reciprocal 

slopes. 

Cyrus’  

Thinking 

The graph will be a diagonal 

line going up because x 

increasing means you’re moving 

up the x-axis and y increasing 

means you’re moving up the y-

axis. 

The next lawn is a really small 

one; so, the time it takes is not 

significant. So, the y barely goes 

up, but you still get the lawn 

done so the x changes. 

This lawn is pretty normal; 

so, the y-value will go up 

the same amount as the 

other one since the lawns 

are the same size. 

 

In this way, Cyrus’ case provides a new lens on the well-documented divide between 

covariational reasoning and the concept of slope. While most research suggests students have 

learned to apply slope in a particular representation void of covariational reasoning, Cyrus has 

built a strong foundation of covariational reasoning but does not connect this to the concept of 

slope (despite completing Algebra I with an A). However, throughout the course of the interview, 
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he was able to apply that reasoning across representations, suggesting that his covariational 

reasoning forms a strong foundation on which slope can be built. He was particularly successful 

in making sense of dynagraphs, a brand-new representation for him, likely because the 

dynagraph made the covariational relationship between inputs and outputs more visible than the 

static Cartesian graphs he had seen in the past. His interview showed he moved flexibly between 

the context, the dynagraph and the Cartesian graph, reasoning in ways consistent with all three 

uses of slope. 

Future research should continue to explore the role of multiple representations while 

individuals seek to understand slope used for different purposes. Are dynagraphs as helpful in 

building initial covariational reasoning about slope as they were in helping Cyrus apply his 

existing covariational reasoning?  
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In this study, a theoretical model describing covariational functional thinking in 13-to-16-year-

old students (Grades 8-10) was formulated and empirically validated in three countries (n=350). 

The hypothesis posited that students engage in covariational functional thinking through five 

types of reasoning: correspondence view of function, direction of change, calculation of constant 

rate of change, discerning varying rates of change, and comparing the intensity of change. A 

structural model indicated that students' capacity in tasks requiring a correspondence view of 

function predicts their qualitative understanding of quantities varying simultaneously. 

Subsequently, the analysis revealed three parallel paths from 'direction of change' to 'comparing 

the intensity of change': one direct path and two indirect paths through 'calculating the constant 

rate of change' and 'discerning varying rates of change'.  

Keywords: algebra and algebraic thinking; function; functional thinking; covariation 

Functional thinking is acknowledged as a key component in mathematics education and a 

fundamental aspect of algebra due to its pivotal role in understanding essential mathematical 

concepts and in developing important mathematical skills (National Council of Teachers of 

Mathematics, 2000). Functional thinking has been generally defined as the process of building, 

describing, and reasoning with and about functions (Blanton, Brizuela, et al., 2015) and is 

associated with various conceptions and views of functions (Doorman et al., 2012; Dubinsky & 

Harel, 1992). Research findings indicate that typical curricula often focus predominantly on the 

correspondence view (Thompson & Carlson, 2017). This approach mainly suggests a static 

conception of functions, making it difficult for students to envision that the symbolic expression 

of functions represents relationships among varying quantities (Stephens, et al. 2017). 

Conversely, considering function as a dynamic process of covariation, emphasizing the 

covariation of the dependent variable with the independent variable, has been associated with a 

more intuitive alternative to a formal, correspondence perspective on function and a dynamic and 

more general view of the function concept (Johnson, 2012; Paoletti & Moore, 2018).  

The main goal of the present study is to provide a flexible description of Grade 8-10 students’ 

covariational functional thinking, by proposing a theoretical framework that describes types of 

this kind of reasoning. We integrate research on functional thinking (Lichti & Roth, 2019), 

function learning progression (Arieli-Attali et al., 2012; Graf et al., 2010), and covariational 

reasoning frameworks (Carlson et al., 2002; Jones, 2022), to unpack the essential characteristics 

of each type of reasoning. These types of reasoning are operationalized via the construction of a 

model whose robustness is theoretically founded and empirically tested. 
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Theoretical Framework 

Functional thinking is related to different conceptions and views of functions (Doorman et 

al., 2012) that are equally important for fully shaping the notion of function and the ability to use 

it effectively. The views of functions that learners need to develop include: Function as (a) an 

input-output assignment that often precedes carrying out a calculation process; (b) a 

correspondence relation, focusing on the particular relation between the independent and the 

dependent variable; (c) a dynamic process of covariation between the independent and the 

dependent variables; and (d) a mathematical object, that can, e.g., be examined, compared with 

or connected to other mathematical objects. 

The covariational approach is grounded on Confrey and Smith’s work (1995) and includes 

analyzing, manipulating and comprehending the relations between changing quantities. It refers 

to the variation of the independent variable 𝑥 and the resulting covariation of the dependent 

variable 𝑦. In other words, it captures the manner of change in y, if x changes uniformly (Lichti 

& Roth, 2019). A slightly different perspective is proposed by Thompson and Carlson (2017). 

They describe covariational reasoning as going beyond mere awareness of change, but entailing 

specific mental actions to conceive situations as composed of quantities and relationships among 

quantities whose values vary. In this perspective, they claim that “a function, covariationally, is a 

conception of two quantities varying simultaneously such that there is an invariant relationship 

between their values that has the property that, in the person’s conception, every value of one 

quantity determines exactly one value of the other” (2017, p. 444).  

Function Learning Progression 

Graf et al. (2019) provided a description of a learning progression for the concept of function 

that was validated through empirical data, based on a synthesis of previous function 

understanding models. The first level, preinstruction, includes only extending sequences. The 

second level, familiarization, refers to perceiving a function as an algebraic formula or equation. 

The third level, making connections, has a qualitative difference compared to the previous ones 

as it entails understanding the concept of dependence and an emergent recognition that a function 

can be captured through different representations. The fourth level, synthesis, includes 

covariational reasoning and the idea of one-valuedness. At this level students are expected to 

conceive the covariation of variables and attend to global features of graphs. The next level gives 

emphasis to perceiving a function as an object that can be operated upon. The most sophisticated 

level refers to function families that can be perceived as parameterized objects.  

Covariational reasoning 

Thompson and Carlson (2017) analyzed covariational reasoning by providing an in-depth 

description of students’ progression. Their framework builds upon the covariation framework 

proposed by Carlson et al. (2002), which was further validated and extended by Yu (2024). 

Carlson et al.’s (2002) framework investigated students’ conceptions of functions using 

covariational reasoning as an explanatory framework for student reasoning. It identifies the 

mental actions that students undertake when manipulating the magnitudes or numerical values of 

covarying quantities in respect to five developmental levels. These mental actions serve as a 

classification system for the behaviors exhibited by students during covariation tasks. For 

example, the first mental action involves coordinating the value of one variable with changes in 

the other and recognize dependence, and corresponding behaviors include labelling the axes with 
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verbal indications of this coordination. The first mental action and behavior describe the level of 

coordination. The second mental action emphasizes coordinating the direction of change of one 

variable with changes in the other (direction). This is manifested in behaviors such as 

constructing an increasing straight line and verbalizing an awareness of the direction of change 

of the output value concerning changes in the input. The third mental action focuses on 

coordinating the amount of change of one variable with changes in the other (quantitative 

coordination). Behaviors associated with action include verbalizing an awareness of the amount 

of change. The fourth mental action involves coordinating the average rate of change of the 

function with uniform increments of change in the input variable (average rate). Corresponding 

behaviors include verbalizing an awareness of this rate of change and constructing contiguous 

secant lines for the domain. Moving to the fifth mental action, it entails coordinating the 

instantaneous rate of change of the function with continuous changes in the independent variable 

across the entire domain of the function (instantaneous rate). Behaviors related to this action 

include verbalizing this coordination and constructing a smooth curve with clear indications of 

concavity changes.  

Purpose of the Study 

The purpose of this study was to present a theoretical model clarifying the types of reasoning 

in covariational functional thinking among students in Grades 8 to 10. This grade range 

corresponds to the formal introduction to functions in middle school and the exploration of 

various function types and representations during the first years of high school, preceding the 

study of calculus concepts. In line with Calson et al. (2010), we propose that students in this age 

group should progress from an action-oriented view (involving arithmetic computations for 

individual numerical values) to a covariational view of function.  

Proposed Model-Aims of the Study 

We hypothesized that students’ covariational functional thinking can be described by five 

types of reasoning. We synthesized types of reasoning and mental actions identified in various 

frameworks, aiming to explicitly describe anticipated abilities based on a dynamic conception of 

function (Carlson et al., 2002). These descriptions align with school curricula requirements and 

address the potentials and needs of students within the examined grade range. To make the 

description of the proposed types of reasoning explicit, we refer to the anticipated actions.  

The first type of reasoning refers to perceiving the correspondence view of function, 

reflecting the action-oriented view (Dubinsky & Harel, 1992). It includes conceiving a function 

as (a) an algebraic formula/equation and as (b) rule, dependence that can be represented in the 

form of a graph or table of values (Graf et al., 2019). This type of reasoning includes actions 

such as calculating the output value for a given input value based on a function formula, 

graphically representing linear functions, interpreting graph representations by understanding 

input and corresponding output values and identifying/symbolizing the functional relation 

between two varying quantities expressed in different forms. The second type of reasoning refers 

to understanding the direction of change of one quantity/variable with changes in the other 

quantity/variable in a qualitative way, as individuals envision the two quantities/variables 

varying together (Carlson et al., 2002). This includes verbalizing an awareness of the direction of 

change of the output value due to a change in the input variable, by interpreting different 

representations of functional relationships, such as algebraic formulas, graphs, or contextualized 
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scenarios. Individuals explain how two quantities involved in a contextualized functional 

relationship change when the algebraic formula of the relationship is provided (without making 

any calculations), match real-life scenarios with graph representations or construct a graph based 

on a scenario that involves co-varying quantities. It should be noted that this type of reasoning 

involves a basic conceptualization of the direction of change, without discerning nuances in the 

growth rate, such as linear or nonlinear tendencies. 

The third type of reasoning involves calculating the constant rate of change - coordinating 

the amount of change of one variable with changes in the other variable - when the graph, the 

description, or a table of values of a functional situation involving a linear function is provided 

(Carlson et al., 2002). Individuals coordinate quantitatively the covarying quantities by 

calculating the gradient of the linear function. In this case, the change in the dependent variable 

to every one change in the independent variable is the same. So, individuals may use the 

coordinates of selected points on a graph or table or calculate the rate of the vertical increment to 

the horizontal increment on the graph (Hauger, 1997).  

The fourth type of reasoning includes discerning varying rates of change in functional 

situations (Johnson, 2012). Individuals verbalize how and why the quantities vary over a 

continuous domain and reason about how the relationship between the two quantities is 

represented. Individuals exbibit a well-established representational fluency and stable concept of 

constant change to differentiate between intervals in which the two quantities vary with a 

constant or changing change. Johnson and McClintock (2018) showed that when students 

predicted the type of graph type representing the relationship between covarying quantities, their 

initial step in discerning variation in unidimensional change was distinguishing between linear 

and nonlinear patterns. They understand that linearity is a characteristic of functions where the 

change in constant (Arieli-Attali et al., 2012). 

The fifth type of reasoning reflects comparing the intensity of change in co-varying 

quantities within functional situations (Arieli-Attali et al., 2012; Carlson et al., 2002; Jones, 

2022). It encompasses calculating, interpreting, and comparing the constant rate of change in 

complex functional situations, and reasoning about non-numerical varying rate of change 

(coordinating the instantaneous rate of change of the function with continuous changes in the 

independent variable for the entire domain of the function). In instances of varying rate of 

change, this type of reasoning includes constructing a smooth curve that clearly indicates how 

the rate of change between the two quantities varies.  

Drawing upon a synthesis of frameworks describing levels of reasoning, we hypothesized a 

structural model that delineates the relationships among the proposed types of reasoning (see 

Figure 1). Specifically, aligning with Graf et al. (2010), we posited that the ‘correspondence view 

of function’ reasoning is a prerequisite for understanding a covariational perspective of function. 

This type of reasoning facilitates familiarization with the concept and the pointwise 

interpretation by observing occurrences at specific points before discerning overall trends. 

Consequently, we hypothesized that this reasoning directly influences the ‘direction of change’ 

reasoning, which is essential for comprehending how one quantity changes concerning the 

change in another (Carlson et al., 2002). Subsequently, we hypothesized that ‘direction of 

change’ directly affects the types of thinking involved in the ‘calculation of constant rate of 

change’ and ‘discernment of constant and varying rates of change’. Finally, we assumed that 
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‘calculation of constant rate of change’ and ‘discern constant and varying rates of change’ serve 

as predictors of ‘compare the intensity of change’.  

The aims of the study were (a) to investigate whether different functional thinking tasks 

could be categorized based on the factors of the proposed model, (b) to examine the structure and 

the relations between student’s types of reasoning in covariational functional thinking by 

empirically validating the hypothesized structural model 

Methodology 

Sample-Measures 

The participants in this study constituted a convenience sample, comprising of 350 middle 

and high school students from three countries: Cyprus (n=187), Greece (n=43) and Poland 

(n=119). Ninety-three were eighth graders, 165 were ninth graders, and 93 were tenth graders. 

The schools and the teachers involved participated voluntarily.  

Test items were adopted or developed based on previous research studies and multiple tasks 

were used for each presumed construct of the framework. Most of the test items were based on 

previous qualitative studies, teaching experiments, and intervention studies (see Arieli-Attali et 

al., 2012; Carlson et al., 2002; Castillo-Garsow, 2012). Thus, we made modifications in the 

format and wording of the items to meet the needs of a written test. The test comprised 16 tasks. 

Correspondence view of function. Four tasks were used to measure this type of reasoning. 

The first one presented the formula of a linear function and students were asked to calculate 

output or input values when given the corresponding input or output one (T1). In the second task, 

students were tasked with constructing the graph of the linear function from the first task and 

appropriately labelling the axis (T2). For the third task, students were instructed to provide y or x 

values for a given x or y value for a function based on its graph (T3). The fourth task presented 

three tables of values and four graphs (T4). Students had to match each table with the 

corresponding graph. 

Direction of change. Four tasks were used to capture the entire spectrum of this type of 

reasoning. In the first task (T5), a real-life scenario featuring a linear functional relationship and 

the algebraic formula of the function was presented. Students were required to determine the 

accuracy of statements describing how the two quantities covary. Similarly, the second task 

presented the graph of a linear function illustrating a currency change (T6). Students were tasked 

with evaluating the accuracy of four statements describing the covariation of the two quantities. 

For the third task, students were instructed to construct a piece-wise graph representing the 

direction of change in distance covered with respect to time, in a distance-time scenario (T7). In 

the fourth task, verbal descriptions of six mobile pay monthly plans, each involving different 

functional relations between monthly cost and talking minutes, were provided along with four 

graphs (T8). Students were required to match each graph with the appropriate verbal description. 

Calculation of constant rate of change. Three tasks were used. In the first task (T9), the 

graph of a linear function was presented. Students were instructed to find the gradient of the line. 

Similarly, in the second task (T10), students were required to calculate the rate of change of a 

linear function by utilizing the coordinates of a set of points belonging to the line, provided in a 

table of values. The third task (T11) featured a picture of a climbing ramp illustrating the 

position of a roller skate girl, along with her vertical and horizontal distances from the starting 

point. A graph depicting the variation of the vertical distance in relation to the variation of the 
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horizontal distance was provided. The task required finding the gradient of the function 

describing her movement when driving up the ramp.  

Discern varying rates of change. Three tasks were used to measure this type of reasoning, 

focusing on interpreting situations where the rate of change between the involved quantities 

varies. The first task (T12) involved a boy moving between two points, both forwards and 

backwards. The distance between the points consisted of both a flat and uphill section. The task 

required selecting the appropriate graph that represents the horizontal distance covered from the 

starting point with respect to time. To do so, it was necessary to accept that the rate of change 

between distance and time can be constant (e.g. on the flat part) and non-constant when climbing 

up and down the hill. The second task (T13) is a modified version of a problem proposed by 

Castillo-Garsow (2012) and necessitates interpreting in a real-life scenario, employing a 

discontinuous function, time intervals where the rate of change is zero and time-points where the 

dependent variable increases instantly. The third task (T14) presented a piecewise linear graph 

illustrating the height of water in a vessel in respect to time when water is poured in at a constant 

rate. Students had to select the vessel made up of two cylinders that corresponded to the graph.  

Compare the intensity of change. Two tasks were used to measure this type of reasoning that 

emphasized on the investigation of variations in the intensity of the change rate between the 

quantities involved in functional situations. The first task (T15) was based on the Bottle Problem 

(Carlson, et al., 2002), illustrating two bottles, and requiring students to find the graph of the 

height in respect to time, given that the water is poured into the bottle at a constant rate. This 

required an intuitive recognition of inflection points, where the rate of change shifts from 

increasing to decreasing or vice versa. The second task (T16) involved a distance-time scenario 

and a corresponding piecewise line graph. Students had to interpret five verbal statements 

involving the rate of change, by finding the time interval that corresponded to each statement. 

Data analysis 

The goal of the analysis was to estimate the relative strength of the proposed models. 

Because we proposed a theoretically driven model, our main interest was in the assessment of fit 

of the hypothesized a priori measurement model to the data. After this we examined the validity 

of the hypothesized structural model. We used partial least squares (PLS) techniques to analyze 

structural equation modelling (SEM) systems, using the SmartPLS software. We adopted a 

reflective analysis because reflective indicators constitute a representative set of all possible 

items within the conceptual domain of a construct. To examine the validity of a reflective 

measurement model, multiple indicators are taken into consideration: reflective indicator 

loadings; internal consistency reliability; and convergent and discriminant validity. Reflective 

indicator loadings are expected to exceed .70, while acceptable values are considered over .40 

(Hair et al., 2019). In terms of internal consistency reliability, Cronbach’s alpha and composite 

reliability (CRI) values in an exploratory study should exceed .60. Average variance extracted 

(AVE) greater than .50 is a good measure of convergent validity. To assess the validity of the 

structural model we established the explanatory and predictive power of the model.  

Results 

First, we investigated the validify of the proposed measurement model by examining the 

convergent and discriminant validity. Table 1 shows that all the loadings were greater than .50, 

giving support to the assumption that all factors were adequately measured by the observed 
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variables. In accordance with out theoretical assumption, all covariational functional thinking 

tasks were clustered into five first-order factors in the expected factor-loading pattern. The 

significance levels of the associated t-values were calculated by bootstrapping, using 5000 

subsamples with the same number of cases as in the original sample, and all of them were 

statistically significant (Hair et al., 2017). The average extracted (AVE) of the four of the five 

first-order factors exceeded the threshold value of .50. Only the AVE value of the factor ‘Discern 

varying rates of change’ was marginally smaller than .50. The composite reliability index (CRI) 

ranged from .71 to .84. (above the threshold value of .60). Our research findings reaffirmed the a 

priori hypothesized model, confirming that five types of reasoning can explain students’ 

variances in covariational functional thinking situations. 

The validation of the structural equation model reaffirmed the general structure of the 

hypothesized model and showed the existence of a sequential effect among the five factors, 

encompassing both direct and indirect effects. Specifically, the type of reasoning 

‘correspondence view’ exhibited a strong direct effect on the ‘direction of change’ reasoning type 

(r=.50, p<.01). Subsequently, the hypothesized model assumed the existence of parallel paths 

from ‘direction of change’ to ‘calculation of constant rate of change’ and ‘discern varying rates 

of change’. However, the analysis revealed the existence of a third parallel path from ‘direction 

of change’ to the ‘compare the intensity of change’ reasoning type (see Figure 1, the first number 

indicates the regression coefficient and the number in parenthesis the corresponding t-value). The 

inclusion of this third parallel path in the model led to an increase of the R2 of the factor 

‘compare the intensity of change’ from .40 to .49. Consequently, the standardized solution of the 

final model showed a weak statistically regression coefficient from ‘direction of change’ to (a) 

‘calculation of constant rate of change’ (r=.20, p<.01), ‘discern varying rates’ (r=.23, p<.01) and 

‘compare the intensity’ (r=.34, p<.01). Finally, the ‘discern varying rates’ factor proved to be a 

strong predictive factor for ‘compare the intensity’ (r=.71, p<.01), while the ‘calculation of 

constant rate of change’ factor exhibited a moderate predictive relationship with ‘compare the 

intensity’ (r=.50, p<.01). The model provided very weak R2 value for ‘calculate constant rate of 

change’ (R2 =.17), ‘discern varying rates of change’ (R2 =.27) and ‘direction of change’ (R2 =.35) 

and moderate for ‘compare the intensity of change’ (R2 =.50). Finally, the Q2 values showed 

medium predictive accuracy of the model for ‘direction of change’ (Q2 =.34) and ‘compare the 

intensity of change’ (Q2 =.25) and weak for the other two (Q2 =.04). 
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Table 1: Measurement model convergent and discriminant validity indices 

 

Factor/Type of Reasoning Loadings AVE CRI Cronbach’s 

alpha 

Correspondence view of 

function 

T1 

T2 

T3 

T4 

 

.78 

.72 

.84 

.69 

.58 .84 .75 

Direction of change 

T5 

T6 

T7 

T8 

 

.72 

.77 

.61 

.83 

.54 .82 .72 

Calculation of constant rate of 

change 

T9 

T10 

T11 

 

.86 

.82 

.60 

.59 .81 .65 

Discern varying rates of change 

T12 

T13 

T14 

 

.54 

.58 

.87 

.46 .71 .46 

Compare the intensity of change 

T15 

T16 

 

.67 

.93 

.66 .79 .53 

 

Discussion 

The primary aim of the study was to propose a model describing the types of reasoning 

exhibited by Grade 8-10 students in covariational functional thinking. We developed a model 

hypothesizing that students within this age range engage in covariational functional thinking 

through five types of reasoning. The proposed model elaborates on and extends existing 

frameworks, advancing the related literature (Jones, 2022; Smith, 2008), by identifying and 

explicitly describing specific types of reasoning whose activation is essential for adequately 

responding to a variety of covariational functional thinking tasks. This type of research provides 

a new theoretical lens for integrating research on understanding the concept of function, 

functional thinking, and covariational reasoning, by explaining how each type of reasoning 

facilitates specific actions contributing to understanding function. For instance, the types of 

reasoning underlying the importance of covariational reasoning serve as an explanatory 

framework to examine the relationship between the quantities involved in the functional 

relationship by envisioning their simultaneous variation. Understanding how two quantities 
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covary and discerning between constant and varying rates of change makes it possible to 

interpret their graph representation or explain how a paired set of values of a function can be 

deduced based on a given pair of values.  

The study described a structural model which indicated that students are initially more 

successful in tasks requiring a correspondence view of function. Thus, advancements in students’ 

correspondence view of function might enhance their further development in qualitatively 

conceiving the direction of change of the quantities involved in a functional situation by 

increasing awareness of the relationship between two quantities and the understanding that a 

variation in one quantity corresponds to a change in the other. This finding aligns with research 

by Graf et al. (2018), suggesting that perceiving the correspondence view of function facilitates 

familiarity with the concept, which is essential for more demanding covariational reasoning. The 

empirically validated model demonstrated the existence of three parallel paths from ‘direction of 

change’ to ‘comparing the intensity of change’: one direct path and two indirect paths through 

‘calculating the constant rate of change’ and ‘discerning varying rates of change’. The underlying 

assumption is that students improve in tasks involving the comparison of intensity of change by 

further enhancing their understanding of direction of change, calculating the constant rate of 

change, discerning varying rates of change, or in two or all types of tasks. This structure 

illustrates the catalytic role of direction of change as it explains both direct and indirect effects 

and the importance of coordinating covarying quantities both qualitatively and quantitatively to 

better understand and accomplish the comparison of intensity of change. This finding empirically 

validates Carlson et al.’s (2002) and Thompson and Carlson’s (2017) covariational reasoning 

frameworks, suggesting that qualitative coordination precedes quantitative coordination. Finally, 

the model provided compelling evidence for the importance of 'discerning varying rates of 

change,' which primarily models students' capacity to distinguish intervals with constant or 

varying rates of change and how this distinction is reflected in the graphical representation of 

quantities. This type of reasoning proved to be the strongest direct predictor of students' capacity 

to compare the intensity of change, as they associate linearity with a constant rate of change 

between changing quantities and non-linearity with varying rates of change. 

 

Figure 1: The Structural Model 
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Research on the teaching and learning of the equal sign has largely focused on two different 

meanings for the equal sign—operational and relational—and the difficulties students experience 

in reasoning about equations when their understanding is restricted to an operational meaning 

(Carpenter et al., 2003; Kieran, 1981; Knuth et al., 2005; Matthews & Fuchs, 2020). Many 

researchers have focused on solving students’ overreliance on the operational meaning of the 

equal sign by designing instructional interventions to help students replace their operational 

meaning for the equal sign with a relational meaning (see Hornburg et al., 2021 for a summary of 

instructional approaches). Scholars have also developed and tested frameworks for describing 

progressively sophisticated understandings of the equal sign to capture students’ transition from 

operational to relational reasoning (c.f., Rittle-Johnson et al., 2011). However, much of the 

research on equivalence has left out two additional meanings for the equal sign—assignment and 

substitution (Jones & Pratt, 2011; Prediger, 2010). The framework presented in this poster for 

meanings of the equal sign is designed to address this hole in the literature. 

Our interest in the four meanings for the equal sign led us to conduct a textual analysis of 

four middle school mathematics curricula. We sampled four units from the 7th and 8th grade 

textbooks of each series and coded the equations in those sections to identify which meanings of 

the equal sign were being used. We found that all four meanings of the equal sign were present in 

every grade in each series. Our results led us to reject models that hypothesize expert 

understanding arises from the gradual replacement of the operational meaning with the relational 

meaning of the equal sign. Rather, our finding that all four meanings of the equal sign are 

consistently used in middle school mathematics suggests that expert understanding develops by 

adopting additional meanings for the equal sign and becoming increasingly adept at using the 

contexts in which equations are embedded to determine which meaning of the equal sign is being 

used. 

After identifying the meanings for the equal sign in each equation, we expanded our unit of 

analysis from a single equation to a single problem, which often involved multiple equations. We 

did so to see if there were common patterns in the use of equal sign meanings that students 

would need to recognize. We found that a substitution meaning for the equal sign was only used 

in problems where a relational or assignment meaning had already been used. We also noted that 

the assignment meaning was rarely used if the substitution meaning was not also used later in the 

problem. While Jones et al. (2012) posit that the substitution meaning is part of a relational 

understanding of the equal sign, our data suggests that the substitution meaning is also strongly 

connected to the assignment meaning of the equal sign. Thus, we suggest that an expert 

conception of the equal sign in secondary mathematics consists of three different understandings: 

an operational understanding based on the operational meaning, a relational understanding that is 
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comprised of the linked use of the relational and substitution meanings, and an assignment 

understanding that is comprised of the linked use of the assignment and substitution meanings.  
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This study investigates slope as a composed unit ratio, offering an alternative understanding that 

diverges from a multiplicative comparison meaning. Through the lens of a teacher’s unique 

interpretation, we bridge the gap between the different meanings of slope and the varied 

understandings of ratio, uncovering a nuanced meaning of slope as a ratio. Our findings suggest 

that viewing slope as a composed unit ratio offers accessible and meaningful pathways for 

learners, by highlighting a productive understanding. We advocate for further exploration into 

this meaning to enrich pedagogical strategies and support the development of robust 

mathematical understandings.  

Keywords: Algebra and Algebraic Thinking, Teacher Knowledge 

The slope concept is foundational for mathematical learning. Traditionally, slope has been 

understood and taught through several lenses, including rise over run, algebraic formulas, ratios, 

and as a measure of line steepness. These conceptions, as outlined by Nagle and Moore-Russo 

(2013) and other researchers (e.g., Byerley & Thompson, 2017; López et al., 2024), are pervasive 

in educational research and practice, offering valuable insights into the different ways teachers 

conceptualize slope. However, these frameworks often consider slope-as-ratio to mean a 

multiplicative comparison—an understanding recognized for its depth but noted for its scarcity 

among both teachers and students (Cho & Nagle, 2017; DeJarnette et al., 2020). In this study, we 

propose that understanding slope as a composed unit ratio may provide more accessible and 

equally rigorous pathways to deep mathematics.  

Despite extensive analysis of the challenges surrounding the teaching and learning of slope, 

the exploration of composed unit reasoning as a conceptual foundation for slope has been 

relatively underexamined. Our research addresses this gap through the lens of a teacher, and 

specifically her interpretation of slope as a composed unit ratio. By investigating the intersection 

of the bodies of research regarding the different meanings of slope and the various interpretations 

of ratio, we illustrate that the teacher’s conceptualizations of slope, while not aligning with a 

multiplicative comparison meaning, encompass other rich, nuanced understandings of ratio. The 

introduction of this alternative meaning of slope not only broadens the conceptual repertoire 

available for teaching slope but also has the potential to support the development of productive 

mathematical meanings among learners. Thus, this manuscript seeks to answer the question: 

What characterizes a ratio-as-composed-unit meaning for slope, and what are the affordances and 

constraints of this meaning? 
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Background and Theoretical Framework: Teachers’ Meanings of Slope 

Researchers have characterized a number of different meanings teachers hold for slope, many 

building from Nagle and Moore-Russo’s (2013) 11 conceptualizations of slope. These meanings 

include slope as a geometric ratio, an algebraic ratio, and a physical property, among others. 

Synthesizing the literature base as a whole (e.g., Byerley & Thompson, 2017; Coe, 2007; López 

et al., 2024; Stump, 1999), three of the most prevalent teacher meanings for slope are (a) slope as 

an index of the steepness of a line, (b) slope as rise over run, and (c) slope as ratio. We discuss 

each of these in turn. 

Slope-as-steepness meaning entails conceiving of a line as a physical object and making 

perceptual associations between its steepness and a numerical value; Nagle and Moore-Russo 

(2013) called this conception “physical property” (p. 3). When holding this conception, one 

might conclude that the slopes of two lines are the same if they have the same steepness (as 

determined visually), even if they are graphed in coordinate systems with different scales. This is 

a fairly common conception for both pre-service teachers (Avcu & Biber, 2022; Paulucci & 

Strepp, 2021; Tasova & Moore, 2018) and in-service teachers (Byerley & Thompson, 2017; 

López et al., 2024; Stump, 1999). For instance, Tasova and Moore (2018) found that one pre-

service teacher’s meaning of slope as a measure of steepness hindered her ability to recognize 

consistency across graphs in different coordinate orientations.  

Slope-as-rise-over-run meaning entails thinking about slope as a procedure for moving up 

and over a specified number of units on a Cartesian coordinate plane, what Nagle and Moore-

Russo (2013) called “geometric ratio” (p. 3), or when determined by the slope formula, 
𝑦2−𝑦1

𝑥2−𝑥1
, 

“algebraic ratio” (p. 3). In Nagle and Moore-Russo’s study, these were two of the most common 

conceptions. Multiple researchers have found that most teachers’ meanings for slope include the 

slope formula (e.g., Byerley & Thompson, 2017; López et al., 2024; Stump, 1999; 2001). 

Although teachers can articulate the slope formula as a ratio, Byerley and Thompson (2017) 

showed that for many teachers this conception is non-multiplicative, as there is no attention to 

the change in one quantity compared to the change in the other quantity. 

Slope-as-ratio meaning is a consequence of comparing the changes in two quantities 

multiplicatively to create an emergent quantity (Ellis, 2007). This entails understanding slope as 

a measure of one quantity’s variation with respect to the variation of another quantity. For 

instance, one can conceive of speed as an emergent quantity through the multiplicative 

comparison of change in distance to change in time (Sherin, 2000). Few teachers refer to slope in 

this manner, and they can struggle to explain the use of division in the slope formula (e.g., Avcu 

& Biber, 2022; Byerley & Thompson, 2017; Coe, 2007; Talib et al., 2023). At the same time, 

slope-as-ratio meaning “is particularly powerful in that it supports one’s ability to make sense of 

slope in a variety of situations” (Diamond, 2020, p. 166). A slope-as-ratio meaning is taken as 

evidence of a deeper understanding of slope and is critical for making connections between a 

slope value and the constant rate of change in a linear function (DeJarnette et al., 2020; Dolores 

Flores et al., 2020; Lobato & Siebert, 2002; Talib et al., 2023). Understanding slope as a ratio 

supports the ability to conceptualize the invariability of slope (Deniz & Kabael, 2017), to transfer 

the slope concept to other contexts (Hoban et al., 2013), and to use algebraic manipulations to 

determine slopes effectively (Cho & Nagle, 2017). 

Two Ways to Understand Slope as a Ratio 
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Research addressing slope as a ratio typically considers ratio to mean a multiplicative 

comparison (Hoban, 2021; Talib et al., 2023). However, it is also possible to think of a ratio as a 

composed unit. A composed unit is created by joining two quantities to create a new unit, such as 

5 cm: 2 sec (Lamon, 1994; Lobato & Ellis, 2010). One can then iterate or partition the created 

composed unit, maintaining the simultaneity between those quantities while creating new units 

(Jacobson et al., 2018). For instance, a person developing speed as a ratio can think of an 

inchworm crawling 5 centimeters in 2 seconds. The composed 5 cm : 2 sec unit could then be 

iterated to create other equivalent ratios, such as 10 cm : 4 sec, 20 cm: 8 sec, and so forth. This 

unit can also be partitioned to create, for instance, a unit ratio of 2.5 cm: 1 sec or 1 cm : 2/5 sec. 

Although some researchers consider the composed unit to be pre-ratio reasoning (e.g., Lesh et 

al., 1988), others point out that it can be used in combination with other concepts to develop a 

robust understanding of proportionality (Ellis, 2013; Lobato & Ellis, 2010). 

In contrast, a multiplicative comparison entails considering how many times larger one 

quantity is compared to the other (Kaput & Maxwell-West, 1994; Lobato & Ellis, 2010). To 

continue the above example, this means understanding that the inchworm travels 2.5 cm for 

every second, or the number of centimeters traveled is always 2.5 times as large as the number of 

seconds. Regardless of whether one creates a composed unit or makes a multiplicative 

comparison, both ways of reasoning entail keeping the ratio of one quantity invariant to the other 

as the numerical values of both quantities change by the same factor (Aydeniz Temizer, 2022). 

We found only one study, by DeJarnette and colleagues (2020), that distinguished between 

ratio as composite unit and ratio as multiplicative comparison in relation to slope meanings. The 

authors claimed that interpreting ratio as a multiplicative comparison, which they called a single 

value, is necessary for a sophisticated understanding of slope. However, we suspect that limiting 

the slope-as-ratio meaning strictly to multiplicative comparisons might miss instances in which 

teachers (or students) are beginning to build a multiplicative understanding by iterating and 

partitioning composed units. Given the documented difficulties teachers have with reasoning 

with slope as a multiplicative comparison, it may be fruitful to consider instances in which 

teachers are understanding slope as composed units and reasoning with such units in order to 

build notions of invariance. In our study, we present a case of a teacher whose interpretation of 

slope as a ratio of composed unit showcases a quantitative and productive understanding, thereby 

enabling a meaningful engagement with various scenarios. 

Methods 

This study is part of a larger investigation aimed at understanding how teachers support 

mathematical generalizing (e.g., Ellis et al., 2024). Within this broader project, we identified Ms. 

R, a sixth-year high school algebra teacher, for an in-depth case study due to her insights into the 

teaching and understanding of slope. We adopted an investigative and descriptive case study 

approach (Merriam, 1998; Yin, 2009) to explore Ms. R’s meanings of slope. This paper reports 

on findings from three semi-structured clinical interviews (Ginsburg, 1997) with Ms. R designed 

to probe her conceptualizations of and MKT related to slope. The 90-minute interviews focused 

on her understandings of slope and ratio, her insights into how students develop these 

understandings, and her strategies for supporting its development. This paper concentrates on 

Ms. R’s personal meanings of slope, and our analysis of her broader MKTslope is reported 

elsewhere (Tasova et al., 2024). 
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To investigate Ms. R’s meanings of slope, we employed a set of questions inspired by 

Diamond (2020), such as Ms. R’s spontaneous associations with the term “slope,” contexts or 

situations she associates with slope, and her interpretation of specific slope values such as ½ and 

−1. Further, we introduced Ms. R to tasks, such as the “Five Students Problem” (adapted from 

Diamond, 2013; see Figure 1a), designed to reveal the extent to which her various meanings of 

slope. We asked Ms. R about what she would say or do with each of these students (see Figure 

1a) to support them in developing a desirable understanding of slope and why. Additionally, we 

presented “The Hypothetical Student Situation” (adapted from Diamond, 2020; see Figure 1b), 

where a student questions the consistency of slope’s meaning upon observing a function 

appearing steeper on one set of axes compared to another and solicited Ms. R’s response to this 

confusion. To further explore Ms. R’s nuanced understanding of slope as a composed unit ratio, 

we crafted follow-up questions. These questions were instrumental in highlighting the benefits of 

conceptualizing slope as a composed unit ratio.  

 
Five students are discussing the meaning of slope 

in a linear context. Student A says that slope is 
𝑦2−𝑦1

𝑥2−𝑥1
. 

Student B says that slope is the steepness of the line. 

Student C says that slope is rise over run. Student D 

says that slope is the rate of change of the line. 

Student E says that slope is the number m. 
 

(a)        (b) 

Figure 1: (a) Five Students problem and (b) The Hypothetical Student Situation 

Our analysis process involved a qualitative approach, initially conducting a conceptual 

analysis to understand Ms. R’s verbal and non-verbal explanations, thereby constructing viable 

models of her mathematics (Steffe & Thompson, 2000). Our analysis relied on aforementioned 

characterizations of teachers’ meanings for slope and meanings for ratio in order to identify Ms. 

R’s meanings. We then attempted to connect these categories that we identified and seek 

potential implications of those meanings in Ms. R’s classroom teaching.  

Results 

We structure our analysis around two main themes. Firstly, we identify Ms. R’s meanings of 

slope and her concerns regarding traditional slope understandings, highlighting her preference 

for slope-as-ratio meaning. Secondly, we focus on the exploration of slope as a composed unit 

ratio, exemplified by Ms. R’s pedagogical approach and its impact on student learning. Through 

this exploration, we offer evidence as to the potential effectiveness of viewing slope as a 

composed unit for fostering a deeper understanding of mathematical relationships. 

Ms. R’s Various Understanding of Slope 

Analysis of the interviews suggested Ms. R’s understanding of slope was multifaceted, 

encompassing several meanings: slope-as-steepness, slope-as-rise-over-run, slope-as-formula, 

slope-as-m, and slope-as-rate-of-change1. She also understood and articulated limitations of 

 
1 We adopt Ms. R’s terminology, using “rate of change” to describe the “ratio” understanding of slope, despite our 

awareness of the conceptual differences between the two terms. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

187 
 

meanings for slope that did not include a rate of change understanding. For instance, in 

considering the Five Students problem (Figure 1a), Ms. R expressed concern about slope-as-

steepness meaning in terms of its potential to mislead students into thinking that lines have the 

same slope based on their visual resemblance, regardless of axis scale or orientation. When asked 

The Hypothetical Student Situation task in which the same linear function is graphed on two 

coordinate axes with different scales (Figure 1b) and a student stated that the two functions had 

different slopes, she stated “steepness, that’s probably where they’re getting lost, because it’d be 

better to talk about change. I mean these lines, they don’t initially look like they have the same 

slope…but they are the same graphs.” 

When considering slope as rise over run, Ms. R noted that students may rely on rise-over-run 

meanings because “that is their big middle school focus.” Referencing the Five Students 

problem, she also suggested that students may rely on the slope formula only as a memorized 

fact: “this kid [Student A] spits out the slope formula because the teacher told him to over and 

over.” Ms. R considered the slope formula to be more useful than the rise-over-run meaning due 

to its broader applicability to other scenarios, such as the arithmetic mean, and she saw both the 

rise-over-run meaning and the formula meaning to be superior to viewing slope as the number 

“m”. Ms. R explained, “they know they are supposed to look at the number glued to the x 

[referring to y = mx + b], and that is it.” Ms. R then wrote the formula -2x + y = 3, and explained 

that a student who viewed slope as the number “m” would get confused by an equation in this 

form: “They’ll be like, what the heck happened in my graph, my equation?” Collectively, we had 

evidence from the interviews that Ms. R not only held these various meanings but was also able 

to position them against each other to discuss their productivity. Next, we illustrate her meaning 

of slope as a composed unit ratio. 

Ms. R’s Slope as Ratio Meaning: Composed Unit 

Ms. R emphasized that she privileged Student D’s meaning: “if this one actually knows what, 

like, rate of change of the line means, I like that one the best.” She viewed Student D’s meaning 

as versatile and applicable across various representations, such as table, equation, and graph, 

because it was not limited to specific formula or procedure. However, Ms. R’s meaning was 

unclear. While she said she valued the rate-of-change meaning of slope, we were interested in 

exactly what her rate-of-change meaning was and, hence, what the meaning she valued involved. 

Did she construct a ratio as a multiplicative comparison, which she could view as a unit rate? Or 

did she have an alternate meaning for slope as a ratio or a rate of change? To gain insights into 

Ms. R’s meanings, we asked her to create an example to describe how she would facilitate her 

students’ development of the rate-of-change understanding. We hoped that by drawing attention 

to student development, we would not only gain insights into the meanings she could enact to 

solve problems but also those aspects of her meanings that she was consciously aware of.  

Ms. R described an example with a speed of 25 miles per hour and explained that she could 

break this down into “for every 1 hour, the car is going 25 miles.” Ms. R then explained that she 

could help students create similar phrases with a template: “As ___ increases/decreases by ___, 

then ___ increases/decreases by ___.” Ms. R then clarified that students could use this template 

to generate equivalent ratios with different numbers, for instance, “for every two hours, the car is 

going 50 miles,” which represents “the same slope.” Ms. R’s attention to the connection between 
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the number of miles and the number of hours, combined with her understanding that this unit can 

be iterated to create other equivalent ratios, suggests a composed unit understanding of ratio. 

 

             

(a)                        (b)               (c)                        (d)                                  (e) 

Figure 2: (a) Slope as ratio, (b) Slope as formula, (c) Slope as rise over run, (d) Slope as rate 

of change in a table, (e) Determining the change in y for a 0.5-unit change in x. 

Moreover, Ms. R did explicitly describe slope as a rate of change between two variables. She 

stated, “When I hear the word slope, I think rate of change…like two variables are changing.” As 

she continued, her ongoing commentary suggested a composed unit ratio meaning: “as x 

increases by 1, y increases by 2.” In order to demonstrate this meaning, Ms. R connected it to 

four representations (Figure 2a-d), pointing out that “they all connect, like they mean the same 

thing. But they just look different.”  Figure 2a shows the composed unit 2:1. Ms. R could also 

interpret this composed unit via the slope formula (Figure 2b), and she could also demonstrate 

that meaning visually on a graph that was not drawn to scale. In describing the table in Figure 2d, 

Ms. R noted, “it [referring to the change in y-values] goes up 2 for every 1 x.”  

Based on this response, we hypothesized that Ms. R’s meaning of slope involved ratio as 

composed unit, but it was unclear whether she could also consider the slope ratio to be a 

multiplicative comparison between changes in quantities. We therefore pressed Ms. R on her 

examples in Figure 2, particularly about the meaning of the value of “2”. Ms. R responded, 

“Technically, it’s 2 over 1, but we like to simplify it to just 2 for some reason I don’t know.” We 

then asked her what “2” would mean if x changed by a value other than 1. With this, we aimed to 

determine if Ms. R understood the slope’s value as an indicator of a multiplicative relationship, 

illustrating how many times the change in y is larger than the change in x. To answer our 

question, she created a new table (Figure 2e) and concluded that for a change in x of 0.5, the 

change in y should be 1. We took her actions and descriptions to suggest that Ms. R viewed her 

original ratio, 2:1, as a composed unit and partitioned it to create an equivalent ratio (1:0.5). This 

is a contraindication of slope as a multiplicative comparison as she did not multiply 0.5 by 2 to 

determine the change in y, nor did she ever appeal to a constant multiple between the two. 

To further probe the extent Ms. R’s slope-as-ratio meaning was consistent with a composed 

unit or multiplicative comparison, we also asked her to explain the division in the slope formula, 

i.e., to explain why one divides to calculate a slope such as 2/1 or 1/0.5. Ms. R struggled to 

provide a clear explanation, and she interpreted the vinculum (division bar) as a means for 

matching changes in quantities: “That is communicating 2 is matching with 1.” Ms. R also 

explained, “to me, the division is this little comma [pointing to the comma in her phrase in 

Figure 2a].” These responses were further contraindications that Ms. R’s meaning of slope-as-
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ratio entailed a multiplicative comparison. Despite our attempts to explore division in different 

contexts, she could not provide a substantial rationale beyond following the formula’s 

instructions, remarking, “I’m trying to see how division comes in the way, and I’m not seeing it. 

I don’t really know why I even divide, beside because the formula said so.”  

The Affordances and Constraints of Slope as Composed Unit 

Ms. R’s meaning of slope-as-ratio as a composed unit but not as a multiplicative comparison 

meant that she could develop equivalent ratios through iterating and partitioning the unit, but she 

could not directly determine the change in y-values for any associated change in x through 

multiplication. She also could not explain why slope involved division. This is consistent with 

the limitations identified in the literature, in which teachers struggle with conceptualizing slope 

and division as expressions of relative size, often viewing them non-quantitatively (Byerley & 

Thompson, 2017). These challenges hinder their ability to connect division with proportional 

reasoning (Coe, 2007), complicate the interpretation of points on graphs (Thompson, 2013), and 

hinder the recognition of slope as a consistent ratio of change (Stump, 2001). 

Despite these limitations, we argue that there are also affordances to the meaning of slope as 

a composed unit ratio, beyond solving textbook problems. Ms. R could articulate meaningful 

connections based on a statement about slope as changes in y-values tied to corresponding 

changes in x-values; she could describe what that statement meant in terms of a function’s graph, 

in terms of an associated table of values, and in terms of the formula for determining slope. Ms. 

R also had meaningful ways to support her own students in developing these connections. For 

instance, referring to the statement in Figure 2a and the graph in Figure 2c, she noted, “I would 

like for them to draw, like, the little triangle [drawing a triangle similar to that seen in Figure 2c], 

show me this part [referring to the run] and this part [pointing to the rise].”  

Moreover, the meaning of slope as a composed unit ratio enabled Ms. R to conceive 

equivalence in the form of an invariant relationship across two graphs representing the same 

relationship in two different orientations (see Figure 3), which is a very sophisticated and 

productive way of thinking about graphical relationships (Moore et al., 2022). It also enabled her 

to respond in a meaningful way to a student thinking. We designed a task building on an activity 

she had implemented in the classroom, which referenced a pet-sitting business: A pet sitter can 

spend up to 8 hours each day feeding animals. Each cat requires 12 minutes per day, and each 

dog requires 20 minutes per day. We presented Ms. R with two graphs of the maximum numbers 

of dogs and cats that a pet sitter can feed, one with dogs on the x-axis and one with cats on the x-

axis (see Figure 3), and we asked her which of the students’ responses she agreed with, if any. 

Ms. R stated that Student D’s response was the most correct, and therefore the slopes of the two 

graphs must be identical, despite their different visual representations and reciprocal values. 
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Figure 3: Dog and Cat Feeding Time Functions and Graphs 

We then presented Ms. R with another hypothetical student answer, which claimed that slope 

is a rate of change, but the two slopes were different because one graph showed that for every 5 

cats fed you can feed 3 more dogs, and the other graph showed that for every 3 dogs fed you can 

feed 5 more cats. Therefore, the rates of change and thus slopes must be different. Ms. R 

maintained her original stance, arguing that the numerical values in the two slopes symbolized 

the same quantities, and thus represented the same rate of change. She elaborated, “I would be 

like, you said for every 5 cats, the variable after 5 is cats [emphasis added] in both of your 

sentences, you know, like, the variable after 3 is dogs [emphasis added].” Given that both 

expressions conveyed an equivalent meaning, Ms. R reasoned that “So, I would say, like, your 

rate of change is the same.” She argued this was akin to reordering a sentence in different 

contexts. This highlights Ms. R’s relational and quantitative understanding of slope viewed as a 

composed ratio. Her conceptualization enabled her to interpret the slopes of the two graphs as the 

same, and it allowed her to understand the meaning of slope in terms of coordinated changes in 

quantities as represented in tables, graphs, and equations. 

Discussion and Conclusion 

In this study, we have explored a nuanced meanings of slope as a ratio, proposing a new 

perspective that transcends the algebraic or geometric ratio conceptions identified by Nagle and 

Moore-Russo (2013), and yet does not reach the level of multiplicative comparison. While the 

multiplicative comparison conception of slope is recognized for its depth of understanding, it 
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remains a challenging achievement for both teachers and students. This insight aligns with the 

broader literature, which has long noted the difficulties inherent in grasping slope from a 

multiplicative standpoint (Cho & Nagle, 2017; DeJarnette et al., 2020; Dolores-Flores et al., 

2020). A potential implication of our research is that understanding ratio as a composed unit may 

serve as a more accessible—since it is not as cognitively complex as a multiplicative meaning—

and meaningful foundation for developing deeper insights into the concept of slope. 

The case of Ms. R illustrates that benefits traditionally associated with understanding slope as 

a multiplicative comparison are still attainable through the lens of a composed unit ratio. Ms. R’s 

slope meaning allowed a fully quantitative understanding, enabling her to effectively interpret 

and apply the concept of slope in various contexts. She correctly used algebraic manipulations to 

determine slopes and connected a slope value to the constant rate of change in a linear function 

(Cho & Nagle, 2017; DeJarnette et al., 2020; Diamond, 2020; Dolores-Flores et al., 2020; Lobato 

& Siebert, 2002; Talib et al., 2023). This underscores the flexibility and effectiveness of the 

composed unit ratio approach in fostering a comprehensive understanding of slope. 

To clarify, our stance is not to undermine the importance of understanding ratios as 

multiplicative comparisons or their relevance in understanding the concept of slope. Instead, we 

propose prioritizing the development of an understanding of ratios as composed units as a 

foundational step. This strategy involves encouraging the development of equivalent slopes as 

ratios of changes that leverage values smaller than 1 and values with “messy numbers,” thereby 

enhancing learners’ understanding of the invariant relationship between changes in y-values and 

their corresponding x-values. For instance, Ms. R’s ability to conceptualize an equivalent slope 

of 1/0.5 from an initial slope of 2/1 exemplifies the potential of this method to deepen 

understanding. We could ask similar questions to encourage other equivalent slopes, such as 

14/7, 9/4.5, 0.5/0.25, or 0.4/0.2. Asking learners to reflect on what is invariant across all these 

different ratios could encourage attention to the fact that regardless of the increase in y-values, 

the increase in x-values remain twice as large.  

We must acknowledge that our insights are based on the experiences of a single teacher, Ms. 

R, providing a compelling case that it is feasible to conceptualize slope as a ratio in effective and 

impactful ways without necessarily incorporating the notion of multiplicative comparison. Ms. 

R’s example shines a light on the viability of comprehending slope through the lens of a 

composed unit. However, further research is needed to assess the prevalence and efficacy of this 

approach among broader populations, including pre-service teachers and secondary students. We 

believe that such investigations will contribute significantly to the mathematics education field 

by offering alternative pathways to understanding slope, thereby enriching pedagogical strategies 

and student learning experiences. 
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Un problema para la educación de alumnos universitarios es la desconexión entre los temas 

vistos en sus cursos de matemáticas y las aplicaciones en su práctica profesional. Para el caso 

de un ingeniero de software, es necesario desarrollar habilidades que le permitan modelar y 

solucionar problemas en contextos de programación, en el cual pueden intervenir tres tipos de 

lenguaje que se interrelacionan: el vernáculo, algebraico y computacional. Por tanto, surge el 

interés de investigar cómo los estudiantes de ingeniería afines a esta práctica relacionan estos 

tres tipos de lenguaje. Para ello, se diseñó un cuestionario con problemas de álgebra básica y 

programación. Como resultado se encontró que los estudiantes tienen facilidad para describir 

en lenguaje vernáculo, códigos que están escritos en lenguaje computacional. Sin embargo, 

enfrentan dificultades para expresar esos códigos en lenguaje algebraico. 

Palabras clave: pensamiento algebraico, pensamiento computacional, resolución de problemas 

Introducción 

Los cursos de matemáticas para estudiantes de ingeniería suelen tener un enfoque 

generalizado, con herramientas que de forma tradicional han sido seleccionadas como todo 

aquello que un ingeniero debe saber emplear. Además, como menciona Devlin (2001), estos 

cursos suelen ser tradicionales, utilizando el modelo “recipiente que vierte”, donde se vierten los 

contenidos de un curso sobre los estudiantes como si fueran una jarra vacía, esperando que 

retengan toda esta información. Al final, esta práctica educativa puede ocasionar que los 

estudiantes de ingenierías no vean valor en sus cursos de matemáticas. 

En particular, el rol del ingeniero de software requiere del desarrollo de habilidades 

específicas que le permitan ser capaz de modelar y solucionar situaciones problema de su 

práctica (Parnas, 1999). Por ejemplo, un estudiante de programación debe ser capaz de encontrar 

errores que el compilador pueda demostrar, tales como errores gramaticales, de sintaxis y 

semántica; así como errores lógicos y deficiencias de calidad de software. 

Hay antecedentes de enseñanza del álgebra mediante la programación para el desarrollo del 

pensamiento algebraico y computacional (Kilhamn & Bråting, 2019; Bråting & Kilhamn, 2021). 

Tanto el álgebra como el software son representados mediante un lenguaje. Bråting y Kilhamn 

(2021) exponen las diferencias entre ellos, así como su testimonio añadiendo el pensamiento 

computacional mediante la programación en la currícula para el bachillerato. 
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Marco Conceptual 

Sibgatullin et al. (2022) define que en el pensamiento algebraico se incluyen 5 categorías: (a) 

generalización de la aritmética, (b) manipulación y transformación de igualdades mediante 

operaciones inversas, (c) análisis de estructuras matemáticas, (d) relaciones y funciones y, por 

último, (e) lenguaje algebraico y su representación. 

Por otra parte, el pensamiento computacional se refiere a los procesos de pensamiento 

involucrados en la formulación de problemas y la representación de sus soluciones de una 

manera que pueda ser realizada por una computadora (Proctor, 2022). Es una metáfora universal 

del razonamiento utilizada tanto por humanos como por máquinas, que abarca un amplio 

espectro de razonamiento a través del tiempo y las disciplinas (Henderson et al., 2007). El 

pensamiento computacional implica resolver problemas utilizando una base de evaluación lógica 

y, a menudo, matemática, y es lo que hacen los profesionales de la informática cuando analizan y 

diseñan sistemas (Walden et al., 2014). Mejora la integración de las tecnologías digitales con las 

ideas humanas y enfatiza habilidades como la creatividad, el pensamiento lógico y el 

pensamiento crítico (Zacharis & Niros, 2019). 

De acuerdo con Bocconi et al. (2018), existe un gran debate sobre el concepto de 

pensamiento computacional, donde existen 2 corrientes principales: a) una habilidad que va más 

allá de la programación y que engloba otras habilidades como la resolución de problemas, 

pensamiento lógico y la creatividad; b) un enfoque más orientado a la tecnología, donde se busca 

que se desarrollen competencias de los empleados en el sector de las TIC que finalmente 

resolverán problemas sociales. El enfoque a tomar en este trabajo será orientado a la primera 

idea, aunque no existe ninguna contradicción con que, al desarrollar las habilidades descritas no 

se mejoren las competencias, la fuerza de trabajo y se tenga un impacto en la sociedad.  

El lenguaje, es característica de ambos tipos de pensamiento, algebraico y computacional. 

Así, para llevar a cabo la investigación, se propone una serie de problemas en un contexto de 

programación. Los problemas diseñados bajo este marco promueven el uso de 3 lenguajes: (a) 

vernáculo, (b) algebraico y (c) computacional. 

Duval (2017) afirma que existen distintos signos para representar los objetos matemáticos. 

No se debe confundir el signo con el objeto. Por ejemplo, la suma no es el signo más (+), sino 

que, es la idea de esta operación y cualquier interpretación en línea con un proceso de adición. 

Cada objeto matemático tiene una o más representaciones. Los registros de representación se 

refieren a un sistema que permite representar varios objetos. Existen varias representaciones para 

un mismo objeto en diferentes sistemas de representación. 

 

Material y método 

Este estudio de carácter exploratorio se implementó con 22 estudiantes de ingeniería en 

computación y 9 de informática, en una universidad pública de México. De los 31 estudiantes, 

sólo 2 manifestaron haber programado y 6 mencionaron haber tenido pocas experiencias con ese 

tipo de tareas. La implementación se hizo en un curso de precálculo de primer semestre, pero a la 

par esos estudiantes cursaban la materia de “fundamentos de programación”. Para el estudio se 

diseñaron 5 problemas en un contexto de programación. Los fragmentos de código utilizados son 

en lenguaje Python. A continuación, en la Figura 1 se exponen los problemas, mientras que su 

propósito se discute junto con las respuestas dadas por los estudiantes en la sección de 
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resultados. 

Implementación 

Los problemas se aplicaron en 2 ocasiones, la primera aplicación fue individualmente, la 

segunda se hizo en grupos de 3 a 4 alumnos con el fin de promover la socialización de las 

respuestas, formando en total 8 grupos. Al final, con ayuda del profesor se revisaron las 

respuestas en plenaria y se explicaron conceptos involucrados en los problemas. 

Figura 1: Problemas planteados en la experimentación 

Resultados 

Tabla 1: Análisis de la aplicación de los instrumentos 

 

 Respuestas individuales Respuestas grupales 

1.a 

Suma de 2 números (28). Describe el 

programa (2). 

No respondió (1). 

Todos respondieron de forma correcta. 

1.b 

No cambia (23). Depende del caso (4). Sí 

cambia (2). Error de programación (2). 

Únicamente un equipo respondió de 

forma incorrecta mencionando un cambio 

de orden en el que aparecen las variables. 

1.c 

a+b con diversas literales (16). x+x (5). 

numero1+numero2 (4). Expresión que 

contenía un producto (2). Otros (4). 

Todos los equipos respondieron con 

expresiones de la forma a+b. 

 

2.a Multiplicación (13). Elevar al cuadrado (4). Sólo un equipo respondió de forma 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

197 
 

Multiplicación por sí mismo (3). Potencia 2 

(1). Multiplica 2 números (7). Descripción 

línea por línea sin mencionar la operación 

como en 1.a (2). Múltiples respuestas (1). 

equivocada “multiplica 2 números”. 

Algunos mencionaron potencias, 

multiplicación, multiplicar por sí mismo 

o elevar al cuadrado. 

2.b 

x*x (7). a*b (7). x² (5). ab (2). -x*y (2). n1² 

(1). numero*numero (2). Valores concretos 

(2). Sin respuesta (2). 

El mismo equipo que respondió mal (2.a) 

utilizó una expresión de la forma a*b. Las 

respuestas fueron acordes a (2.a). 

3.a 

Términos como masa, masa corporal o IMC 

(13). Descripción de las operaciones sin 

hacer una interpretación real de la fórmula 

(7). Descripción errónea de las operaciones 

(5). Otras (6) 

6 equipos mencionaron IMC, los otros 2 

describieron la fórmula a nivel algebraico 

sin darle un significado. 

3.b 

Da resultado incorrecto (14). Hay error de 

programación (7). No cambia el resultado 

(3). 

Sin respuesta (2). Respuestas erróneas 

divergentes (5). 

6 equipos respondieron de forma 

correcta. Un equipo dijo que sólo se hacía 

más grande el código y otro escribió la 

fórmula: estatura*estatura/peso. 

3.c 

Sin respuesta (10).  Invierte: estatura * 

estatura / peso (6). Uso de potencias (5). 

Agrupa usando comillas (2). Divide la 

expresión en dos (1). 

Respuesta no relevante (7). 

3 equipos dejaron la pregunta en blanco, 

un equipo la respondió separando en 2 

instrucciones y otro utilizó potencias. El 

resto escribieron expresiones erróneas. 

3.d 

Escribe expresión algebraica correcta con 

paréntesis o exponentes (11). Invierte la 

división (7). Asigna valores concretos (4). 

Omite paréntesis (3). Otras (6). 

Sólo 3 equipos respondieron a/(b*b), el 

resto cambiaron el orden de los 

argumentos de la división u omitieron los 

paréntesis. 

4.a 

Separación correcta de instrucciones (10). 

Separación de las operaciones de 

entrada/salida y de los cálculos (7). Sin 

respuesta (6). Otras (8) 

4 equipos separaron de forma correcta las 

instrucciones. Un equipo no respondió. 

Los otros 3 equipos resaltaron de forma 

errónea. 

4.b 

-Sin respuesta (14). No mostraría los 

decimales (5). Resultados enteros (5).  

Cambio de tipo en las variables (2). No 

cambiaría en nada (2). Error de 

programación (1). Otro (2). 

6 equipos respondieron de forma correcta 

al decir que no habría decimales o que se 

mostraría sólo el resultado entero. Un 

equipo mencionó que el resultado no 

cambia y un equipo mencionó un error de 

programación. 

4.c 
Resultado cambia (18). Sin respuesta (9). 

Nada (3). Error en algunos casos (1). 

Un equipo escribió la fórmula p * a / a, el 

resto respondió de forma correcta. 

5.a 

Resta y división (7). Sin respuesta (7). 

Multiplicación y la división (5). División (5) 

Todas las operaciones (1). Otras respuestas 

(6). 

Sólo un equipo respondió de forma 

equivocada, mencionando a la 

multiplicación y la división 

5.b Jerarquía, orden (16). Separación de Todos los equipos mencionaron ordenar. 
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operaciones (7). Sin respuesta (6). Otras (2). 

 

Tabla 2: Éxito obtenido individual y en equipos 

 

 Individuales Equipos  Individuales Equipos 

P A % A % P A % A % 

1.a 28/31 90,32% 8/8 100% 3.c 6/31 19,35% 2/8 25% 

1.b 23/31 74,19% 7/8 87,5% 3.d 11/31 38,71% 3/8 37,5% 

1.c 16/31 51,61% 8/8 100% 4.a 10/31 32,26% 4/8 50,% 

2.a 21/31 67,74% 7/8 87,5% 4.b 13/31 41,94% 6/8 75,% 

2.b 13/31 41,94% 7/8 87,5% 4.c 18/31 58,06% 7/8 87,5% 

3.a 22/31 70,97% 8/8 100% 5.a 7/31 22,58% 7/8 87,5% 

3.b 14/31 45,16% 6/8 75% 5.b 23/31 74,19% 8/8 100% 

 

Conclusiones 

Los estudiantes que inician sus estudios en carreras de ingenierías afines a la programación 

ingresan con un pensamiento computacional limitado, incluso nulo, lo cual podría ser 

comprensible, pues es ahí en donde se espera desarrollar ese tipo de pensamiento. Sin embargo, 

también se pudo constatar que los estudiantes han desarrollado un pensamiento algebraico 

limitado, a pesar del prolongado tiempo de estudio del álgebra. Entre las concepciones erróneas 

encontradas se puede mencionar que, los estudiantes no conocen las reglas del lenguaje 

algebraico, pues no reconocen la utilización y asignación de las variables, así como el significado 

de algunos operadores y propiedades de las operaciones aritméticas. Desde el marco de Duval 

(2017), los estudiantes no conocen las representaciones de los objetos, y como vimos en los 

trabajos de Sibgatullin et al. (2022) y Proctor (2023), el lenguaje para describir objetos es 

importante para el pensamiento algebraico y computacional. 

Los problemas que se propusieron para el estudio implicaron una reflexión y uso de tres tipos 

de lenguaje en distintos sistemas de representación: vernáculo, algebraico y computacional. Al 

respecto, hay evidencia de que los programas sencillos en un lenguaje de programación pueden 

ser explicados por los estudiantes en el lenguaje vernáculo, pero con dificultades para expresarse 

en el lenguaje algebraico. Además, conforme se introdujeron otros signos propios de la 

programación, los estudiantes mostraron mayor dificultad para interpretar el código. 

Estos resultados conducen al diseño de una investigación más amplia en la que se pretende 

desarrollar el pensamiento computacional y mejorar el pensamiento algebraico de los estudiantes 

que ingresan a una ingeniería de software. A fin de que puedan encontrar relación y utilidad de 

sus conocimientos matemáticos para realizar tareas de su práctica como futuros profesionales. 
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This work presents six research-based elements that align with building algebraic fluency from 

conceptual understandings in the teaching and learning of algebra. The six elements are: symbol 

sense, processes/relationships of algebra, process as an object, anticipating solution strategies, 

anticipating solution formats, and relationships among representations. 

Keywords: Algebra and algebraic thinking, algebraic fluency, conceptual understanding 

The purpose of this work is to describe how six research-based elements contribute to 

students building algebraic fluency from conceptual understandings. First, we use Kaput’s (2008) 

two core aspects of algebra to illustrate the difference between algebra readiness and conceptual 

understandings of algebra. Second, we provide a characterization of algebraic fluency from 

conceptual understandings of algebra. Third, we describe six research-based elements of 

algebraic fluency and illustrate connections to the teaching and learning of algebra. 

Core Aspects of Algebra, Algebra Readiness, and Conceptual Understandings 

Kaput (2008) defines algebra using two core aspects. First, “[a]lgebra as systematically 

symbolizing generalizations of regularities and constraints” (p. 11). One example of a regularity 

of our number system is the commutative property of addition. We note that 7 + 3 = 3 + 7 and 

can generalize this regularity symbolically as a + b = b + a. Another example of symbolizing 

generalizations of regularities is finding a rule for the nth term in a visual pattern like in Figure 1. 

 

 
 

Figure 1: Visual Pattern, Growing Squares 
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The first core aspect aligns with an algebra readiness perspective (Feikes et al., 2022). Algebra 

readiness involves helping students see regularities, describe generalizations from the 

regularities, and represent these generalizations symbolically. The growing squares pattern 

(Figure 1) illustrates this as students can generalize and represent a regularity symbolically by 

expressing the nth shape as “4𝑛 + 1”.  

However, algebra entails more than just generalization and symbolic representation. Kaput’s 

(2008) second core aspect is: “algebra as syntactically guided reasoning and actions on 

generalizations expressed in conventional symbols systems” (p.11). We look at this second core 

aspect as the processes, properties, procedures, and symbolic generalizations which allow for the 

abstract manipulation of algebraic objects. This characteristic of algebra allows for the modeling 

of real-life situations, the creation of abstractions, the manipulation of algebraic objects, and the 

application of abstractions to real-life situations. An example consistent with this core aspect of 

algebra is the derivation of the quadratic formula by completing the square (See Figure 2). 

 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 

Figure 2: Quadratic Formula 

 

The derivation of the quadratic formula by performing actions on variables a, b, and c 

through completing the square is a process which becomes a mathematical object. This object 

can then be used in other algebraic work or manipulations. The core aspects of algebra are what 

allow for the manipulation of algebraic generalizations. 

Kaput’s second core aspect of algebra aligns with our perspective of developing conceptual 

understandings of algebra. We understand conceptual understandings in a way that is consistent 

with the National Research Council (NRC) (2001) and National Council of Teachers of 

Mathematics (NCTM) (2014) descriptions of students having an integrated and functional grasp 

of mathematical ideas. Opportunities to develop conceptual understandings of algebra occur 

when students are provided problems where they can develop and manipulate symbolic 

generalizations of regularities in meaningful ways (Feikes et al., 2021; Feikes et al., 2022).  

Algebraic Fluency from Conceptual Understandings of Algebra 

Our perspective of algebraic fluency is based on the NCTM (2023, p. 1) position statement 

on procedural fluency. Our work defines algebraic fluency as the ability to apply algebraic 

processes, properties, and procedures with efficiency, flexibility, and accuracy; to transfer 

algebraic processes, properties, and procedures to different problems and contexts; to build or 

modify algebraic processes, properties, and procedures from other processes, properties, and 

procedures; and to recognize when a particular algebraic process, property, or procedure is more 

appropriate than another. Algebraic fluency entails understanding how to carry out procedures, 

why procedures can be performed, and which is more appropriate. Research on procedural 

fluency is relevant to our perspective on algebraic fluency. Efficiency, flexibility, and accuracy 
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involve the knowledge of multiple strategies and the ability to apply them in different contexts 

(Star, 2005), including procedures and processes in algebra. 

Algebraic fluency builds from conceptual understandings so that students become skillful in 

using procedures appropriately, flexibly, and efficiently, considering different representations, 

using reasoning to apply these representations to different purposes, and producing accurate 

answers (NCTM, 2014). Students who build conceptual understandings are more likely to 

remember and use topics, concepts, and procedures without error due to reasoning and 

understandings of mathematical relationships (e.g., Fuson et al., 2005; Hiebert & Carpenter, 

1992; Hiebert et al., 1997). Alternatively, mindlessly manipulating symbols or learning tricks like 

memorizing formulas or mnemonics are typically applied to specific problems, likely to be 

misused in different mathematical problems, and often quickly forgotten (NRC, 2001).  

To develop fluency, students need to practice strategies and procedures to solidify their 

knowledge (NCTM, 2014, p. 45). For example, multiplying two binomials or two larger 

polynomials (like a binomial and a trinomial) can be taught as an application of the distributive 

property. This would be a conceptual way to teach and learn this skill because it presents this 

skill as part of the coherent whole of algebra. As students practice the skill to develop 

proficiency, they can develop fluency by being asked about patterns and strategies when 

multiplying the polynomial expressions. 

The following example illustrates algebraic fluency with conceptual understandings of 

algebra when a student recognizes properties of a given equation and related procedures. To 

solve for x in 
1

2
(𝑥 + 4) − 1 = 5, students could consider a variety of mathematical concepts. 

They may recognize that the equation represents 6 − 1 = 5, such that 
1

2
(𝑥 + 4) should equal 6. 

The distributive property could be used to create an equivalent expression for 
1

2
(𝑥 + 4) or each 

term could be multiplied by 2 so that 
1

2
 is no longer part of the equation. Students who have 

developed algebraic fluency from conceptual understandings could consider the benefits and 

drawbacks of different ways of finding a solution. 

Six Elements that Algin with Building Algebraic Fluency from Conceptual Understandings 

We have identified six research-based elements which build algebraic fluency from 

conceptual understandings of algebra and allow students to comprehend algebraic notation or 

symbols and operate within the processes, properties, and procedures of algebra. 

1. Developing symbol sense by learning the constructs that algebraic symbols convey.  

2. Understanding processes/relationships of algebra and how to express these with symbols, 

e.g., 2n is “n + n” or “2 × 𝑛”; y = 3x. 

3. Conceptualizing a process as an object, often called process-object duality or procept. 

4. Understanding, anticipating, and being proficient with solution strategies. 

5. Anticipating solution formats, like solutions as a single number, a graph, or a function. 

6. Noticing and expressing relationships among representations, like relationships between 

algebraic expressions, tables, and graphs.  
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Discussion of the Six Elements 

The six elements that align with building algebraic fluency with conceptual understandings 

have important implications for the teaching and learning of algebra. For example, Arcavi et al. 

(2017) describe symbol sense as giving meaning to symbols and expressions and connecting the 

symbols to underlying concepts (p. 94). Students need to have an understanding of the constructs 

conveyed with symbols. Becoming fluent with the abstract ideas represented by the symbols and 

examples that help these representations become transparent is a key to helping students learn to 

think with algebra (Kieran, 2007). 

Understanding processes/relationships of algebra is significant because it helps students 

express the generalizable from the particular. Mason and Sutherland (2002) emphasize that 

algebra is about processes and understanding them through the symbols used to represent the 

processes. Students need to learn to “see through” the symbols by being aware of the processes 

and applying them (Wheeler, 1989). 

Algebra includes processes that are represented with symbols. A conceptual leap occurs when 

students begin to see and act on processes as objects (c.f. Arcavi et al., 2017; Kieran, 1992). 

Sfard (1991) describes recognizing processes as objects as reification. Warren et al. (2016) have 

suggested that one of the benefits for students seeing a process as an object is when algebraic 

objects become accessible which leads to identifying algebraic structures. Further, students 

should be able to unpack an objectified process into objects related by processes (Tall & Gray, 

1994). Instructors of algebra need to encourage students to see processes as objects by providing 

examples, discussing how processes act as objects, and working on examples that both compress 

processes into objects and decompress objects to processes (Tall & Gray, 1994). 

Understanding, anticipating, and demonstrating proficiency with solution strategies and 

anticipating solution formats require more attention during instruction and work on mathematical 

problems. Students need to anticipate aspects of solution formats so that possible strategies can 

be considered (Boero, 2001; Booth, 1988). To help students develop fluency with algebraic 

solutions formats and strategies, instructors should discuss possible solutions, different ways the 

solution could be conveyed, different solution strategies, and examples where when a solution 

does not meet the anticipated expectation. 

The final feature of relationships among representations is central for creating meaning in 

algebra (Kieran, 2007, p. 712). Encouraging multiple representations provides opportunities for 

students to make sense of algebra as represented in different types of thinking and allows 

students more ways to express their algebraic understandings (Kieran, 2006). We need to help 

students analyze multiple representations, encouraging them to notice what is similar and what is 

different about each (Jacobs et al., 2010). 

The six elements are interrelated and build upon each other. For example, Kieran (1992) 

notes, “the development of algebraic symbolism … allowed the symbolic forms to be used 

structurally as objects” (p. 391). This statement relates to the process as an object feature and 

shows the importance of symbol sense in having a structural perspective of algebra. 

Additional Considerations and Conclusion 

We have identified six elements that align with building algebraic fluency from conceptual 

understandings of algebra to address theoretical and practitioner needs. Each one of the six 

elements are research-based and together they form a unique framework for examining the 
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teaching and learning of algebra. Building algebraic fluency should position students as capable, 

using reasoning and decision-making to improve skill and understanding (NCTM, 2023). We 

suggest that student learning of algebra can be improved by developing skills and understandings 

around the six elements. This can occur in classrooms by discussing conceptual aspects of 

algebra and providing opportunities for students to build understandings about algebraic 

symbols, processes, properties, and procedures. Research is needed to understand how the six 

elements of algebraic fluency impact student achievement, equitable classroom practices, and the 

development of assessments for algebra. 
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Chapter 3:  

Equity and Justice 
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Information and communication technologies transform our personal and social practices. 

The demand for highly skilled labor for the specialized technology-intensive market has risen 

dramatically. For example, we can notice a visible ethical demand that schools should produce 

efficient programmers who learn programming (algorithmic actions) from early years at schools 

to develop a  “right” technical mindset and dispositions for living and making out in technology-

intensive societies. Digital programs or platforms operate with a variety of algorithms regulated 

by mathematical procedures, principles or relations. Algorithms are codes or structures that 

regulate computation objects and digital environments. They are ‘a series of steps undertaken to 

solve a particular problem or accomplish a defined outcome’ (Diakopolous, 2015). Algorithms 

have four functions: prioritization, classification, association, and filtering. These rules act as a 

sort of moral order that sets the stage where actions of prioritization, classification, association, 

and filtering take place. Often, these processes operate within value grids that 

actors/institutions/agencies establish for a particular purpose. For example, digital platforms such 

as Facebook create particular cues for users based on viewing histories of particular content or 

patterns of likes or dislikes initiated by users. This necessitates paying attention to particular 

discursive acts/ storylines that algorithms generate for people to adopt or resist within the 

interactive nexus of rights and duties. Positioning theory (PT) studies dynamic ways in which 

human actions are constituted within changing moral fields where social actions are regulated 

through the assignment of rights and duties to actors (see Harré, & Van Langenhove,1999a)). 

Dooley and Grimes (2023) identified how an imaginary interaction between preservice teachers 

and students in mathematics classroom situations can identify complex configurations of 

dynamic positions that students can take to resist dominant positions ascribed to them under the 

moral discourse of mathematics. They used Goffman’s theory of two-face behavior to highlight 

how different moral discourses set dynamic constraints on students and teachers to show their 

performance of positions under the positive face. Here, a positive face can be characterized as “a 

desire to be appreciated and valued by others, a desire for approval”, and a negative face as 

“concern for freedom of action, a desire to be unimpeded” (pp. 48–49). Similar situations can be 

observed in ways Facebook algorithms direct the patterns of likes in particular directions. This 

theoretical critique on algorithms invites the mathematics education community to see 

algorithms' actions “as behavioral nudges” for guiding human conduct in a particular direction 

for creating particular human beings with serious implications for social justice and injustices. 
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With its three-part Catalyzing Change series, the National Council of Teachers of 

Mathematics (NCTM) challenged educators and leaders to broaden the purposes of school 

mathematics beyond college and career readiness. At the secondary level, they suggested that 

mathematics should help students to “(1) expand professional opportunity; (2) understand and 

critique the world; and (3) experience wonder, joy, and beauty” (NCTM, 2018, p. 9).  

The NCTM’s (2018) proposals are consistent with arguments made by critical mathematics 

education scholars in prior decades, who wrote about the aims of teaching mathematics while 

asking whose social contexts were being taken up in schools (e.g., Ernest, 2000; Ernest, 2010; 

Greer & Mukhopadhyay, 2003). But those scholars did not focus solely on potential (individual) 

benefits of school mathematics; they also argued that school mathematics privileges some 

students and perpetuates patterns of marginalization, suggesting that mathematics has historically 

served as a gatekeeper and tool for students’ stratification (Ernest, 2018; Louie, 2017; Martin et 

al., 2010). These more “hidden” purposes of school mathematics are notably absent from the 

NCTM reports. Consequently, so too is an argument for how the proposed purposes and 

strategies would help to counter the potential harmful practices of school mathematics. 

Alongside the idealistic purposes to which we aspire, we must, as a field, consider the realistic 

purposes that school mathematics has historically served.  

To understand the prevalence of these various purposes of school mathematics among the 

“frontline” of mathematics education, this study investigated the purposes of teaching 

mathematics in schools asserted by middle and high school mathematics teachers. This poster 

will present interview-gathered perspectives of 20 randomly selected middle and high school 

mathematics teachers from the midwestern U.S. state of Missouri. The teachers’ subject areas 

ranged from sixth grade mathematics through AP Calculus, and years of experience ranged 2-30 

years. The interview protocol consisted of various questions related to purpose including, “what 

do you think teaching mathematics accomplishes with respect to society?” and “is there anything 

that school mathematics accomplishes that you wish it did not accomplish?” The interviews were 

coded using inductive methods and consolidated using thematic analysis.  

My findings reveal that teachers primarily think about the purposes of school mathematics 

with respect to its benefits at an individual and social level; however, they also described critical 

aims. All 20 respondents described one purpose of school mathematics to be related to NCTM’s 

(2018) “expanding professional opportunities.” But some suggested additional purposes that 

were not included in NCTM’s (2018) list, including fifteen responses related to students’ 

development of transferable skills (e.g., communication, collaboration, logical thinking) and, 

more critically, five teachers suggested that school mathematics serves as a tool for students’ 

stratification. Given the prevalence of responses related to this critical purpose of school 
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mathematics that is absent from NCTM’s (2018) reports, this study indicates a need to expand 

the frameworks beyond the benefits of teaching mathematics in school to consider the harmful 

byproducts of mathematics education.  
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This paper considers geospatial equity implications relative to the calculus versus statistics 

secondary mathematics endpoint debate. Using two proprietary datasets from the Advanced 

Placement® (AP®) program— (1) the population of 2015-‘19 AP® course audit data and (2) the 

population of AP® examination scores received by U.S. public school students over the same 

period—the geographic availability of and achievement in AP® Calculus AB and AP® Statistics 

are examined. Results indicate that availability and achievement vary across space and subject. 

On average, rural students face the largest locale-based achievement disadvantage in both 

subjects. Further, AP® Statistics is shown to be least available in rural schools and to rural 

students. Implications for locale-based achievement and availability supports are discussed, 

particularly in the context of ongoing debates. 
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Current debates concerning the optimal endpoint of secondary mathematics, be it calculus, 

statistics, or calculus and statistics often employ equity arguments to support each possibility 

(Bland et al., 2024; Burdman et al., 2018). Secondary calculus is fraught with inequities in 

access, enrollment, and outcomes. Students who are either of Color or from low-SES 

backgrounds—or both— have fewer opportunities to take calculus than their white and/or more 

affluent peers (Kolluri, 2018; Oakes, 1990). Additionally, structural racism, tracking, low 

expectations, and a lack of calculus-specific teacher professional learning impact Black, Latinx, 

and low-SES students’ opportunities to experience success in calculus (Bressoud, 2020; McGee, 

2020; McGee & Martin, 2011). In response, many suggest that statistics and data science suffer 

less from issues of inequity and may offer all students more opportunities to have positive 

experiences in higher-level mathematics (LaMar & Boaler, 2021). 

Conversely, advocates for preserving calculus as the ultimate course in secondary 

mathematics have shown that secondary calculus can have benefits in the college admissions 

process as well as in post-secondary calculus courses and beyond (Bressoud, 2020; Ferrini-

Mundy & Gaudard, 1992). Calculus proponents argue that denying opportunities for secondary 

calculus also denies or delays post-secondary STEM opportunities for students who would 

otherwise enroll in the course (Bressoud, 2020). Further, statistics also has equity concerns; there 

is clear racism and sexism in statistics and data science, as datasets and algorithms often reflect 

the white, male power structures that exist and persist in society today, creating false binaries, 

actively discriminating, and perpetuating harm (D’Ignazio & Klein, 2020; Noble, 2018). 

Thus, weighing the calculus versus statistics debate is complex, with both subjects having 

documented equity concerns across several intersecting dimensions of identity—specifically 

race, gender, and class. As the field collectively grapples with inequities along these dimensions 

and their implications for secondary mathematics curricula, I argue that a critical fourth 
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dimension is missing from the conversation—that of spatial equity, which should be considered 

in conjunction with gender, race, and class. 

Drawing from critical spatial theory, which calls for the interrogation of “the intersections of 

space, power, and knowledge in order to expose geographies that perpetuate or disrupt inequities 

in both processes and outcomes” (Annamma, 2017, p. 4), this study examines how students’ 

geographies shape their opportunities to enroll and succeed in advanced calculus and statistics. 

Using licensed data from The College Board®, I use regression analysis and spatial data science 

to address the following questions: (1) How does geography shape the availability of advanced 

secondary calculus and statistics across communities in the United States? (2) How does 

geography shape student exam achievement in advanced secondary calculus and statistics across 

communities in the United States? 

Methods 

Data and Measures 

This study makes use of two primary datasets, both of which are licensed from The College 

Board® and contain data about their Advanced Placement® (AP®) program. AP® data is 

particularly useful for this analysis given that the Advanced Placement® program is a primary 

means of secondary calculus and statistics delivery across the country, reaching hundreds of 

thousands of students annually (Bressoud, 2020; Lee & Harrison, 2021). Data set one is the full 

population of all U.S. public schools with AP® Calculus AB and/or AP® Statistics course audits2  

approved by The College Board® in at least one of the four years prior to the onset of the Covid-

19 pandemic (N = 18,557 schools). Data set two is the population of all AP® Calculus AB and 

AP® Statistics examinations taken by U.S. public school students in the same four-year window 

(N = 1,733,822 exams). Both data sets have a selection of student/school population 

demographic variables and, importantly, a National Center of Education Statistics (NCES) locale 

variable that communicates whether the school is in a rural, town, suburb, or city area. The audit 

data has been joined with the balance of U.S. public schools which were not approved to offer 

AP® Calculus AB and/or AP® Statistics, and the geographic location of all schools was obtained. 

Analytic Strategy 

To consider the geographic landscape of AP® Calculus AB and AP® Statistics course 

availability (RQ1) across the U.S., I conduct exploratory spatial data analysis (ESDA). Using 

ESDA, data is examined concerning both the geographic locale and state political boundaries to 

reveal how space shapes course availability.  

To consider the geographic landscape of AP® Calculus AB and AP® Statistics student exam 

achievement (RQ2) across the country, I consider the following model for each subject: 
𝑌𝑖𝑗 = 𝛽0 +  𝛽1𝐶𝑖𝑡𝑦𝑖 + 𝛽2𝑇𝑜𝑤𝑛𝑖 + 𝛽3𝑅𝑢𝑟𝑎𝑙𝑖 + 𝛽4𝑅𝑎𝑐𝑒𝐸𝑡ℎ𝑖 + 𝛽5𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝛽6𝑆𝐸𝑆𝐷𝑒𝑐𝑖𝑙𝑒𝑖 + 𝑎𝑗 + 𝜖𝑖𝑗 

In this model 𝑌𝑖𝑗 is the predicted standardized AP® exam score, ranging from 1 to 5, for the ith 

student in the jth state by year fixed effect. The suburban locale serves as the comparison group. 

 
2 In this study, I use AP® audit data as a proxy for course availability. However, it is possible that schools had 

syllabi approved through the audit process but ultimately did not offer the corresponding course. 
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Results 

Course Availability (RQ1) 

Over the four-year period, of 21,139 public high schools, 11,094 schools (52.5%) offered 

AP® Calculus AB and 7,463 schools (35.3%) offered AP® Statistics. This equates to 5,328,661 

students attending schools without AP® Calculus AB and 10,025,690 students in high schools 

without AP® Statistics. This unavailability is also distributed disproportionately across space. 

Relative to AP® Calculus AB, AP® Statistics is less available in schools and to students across 

all four primary NCES locales. In city locales, 666 less schools (representing 1,176,509  

students) offer AP® Statistics as compared with AP® Calculus AB, 686 less (1,246,204 students) 

in suburban areas, 749 less (957,120 students) in towns, and 1,530 less schools (1,318,196 

students) in rural areas. That is, both in terms of school and student counts, rural areas face the 

largest disparities in AP® Statistics availability as compared with AP® Calculus AB. 

Rural (un)availability varies by state, region, and subject. The proportion of rural schools 

offering AP® Calculus AB is strongest in much of the Northeast, with over 70% of rural schools 

in Maryland, Connecticut, Vermont, Massachusetts, New Jersey, Delaware, and New Hampshire 

offering AP® Calculus AB. Conversely, the availability of AP® Calculus AB is generally weakest 

in the Midwest—less than 15% of rural schools in Nebraska, North Dakota, South Dakota, 

Missouri, and Kansas offer the course. 

Table 1: Geographic Availability of AP® Calculus AB and AP® Statistics Courses 

 

NCES Primary 

Locale 

 

Total # Schools 

AP® Calc AB Availability 

# Schools (%) 

AP® Stats Availability 

# Schools (%) 

City 5,110 (24.2%) 2,782 (25.1%) 2,116 (28.4%) 

Suburb 5,186 (24.5%) 3,773 (34.0%) 3,087 (41.4%) 

Town 2,876 (13.6%) 1,518 (13.7%) 769 (10.3%) 

Rural 7,967 (37.7%) 3,021 (27.2%) 1,491 (20.0%) 

Total 21,139 11,094 7,463 

 

The same regional patterns hold for rural availability in AP® Statistics, although availability 

is far more limited. Only five states, all within the Northeast, have 50% or more of their rural 

schools offering AP® Statistics—Maryland, Delaware, New Jersey, Connecticut, and 

Massachusetts. Concerningly, fifteen percent or less of rural schools in twenty states offer the 

course: eight states are in the Midwest; nine are in the West; and three are in the South.  
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AP® Calculus AB 

 

 

 

AP® Statistics 

 
 

Figure 1: Proportion of Rural Schools Offering Each AP® Course by State 

Course Achievement (RQ2) 

Spatial inequities also exist related to course achievement in AP® Calculus AB and AP® 

Statistics. Controlling for documented inequities experienced by students of Color, women, and 

those from low socio-economic backgrounds, the regression coefficients on geographic locale as 

predictors for AP® Calculus AB and AP® Statistics exam achievement are given in Figure 2. 

 
 

Figure 2: Marginal Effects of Locale on AP® Mathematics Exam Achievement 

Compared to students in suburban schools, rural students, on average, receive lower AP® 

exam scores in both AP® Calculus AB (-0.33 pts.) and AP® Statistics (-0.21 pts). The models also 

show a slight advantage for city-located students (AP® Calculus AB: 0.05 pts.; AP® Statistics: 

0.13 pts.) in comparison to suburban-located peers. The rural disadvantage is consistent across 

both exams but is largest in AP® Calculus AB. Notably, however, the improvement in rural 

disadvantage in AP® Statistics is closely mirrored by an increase in city advantage, thus, city-

rural gaps improve only slightly when moving from AP® Calculus AB to AP® Statistics. 
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Discussion and Conclusion 

Rural disadvantage exists in both the availability of AP® mathematics coursework and AP® 

mathematics achievement (see also Wolfe et al., 2023). While AP® Calculus is more widely 

available nationwide, of the four geographic locales, AP® Calculus AB is least available, 

proportionally, in rural schools. This unavailability worsens in AP® Statistics, with rural schools 

and students having the largest absolute disadvantage. There is also spatial inequity in both AP® 

Calculus AB and AP® Statistics achievement. Across both examinations, rural students, on 

average, receive the lowest exam scores across all locales. The suburban-rural achievement gap 

is wider in AP® Calculus AB (0.38 pts.), while the city-rural achievement gap is similar (+/- .04 

pts.) across both subjects. 

As the field wrestles with whether and how to alter secondary mathematics pathways in 

service of modern career requirements, equity—and ultimately— students, this paper presents an 

additional spatial dimension to broaden discussions around these choices. Sizable rural 

disadvantages in achievement span both typical secondary mathematics endpoints, necessitating 

support and resources from both the field and policymakers, regardless of the outcome of current 

debates. Further, this paper demonstrates that a choice to pivot from AP® Calculus AB to AP® 

Statistics would be spatially exclusionary without concurrent initiatives to expand availability to 

the latter, particularly in rural areas of the United States. 
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We, five math teacher educators (MTEs), share how multimodal microanalysis has the potential 

to contribute to rehumanizing mathematics education by expanding what counts as evidence of 

students’ knowings. We define multimodal microanalysis as the detailed examination and 

interpretation of minute interactions between various sensory modalities and mathematical 

representations at a granular level. Using mathematics cognitive interview videos, we share our 

research design and analysis processes and discuss how multimodal microanalysis can 

contribute to rehumanizing mathematics teaching and learning.  

Keywords: Teacher Noticing, Cognition, Equity, Inclusion, and Diversity 

Background and Theoretical Perspectives 

As five critically conscious mathematics teacher educators (MTEs) with diverse areas of 

expertise and lived experiences, we acknowledge that social, cultural, and political factors 

influence all aspects of our work. Our diversity enhanced this research project because our 

different perspectives, experiences, and insights fostered creativity, innovation, and a more 

comprehensive understanding of the complex issues we studied. Before this project, three of us 

exclusively attended to only what our students said or wrote. After learning about embodied 

cognition and working with the other two members of the research team, we realized our limited 

noticing neglected to acknowledge valuable embodied utterances. Drawing upon the literature on 

embodied cognition and multimodal noticing, our research reveals how multimodal 

microanalysis can contribute to rehumanizing mathematics education. We define multimodal 

microanalysis as the detailed examination and interpretation of minute interactions between 

various sensory modalities and mathematical representations at a granular level.  

Rehumanizing Mathematics Through Multimodal Microanalysis 

Noticing. Teachers engage in noticing when they attend, interpret, and respond (AIR) to 

learners (Jacobs et al., 2010). Noticing skills enables teachers to catalyze critical moments and 

optimize students’ learning trajectories (Stockero & Van Zoest, 2013). Teachers attend to and 

interpret a myriad of evidence of students’ thinking but must decide which evidence is pivotal 

and how to respond to these critical moments (Rotem & Ayalon, 2023). The sociopolitical 

framings of a teacher impact whether the nature of their noticings leans towards a deficit or anti-

deficit model (Louie et al., 2021). Moreover, teachers with multidimensional noticing skills 

consider how past and future events shape and are shaped by their dispositions and instructional 

practices (van Es et al., 2022). 

Embodied cognition. Embodied cognition research centers on students’ use of “body-based 

resources to make meaning and to connect new ideas and representations to prior experiences'' 

mailto:lb2206@msstate.edu
mailto:jtroup@csub.edu
mailto:cmbertolone-smith@csuchico.edu
mailto:dmoss@unr.edu
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(Nathan, 2022, p. 4), including gestures, body forms, simulations, and the use of materials, such 

as manipulatives. Our thinking and understanding of the world are closely linked to our physical 

bodies and experiences. Moreover, both teaching and learning are dialogic, multimodal activities. 

Our understanding of abstract concepts, such as mathematics, is rooted in our sensory 

experiences and bodily movements. As such, we want to begin with and continuously provide 

students with playful, concrete experiences (Abrahamson et al., 2020).  

Multimodal noticing. Walkoe and colleagues (2023) connected embodied cognition and 

noticing in their research on multimodal noticing. Multimodal noticing adds to the noticing 

literature by including noticing nonverbal evidence. It is critical for teachers to develop 

multimodal noticing skills because gestures and actions play a critical role in student thinking 

(Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2012; Walkoe et al., 2023).   

Rehumanizing mathematics. The three dimensions of Rochelle Gutiérrez’s (2018) 

rehumanizing mathematics framework that are most relevant to our multimodal microanalysis 

include: (1) emotions and body, (2) participation and positioning, and (3) broadening 

mathematics. Teachers skilled in multimodal noticing consider students’ embodied utterances as 

evidence of students’ participation and knowings. Students may exhibit these embodied 

utterances, such as facial expressions, gestures, or finger counting, before providing their 

knowings verbally or in writing (Nemirovsky & Ferrara, 2009; Nemirovsky et al., 2012). The 

broadening of what counts as evidence of mathematical knowings practiced by teachers using 

multimodal noticing contributes to their positioning of each and every student as a knower and 

doer of mathematics. This expansion of teachers’ ideologies and pedagogies can serve as micro 

and macro affirmations that promote a rehumanizing of mathematics (Abrahamson et al., 2020).  

As seen in Figures 1 and 2, Bondurant and colleagues (2023) layered Gutiérrez’s (2018) 

rehumanizing mathematics framework as a lens over the AIR framework and found that 

multimodal noticing contributed to the rehumanizing of mathematics. Despite the promising 

potential of multimodal noticing, most novice teachers’ noticings focus on general impressions 

and lack connections to any evidence from critical events (Bondurant et al., 2020; Moss & 

Poling, 2019). Although experienced MTEs notice specific pivotal moments, unless they are 

prompted and reminded to focus specifically on embodied utterances, they privilege students’ 

verbal or written work as evidence of students’ knowings (Bondurant et al., 2023). We attribute 

this to the plethora of stimuli the noticer must attend to at a given moment. We embarked on this 

study to see if microanalysis can serve as a vehicle for nuanced noticings of embodied 

utterances.   
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Figure 1: Rehumanizing Noticing through Embodiment 

 
Figure 2: Examples of Noticing of Embodiment and Mathematics Methodology 

 

Microanalysis 

Analysis of students’ spoken, and written words only captures the end products of their 

learning, which may not provide the researcher a complete story of the students’ thinking or 

knowings. Microgenetic approaches accentuate fine-grained processes of learning and change 

that occur “at the smallest observable time scales” (Parnafes & diSessa, 2013, p. 7). The 

researcher seeks a “moment-by-moment explanatory account of learning in particular contexts” 

and “conceptual resolution” that yields “very fine distinctions in meaning” that must be tracked 

(Parnafes & diSessa, 2013, p. 7). Microanalysis involves closely observing and understanding 

small-scale alterations as they happen, which provides insight into broader developmental 

changes over time (Calais 2008). The major advantage of using microanalysis is that it captures 
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in-the-moment processes of learning. An in-depth examination of small-scale educational 

artifacts provides the researcher with nuanced insights into specific phenomena. Researchers 

employing microanalysis often focus on detailed observations, interactions, and individual 

experiences to uncover subtle patterns and meanings. We used microanalysis to intentionally 

foreground and focus on embodied utterances as evidence of students’ knowings. 

Data 

We used ELAN a free, multimodal annotation tool for digital audio and video media created 

by the Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The 

Netherlands, and available at https://archive.mpi.nl/tla/elan (Lausberg & Sloetjes, 2009). We 

viewed a 40-second segment from a cognitive interview video from the course resource 

Mathematics for Elementary Teachers: A Contemporary Approach by Musser and colleagues 

(2013). In the video segment, a second-grade boy is given six blocks and asked, “Is the number 

of blocks even or odd?” We chose this video because it includes a manipulative and the video 

frame includes the student’s face and body, providing us with opportunities to attend to 

embodiment in our noticings. In the video, the student first quickly provided the end product (the 

answer) but then struggled to explain the process. The student quickly declared that six is even 

without any interaction with the blocks, suggesting a unitizing strategy. However, when asked 

how he knew, he initially organized the six blocks into two rows of three, stating they were 

"even.” When asked to explain, the student used a different method, likening an even number to 

having "partners” and combining the blocks into three groups of twos. Ball and Bass (2003) 

reported that third-grade students might perceive numbers like six as both even and odd because 

of their reasoning that the number of groups of two is odd. Further exploration showed that third-

grade children may use fair sharing, groups of two, or the alternation of even and odd numbers 

on the number line strategies to determine if a number is even (Bass, 2005). 

Procedure 

To foreground embodiment and evidence of student knowings, we intentionally sequenced 

our noticings as follows: (1) student gesture, (2) student words, (3) instructor gesture, and (4) 

instructor words. When focusing on gestures, we muted the audio. By focusing on words after 

gestures we were able to uncover the instructor’s and our missed opportunities to notice student’s 

embodied utterances. For each of the four noticing focuses, we watched the video segment 

multiple times at full, 0.75, and 0.5 speeds. We met via Zoom to analyze the data, discuss 

noticings, conduct open coding, and consolidate microanalysis notes (Corbin & Strauss, 2014). 

Findings 

Through microanalysis, we uncovered a plethora of nuanced embodied utterances that we 

neglected to notice previously. Regarding the student, we uncovered student-embodied 

utterances that provided valuable evidence of the student's knowings. For example, we 

uncovered that the student had memorized the fact that six is even. The student immediately 

stated, “My teacher taught us that…,” positioning the teacher as an undisputed authority of 

knowledge. However, when he had to explain why he was initially uncertain about whether six 

was even since there were an odd number (three) of “partners” (groups of two blocks), we found 

that using the blocks and gesturing helped him develop his understanding of why six is even. 

Moreover, the student’s larger gesturing, which moved away from his body, suggested a possible 

growth in the student’s confidence (Cuddy, 2015). Regarding the instructor, we noticed the 

https://archive.mpi.nl/tla/elan
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instructor’s embodied utterances and how they connected to evidence of the student’s knowings. 

For example, when the instructor was stoic for extended periods, the student did not receive any 

scaffolding, which challenged the student to demonstrate his understanding. We also noticed 

when the instructor’s gestures mirrored and echoed the student’s gestures. Mirroring gestures are 

when one individual initiates gesturing about a task, while another simultaneously mimics or 

matches those gestures, allowing for a real-time physical representation of the first person's 

reasoning, while echoing gestures involve a sequential reproduction of gestures with a noticeable 

time gap between them as both individuals explain their reasoning (Walkington et al., 2018). 

Based on our review of the literature, expanding our noticings to include embodied 

utterances through microanalysis contributes to rehumanizing mathematics by providing 

opportunities to highlight and leverage every student as a brilliant mathematician (Abrahamson 

et al., 2020; Gutiérrez, 2018). 

Discussion 

In this microanalysis we set out to explore how embodiment-focused microanalysis of 

student-teacher interactions in elementary mathematics expands research mathematics educators’ 

professional noticing and contributes to a rehumanizing of mathematics teaching and learning. 

The microanalysis process provided several “aha” moments for us. We realized that although our 

previous work had explicitly and intentionally focused on embodiment, microanalysis was 

needed to uncover a more complete understanding of students’ knowings. We found the student 

initially relied on the teacher as an authority figure but as the student engaged with the 

manipulatives and reasoned through the explanation their gestures became bigger and more 

confident. Furthermore, we noticed a point we missed before where the student appeared to be 

processing thought while tapping and dragging their finger on the table, in the middle of 

arranging the blocks as both two groups of three and three groups of two. Based on our findings, 

we consider microanalysis a critical tool to avoid missed opportunities that can acknowledge 

students’ knowings. 
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This project explored the use of Digital Mathematics Storytelling (DMST) with Indonesian 

mathematics teachers, focusing specifically on mathematical identity and the connection to 

community funds of mathematical knowledge. Traditionally, mathematics teaching in Indonesia 

marginalizes local knowledge in favoring of a Eurocentric outlook. DMST challenges this by 

facilitating the integration of community-rooted mathematical narratives into educational 

spheres by enhancing teacher identity and fostering a broader understanding and appreciation 

of mathematics. Engaging in a three-day DMST workshop prompted teachers to recognize and 

harness the mathematical community knowledge in their communities and forge a richer, more 

inclusive, humanizing disposition towards their mathematics teaching. 

Keywords: Teacher Beliefs; Equity, Inclusion, and Diversity; Research Methods; Technology 

Background 

Mathematics learning throughout the world is often dominated by traditional, academically-

focused, Eurocentric perspectives, dissuading mathematics students and teachers from seeing 

people like themselves as mathematical beings, from recognizing their family and community as 

holders of strong mathematical knowledge, and from using modern communication tools such as 

social media and online video to engage in mathematical discourse (Chao, 2018; D’Ambrosio, 

1985; Joseph, 2011; Powell & Frankenstein, 1997; Star et al., 2014; Vakil, 2014; Zulkardi et al., 

2020). This research project explored the ways that Digital Mathematics Storytelling (DMST), a 

technology-based teaching tool that draws on the ancient practice of storytelling, impacted 

mathematics teaching identities when used with mathematics teachers in Indonesia. Using 

qualitative and design-based research methods, this project explored the ways that mathematics 

teachers shared and discussed connections to family and community-based mathematics through 

creating short videos within a 3-day digital mathematics storytelling clinic. This research project 

also fostered global collaboration between researchers in the USA and Indonesia around cutting-

edge mathematics teaching pedagogy that utilized widely available mobile technology, 

particularly engaging mathematics teachers in ways that connect learning technology with 

research-based pedagogy. 

Theoretical Framing 

Children throughout Southeast Asia live mathematically rich lives, yet their academic 

mathematics achievement is more correlated with family wealth and access to tutors, rather than 

the ability to connect out-of-school mathematics knowledge to in-school mathematics knowledge 
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(Ginting et al., 2018; Saleh et al., 2017; Trung & Nguyen, 2020; Zulkardi et al., 2020). This 

disconnect, in turn, creates gaps in mathematics proficiency throughout Southeast Asia, where 

many adolescent children decide that mathematics is not something that they identify with and 

subsequently end up removing themselves from future STEM oriented careers (Sheffield et al., 

2018; Vuong et al., 2020; Yonezawa et al., 2016). One equity-oriented approach to solving this 

problem is through connecting out-of-school mathematics with in-school mathematics through a 

funds of knowledge approach, which honors families, communities, and the knowledge they 

bring to classroom mathematics (Aguirre et al., 2012; Civil, 2014). Additionally, a storytelling-

based approach draws on historic norms, connecting the way storytelling is used by communities 

to share important knowledge between generations and define a community history (Lambert, 

2013; Prusak et al., 2012).  

Identity is not only embodied within the stories a person tells about themselves, but also 

encompasses the actual act of narrating or storytelling (Sfard & Prusak, 2005). Identity is a verb, 

made and remade through the act of storytelling. Our stories are not merely descriptions of a 

static reality, but rather dynamic constructs that can change over time and context. Our narratives 

serve as constructs that embody our range of experiences, characteristics, and expectations, 

thereby defining the creation and evolution of our personal and social identities. Even more 

important than telling a story to explore our identity is the way that identities are reified and 

endorsed through the acceptance, validation, and re-telling of our narratives. Simply put, our 

stories are our identities.  

Counter-storytelling, therefore, involves sharing stories and experiences that challenge 

existing dominant (and oppressive) narratives and stereotypes (Solórzano & Yosso, 2002). 

Counter-storytelling is a tool for individuals in marginalized communities to highlight their 

experiences and perspectives, and challenge destructive narratives that perpetuate harmful 

stereotypes. Through counter-storytelling, individuals and communities reclaim their own 

narratives and thereby their own identities. 

When people tell narratives about their out-of-school mathematical experiences, they 

position themselves and their communities as mathematical. They tap into the power of 

authorship to counter stigmas that mathematics must only used academically for school–they 

enact the truth that mathematics is community oriented (Aguirre et al., 2013; Langer-Osuna & 

Nasir, 2016a). And today’s children, particularly in Southeast Asia, are growing up in a world 

where video-sharing platforms like TikTok, WhatsApp, and Instagram allow for easy sharing of 

personal stories (Rideout, 2017; Yue et al., 2019). Therefore, this research project explored the 

ways that teachers can use Digital Mathematics Storytelling, a mechanism in which videos, 

photographs, and audio come together, to share mathematically-rich narratives from families and 

communities connected their out-of-school mathematics and community knowledge with their 

in-school mathematics teaching practices. 

The DMST technique involves telling a personal story, one that centers on experiences, 

conflicts, and growth. These are stories one would share around a meal or family gathering, tales 

that can be told and retold. These stories often do not follow the Eurocentric three-act framework 

propagated by Western media, but instead draw upon local community storytelling archetypes 

involving folktales and family histories (Levy, 2000; Osman, 1999; Tacchi, 2009; Thang & 

Mahmud, 2017). DMST, therefore, does not involve just creating videos of simplistic 
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mathematics situations, such as trying to figure out the most economical option when buying 

fruit at the market. Rather, DMST shows mathematics as it really exists within the community, 

showcasing not only mathematics, but the beauty of the community itself. For example, a digital 

mathematics story might involve a teacher exploring the ways her Islamic faith guides her 

continued understanding of mathematics and mathematics pedagogy, drawing connections 

between passages in the Quran and how she used this knowledge to reflect not only on her 

knowledge of linear equations, but on her own community responsibilities as a teacher.  

Research Methods 

The Digital Math Storytelling clinics at the heart of this research project involved 3 sessions 

over one week hosted at a university on the island of Java in Indonesia. Utilizing a Participant 

Design-Based Research methodology (Amiel & Reeves, 2008; The Design-Based Research 

Collective, 2003; Vakil et al., 2016), participants themselves gave continual feedback towards the 

development of the protocols used within the study, so that it aligned with the cultural and 

societal norms of mathematics teaching in Indonesia. The Participant Design-Based Research 

structure allowed our team to update the existing Digital Mathematics Storytelling Protocol 

(Author, 2019) through feedback and rapid iterations with the research participants themselves. 

For instance, based on early feedback from participants, the daily schedule of the clinics were 

revised to incorporate daily prayer times. 

The hypothesis grounding this research project was that, when mathematics teachers engage 

in a DMST workshop situated in their community, they will: (1) develop a stronger sense of their 

mathematics identity as connected to their family and community identities and (2) tell stories 

about the rich mathematics examples that come from their own communities and connect these 

examples to their own teaching.  

And while the analysis for this study is still ongoing, the outcomes are being measured 

through two instruments: a) Pre- and post-clinic questionnaires about mathematics identity and, 

b) the Digital Mathematics Stories themselves, which showcase unique storytelling affordances 

unique to each participant’s culture and community, along with the ways they position 

themselves towards mathematics.  

The Clinic 

The Digital Math Storytelling clinic comprised three sessions, each lasting four hours, over 

the course of one week. The workshops focused on eliciting mathematical identities and 

community mathematical knowledge through storytelling. Each session revolved around a 

storycircle (Lambert, 2013), in which research participants shared stories in small groups in 

order to elicit constructive feedback. These storycircles allowed each storyteller to evolve and 

hone their stories and often consisted of a mixture of oral storytelling and sharing video footage 

or images of the emerging stories. The final session of the workshop revolved around a 

community screening, in which participants shared their final video stories and then engaged in a 

whole group discussion about the ideas, emotions, and connections to teacher identity evoked 

through the creation of, sharing, and community watching of each video. Overall, the makeup of 

each session evolved based on the feedback and needs of the actual participants, who were 

positioned not only as research subjects but as equal partners in planning and developing the 

research plan.  

The Participants 
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The participants consisted of sixteen mathematics teachers enrolled in either a Master’s 

degree program (10) or a Doctoral degree program (6) at an Indonesian university focused on 

teacher education. The participants varied in their mathematics teaching experience, from pre-

service teachers who were just beginning their mathematics teaching careers to teachers with 

more than 15-years of experience. Teachers were solicited from a pool of current students in the 

mathematics teacher education program and were invited to participate in a research study 

focused on creating digital video stories to explore their identities. Participants were also given a 

small stipend to help offset the costs of their transportation to the workshop. 

Data Sources 

Two measures of stories and interviews, outlined in the Table 1, were be used to measure 

potential changes in participant’s mathematics identities, digital literacies, and dispositions 

towards community mathematics. These measures were integrated into the research methods as 

follows. First, the research team used a Participant Design-Based Research method with 

storytelling, meaning that the research design and questions shifted based upon the participants’ 

feedback. While the primary source of data was the final digital stories that the participants 

created, we also collected pre and post-workshop questionnaires focused on mathematical 

identity, digital literacy, and dispositions towards community mathematics. Additionally, the 

research team collected field notes, recorded the whole group discussions from the final 

screenings, and recorded their own debrief conversations after each session. 

Additionally, the Participant Design-Based Research method also meant that each participant 

had opportunities to submit continual feedback to the research team through the daily editable 

online agendas. This feedback was taken up directly by the research team to substantially evolve 

the day-to-day structure of each session as well as focus on what the participants felt was 

important. For instance, originally, each session was conducted in English since each participant 

indicated that they were comfortable using English as the common language. But after the first 

session, the research team received feedback that the level of academic discourse in English was 

beyond the comfort level of several participants. Therefore, the rest of the sessions were 

conducted in Bahasa Indonesian, with English being used minimally. 

Data Analysis 

To analyze the data, we first transcribed all the video and audio data in Bahasa Indonesian, 

then translated them into English. Because the research team consists of an international 

collaboration between the United States and Indonesia, we were able to engage in the analysis in 

both languages and take care to understand the cultural meanings of the words the participants 

chose.  

We used constant comparison analysis (Corbin & Strauss, 2008) and narrative inquiry 

(Clandinin & Connelly, 2000) to compare existing measures of (1) participant’s mathematics 

identities as connected to other social identities as detailed in the work of Aguirre, Mayfield-

Ingram, and Martin (2013) and Langer Osuna and Nasir (2016b) and (2) digital literacies as 

detailed by The International Society for Technology in Education’s (ISTE) seven standards for 

digital literacy: empowered learner, digital citizen, knowledge constructor, innovative designer, 

computational thinker, creative communicator, and global collaborator (ISTE, 2016). The 

constant comparative and narrative inquiry-based analysis allow the research team to analyze the 

video behind the participant’s digital mathematics stories. In this way, the storytelling emerges, 
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but is compared with or “measured” against an already known item of the existing construct. 

Third, the researcher used these tangible findings to construct a tool for future data collection: a 

Digital Mathematics Storytelling protocol using a Participatory Design-Design Framework 

created specifically for mathematics teachers in Indonesia (Bang & Vossoughi, 2016; de Jager et 

al., 2017; Lambert, 2013). Findings for each teacher were written up in a short, 1-page format 

and sent to each teacher for a member check and to ensure that they had a voice in the research 

process.  

 

Table 1: Data Sources, Analysis Methods, and Theoretical Framework 

 

Data Analysis Methods Theoretical Framework 

Digital Mathematics Stories Constant Comparative 

Method 

Narrative Inquiry  

Math Identity: Aguirre, 

Mayfield-Ingram, and Martin 

(2013) 

Math Identity: Langer Osuna 

and Nasir (2016b) 

Digital Literacy: ISTE Digital 

Literacy Standards (2016) 

Pre/Post Questionnaires Constant Comparative 

Method 

 

Results 

Initial results from our analysis of the teachers’ data shows some emerging findings that we 

hope to process and reflect on with the community during the conference. First, the teachers 

engaged heavily with the construct of the counter story. Of the sixteen stories presented, fourteen 

of the stories specifically involved creating counter narratives to the ways each teacher was 

positioned. These stories explored the positional identities of gender, social economic status, 

ethnicity, age, and parental status. Generally, the teachers used the digital mathematics 

storytelling workshops to explore the ways in which they were positioned in mathematics as 

learners, how that affected the ways they saw mathematics, and how they actively fought against 

this positioning in their teaching practice. For instance, in Figure 1, a participant shares an 

emotional story about a family death and its effects on the way she perceives the world and the 

way she teaches. 
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Figure 1. A Story Exploring Life After the Death of a Family Member 

 

However, these counter stories were often the second, third, or even fourth stories that the 

participants told. The initial stories were often shallow, as the participants felt that the connection 

to everyday mathematics had to be the focus of the story. For instance, one of the participants’ 

initial stories revolved around the various risks and advantages of monetary investment, with the 

story concluding that investing in gold was the smartest long-term solution. Two other initial 

stories focused on the mathematics behind skin care regiments and the amount of product and 

frequency of application needed for a healthy skin care routine. In all of these cases, the 

storytellers completely abandoned these storylines during the first storycircle when it became 

obvious that their stories could be more connected to their various identities and counter 

narratives. 

Second, the stories allowed ways for teachers to share and explore aspects of their identities 

that they rarely had the chance to share with other teachers. Three of the stories involved the 

struggles of raising a family while also working as a teacher. Five of the stories involved the 

difficulty of working as a professional mathematics teacher while also supporting parents and 

family members economically.  

One of the teacher’s stories delved deeply into the ways she felt pressure from her 

intersecting role as a mother of three children within Islamic Indonesian society and her role as a 

mathematics education leader in her community. Her story delved into the duality of both joy and 

frustration. She expressed gratitude for the opportunity to raise three children, engaging them in 

fun and critical mathematics play from an early age. But she also expressed frustration with the 

expectation with having to serve as caretaker and coordinator of her children’s schedules while 

she felt that her male counterparts were able to completely focus on their professional identities 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

229 
 

and not take care of the endless minutia of parenting. This story pushed back on the frustrating 

gender norms existing the storyteller felt. 

However, another narrative painted a counter story to this narrative. A male teacher’s story 

focused specifically on the mathematics play that he and his young children engaged in on a 

daily basis, focusing on how much time and effort he spent in creating playful and educational 

experiences for his children so that his female partner did not have to shoulder the burden of 

caretaking entirely on herself. Both these stories, in parallel, showcase the unique ways that this 

storytelling experience allows multiple narrative perspectives on parenting to emerge. And the 

ensuing screening opened discussion on gender roles and our responsibility as educational 

leaders to push back on norms that felt oppressive. 

Third, the ensuing discussions after each story opened pathways for teachers to connect their 

mathematics teaching to humanizing practices. Every single post-survey result mentioned some 

form of how this practice allowed them to engage in mathematics teaching from their heart, as 

opposed to the robotic and technical practice that they often felt positioned to do as mathematics 

teachers. For instance, in Figure 2, a participant shares a story exploring her own evolving Islam 

faith and the ways that her daily prayer and study are connected to how she sees mathematics 

and her role as a mathematics teacher in her community. In this example, the storyteller wrestles 

heavily with her own emerging identity as a mathematics teacher and the purpose of mathematics 

in society. She also wrestles with her growing Islamic faith and uses mathematics, religion, and 

her own personal experiences to connect how passages from the Quran are connected to how 

mathematics is learned and understood. The discussion that ensued from this story focused 

heavily on the role of religion in mathematics education practice, particularly in ways that were 

culturally relevant to the students that these teachers would work with. 

 
Figure 2. A Story Exploring Islamic faith and Community Responsibility 
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Finally, supporting a finding from our prior studies using digital mathematics storytelling in 

US-based communities (Chao et al., 2021, 2022), we once again found that this final community 

screening and discussion became a crucial space for the stories to live. This space, to share and 

comment on each other’s stories, particularly at the end of the Digital Mathematics Storytelling 

experience became a cathartic and transformative space where the teachers clearly see who they 

are and how it connects to their practice as mathematics educators. And, in our own reflection of 

the data, we found that it is this conversation during this screening that was filled with the richest 

feedback and personal connections. The teachers spoke of their own family trauma, their own 

experiences with mathematics, their own hopes as teachers, parents, siblings, and community 

members, their own frustrations, and finally, ways to find their own joy within their practice. In 

fact, during this last three-hour screening and discussion, one of facilitators noted that it was time 

for prayer. But the participants decided to keep going with the screening and discussion and push 

their prayer back until after the discussion was finished. 

Discussion 

Overall, the Digital Mathematics Storytelling experience was successful in eliciting 

narrative-based identity stories from these mathematics teachers in Indonesia, not only by 

offering opportunities to create and share their counter stories, but also engage in artifact creation 

that humanized their practice. These results show the global impact that a practice like this can 

have on mathematics teachers, particularly in an environment like Indonesia which has a deep 

history of Arabic, Indian, Dutch, and Chinese pedagogical influences (Patahuddin et al., 2018). 

While the original intent of the project was to elicit specific Indonesian national and regional 

mathematics teaching practices, the research team learned that what the mathematics teachers 

most resonated with through this practice was the opportunity to forge and share stories about 

their own mathematics identities as connected to their family, community, and culture. 
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Mathematics shapes how we see ourselves, each other, and the world. Therefore, how we come to 

know mathematics has consequences for how we relate to one another and to the world around 

us. For example, when we rely on a mathematics that we come to know as fixed and static to 

conceptualize social identities such as race, gender, and class, it is easy to interpret these 

identities as fixed and static. By re-reading empirical examples from existing literature on 

Cartesian geometry and the mathematics of space in conversation with theoretical provocations, 

this conceptual paper explores how transforming how students come to know mathematics has 

the potential to transform how they come to know each other and the world around them.  

Keywords: Equity, Inclusion, and Diversity; Social Justice; Instructional Activities and Practices 

Recently, one of us observed a high-school classroom in which students were given a paper 

with multiple straight lines on a Cartesian grid. They completed sentences such as “two lines are 

parallel when (the slopes are the same)” and “two lines are perpendicular when (the slopes are 

negative reciprocal).” In this and many other classrooms, the Cartesian grid is presented as 

existing a priori, with students’ primary mathematical tasks being to plot prescribed lines and 

perform calculations about those lines. Thus, students come to know mathematical structures like 

the Cartesian grid as absolute: an objective external truth “discovered” by an external authority 

and handed down over time. This essentialist approach to mathematics (Skovsmose, 2020) is 

dehumanizing to students (Gutiérrez, 2018) and leads them to experience mathematical 

properties as arbitrarily defined. Students often think that a right triangle must be oriented in a 

certain way lest it become isosceles (Vogelstein et al., 2019), for example, or a square must not 

be tilted lest it become a diamond (Clement et al., 1999). Deprived of the opportunity to engage 

with the creative potential of mathematics (de Freitas & Sinclair, 2013), students come to know 

mathematics as fixed, rigid, and absolute, rather than as subjective, flexible, and expansive. 

What we come to know mathematics as, and how we come to know mathematics, matters 

because mathematics structures society. Critical mathematics scholars have illustrated how the 

formatting power of mathematics shapes technologies, naturalizes the classification and ordering 

of humans, and makes material some abstractions over others (e.g., Borba & Skovsmose, 1997; 

Bullock & Meiners, 2019; Chronaki, 2018; Diaz, 2021). Given the imperial and colonialist 

histories of the mathematics that is most commonly taught in U.S. schools today, mathematics 

typically materializes abstractions that maintain inequitable relations of power (Appelbaum & 

Stathopoulou, 2020; Bishop, 1990; Martin, 2009). When students learn mathematics in school, 

they are also learning about what mathematics is and learning from mathematics about society.  

In line with the conference theme of envisioning the future of mathematics education, we 

build on the efforts of these critical mathematics scholars who warn of the consequences of 

students coming to know mathematics in restrictive ways and ask: how might transforming how 

students come to know mathematics also transform how they come to know the world? 

mailto:fai.wisittanawat@vanderbilt.edu
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Theoretically, we draw on theories of learning and theories of society that treat knowing and 

social life as relational, situated, and interactionally produced (e.g., Erickson, 2004; Lave & 

Wenger, 1991), which indicate that how students learn math in school matters for how they know 

and act in society. Methodologically, we plug empirical examples from the mathematics 

education literature and conceptual provocations from the social studies of mathematics into each 

other (Jackson & Mazzei, 2013), reading for possibilities for more “expansive and insurgent 

ways of learning, being, and acting” in the world with mathematics (Warren et. al, 2020, p. 278).  

 

Coming to Know Space 

Consider different understandings of the relationship between identity and power. Popular 

understandings often take identity as a set of fixed characteristics that affect people in predictable 

ways; men have more privilege than women, or people of color are subordinated to white people 

(e.g., Cheng, 2020). A person’s identity and how they experience the world can be described by 

the intersection of their locations on axes of privilege or domination. This explanation draws on a 

mathematical model that many people are familiar with because they have been taught, since 

early childhood, to plot points on number lines and Cartesian planes, to find intersections of 

lines, and to compare areas of a plane as being greater than or less than. With this geometric 

model in mind, comparing privileges based on fixed identity markers seems perfectly logical. It 

also leads to reductive notions of hierarchy and oppression. 

By contrast, feminists of color have long recognized identity as a complex, shifting, and 

situated phenomenon (e.g., Moraga & Anzaldúa, 1983). The concept of intersectionality, for 

example, was developed to explain how people’s vulnerabilities to racism, sexism, and other 

forms of oppression not only differ from each other but also depend, dynamically, on context 

(Crenshaw, 1991). For example, in Leila Fernandes’ geography of a jute mill, two mill workers 

experience conflict (Barad, 2007). How the conflict unfolds, however, cannot be predicted just 

based on the workers’ caste, class, and other identity markers. Instead, the workers sometimes 

connect based on caste and sometimes on class; when and how their caste and class matter shift 

as the conflict unfolds. Tracing how different boundaries between caste and class are 

(re)produced throughout this conflict illustrates how identities and power relations are constantly 

(re)configured through interaction. Barad argues that this careful accounting of identity 

(re)formation in the jute mill could be better described by topological than by geometrical 

representations because of topology’s attention to connectivity and boundaries and change in 

intensive space compared to Cartesian geometry’s treatment of locations and positions as fixed 

against a pre-existing grid. We take this as an example of how the mathematical models we 

choose– dare we say mathematical ontologies– draw attention to different sets of relations in the 

world. When Cartesian geometry is a popular way of understanding spatial relations, it is 

unsurprising that identity might be treated as if it can be fixed, categorized, and ordered, or that 

people’s experiences of power and oppression might be visualized as existing along particular 

lines. If topology were as accessible and familiar to the public as Cartesian geometry, might 

different explanations of intersectionality become more popular? 

In other words, could unsettling the dominance of certain mathematical models unsettle ways 

of thinking that stifle more expansive relational possibilities? We examine this question by 

thinking with mathematical models of space and specifically, three empirical examples that 
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explore making Cartesian geometry less consequential in how learners conceptualize space. We 

note that space is not the only way to investigate this question, nor is Cartesian geometry is not a 

“problem” that needs to be “solved” with topological or other models; first, Cartesian geometry 

can also be useful, and second, substituting one deity for another leaves untransformed the 

deification we seek to challenge. Rather, we focus on Cartesian geometry because its dominance 

has already been challenged in the literature, allowing us to wonder with these other scholars 

what kinds of knowledges or what kinds of relations might be made possible by alternatives. 

Animating Multiplicitous Conceptions of Space  

Dominguez and colleagues (2023) describe a philosophical conversation in which fifth 

graders considered different conceptions of space. After some open questions about what moves 

and what does not move, the conversation turned to students sharing an expansive range of ideas 

about what space is in relation to the universe, to the world, and between themselves and each 

other. They considered, for example, whether a rock or a seagull had a better sense of space, and 

parried that into an interrogation of “often-unquestioned anthropocentric arrangement[s] of 

space” (p. 1162). Dominguez then introduced a toy airplane and a set of cardboard Cartesian 

planes, and the students worked together to chart the airplane’s movement using Cartesian 

coordinates. The initial conversation about movement supported students’ knowing of space as 

first and foremost dynamic, created by motion, and dependent on perspective. As a result, 

students responded to the introduction of Cartesian coordinates by refusing to accept space as 

discontinuous and by animating motion along the z-axis in relation to imagined topological 

features such as cliffs, caves, or volcanos. Dominguez and colleagues propose that this 

philosophical conversation shifted students’ mathematical attention in their coming to know 

space: from space “as a set of static properties [to] a process that features prominently the idea of 

possibility” (p. 1155), or from essences to multiplicities. We highlight that it made possible 

different relations between students, non-human relatives, and the world. The fifth graders in this 

example, however, had already been introduced to Cartesian planes. In fact, Dominguez was 

invited to lead this conversation because their teacher was concerned that “some students are 

confused about the order of x- and y-coordinates for plotting points” (p. 1163), perhaps because 

they– like the students in our opening anecdote– had once been handed printed Cartesian grids 

with the x-axis and y-axis already determined for them. Our next example shows how students 

might engage in earlier encounters with space in ways that can also (un)fix the fixity of Cartesian 

geometry as the predominant, predetermined, and predetermining way to conceptualize space. 

(Way)finding New Relational Possibilities. 

In Lehrer and Pritchard (2002), students in a third-grade classroom produced maps of their 

school’s playground. Over multiple trips to the playground and multiple revisions, students 

negotiated measures of lengths and changes in direction, and decisions about origin and scale 

until the configurations of play structures in the maps corresponded to those in the playground– 

something that students agreed “good” maps should do. The teacher encouraged students to 

reflect, in journals and in conversations, about how their maps changed over time. These 

reflections helped children construct identities as mathematical doers and knowers, in contrast to 

mathematical identities that emphasize efficiency and rote procedures (e.g., as “human 

calculators”). In this example of children coming to know their familiar spaces differently, we 

glimpse how transforming how we come to know (through) mathematics can transform relational 
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possibilities. First, the children came to have a different relation with an “absolute” frame of 

reference; through mapmaking, they came to understand that what is fixed on a map is a 

negotiable choice as opposed to being dictated by a teacher, a textbook, or some other absolute 

authority. Second, because these negotiations took place publicly, students were driven by a 

desire for their maps to be legible to each other; their mapmaking was oriented by a concern for 

collective and not just individual sensemaking. Third, beginning with their own everyday 

wayfinding offered these third-graders the opportunity to see themselves and each other as 

people who can make decisions about configuring origins, measures of distance, measures of 

direction, and scale; Vossoughi and colleagues (2021) refer to this as the “cultivation and 

experience of capability” (p. 136). Finally, the students also worked with their parents to make a 

map of their home or neighborhood spaces. Multiple parents expressed that their children 

showed them new ways of navigating space and more flexible ways of interpreting represented 

space, which hints at how adults’ coming to know space, too, might be transformed. 

Attuning to Both Mobile and Grid Epistemologies 

Taylor (2020) focuses on adults, analyzing two episodes from participatory community 

planning meetings where local residents and professional urban planners gather over a table-

sized map of the neighborhood. In one episode, a local resident– a “longtime resident of an aging 

African- American community”– retells how an interstate highway was “carved intentionally 

through” the community when he was a child and asks how the community can recover; the 

young White woman planner redirects the conversation to a questionnaire that they are trying to 

complete (p. 407). In the other episode, a similarly positioned resident shares a similar personal 

experience. Through parallel tracing of his story with hands in the air and her fingers and stickers 

on the map, he and a similarly positioned planner together construct what Taylor calls “a new 

text that layers together Cartesian notions of space with corporeal realities of space” (p. 419). 

This new text, Taylor argues, learns from both the embodied and dynamic ways that the resident 

has come to know his neighborhood over time and the more static ways that the planner has 

come to know the neighborhood through a map. The relational attunement between this resident 

and planner made their ways of knowing commensurable. Importantly, it also made possible new 

spatial imaginaries for the neighborhood, as the newly created text became part of the final 

document on record at the city planning office, and new spatial epistemologies, as the planners 

later implemented “‘walking charrettes’ as a means of highlighting the racial and cultural 

histories of places too easily hidden by easily accessible representations” (p. 424). Taylor’s work 

suggests that bringing grid epistemologies into conversation with mobile epistemologies can 

create new ways of understanding and acting on the world.  
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Discussion 

Borba & Skovsmose (1997) suggest that the formatting power of mathematics can be 

challenged by challenging the “ideology of certainty” in classroom practice, creating 

opportunities for multiplicity, provisionality, uncertainty (p. 22). Our three examples do just that. 

We caveat, however, that they are not simply examples of  “student-centeredness” or “dialogue,” 

because pedagogical shifts alone do not prohibit the possibility that students come to know 

Cartesian planes as the only legitimate frame of reference for conceptualizing space; 

transforming epistemologies can be a mechanism for transforming ontologies, but may be 

insufficient if the mathematics students are coming to know is not also transformed. Instead, 

transforming how students come to know (through) mathematics must be paired with 

transforming the mathematics they come to know. For example, to return to Barad’s observations 

about identity, it is the mathematical conception of space as intensive and dynamically produced 

(as the fifth-graders conceive of it), the recognition of mathematical agency and responsibility in 

articulating how they and others are positioned and oriented in relation to one another (as the 

third-graders recognize), and the attunement to both mobility and fixity (as the residents and 

planners attune), that can lead to models of identity and relations that offer more expansive 

possibilities than Cartesian geometry. Dialogue is not enough. 

Space, of course, is just one thing whose reimagining has the potential to transform our 

ontological and relational orientations towards each other and our non-human relatives. We 

continue to wonder how else transforming how students come to know (through) mathematics 

might transform how they come to know each other and the world they live in. 
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This qualitative study delves into the complex concept of mathematical identities among 

preservice teachers of diverse racial and ethnic backgrounds. Analyzing mathematical 

autobiographies of three (Black, Asian, and Hispanic) elementary preservice teachers, we 

uncover distinct challenges and experiences that influence their mathematical identities. The 

themes emphasize the importance of culturally relevant pedagogy, stereotype challenges, and 

linguistically sensitive interventions to foster inclusive mathematics education. Our findings 

contribute to a deeper comprehension of mathematical identity formation and advocate for 

inclusive educational support. 

Keywords: Culturally Relevant Pedagogy; Diversity, Equity, and Inclusion; Preservice Teacher 

Education  

Purpose of Study 

In mathematics education, the concept of mathematical identity has evolved into a 

multifaceted construct, deeply interwoven with an individual’s cognitive dimensions, emotional 

attributes, and life trajectory. As delineated by Boaler and fellow scholars (2000), mathematical 

identity is not a fixed entity but rather a dynamic and socially constructed phenomenon. It 

emerges as a complex interplay of individual experiences, beliefs, attitudes, and self-beliefs 

regarding one’s mathematical ability and affinity for the subject. Narratives, like mathematical 

autobiographies that chronicle individuals’ encounters with mathematics in and out of the 

classroom, enrich the fabric of mathematical identities (McCulloch et al., 2013). Fundamental to 

developing mathematical identity is an acknowledgment that it manifests through narratives: 

accounts that not only reflect but also shape our self-conceptions in relation to mathematics 

(Aguirre et al., 2013). Rooted in personal life narratives, these accounts simultaneously reflect 

the socio-cultural contexts that influence their identity formations (Drake et al., 2001; Sfard & 

Prusak, 2005). Within this paradigm, mathematical identity emerges not as a uniform entity but 

as a mosaic that is intricately crafted from the intersections of personal experiences, societal 

expectations, and cultural backgrounds. 

As preservice teachers embark on their journey to becoming educators, their mathematical 

identities assume heightened significance, shaping not only their understanding of mathematics 

and pedagogical practices but also their engagement with students (Lutovac & Kaasila, 2014). 

However, despite the growing body of research on mathematical identity development (e.g., 

Beijaard et al., 2004; Bishop, 2012; Black et al., 2019; Goldstein, 2018; Heyd-Metzuyanim, 

2015; Kaspersen et al., 2017; Sfard & Prusak, 2005), there exists a gap in understanding how 

racial and ethnic backgrounds intersect with these processes among preservice teachers. 
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Our study seeks to address this gap by documenting the development of mathematical 

identities among preservice teachers of various racial and ethnic backgrounds. Specifically, we 

focus on three individuals from Black, Asian, and Hispanic heritages within predominantly white 

educational institutions. By examining the intricate interplay between racial and ethnic identities 

and mathematical self-concepts, this research aims to illuminate the nuanced ways in which 

sociocultural factors shape individuals’ engagement with mathematics and their trajectories 

within the field of education. Through this study, we, as mathematics educators, endeavor to 

contribute to a deeper understanding of the complex dynamics underlying mathematical identity 

formation and to foster more inclusive, equitable, mathematics education practices. 

Framework and Perspectives 

Understanding preservice teachers’ mathematical identities is essential for the improvement 

of mathematics instruction and for effective teacher education programs. We embrace the 

sociocultural view of learning (Lave & Wenger, 1991) as the theoretical framework to investigate 

the selected preservice teachers’ mathematical identities. Learning is “an integral part of 

generative social practice in the lived-in world” (Lave & Wenger, 1991, p. 35), and individuals’ 

mathematical identities are formed through the process of sharing experiences within their 

communities. Thus, we highly regard preservice teachers’ mathematical learning experiences 

based on their race, ethnicity, culture, language, and stereotype.  

We adopt the perspective that identity is a collection of stories shared by individuals within 

various social constructs (Holland & Lave, 2001; Sfard & Prusak, 2005). These stories, 

encompassing both actual and designated identities, shape individuals’ perceptions, actions, and 

future mathematical aspirations. Mathematical identity, therefore, consists of the narratives that 

reflect individuals’ past experiences, present engagement, and future expectations related to 

mathematics and mathematical teaching. Actual identities encompass personal experiences and 

achievements in mathematics, while designated identities involve anticipated roles and attitudes 

toward the subject matter (Sfard & Prusak, 2005). For preservice teachers, their mathematical 

identities are shaped by a combination of early, formal, and informal mathematical experiences 

both in and out of the classroom, and societal perceptions of mathematical abilities. To 

investigate the selected preservice teachers’ mathematical identities, we employ autobiographical 

narratives as the methodological approach. Autobiographies provide a rich source of data, 

allowing the preservice teachers, in their own words, to reflect on their mathematical learning 

experiences and to articulate the significance of various events and interactions.  

Methodology 

This study utilized a qualitative approach. More specifically, mathematical autobiography 

assignments were the primary data source. The participants, who were enrolled in teacher 

education programs in three separate institutions across the U.S., reflected on their mathematical 

experiences, beliefs, and influences. The data analysis, involving thematic coding, focused on 

racial and ethnic identities and mathematical experiences. 

The total number of mathematical autobiographies that the participating elementary 

preservice teachers submitted was 227. Among them, 214 (94.3%) self-identified as White, 8 

(3.5%) as Black, 3 (1.3%) as Asian, and 2 (0.9%) as Hispanic. In this report, we focused on the 

traditionally underrepresented groups in teacher education programs. Specifically, we identified 
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three distinct cases involving preservice teachers from the Black, Asian, and Hispanic heritages. 

We selected these individuals due to their compelling narratives, shedding light on how their 

racial, ethnic, and cultural backgrounds have influenced their development of mathematical 

identities. 

Results and Discussion 

In this section, we present compelling narratives from Nicole, Emily, and Maria 

(pseudonyms) that illustrate the complex relationship between personal backgrounds and 

academic journeys. Through their first-hand accounts, we explore the landscapes marked by 

systemic challenges, cultural pressures, and language barriers. These mathematical 

autobiographies contribute towards the ongoing dialogue on educational equity and inclusivity 

and offer valuable insights into the diverse experiences, including their shortcomings, within our 

educational system. 

Nicole’s Story 

Nicole, a junior Black female preservice teacher, provided a story reflecting upon her 

upbringing within the environments that did not prioritize academic achievement. In her 

recollection, she depicted a scarcity of educational resources at home and within her 

neighborhoods. Compounding this, there was a dearth of encouragement and support towards 

higher educational aspirations. She shared, “In my neighborhood, no one talked about going to 

college... Math seemed irrelevant to me, and I did not enjoy doing math work.”  

In her mathematical autobiography, Nicole highlighted the transformative influence of Miss 

J, her 10th-grade geometry teacher. Despite Nicole’s initial struggles with the content, she 

vividly recalled Miss J’s unwavering support and encouragement. Recognizing Nicole’s 

intellectual potential, Miss J played a pivotal role in fostering a profound sense of self-belief and 

confidence within Nicole. Reflecting on Miss J’s impact, Nicole affirmed, “She always said that I 

would be a good teacher because I explain my thoughts clearly and understandably.” This 

excerpt encapsulates the profound influence individual teachers can have, particularly those who 

possess the insight and dedication to empower students from historically underserved 

communities. Furthermore, Miss J emphasized the importance of fostering inclusive learning 

environments that affirm the potential of every student. 

Nicole’s introspection stands as a compelling testament to the transformative power of 

mentorship and the significance of role models of the same race. She recalled, “I always sought 

advice from Miss J not only for mathematics but for my college choices and other things too. 

Because she is also Black, I could trust her better, and she became my role model.” Nicole’s 

journey highlights the imperative for educators to recognize and challenge systemic barriers 

while actively advocating for the holistic development and empowerment of all learners. In 

particular, her story reminds us of the profound responsibility inherent within the field of 

education—and among educators—to serve as a catalyst for social change and in achieving 

equity. 

Finally, this mathematical autobiography underscores the pervasive systemic inequities that 

profoundly influence the educational trajectories of similar Black students. Nicole’s account 

resonates deeply within the context of contemporary discussions surrounding educational equity 

and sheds crucial light on the multifaceted challenges facing marginalized communities. 

Furthermore, this narrative accentuates the need for culturally relevant pedagogy and the creation 
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of supportive learning environments that acknowledge and address the detrimental, prejudicial 

experiences and circumstances of students like Nicole.  

Emily’s Story 

Emily, a junior Asian American female preservice teacher, recalled her childhood experiences 

and the challenges she had faced in learning mathematics. Her immigrant parents, who had 

arrived shortly before she was born, strongly equated academic success as life’s success. This 

expectation led to Emily attending after-school tutorial sessions and weekend Korean language 

lessons. Reflecting on her early childhood years, Emily described a sense of disconnect between 

the academic expectations ingrained by her family-cultural norms and her aptitude in 

mathematics. She resented the “achieve at all costs” mentality and questioned, “Why I had to do 

more than my friends. Also, my parents used teaching methods different from those my teachers 

used, making it even harder for me to grasp the mathematical concepts.” 

Despite the common belief that Asian students, in general, are naturally talented in 

mathematics, Emily challenged this by discussing her own difficulties. She delved into the 

nuanced challenges she had faced as a Korean American. For example, she met the pervasive 

misconception that her cultural background inherently predisposed her to excel in mathematics. 

In her mathematical autobiography, Emily reflected, “People always assumed I was great at math 

because I’m Asian... But the truth is I struggled just like everyone else.” Hence, for Emily, there 

has existed a gap between the people’s expectations and the actuality, revealing why it is crucial 

to reconsider the stereotype about Asian—or any other— students and their mathematical 

abilities. The disconnect between this assumption and her actual struggles with the subject 

became even more pronounced as she shared instances of teachers singling her out to highlight 

her work. Due to the association between her most common Korean last name, “Kim,” and her 

Asian appearance with an unwarranted expectation in mathematical ability, Emily felt disdain 

towards learning mathematics. 

These narratives collectively underscore the imperative to challenge stereotypes and 

recognize a diverse range of mathematical abilities among Asian students. Emily’s experiences 

serve as a reminder for a more empathetic understanding of individuals’ capabilities that are 

unshackled from the constraints of societal expectations based on cultural or ethnic stereotypes. 

Maria’s Story 

Maria, a female junior, grew up in Wyoming and in a Hispanic household where Spanish was 

the primary language of communication. Reflecting on her early childhood years, she recalled 

the learning obstacles beginning in kindergarten. “That’s when my struggles first began,” she 

reminisced. Maria’s mathematical autobiography revealed complex and often abrupt transitions 

to learn English in the academic context. Moreover, the expectations to form unfamiliar social 

bonds and to absorb incongruous knowledge posed added barriers.  

The convergence among the diverse expectations and challenges contributed substantially to 

shaping her early educational impressions. In her narration, she expressed, “I always found story 

problems to be the most difficult growing up. I never knew why I struggled with them so much. 

Now, looking back, I believe vocabulary was a significant barrier I had to overcome, coupled 

with not knowing where to begin when faced with a story problem.” Furthermore, Maria, 

recalling her experiences as an elementary school mathematics student, had difficulty articulating 

useful problem-solving strategies. In sum, linguistic obstacles and cognitive challenges appeared 
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as the pivotal factors contributing towards her struggles, and these daunting expectations 

significantly affected her early educational journey. 

In contrast to her own experience, Maria envisions her future classroom as a space where all 

students, especially those learning English as a second language, “are supported with more 

culturally relevant word problems that they can connect themselves with” and “can read the 

problems in their own languages.” This desire stems from her mathematical identity, the one she 

has built through her own experiences, and by embracing students’ diversity, Maria is committed 

to creating culturally relevant and inclusive classrooms. 

Conclusion  

 The mathematical autobiographies from the preservice teachers, Nicole, Emily, and Maria, 

offer compelling insights into the complex interplay among racial, ethnic, and mathematical 

identities. Through their unique life stories, we sense the multifaceted challenges faced by 

students from nondominant backgrounds. These challenges, ranging from systemic inequities to 

cultural expectations to language barriers, highlight the urgent need for a comprehensive, 

empathetic understanding of the factors influencing mathematical learning. 

 Nicole’s journey exemplifies the transformative power of a dedicated educator. Her story 

underscores the pivotal role teachers can play in empowering historically underserved students 

and shows the profound impact of supportive learning environments on individual trajectories. 

Emily’s narrative challenges stereotypes about Asian-American students’ mathematical abilities, 

emphasizing the importance in recognizing individual learners free from cultural biases. 

Specifically, her experience calls for teacher training that overcomes preconceived biases about 

learners. Maria’s struggles with language ability and mathematical understanding spotlight the 

relationship between linguistic and cognitive factors in shaping her mathematical identity. Her 

story stresses the necessity for linguistically sensitive, culturally relevant, educational 

interventions tailored to meet the diverse needs of students. 

 These mathematical autobiographies highlight the need for educators and the education 

system to embrace inclusive, culturally responsive, linguistically sensitive approaches to 

mathematics education. Nicole’s experience with systemic inequalities, Emily’s encounter with 

stereotype challenges, and Maria’s struggle with language barriers are pervasive challenges faced 

by diverse learners. By proactively addressing them through inclusive instructional methods, 

educators can deconstruct barriers, overcome stereotypes, and create a learning environment 

where every student feels valued and empowered to seek mathematical excellence. Additionally, 

the mathematical autobiographies of these three preservice teachers emphasize the pivotal role of 

teachers in driving social change and equity and formulating a more inclusive, supportive 

educational framework. 
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There has been a rise in the use of intersectionality theory for understanding the complex 

experiences of mathematics learners with multiple marginalized socially constructed identity 

markers. This increase calls for an astute examination of the methods of data collection and 

analyses used to capture such complexity. This study examines a method used to study an aspect 

of mathematics learning for Black girls to ascertain its viability for characterization as an 

intersectional approach. While several conditions were met, the well-intentioned design of this 

research method fell just shy of the classification as an intersectional approach. The results of 

this examination emphasize the importance of consideration for future intersectional research in 

mathematics education.    

Keywords: Intersectionality, Gender, Research Methods 

Introduction 

Intersectionality is a construct widely used in social sciences and humanities to understand 

the complexity of the human experience. Several mathematics education scholars call for it to be 

taken up in our field to avoid the erasure of the experiences of, for example, girls of color 

(Bullock, 2018; Gholson, 2016; Leyva, 2017). However, taking up this construct should be done 

thoughtfully and responsibly and requires attention to our current methods or the development of 

new or supplemental methods of data collection and analyses. In this paper, I use insights from 

Crenshaw’s conception of intersectionality alongside the guidance from several intersectionality 

scholars (i.e. Bowleg, 2008; Collins & Blige, 2016; Hancock, 2016) to determine how well a 

research method that I created meets the challenge of intersectional research of Black girls’ 

mathematics learning experiences. 

 

Intersectionality and its importance as a construct in mathematics education research  

Intersectionality is a term coined by Kimberlé Crenshaw, a law scholar, interested in the ways 

that single axes thinking about race, gender, class, ability, sexual orientation and other socially 

constructed identity markers can serve to hide or erase the experiences of those at the 

intersection of these markers. Intersectionality, as an analytical tool, broadens our conception of 

the social complexities of the human experience where conditions must be understood by many 

factors in mutually influencing ways (Collins & Bilge, 2016). Crenshaw pays homage to 

nineteenth century scholars like Sojourner Truth and Anna Julia Cooper who wrote and spoke 

about the Black woman experience at the intersection of race and gender. Crenshaw states that 

intersectionality is "about how structures make certain identities the consequence of and vehicle 

for vulnerability (Southbank Centre, 2016)." An example of this vulnerability is when a company 

is called to diversify along a single axis such as race or gender and the company meets the 

mailto:mdcosby@utk.edu
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requirements by hiring more men of color and more white women effectively making women of 

color vulnerable. In mathematics education, a parallel example is the failure to disaggregate 

mathematics achievement data by race x gender assuming that all Black children (race only 

view) or all girls (gender only view), for example, experience mathematics learning the same and 

hiding or ignoring the mathematics learning experiences of girls of color when, in fact, scholars 

studying the mathematics experiences of Black girls have demonstrated this not to be true 

(Gholson, 2016, Gholson & Martin, 2014; 2019; Joseph et al., 2017). 

Intersectional Methods of Data Collection and Analyses 

A methodological issue to consider is how one captures or “measures” intersectional 

experience and could also be how one uses a method to elicit an intersectional experience during 

data collection. Adequate treatment of intersectionality considers what practices, policies, and 

institutional structures play a role in contributing to the exclusion of some and not 

others.  Bowleg (2008) takes up this methodological question of measuring intersectionality as 

she considered what she initially referred to as the “triple jeopardy approach” to studying the 

stress and resilience of Black lesbian women. Bowleg (2008) grappled with the Black + Lesbian 

+ Woman or an additive approach to the analysis of the data as the additive approach should be 

replaced by conceptualizing the layered intersectional experience as multiplicative. Reiterated by 

Wing (1997), “multiply each of my parts together, 1 x 1 x 1 x 1 x 1 and you still have one 

indivisible being ( p. 31).” 

Both Hancock (2007) and Bowleg (2008) provide guidance for consideration of a multi-

method intersectional approach to research. It is on these dimensions that I will later examine 

whether or not the card sort is a successful method for studying the intersectionality of Black 

girls' mathematics experiences.  

1. An intersectional approach to research considers the role of socially constructed identity 

markers alongside individual and institutional factors and should recognize the dynamic 

interaction between them should be reflected in the analyses (Hancock, 2007).  

2. More than one socially constructed identity marker should be examined and each should 

matter equally, though the relationship between them is an open empirical question 

(Hancock, 2007).  

3. Any questions asked in interviews, surveys, or questionnaires should tap into the 

interdependence and mutuality of the socially constructed identity markers avoiding any 

implications that they are separate and able to be ranked (Bowleg, 2008; Hancock, 2007).  

4. There should be a focus on meaningful constructs such as stress or discrimination rather 

than focusing on socially constructed identity markers alone (Bowleg, 2008).  

5. And multiple methods are necessary and sufficient for data collection and analysis 

(Hancock, 2007).  

 

The Identity Card Sort Method and Analysis 

Mathematics education has been conceptualized as a racial project (Martin, 2013) and, even 

further, as a white, patriarchal space that makes explicit how interlocking systems of racism and 

patriarchy shape intersectional oppression and resistance (Levya, 2021, p. 121).” My primary 

research interests investigate the interplay between socially constructed identity markers and 

individual or personal identity markers for Black girls’ and women whose socially constructed 
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identities are in stark opposition to the construction of mathematics education as a white, 

patriarchal space. To this end, I conducted a research study with multiple components and data 

methods to investigate the racialized gendered experiences of six young Black women (see Table 

1). 

 

 

 

 

Table 1. Study participants. All names are pseudonyms. *PWI = predominantly white institution 

 

Name Age Level in 

School 

Current school Current math 

course 

College 

major/career 

aspirations 

Courtney 18 First year 

university 

student 

Large, public *PWI College Algebra 

and Trigonometry 

(Fall semester) 

Political 

science/Pre-Law 

Elissa 18 First year 

university 

student 

Large, public PWI Survey of 

Calculus 1 

Pre-med, Human 

Biology 

Janet 18 High 

school 

senior 

Small, urban, 

predominantly 

black, public charter 

Precalculus 

Honors 

Veterinary 

medicine 

Kristen 17 High 

school 

senior 

Mid-sized, 

suburban, public 

PWI 

AP Statistics Middle school 

teacher 

Riley 18 First year 

university 

student 

Large, public PWI  Interdisciplinary 

Studies in Social 

Science 

Shannon 17 High 

school 

senior 

Small, single-sex, 

public, urban 

predominantly 

Black, public 

Precalculus English teacher 

 

I devised a method to accompany a semi-structured interview that, at the time, I perceived to 

be a method to elucidate the function of the young women’s intersectional socially constructed 

identities across space (home, school, and math class) in an effort to ascertain the role race and 

gender played in mathematics learning for young Black women. That extent to which this 

method is, indeed, rises to the level of an intersectional approach, however is at question. I 
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wondered, to what degree is this method, the identity card sort, adequate for elucidating the girls' 

intersectional mathematics learning experiences. So I ask: How, if at all, is the identity card sort 

representative of an adequate intersectional research method? How, if at all, is the analysis of the 

identity card sort data representative of an adequate intersectional research analysis? Where 

might it fall short? 

During individual semi-structured interviews, I employed a variation of an activity known as 

Diversity Toss (Jilk, 2010, Nieto & Bode, 2008; Teaching Tolerance, 2014) which required the 

young women to assign salience to aspects of their socially constructed and personal identity 

markers as they see themselves or as they interpret others seeing them across various social 

spaces. Each young woman was given five index cards to record their race, gender, name, a 

hobby or interest they strongly identify with, and their religious or spiritual affiliation or belief. 

Once completed, each young woman was asked to place the cards in order based on degree of 

salience to them when in a particular space (at home, at school, in math class). Cards were placed 

vertically as indicators of greatest to least salience and could be placed horizontally indicating 

equal salience at a particular level in a space. Cards could be removed, altogether, if that aspect 

of their identity had no salience for them in a space. One purpose for this activity was to 

highlight the multiple dimensions of each girl’s identity and the importance of self-identification 

in identity work (Kemple, Harris, & Lee, 2015; Teaching Tolerance, 2014). It was also used to 

determine the extent to which young Black women are thinking about the gendered - racialized 

aspects of their socially constructed identities differently across spaces. During and after card 

placement, participants were asked about the rationale for their orderings. 

Analysis of the identity card sort data included creating graphic depictions of the shifting 

salience of the various aspects of each young woman’s identities across the various spaces 

(Figures 1 & 2). Since gender and race are dominant structures around which individuals self-

identify and co-construct identity (Jilk, 2010) and were the focus of the study, this data was also 

analyzed through the construction of charts depicting shifting salience of gender and race across 

spaces (Figure 3 and 4). In the space remaining, I use Hancock’s (2007) and Bowleg’s (2008) 

guidance to determine the classification and efficacy of the identity card sort as a multi-method 

intersectional approach to research.  

 

 Identity Card Sort as an Intersectional Research Method 

The first two conditions are quite easily satisfied having used multiple methods as the 

identity card sort was embedded into a semi-structured interview and there being more than one 

socially constructed identity marker (race, gender, religion) examined all mattering equally. I 

made the decision to ask the young women to assess the salience of each marker across various 

spaces and in relation to one another (can be horizontal for equal salience, can be removed if no 

salience) which Hancock (2007) says is an open empirical question. This aspect of the method 

and analysis was particularly important in discerning the role of race and gender across space 

where I found that race was lower in salience (level 2 through level 5) at home for all of the 

young women and increased in salience for all of the young women in math class. Its salience 

was at level 1 or 2 for everyone except Janet (See Figure 4). The same was true for gender, 

though it began with high salience (level 1) for some when at home and maintained or increased 
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in salience across school and math class spaces for five of the girls. For Shannon, gender was not 

as salient in math class because she attended a single-gender school (See Figure 3).  

It is not as clear as to whether the interdependence and mutuality condition is satisfied. I 

asked the young women about their experiences of being a Black girl in various contexts/spaces. 

Shifting salience or removing a marker can be interpreted as a treatment of markers as mutually 

exclusive or independent even if both Elissa and Riley chose to keep their race and gender 

salience at the same levels in school and in math class. Shifting or removing, however, does not 

mean it is no longer a part of who they are, it merely means that this aspect of their identity has 

less (or no) salience for them in these spaces. This notion of salience draws on the situative 

perspective of identity in relation to activity asking who am I here, who am I here versus there, 

and who can I become (Hand & Gresalfi, 2015). 

The question of ranking is another open question. An explicit question that would violate this 

condition would be to ask a participant whether racism or sexism played a role in their 

discrimination or marginalization. The young women were not asked to choose between any of 

the markers. At any time, a young woman could have chosen to put all five cards horizontally at 

any level. Elissa and Riley were the only two that chose to use the horizontal function during the 

activity. And it is important to note that while hobby or religion cards were removed by some of 

the young women, race and gender cards were never removed. What remains, however, is the 

question of whether this method rises above ranking when there is evidence that gender and race 

salience do not both shift together for all participants. It begs the question of what the results of a 

card sort would be if one card has “Black woman” written on it. Would participants ask about 

splitting the card to indicate varying salience of race and gender in particular contexts.  

The final two conditions to consider are how the method and analysis recognize the dynamic 

interaction between individual and institutional factors and avoid focusing solely on the markers 

but on a meaningful construct related to the markers (Bowleg, 2008; Hancock, 2007). While the 

identity card sort highlights the racialized-gendered nature of mathematics learning spaces for 

young Black women and focuses on salience of markers in context, specifically the shift from 

home to school to math class, it fails to adequately address institutional factors. It is very 

individual focused and does not, in and of itself, implicate any institutional practices or policies 

of mathematics education complicit in the heighted salience of race and gender for the young 

women. 
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Figure 1: Heterogeneity of the Card Sort Responses for High School Girls 
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Figure 2: Heterogeneity of the Card Sort Responses for University girls 
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Figure 3: Gender Salience Across Space for all six young women 

 
Figure 4: Racial Salience Across Space for all six young women 

 

Discussion and Conclusion 

Social theories like intersectionality used to understand the complexity of the human 

experience, especially those intended to answer complex questions of inequality and justice 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

253 
 

require careful methodological consideration (Hancock, 2016). It can be difficult to fully hold all 

of the complexities in singular methods of data collection and analyses which is why scholars 

call for a multi-method approach. Though progress has been made, the development of research 

designs and methods to effectively capture/measure or even methods for eliciting  

intersectionality during data collection remains underexplored (Hancock, 2007) and many 

researchers proceed labeling methods and analyses intersectional without fully considering to 

what extent conditions such as those made by Bowleg (2008) and Hancock (2007) are being met. 

Bowleg’s piece, coincidentally, is one for which she examines her own methodological 

approaches for how well they meet the challenge. 

The identity card sort was also, admittedly, conceptualized and employed without prior 

consideration for its adherence to various aspects of intersectional theory. And this post hoc 

analysis revealed that the method used in my study fell short concerning ranking socially 

constructed identity markers as well as lack of consideration for institutional factors. 

Additionally, a more robust analysis is needed to determine whether the identity card sort in 

conjunction with or situated within a semi-structured interview would be sufficient. Beyond 

whether or not the identity card sort qualifies as intersectional research, there is a question about 

the stability of the arrangements, for example, would a participant respond the same a day or two 

or even a week later. Nevertheless, there are a myriad of uses for the card sort as a research 

method, an activity to be done with teachers during professional learning to discuss the role of 

socially constructed identities in schools, or as a reflective activity for qualitative researchers 

exploring their positionality. If nothing else, I hope this examination of the identity card sort 

beacons the mathematics education research community to be more intentional about our 

approach to intersectional research as we answer the call to explore the mathematics learning 

experiences and make critical discoveries and changes towards inequality and justice for our 

most vulnerable learners.  
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We use the term mathematics advising to describe academic advising programs for incoming 

undergraduates offered by mathematics departments to guide students toward a decision about 

which mathematics course(s) to register for. Unlike traditional academic advising, mathematics 

advising sessions are very short (five to ten minutes) and the advisor and student have not met 

previously (Grites, 1979). Advisors frequently have little to no training, often unwittingly 

producing gendered inequities (Gholson et al., 2021; Margolis et al., 2023). We report on the 

development and implementation of math advisor training designed to disrupt interactional 

patterns of gendered discrimination. The training curriculum consists of four lessons: Why 

Mathematics Advising Matters, The Work of Mathematics Advising, Essential Practices in 

Equitable Advising, Understanding Your Mathematics Advising Ecology. 

 

Methods 

We address the research question: Which aspects of a mathematics advising curriculum were 

implemented with fidelity? This work fits within the methodological approach of Design-Based 

Implementation Research (DBIR) (Fishman & Penuel, 2018). The broad goal of DBIR is to 

“address differences (both positive and negative) between innovative interventions as designed 

and as they are actually implemented in practice” (McKenney & Reeves, 2020). We describe the 

development of the mathematics advising curriculum, outline the curriculum and its 

implementation, and our fidelity of implementation (FOI) process. To analyze the FOI, we used 

an integer scale from zero to thee. Zero indicated subsections that were skipped entirely, and one 

to three indicated content that was implemented with low, medium, or high fidelity, respectively. 

 

Findings and Discussion 

We found that out of a total of 11 sections spanning four lessons, there were no sections with 

a high fidelity of implementation (i.e, FOI of three). The majority of sections (seven) were not 

implemented at all (FOI of zero). Three sections had a low fidelity of implementation (FOI of 

one), and one section had a medium fidelity of implementation (FOI of two). Three out of the 

four sections which included “gender” or “women” in their title were skipped completely (FOI of 

zero). Despite the commitment of the co-developers from the mathematics department, lessons 

relating explicitly to gender discrimination were not taken up by the facilitator. We attribute this 

to a few issues: time constraints in the design process for deep engagement with the curriculum 

materials, historical time constraints for training sessions within the mathematics department, 

and aversion to facilitating discussions related to gender discrimination and inequities. Only one 

lesson, Lesson 3: Essential Practices in Equitable Advising, was implemented entirely albeit 

with low fidelity. These findings suggest that the practices were valued over the motivating 

mailto:mgholson@umich.edu
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rationales for engaging in appreciative advising due to gender discrimination. Broaching the 

topic of gender discrimination is not typical in mathematics department trainings and future 

iterations of the advice for facilitation need to support discussions of social science research that 

may be less familiar to mathematics faculty.  
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This study investigates the frequency and themes appearing in studies involving a collection of 

equity-based terminology (EBT) in 14 PMENA proceedings from 1981 to 2000. The percentage 

of EBT waxed and waned, but it was much higher from 1991 through 2000 than from 1981 

through 1990. The highest percentage of EBT occurred in 1995 when the conference organizers 

decided to focus on diversity. Four themes emerged in research reports where EBT appeared: 

nature of a shifting sample; expansion in equity – 1991; teachers and equity; and policy and 

project influences. For instance, the sample where EBT appeared shifted from a focus on 

diversity to identify achievement differences to a focus on minority students to boost their 

achievement using culture-based interventions. Equity became much more nuanced and subtle in 

1991 with an awareness that other factors such as societal racism influence student achievement.  

Keywords: equity, inclusion, and diversity   

The research trajectory focusing on equity in mathematics education has seen significant 

shifts over the decades, with an increased emphasis in recent studies. The current analysis 

specifically examines the integration and evolution of equity-based terminology (EBT) within 

the proceedings of the North American Chapter of the Psychology of Mathematics Education 

from 1981 to 2000. This study utilizes a dual approach: quantitatively tracking the fluctuation of 

EBT as a percentage of the total pages in the examined proceedings and qualitatively identifying 

prevalent themes and trends concerning EBT. This approach is set against a backdrop of broader 

trends in mathematics education research and equity-focused studies reported in other scholarly 

works. 

In their broader historical analysis, Inglis and Foster (2018) explored the thematic evolution 

in prominent mathematics education journals since their inception around the late 1960s and 

early 1970s, noting a decline in Euclidean geometry studies and a rise in sociocultural theories 

from the 1990s onward. This period also witnessed a diversification of theoretical frameworks, 

including semiotics and embodied cognition, and a move away from experimental methods that 

dominated the 1970s. Hanna and Sidoli (2002) documented shifts in the focus areas of the 

Educational Studies in Mathematics journal, highlighting the growing importance of problem-

solving, cognitive issues, and social factors, alongside a variable emphasis on gender and 

ethnicity research across the decades. 

Extending this perspective to more recent developments, Vithal, Brodie, and Subbaye (2024) 

reviewed equity research in mathematics from 2017-2022, observing that conceptualizations of 

equity have notably broadened to emphasize identity, power, recognition, and representation. 

They highlighted that a significant volume of studies now focuses on the mathematical practices 

and teacher actions within specific classrooms and schools aimed at addressing inequality. 

Additionally, they noted that international studies have shed light on how societal inequalities 

impact and are reflected in student achievement within school systems. The narrative of shifting 
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research priorities is further supported by the findings of Gökçe and Güner (2021), who analyzed 

over a thousand articles to identify evolving research interests from problem-solving initially to 

later emphases on technology, teacher training, and equity, particularly from the 2000s onward. 

This shift is also seen in the resurgence of equity as a focal research theme, encompassing issues 

of motivation, attitude, and demographic impacts on educational outcomes.  

Meanwhile, Parks and Schmeichel (2012) identified significant obstacles in addressing race 

and ethnicity within the domain, pointing to systemic issues like the marginalization of race 

discussions and the oversimplification of racial categories in research settings. Two key research 

questions emerge from this historical context: How does the frequency of equity-based keywords 

vary in 14 proceedings from 1981 through 2000? What themes appear in research studies 

involving EBT in these proceedings? 

Methods 

The research focused on analyzing equity-based terminology (EBT) within the proceedings 

of the Psychology of Mathematics Education North America (PMENA) meetings from 1981 to 

2000, where electronic texts were available for searching. Specific annual meetings selected for 

study included years from 1981 through 2000, with a few exceptions due to the availability of 

searchable texts. The terms examined encompassed a wide array of EBTs such as "African," 

"equity," "socio," "race," "ethnic," "justice," "disab*," "gender," "diversity," "equality," "cultur*," 

"identity," and "ethnomathematics." Certain proceedings required conversion into searchable 

PDF formats due to their initial unsearchable state, facilitating a comprehensive textual analysis. 

For the purposes of this study, the analysis unit was a single page within the proceedings 

documents. EBTs were only counted if they appeared in the narrative sections of the texts, such 

as plenaries, research reports, and discussion groups, which involved original research or 

theoretical synthesis. Mentions in the table of contents or reference sections were excluded from 

the count. The methodology involved calculating the total number of pages featuring EBT and 

then establishing the percentage of these pages in relation to the total number of relevant pages in 

the proceedings, adjusting for non-English sections and introductory content. Instances of 

multiple EBTs on the same page were treated as distinct occurrences, while repeated mentions of 

the same term on a page were not double counted. 

Each identified page was then coded for thematic analysis. The coding process started from 

specific sentences containing EBTs and expanded outward to include broader textual contexts. 

Although pages featuring terms related to gender and culture were included in the quantitative 

count, they were not thematically coded. The resultant codes were compiled into documents for 

each proceedings year, facilitating the examination of broader thematic trends across the 

analyzed periods. This detailed approach provided insights into the evolution and focus of equity 

discussions within the field of mathematics education over the studied years. 

Results 

Quantitative  

The frequency and prevalence of equity-based terminology (EBT) in PMENA proceedings 

show notable fluctuations from 1981 to 2000. Beginning in 1987, researchers started focusing 

significantly on cultural, gender, equity, and racial issues, with these topics gaining momentum 

and peaking in interest in 1991. This peak aligns with broader research trends identified by Inglis 
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and Foster (2018), indicating a growing interest in cultural aspects within the field. The year 

1995 marked the highest emphasis on EBT, particularly terms related to equity, race, gender, and 

culture. This surge was influenced by the conference's theme centered on diversity and varied 

educational settings, leading to a considerable presence of these terms in the academic discourse. 

However, the focus shifted away from diversity in subsequent years, with a notable decrease in 

the mention of these terms by 2000, reflecting a shift in thematic focus within the proceedings 

towards other aspects of mathematics education research. 

Qualitative 

Nature of a Shifting Sample 

The collection of proceedings documents predominantly highlighted the use of diverse 

samples in educational research to examine various aspects of mathematics education, ranging 

from students' math capabilities to the effectiveness of specific interventions. These samples, 

often detailed by race, gender, SES, and less frequently by language or disability labels, were 

instrumental in studies such as Bell & Burns (1981) and Izsák & Fuson (2000), aiming to 

understand phenomena or test educational models. However, despite the diversity of the samples, 

it was less common for results to be disaggregated by these diverse groups, with studies like 

Armstrong (1989) not exploring the underlying causes of differential achievements noted by 

Brown & Wheatley (1990). The 1990s saw a refined focus on particular student groups, 

including minority and low SES students, to address specific educational disparities or enhance 

understanding of their mathematical capabilities, as seen in the works of Presmeg et al. (1995) 

and Mousley (1990). This period also noted a cultural integration into educational strategies, 

aiming to leverage students' backgrounds for educational gains, exemplified by Ayers et al. 

(1998) and Neves & Fraga (1987). Interestingly, while student diversity was frequently 

acknowledged, the diversity of teachers was seldom addressed in these studies. 

Expansion in Equity – 1991 

The 1991 academic proceedings indicate evolving themes regarding educational equity, 

particularly in the context of Black students' achievement. Researchers like Ajose (1991) 

highlight the multifaceted influences beyond familial factors, including the mathematics 

curriculum, teacher biases, and classroom dynamics, which shape Black students' educational 

outcomes. Campbell, Benson, Bamberger, and Hutchinson (1991) counter deficit narratives by 

emphasizing minority students' valuable informal knowledge applicable to real-world problem-

solving. The impact of societal racism on school processes and student achievement is 

underscored, drawing from Eisenhart’s (1991) anthropological insights into cultural effects on 

education. Additionally, there's growing awareness of how research might inadvertently 

normalize deficits, with Kamii (1991) cautioning against overgeneralizing her findings across 

socioeconomic statuses, while Campbell et al. recognize early educational assets in minority 

kindergartners, laying groundwork for future equity-focused research that includes 

considerations of Black students' identities. 
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Teachers and Equity 

The 1995 proceedings and subsequent research highlighted the pivotal role of teachers in 

promoting equity in mathematics education. Studies from the mid-1990s to early 2000s, 

including those by Tharp and Lovell (1995), Santa Cruz and McLeod (1996), and others, 

observed how preservice and practicing teachers conceptualize and implement equity. Tharp and 

Lovell identified four stages of development among preservice teachers' understanding of equity, 

noting a concerning trend where only a small fraction reached the highest stage of recognizing 

equity as a complex, interactive process vital for enhancing students' mathematical 

understanding. Similarly, Becker, Pence, and Pors (1995) and De La Cruz (1995) examined the 

impact of policy initiatives and teacher preparedness, finding gaps in readiness and 

implementation, particularly with non-Spanish-speaking teachers working with Spanish-speaking 

students. Later research by Fuson, Sherin, and Smith (1998) and Hodge (1998) developed 

models linking equity and pedagogy, pointing out that equity concerns are magnified under 

reform-oriented teaching practices. Edwards (1999) and Riggs (2000) further examined the 

dynamics within bilingual and minority-focused educational settings, emphasizing the need for 

pedagogical support and role models to effectively foster equity. Collectively, these studies 

underscore the challenges and importance of equipping teachers to advance equity in 

mathematics education. 

Policy and Project Influences 

The period from the 1990s to the present has been influential in shaping mathematics 

education through the lens of equity, marked by the introduction of the Curriculum and 

Evaluation Standards for School Mathematics (hereafter referred to as Standards) by the 

National Council of Teachers of Mathematics (NCTM, 1989). Starting with these standards, 

which emphasized equity alongside educational accountability, subsequent research and 

educational projects began to incorporate these principles. Notably, it took several years for 

equity-focused studies to emerge in academic discourse, as evidenced by their inclusion in the 

PME-NA proceedings from the late 1990s. Research during this period, such as Tharp and 

Lovell’s (1995) examination of preservice teachers’ perceptions of equity, Kaplan’s (1997) study 

on language minority students, and Presmeg’s (1997) exploration of cultural influences on 

classroom mathematics, underscored the ongoing impact of the Standards. Moreover, initiatives 

like Equity 2000 and the San Diego Project Leadership Institute further propelled equity to the 

forefront of educational reform efforts, inspiring studies and curriculum developments that 

integrated these values at both state and national levels. 

 

Discussion 

The study analyzes the presence of evidence-based teaching (EBT) in the PME-NA 

Proceedings from 1981 to 2000, highlighting a noticeable increase in discussions related to 

equity, especially in the 1990s compared to the 1980s. During the earlier decade, EBT 

constituted a smaller fraction of the proceedings, peaking at 40.8% in 1995, a year particularly 

focused on diversity. Discussions during this period nuanced the use of race in research, initially 

employed to assess human capabilities and curriculum viability, and later to explore differential 

academic achievements among students. Interestingly, race was frequently mentioned at the 

beginning of studies to describe student samples but was seldom used to describe teachers, 
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indicating a narrow focus on student outcomes without considering how teacher identity might 

affect educational practices. Additionally, while race often surfaced in concluding sections 

through the disaggregation of achievement data, it was rarely integral to the analytical processes 

or explanatory discussions within the studies. 

Further complicating discussions around race in the 1991 Proceedings, research began to 

challenge deficit narratives associated with minority students by considering broader influences 

on their mathematical achievement, such as teacher attitudes and societal contexts. This shift was 

part of a broader trend during the decade, as seen in national policy initiatives and projects like 

Equity 2000, which influenced studies on instructional strategies that align with students' cultural 

backgrounds. This period also saw researchers like Ayers et al. (1998) investigating the 

integration of students' funds of knowledge into their mathematical learning, indicating a 

growing commitment to addressing equity in mathematics education, setting the stage for further 

exploration into these themes in the new millennium. 
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Dominant narratives about what it means to write and do mathematics influence who typically 

gets viewed as competent in proof activity. In our ongoing work to explore interaction patterns 

that maintain (legitimate) or disrupt (delegitimate) mathematical status hierarchies while 

students collaborate on proof-related tasks, we applied positioning theory as an analytic lens. 

From this analysis we observed two storylines about what it means to engage in proof activity 

that influenced status: the Informal Language and the Formal Language storylines. This brief 

report contributes an image of how these storylines influenced mathematical status among three 

students while they worked on proving a statement in an intro-to-proof course over Zoom.  
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Dominant narratives about what it means to write and do mathematics influence who 

typically gets viewed as competent in proof activity (Weber & Melhuish, 2022). Proof-based 

courses are predominantly taught by (mostly white) men and the majority of students who take 

them are men (Blair et al., 2013), making these spaces vulnerable to dominant narratives such as 

‘doing mathematics’ reflects ‘doing masculinity’ (Jaremus et al., 2020; Leyva et al., 2017; 

Mendick, 2006) and privileges whiteness (Battey & Leyva, 2016; Martin, 2019) and Eurocentric 

perspectives (Rowlands & Carson, 2002). Such narratives can influence who gains higher status 

and power as students engage in proof activity, which can (re)produce inequitable mathematical 

status hierarchies in proof-oriented classrooms. By using positioning theory in our ongoing 

efforts to identify interaction patterns that maintain (legitimate) or disrupt (delegitimate) 

mathematical status hierarchies while students collaborate on proof-related tasks (e.g., Ellis & 

Alzaga Elizondo, 2023; Ellis et al., 2024), we have observed two storylines about what it means 

to engage in proof activity that seem to have an effect on mathematical status (defined in the next 

section): the Informal Language and the Formal Language storylines. This brief report 

contributes an image of how these storylines influenced three students’ relative mathematical 

status while they worked on proving a statement in an intro-to-proof course. 

Theoretical Perspectives 

Perceptions of status can impact how students communicate, and thus learn, while working in 

groups (Cohen & Lotan, 2014; Esmonde, 2009). Generally, ‘status’ can be viewed as a relative 

position that is widely accepted as advantageous; status is not fixed or inherent, yet exists within 

a relative ranking system (Cohen et al., 1999; Ridgeway, 2018). In classroom contexts, 

‘academic status’ refers to perceptions of who is “smart” (e.g., answers questions in class) and 

‘social status’ refers to perceptions of social standing (e.g., popularity). Then, ‘diffuse status 

characteristics’ exist within and beyond classroom contexts and refer to discernable identity 

features by others, such as race (via skin color) or language use (via intonations or accents), 

gender expression, and ability status. We use the term ‘mathematical status’ to mean a student’s 
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relative position among peers in the context of doing mathematics, which likely involves a 

complex combination of academic, social, and diffuse characteristics. Interaction patterns that 

maintain/disrupt mathematical status hierarches are difficult to identify; therefore, we turned to 

positioning theory for analytic tools to investigate such phenomenon.  

Positioning theory describes social interactions in terms of communication acts, storylines, 

and positions as rights and duties (Harré, 2012; Herbel-Eisenmann et al., 2015). Communication 

acts include the interpretive meanings conveyed by verbal and nonverbal discourse. Interactions 

in human life “tend to follow already established patterns of development” (Herbel-Eisenmann et 

al., 2015, p. 188) called storylines. Storylines are continual repertoires that can be commonly 

shared (such as cultural norms, beliefs, and values) and can reflect expectations and conventions 

that relate participants according to available positions, or rights and duties. Positioning is 

thought of as a fluid unfolding of communication acts (via discourse) that organize social 

structures by situating people in dialogue as participants in mutually constructed storylines 

(Davies & Harré, 1999; Herbel-Eisenmann et al., 2015). Power relations fluctuate based on 

interactions and available positions, and so situations will never be ‘status-free’ or fully 

‘equitable’. However, we assert that situations in which status hierarchies are legitimated likely 

amplify inequities, while situations where status hierarchies are delegitimated likely attenuate 

inequities, with inequities defined as situations that prevent access to resources needed for 

learning (Shah & Lewis, 2019).  

Methods 

The data for this study comes from a larger project that designed and implemented inquiry-

oriented intro-to-proof curricular materials. Given that issues of status and power likely arise in 

inquiry classroom contexts (Battey & McMichael, 2021), this project provided a rich context to 

study how status hierarchies impact student-student interactions. Data from an intro-to-proof 

class taught in a U.S. urban public university synchronously over Zoom was used for the present 

study. Justin (white man), Abigail and Alison (white women), worked together to complete a 

proof of the statement: An element of a group appears at most one time in each row of its Cayley 

Table. Students used a shared Google Doc while they discussed ideas verbally over Zoom. Video 

screen recordings simultaneously captured students’ Zoom and Google Doc activity.  

Screen recordings were used to create multimodal transcripts (Hoffman, 2019), coordinating 

verbal and nonverbal Google Doc activity. This was critical for our analysis because students 

often used their Google Doc activity to supplement their verbal discourse (Alzaga Elizondo, 

2022). The multimodal transcripts were parsed into utterances and exchanges, in which 

utterances were taken as complete thoughts distinct from each other based on content, intonation, 

and/or pausing. Exchanges were the primary unit of analysis, defined when at least two 

participants were interacting at the 10^2 (seconds to minutes) timescale (see Herbel-Eisenmann 

et al., 2015 for Lemke’s timescales). A transition between exchanges was based on topic shifts. 

Then, to apply positioning theory constructs, we collaboratively rewatched video segments of 

exchanges and recorded observations of possible meanings underlying discourse 

(communication acts), storylines, and available positions (rights/duties).  
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Preliminary Results  

Abigail, Alison, and Justin’s mathematical proving activity in this episode was collaborative 

overall (Alzaga Elizondo, 2022), yet our positioning analysis revealed a mathematical status 

hierarchy that ultimately positioned Justin higher relative to Abigail and Alison. While several 

processes contributed to this positioning, in this preliminary report, we focus on the observed 

evidence of two competing storylines in relation to mathematical status: the Formal Language 

storyline reflected a “right” or “proper” way to “do proofs” that required validation by an expert 

authority, while the Informal Language storyline reflected the value in creativity and problem 

solving in “doing proofs.” The excerpts presented here highlight the emergence and influence of 

these storylines regarding the students’ relative mathematical status. 

Exchange 1 – Justifying a Line in Their Proof   

Prior to this exchange, the students drafted a proof that read “AQ=B and AW=B, where Q 

and, W, and A are symmetries, then AQ=AW, then Q=W.” The instructor commented that they 

should justify the last line of the proof. Justin made the following suggestion:   

Justin: I’m not sure if he’d allow us this but I think we might be able to do this (starts typing 

“A^-1” on a line above their proof) […] but if we do A inverse, does that show that it’s 

supposed to be the opposite of A? 

Alison: (smiling) I feel like that’s getting ahead of where we’re at 

Justin: yeah that’s also (laughing) kinda why I didn’t want to do it (deletes “A^-1”) 

In lieu of using a “formal” inverse rule, Abigail drafted an informal justification for why 

AW=AQ implies W=Q, writing “if you perform an identical symmetry as a first step you start 

with an identical symmetry.” Meaning, AW and AQ are identical composite symmetries that 

begin with performing the symmetry A. Since the first step is identical, the second step (i.e., 

performing W and Q) must also be identical (i.e., W=Q). Abigail followed with the disclaimer:  

Abigail: (descending tone) I don’t know how to do anything formally I’m just so, (cross talk) 

I don't know, if this was my proof that’s probably what I’d put but I know it’s not formal.   

Alison: I think we’re not doing a super formal proof right now anyway so it’s alright. 

Abigail: (smiling) yeah I don’t think so either.  

This exchange provided evidence of how the two storylines emerged from the small group 

interaction. Before suggesting a formal rule, Justin expressed the concern that it might not be 

allowed (“I’m not sure if he’d allow us this”), which signified a reliance on an external authority 

to validate their justification. In contrast, Abigail offered an informal justification, explicitly 

stating that she knew it was “not formal” and that she doesn’t “know how to do anything 

formally.” Alison acknowledged that they were “not doing a super formal proof” and Abigail 

agreed, potentially uplifting the value of using informal language in proofs.  

Exchange 2 – Justin Positioned As Expert 

Prior to the next exchange, the instructor hinted to the entire class that they should come up 

with an inverse rule (i.e., AA^-1 = I) to complete the proof. Upon re-entering the breakout room 

to continue working in their groups, the following exchange occurred: 
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Justin: I’m annoyed (cross talk) It’s inverse [...] the first thing I said was right. (laughing) 

we’re like “oh we don’t wanna do that, it’s too complicated” go back “hey (cross talk) 

you wanna use the inverse” 

Alison: no we didn’t say it was too complicated. I thought it was gonna be too early (types 

“then (A^-1)AQ=(A^-1)AW”) 

Justin: that’s what I meant though (laughing) (under breath) it’s just like (laughing) uh I had 

it right at first. (cross talk) uh we need to add the rule. 

Abigail: so we just have a rule? 

Justin: (speaking quickly) the rule is super easy to make it’s A to the power negative one 

times A equals (inaudible) and then you (inaudible cross talk) use the 1S equals S which 

is equal to S1 and you get S equals S. 

This exchange provided evidence of the Formal Language storyline influencing the emerging 

mathematical status hierarchy among the students. Justin referenced that he had the “right” idea 

originally, which evoked the Formal Language storyline: there is a “right” or “proper” way to 

“do proofs” that can be validated by an expert authority. We interpreted this communication act 

as implicitly undervaluing their previous informal justification. He then communicated that their 

prior apprehension around adding an inverse rule was “too complicated” yet the instructor 

confirmed “you wanna use the inverse.” Aligning himself with the “right” way based on the 

instructor’s direction positioned Justin with expertise, increasing his mathematical status relative 

to Alison and Abigail. Almost interrupting Justin, Alison corrected him by countering that they 

did not think his idea was “too complicated,” they were unsure whether they could use it. We 

interpreted this communication act as a reference to the inquiry nature of the course where 

students and the instructor built up mathematical tools (i.e., the inverse rule) to use. Justin agreed 

with Alison and continued to express that he “had it right at first.” Abigail and Justin both 

mentioned they needed to “add the rule” which Justin quickly responded with how to write the 

rule symbolically. A possible interpretation of the immediacy in his speech is that adding the rule 

was trivial or “easy” (“the rule is super easy to make”). This exchange highlights the competing 

nature of the Formal and Informal Language storylines as Justin repeatedly stated he had the 

“right” answer (elevating his status) while Alison negotiated a lower status positioning by 

defending their informal strategy.   

Discussion 

This preliminary report contributes evidence of two competing storylines about what it 

means to engage in proof activity that impacted three students’ relative mathematical status as 

they collaborated on drafting a proof. The Formal Language storyline reflected a “right” or 

“proper” way to “do proofs” that required validation by an expert authority. In contrast, the 

Informal Language storyline reflected the value in creativity and problem solving in “doing 

proofs.” We argue that the Formal Language storyline likely influenced mathematical status by 

elevating Justin’s “right” idea and momentarily lowering Abigail’s and Alison’s mathematical 

status. We do not want to imply that the Informal Language storyline is better than the Formal 

Language storyline; however, we do want to point out that “doing proofs” (engaging in proof 

activity) includes both formal and informal language, yet over privileging formal language may 

maintain imbalanced mathematical status hierarchies (e.g., Adiredja, 2019). We also 
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acknowledge that all three students in the episode identified as white. Further analysis may 

evidence gendered differences in the relative positioning between the students, and future 

analysis of different episodes should take into account whether and how positioning relates to 

racialized hierarchies of mathematical ability (e.g., Martin, 2009).  

One implication of this work relates to what it means to “do proofs” and how this meaning is 

communicated to students in proof-based courses. Some research has shown that students’ 

perceptions of and approaches to proof can be both logical and creative and meaningful for them, 

especially when they experience problem-based proof courses (e.g., Smith, 2006). 

Communicating the value in both informal and formal language in proof activity may serve as a 

way to disrupt mathematical status hierarchy formation arising from these competing storylines.  
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In this conceptual paper, we position mathematics education as a public thing (Honig, 2017) and 

explore the consequences of acknowledging and investing in mathematics education as such. We 

propose that in embracing and insisting on mathematics education as a public thing, researchers 

must understand mathematics education as a joint investment in the human activity of 

mathematics and in democratic practices of living together within the sociopolitical sphere as 

formatted and shaped through mathematical activity. Drawing on an empirical example of 

organizing against school closures in central Texas, we call for mathematics education 

researchers to attend to mathematics in adjacent landscapes.  
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In this paper, we position mathematics education as a public thing (Honig, 2017) and explore 

the consequences of acknowledging and investing in mathematics education as such. We propose 

that in embracing and insisting on mathematics education as a public thing, researchers must 

understand mathematics education as a joint investment in the human activity of mathematics 

and in democratic practices of living together within the sociopolitical sphere as formatted and 

shaped through mathematical activity (Skovsmose, 1998). As such, mathematics education 

researchers are positioned as people who (must) care for and deliberate over mathematics 

education as a public thing. Drawing on an empirical example of parent and community 

organizing against school closures in central Texas (Gómez Marchant et al., 2023a), we call for 

mathematics education researchers to attend to mathematics in adjacent landscapes–landscapes 

of public life that exist beyond school or classroom walls, such as those of civic engagement. 

Democracy, Civic Engagement, and ‘Public Things’ 

Honig (2017) argued “democracy is rooted in common love for, antipathy to, and 

contestation of public things” (p. 4). Public things are public goods or objects (e.g., roads, 

libraries, utilities, universities, parks, railways, schools) with which individuals in communities 

construct relational attachments of care and concern that define the use and maintenance of these 

objects. Civic engagement then describes participation in communal life entailing the negotiation 

of use and relations with public things. Honig (2017) proposes democracy cannot exist without 

public things because public things create a space of coming together and deliberation. In this 

sense, people’s civic engagements are over public things. Public things are part of the ‘holding 
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environment’ of democratic citizenship; they furnish the world of democratic life…. Also 

constitute us, complement us, limit us, thwart us, and interpellate us into democratic citizenship. 

(Honig, 2017, p. 5). For example, memories of a childhood street, neighborhood, parks, or cities 

are imbued with affective and identity defining aspects. If the public things one civically 

identifies with are sufficiently threatened, then one may be motivated to stronger degrees of civic 

engagement. Knight Abowitz (2018) demonstrated how public education is a public thing when 

Betsy DeVos’ nomination (and eventual confirmation) as Secretary of Education was seen as an 

attack on public schools because of her history of advocacy for privatizing education. The 

possibility of education no longer being a public thing became more likely. Consequently, 

DeVos’ nomination activated many to protest and civically engage to a degree not seen before for 

a nomination to Secretary of Education (see Brown, 2017; Garcia, 2017; Knight Abowitz, 2018). 

Recognizing schools as public things also provides explanatory power to why school closures 

have been described as experiencing a social or civic death (Johnson, 2012). A school being 

closed destroys a community’s relational attachments to a public thing. 

Mathematics Education as a Public Thing in a Landscape of Racialized Contestation 

Public things, including schools, are not immune to inequities. Instead, Honig (2017) warns, 

“Any successful public thing presents us with this problem: the public things that constitute the 

demos exclude some and privilege others. In the United States, what is called ‘public’ is 

sometimes white, sometimes black; it is rarely both” (p. 24). Bell (2004) and Justice (2023) 

demonstrate how a (white) public education system became a public thing accessible to Black 

learners after Brown v Board of Education required the desegregation of public schools. Both 

authors emphasize how schools remained white and violent towards Black learners. San Miguel 

(2001) showed how public education as a public thing was limited for Latinx children, 

particularly through the use of language as a proxy for race (Cervantes-Soon, 2014; Garcia & 

Otheguy, 2017). The history of public education as a public thing for Black, Indigenous, Latinx, 

and other minoritized populations in the United States warrant Honig’s (2017) claim: “when 

public things are democratized, the response of the powerful is often to abandon them. White 

flight is not just from the urban to the suburban; it is from the public to the private thing” (p. 24, 

emphasis in original). Public things then are surveilled and policed asymmetrically to the benefit 

of white people (Keyes et al., 2023). These acts are warranted through discourses of access, 

maintenance, concern, and care for schools (see Justice, 2023; Keyes et al., 2023).  

Schooling as a public thing is part of the United State’s racial project (see Gutiérrez, 2001; 

Justice, 2023). As Justice (2023) argued, the public in public goods describing schools and other 

social goods was for the benefit of whites: “It can be misleading when historians today identify 

points in the past when writers intoned words like ‘the common good’ or ‘the public good’ as a 

way to suggest that schooling was for everyone’s equal benefit. It wasn’t” (p. 157). When the 

relational attachments become strained or points of tension, then individuals are activated to 

participate in the destruction or maintenance of the public thing. Esparza (2023) provides an 

example of a Mexican and Mexican-American community in Texas that developed their own 

community public school district (public thing) in resistance to the white schools they were not 

allowed to attend. The Mexican and Mexican-American community worked together to organize, 

create their own relational and affective nodes with a dedicated school space, to develop policies 

and regulations to maintain their public thing. Eventually, however, policies developed by the 
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greater governing body of the city and state education agency destroyed the Mexican and 

Mexican-American community schools and maintained white’s ownership of public things.  

Mathematics education researchers (see Bullock, 2019, 2023; Gutiérrez, 2018; Martin, 2003, 

2019) have highlighted parallels to the ‘goods’ Justice described within mathematics for all 

statements. Mathematics and mathematics education is complicit in the racial project schools 

engage in (see Bullock, 2019). Mathematics as a public thing “press[es] us into relations with 

others” (Honig, 2017, p. 6). As such, the ‘for all’ discourses provide a false promise of access 

and public-ness to mathematics education. Policy and regulations benefiting those most adjacent 

to whiteness surveil and police who gets to learn mathematics (see Morton & Riegle-Crumb, 

2019), when is someone doing mathematics (see Dowling, 1991; Lundin & Christensen, 2017), 

and what is mathematics (see Thanheiser, 2023). We continue our thought experiment by 

acknowledging that mathematics education as a public thing has always been contested through 

the emphasis of academic mathematics—a sphere of mathematics defined by (white) gatekeepers 

(e.g., standards; Eurocentric ways of thinking about mathematics). We call for mathematics 

education researchers to care for mathematics education as a public thing through pursuing 

sociopolitical mathematics activity and research in adjacent landscapes. 

Mathematics as Human Social Practice and Formatting Democratic Life 

Whereas we treat mathematics education as a public thing (a noun), we understand 

mathematics itself as an activity (a verb) describing human social practices related to organizing 

and modeling space and time, number, pattern, magnitudes, etc., in manners both concrete and 

abstract, particular, and generalizable (Dowlings, 1991; Skovsmose, 1998; Thanheiser, 2023). 

Specifically, we draw on a social theory of numeracy (Craig & Guzmán, 2018), extending it to 

mathematics broadly, wherein mathematics is understood as a human social practice embedded 

in, responding to, and organizing social-political-historical landscapes. “Numeracy is not a 

mathematical ability, but instead, the social ways in which people engage that ability. Numeracy 

is therefore motivated by broader concerns for social goals and mathematical ability is 

strategically employed because numeracies are purposeful” (Craig & Guzmán, 2018, p. 14). 

Skovsmose (1998) described how mathematical activity underlies social and political life, 

through its role in structuration (Giddens, 1984), calling this the “formatting power” of 

mathematics. From a US historical perspective, for example, Cohen (2003) traces how the 

original US Constitution defines the conditions of democracy through approaches to counting 

and distribution of representation that structure access and participation including the 3/5th rule 

that counted enslaved individuals as less than full humans but used their presence to increase the 

political representation of the enslavers. Hacking (2015) traces the emergence of statistics and 

related possibilities of census collection for population management as creating categories of 

personhood individuals are then interpolated into. The post/modern state treats individuals and 

communities as a resource to be managed through counting and sorting (Scott, 2020). Today, 

even as “science” is under popular contestation, policy discourse continues to call on data and 

numbers to lend legitimacy to argumentation (Mudry, 2009). Even in equity discourse, 

mathematical models of equity (Tate et al., 1995) are likely to dominate, even or especially, when 

they may silence evidence of human relations and the human condition (Gómez Marchant et al., 

2023a). 
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Investing in mathematics education as a public thing means deliberating over the content 

(what is un/seen as mathematics; see Gutiérrez 2018; 2023) and contexts (where and when 

mathematics is happening; see Gómez Marchant et al., 2023b). Understanding the public-ness of 

mathematics education entails attending to the mathematical activity that formats, structurates, 

and drives public life and deliberation, if often in invisible ways. Skovsmose refers to this type of 

research as a form of “mathematical archaeology” (1998), an excavation of those mathematical 

activities that are or can become “frozen” into technologies, decision-making practices, or other 

aspects of public life not often recognized as explicitly mathematical. We refer to research 

examining the mathematical activity of life beyond schools as mathematics education research in 

adjacent landscapes. Next, we share an example from our own current and ongoing research. 

An Example of Research in Adjacent Landscapes: Organizing Against School Closures 

At the December 2022 Sunny Field Independent School District (SFISD) school board 

meeting, the administration presented seven proposed plans to close two to three elementary 

schools due to the changing property values and inflation, decreased enrollment, and state 

legislative failure to increase the basic allotment per learner. A group of mostly white parents and 

community members began to organize to push back on the district's proposals for closing their 

predominantly Latine and Black schools. Two members of the research team acted as participant 

observers (Spradley, 2016) in the organizing efforts of the parents, collecting audio and 

fieldnotes at community meetings (Emerson et. al., 2011), and conducted oral history interviews 

(Portelli, 2018) with several members of the group. 

In describing and reflecting on the district’s handling of, and their own participation in 

organizing against, potential school closures, parents highlighted multiple forms of mathematical 

activity including 1) the district’s mis/management of data to explain and justify the need and 

targeting of schools for closure, 2) parental re/narrating of the school closure story through the 

surfacing and circulation of different data, 3) parental critique and rejection of numbers and data 

as meaningful or sufficient in representing children, family, and community relations with 

schools, and 4) parental awareness and critique in relation to the exclusion and 

underrepresentation of Latine voices in district hosted meetings and in parental organizing. 

Parent, Fiona (pseudonym), evidenced each of these, as she explained the motivation and 

consequence of using Freedom of Information Act requests to obtain data from the district. 

[The district] had data that supposedly encapsulated the fact that they were going to take 

equity into account. And then that was later used in a very different way–the word equity … 

Like if you're being moved to another school, then we'll make sure that it's kind of the same 

socioeconomic status…but the only things that was talked about was maps, capacity…none 

of it was like any of the stuff that we later collected and put on a giant spreadsheet and was 

like, let's get a real look at the schools…they had this list of reasons why you were being 

closed, but then they didn't actually have data that matched that (Fiona, Interview, 0:33:14) 

The spreadsheets parents created gave them the opportunity to interpret the data the district was 

using in their decision-making processes and provided them a different picture of the schools set 

to close which they later shared with others at community meetings. 
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Conclusion 

Positioning mathematics education as a public thing centers the sociopolitical nature of 

mathematical activity in our everyday lives; consequently, placing the responsibility on 

mathematics education researchers to care for and be concerned for the public nature of 

mathematics education. Mathematics education has been a part of laws, policies, and regulations 

that have harmed and oppressed (see Bullock, 2019; Cohen, 2003). As such, mathematics 

education researchers are complicit in a sordid history. To show care for and recuperate, our 

work as mathematics education researchers must intentionally, respectfully, and cautiously 

transgress the boundaries of our comfort within educational landscapes. Mathematics education 

researchers must themselves become activated to the political and care for our public things. 
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The authors share their experience creating sonic constructions representing the school 

mathematics experiences of two Latiné learners. Antonio and Juanita are 3rd grade learners in 

two different rural schools in the southeastern US. An interview with each learner was edited 

such that the interviewers were removed. The remaining snippets of the remaining audio were 

curated to share Antonio’s and Juanita’s testimonios. Through the sonic constructions, deeper 

explorations of how Antonio and Juanita navigate racial and linguistic spaces can be conducted. 

Keywords: Equity, Inclusion, and Diversity; Research Methods; Elementary School Education 

Sound waves reverberate around us helping to engage, define, and make sense of space. 

Although sound frequencies are only one source of information used to make sense of the world, 

sound is ubiquitous, and many messages pass through our auditory existence (Gershon, 2011; 

Gershon & Applebaum, 2020; McLoughlin, 2023). Hence, there is an important relationship 

between sound and the construction of space. Teachers and researchers embark on sonic journeys 

to engage with the sound of mathematical discourse, the classroom environment, an interview, a 

conversation between learners, and the stories about navigating schools and mathematics being 

told. The construction of knowledge at schools is dependent on the privilege and dependency the 

educational environments have placed on sonic constructions in classrooms (Gershon & 

Applebaum, 2018). Sound studies in education (see Gershon, 2011, 2013; Gershon & 

Applebaum, 2020; Wargo, 2018, 2019) deeply consider the role sonic layers play in our 

educational institutions, including the multimodal storytelling capabilities of learners.   

The politics of sound (Kangieser, 2015; McLoughlin, 2023) forefronts questions of who is 

heard, who listens, how one is heard, and what one does with sound. Our journey through and 

with the world incorporates the sounds of an ecosystem and our own sonic additions to it, even if 

we cannot or choose not to hear life’s reverberations (McLoughlin, 2023). “Sounds are therefore 

necessarily educational in nature, sensual data so rife with information that the listener can 

render often disparate-seeming sounds into embodied meaning systems” (Gershon, 2011, p. 66). 

Our meaning-making, particularly of the social other, is dependent on how the other is heard. 

Researchers treating sound as apolitical audio frequencies in space is is prohibitive to our being 

able to reach deeper understandings of our environments (Littlejohn, 2021). 

mailto:nico.gomez@utexas.edu
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Theoretical Framework – Geographies of Despair/Hope 

Hidalgo (2017) describes spaces and soundscapes for Communities of Color as geographies 

of hope and geographies of despair. In her project, predatory landscapes, Hidalgo (2011) worked 

together to “resist spatial domination through creative and inventive appropriation of space” 

(Hidalgo, 2017, p. 80). Geographies of hope are the appropriation of a dominant space. Hidalgo’s 

(2011; 2017) exploration also provided further insight on the geographies of despair the 

participants were navigating. Geographies of despair are spaces where dominant narratives 

maintain racial hierarchies. Hidalgo (2017) described the larger number of fringe financial 

services available in the southern area of Phoenix where immigrant populations have historically 

been located. These geographies of despair demonstrate the long-standing history of white 

supremacy through laws and policy targeting immigrant populations. By mapping the 

geographies of despair, Hidalgo (2011; 2017) is engaged in mapping phenomena through sounds, 

visuals, and other media to make visible the invisible and disappeared (see Popovski & Young, 

2023; Russell & de Souza, 2023). Insight into the tensions between geographies of hope/despair 

can provide powerful understandings of Latiné childrens’ experiences navigating school. 

Hidalgo’s work influenced us to recontextualize explorations of learners’ geographies of 

hope/despair. Our focus in this paper was on the audio recorded testimonios of Antonio and 

Juanita to create a sonic construction where they share their geographies of hope/despair. 

Positionality Statement 

The research team is dedicated to disrupting the white mechanisms of educational institutions 

for the flourishing of Latiné children. As a collective, we weave and vulnerably share our stories 

as Latinx, Iranian, white, multilingual, immigrant, queer, cisgender, children in poverty, and 

having invisible health and mental issues. It is important to share openly to create a counterspace 

for us and our partners. We push ourselves to work in different mediums to disseminate the 

valuable knowledge gifted to us by our partners. We recognize our position in the academy—a 

cruel (white) apparatus—requires our continued adjacency to whiteness. We work together to 

maintain as much of our former selves as possible.    

Methodology: Sonically Constructing Antonio and Juanita’s Testimonios 

We wanted to maintain the sound of their voices through the process of constructing their 

testimonios. Hence, working through the medium of sound was important. As Wargo (2018) 

described, “Sound is not merely a descriptive experience but a set of social relations. Sound 

operates as a worldview. It is a symbolic system and form of composing” (p. 14). Using the 

video/audio file, the first author listened repeatedly to Antonio’s and Juanita’s interviews ranging 

16 to 20 minutes. First, it was important to remove the voice of the interviewer. We used Final 

Cut Pro to separate the audio of the video (to depend only on the sonic landscape—the totality of 

the sounds record) and edit the audio file such that only the voices of the learners were left. This 

included as much as possible removing the interjecting sounds made by interviewers to suggest 

the interviewee is being heard (e.g., yes, mhm, hmm). From these files, the first author listened 

for Antonio’s and Juanita’s possible testimonio. It was important to listen for descriptions of their 

experiences (e.g., who they are, what brings them joy, what silences them, the emotionality of 

their experience in schools as Latiné learners). Furthermore, listening specifically to how these 

experiences culminate in their mathematics learning. In general, we wanted to understand how 
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two Latiné learners navigated their experiences in school and the mathematics classroom. 

Littlejohn (2021) warns this kind of editing is creating a fictitious version of Antonio and Juanita, 

but that it is not a limitation. “Like written ethnographies, sonic ones are fictions. This does not 

mean that they are untrue or do not index reality. Rather, they are ‘partial truths’ that both reflect 

the specific engagements between ethnographers, people and place” (Littlejohn, 2021, p. 36). 

Therefore, like counterstorytelling (Solórzano & Yosso, 2002), we ground Antonio and Juanita’s 

testimonios in the empirical data provided, our own experiences navigating school mathematical 

spaces, and the literature to contextualize their experiential knowledge through the sonic 

construction. 

From this foundation, the first author was able to curate together seven-minute clips of each 

learner. Then, each audio curation was further edited by listening closely to each learners’ stories 

and trying to create an audio experience for the listener showcasing the experiences of Antonio 

and Juanita. It helped to think of Antonio and Juanita as giving a tour of their experiences. This 

aided in constructing two-minute “tours” of their geographies of hope/despair. The first author 

then shared these with the others in the research group and, with their advocacy for Antonio and 

Juanita, worked together to edit, modify, and maintain the partial truth of their testimonios 

(Littlejohn, 2021). The group concluded with two sonic constructions. From these constructions, 

we moved on to mapping their experiences by creating animations to go along with their 

testimonios. The animations were created by the first author. Feedback was discussed with the 

research group until consensus was reached. 

Antonio and Juanita’s Testimonio Tours 

In this section, the transcripts of Antonio’s and Juanita’s sonic constructions are presented. 

During our presentation, we will take time to listen to and watch the sonic constructions. The 

goal of including portraits and our mappings of their experiences is to make Antonio and Juanita 

present for the reader, to humanize them and remind the reader of the children speaking to them. 

Please read their words carefully, as the fragile gifts they are (Gómez Marchant & Aguilar, 

2023). Their sonic constructions are manifestations of their counterstories, helping us in 

understanding how they navigate school and the mathematics classroom.  

 

 

Figure 1: Portraits of Antonio and Juanita adjacent to their school experience maps 

Antonio: My favorite color is green and uh I can drive a um four wheeler like with my 

brother in the back. My mom is really sweet and my dad, he cooks sometimes when it's in the 

summer and my mom's at work. Because I want to challenge myself to see how far I can get 

before I go to fourth grade. And then when I go to fourth grade I'm going to see if I can get all 

the way to sixth grade, like skip fifth and go to sixth. When I'm adding, sometimes I just um, go 
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in my head and I sometimes do it in Spanish and then I try to say it in English. And once it's like 

wrong I um, do it, the whole thing in Spanish and then if it's wrong still I do the whole thing in 

English and it's right then um I'll like feel like I got it right just with only one try but I only got it 

right in like three tries sometimes. So I did in my head, uno plus uno equals dos. And then um, I 

wrote it down, one plus one equals two. And then I got it right and then I got a treat. Sometimes I 

don't really like to do it in Spanish but mostly all the time I do. I would think they would be 

impressed by that I'm trying–I'm kind of embarrassed to say it. Because like, because I only have 

American teachers. Like mad because all the time me and Jocelyn would speak Spanish and um 

they said no secrets in class And we would say it in English and then they'd be like oh wait that's 

what they were saying so they got kind of mad that we were um, doing secrets but we weren't. I 

only do it at recess because my teachers won't let me speak in Spanish. It makes me feel kind of 

sad that I can't speak Spanish in class. And I want to speak Spanish in class. I did it one time at 

recess when they were trying to speak to some, a little bit of a Spanish guy and they tried to say 

hello in Spanish and they couldn't say it so I helped them say hola and they said um hola. And 

then I felt like um special that I helped.  

Juanita: I love having fun. My favorite color is blue. My favorite food is spaghetti. My dad 

works–he builds houses. My brother plays soccer. I have two dogs, Levi and Daisy. I don't speak 

Spanish. I understand a little bit of Spanish but not a lot of Spanish. Well I'm new. I just came to 

this school. I came from McK. The bus wouldn't pick me up from McK so we had to come to a 

different school. I just feel lonely here. So they are like, are you Mexican? Are you half 

Mexican? Are you White-ish Mexican? And I just–I just don't answer them a lot because that 

makes me feel bad. And my dad just tells me don't let anyone bully you. Like he–my dad would 

tell me not to worry if I'm Mexican or American. I sometimes do say words wrong. I mean my 

dad's girlfriend is in Mexico and she makes me happy. She doesn't really care if I'm Mexican or 

not. She just cares of who I am and I just like it. So I watch YouTube. And there is a lot of 

Americans on YouTube. I wanted to be an American and I didn't want to be Mexican. Like my 

dad he cheers me up all the time. He would make–he would probably make me food. Hug me. 

Maybe buy me something. I get kind of scared, not all the time but she usually makes me clip 

down. My teacher probably would look at me a lot because I don't–I don't answer a lot of 

questions there Because like I'm scared if I get them wrong and I feel bad that I don't want 

anyone looking at me. I probably know a lot of things and I help my–my classmates all the time 

with math because I do get a lot of good grades. I got one B on my report card and four A's and 

my dad was proud. Cause I want to be a police when I grow up and I like–I was watching videos 

about it and you like learn math in there. Like they be writing things and you have to find like 

the answer to kind of like math. When I get like–we do this math mashup for our homework, 

when I get all those answers right. I feel proud of myself. 

Discussion and Conclusion 

Antonio’s and Juanita’s testimonios emphasize the tensions of their geographies of hope and 

geographies of despair (Hidalgo, 2017) within their differing learning environments. One hears 

and sees how their mathematics, linguistic, and racial identities within differing contexts 

construct these landscapes of educational and mathematical possibilities. Antonio’s and Juanita’s 

mappings is a first step in showing how mathematics, language, and race collide within their 

lived experiences at school. Focusing on the audio medium for meaning making helped in 
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creating a portrait of the tensions their racial, linguistic, and mathematical identities face. This 

process also maintained Antonio’s and Juanita’s knowledge of racialized spaces, thereby 

requiring the research team to attend to Antonio and Juanita differently. Antonio’s landscapes 

were more heavily influenced by his experiences with language. Juanita’s with her racialized 

experience. Both are emergent within the other. As tools for listening to learners, they both 

prompt conversations of the relationship between language and race, specifically in the 

mathematics classroom. This helps in further recognizing how the politics of sound (Kangieser, 

2015; McLoughlin, 2023). Antonio’s and Juanita’s auditory mappings provide insight on their 

joy but also on their oppressed experiences. 
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Mathematics educators have recently shifted towards prioritizing social justice within the 

classroom, reflecting a broader recognition of the importance of addressing societal inequities 

and fostering inclusive learning (Buell & Shulman, 2019; Gutstein & Peterson, 2013). There is 

additional consensus that mathematical modeling can help students connect their experiences 

outside the classroom with big ideas in K-12 mathematics (Ball et al., 2005). These perspectives 

underscored the urgency of addressing themes such as cultural diversity, sociopolitical topics, 

and environmental issues relevant to learners in diverse mathematics classrooms worldwide 

(Aguirre et al., 2019; Jung & Magiera, 2023; Felton-Koestler, 2020; Rosa et al., 2022). 

Mathematical modeling and social justice research approaches are rapidly expanding, 

encompassing diverse perspectives and epistemologies worldwide (e.g., Barbosa, 2006; Jung & 

Brady, 2023; Orey & Rosa, 2023). It is important to summarize these views and understand the 

different approaches, designs, and methods to guide informed research lines that adds to this 

emerging field. With this goal in mind, we embarked on a systematic literature review to analyze 

the current state-of-the-art of mathematical modeling and social justice development research. In 

this poster, we present one research question that has guided our first efforts to summarize this 

field of research: What are the predominant themes at the intersection of mathematical modeling 

and social justice across the research in mathematics education?  

Methodology. In this study, we employed a systematic literature review (Torres-Carrión, 

2018; Snyder, 2019) to explore the integration of social justice into K-12 mathematical 

modeling. We searched six relevant academic databases (Web of Science, Scopus, Springer, 

JSTOR, Taylor and Francis, and Eric) using keywords (e.g., social justice, equity, culturally 

responsive, and mathematical modeling). A multi-stage screening process ensured 

methodological rigor and minimized bias (Moher et al., 2015). At first, two independent 

reviewers categorized titles as “relevant,” “irrelevant,” or “maybe” using Covidence, a website 

for multi-layer screening. Reviewers did this process by ensuring each paper was related to 

mathematical modeling, social justice, and K-12 education. Discrepancies were resolved by a 

third reviewer. This process reduced the initial pool from 5,685 to 539; we kept papers classified 

as “relevant” and as “maybe”. After abstracts were similarly reviewed, we conducted full-text 

analyses of the remaining studies. 

Summary of results. Our ongoing process has completed the initial screening phase, where 

we evaluated the titles and abstracts of the papers. As we transition to the full-text screening 

stage, preliminary discussions among the research team have illuminated the potential 

development of several thematic codes: ethnomodeling, teacher knowledge of social justice and 
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mathematical modeling, culturally responsive pedagogical approaches on mathematical 

modeling, and the evolution of mathematical modeling and social justice in education. In this 

poster session, we will provide a summary of the interaction between modeling and social justice 

by sharing the relevant themes, subthemes, details, and recommendations for future work. 
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Education research literature consistently frames ADHD learners as a collection of deficits 

running counter to their own academic success in their educational trajectories. These deficit 

orientations to ADHD learners contribute to widespread assumptions that they lack the ability to 

contribute meaningfully in educational settings. We explore the hypothesis that one ADHD 

learner’s participation in collaborative mathematics served to support and facilitate joint 

attention within his peer group. This hypothesis serves as an explicit counter narrative to deficit 

orientations held against ADHD learners, in literature and in the classroom. ADHD learners 

bring valuable assets to the success of their peer groups. This work challenges linear 

understandings of human development that can function to pathologize human cognitive and 

cultural diversity rather than embrace it as valuable to our collective continuance. 

Keywords: Special Education, Students with Disabilities, Equity, Inclusion and Diversity 

ADHD: Contesting Deficit Framings 

Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most widely researched 

neurodevelopmental disorders worldwide (Cooper, 2001). ADHD learners, present in nearly 

every K-12 classroom, are defined by the Diagnostic and Statistical Manual of Mental Disorders 

(5th ed.) as having a deficit in the area of attention (American Psychiatric Association, 2013). 

While we (the authors) acknowledge the biological differences in neurodevelopment and 

impairments experienced by ADHD individuals, we also maintain that these impairments exist 

within an unjust, social framework that imposes normative standards of functioning on 

individuals who experience ADHD and other types of neurodivergence (Brown, 2014; Jurgens, 

2020).  

Overwhelmingly, the extant literature on ADHD learners in K-12 settings constructs them as 

poor students, who are incapable of academic success as a result of their identifications with 

ADHD. When students are constructed as fundamentally deficient in their capacities for learning, 

it is imperative that we re-examine the ways we investigate the learning of ADHD students. 

Critical and divergent perspectives of ADHD and other learning disabilities are necessary to 

disrupt deficit perspectives in research and ensure proper accessibility and accommodations for 

ADHD learners in K-12 learning contexts.  

ADHD Learners and Collaborative Mathematics  

Collaborative mathematics is understood as a critical site for agency and authority in 

mathematics learning (Langer-Osuna, 2016). Research shows disabled learners often have 

limited access to opportunities for agency and authority in mathematics learning (Tan et al., 

2019). With collaboration understood as a highly valuable configuration for learning 

mathematics, critical analyses of access and participation in collaborative mathematics is crucial 

to the development of equitable educational opportunities for disabled students in mathematics. 
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Despite the abundance of research that has been conducted around ADHD, an initial review of 

literature identified zero (n=0) studies investigating the participation of ADHD learners in 

collaborative mathematics (Hertel & Gargroetzi, 2023). Examination of these cross-sections of 

the literature (ADHD learners in mathematics and ADHD learners in collaborative groups) 

evidence a pattern of constructing ADHD students as deficient. They are framed as deficient in 

their mathematical abilities with concern for on-task time, work completion, calculation 

accuracy, and problem solving (Zentall et al., 1994; Lucangeli et al., 2006). Literature regarding 

the collaborative activity of ADHD students is either approached from a position of concern 

about managing negative social interactions presumed common for ADHD learners or as a 

prescriptive intervention to mitigate poor academic outcomes (Saunders et al., 1996; Watkins et 

al., 2008). In one article, it is noted that collaborative groups with ADHD learners “surprisingly” 

had better mathematical problem-solving outcomes than those without ADHD learners as 

members of the collaborative group (Zentall, 2011, p. 38). This analysis speaks to the profound 

and harmful silence in the literature about the assets and contributions of ADHD learners to 

mathematical collaboration–a critical site for powerful mathematics learning. 

Disability Justice and Counter Narrative 

Drawing on Disability Justice and other critical frameworks we present the findings and 

discussion of this analysis as a counter narrative (Solorzano & Yosso, 2011), that challenges the 

majoritarian story of deficit orientations from which the mathematics and collaboration of 

ADHD learners is currently researched. A counter narrative that provides an asset-based framing 

of the contributions to mathematics collaboration by an ADHD student is prudent and speaks 

back to the deficit notions in both bodies of literature.  

To do so, we share findings from an interaction analysis (Jordan & Henderson, 1995) of a 

Latino, ADHD, 9th grade student, Sammy, working with his peers in collaborative mathematics 

problem solving. Through this analysis, we challenge the deficit framing of ADHD learners. 

Specifically, we notice that Sammy plays a key role in the coordination of his group’s collective 

attention to tasks, ideas, and objects that are important to their overall success as a group, a 

construct referred to as joint attention in the extant literature on collaboration and group work 

(Barron, 2003). While Sammy’s identity as an ADHD student constructs him as having a deficit 

in the area of attention, his ability to coordinate joint attention, and the skills and assets required 

to do so are of particular interest in carrying out this analysis.  

In order to investigate the affordances of Sammy’s contributions to collaboration with his 

peers in mathematics, we asked with regard to Sammy during collaborative mathematics 

problem-solving, 1) What are Sammy’s contributions to collaboration with his mathematics 

peers? And 2) What are the outcomes of Sammy’s contributions to collaboration for the other 

members of his group?  

Methods 

The findings reported in this paper represent one minute of fine-grained interaction analysis 

(Jordan & Henderson, 1995) as an early phase in progressive refinement of hypothesis (Engle et 

al., 2014) where we examine the case of Sammy’s participation in collaborative mathematics 

problem solving activities. Progressive refinement of hypotheses describes the ongoing and 

iterative process of observing and analyzing a phenomenon of interest within and across data 

sets. Here we explore the hypothesis that one ADHD learner’s participation in collaborative 
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mathematics served to support and facilitate joint attention within his group, serving as an 

explicit counter narrative to the fundamental construction of ADHD as having a deficit in the 

area of attention. As students with ADHD are often positioned as deficient in the capacity of their 

attention, Sammy’s case as an ADHD and Mexican/Hispanic student who effectively coordinates 

joint attention, disrupts the pervasive deficit narratives of ADHD students and constructions of 

racially marginalized students in mathematics as “problematic.”  

In this analysis we use interaction analytic techniques to investigate human activities, such as 

talk, nonverbal interaction, and the use of artifacts and technologies, identifying routine practices 

and problems and the resources for their solution as indicative of social ecologies of participation 

(Erickson, 2005; Jordan & Henderson, 1995). This method of analysis affords identifying 

regularities in the ways in which participants utilize the resources of the complex social and 

material world of actors and objects within which they operate (Jordan & Henderson, 1995). 

Context of the Study 

This analysis is situated within a two-year ethnographic study of the co-construction of 

mathematics and social identities in a predominantly Latine serving California public high school 

(Gargroetzi, 2020; 2023). For one year, data collection focused on one mathematics class and 

eight focal students of whom Sammy was one. During that time the second author served as a 

consistent participant observer (Spradley, 2016) in the focal mathematics classroom and 

occasionally accompanied the focal students to their other classes and activities. The instruction 

and learning opportunities in the focal classroom were structured around collaborative problem-

solving activities where students worked in groups of three or four.  

Sammy, a 9th grade student in the year of study, identified himself as Hispanic and Mexican, 

male, and an “ADHD kid.” Sammy reported that mathematics was his favorite subject, but that 

both his ethnoracial and disability identities complicated this. He had encountered the notion that 

Mexicans could not be good at mathematics (see Gargroetzi, 2023) and he explained that he 

believed being an “ADHD kid” meant he couldn’t get an A in mathematics. For the year of data 

collection in Sammy’s class he acted as a co-researcher. Four years later, Sammy, has 

volunteered to participate in future rounds of video co-analysis (not yet reflected in this paper). 

Sammy’s peers in the collaborative work represented are Selina (10th grade, Latina, 

repeating the course), Gisela (10th grade, Latina, with an IEP, repeating the course), and Gabriel 

(9th grade, Latino). The ethnoracial and ability contexts of the school and these students’ 

relationships with mathematics, schooling, and their classroom community are explored in other 

work (see Gargroetzi, 2023; 2024). All student names are self-selected pseudonyms. 

Data and Analysis 

Data for this analysis comes from a larger set of ethnographic data including field notes and 

artifacts of student work, student interviews and focus groups, and video of two student groups 

participating in collaborative mathematics over the course of one unit (7 days, 700 minutes). 

Microanalysis examines one minute of collaborative mathematics selected from video from the 

first day of the recorded unit. In the first phase of analysis, the authors and colleagues created 

content logs documenting major activities in 5-minute intervals across the 7-day unit. In a 

concurrent second phase, as we developed our initial hypothesis, we participated in collaborative 

viewing sessions (Jordan & Henderson, 1995, Erickson, 2012) with two different groups of 

researchers representing varied expertise in interaction analysis, Disability Studies, mathematics 
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education, special education, and learning theory, working to generate and refine our hypotheses 

and analytic lens in relation to the empirical record.  

In doing so we began to document and define the types of contributions, any verbal or 

nonverbal activity that took place within the context of the collaboration captured on video 

whether directed toward another peer or not (see Table 1), that were made to the collaborative 

activity. In mapping this landscape, we identified a variety of types of contributions including 

those often explicitly documented as contributions to collaborations such as asking or responding 

to a question, as well as others that are not often considered as a potential contribution. For 

example, students in the focal group often engaged thinking aloud - a verbalization of their own 

questions or ideas while problem solving. Observing gaze, posture, and tone of voice, it was 

inferred that these questions or ideas were not necessarily directed at any particular student or 

even the whole group of students. Rather, they were externalizations of students’ thought 

processes, or in simpler terms, “thinking aloud”. While some analytic lenses may not attend to 

these personal externalizations as part of the collaboration, we included these in our analysis 

based on the hypothesis that this type of contribution to the collaborative space might afford 

opportunities for initiating joint attention, collaboration, and peer sensemaking.  

 

Table 1: Types of Contributions to Collaboration 

 

Type Definition 

Thinking aloud (not directed at a 

peer)  

When a student is talking out loud either about their 

thoughts or questions regarding the problem they are 

working on or a related mathematical idea.  

Collaborative Sharing Share or propose mathematical idea, reasoning, 

observation, approach to problem solving, or solution 

Talking while Gesturing Gesture accompanies verbalization (hands or head) 

Gesturing Gesture without verbalization (hands or head) 

Touch materials  Touches own materials or materials that belong to or 

are sitting on a peer’s desk. 

Pointing Point to diagram or worksheet 

Questioning (math-related) Ask a mathematical question  

Responding to peer (math-related) Respond to a peer’s mathematical question 

Clarifying question (task-related) Ask question about task expectations 

Provided clarification (task-related) Respond to a task expectations question or expand on  

Endorse a peer’s idea (math-related) Agree with or promote peer’s contribution/solution 

Provide affirmation/confirmation Confirm/affirm a peer’s contribution/solution 
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Celebration (math-related or task-

related) 

Celebrate completion or correctness of solution (self 

or peer) 

 

After using the larger data set to generate a set of contribution types, we focused our analysis 

on one minute of fine-grained interaction analysis based on a detailed transcript of the video 

record from the first day of the unit (minutes 59:00-1:04). The transcription documents both 

verbalization and nonverbal activity such as gaze, gesture, posture, writing, and other 

movements. Transcription conventions follow modified approaches drawing on Jefferson (1984) 

and Ochs (1979). Video was reviewed repeatedly to refine the transcript and produce detailed 

analytic memos for each conversational turn (Sacks et al., 1974). We selected this video segment 

based on it representing the first episode of the peer group engaged in a teacher-assigned 

collaborative task in a new collaborative group. The segment is bounded by initiation of the 

collaborative work amongst the group at the beginning and the collective uptake of a shared 

solution at the end, marking a shift in attention within the group. 

Using the detailed transcript we coded for Sammy’s contributions (n=10) and mapped the 

outcomes for peers of each of Sammy’s contributions (See Table 3 in Findings). Outcomes were 

identified and analyzed based on examining the activity immediately following the contribution 

(3-5 seconds prior). As is common for social arrangements, an outcome in one moment was also 

often a contribution for the next. Findings report on Sammy’s contributions and subsequent 

outcomes for his collaborative group.  

Locating the Researchers 

The researchers are an ADHD researcher (PhD student) and neurotypical faculty advisor who 

are jointly invested in examining power, privilege, and marginalization in mathematics learning 

with commitments to humanizing representations of minoritized learners that privilege their 

voices and perspectives. As two white, non-binary but cis-presenting researchers we recognize 

our privileged positions as a form of property and we work to unseat those investments in 

ourselves. The data shared in this paper represents insight into the lives of youth with whom the 

second author has been in close relations over the course of multiple years. The first author 

brings unique insights and commitments to this data in relation to ADHD learners and learning. 

We invite Sammy and other ADHD learners to join us in this analytic work and the work to build 

a counter narrative oriented to assets over deficits. 

Findings 

The segment of video-based interaction analysis included 21 talk turns where Sammy 

contributed nearly half of these turns (n=10). Sammy’s contribution types during this time 

included verbalizations such as collaborative sharing (n=8) and providing confirmation (n=2) as 

well as movement such as pointing (n=3), touching materials (n=3), and often both at the same 

time: talking while gesturing (n=4). In examining the immediate outcomes within the group 

following Sammy’s contributions, we noted three categories of outcomes (see Table 2). The 

outcomes of Sammy’s contributions included (1) initiate or sustain joint attention, (2) initiate or 

sustain a pattern of sharing ideas, (3) a peer or the group utilizes Sammy’s contribution as a 

resource for sensemaking or solution pathway. On occasion no explicit outcome was observed if 

there was no evidenced attention (physical or verbal) to Sammy’s contribution. Notably, on three 
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occasions Sammy’s contributions initiated either joint attention or a new pattern of collaborative 

sharing, both fundamental processes for collaborative problem solving (Barron, 2003). On other 

occasions his contributions supported the continuation of these critical configurations within the 

group. Examples are provided for each type of outcome. We further unpack one instance of 

Sammy’s contribution providing resources for the participation and problem-solving activities of 

his peers and the collaborative group.  

Table 2: Types of Outcomes for Peer Following Sammy’s Contributions 

Type (# of 

instances) 

Definition Example 

Initiate sharing 

(n=2) 

After a contribution to 

collaboration has been made, 

peers begin to share their own 

ideas, questions, or solutions in 

response.  

When Sammy and Selina are talking 

about the number of squares needed 

to form a box with a lid, Selina 

begins to share her own observations 

about the problem.  

Sustain pattern of 

sharing (n=6) 

Peers continue sharing ideas, 

questions, or solutions back to 

back, maintaining the flow of 

collaborative contributions.  

Gisela, Selina, and Sammy all share 

mathematical ideas at the very 

beginning of their collaboration. 

Initiate joint 

attention (n=1) 

A contribution to collaboration is 

followed by two or more students 

attending to the same idea, 

question, or object.  

Sammy points to a diagram that he 

thinks can be folded to form a box 

with a lid and Selina responds by 

asking a reaffirming question, “it 

does?” Sammy and Selina then begin 

discussing what is necessary in the 

diagram in order to ensure it will fold 

into a box.  

Sustain joint 

attention (n=6) 

Joint attention is maintained for 

multiple talk and nonverbal turns 

among peers.  

Sammy and Selina discuss how many 

squares are needed in a diagram for it 

to fold into a box with a lid. 

(attending to the idea or conversation 

about the problem) 

Peers utilize 

Sammy’s activity 

as a resource for 

sensemaking (n=4) 

Sammy’s verbal or nonverbal 

actions are utilized by peers 

either in individual sensemaking 

or as an inroad to collaboration.  

Gisela erases her answer for the 

second diagram directly following 

Sammy pointing to the second 

diagram and sharing his answer.   

Group utilizes a 

solution pathway 

offered by Sammy 

(n=1) 

Sammy’s shared solution is 

utilized by peers in their own 

sensemaking or solution 

pathway.   

Gabriel’s gaze shifts to Sammy’s 

paper while Sammy responds to and 

explains his reasoning to Gisela.  
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No explicit 

outcome observed 

(n=1) 

 Collaborative Sharing 

 

Vignette Analysis: Gisela Utilizes Sammy’s Contribution to Access the Mathematics and 

the Collaboration 

We selected a vignette to share that explicitly challenges the deficit-oriented framing of 

ADHD learners in mathematics education research. ADHD student talk and movement is often 

depicted in the literature as disruptive to their teachers and to the learning of their classmates. In 

contrast, this vignette demonstrates how, in the context of collaboration with his peers, Sammy’s 

talk and movement contribute to the collaborative space providing an alternative resource for 

sensemaking for his peer, Gisela. This inroad to sensemaking was utilized by Gisela for her own 

individual problem solving and subsequently as an entry point for dialogue with her group.  

During this interaction, representing 18 seconds of the analyzed video segment, Sammy and 

his peers consider which of a group of nets would make a box with a lid (see Table 3).  

Table 3: Transcription of Vignette 

Line Name Verbal Nonverbal 

1 Selina Um- there’s one box- so 

how many boxes make it- 

one, two, three, four, [five, 

six 

 

2 Sammy This one would! ] (.....) Pointing at the specific diagram that 

he thinks would work. Sammy's gaze 

lingers over to Selina's desk. 

3 Sammy This one would  Points again at the same diagram 

Gisela starts erasing her previous 

answer and then waits. 

4 Selina It does?- [Six?- 

 

Selina's gaze is directed toward her 

paper. 

5 Sammy Yeah] Gaze shifts down to his paper 

6 Selina [What you notice is that 

both of them] are six 

Selina points to two of the diagrams 

that have 6 six squares. 

7 Sammy Cuz you have to have four 

sides- ]  

Gaze shifts back to Selina 

Gesturing with his hand and pointer 

finger, tracing four sides of the box. 

8 Sammy Yeah- cuz they have to have 

four sides and then one on 

the bottom- one on the top/ 

Gesturing with his hand and pointer 

finger, tracing four sides of the box 

and then pointing to where the 

bottom and top would be. 
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9 Gisela /Should we check? Gisela gestures with her hands in 

somewhat of a shrugging motion, 

shifting her body to her right.  

 

Initially, while everyone else is processing and answering the first question on their 

worksheets individually, Sammy verbalizes his solution to the question on multiple occasions, 

pointing to the second and last diagrams on question one, which are in fact the only two correct 

answers, but receives no explicit response from others. Sammy says, "I know the last one will, 

it’ll create a lid," as he taps his pencil on his face. Then Sammy momentarily shifts his gaze 

toward the middle of the group, then back to his paper. The group is silent for a few moments, 

Gisela writes on her paper, Selina is leaned over her paper, and Gabriel's gaze appears to be on 

something beyond Gisela's desk. Sammy leans back in his seat and then talks while gesturing, 

"well, it would be difficult to...," and uses his hands to visualize what the final folded net 

diagram would look like. Immediately following, Selina begins to speak and gesture (line 1). 

Though her talk does not suggest she has taken up Sammy’s ideas, it does shift the group into a 

pattern of sharing such that the outcome of Sammy’s contribution was to initiate a pattern of 

sharing. Sammy again states his answer to the first question, excitedly stating, "this one would," 

while tapping on the specific diagram on his paper using his index finger (line 2). He looks over 

at Selina's desk, where she continues to lean into her worksheet and does not verbally respond to 

his answer. Just as Sammy is about to repeat his answer, Gisela starts to flip her pencil in her 

hand and begins erasing something that is written on her paper in the same location on her paper 

as to where Sammy was just pointing on his own paper. A few more seconds pass, and Selina 

raises her head slightly and Sammy's gaze shifts toward her face and then back toward his paper. 

Again, Sammy says, "this one would," this time more reserved, tapping on his paper (line 3).  

This time Selina responds verbally, "it does?” (line 4). Sammy and Selina continue to exchange 

ideas (lines 5-8), with Gisela now joining the discussion by asking if they should check their 

answer (line 9).  

While there was no verbal response to Sammy’s contribution in line 2, the nonverbal activity 

that occurred in the following five seconds where Gisela revised her thinking and then eventually 

entered the conversation with a new request to check their work together demonstrates one 

example of how Sammy’s contributions in verbalizations and gesture contributed to supporting 

peers and the collaboration by providing an alternative resource for sensemaking. By sharing his 

answer even when his group mates were not attending to a shared conversational space and using 

behaviors such as pointing, gesturing with his hands, and changing the tone of his voice, Gisela 

was able to silently utilize Sammy’s shared answer as an opportunity to reconsider her first 

answer to the question, attend to the conversation between Sammy and Selina, and eventually 

join with her own suggestion for a collaborative next step.  

Discussion and Conclusions 

This initial micro-analysis of Sammy’s contributions and the outcomes for peers in his 

collaborative mathematics group suggest that activity such as externalization (thinking aloud), 

talking while gesturing, and movements such as modeling with hands, pointing, and tapping can 

provide inroads critical to collaborative work such as initiating and sustaining joint attention, 

establishing and sustaining patterns of sharing within the group, and furthermore can provide 
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sensemaking resources that are utilized by peers for their own problem solving and to pave the 

road for access to the collaborative dialogue. These findings are of particular note because these 

same activities are frequently pathologized as problematic, distracting for others, and indicators 

of the inattention of ADHD learners.  

Sociocultural theories of learning (Vygotsky, 2012) that understand externalization of 

thinking through talk and gesture as providing critical resources for learning undergirds our 

understanding of the potential value of collaborative mathematics activity. However, these same 

sociocultural theories of human development and learning also suggest a hierarchical 

understanding of human development wherein advanced development is marked by moving 

much of this thinking to internal speech (Vygotsky, 2012). Along with the Disability Justice 

movement (Baglieri et al., 2011; Sins Invalid, 2015), and building on existing critique of such 

hierarchical developmentalism in some of Vygotsky’s work (i.e. Bang, 2017), we suggest that 

linear understandings of human development can function to pathologize human cognitive and 

cultural diversity rather than embrace it as valuable to our collective continuance. We hope that 

this micro-analysis of Sammy’s contributions and the outcomes for his peers provide one 

example of the potential value of neurodiversity and of varied ways of being and participating 

that can serve as an asset for mathematics learning and collaboration.  
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Immigrant students, including Muslim girls, encounter significant educational challenges, 

such as cultural and language barriers, leading to isolation and diminished self-esteem and 

academic performance (Cerna et al., 2021). Addressing these challenges requires dismantling 

structural barriers and fostering inclusive educational environments that value diverse identities 

(Nishina et al., 2019). In mathematics education, mathematics identity is pivotal for student 

engagement, achievement, and resilience, underscoring the need to recognize and affirm diverse 

identities (Aguirre et al., 2013). Digital mathematics storytelling has proven effective in 

enhancing mathematics identity by connecting mathematics concepts with real-life applications 

and boosting students’ interest in the subject (Chao et al., 2021). Nonetheless, research on digital 

mathematics storytelling among students with intersecting identities remains limited. This study 

seeks to explore the role of digital storytelling in reconstructing mathematics identity and how 

intersecting identities affect connection with mathematics. 

In this poster, we integrate mathematics identity (Nasir & De Royston, 2013), 

intersectionality (Crenshaw, 1989), and funds of knowledge (Moll et al., 1992) as theoretical 

frameworks to explore the identities of Muslim immigrant girls in the U.S. We employ a 

qualitative narrative inquiry (Connelly & Clandinin, 1990). Participants, five young female 

immigrants, created videos that reflect their journey in learning mathematics, integrating it with 

their daily life experiences connected to their families and communities. This research involved 

four-week storycircles (Lambert, 2018) where participants shared and received feedback on their 

developing work. Initially, we introduced the concept of mathematics storytelling, prompting 

participants to create their own stories and discuss their mathematics learning experiences in the 

U.S. and their home countries. As the sessions progressed, they explored and shared their videos 

related to gender, religion, and immigration within the context of mathematics education.  

Initial findings show that digital storytelling plays important role in reconstructing 

mathematics identity of Muslim immigrant girls, helping them adapt to a new educational system 

while incorporating their cultural experiences into mathematics learning. These participants 

navigate and bridge the gap between their home country’s mathematics curriculum and that of 

the U.S., cultivating a sense of belonging in mathematics. Their intersecting identities shape their 

connection with mathematics, merging the values and practices learned from family and 

community with formal education. This process not only fosters inclusivity and engagement in 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

294 
 

mathematics but also challenges stereotypes, serving as a powerful tool for participants to 

combat racism, sexism, and Islamophobia.  
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Using positioning theory, we examined mathematics lessons led by two monolingual teachers in 

multilingual elementary settings, focusing on learning opportunities. Despite employing 

research-based strategies, teachers often do not position multilingual students as capable 

problem solvers and independent learners. Their emphasis on equal participation inadvertently 

limited learning opportunities. We advocate for analyzing teacher discourse and practices 

through the positioning framework to uncover hidden biases and complexities. While the 

response of South Korean teachers to the increasing number of multilingual students remains 

unclear, our findings illustrate the general inconsistency in supporting and positioning culturally 

and linguistically diverse students in mathematics classrooms.  
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School Education 

In today’s diverse educational landscape, educators worldwide grapple with meeting the 

needs of multilingual students, a challenge accentuated in the U.S. where mathematics 

classrooms are reflective of increasing cultural diversity (García et al., 2008). Despite serving 

approximately five million English learners (ELs) in U.S., PK-12 schools, a persistent difference 

in mathematics assessment scores remains between ELs and their English-proficient peers 

(Howard, 2010; Soland & Sandilos, 2021). Research-validated instructional approaches are 

essential to ensure academic success for all students (Culatta et al., 2006), including 

linguistically diverse students. This study focuses on emergent bilinguals (EBs), denoting 

students still acquiring instructional language fluency, and acknowledge the dynamic nature of 

language acquisition, while valuing linguistic and cultural assets (García et al., 2008).  

Our investigation delves into the intricate political and cultural contexts shaping EBs’ 

learning experiences in the local community. We examined how two Korean teachers positioned 

students, including EBs, in multilingual mathematics classrooms, exploring the impact on 

students’ learning opportunities. This research is unique as it focuses on South Korea’s evolving 

multilingual student population, a phenomenon challenging traditional perceptions (from 1.91% 

in 2017 to 3.5% in 2023). Using a positioning theory framework, we aim to enrich our 

understanding of interactions in multilingual classrooms and their implications for students’ 

learning opportunities. 

Theoretical Perspectives 

Disparities in learning opportunities persist, disproportionately affecting low-income, 

culturally diverse students, often placing EBs in lower-level mathematics courses (Umansky, 

2016). Problem-based curricula and supportive environments enhance access to mathematics, 
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crucial for educational achievement (Stein et al., 2007). Cognitive demand distinguishes learning 

opportunities, with routine memorization considered low and conceptual understanding high. 

Teachers’ instructional practices influence students’ access to learning opportunities, impacting 

participation and access to classroom discussions (Martin-Beltran, 2010). Social dynamics and 

power relations further shape access to opportunities in mathematics (Kayi-Aydar, 2019).  

South Korea lacks specificity regarding multilingual students, amid the recent increase in 

racially and linguistically diverse populations. Research highlights disadvantages faced by 

multicultural students, including insufficient support, deficit positioning by teachers, and 

inadequate teacher preparation (Authors, 2022; Cho et al., 2006; Song et al., 2011). Song et al. 

(2011) found elementary teachers overlooked EBs’ language backgrounds, providing inequitable 

learning opportunities. Similarly, authors (2014) noted Korean teachers’ limited recognition of 

the cognitive demands of teaching mathematics to EBs. 

Framework: Positioning Theory  

Positioning theory, emphasizing moral dimensions of social roles, offers insights into 

interactions in bi/multilingual contexts (Harré & van Langenhove, L, 1999; Kayi-Aydar, 2019). 

Grounded in social constructionist perspectives, it views learning as constructed through 

interactions and power dynamics, making it a valuable framework for analyzing classroom 

discourse. This theory helps elucidate the relationships among power dynamics, competence, 

positional identities, and language learning experiences. Employed as both theoretical framework 

and methodological tool, it comprises positions, storylines, and speech acts, visualized in a 

triangular framework (Kayi-Aydar, 2019; Warren & Moghaddam, 2018). Within mathematics 

discourses, changes in any element due to challenges in rights and responsibilities allocation lead 

to modifications across the framework (Harré, 2012). Specifically, teachers’ positioning of EBs 

can significantly affect their access to interactional opportunities (Pinnow & Chval, 2015). 

Positioning theory, focusing on moment-to-moment interactions, allows us to analyze how 

teachers’ views expand or restrict learning opportunities for EBs, guiding our examination of 

teacher-student interactions in multilingual mathematics classrooms. 

Methods 

Participants and Settings  

We observed two fourth-grade teachers, in South Korea, both native Korean speakers. 

Teacher A, with 18 years of experience, taught in a metropolitan city with a diverse immigrant 

population, while Teacher B, a novice teacher, worked in a city with diverse ethnic communities. 

Teacher A’s class had 5 EBs from various ethnic backgrounds, born in South Korea but lacking 

proficiency in academic discourse. Teacher B’s class had 17 multilingual students, some 

identified as EBs, receiving special language support. Despite teaching in different schools, both 

teachers covered the same mathematics topic using a government-developed textbook, focusing 

on real-life data collection and bar graph construction.  

Data Collection and Analysis 

We extracted a subset of data from a larger international study (Authors, 2019) conducted in 

South Korea, consisting of class observations, lesson plans, surveys, and interviews. Two 

teachers stood out for their different approaches to teaching the same mathematics concept in 

multilingual classrooms. We analyzed their acts, positions, and storylines, especially concerning 
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EBs’ learning opportunities, using video recordings, transcripts, lesson plans, and interviews. 

Our analysis, rooted in Korean transcripts due to all authors being native speakers, focused on 

how teachers positioned themselves and students, particularly EBs, in mathematics classrooms. 

Utilizing Kayi-Aydar's (2019) positioning analysis framework, we identified 32 episodes where 

teachers positioned themselves or others regarding learning opportunities. Throughout the 

analysis process, we coded the repeated patterns and construct storylines that best capture each 

teacher’s positioning. Our analysis aimed to reveal how teachers’ acts positioned EBs and non-

EBs and provided them with learning opportunities in language and mathematics. Finally, we 

reflected on the implications of each teacher’s positioning. 

Findings 

We analyzed how classroom discussions and the cognitive demands of the tasks manifest in 

two teachers’ lessons, as well as how teachers provided learning opportunities for participation. 

We found that two Korean teachers positioned both EBs and non-EBs as equal participants in the 

classroom community. However, the ways in which the teachers supported EBs’ mathematical 

learning by engaging discussions and challenging tasks varied. Consequently, this led to different 

positions of students during class discussion and varying storylines about learning opportunities. 

Teacher A focused on equal participation through hints and simple tasks, positioning herself 

as the sole decision-maker, while Teacher B emphasizes student autonomy while being a 

facilitator. Accordingly, Teacher A lowered cognitive demand, whereas Teacher B maintained it. 

There is also a disparity in student-initiated discourse between two classrooms; in Teacher A’s 

classroom, the students did not have opportunities to ask questions or initiate discussions. 

Although Teacher B allowed students to speak up with questions and reactions, they were 

constrained by a sentence frame, limiting detailed mathematical reasoning.  

Notably, Teacher A positioned students as passive learners by directing all tasks to ensure 

equal participation with easy tasks and unison answer. While her teaching methods initially seem 

engaging, they limit students to simple tasks in both language and mathematics by asking simple 

questions for choral responding and not asking for any further questions after student response. 

Teacher A avoided high-level questions, assuming EBs may struggle, and preferred predefined 

responses over exploring student ideas. In interviews, she defended simple activities, believing 

EBs cannot handle complex tasks. Despite using everyday language, Teacher A restricted both 

EBs and non-EBs to one-sentence roles to ensure equality, rather than challenging EBs. Also, she 

often lowered task complexity, underestimating students' abilities, and encourages copying over 

exploration. As a result, students in Teacher A’s class may struggle to develop a strong sense of 

capability or confidence in mathematics, as her teaching methods tend to foster passive learning 

and limit opportunities for exploration and critical thinking. 

In contrast to Teacher A, Teacher B positioned students as independent learners, fostering 

equal participation through rigorous tasks. She empowered students to solve problems by 

encouraging open-ended discussions and justifications. By refraining from correcting incorrect 

answers and redirecting questions to peers, she maintained the cognitive demand of 

mathematical tasks. For instance, Teacher B avoided labeling tasks as “easy,” emphasizing the 

inherent challenges. She fostered a collaborative environment where student contributions were 

valued, positioning them as competent problem solvers. Overall, Teacher B positioned herself as 

a facilitator, guiding students to co-construct mathematical understanding through inquiry-based 
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learning, promoting active engagement, and reasoning skills development. As a result, students 

in Teacher B’s class may be more likely to see themselves as capable mathematics solvers and 

approach mathematics with greater confidence.  

Discussion 

The impact of teacher positioning on students’ participation and access to learning 

opportunities in mathematics and language is evident (Kayi-Aydar, 2019). Both teachers utilized 

various supports to scaffold EBs' and non-EBs’ learning, aligning with prior research 

recommendations (Celedón-Pattichis & Ramirez, 2012; Chval & Chaves, 2007; Moschkovich, 

2010). However, they framed EBs as individuals needing linguistic support, extending supports 

to all students, perhaps reflecting cultural storylines valuing collective learning experiences or 

ethical principles emphasizing fairness. While both aimed for equal participation for EBs and 

non-EBs, Teacher A positioned students as dependent learners, resulting in passive participation, 

whereas Teacher B fostered a student-centric approach, promoting active contributions (Bossér 

& Lindahl, 2019).  

The research findings suggest that, despite efforts to ensure equal learning opportunities for 

both EB and non-EB students, disparities in learning opportunities exist based on how teachers 

perceive the duties and rights of them and their students. The way teachers view themselves as 

educators can ultimately shape how they structure tasks and classroom discourse, potentially 

limiting students’ learning experiences. This study highlights the need for teachers to undergo 

professional development that challenges their perceptions of their role and promotes the use of 

rigorous tasks in mathematics education.  

Our data analysis, informed by positioning theory, revealed nuanced insights into classroom 

dynamics. Initially engaging, Teacher A’s lesson hid deficit views despite diverse activities, while 

Teacher B’s seemingly ordinary lesson empowered students through inquiry-based methods. This 

underscores the importance of positioning theory in evaluating instruction quality (Bossér & 

Lindahl, 2019). Integrating this theory into teacher education can address deficit views and 

promote equity over equality (Bossér & Lindahl, 2019). Reflecting on classroom episodes and 

adopting research-based strategies can mitigate deficit views and support EBs effectively. 
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In the recent calls for rehumanizing mathematics, researchers and educators call for a 

mathematics education that centers sociopolitical contexts (Gutiérrez, 2013) and students’ funds 

of knowledge (Moll et al., 1992). Within these sociopolitical contexts, many researchers seek to 

understand how different communities of students learn and engage with mathematics. I argue 

that these agendas often take a monoracial approach that leaves out the voices and experiences of 

multiracial students. As a multiracial educator, I seek to use this poster to center the eight critical 

multiracial theory tenets (MultiCrit) within mathematics education (Harris, 2016, p. 800). 

Tenet 1: A challenge to ahistoricism. This tenet encourages mathematics educators and 

researchers to analyze the historical context of issues specific to the multiracial community. For 

example, how has mathematics been used historically to condemn the multiracial community as 

the end of the pure white race? (Watkins, 2001). 

Tenet 2: Interest convergence. Mathematics educators and researchers should consider how 

multiracial students are positioned as desirable only when they meet the needs of K-12 

institutions built around white ideologies (Cross, 2005). How are multiracial students 

simultaneously oppressed and used by institutions to evade culpability for a lack of diversity? 

Tenet 3: Experiential knowledge. Highlighting the experiences of multiracial students 

provides counterstories and counternarratives to dominant ideologies. In mathematics spaces, 

these stories shed light on how the mathematical funds of knowledge for multiracial students 

come from multiple communities, which may combine, conflict, and compete. 

Tenet 4: A challenge to dominant ideologies. Mathematics educators should seek to elevate 

the experiences of multiracial students. Ethnomathematics should be embedded in curriculum 

and include the voices of students who come from multiple cultures and ways of knowing. In 

addition, mathematics educators should highlight multiracial mathematicians who have 

contributed to the field of mathematics. 

Tenet 5: Racism, monoracism, and colorism. Multiracial students experience racism, 

monoracism, and colorism, but often lack the resources to navigate and talk about these 

experiences (Yong, 2020). One example is how multiracial students are often lumped into one 

category of “two or more races”. This racial category devalues the voices and experiences of 

multiracial people by assigning them to a broad category that lacks statistical power. 

Tenet 6: A monoracial paradigm of race. Racism is often discussed in monoracial terms, 

which excludes the experiences of multiracial people. Multiracial students should be provided 

opportunities to explore how their multiple identities fit into mathematics spaces. 

Tenet 7: Differential micro-racialization. Multiracial people are often transracialized 

(Alim, 2016) as various races in different settings. Investigating how multiracial students are 

transracialized in mathematics classrooms may unveil the power dynamics these students resist. 

mailto:kasah007@umn.edu
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Tenet 8: Intersections of multiple racial identities. Multiracial students navigate 

intersectionality not only through nonracial identities but also through multiple heritages. 

Students should be provided space in mathematics classrooms for this identity exploration. 
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This paper reports findings from a broader study that examines and documents the role of K-12 

mathematics education amid the remote-schooling experiences of Black families (U.S.) during 

the COVID-19 pandemic. Moreover, the paper focuses specifically on perspectives of Black 

fathers. Given then-unfolding social restrictions during the stay-at-home period of the pandemic, 

the research design centers on semi-structured individual-family and multi-family interviews 

conducted via secured online video-sharing software. Here, we discuss a central theme from our 

analyses: tensions regarding mathematics homework as a cross-generational bridge. 

Keywords: Affect, emotion, beliefs, and attitudes; Equity, Inclusion, and Diversity; Informal 

Education; Instructional activities and practices  

You must never look away from this. You must always remember that the sociology, the 

history, the economics, the graphs, the charts, the regressions all land, with great violence, 

upon the body (Coates, 2015, p. 10).  

During the opening months of 2020, the United States government initiated a disjointed, 

state-by-state series of social and economic mitigation measures in response to the quickening 

spread of the COVID-19 coronavirus (hereafter pandemic). Across the country’s diverse 

subareas—regional, rural, urban, tribal, suburban—parents and guardians suddenly faced 

numerous immediate challenges and decisions regarding everyday personal and professional 

routines, including the first multi-state emergency stoppage of in-person schooling. Most schools 

initially adopted a remote or online approach, requiring teachers and students to continue their 

classes by using video-conferencing software, file-sharing platforms, and course-management 

systems. There was also a massive effort (though with little to no federal guidance) to provide 

computing and internet-access resources to teachers and families so that they may participate in 

remote teaching and learning. Newly emergent studies reveal varying access and participation 

rates with this new form of remote schooling across the country—disturbing patterns that align 

with and exacerbate existing societal inequalities. 

Purpose and Framing of the Study 

This study aimed to document and critically analyze the role of K-12 mathematics education 

amid the remote-schooling experiences of Black families with school-aged children—i.e., 

familial networks of home- and community-based caregivers, including parents and guardians—

during the pandemic. The specific focus on mathematics socialization among Black families 

(Martin, 2000; McGee & Spencer, 2015) contributes generally to a growing and needed area of 

research (also see Gholson & Wilkes, 2017; Washington, 2019; Walker, 2016). Based on related 

literature, we characterize mathematics socialization conceptually as the interaction of roles, 

practices, behaviors, and perspectives (see Saleem, Howard, Schmidt-Temple, Langley, & 
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Howard, 2024). Moreover, this study is timely given its attention to the unique societal moment 

of the pandemic—with conditions that temporarily upended conventional notions of work, 

school, home life, and intersections thereof.  

A broader goal for this research is to develop a collaborative research agenda with other 

mathematics education researchers who are currently studying closely related phenomena (e.g., 

families, mathematics socialization, identity, race)—in order to further the study of how Black 

people conceptualize and actualize their roles as mathematics socialization agents (Martin, 2000; 

2007; also see Larnell, 2016). Representing part of a broader, this paper focuses on the question: 

How did Black fathers support their children’s mathematics education during the pandemic? 

Figure 1 frames broader areas of concern and research questions within the full research study.   

 

Figure 1: Black Family Mathematics Socialization Conceptual Areas 

 

According to Washington (2019), “Mathematics is an important front on which to wage the 

fight for full participation in [this] society for African Americans because it has been used 

systematically to disenfranchise African Americans from upward social mobility and political 

power” (p. 2). Echoing Washington’s overall sentiment and specific centering of Black families 

(also see McGee & Spencer, 2015), our specific goal for this paper is to contribute to 

characterizing the roles that Black parents and guardians construct for themselves as well as their 

perspectives on mathematics education at large and during the pandemic, specifically.  

Based on the broader study’s questions, the theoretical framework combines elements of 

Martin’s mathematics socialization framework (specifically, beliefs about differential treatment, 

motivations, relationships to school, mathematics-dependent goals, and expectations for 
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children) and Washington’s (2019) framing of supportive practices that extend from those 

socialization goals (also see Civil, Planas, & Quintos, 2005). The focus on supportive practices is 

intentional and not regarded to be biased; rather, given the damaging preponderance of narratives 

about the underachievement of Black learners (see Martin, 2003, 2019 for related critiques), 

examining the nature of support (and presuming foundationally that such support exists) signals 

a potent and much-needed epistemic counternarrative. Moreover, this paper’s focus on Black 

fathers supporting their children’s mathematics education is also a purposeful choice and an 

opportunity to fortify such a counternarrative. 

Design, Data, and Methods 

The study’s design was organized to document and critically analyze parents’/guardians’ 

perspectives by way of transcribed interviews (individual families) and focus groups (multiple 

families). Given the pandemic and the need to avoid group gatherings, all research activity with 

participants was conducted and recorded virtually using university-secured video conferencing 

(i.e., Zoom) software. The broader study includes 6 dual-parent or individual-led families; in this 

paper, we focus on the contributions of three fathers across individual-family interviews and 

multi-family focus groups. All interview prompts and protocols were developed based on and 

adapted from other recent studies on Black family socialization in mathematics (e.g., 

Washington, 2019) and related studies of mathematics socialization and mathematics identity 

among Black learners (e.g., Author 1, 2016; Martin, 2000, 2006). Conceptually, the interviews 

centered on how these parents regarded (a) their roles as mathematics socialization agents, (b) 

their education-supporting practices with school-aged children in their families, and (c) the kinds 

of resources that they put into practice with and on behalf of their school-aged children. 

Participant Descriptions 

Lawrence, James, and Oscar are (cisgender male) fathers who participated in individual 

interviews and a multi-family focus group during the data collection phase of the study; excerpts 

of their transcribed exchanges during those interviews were included based on coding described 

in the next section. Each identified themselves and their families as working class; Lawrence is a 

father of five children and works as an education professional who works in schools, James is a 

father of four children and works in the banking industry, and Oscar is a father of one school-

aged child and works as a human resource professional. Across the three fathers, the grade levels 

represented by their children span grades K-12. 

Summary of Analysis Methods 

The interviews were recorded on the video conferencing platform and transcribed 

professionally. Recordings and transcripts were stored on a secure cloud platform. Coding 

schemes were developed using a framework of socialization factors based on existing literature. 

The transcribed text was analyzed primarily using NVivo. Additionally, we viewed and discussed 

video recordings and excerpted transcripts to develop emergent themes. Analytical memos were 

developed for the excerpted transcripts presented in this article; these memos were reviewed and 

discussed, which led to the presentation of the findings in this paper. (Note: We will discuss their 

positionality in the presentation, due to space limitations here.) 

Perspectives on Remote School Mathematics during the Pandemic: Two Themes 

In this section, we briefly discuss a central theme (due to space constraints) from our current 

readings and analyses of data collected from Black fathers: Tensions regarding mathematics 
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homework as a cross-generational bridge. Across all participants in the study, there were 

consistent and frequent references to homework assignments as a key nexus for parental support 

(see Schnee & Bose, 2010).  

Decades after their own school experiences, each of these three fathers expressed similar 

perspectives across grade bands, from elementary to high school.  Lawrence, particularly, 

discussed the concern that homework was being deemphasized in his children’s mathematics 

classes—and that parents were left to assemble supplemental opportunities to interact to support 

their children’s at-home mathematics education. 

Lawrence:   …I’m gonna be honest with you…like we work on math. They don’t give 

homework like we got homework when we were kids. I mean, they don’t 

bring any homework home. Like we have to do stuff. We have to find 

things for them to do, you know, at home.  

As Lawrence explains, a key shift in contemporary school mathematics homework is a 

broader reliance on technologies (e.g., devices, software, online platforms) as basic elements for 

mathematics teaching and learning and not merely ancillary. Relatedly, James discusses this as a 

tension in relation to his perceptions of support for his children learning mathematics.  

James: My kids have [Apple] iPads. I’m not an iPad person (chuckle), but they 

have iPads. And everything…information is fast. You know, you go to 

your computer and find an answer…When it comes to homework, my kids 

have no computers. You’re gonna go to pencil and paper. Now, once you 

understand that concept…you can use a computer. You can use a 

calculator. You can use, you know, things of that sort. But they’re gonna 

understand the foundation because, uh, it’s kinda like the foundation 

teaches them how to really think about what they’re doin’. Not a quick 

answer. 

For James, the practice of helping children with mathematics homework is primarily a paper-

and-pencil exercise, but during remote schooling, those processes were communicated virtually 

and across platforms and programs. For Oscar and Lawrence, differences in how mathematics 

was taught at school versus home settings were also common concerns. 

Oscar: Um, I know with my daughter, um, it was a problem, um, that I decided to 

step in myself and do it, uh, but again, it was countered always as the 

differentiation between what was taught in the classroom versus what is 

being taught at home. 

 

Lawrence: So, um, now they got—if they’re struggling with something, and-and we 

talking, and we communicating with the teacher about what they’re 

struggling with, um, we make sure there’s that communication. And we’ll 

bring stuff home, and-and we’ll work on things, you know. But, um, yeah. 

That’s kind of like pretty much how we handled it.  
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Discussion 

Again, the focus on Black fathers’ perspectives and the findings reported here represent a 

portion of the broader, ongoing study focused on Black families’ experiences with school 

mathematics during the pandemic. The central theme of homework, though prompted by our 

interview protocol and framework, were elaborated and revisited multiple times across multiple 

participants. Our hope is that this research will contribute to our broader understandings of 

families roles in school mathematics—and toward redressing the dearth of mathematics 

education scholarship that includes and specifically focuses on Black communities. 
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Despite improvement in representation at the undergraduate level, women are still 

underrepresented in doctoral mathematics with only 28% of doctoral degrees awarded to women 

in 2018 (National Science Foundation, 2021). In addition to inequitable representation, women 

in doctoral mathematics have experienced overt prejudice, feelings of invisibility, insufficient or 

negative advising experiences, and a lack of belonging (Herzig, 2004; Miller, 2015). 

Furthermore, women’s reports of success are often mitigated by expressions of struggle centering 

around academic support (Ataide Pinheiro, 2021). In contrast to a demonstrated need, there is 

little research investigating interventions supporting women in doctoral mathematics or the 

efficacy of student organizations for women at the graduate level, such as the Association for 

Women in Mathematics (AWM). However, there is evidence that undergraduate science, 

technology, engineering and mathematics (STEM) student organizations may improve support 

for students from underrepresented groups by enhancing personal contact with faculty members 

(Mwaikinda & Aruguete, 2016). 

In this poster I investigate the perspective of five women doctoral students with respect to 

their participation in a graduate student organization, a chapter of AWM. I answer the research 

question: How do women mathematics doctoral students, as AWM members, view the role of 

AWM in their mathematics department? 

Methods 

Participants included five women enrolled in a doctoral mathematics program at a research-

intensive (R1) university in the western U.S. The women were selected using a stratified 

purposeful sampling (Patton, 1990) with respect to years’ experience in the program. This 

included one woman enrolled in coursework, two women in early research, one woman in 

advanced research, and one woman taking a leave of absence after completing coursework. 

Additional sampling criteria included participation in the local graduate chapter of AWM. Data 

included one-hour narrative interviews (Mueller, 2019) from each of the five participants. 

Analysis included the first two steps of the of the thematic analysis methodology (Braun & 

Clarke, 2006) – familiarizing myself with the data and open coding meaningful passages. One 

code that emerged across interviews was building a sense of community. 

Preliminary Results 

All five women described AWM and its related activities as a way to build a sense of 

community in their mathematics department, meaning they saw AWM as a way to bring people 

together in a shared space and build connections. A second-year student described the group’s 

weekly gatherings, saying “it builds a sense of comradery and helps connect people, especially if 

they aren't in your research area or your classes who maybe you wouldn't know otherwise and 
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just helps connect people in the department.” Interestingly, participants expressed varying 

positions about how this community building supports the women in the department. As part of 

the poster presentation, I will further explore this tension of community building and gender. 
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Because the master narratives about mathematics in the US often play an exclusionary role in 

students’ educational experiences, educators have sought to integrate counternarratives into 

instruction that might disrupt these effects. As part of a larger project to develop a research-

informed curriculum for undergraduate introduction to proof courses, we gathered author 

stories from a diverse set of mathematicians for students to read and reflect upon. To study 

student responses to these author stories, we synthesized a framework of the master narrative of 

mathematics in the US and identified how the author stories countered elements of this narrative. 

We then analyzed 80 student reflections from one introduction to proof course to identify 

whether and how students either endorsed or countered the elements of the master narrative. 

Our findings point to a positive, yet modest capacity for these stories as counternarratives.  

Keywords: Undergraduate Education, Equity, Inclusion, and Diversity 

In recent years, counternarratives have become not just a means for research, but a 

potentially transformative tool to incorporate into instruction. Stories both about ourselves and 

society provide a means through which to organize our understanding of the world. Culturally 

shared narratives, or dominant/master narratives, provide a framing to compare or integrate 

personal experiences. These master narratives often disadvantage marginalized groups, such as 

women and people of color, in fields like mathematics (Berry III et al., 2011; Leyva, 2017; 

Adiredja, 2019). Narratives portraying mathematics as neutral, individualistic, and meritocratic 

reinforce hegemonic norms, dismissing alternative ways of learning and working that align with 

diverse identities and cultures (McBride, 1994; Cobb & Russell, 2015; Cervia, 2019). 

Counternarratives (e.g., Solórzano, D. G. & Yosso, 2002) can serve to challenge dominant 

narratives by not only disrupting storylines about who can succeed in mathematics (e.g., Berry 

III et al., 2011; Langer-Osuna et al., 2016; Leyva, 2016; McGee, 2009) but also redefining what 

it means to engage with the subject. However, as cautioned by Cervia’s (2019) exploration of 

scientists, siimply showcasing successful individuals from minoritized groups can inadvertently 

reinforce existing master narratives, especially if these narratives align with traditional norms. 

Disrupting master narratives requires challenging not only demographic stereotypes but also the 

perceived traits and norms associated with mathematicians and mathematical activity.  

In this study, we analyze student reflections on mathematician biographies paired with proofs 

in an introduction to proof course. These narratives, tailored for the intended audience of 

undergraduate mathematics students, aim to challenge dominant narratives about who can 

succeed in mathematics and how mathematics is practiced. By synthesizing literature on 

mailto:pcd27@txstate.edu
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mathematics and mathematician storylines, we develop a framework to examine how 

counternarratives resonate with students and align with or challenge dominant narratives in the 

United States. Our research questions are twofold: What elements of mathematician 

counternarratives were salient to a group of undergraduate mathematics students? How do these 

elements align (or not) with dominant narratives of mathematics in the United States? 

Theoretical Framing 

Broadly, we adopt McLean and Syed’s (2016) narrative distinctions. Master narratives are 

culturally shared stories that guide behavior and identity within a culture. They dictate who 

excels in math and define the essence of being a mathematician. Counternarratives, on the other 

hand, challenge these dominant storylines. Personal narratives involve negotiating between 

societal expectations and individual identity, influenced by both master and counternarratives. 

Drawing from various research areas, we identified themes in master narratives about 

mathematics. These themes encompass beliefs about mathematicians, descriptions of 

mathematicians, countered narratives, and theoretical discourses. While these categories overlap, 

they collectively shape the perception of the American Mathematician. In Table 1, we present 

these narrative elements alongside quotes from key studies that inform our understanding. 

Table 1: Mathematical Master Narrative Elements and Storylines 
Element/Storyline Reference 

Mathematics is done by privileged 

white men. 

“[P]opular discourses overwhelmingly construct mathematicians as white, 

heterosexual, middle‐class men” (Moreau et al., 2008, p. 25). 

Mathematics is done by those who 

are brilliant, but socially inept. 

“Mathematicians were often portrayed as socially inept nerds” (Di Martino 

et al., 2023, p. 11). 

Mathematics is done in isolation. “Mathematicians always work alone in my mind. They’re always like 

those, those hobbits that live in their own little room… Like this would be 

perfect, lined with grease boards and chalkboards” (Female Math Major, 

Piatek-Jimenez, 2008, p. 638). 

Mathematics is dry and not fun. “Mathematics is full of rules and formulas to be remembered. Mathematics 

is dry, it does not leave room to feelings. Mathematics does not make sense, 

the aim of learning certain things is not clear. In mathematics, there is no 

room to express one’s own ideas” (Di Martino, & Zan, 2011, p. 477). 

Mathematics ability is innate, and 

mathematics is easy for those with 

high ability. 

“Instead of seeing learning math as an ongoing process, learning at my own 

pace, it became “either you get it or you don't.” I put math in the, ‘it's just 

not for me' category” (College student, John et al., 2022, p. 9). 

Mathematics is colorblind and 

neutral. 

“The mathematical model of equality constructed intentionally perpetuates 

the myth of mathematics as neutral and objective to maintain white 

institutional spaces” (Gómez Marchant et al., 2023 p. 12). 

Mathematics is individualistic and 

a meritocracy. 

“A prominent feature of education in the United States is the widespread 

endorsement of an achievement narrative, which links individual 

motivation and effort to academic achievement.” (Zavala & Hand, 2019) 

 

We emphasize that these storylines together support greater myths such as the existence of a 

racial hierarchy of ability (Battey & Leyva, 2016). All of these elements serve a hegemonic role 

in preserving exclusionary standards and the white patriarchal space of mathematics (Battey & 

Leyva, 2016; Battey & Marshall, 2023; Leyva, 2017; Martin, 2013; McGee, 2020).  
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Methods 

We present data from one implementation of this curriculum in an introduction to proof 

course at a large research university in the United States. As part of this curriculum, interesting 

proofs are paired with author stories from modern mathematicians. In this study, students wrote 

reflections on six author stories (authors included two Black men, one Latinx woman, one 

Pacific Islander one, one white-nonbinary person, and one Latino)  The authors told their stories 

both as mathematicians and outside of mathematics, obstacles and struggles, and images of what 

doing mathematics looked like (See Melhuish et al., in press). Twenty-one students were enrolled 

in the class and were listed in university documentation as having the following ethnicities: 11 

White, 2 African-American, 6 Hispanic, 1 Asian, 1 Unknown.  There were 7 women and 14 men.  

The focus of this submission is on the written reflections of sixteen student participants on 

the assigned author stories. Students submitted a mean of 5 reflections, for a total of 80 student 

reflections. Student reflections varied in length from three sentences to two handwritten pages. 

Prompts for the reflections included questions such as:  “What stuck out to you about Dr. ____’s 

story?” “How did Dr. ____’s story resonate with your own story? How did it differ?”  

For the purpose of this study, we identified passages of the reflections where students noted 

components of the master mathematical narrative were either countered or endorsed in the author 

stories. Two authors independently coded each of the 80 reflections for counters and 

endorsements, resolving discrepancies through discussion. Overall, we identified 127 instances 

of countering the master narrative elements and 15 instances of endorsing them. 

Results 

Student reflections revealed how they internalized the author stories. Some students endorsed 

master narrative elements by highlighting them in the stories or by opposing counter elements. 

Others recognized counternarrative elements, emphasizing their significance. We present Table 2 

to summarize the narrative elements reported by students. Additionally, we introduce two new 

categories: linear trajectory in becoming a mathematician and family and cultural expectations. 

Students expressed surprise at the non-linear career paths of mathematicians, echoing narratives 

of academia's linear progression. Similarly, they were surprised by authors facing family 

discouragement from pursuing mathematics rather than a more lucrative career. 

 

Table 2: Mathematical Master Narrative Elements Found in Student Reflections 
Master Narrative Element/Storyline # Countering # Endorsing 

Mathematics is done by privileged white men. 6 1 

Mathematics is done by those who are brilliant, but socially inept. 2 0 

Mathematics is done in isolation. 5 2 

Mathematics is dry and not fun. 13 0 

Becoming a mathematician is a linear trajectory. 13 0 

Mathematics ability is innate, and mathematics is easy for those with 

high ability. 

15 4 

Mathematics is colorblind and neutral. 5 0 

Mathematics is individualistic and a meritocracy. 0 3 

Family and culture would hold positive views on choosing mathematics 

as a career  

5 0 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

312 
 

A Look at How Students Reflected on Elements of Master Narratives 

Mathematics is done by privileged white men. None of the author stories were written by 

white men. We found that some students explicitly referenced this master narrative. Students 

further identified themselves in the stories with one woman explaining, “being a Latinx woman 

is personally inspiring, as I too am a Latinx woman.” Such comments also extended to economic 

and educational privilege with several students noting things like relating to coming from a 

“rural” or “blue collar” town without great public schooling. We see each of these comments 

implicitly showing awareness of the master narrative about white, privileged men as 

mathematicians, but focusing on the counter to it and the ways the counter aligns with their 

personal narratives.  

Mathematics ability is innate, and mathematics is easy for those with high ability. Every 

author stories included times of struggling with mathematics, in the academia, or in school. This 

was the most commonly attended to element in the student reflections. Several students reflected 

that they related to these stories because their own “identity of being ‘good’ at school” had been 

challenged. One student explained, “even people who have earned their degree in mathematics 

have struggled with math. Even though I struggle on some topics, it doesn’t mean I’m not geared 

for math.” These comments reflect a negotiation of their personal narratives where students 

seemed to take the counter story elements and expand their idea of who can be a mathematician 

and whether it is necessary to always have things come easy.  

Becoming a mathematician is a linear trajectory. A number of the author stories 

represented atypical paths to mathematics including nearly failing out of school, leaving the 

academy and returning, and cycling through many majors before arriving at mathematics. 

Students often reflected on these elements with some noting elements such as “detours.” One 

student reflectied, “I had a pre-conceived notion that mathematicians must be persistently 

passionate about math. Dr. [W] proved that notion incorrect.” These elements served to expand 

out who can do mathematics (not just those who are always passionate about math) and how one 

can arrive at being a mathematician. 

Mathematics is dry and not fun. The author stories also contained ways that the authors 

loved mathematics and how they went about doing mathematics. Some students contrasted the 

standard approach to school mathematics such as one student notoing the importance of the idea 

of “learn[ing] in a way you are changed and not in a way that you memorize.” Students further 

linked ideas of mathematics being fun with the challenge. 

Other Story Elements. A major theme in author stories was the collaborative nature of 

mathematics. However, students rarely mentioned this in their reflections. Some noted the need 

to connect with others, but most focused on professors and mentoring rather than peer 

collaboration. Ideas of individualism and meritocracy were mixed. One student countered the 

idea of innate ability but endorsed meritocracy by stating that effort leads to success. Others 

recognized the support from people in their lives, challenging individualism. 

Discussion 

In this report, we provided two fundamental contributions. First, we stitched together a 

dispersed literature base to create a master narrative of mathematics with attention to: who does 

mathematics (mathematicians), how one becomes a mathematician, how one does mathematics, 

and what mathematics is. Second, we explored how author stories that challenge these narrative 
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elements were perceived by students.  The student reflections provided strong evidence that the 

author stories were successful at challenging several elements of the master narrative around 

mathematics: mathematics being dry and not fun, the path to a career as a mathematician being 

linear, and mathematics ability as being innate and mathematics being easy for those with high 

ability. The master narrative that white men dominate math was less disrupted. Only a few 

students, particularly women of color, mentioned race. Meritocracy and individualism were 

either not addressed or reinforced by students' reflections. Stories often highlighted overcoming 

barriers, emphasizing individual effort. Further research should explore which stories can disrupt 

which narratives and how to effectively engage students in reflecting on their personal narratives. 
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The globalization of higher education in the United States has led to a significant increase in 

the enrollment of international students, particularly from Africa, thereby enhancing the cultural 

diversity of academic institutions (Hendrickson et al., 2011; Lee & Rice, 2017). African 

international students face unique challenges due to their diverse academic backgrounds and 

specific cultural and social needs (Hendrickson et al., 2011; Lee & Rice, 2017; Irungu, 2013). 

While these students enrich the academic environment and contribute financially to the U.S. 

economy, their academic journey, especially in mathematics education, is fraught with 

difficulties such as language barriers, cultural adjustments, social integration issues, and 

academic pressures (Irungu, 2013). Existing orientation programs and support services often fail 

to address the specific needs of African students, hindering their academic success (Smith & 

Khawaja, 2011). 

Higher learning institutions have developed support systems and programs to assist 

international students, including academic advising, tutoring, mentorship programs, and mental 

health services. However, African international students encounter difficulties accessing these 

services due to cultural, language, and financial barriers (Smith & Khawaja, 2011). Tailored 

support structures are essential to effectively address these challenges and ensure the academic 

success and well-being of African international students in U.S. higher education institutions 

(Jin, 2019). 

A multiple-case study approach was employed to explore the experiences of African 

international students in mathematics education in U.S. institutions, focusing on the perspectives 

of international student advisors (Altbach & Knight, 2018; Poyrazli & Grahame, 2007). The 

study aims to assess the effectiveness of existing support services and programs for African 

students and understand how advisors perceive these services (Olson & Banjong, 2016). 

Preliminary findings indicate that while resources are available, there are significant challenges 

and gaps in the support systems, emphasizing the need for culturally responsive approaches and 

tailored support for African international students (Irungu, 2013; Poyrazli & Grahame, 2007). 

This study underscores the significance of addressing the unique challenges faced by African 

international students in U.S. higher education institutions and calls for refined strategies to 

create a more inclusive and supportive environment (Mwangi et al., 2019; Smith & Khawaja, 

2011). By investing in culturally relevant programming, fostering collaboration among 

stakeholders, and continuously evaluating support strategies, institutions can enhance the 
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academic success and well-being of African international students, contributing to a more 

equitable and enriching educational experience (Smith & Khawaja, 2011). 
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The Thinking With Algebra (TWA) project, which consists of a developmental algebra 

curriculum and supporting professional development, has been integrated into diverse algebra 

courses to support undergraduate students’ success in college algebra (Feikes et al., 2024). This 

paper examines the equity-oriented instructional practices integrated into TWA to support 

strengthened equity outcomes among students. This project draws on sociopolitical equity 

scholarship (Rubel, 2017), including a framework consisting of achievement, access, identity, 

and power (Gutiérrez, 2012). Instructor and student data indicate positive changes in student 

achievement and identity outcomes. Future directions include expanding the integration of 

equity-oriented instructional practices and investigation of student equity outcomes. Applying an 

equity lens to TWA is critical given the barriers students, particularly minoritized students, face 

in algebra. 

Keywords: Equity, Inclusion, and Diversity; Instructional Activities and Practices; 

Undergraduate Education; Algebra and Algebraic Thinking. 

Background 

Ample evidence indicates a national crisis related to students successfully completing algebra 

coursework, which is extremely concerning given that algebra serves as a gateway to higher 

level mathematics and science courses (Domina et al., 2015; Long et al., 2012), to postsecondary 

success at colleges and universities (Spielhagen, 2006), and to STEM degree pathways 

(Loewenberg, 2003). Despite efforts to improve the teaching and learning of algebra, many 

students are still struggling with the subject and are not persisting in their mathematics 

coursework (Greenes, 2008). Additionally, when students do not successfully pass algebra 

coursework, aspects of their mathematical identities are likely to be negatively impacted, such as 

developing negative attitudes and beliefs about mathematics. Even more concerning is the 

significant underrepresentation of minoritized students, including Black, Latinx, and low-income 

students, in the student population successfully completing algebra coursework (LaFave, 2019), 

attaining STEM degrees (Fry et al., 2021), and pursuing STEM careers (Fry et al., 2021).  

This paper draws on sociopolitical mathematics education equity scholarship (Rubel, 2017), 

a framework within this literature consisting of four dimensions: achievement, access, identity, 

and power (Gutiérrez, 2012), and prior research by the authors (Oppland-Cordell et al., 2024) to 

examine how the instructional practices of the TWA project, which is funded by the National 

Science Foundation Improving Undergraduate STEM Education: Education and Human 
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Resources (IUSE: HER; DUE 2021414), align with equity-oriented instructional practices 

appearing in this scholarship. The research questions are: (1) How do TWA instructional 

practices align with equity-oriented instructional practices? and (2) How does students’ 

participation in TWA impact their mathematical achievement and identity development? Such 

findings will expand knowledge about how to create equitable mathematics learning 

environments in developmental academic settings that support students’ mathematical success. 

Theoretical Framework 

Gutiérrez’s (2012) equity definition consists of four dimensions: access, achievement, 

identity, and power. Drawing on this definition, this project defines the four equity dimensions in 

relation to the design, instructional practices, and professional development components of 

TWA. Table 1 includes these definitions.  

 

Table 1: TWA’s Equity Dimension Definitions Adapted from Gutiérrez’s (2012) 

Framework 

Equity 

Dimension 
Design, Instructional Practices, and Professional Development 

Achievement 

TWA supports students’ strengthened mathematics achievement outcomes 

as measured by participation rates, persistence rates, and student self-

perceptions of achievement. 

Identity 

TWA supports students’ strengthened mathematics identity development, 

including how they co-construct this identity with their other identities. 

Measures include student self-perceptions and perceptions of how other 

view them as mathematics learners. 

Access 

TWA mandates professional development to support high quality 

mathematics instructors. Through group work and whole class discussions, 

TWA encourages a learning environment that supports student participation 

in and out of class. 

Power 

Through small group and whole class discussions, diverse voices and 

alternative notions of mathematics knowledge are embraced in the 

mathematics learning context. 

 

While Gutiérrez’s equity dimension framework provides guidance for defining equity for the 

TWA project, we also wanted to investigate how specific instructional practices integrated into 

TWA align with equity-oriented instructional practices appearing in emerging sociopolitical 

mathematics education equity scholarship. Drawing on Gutiérrez’s (2007) equity research, Rubel 

(2017) identified and organized four “equity-directed instructional practices from four models of 

progressive pedagogy,” of which three are highlighted here: standards-based mathematics 

instruction (SBMI), complex instruction (CI), and culturally relevant pedagogy (CRP) (p. 69). 

Rubel also highlighted a specific instructional practice from each model that collectively 

revealed how these pedagogies are interconnected and build upon one another: SBMI: teaching 

for understanding; CI: multidimensional participation; and CRP: connecting mathematics 

instruction to students’ experiences. While the SBMI and CI examples strongly align with the 
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access and achievement dimensions in Gutiérrez’s work, the CRP example closely aligns with 

the identity and power dimensions (Rubel, 2017). This study draws on these specific examples to 

inspect overlap and growth opportunities for the equity-oriented instructional practices employed 

in TWA. In particular, this study explores how TWA currently teaches developmental 

mathematics in ways that contributes to strengthening students’ conceptual understanding, 

supporting their multidimensional participation, connecting mathematics instruction to their 

experiences, and applying mathematics in critical ways to navigate their lives and worlds.  

Methods 

TWA Context and Participants 

TWA is a developmental algebra curriculum that supports undergraduate instructors in 

teaching algebra in a way that conceptually and procedurally prepares students for success in 

college algebra (Feikes et al., 2021; Feikes et al., 2024). TWA also provides a faculty workshop 

to support college instructors with understanding and implementing the curriculum with 

undergraduate students. This study focuses on TWA implementation at a community college in 

Illinois designated as a Predominately Black Institution (PBI) and an emerging Hispanic Serving 

Institution (HSI) and a public university in Indiana designated as an HSI. Preliminary findings 

related to the achievement and identity dimensions are provided for student populations in both 

of these contexts, which reflect general student demographic data at the respective institutions. 

Data Collection and Analysis 

The authors created a collaborative inquiry community (Larrivee, 2000) to explore TWA 

instructional practices. A critical component of the data collection process included biweekly 

professional development meetings where the team discussed TWA instructional practices that 

aligned with Rubel’s (2017) framework. Such discussions centered on central themes of the TWA 

curriculum (e.g., distributed practice) and TWA classroom organizational approaches (e.g., class 

discussions, small-group work) contained in the TWA instructor textbook: Thinking with Algebra 

(TWA) Success in Algebra and Beyond (Feikes et al., 2023).  

We also provide preliminary findings on student outcomes related to aspects of the 

achievement and identity equity dimensions to provide evidence of TWA’s positive impact on 

students. Such student outcomes were explored using mixed-methods, including quantitative and 

qualitative methods, which this project plans to expand on in the future by collecting and 

analyzing data related to all four equity dimensions. The quantitative data collected and analyzed 

included pre- and post-survey student responses that focused on mathematics self-efficacy 

(Bandura et al., 1999). For six instructors who used TWA and implemented equity-oriented 

instructional practices during the first year of the project in 2020, the quantitative and qualitative 

data collected and analyzed included survey and interview data, which revealed how instructors 

believed TWA impacted student identity development. 

Preliminary Findings 

Table 2 indicates how TWA instructional practices mapped onto Rubel’s (2017) equity-

directed instructional practice examples, which are organized within four pedagogical models.  

 

Table 2: TWA Instructional Practices Aligning with Rubel’s (2017) Equity Examples 
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Progressive 

Pedagogical Models 

(Rubel, 2017) 

Questions Explored for TWA 

Related to Rubel’s (2017) 

Examples 

TWA Instructional Practices 

Standards-based 

mathematics 

instruction (SBMI) 

How does TWA teach 

students developmental 

mathematics in ways that 

supports their conceptual 

understanding? 

* Curriculum design directly supports 

conceptual understanding 

* Curriculum integrates distributed 

practice 

* Students engage with the physical 

format of curricular materials 

Complex instruction 

(CI) 

How does TWA support 

students’ multidimensional 

participation? 

* Integration of small-group work and 

whole class discussions in 

mathematics learning contexts 

* Students are encouraged to discuss 

personal understandings or 

misunderstandings, diverse solutions, 

and methods 

* Connect/build on prior math 

knowledge 

Culturally relevant 

pedagogy (CRP)  

How does TWA connect 

mathematics instruction to 

students’ experiences? 

* Building strong relationships with 

students 

* Embracing multiple solution 

strategies that reflect students’ 

experiences and culture 

 

Preliminary findings on achievement and identity student outcomes based on both 

quantitative and qualitative student and instructor data indicate positive changes in both of these 

dimensions. For example, statistical analysis of the mathematics self-efficacy survey data 

showed emerging confidence (n=39, p=.12) in students’ ability to succeed in their next 

mathematics class with a small (d =.33) effect size. The authors plan to collect more data to test 

at a smaller, 𝛼 = .05, significance level. Feedback from instructors through interview and survey 

responses indicated that students are constructing strengthened mathematical identities (e.g., 

confidence) in relation to their engagement with the TWA curriculum. 

Conclusion and Future Directions 

Emerging mathematics education equity research supports applying broader sociopolitical 

equity definitions to mathematics education research because this theoretical lens can provide 

additional knowledge regarding how and why students and minoritized students attain 

mathematical success. This research addresses a gap in existing mathematics education 

scholarship by drawing on emerging equity research to identify equity-oriented instructional 

practices integrated into the TWA developmental mathematics curriculum that can serve to 

support strengthened equity outcomes among students, broadly defining such equity student 

outcomes using a sociopolitical equity framework, and providing evidence of improvements in 

student achievement and identity outcomes based on student and instructor data. Future 
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directions include collecting additional quantitative and qualitative data to further investigate 

student experiences and outcomes related to the four equity dimensions, investigating such 

experiences and outcomes for minoritized learners, and integrating additional equity-oriented 

instructional practices that can support improving such experiences and outcomes. Examples of 

additional equity-oriented instructional practices include integrating culturally responsive and 

social justice-oriented materials into the TWA curriculum. Importantly, this project expands 

knowledge about the equity-directed instructional practices that can be integrated into 

mathematics learning contexts, including developmental settings, to support students’ 

mathematical success. 
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This study illustrates a problem-solving activity reflective of a real-life situation wherein high 

school students articulate their reasoning while contemplating the effectiveness and fairness of 

distributing raises. Study data were gathered via teaching experiment methodology in problem-

solving sessions at a mathematics camp for secondary students. Examination of the data indicated 

that students sought entry points for problem-solving by making assumptions and pinpointing 

crucial variables. Framing mathematics within the concept of fairness encouraged students to 

review their work, engage in active listening, and find purpose in mathematical reasoning. 

Keywords: Equity, inclusion, and diversity; Social justice; Communication; Problem-solving 

The literature suggests that addressing real-life problems prompts students to tap into their 

funds of knowledge (Hunter et al., 2022; Jung & Magiera, 2023) and everyday experiences (Civil, 

2018) in constructing an understanding of mathematical concepts. Recent research underscores the 

importance of enhancing mathematical sense-making through communication, particularly when 

addressing issues of equity and inclusion, helping students to comprehend and challenge injustice 

in real-life contexts (Berry et al., 2020; Kokka, 2020; Ozturk, 2023). This study extends prior 

research by examining students’ mathematically diverse approaches to distributing a raise fairly. 

 

Conceptual Framework 

The current study drew from Gutstein’s (2016) use of mathematics to contemplate individuals’ 

life realities and to examine (un)fairness in society. We adapted Jung and Magiera’s (2023) 

framework to study students’ approaches to understanding and challenging inequitable situations 

in realistic problem contexts while examining the distribution of resources and power among 

cultural and socioeconomic groups (Figure 1): 

 
Figure 1: Elements of Social Justice-Oriented Problem-Solving (Adapted from Jung & 

Magiera, 2023) 

 

Within the framework, students solve problems using real-life knowledge (directly related to 

the problem context), which is typically integrated into devising problem-solving strategies instead 

of relying solely on formal mathematical knowledge. The students then develop models and 

strategies that relate to the problem situation, marking the initial stage of mathematization. Next, 

students shift their focus from the problem’s contextual details to the mathematical aspects, 
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applying mathematical skills and strategies to arrive at a solution. During class discussions, 

students present their work and actively listen to each other while conversing about identifying 

sources of equitable opportunities and analyzing systems of power and resources that impact 

different societal groups. These discussions link broader social justice issues to students’ personal 

experiences and mathematical knowledge, enhancing their understanding of society via lesson 

contents (Gutstein, 2016). The adapted framework guided data analysis, illuminating students’ 

communication related to developing a fair, effective method for distributing a raise. 
 

Research Setting and Participants 

This paper’s data emerged from a 6-week after-school math program for high school students, 

meeting twice a week for 2 hours. The research explored secondary students’ application of their 

knowledge in mathematics to solve real-life problems related to equity and social justice (Ozturk, 

2021). The mathematical content focused on using quantities and their units for problem-solving. 

Participants, including six 10th-grade students, two observer-researchers, and one teacher-

researcher, are pseudonymized in the article. 

 

Methods and Data Collection 

The class followed a three-phase cyclical process drawn from McClain’s (2002) teaching 

experiment approach: (a) performing group problem-solving; (b) presenting solutions to the whole 

class; and (c) revising solutions in groups. The chosen method facilitated peer feedback, critical 

listening, and reflection on diverse reasoning methods. Each 2-hour class involved two problems. 

Data collection encompassed video and audio recordings and transcriptions, students’ written 

work, and observer researchers’ notes as supplemental data used to organize video recordings and 

transcripts during initial data analysis. 

Data Analysis, Sample Student Dialogues, and Students’ Written Work 

The data for this report comprised a 1-hour-long compilation of video excerpts wherein 

students solved a problem and communicated their solutions to the class. The criterion for selecting 

video excerpts was the portrayal of students engaged in identifying potentially important variables 

and using them to find a mathematical method for determining raises. We focused on the role of 

communication in helping students critically evaluate the fairness of each method while addressing 

the problem. 

Data analysis featured a thematic analysis approach (Braun & Clarke, 2012) comprising three 

steps: (a) documenting instances of students’ problem-solving; (b) employing a conceptual 

framework (Figure 1) to categorize students’ application of everyday and mathematical 

knowledge, and detail students’ utilization of models when supporting their communication 

through mathematical representations; and (c) inductively creating themes to classify evidence of 

students’ engagement in developing mathematical methods for distributing a raise, with a specific 

emphasis on fairness. While ongoing analysis aims to uncover the impact of social-justice-focused 

classroom discourse on collective mathematical sense-making in another paper, this research 

report specifically aims to illustrate one theme related to the groups’ initial approach to identifying 

key variables and using them to explain the fairness of their raise distribution. The following 

discussion includes examples of students’ work and discussion excerpts. 
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Identifying key variables. Within this theme, students collaborated in pairs throughout the 

problem-solving process. Groups began by brainstorming and determining variables to consider 

and developing a mathematical method to solve the problem. The Distributing Raises Problem 

(Figure 2) tasked students with identifying crucial variables to establish a mathematical approach 

for determining raises. Students examined variables such as an employee’s educational 

background, years of experience, working hours (full-time vs. part-time), job position, and salary. 

Group A decided to allocate raises based on employee’s salaries (see Table 1). 

 

Imagine you’re the boss of a small company with $10,000 to give raises to 

the five employees. How would you decide who gets what? Share your method 

for distributing the raises in a way that’s not just effective but also fair! 

 

Figure 2: Distributing Raises Problem (Adapted from Illustrative Mathematics, 2016) 

 

Group A took considered that employees would hold different full-time positions and receive 

varying salaries. While working hours and educational background potentially differed among the 

five employees, salaries emerged as the most crucial variable in Group A’s method of distributing 

raises to them. According to Group A’s approach, an employee with a higher salary should receive 

a larger pay raise than an employee with a lower salary.  

 

Table 1: Group A’s Written Work and Small-Group Discussion 

 
The fairness of this method is based on each person receiving the same percentage raise rather 

than the same amount of money, ensuring equity by acknowledging that individuals with different 

salaries should obtain proportionate increases. Otherwise, giving all employees the same raise 

amount regardless of salary or work hours could result in those with lower salaries or fewer work 

hours receiving a significantly higher percentage raise than their coworkers with higher salaries or 

longer work hours. 
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When Group A explained their method, other students questioned the chosen variables for 

distributing raises. The class assumed that each employee’s work impact varied, making a uniform 

raise unfair. Sydney’s observation (see Table 2) highlighted the unfairness of dividing $10K by 5. 

Miles’s real-life example comparing a waitress to a restaurant manager was supported by Amari’s 

explanation of Group A’s method development, accounting for diverse job positions and full-time 

work. Group A began by assigning salaries to the employees to test their distribution idea alongside 

the raise percentage, then developed an equation to represent their system (see Table 2), which 

Anna justified by demonstrating how one quantity (raise percentage) depended on another (total 

salaries), emphasizing that fairness required the distribution to address employees’ salary 

differences. Thus, Group A’s method aligned the calculation of raises with individual salaries, 

helping the class go beyond computation to interpretation in context. 

 

Table 2: Group A’s Revised Written Work and Whole-Class Discussion 

 
Tom’s inquiry led to reassessing why education and job positions were omitted as variables, 

whereupon Anna explained that higher salaries reflected better job positions and education. Instead 

of treating the salaries separate variables, Group A summed the salaries as a single variable in the 

equation. Later, the class concluded that work experience could also be a significant variable. 

Revising Group A’s method and including work experience (Y) as a secondary variable would 

make the equation more complex, thus better reflecting employee qualities such as loyalty—years 

of experience at the company. This approach would improve fairness by ensuring raises are not 

solely based on salary; for example, a longer-retained, medium-paid employee could receive a 
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larger raise than a higher-paid employee. In that manner, the raise distribution system would 

become increasingly attuned to the employee’s qualities. 

 

Results and Conclusion 

This study describes secondary students’ problem-solving process mirroring a real-life 

scenario in terms of communicating their reasoning while considering fairness in distributing 

raises. Preliminary analysis revealed the students’ search for problem-solving entry points through 

making assumptions and identifying key variables, thus contextualizing conditions and explaining 

the reasoning behind various distribution methods. Justifying methods to peers and explaining 

their mathematical validity engaged the entire class and encouraged students to refine solutions. 

The findings align with previous research (e.g., Gutstein, 2016; Jung & Magiera, 2023; Ozturk, 

2023), confirming that contextualizing mathematics with reference to effectiveness and fairness 

led students to double-check their work and listen critically to peers while inspiring them to employ 

mathematical reasoning. 
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Sense of belonging is a critical factor in supporting female minoritized students’ persistence, 

motivation, and positive outcomes in STEM education. However, the current research base is 

primarily focused on singular identities, and situated at the campus or department level, rather 

than the classroom level, at Predominantly White Institutions (PWI), Historically Black Colleges 

and Universities (HBCU), or selective research universities l. In this paper, I present the 

quantitative results from a mixed-methods study that examined belonginess of students in college 

algebra and precalculus classes at an open-access, diverse, minority-serving institution. Results 

indicate that by the end of the semester, there was no difference in belonging based on race or 

gender. However, students with higher mathematics affinity and higher expected final grades 

had a higher sense of belonging in their mathematics courses.  

Keywords: Belonging, Intersectional, Gender, Race, Mathematics Classrooms 

Introduction 

Higher education institutions are becoming increasingly diverse in their undergraduate 

populations, but minoritized female students, especially Black and Latina women, continue to be 

underrepresented in almost all STEM fields (Hatfield, 2022; Ong et al., 2016). Although 

minoritized female students often begin college with a strong interest in STEM, they are more 

likely to leave the STEM major (Rainey et al., 2016). Extant literature suggests that introductory 

mathematics courses serve as obstacles for minoritized female students, as they navigate 

experiences of isolation, bias, racial and gender microaggressions, stereotype threat, and lack of 

belonging due to their intersecting racial and gender identities (Johnson et al., 2007; Leyva et al., 

2020; McGee & Bentley, 2017; Ong et al., 2011; Museus et al., 2011).  

Researchers argue that sense of belonging at the classroom level, is a key factor in supporting 

minoritized student persistence, and it may even improve participation, student engagement and 

academic performance (Kirby & Thomas, 2021; Wilson et al., 2015; Strayhorn, 2019). Female 

minoritized students are less likely to report feeling a sense of belonging in STEM and more 

likely to report a decrease in their sense of belonging throughout the semester (Rainey et al., 

2018). There are limited studies on mathematics classroom-belonging that consider the 

intersection of race and gender in Predominantly White Institutions (PWI), highly selective 

universities, or a few Historically Black Colleges and Universities (HBCUs), but not in diverse, 

open access institutions (Battey et al., 2022; Leyva et al., 2021; Johnson, 2012; Perna 2010). 

Open-access institutions are colleges that are nonselective in their admission standards and 

provide increased access to higher education for diverse populations (Anderson, 2015), 

especially Black and Latinx students (Rendon, 2020). Furthermore, most belonging studies in 

postsecondary settings consider sense of belonging at the campus or departmental level, rather 

than at the classroom level.  
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Research Questions  

The purpose of the mixed methods study which this report draws from, is to understand how 

Black and Latina female STEM students experience sense of belonging in their introductory 

mathematics courses, college algebra and precalculus, at a diverse, open-access, four-year public 

institution in the Southeast region. For this paper, I present the quantitative results to the 

following research questions. 

1. How do Black and Latina female students’ sense of belonging in the college algebra and 

precalculus classrooms compare to students in other racial and gender groups?  

2. How does Black and Latina female students’ sense of belonging in college algebra and 

precalculus change from the beginning to the end of the semester? 

3. Which factors influence Black and Latina female students’ sense of belonging in college 

algebra and precalculus classrooms at the end of the semester? 

Theoretical Perspectives 

I used two conceptual frameworks: sense of belonging (Strayhorn, 2019) and 

intersectionality (Crenshaw, 1991). The importance of sense of belonging as a conceptual 

framework has been well established in the literature (Ostrove & Long, 2007; Strayhorn, 2019). 

For this study, I use Strayhorn’s (2019) definition of sense of belonging: “Students’ perceived 

social support on campus, a feeling or sensation of connectedness, and the experience of 

mattering or feeling cared about, accepted, respected, valued by, and important to the campus 

community or others on campus such as faculty, staff, and peers” (p.4). My second framework, 

intersectionality, is related to one of the core elements of Strayhorn’s (2019) theoretical model of 

belonging: social identities intersect and affect students’ sense of belonging, and students 

experience belonging in different ways. I use Collins and Bilge’s (2020) working definition of 

intersectionality: “Intersectionality investigates how intersecting power relations influence social 

relations across diverse societies as well as individual experiences in everyday life. As an 

analytic tool, intersectionality views categories of race, class, gender – among others – as 

interrelated and mutually shaping one another” (p. 2).  

Methods 

Participants & Context 

Participants in the quantitative phase were students enrolled in college algebra and 

precalculus during the Fall 2023 semester, at a diverse open-access public college in the 

Southeast with a student population of about 11,000 (12% Asian/American, 32% Black, 27% 

Latinx, 24% White/ 59% Female and 41% Male). Approximately 40% of the entering freshman 

class are first-generation students and over 50% are eligible for a Pell-grant. The college is 

designated as a Minority Serving Institution (MSI): Asian American and Pacific Islander Serving 

Institution (AAPISI) and Hispanic Serving Institution (HSI). 

Data Collection  

The survey participants were students enrolled in 58 sections of introductory mathematics 

courses during the Fall 2023 semester (seven sections of college algebra with support, 37 

sections of college algebra and 14 sections of precalculus). College algebra is typically the first 

mathematics course in the mathematics sequence (college algebra, precalculus, and calculus) that 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

330 
 

STEM majors take at this institution. During the first three weeks of the Fall 2023 semester, 1135 

students completed the pre-survey (13% Asian/Asian American, 31% Black/African American, 

30% Latinx, 21% White, 5% Other/ 52% Female and 48% Male). Students’ ages ranged from 15 

to 49 years of age (M=19.08, SD=2.59). The majority of the students reported freshmen standing 

(76.4% Freshmen, 15.1% Sophomore, 5.7% Junior, and 2.9% Seniors). At the end of the 15-

week semester (during weeks 11, 12, and 13), 639 students completed the post-survey.   

The pre- and post-surveys consisted of a demographic questionnaire and an adapted version 

of the Math Sense of Belonging Scale, which Good, Rattan and Dweck (2012) validated and 

established as a new measure of sense of belonging to mathematics. The demographic 

questionnaire included questions that asked for students’ gender, race/ethnicity, age, major, final 

grade they expect to earn, and enjoyment of mathematics. All items in the belonging scale are 

preceded by the statement, “When I am in my college algebra or precalculus class...” For each 

item, participants rated their agreement on a 6-point Likert-type scale ranging from 1 (strongly 

disagree) to 6 (strongly agree). The belonging measure includes statements such as “I feel that I 

belong in the class,” and “I feel excluded.” 

Data Analysis 

First, I used SPSS to calculate the descriptive statistics for sense of belonging based on 

across different racial-gender groups and whether there was a difference in pre and post 

belonging scores. Next, I conducted a multi-factor analysis of variance (ANOVA) to determine 

whether there was a statistically significant difference in mean belonging scores between 

different racial and gender groups. For post-survey results I conducted multi-factor ANOVA to 

determine whether pre-belonging score, race, gender, gender*race, math affinity, and expected 

grade influence students’ sense of belonging at the end of the semester. 

Findings 

Pre-Survey Results 

The mean level of sense of belonging for Black female students was 4.396 (SD=0.714) and 

for Latina students was 4.367 (SD=0.695), which are similar to the belonging scores of Latino 

(4.3732), White male (4.4160), and White female (4.401) students. Black male students had the 

highest mean belonging score (4.609) while Asian male students had the lowest (4.310). At the 

beginning of the semester, there was no statistically significant difference between the belonging 

scores based on students’ race or gender alone. However, there is a statistically significant 

difference in presurvey belonging scores for the interaction effect of race and gender (p=0.025).  

The only statistically significant difference occurs between Latina students and male Black 

students (p=0.034) where Latina students’ belonging was lower. Moreover, belonging scores 

statistically differed based on students’ affinity for mathematics (p<0.001) and their expected 

final grade (p=0.010); students with higher mathematics affinity or higher expected grade have a 

higher sense of belonging to their mathematics class.  

Post-Survey Results 

End of semester belonging scores for both Black female (4.494) and Latina students (4.399) 

were slightly higher than at the beginning of the semester, although the change was not 

statistically significant. Black male students had the highest sense of belonging (4.563) while 

male Asian students (4.297) had the lowest sense of belonging. However, sense of belonging in 

these introductory mathematics courses did not significantly differ across gender or race. 
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Furthermore, the interaction effect of race and gender did not have a statistically significant 

effect on belonging, contrary to the pre-survey results. However, there was a statistically 

significant difference in belonging between students with different levels of mathematics affinity 

(p<0.001), expected grades (p<0.001), and pre-belonging scores (p<0.001). That is, students who 

have higher pre-belonging scores, higher mathematics affinity, or higher expected final grades 

have a higher sense of belonging to their mathematics classes.  

 

Table: ANOVA Results of Post-Survey for Sense of Belonging 

Dependent Variable:   Post_belongingscore   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 251.678a 122 2.063 8.254 <.001 

Intercept 1097.326 1 1097.326 4390.304 <.001 

Gender .162 1 .162 .646 .422 

Race .798 4 .199 .798 .527 

Gender * Race .197 4 .049 .197 .940 

Pre_belongingscore 148.619 105 1.415 5.663 <.001 

post_expected_grade 8.476 4 2.119 8.478 <.001 

post_mathaffinity 11.273 4 2.818 11.276 <.001 

Error 125.721 503 .250   

Total 12654.876 626    

Corrected Total 377.399 625    

a. R Squared = .667 (Adjusted R Squared = .586) 

 

 Discussion/Conclusion 

This study is part of an explanatory sequential mixed method study that explored sense of 

belonging of Black female and Latina students at the mathematics classroom level, considering 

both gender and racial identities at an open-access, racially diverse, minority serving institution. 

By the end of the semester, there was no statistically significant difference in mathematics 

classroom belonging based on gender, race, or its interaction effect. This finding runs contrary to 

the extant literature that report female minoritized students have the lowest sense of belonging in 

STEM departments (Rainey et al., 2018; Good et al., 2012). Moreover, being a female 

minoritized student has been found to be negatively correlated to one’s sense of belonging in 

STEM (Johnson, 2012). In this study, sense of belonging of Black female and Latina students did 

not differ significantly compared to other race and gender groups. That is not to say that their 

racial and gender identities do not matter, but perhaps they are less salient in a context in which 

Black female and Latina students are not minoritized, as the study was situated in classrooms in 

which minoritized students are the majority. In addition, students’ enjoyment of learning and 

doing mathematics and their self-reported expected final grade were positively related to sense of 

belonging, both at the beginning and at the end of the semester. This finding resembles results 

from Zumbrunn and colleagues’ (2014) study, in which students who felt more capable of 
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succeeding in the course tended to be more engaged in their classes, which may also have 

positively impacted their sense of belonging.  

Although quantitative methods are useful and important, they are limited because they do not 

provide a comprehensive picture of how students experience belonging in their introductory 

mathematics classrooms. Therefore, as the next step, I will explain my quantitative findings with 

qualitative methods using interviews and mathematical autobiographies to gain a broader and 

deeper understanding of belonging. The strength of mixed methods is that it elaborates and 

enhances overall interpretations (Greene, 2007). The aim of this work is to contribute to the 

research base of understanding female minoritized students’ sense of belonging and experiences 

in the introductory mathematics classroom context, particularly given the critical need to better 

support female minoritized students’ undergraduate mathematics classroom experiences. 
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To better understand how to prepare preservice teachers to teach diverse student populations, 

this study focused on how preservice mathematics teachers implemented equitable mathematics 

teaching practices in their lesson plans during a year-long secondary mathematics practicum 

course. Findings from this study indicate that preservice teachers primarily focused on 

instructional practices that established classroom norms for participation, attended to students’ 

mathematical thinking, and supported the development of a sociopolitical disposition. However, 

the preservice teachers did not explicitly incorporate their students’ cultural strengths in their 

lesson plans. The results of this study will further the field’s understanding of topics to consider 

when preparing future teachers to teach mathematics to diverse student populations. 

Keywords: Equity, Inclusion, and Diversity, Culturally Relevant Pedagogy  

Equitable Mathematics Teaching 

Meeting the needs of diverse learners is one of the most critical challenges facing teachers 

today (Abdulrahim & Orosco, 2020; Gay, 2018). Research on incorporating culturally diverse 

teaching strategies into the mathematics classroom is growing among mathematics educators, 

along with a focus on access and equity (Bartell et al., 2017; Bartell, 2013; Gutstein, 2003; Seda 

& Brown, 2021). Mathematics researchers have studied equitable teaching practices, including 

incorporating students’ community and cultural knowledge into the mathematics curriculum 

(Civil, 2007), engaging students in controversial topics (Noddings & Brooks, 2017), integrating 

students’ culture into the classroom and curriculum (Gay, 2002; Ladson-Billings, 1995), and 

using mathematics to address real-world problems and injustices (Frankenstein, 2012; Gutstein, 

2006; Wager & Stinson, 2012). However, limited research exists on preparing preservice 

teachers to incorporate equitable teaching practices in their lessons (Bartell et al., 2017). While 

mathematics educators have acknowledged the need for teachers to build on students' cultural 

and mathematical backgrounds to teach mathematics to all students (Turner et al., 2012; NCTM, 

2008; White et al., 2016), many preservice teachers are graduating from teacher education 

programs ill-equipped to meet the needs of culturally and linguistically diverse student 

populations (Banks, 2015). In response to the need for research to better understand how to 

prepare preservice teachers to incorporate equitable mathematics teaching practices (Abdulrahim 

& Orosco, 2020), I followed three preservice teachers during their year-long practicum and 

examined how they included equitable mathematics teaching practices into their lesson plans. 

Theoretical Framework and Related Literature 

Mathematics teacher educators and researchers are still learning how to meet students' needs 

and teach a curriculum that represents every student. A focus on “equity in mathematics 

education should be one of the most important concerns of teachers, administrators, 

policymakers, mathematicians, and mathematics educators” (Strutchens et al., 2012, p. 2). 
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Professional organizations in mathematics education have agreed upon a need for equitable 

frameworks that challenge the inequities students face in schools today (AMTE, 2022; NCTM, 

2014, 2018). To support mathematics teachers in this work, researchers have developed 

frameworks including equitable teaching strategies to engage all students in mathematical 

learning (Boaler, 2016), a lens for educators to identify where they are failing to meet the needs 

of every student (Seda & Brown, 2021), and the dimensions of equity including access, 

achievement, identity, and power (Gutiérrez, 2009).  

For this study, equitable mathematics teaching practices are defined by Bartell and 

colleagues (2017). These “core equitable mathematics teaching practices” provide teachers with 

guidelines that support all students in learning mathematics (p. 10). The nine equitable 

mathematics teaching practices include drawing on students’ funds of knowledge, establishing 

classroom norms for participation, positioning students as capable, monitoring how students 

position each other, attending explicitly to race and culture, recognizing multiple forms of 

discourse and language as a resource, pressing for academic success, attending to students’ 

mathematical thinking, and supporting the development of a sociopolitical disposition (pp.11-

12). In this study, I use these nine teaching practices to answer the research question: How do 

secondary mathematics preservice teachers implement equitable mathematics teaching practices 

within their lesson plans? 

Method 

This study was situated within a larger study in which three preservice teachers participated 

in a year-long mathematical methods and practicum course. The fall course focused on 

mathematics methods that prepared preservice teachers to develop a secondary mathematics 

curriculum. During the course, preservice teachers were introduced to each of the nine Equitable 

Mathematics Teaching Practices (Bartell et al., 2017) and learned to write lesson plans. The 

spring course included a teaching practicum that allowed the preservice teacher to observe and 

teach in a secondary mathematics classroom for two 45-minute math class periods. 

Participants for this study included three secondary preservice mathematics teachers in the 

third year of their education program, each enrolled in a required mathematics practicum course. 

Beth, a White female, taught AP Calculus and Algebra 1 at Brooks High School. At the same 

school, Shelby, a White female, taught Algebra 1. Ryan, a White male, taught Pre-AP Algebra 2 

at Nolan High School. The majority of the student population at Brooks High School was 

Hispanic (55.3%) or Black (32.2%), and 88.5% of the students were economically 

disadvantaged. At Nolan High School, most students were White (55.5%), with 27.1% 

economically disadvantaged students. 

Data collection occurred during the fall and spring semesters and included lesson plans, 

interviews, class observations, and weekly reflections. The three preservice teachers wrote a 

combined total of 31 lesson plans during the school year. In this study, the lesson plans were 

analyzed using nine equitable mathematics teaching practices (Bartell et al., 2017) to better 

understand which equitable mathematics teaching practices preservice teachers implemented in 

their lesson plans after studying them in their methods courses. Three researchers coded three 

lesson plans together, discussing the codes and ensuring agreement upon their use before coding 

individually. After coding together, each researcher individually coded six additional lesson 

plans, two for each of the other preservice teachers. In situations where there was a lack of 
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agreement between the three researchers, I considered the explanation given by the researchers to 

make a final decision. After coding nine lesson plans collectively, I coded the remaining 22 

lessons based on the discussion around the codes. Then, I calculated each code's frequency to 

describe how the three secondary mathematics preservice teachers implemented equitable 

mathematics teaching practices within their lessons. 

In some lesson plans, activities addressed more than one equitable teaching practice. For 

example, in one of Beth’s lesson plans, she divided her class into half, and each half became an 

expert on one mathematics problem. Then, the groups mixed and taught what they learned to 

students from the other group. This activity allowed all students to hold the knowledge that 

another student needed and positioned them to teach their classmates. Additionally, it required all 

students to actively participate in the learning, so this activity was coded as monitor how students 

position each other and establish classroom norms for participation.  

Results and Discussion 

The data analysis revealed that the three preservice teachers implemented equitable 

mathematical teaching practices 320 times across their 31 lesson plans. Most often, they 

incorporated established classroom norms for participation in their lesson plans. The next two 

most frequently used equitable mathematical teaching practices were attending to students’ 

mathematical thinking and supporting the development of a sociopolitical disposition. 

Additionally, results from the data analysis showed that the preservice teachers did not attend to 

incorporate culture and race in any of their lesson plans. Table 1 below displays the overall 

percentages of how each preservice teacher included equitable mathematics teaching practices in 

their lesson plans. The following sections provide an overview of the four equitable mathematics 

teaching practices most often used and how the three preservice teachers implemented them into 

their lessons. 

 

Equitable Mathematics Teaching 

Practice 
Beth Shelby Ryan Overall 

 n % n % n % n % 

Draw on students’ funds of 

knowledge 

11 6.43 9 8.49 1 2.33 21 6.56 

Establish classroom norms for 

participation 

26 15.20 21 19.81 12 27.91 59 18.44 

Position students as capable 20 11.70 7 6.60 6 13.95 33 10.31 

Monitor how students position each 

other 

23 13.45 18 16.98 5 11.63 46 14.38 

Attend explicitly to race and culture 0 0.00 0 0.00 0 0.00 0 0.00 

Recognize multiple forms of 

discourse and language as a resource 

22 12.87 12 11.32 2 4.65 36 11.25 

Press for academic success 15 8.77 6 5.66 2 4.65 23 7.19 

Attend to students’ mathematical 

thinking 

32 18.71 11 10.38 10 23.26 53 16.56 
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Support development of a 

sociopolitical disposition 

22 12.87 22 20.75 5 11.63 49 15.31 

Note. Bartell et al., 2017, pp. 11-12 

 

Overall, the preservice teachers most often established norms for participation in their lesson 

plans. All three preservice teachers incorporated tasks in their lesson plans to engage their 

students in learning and encourage lesson involvement. Beth, for example, included in one lesson 

a Tic-Tac-Toe board filled with problems where students could select the three questions they 

wanted to work on, and students could collaborate with their shoulder partner if desired. 

Allowing her students to choose their problems in her lesson encouraged them to participate in 

the activity. Shelby varied her pedagogical practices to engage students who were often 

uninterested in learning mathematics by having them create comic strip word problems and 

summarize a unit with a poem. Additionally, Ryan used interactive simulations such as a Rock, 

Paper, and Scissor tournament to involve his students and encourage participation when teaching 

about growth and decay. Each preservice teacher incorporated tasks where the students 

contributed to the learning environment instead of passively observing the lesson. 

Attending to students’ mathematical thinking appeared second most frequently among the 

equitable mathematical teaching practices. Each preservice teacher incorporated tasks for their 

students that challenged their thinking and built on their previous mathematical knowledge.  For 

example, Beth used hands-on activities and interactive mathematics programs to build on her 

students’ mathematical knowledge. Shelby most often facilitated meaningful mathematical 

discourse and posed purposeful questioning to observe and respond to her students' mathematical 

thinking. In her lesson plans, she included questions such as, “What do we do to finish the 

equation? What tools might help you?” and “Why do you think so? Would graphing this help?” 

Shelby’s questions helped her recognize her students' mathematical understanding and respond 

appropriately. The three preservice teachers incorporated instructional practices to support their 

students’ mathematical understanding and ensure they were developmentally ready for their 

lessons. 

The third most often implemented equitable mathematical teaching practice by the preservice 

teachers focused on supporting the development of a sociopolitical disposition. The three 

preservice teachers primarily incorporated this teaching practice by encouraging their students to 

consider how to use the mathematics learned to solve problems in an authentic environment. For 

example, Shelby’s goal for one lesson when teaching growth and decay stated, “Students will be 

able to write exponential functions to describe mathematical or real-world situations.” Her lesson 

included mathematics problems with exponentials that each described a real-world scenario. 

Similarly, Ryan used Three-Act Tasks (Meyer, 2013) in his lessons to connect the learning for 

his students to situations they might have experienced previously. Each preservice teacher 

considered ways to engage their students in the lesson by providing opportunities to solve 

authentic math problems. 

The findings from this study provided insight into how preservice teachers implement 

equitable mathematics teaching practices in their lessons and highlighted a continued need for 

instruction that supports preservice teachers in explicitly attending to students' race and culture. 

While an introduction to equitable teaching practices led the three preservice teachers to include 
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equitable teaching practices in their lesson plans, the findings showed emergent connections 

(Turner et al., 2012) that did not include activities that challenged power structures in the 

classroom, empowered students from diverse backgrounds, validated students’ home language, 

or challenged stereotypes. For those preparing mathematics preservice teachers, I encourage 

ongoing conversations throughout mathematics education courses around the use of equitable 

teaching practices with an emphasis on how to connect mathematics topics specifically to 

students’ race, culture, language, and personal experiences, as well as support preservice teachers 

in incorporating meaningful connections for their students. Providing these equitable 

opportunities in mathematics classes is crucial for students from all backgrounds to develop 

positive mathematical identities (NCTM, 2018) and a deeper understanding of the mathematics 

content (Abdulrahim & Orosco, 2020).    
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Developing students’ Critical Mathematics Consciousness (CMC) is one goal of teaching 

mathematics for social justice (TMfSJ), but little is known about TMfSJ in post-secondary 

settings. This study analyzes student reflections on one TMfSJ lesson designed to support 

students in learning proportional reasoning skills in the context of studying representation of 

Alaska Native peoples in Congress in a capstone course for college seniors. Our research 

question was: Which aspects of CMC do students demonstrate in their reflection on the Alaska 

Representation lesson? Out of 10 students, 7 demonstrated all 6 components of CMC, with 

another 3 demonstrating 5 components. 

Keywords: Equity, Inclusion, and Diversity; Rational Numbers & Proportional Reasoning; 

Social Justice; Undergraduate Education. 

As a human activity, mathematics can never be neutral (Frankenstein, 1983; Ukpokodu, 

2007; Wager et al., 2021). Mathematics has always been developed to meet the changing needs 

of people and their communities (Joseph, 2011). So, we can use mathematics for the social 

justice projects that matter to us. There are some social justice-oriented lessons available for 

college settings (e.g. Karaali & Khadjavi, 2019, 2021), but little research has focused on teaching 

mathematics in social justice contexts in post-secondary settings. Mathematics without meaning 

or context sends messages on how the world is and how it should stay (D’Ignazio & Klein, 2020; 

Rubel et al., 2021). Undergraduate students want to make the world a better place and they want 

to know how math can support that goal (Rodriguez et al., 2020). Consequently, we push social 

justice change agents out of mathematics when we do not help them see how mathematics can 

serve social justice (Lord, 2020). Post-secondary students need opportunities to see how 

mathematics can influence social justice. 

Our study took place in a capstone course for college seniors at a public university in the 

Pacific Northwest. Some of the course goals were to examine and communicate about social 

justice issues of race and its intersections with other forms of oppression through data 

representations. We investigate student reflections on one single teaching math for social justice 

(TMfSJ) (Gutstein, 2006) lesson designed by Robinson (lead author on this paper) to help 

students explore proportional reasoning in the context of congressional representation, 

specifically, in Alaska. The context of Alaska was chosen because 1) the context was not familiar 

to any of the students so they would experience using mathematics to understand issue that 

impact communities to which they do not belong, 2) a news article had recently made claims 

about representation of Indigenous peoples in Congress in light of the first Alaska Native elected 

to office (Rep. Mary Peltola) so the context was timely, and 3) Robinson had a strong connection 

to the state. 

Background and Framing 
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The project of social justice broadly “refers to reconstructing society in accordance with the 

principles of equity, recognition, and inclusion,” (Bell, 2016, p. 4). To understand mathematics as 

a tool for social justice requires first understanding what we mean by mathematics. Thanheiser 

(2023) suggests three possible frames for mathematics that allow mathematics researchers to 

make their stance in their work clear to others. We frame mathematics within the second and 

third frames. The second frame is mathematics as “a contextual, ever present… lens or language 

to make sense of the world,” (p. 4). The third frame is mathematics as “a verb (not a noun), a 

human activity, part of one’s identity,” (p. 5). Mathematics is a human activity and as such is 

inherently tied to the social context of who is doing mathematics and for which purposes. 

Humans can use mathematics to pursue social transformation for justice. 

Social Justice through Mathematics 

It is not only possible to use mathematics for social justice, but it is impossible to separate 

mathematics from social justice. Mathematics permeates ideas of fairness, especially at large 

scale, as well as the decision making that structures laws and distribution of resources. Kimberlé 

Crenshaw (1988) advocated for legal theories that attended to intersectional identities because 

labor discrimination suits brought by Black women were being dismissed based on mathematical 

arguments. Judges in three pivotal cases cited sample size and proportional reasoning arguments 

to invalidate the discrimination faced by Black women (Crenshaw, 1988). Not only is 

proportional reasoning central to litigation, but also to distribution of resources. Proportional 

reasoning in apportionment theory can and has been used to distribute everything from seats in 

the House of Representatives to voting booth locations to funds for schools (US Census Bureau, 

n.d.; Verstegen & Knoeppel, 2012). Yet, many students learn about proportions in 

decontextualized ways that do not support them in transferring their proportional reasoning skills 

to social justice issues (Simic-Muller, 2015). Mathematics, and especially proportional 

reasoning, are embedded in social justice projects. So, students need opportunities to learn about 

topics like proportional reasoning in authentic social justice contexts.  

TMfSJ is one framework for situating teaching and learning mathematics in social justice 

projects. The goals of TMfSJ are for students to both read the world (make sense of the world 

and analyze power structures) and write the world (change the world for the better in ways that 

matter to students themselves) with mathematics while developing positive social and cultural 

identities (Gutstein, 2006). But, as with any human activity, TMfSJ can be co-opted to reinforce, 

rather than dismantle, oppression. People that hold privileged identities often fall back on 

oppressive narratives and perspectives when engaging with TMfSJ learning (Esmonde, 2014; 

Harper et al., 2021). Kokka (2020) built on Gutstein’s (2006) TMfSJ to develop a framework for 

critical mathematics consciousness (CMC) of privileged students.  

Critical Math Consciousness 

Kokka (2020) studied the development of CMC for privileged students, specifically white 

affluent students. While students in our study were not all white or affluent, all students were 

outside of the Alaska Native community we sought to better understand in the lesson and 

therefore experienced oppressive systems like racism, colonialism, and urbanism in different 

ways than Alaska Native communities themselves. Kokka positions mathematics classrooms as 

settings for developing privileged students’ critical consciousness, positioning mathematics 

classrooms as one site for social justice activism. From this perspective, Kokka’s CMC has three 
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components: sociopolitical understanding, taking action, and critical civic empathy. The first two 

components draw on Gutstein’s (2006) reading the world with mathematics and writing the 

world with mathematics, respectively. The last component refers to a concept described by Mirra 

(2018) in the context of literacy. In the context of CMC, critical civic empathy is “seeing 

another’s perspective while also engaging in structural analysis of power and privilege to take 

civic action for social transformation,” (Kokka, 2020, p. 782). Together, the taking action and 

critical civic empathy components focus this CMC framework on action, either for oneself or for 

others. 

Stephan and colleagues (2021) developed a CMC framework that explicitly differed from 

Kokka’s (2020) in that they focus on the role mathematics plays in oppression and liberation. 

Their conception of CMC also has three components that center mathematical awareness (MA): 

sociopolitical MA, ethical MA, and communicative MA. These CMC components do not map 

directly to Kokka’s (2020) CMC components. Sociopolitical MA is awareness that “Mathematics 

is used to model and interpret the real world and can be used to make decisions both at the 

individual and systemic levels that may be oppressive or liberatory,” (Stephan et al., 2021, p. 

516). Notice that the focus is not only on making sense of the world with mathematics as in 

Gutstein’s (2006) framework, but on how that sense-making can lead to oppressive or liberatory 

impacts. Ethical MA is awareness that “Human beings do mathematics; thus, there are potential 

ethical dilemmas and implications of mathematical work; mathematics may be neutral but 

humans doing mathematics are not,” (Stephan et al., 2021, p. 516). Humans doing mathematics 

can never be neutral. Communicative MA is awareness that “Mathematical communication has 

the power to educate and mis-educate society and encourage the masses to act in certain ways,” 

(Stephan et al., 2021, p. 516). Notice that mathematics here is positioned as a communication 

tool. 

Both framings of CMC are necessary for this study. Kokka’s (2020) framing centers 

mathematics classrooms as sites for critical consciousness development of students who hold 

privileged identities. Hence, this framing of CMC is salient for this study in which students held 

privileged identities relative to the communities impacted directly by the topics in the lesson. 

Kokka’s (2020) framing situates math as the implied vehicle for CMC development, while 

Stephan and colleagues’ (2021) framing focuses CMC explicitly on understanding mathematics 

as a tool for oppression and liberation. 

For this study, we frame CMC as having the six components mentioned above: Kokka’s 

(2020) sociopolitical understanding, taking action, and critical civic empathy, and Stephan and 

colleagues’ (2021) sociopolitical MA, communicative MA, and ethical MA. We define learning 

in the context of this TMfSJ study as development of CMC. The definition in this project of 

mathematics as a human tool for social transformation includes two parts: humans use math for 

specific purposes and those purposes can be liberatory social justice projects. Stephan and 

colleagues (2021) bring an explicit focus on how mathematics is used as a tool for oppression 

and liberation, while Kokka (2020) brings a focus on taking social justice action. We use these 

two complementary CMC frameworks together to help us answer our research question: Which 

aspects of CMC do students demonstrate in their reflection on the Alaska Representation lesson? 

 

Methods 
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Context and Positionality 

Our identities, especially our racial identities, impact how we understand and experience the 

world (Crenshaw et al., 1995; Davis & Jett, 2019; Esmonde, 2017; Ladson-Billings & Tate, 

1995). In particular, our racial identities impact how we understand and react to the content of 

lessons in “The Mathematics of Racism,” like the Alaska Representation lesson. Robinson 

developed the lesson with feedback and support from Thanheiser, and led the implementation of 

the lesson. Robinson is a monolingual white woman and Mathematics Education PhD graduate 

student. She was born and raised in Alaska, though now lives in the Pacific Northwest. Growing 

up around but not within Alaska Native communities, she knew Alaska Native people as friends, 

classmates, teachers, and community leaders. Yet, Robinson has only ever lived in places where 

her race and ethnicity match the majority of the population and representatives in both houses of 

Congress. Thanheiser is a Hungarian, German, Jewish immigrant to the United States and 

Professor of Mathematics Education. Roman is a white cisgender woman, former middle and 

high school math teacher, and Mathematics Education PhD graduate student. 

As mentioned before, none of the ten students were familiar with the Alaskan context. None 

of them shared that they had spent any significant time in Alaska or that they knew much about 

Alaskan history or politics. Early in the course students had an opportunity to reflect on and 

share about their identities through community building activities. During those activities, four 

students either self-identified as white or omitted reference to race while six students self-

identified as holding a racially marginalized identity. Two students identified as Black, one of 

which further identified as Nigerian-American. Two students identified as Asian, one as 

Vietnamese and one as half-Indonesian. Two students identified as Latine, one as Mexican-

American and one as Columbian American. 

The senior capstone course took place over 11 weeks in the Spring of 2023. Students were 

juniors and seniors who self-selected into the course and majored in a wide variety of disciplines. 

Students majored in several physical and social science disciplines, mathematics, and creative 

arts. The lesson in this study occurred over a two-hour class meeting during Week 2 of the term. 

The lesson started by having students consider and discuss as a whole group the following quote 

from an article: 

 

With [Rep. Mary Peltola’s] recent swearing-in, it became official for the first time in 

more than 230 years: A Native American, an Alaska Native and a Native Hawaiian are all 

members of the House — fully representing the United States' Indigenous people for the 

first time, according to Rep. Kaiali'i Kahele of Hawaii. Now, there are six Indigenous 

Americans who are representatives in the House. (Diaz, 2022) 

 

Students were provided with estimates that approximately 9.7 million people or 2.9% of the 2021 

US population was American Indian/Alaska Native (AI/AN; American Indians and Alaska 

Natives: Key Demographics and Characteristics, 2023) and roughly 165,000 people or 0.05% of 

the 2020 US population was Alaska Native (Goto et al., 2004). Students worked in groups to 

make sense of percentages as proportions and make claims about what fair representation might 

mean. Next, students learned about some of Alaska’s history and elections. Students again 

worked in groups to compare the proportion of Alaska’s population that is AI/AN to other 
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proportions, like the proportion of AI/AN people ever elected to any seat in either house of 

Congress for Alaska. Students considered which forms of proportions (fractions, decimals, 

percents, visualizations) were best for 1) creating quickly, 2) comparing two proportions, and 3) 

communicating a message to others. The lesson ended by learning about and discussing current 

issues facing Alaska Native communities, like the food and water scarcity and historically low 

salmon populations, and discussion as a whole group of the implications of underrepresentation 

in Congress. After the lesson, students were asked to respond to the following prompt in a 

FlipGrid video: 

Reflect on your learning from the Alaska Representation lesson in 3 minutes or less. Be 

sure to share about each of the following: What did you learn about mathematics? What 

did you learn about racism? What do you want to know more about? 

For this small study, we use only students’ reflections after the lesson. We make no claims 

about what components of CMC students may have been able to demonstrate prior to the lesson. 

We therefore do not make claims about what CMC components developed as a result of the 

lesson because that implies change over time. Instead, we report on what components of CMC 

students demonstrated when asked to reflect on their learning from the lesson. 

Data Collection and Analysis 

To answer our research question, we analyzed students’ reflection videos. Students recorded 

their responses as videos in FlipGrid, which automatically generated transcripts that were 

subsequently cleaned up. These videos and transcripts of student responses serve as the data 

sources for this study. The 10 responses varied in duration between 1:22 minutes and 2:57 

minutes with a mean of 2:08 and median of 1:57. Some students responded to the three prompts 

in order and referred directly to the language in the prompts, while others did not.  

We used MAXQDA software to analyze the data using deductive coding for the six aspects 

of Kokka’s (2020) and Stephan and colleagues’ (2021) CMC frameworks. First, Robinson 

watched all videos and coded any part of a student’s response that suggested one of the six CMC 

codes with the corresponding code. Portions of the transcript could be coded with more than one 

CMC code, and each student response could include multiple occurrences of a single CMC code. 

Next, all coded student response segments for each individual CMC code were reviewed together 

to ensure consistent coding. If a coded response segment did not fit the CMC code, then the code 

was removed from the segment. When a student response included at least one occurrence of a 

CMC code after both initial coding and subsequent verification then that student was considered 

to have demonstrated CMC for the corresponding code. Thus, we share the total number of 

students who demonstrated each CMC component as evidenced by at least one coded segment, 

not the number of coded items. For example, one student’s response initially had two 

occurrences of the sociopolitical MA code: “representation of, for example, Indigenous people in 

Congress is very… underrepresented according to the proportions of Native and Indigenous 

people in the US, their population” (Segment 1) and “structural racism and systemic racism 

prevents representation from dismantling these systems because just bringing um, like, 

Representatives like Mary Pratola into Congress isn't going to stop racism or dismantle those 

systems that are keeping us oppressed” (Segment 2). Upon review, Segment 1 retained the 

sociopolitical MA code because it showed an understanding of the sociopolitical context through 

proportional reasoning. Segment 2 shows understanding of the sociopolitical context but there is 
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not compelling evidence that mathematics was a tool for that understanding. So, after review this 

student’s response had only one segment coded for sociopolitical MA, which was sufficient to 

support a demonstration of sociopolitical MA. We share descriptions of each code, examples, 

and total number of students in the results in Table 1. 

 

Results 

Kokka CMC 

All three components of Kokka’s (2020) CMC framework appeared in every student’s 

response (see Table 1). With respect to the sociopolitical understanding code, students said things 

like “I also had no idea that there was so little representation of Alaskan Natives and American 

Indians in Congress” and “with a racist society, you're not going to have equal representation at 

the high levels where they're actually making the laws, yet everybody's going to be affected by 

the decisions being made. So that was pretty eye opening.” Given that the prompt specifically 

asked students to reflect on their learning about racism, we hoped that most students would 

demonstrate sociopolitical understanding in their responses. We also expected many students 

would demonstrate critical civic empathy in their responses. Because no students held  
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an Alaska Native identity, the context of the lesson provided an opportunity to learn about the 

perspectives of others. In occurrences of the critical civic empathy code, students expressed that 

the issues of Alaska Native communities are important and referenced historical oppression of 

Indigenous peoples to put underrepresentation in context. Students said things like “we know 

throughout time that white people hold the majority of representation for all states pretty much 

throughout our history” and “in a state that has a racial composition of 21.9% Alaska Native and 

American Indian, you know, one representative in 63 years of statehood. Not looking so great.”    

The goal of the lesson was not yet to take action directly to impact underrepresentation, but 

to learn more about the issue and how mathematics could be used to understand and 

communicate about it. Even though the reflection prompt and the lesson itself did not 

specifically mention taking action, the code came up for every student in terms of discussing 

action. Students talked about the need for change, their concern or frustration with inaction, or 

wondering about possible action. Students said things like “there's this common problem of this 

lack of representation and we seem to be missing it and we acknowledge it, but yet there has 

been no really like solution” and “I wanna learn more about… what can we do, for example, to 

help people in Alaska fight climate change, to bring prices for basic necessities down and…yeah, 

how to advocate.” 

All of the occurrences of the taking action code were coded as critical civic empathy as well. 

One student’s response highlights why: “I am more aware of the fact that racism and segregation 

is still an ongoing issue and something that we need to go ahead and address whether we may be 

aware or if we experienced first-hand.” This last quote demonstrates both 1) taking action with 

“go ahead and address,” and 2) critical civic empathy because the collective “we” that should 

take action includes people who do not experience the issue directly. All references to action 

similarly talked about change for others (not the students themselves), specifically, Alaska Native 

and American Indian peoples. 

Stephan et al. CMC 

Most students demonstrated all three Stephan and colleagues’ (2021) CMC components. 

Specifically, all 10 students demonstrated at least two codes, and 7 students demonstrated all 

three codes. All students demonstrated sociopolitical MA, sharing how their learning about 

Alaska Native communities was tied to mathematics by using “proportion” or referencing unfair 

representation. Students said things like “learning about proportions, ratios and percentages are 

always important to, you know, an individual's ability to critically analyze data, translate and 

present it is really linked to understanding those concepts” and “in terms of Alaska Natives, 

they’re very… underrepresented in Congress if you look at their population number.” Students 

tied their sociopolitical learning directly to their understanding of the mathematics involved in 

the lesson. 

A total of 8 of the 10 students indicated ethical MA. Responses focused on humans doing 

math for intentional purposes and how that math activity can influence the ways social issues are 

understood. One student said, “I think that the issues that affect people, say, of color, aren’t 

necessarily being advocated for or may not be advocated for, especially if there’s no 

representation in places where policy and laws are made.” This response references the social 

(in)justice implications of underrepresentation, tying the student’s understanding of the 

mathematics in the task to their understanding of related ethical implications. Another student 
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shared “when sources or… relevant population data is missing, we question whether the data is 

an accurate representation of data or the point that it’s trying to get across. So, it’s important to 

make sure everybody's voice is heard.” The last sentence in this response suggests there are 

ethical reasons to include people’s voices and data sources. 

A total of 9 students demonstrated communicative MA, including the previous response. The 

student described “the point [the data] is trying to get across,” suggesting mathematics as a tool 

for communication. Other instances of communicative MA described how humans make choices 

to communicate about math, and that these choices influence how others understand 

representation of Alaska Native peoples. One student shared a concern, saying that “it’s 

sometimes difficult for me personally to see how data can be conveyed concisely and 

pragmatically and still express the devastating realities that make up these figures.” This student 

suggests that some ways of communicating with data can obscure the impact on people’s lives. 

Another student shared that “when you’re trying to tell a story about…the data you’re trying to 

convey, you want to tailor it to the basically groups of people you think it’s got… you or, you 

want it to reach the most.” This student clearly identifies that communicating with mathematics 

is about choosing how to best convey your message. 

 

Discussion and Implications 

With regard to our research question “Which aspects of CMC do students demonstrate in 

their reflection on the Alaska Representation lesson?” we found that all 10 student responses 

demonstrated all three components of Kokka’s (2020) CMC framework. Additionally, all 10 

student responses demonstrated at least two components of Stephan and colleagues’ (2021) CMC 

framework, with 7 indicating demonstrating all three. This suggests that the lesson was 

successful in supporting students to learn about proportional reasoning in a context that also 

promoted social justice. Students learned that math can be used to investigate claims and 

communicate about social justice topics. 

One limitation of the study is that the lesson in the study did not provide an opportunity for 

students to see themselves as taking action. While all students discussed social justice action, as 

indicated by the occurrence of the taking action code, the lesson did not appear to support 

students in actually taking action. No student shared an action that they have taken or could take. 

Also, the lesson did not draw attention to the work Alaska Native communities are already doing 

to address the topics that arose in the lesson. One small change to the lesson that could 

potentially address both these limitations is including additional reflective prompts for class 

discussion, like: “What are Alaska Native communities already doing to advocate for their 

representation? Find one resource that we didn’t talk about in class and share. What steps could 

you and others take to amplify the work these communities are doing?” A future study could 

focus on action steps in post-secondary contexts, especially from student perspectives. Part of 

Gutstein’s (2006) writing the world with mathematics is both seeing oneself as able to take 

action and actually taking action. Hence, to understand TMfSJ in post-secondary contexts we 

also need to understand how students conceive of and experience social justice action. 
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The purpose of this theoretical paper is to describe how an anti-deficit perspective can 

supplement radical constructivist research programs by deepening their commitment to equity. I 

discuss how these research programs align with an anti-deficit perspective by treating students’ 

mathematical ways of reasoning as a resource. I also discuss how an anti-deficit perspective can 

supplement these programs by promoting the construction of sensemaking models that challenge 

deficit discourses related to students from historically marginalized groups. To illustrate, I 

present a model highlighting  the powerful reasoning of a Chicana undergraduate student. 

Keywords: Cognition; Equity, Inclusion, and Diversity; Systemic Change 

Radical constructivism (von Glasersfeld, 1995) is a theory of knowing that has been adopted 

by many researchers to investigate students’ cognitive structures in relation to mathematics (e.g., 

Hunt et al., 2019; Steffe, 2001; Thompson, 1994a; Tillema, 2018). A central goal of researchers 

working within this paradigm is to challenge what counts as mathematics by positioning 

students’ own mathematical ways of reasoning as the mathematics that should be honored and 

respected (Hackenberg et al., 2023). Steffe and Thompson (2000) refer to students’ own 

mathematical ways of reasoning as students’ mathematics, and researchers’ (or teachers’) 

interpretations of these ways of reasoning as mathematics of students. Some researchers (e.g., 

Steffe & Wiegel, 1996) use the term second-order model when referring to mathematics of 

students because it implies that it is an observer’s interpretation of what they believe is going on 

in a student’s brain. In this paper, I use the term model for convenience. 

Given that radical constructivism honors students’ mathematics, researchers adopting this 

paradigm are well-equipped to address dominant equity issues (see Gutiérrez, 2007, 2009) 

connected to access and achievement in mathematics. For instance, Steffe’s research program 

(e.g., Steffe, 2001; Steffe & Kieren, 1994) provides students access to mathematics because it is 

their mathematics that they are accessing, which in turn allows them to achieve in mathematics 

by refining and developing their own mathematical knowledge (Tillema & Hackenberg, 2017). 

Some researchers, however, might dismiss Steffe’s work, and hence radical constructivism, 

based on the argument that it implicitly perpetuates colorblind ideologies by failing to explicitly 

address issues related to race and culture, among other things (gender, ethnicity, etc.) (Tillema & 

Hackenberg, 2017). While I agree with the argument that radical constructivist research 

programs can implicitly perpetuate colorblind ideologies, thus failing to challenge the status quo, 

I also agree that completely disregarding these programs based on this argument “is far too 

dismissive” (Tillema & Hackenberg, 2017, p. 57). Instead, I argue that researchers should work 

towards extending (adding onto the framework) or supplementing (combining with another 

framework or perspective) radical constructivism in order to begin challenging the status quo by 

addressing equity issues specific to students from historically marginalized groups. 

Recently, Hackenberg et al. (2023) took on the task of extending radical constructivism to 
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attend to models of students’ social identities (related to how students associate themselves with 

respect to race, gender, ethnicity, etc.), in addition to models of students’ mathematics. As an 

example, they described the gendered interactions between two preservice secondary teachers in 

a past teaching experiment. The female student (at least initially) doubted her own knowledge 

and paid close attention to the male student's mathematical reasoning despite the fact that she 

was a powerful math reasoner. Conversely, the male student exhibited confidence in his ways of 

reasoning, but struggled to understand the mathematical reasoning of the female student. The 

teacher-researcher chose to disrupt these gendered interactions by asking "each participant to 

work on the other person’s strength relative to themselves—the female participant to work on 

being more confident in her mathematical thinking, and the male participant to work on 

understanding his partners’ thinking" (p. 27). By attending to the students' gendered interactions, 

the teacher-researcher was able to construct gender identity models that allowed them to 

challenge inequitable participation structures throughout the teaching experiment. 

The purpose of this theoretical paper is to present another approach that radical constructivist 

researchers can leverage to enhance their commitment to equity, specifically with respect to 

historically marginalized students. More to the point, the approach that I am proposing requires 

researchers to adopt an anti-deficit perspective as they construct models of marginalized 

students’ mathematics. An anti-deficit perspective works to challenge deficit perspectives about 

students from historically marginalized groups by treating their in-school and out-of-school 

experiences (or funds of knowledge) as resources for learning, and centering their strengths 

instead of their weaknesses (Adiredja, 2019). Rather than working within the radical 

constructivist paradigm to extend the types of models constructed (e.g., the social identity 

models proposed by Tillema & Hackenberg, 2017), this approach works to supplement radical 

constructivism by blending it with an anti-deficit framing. Ellis (2022) utilized a similar 

approach focused on constructing anti-deficit (or asset-based) learning trajectories, rather than 

anti-deficit models. 

My aim for this paper is twofold. First, I want to add to the ongoing conversation about 

enhancing the commitment of radical constructivist research programs to equity-related issues 

(e.g., Ellis, 2022; Hackenberg et al., 2023; Tillema & Hackenberg, 2017), specifically with 

respect to the mathematical sensemaking of students from historically marginalized groups. 

Second, I want to engage math education researchers (both within and outside of this paradigm) 

in a discussion about how to bridge cognition and equity research more broadly, especially given 

that these areas have often been studied separately in our field (Adiredja, 2019, 2021). In 

alignment with the PMENA conference theme, I envision this discussion leading to a future 

where math education researchers from different methodological and theoretical paradigms can 

work together to achieve important equity-related goals.  

In what follows, I begin by describing the central tenets of radical constructivism and their 

implications for constructing models of students’ mathematics. Next, I elaborate on the meaning 

of an anti-deficit perspective, and explain how an anti-deficit perspective aligns with and 

supplements radical constructivist research programs. To showcase the benefit of supplementing 

radical constructivism with an anti-deficit perspective, I model the powerful sensemaking of a 

Chicana student based on her work involving a ratio-based math task. Prior to showcasing this 
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model, however, I situate it in a brief review of the history of Latin*3 students and education in 

the United States (U.S.) in order to highlight how their historical oppression has contributed to 

deficit discourses about their inferior ability in mathematics. It is my hope that my modeling will 

serve to challenge the deficit discourses about the math reasoning of Latin* students more 

broadly. 

Central Tenets of Radical Constructivism 

There are two central tenets to radical constructivism: (1) “knowledge is actively built up by 

the cognizing subject” and (2) “cognition serves the subject’s organization of the experiential 

world, not the discovery of an objective ontological reality” (von Glasersfeld, 1995, p. 51). 

Taken together, these tenets imply that knowledge does not exist in an objective reality, nor is it 

an innate trait that certain individuals are born with. Rather, knowledge is something that is 

actively and constantly being constructed by each individual based on the cognitive adaptations 

they make to the experiential constraints they encounter. Put differently, knowledge is not static; 

it is a dynamic construct that is constantly changing from moment to moment in each individual. 

In the context of constructing models of students’ mathematics, a radical constructivist 

perspective implies that a student’s math knowledge is not something that can be definitively 

obtained by a teacher-researcher. Thus, the models that a teacher-researcher constructs are 

hypothetical models (von Glasersfeld, 1995) in that they are based on the teacher-researcher’s 

interpretations, and hence, are falsifiable. That is, the models act as hypotheses (similar to 

scientific models) that can be proven false based on continued interaction with students as they 

engage with math tasks. While models of students’ mathematics can never be proven to depict 

students’ true mathematical realities, they can, over a prolonged period of teacher-student 

interactions, become more viable (via testing for falsifiability) with these realities in the sense 

that there are no contradictions with students’ explicit ways (e.g. gestures, written work, spoken 

words) of reasoning mathematically (Steffe & Thompson, 2000; von Glasersfeld, 1995, 2000). 

Enhancing Radical Constructivist Research Programs via an Anti-Deficit Lens 

Elaborating on an Anti-Deficit Perspective  

An anti-deficit perspective works to challenge deficit perspectives that fail to acknowledge 

students’ backgrounds and out-of-school experiences as assets, and instead position the students 

as the “problem” (Adiredja, 2019; Peck, 2021). With respect to students’ sensemaking, an anti-

deficit perspective works to challenge deficit perspectives that frown upon informal language, 

inconsistent and/or ambiguous reasoning, and critical (rather than fast) thought processes 

(Adiredja, 2019). Thus, there are two important aspects of an anti-deficit perspective. First, an 

anti-deficit perspective centers the strengths in students’ reasoning, even when their reasoning 

shows signs (from the perspective of the observer) of informality, inconsistency, and/or 

ambiguity. The goal is to learn from students in order to leverage their cognitive resources in 

learning (Adiredja & Louie, 2020). Second, an anti-deficit perspective views students’ funds of 

knowledge as a valuable resource in the learning process. Here, I define funds of knowledge as 

the knowledge and skills that are important to a student’s out-of-school experiences and interests, 

 
3 Salinas (2020) introduced the term “Latin*” to highlight “the fluidity of social identities” (p. 164). The asterisk is 

meant to encompass a myriad of ways that people of Latin American descent identify (e.g., Latina, Latino, Latinx).    
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as well as their household and community culture (cf. Moll et al., 1992). While an anti-deficit 

perspective is beneficial to all students in the context of mathematics, it is more beneficial for 

marginalized students (e.g., students of color) as these students have historically experienced 

obstacles that have deprived them access to high-quality mathematics instruction (Martin, 2009). 

How an Anti-Deficit Perspective Aligns with Radical Constructivist Research Program 

Given that radical constructivist research programs treat students’ mathematics as a resource, 

there is an anti-deficit element already built into them. In the context of building models of 

students’ mathematics, the teacher-researcher must set their own first-order knowledge aside in 

order to learn new mathematical ways of reasoning from their students (Hackenberg, 2005, 

2010). The teacher-researcher may observe inconsistency, ambiguity, and/or informal math 

language in a student’s ways of reasoning, but these are leveraged as tools that can support them 

in achieving viability in their model of the student’s mathematics. 

The implicit, anti-deficit nature of radical constructivist research programs allows them to 

address equity-related issues by challenging common discourses related to what counts as 

mathematics (cf. Tillema & Hackenberg, 2017). Influenced by Gutiérrez (2013), I define 

discourses as the words, actions, beliefs, norms, systems, institutions, and historical 

events/factors that determine how power (the degree of privilege one has) is distributed in a 

given situation. The fluid nature of discourses implies that the distribution of power within them 

can constantly be challenged (Gutiérrez, 2013). By centering students’ mathematics as a 

resource, for instance, radical constructivist research programs challenge traditional views of 

student-teacher power relations by giving students, rather than teachers or researchers, the 

“power to determine what counts as knowledge” (Tillema & Hackenberg, 2017, p. 58). 

How an Anti-Deficit Perspective Supplements Radical Constructivist Research Program  

While challenging discourses related to what counts as mathematics is important in the 

equity realm, it is not sufficient in addressing the status quo that favors the needs of white men in 

mathematics (Adiredja, 2019). In order to begin to challenge the status quo, thus deepening their 

commitment to equity, researchers leveraging radical constructivism need to be more explicit 

about who their mathematical models originate from. Rather than just learning about students’ 

mathematical ways of reasoning, there must be a deeper commitment to learning who they are as 

holistic beings with identities, cultures, and experiences outside of mathematics. Inasmuch as an 

anti-deficit perspective valorizes students’ funds of knowledge, it can serve to supplement radical 

constructivist research program by helping researchers attend more robustly to their participants. 

In the context of building models of students’ mathematics, this would require a teacher-

researcher to first learn about their students’ funds of knowledge (via surveys, interviews, 

informal conversations, etc.), and then leverage this knowledge in a way that informs their 

models. One way the teacher-researcher can accomplish this is by creating math tasks that are 

based on their students’ funds of knowledge. Engaging students with tasks that are relevant to 

them has the potential to influence their ways of reasoning (Adiredja & Zandieh, 2020), which 

can in turn aid the teacher-researcher in constructing more viable models of their mathematics.  

Sensemaking models that are informed by students’ funds of knowledge can help radical 

constructivist researchers address the status quo, and hence attend more deeply to equity-related 

issues, by challenging deficit discourses about historically marginalized students. Influenced by 

Adiredja and Louie (2020), I define deficit discourses as the subset of discourses that frame 
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students’ academic and cognitive setbacks (from the perspective of an observer) in terms of their 

personal, family, and/or cultural “deficiencies.” To illustrate how these models can challenge 

deficit discourses, consider the work of Adiredja and Zandieh (2020). These researchers 

leveraged the lived experiences and resources (consistent with funds of knowledge) of eight 

undergraduate women of color in order to generate a counterstory that highlighted their powerful 

sensemaking with respect to the concept of basis in linear algebra. For instance, Stacy, an 

undergraduate Latina woman, connected the spanning role of a basis to her mom telling her and 

her siblings “to do all the chores” in the house. This counterstory worked to challenge deficit 

discourses that have historically positioned Latin* students as academically inferior to their 

white counterparts (San Miguel & Donato, 2009). In a similar fashion, I argue that models of 

students’ mathematics that leverage students’ funds of knowledge can also challenge deficit 

discourses in relation to historically marginalized students. In what follows, I illustrate an anti-

deficit model that showcases the powerful sensemaking of an undergraduate Chicana. Prior to 

illustrating this example, however, I situate it in a brief review of the oppressive schooling 

history in the U.S. that has contributed to the deficit discourses faced by Latin* students. 

A Brief Review of the Oppressive Schooling History Faced by Latin* Students in the U.S.  

Historically, Latin* students have been targeted by deficit discourses that have positioned 

them as academically inferior to their white counterparts (Contreras & Valverde, 1994; Nieto, 

2004; San Miguel, 2011; San Miguel & Donato, 2009). San Miguel (2011) noted that Latinos (I 

remain consistent with language used by the authors) have been perceived as people who do not 

value education. San Miguel and Donato (2009) noted that the dominant view that Latinos were 

inferior to whites (specifically during the first half of the twentieth century) caused school 

systems to ignore the needs (both linguistic and cultural) of Latino children and view them from 

a deficit perspective. The main intention of the school system during this era was to “fix” Latino 

children, and to help them assimilate to white culture. Nieto (2004) noted that prior to the Brown 

v. Board of Education ruling in 1954, the segregation of Latinos in schools was justified by 

perpetuating deficit discourses about Latinos linguistic skills (e.g., Latinos are deficient in 

English, and thus, must be taught separately). The teachers in segregated schools were primarily 

white, and use of the Spanish language in these schools was often met with punishment. 

In addition to assimilation and segregation, researchers have documented other ways that 

deficit discourses have historically impacted Latin* students (e.g., MacDonald & Monkman, 

2005; Valencia, 2011). For instance, according to Valencia (2011), Chicano students have been 

negatively affected by schooling conditions such as (among other things) the suppression of their 

language and culture, poor school and student funding, lower amounts of highly qualified 

teachers, and their overrepresentation in developmental and special education classrooms. These 

conditions have led to the association of Chicano students with school failure via low academic 

achievement, high rates of grade retention (having Chicanos repeat grades), high pushout rates, 

underrepresentation in higher education, low performance on standardized tests, and high stress 

levels in school. Taken together, these historical insights highlight not only the negative impact 

that deficit discourses have had on the academic, and hence mathematical, success of Latin* 

students, but also the need for researchers to advocate for Latin* students by intentionally 

challenging these discourses. 
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Example of an Anti-Deficit Model: Sensemaking of an Undergraduate Chicana 

Background Information, Positionality, and Important Definitions 

This example model comes from a teaching session that is part of a teaching experiment 

(Steffe & Thompson, 2000) I conducted in fall 2023: I was the teacher-researcher (TR), and my 

doctoral advisor was the witness-researcher (WR). The aim of the teaching experiment was to 

showcase the rate of change development of two Latina undergraduate students, Yari and Jocelyn 

(pseudonyms), who were recruited from a developmental math course I taught in the fall. Yari, a 

first-year public health major and a Chicana whose family is from Oaxaca, Mexico, is the focal 

student in this example; she agreed to participate in the teaching experiment because of its focus 

on challenging deficit discourses against Latin* students. The research focus in my teaching 

experiment is connected to my positionality. I am a Puerto Rican man who spent most of my 

schooling career distancing myself from my own culture (via assimilation), because of the shame 

I felt toward my own family—a shame that was influenced by deficit discourses that I bought 

into (e.g., Puerto Ricans don’t value education). My graduate school experience has allowed me 

to situate these discourses within the system, rather than within my own family. Now I aim to 

advocate for Latin* students in my research by challenging these deficit discourses. 

The teaching session that I focus on is based on Yari’s engagement with a ratio task that 

involved pitchers of Agua de Tuna (see Figure 1), a drink in her culture that involves a mixture 

of water and tuna fruits. My goal during this session was to learn about how Yari reasons about 

intensive quantities in order to understand her conception of ratio—a multiplicative relationship 

between two quantities (Thompson, 1994b). A quantity is a conception of a measurable attribute 

of an object (Olive & Çağlayan, 2008). An intensive quantity is a quantity that (1) cannot be 

explicitly or directly measured, (2) measures the intensity, or degree of presence (Stroup, 2002), 

of an attribute, and (3) expresses a relationship between two quantities (Schwartz, 1988). As 

students reason about quantities, they engage in quantification, a process that “involves 

conceiving of an attribute of an object, conceiving of a unit of measure for the attribute, and 

forming a relationship between the attribute’s measure and the unit of measure” (Johnson, 2015, 

p. 65). For instance, quantifying the pinkness of a wall would require one to conceive of 

“pinkness” as an attribute of the wall, conceive of a unit of measure for the wall’s pinkness (a 

relationship between red and white paint), and form a relationship between the unit of measure 

and the wall’s pinkness: a 6:2 (red:white) paint mixture has a higher intensity of pinkness than a 

4:2 mixture because it has more red paint for the same amount of white paint. 

 

 

    

   Figure 1: Agua de Tuna Task (adapted from Johnson’s (2015) Hot Chocolate task) 
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Yari’s Engagement with the Agua de Tuna Task: Teaching Session 2 of 13 (October 26th) 

Midway through the second teaching session, I gave Yari the Agua de Tuna task and asked 

her to compare the tuna flavor between both pitchers. Initially, Yari argued that pitcher A would 

have a higher tuna flavor because it contained less water. Based on this initial argument, it might 

be tempting to conjecture that Yari did not have a robust conception of ratio because she did not 

consider how the number of tuna fruits would affect the flavor level; her focus was solely on the 

amount of water. Yet, it is likely that Yari was drawing from her experience of making Agua de 

Tuna at home as she noted that her answer was based on “instinct.” After all, if Yari were making 

two Agua de Tuna pitchers at home and wanted to determine the flavor level of the tuna for each 

pitcher, she might not try to find a relationship between cups of water and tuna fruits. Instead, 

she might taste both drinks and determine that the one with a stronger tuna flavor has less water 

compared to the one with a milder tuna flavor.  

After Yari provided her initial response, I asked her how she would justify that pitcher A had 

a higher tuna flavor. She responded by giggling and saying that she would “make it,” supporting 

my initial conjecture that her thought process was linked to her experience of making Agua de 

Tuna. I giggled with her and asked her to assume that she was not able to make it. Yari responded 

by saying that she would divide, and eventually divided  4 by 3 (the values for pitcher A) using a 

calculator to get a new value of “1.33.” When I pressed her to explain the meaning of “1.33,” 

Yari stated that, to her, it represented the “flavor level.” I then pressed Yari to determine  the 

units associated with the “1.33.” To assist Yari in her thinking, I encouraged her to think about 

her work on the Filling Bottles task from the first teaching session. This task (adapted from 

Johnson, 2015), which depicted a graph of the relationship between the volume (in ounces) and 

height (in inches) of soda in a bottle, involved a similar division process (9 ounces per 4 inches 

of water corresponded to 2.25 ounces per inch upon division). Her initial guess was that the units 

would be “tuna fruits per cup of water.” I conjecture that Yari mentally reversed the order of the 

quantities because having the number of tuna fruits come first in the unit of measure would 

correspond nicely to her interpretation of “1.33” representing the flavor level of tuna. 

My goal in this exchange was to get Yari to quantify the tuna flavor so that I could better 

understand her conception of ratio. Up to this point, I knew that Yari conceived of the tuna flavor 

as an attribute of Agua de Tuna that could be measured via the relationship “tuna fruits per cup of 

water.” This suggests that the tuna flavor represented an intensive quantity for Yari. But it was 

not yet clear whether she was using this knowledge to compare the intensity of tuna across the 

two pitchers. Thus, I asked her to divide the two values for pitcher B (6 and 4). After getting a 

value of “1.50,” I pressed Yari about the units. This time, her response leveraged her work on the 

previous Filling Bottles task. After noticing that she maintained the order of the units (ounces per 

inch) when dividing 9 by 4 in the previous task, she wrote “1.50 cups per tuna” on her paper.  

WR: Does that make sense to you? One point five cups per tuna? 

Yari:  (2 second thinking pause) Umm … (3 second thinking pause) well I don't, I don’t 

like, It doesn't (pointing to the units after “1.50”), like it makes sense, but, umm, 

like if you asked me why (giggles), I wouldn’t be able to explain (giggles). 

TR: Well, it might help if you actually do the other one (points to the “1.33” under 

pitcher A). So like, write the units down for this one to … (Yari says “Okay” and 

writes “cups per tuna” after the “1.33”) And now like, try to also like, not get 
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too, like, invested in like the actual math. Cause I think it's also part of like, the 

math anxiety, when we see the math, it's like everything shuts down. Imagine you, 

you know, you're talking to your, your mom or something, like at home right? 

And you're making these pitchers of Tuna with her, and you guys both figured out 

that one of them has about 1.33 cups of water per tuna (Yari nods and says 

“Mmmhmm”) … and then the other one has 1.5 cups of water per tuna, per one 

tuna fruit (Yari nods and says “Mmmhmm”). So based on that … which one 

would you say is more tunaey. 

Yari: (responds instantly) This one (points to pitcher B), the pitcher B. 

TR: Why Pitcher B? 

Yari: Because, umm, oh actually hold on sorry … (raises hands in front of her and 

giggles) Uhh, Mmm, it would still be, pitcher A … (TR asks “Why” as Yari 

points to the “1.33 cups of water per tuna” under pitcher A) Because you’re 

using less cups per water, or per yeah, less cups per, per water, or per tuna.  

Reflecting on her work from the Filling Bottles task prompted Yari to maintain the order of 

the units in the Agua de Tuna task (cups of water per tuna fruit), thus modifying her initial guess 

(tuna fruits per cups of water). Yet, when the witness researcher asked Yari if the “one point five 

cups per tuna” made sense, she confessed that she “wouldn’t be able to explain” even though it 

did make sense to her. Leveraging that I knew Yari had firsthand experience with making Agua 

de Tuna, I took her focus away from the math in front of her by asking her to imagine this 

situation occurring in her own home with her mother. This triggered a turning point in Yari’s 

confidence as she was able to instantly provide a response to my initial question (“which pitcher 

was more tunaey?”). At first, Yari pointed to pitcher B, but then quickly shifted to pitcher A as 

being the pitcher that was more tunaey. When asked to explain, she concluded (stumbling a bit 

over her words) that pitcher A would be less tunaey because it contained “less cups of water … 

per tuna.” 

This exchange is important as it highlights that it is possible for teacher-researchers to 

leverage a student’s funds of knowledge in order to bring out the true potential in their math 

reasoning. In this case, it wasn’t until Yari thought about the situation as an at-home experience 

that I was able to realize that she was (at least in this context) quantifying the tuna flavor as an 

association between cups of water and tuna fruits. That is, Yari was able to compare the tuna 

flavor across both pitchers by associating the cups of water in each pitcher with one tuna fruit. 

Conceiving of a ratio as an association between quantities is consistent with an identical groups 

conception of ratio (Heinz, 2000; Simon, 2006). This contrasts a ratio as measure conception 

(Simon & Blume, 1994), which requires one to conceive of a ratio as a multiplicative 

relationship that remains invariant. An important note is that Yari’s final response (i.e., pitcher A 

was more tunaey because “you’re using less cups of water … per tuna”) matched her initial 

response, where she argued (based on “instinct”) that pitcher A would be more tunaey because it 

contained less water. This suggests that students’ intuition, connected to their funds of 

knowledge, can be a powerful tool in their mathematical ways of reasoning.  
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Discussion 

This anti-deficit model of Yari’s ratio-based reasoning, which was viable across future 

teaching sessions, showcases the powerful, mathematical sensemaking of a Chicana 

undergraduate student. This is especially significant given that, historically, deficit discourses 

have positioned Latin* students as academically inferior by (among other things) suppressing 

their cultural value (Valencia, 2011). One conjecture for why Yari did not leverage her 

experience of making Agua de tuna until I prompted her to do so is that she has been trained (via 

deficit discourses and traditional teaching modalities) to see mathematics as disconnected from 

her culture. Yet, as this model highlights, Yari’s culture played a powerful role in bringing out her 

math reasoning. 

There are two ways that an anti-deficit model differs from a traditional radical constructivist 

model. First, an anti-deficit model centers the sensemaking of students from historically 

marginalized groups (e.g., women, neurodiverse learners, students of color). When applied 

specifically to students of color, it challenges colorblind ideologies that assume uniformity in 

students’ needs and experiences. Second, an anti-deficit model valorizes students’ funds of 

knowledge in the sensemaking process. Rather than focusing primarily on students’ engagement 

with math tasks to make sense of their math reasoning, teacher-researchers constructing anti-

deficit models go one step further by leveraging students’ culture and out-of-school experiences 

to make sense of (and/or bring out) their math reasoning (e.g., connecting Yari’s initial response 

that pitcher A would be more tunaey because it contains less water to her home experience). 

Circling back to the purpose of this paper, I have proposed an approach that radical 

constructivist researchers can leverage to challenge the status quo and deepen their commitment 

to equity; an approach that requires supplementing radical constructivism with an anti-deficit 

perspective to promote the construction of anti-deficit models, specifically with respect to 

students from historically marginalized groups. The benefit in utilizing this approach is that it has 

the potential to challenge deficit discourses that have historically positioned these students as 

academically and culturally inferior to students from the dominant group. I encourage 

researchers working within this paradigm to consider this approach when inquiring about how to 

better attend to equity-related issues. More broadly, and in alignment with the PMENA theme, I 

encourage math education researchers to continue discussing approaches to bridge cognition and 

equity work in order to promote a future where we work collaboratively across different 

paradigms to achieve our equity-related goals. 
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Building classroom community with students is important to implementing social justice math 

lessons. This study investigated students' conceptions of community in a social justice high 

school math class. Data included two anonymous surveys that were analyzed using thematic 

analysis. The first finding showed three aspects of community in students’ definitions: a group of 

people, sharing something in common, and group dynamics. The second finding showed that by 

Survey 2, more students felt comfortable speaking to their peers, and there was an increase in 

students believing the class was a community. These findings suggest that building community 

helps students feel more comfortable sharing their ideas, which can in turn help them feel more 

comfortable discussing sensitive topics (i.e., racism, sexism, in their math classes).  

Keywords: Equity, Inclusion, and Diversity; High School Education; Social Justice. 

Building community is an important aspect of implementing social justice mathematics 

(SJM) lessons (Bettez & Hytten, 2013; Conway IV et al., 2022; Thanheiser & Koestler, 2024). 

Not only is it important, but it “is also essential for SJM exploration that is rooted in and respects 

all people’s humanity” (Conway IV et al., 2022, p. 36). Students have been trained to see 

mathematics as neutral (Gutiérrez et al., 2023; Thanheiser, 2023). Therefore, they might not feel 

comfortable talking about SJM topics (e.g., racism, sexism) in their mathematics classrooms. 

Being in a community offers students “connection, interdependence, and belonging” (Bettez & 

Hytten, 2013, p. 52). Hopefully, imbued with a sense of belonging, students feel they can share 

their ideas and thoughts in a space “intentionally built around principles of justice and anti-

oppression” (Conway IV et al., 2022, p. 36). Given that students make up a majority of the 

classroom community, their perspectives matter (Wilkerson, 2021). Thus, we need to understand 

students’ thoughts and feelings on building community, as well as whether they feel it has been 

built. Consequently, we explore students’ conceptions of classroom community in a SJM high 

school class to in turn support teachers in building community in ways that can support 

discussions of SJM topics in their classrooms. 

Literature Review  

Researchers have offered approaches to build community in the classroom (e.g., Conway IV 

et al., 2022) that can be leveraged by teachers working within social justice curriculums. These 

approaches involve teachers (1) reflecting on their own biases (Conway IV et al., 2022a), (2) 

implementing activities (e.g., icebreakers) (Taylor et al., 2022), assigning math autobiographies 

(Conway IV et al., 2022), and (3) having participation structures in place (e.g., complex 

instruction, Featherstone et al., 2011) so that students can feel valued no matter how they 

participate. Yet, with these ways of building community, how does a teacher know that 

community was built in their classroom? Are they basing it on their own perceptions (e.g., Taylor 

et al., 2022), or are students’ perceptions included? Id-Deen (2024) reminds us that we need to 
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consistently gather feedback from the community to check in regarding their needs. As 

Wilkerson (2021) states, “A powerful, essential part of our mathematics community is our 

students…Their voice must be heard and they must be included in conversations, decision 

making and actions,” (para 4). Thus, we need students’ continuous feedback to know whether 

they believe community has been built in the classroom. Little research, however, shows what 

this looks like in practice (see Adamian, 2022 for exceptions). In this paper, we aim to better 

understand what is important to high school students in a SJM class when defining community 

and determining whether they believe community was built. Our hope is that through building 

community, the students feel safe to discuss sensitive topics because community creates a sense 

of belonging, and this belonging allows students to share their true feelings. We studied efforts to 

build community in one high school SJM math course. The research questions are as follows: (1) 

What definition of community do students have? (2) Did students feel community was built, why 

or why not? 

Methods 

Data was collected during the 2023-2024 school year at Forest High School (FHS, 

pseudonym) in the SJM class. FHS is a public high school located in the Pacific Northwest. The 

SJM class had a total of 30 students enrolled in the first semester. The class met every other day 

for 90 minutes. Mr. L (white man of Ashkenazi Central and Eastern Jewish descent, high school 

teacher) and Roman (white cisgender woman, graduate student) co-taught the course. The class 

consisted of predesigned TMfSJ lessons (PTMfSJLs, e.g., Berry III et al., 2020) as well as 

community builders (e.g., significant circles, Esteban-Guitart & Moll, 2014). During the first 

month of the class, approximately 45 minutes to an hour was dedicated to building community in 

each class period while the rest of the time was focused on the implementation of a PTMfSJL. 

After the first month, 20 to 30 minutes was spent on community building each class period.   

Two anonymous community surveys were given during the first semester of the SJM class–

one in the beginning of October (Survey 1, n = 28) and the other in the beginning of January 

(Survey 2, n = 25). There were two types of questions. The first type pulled from practical 

measures (Jackson et al., 2016), which are quick survey questions that gauge students’ feedback 

on specific instructional strategies. Sample Likert scale phrases in the surveys included “I felt 

comfortable sharing my mathematical thinking” and “I felt comfortable sharing my views on 

race, racism, and society.” The second type were short response questions aimed at gauging 

students’ perceptions of community. Survey 1 had one short response question, “Do you feel this 

class is a community? Please explain.” Since some of the students in Survey 1 said this depended 

on their definition of community, in Survey 2, the students were also asked to define community. 

We used thematic analysis (Braun & Clarke, 2006) and bottom-up coding to analyze the 

students’ definitions of community on MAXQDA. Roman read the students’ definitions and 

created initial codes to capture what was included in their definitions (definitions could be 

assigned more than one code). For example, a student’s definition of community was, “A group 

of people that share experiences and work through challenges.” Roman’s initial codes were, “1. 

Group of people. 2. Share experiences. 3. Work through challenges.” She then read these initial 

codes to create initial themes. For example, anyone that mentioned working together or working 

through challenges was coded with the theme “working together.” Initial themes were then 

collapsed into broader themes. For example, “working together”, “comfortable with each other”, 
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and “getting along” were all collapsed into the broader theme, “Group Dynamics” to depict how 

members of the community worked with one another.  

Results 

Research Question 1: How Do Students Define Community?  

In the second survey, 24 out of 25 students provided definitions for community. We found 

three themes: (1) a group of people, (2) sharing something in common (like a goal or interest, 

etc.), and (3) group dynamics (how the group worked together. The largest theme was “ a group 

of people (mentioned in 83% of definitions). For example, two students wrote “people together” 

while another student wrote “a group of people sharing a common interest.” The students also 

thought that community members must share something in common (mentioned in 58% of 

definitions), like ideas, beliefs, or goals. As an illustration, students wrote, “a group of people 

with a similar end goal” or “a group of people sharing something in common, like a location, 

ideas, and beliefs.” The last major theme was “group dynamics” (mentioned in 37.5% of 

definitions). For example, students wrote, “a group of people that live in the same place and have 

some of the same interest[s] by work[ing] together and supporting each other” or “a group of 

people that share experiences and work through challenges.” To them, working together and 

supporting each other was important for building community. This makes sense as the students 

worked on projects and community builders in groups. The way the class was run could have 

influenced their definitions.  

Research Question 2: Did the Students Feel Community Was Built, Why or Why Not? 

To answer this question, we compared the students’ responses (yes, no, and in between) in 

Survey 1 (n = 28) and Survey 2 (n = 25) (see Figure 1). The number of students who said yes to 

the class being a community increased from 11 students to 17 students (39.3% versus 68%) from 

the first to the second survey. Applying the themes from the students’ definitions (from RQ 1) 

(see Cobigo et al., 2016), students in both surveys tended to focus on sharing something in 

common, like taking the class, “yes because we all have something similar. We all take this 

class” (Survey 1); or being in the same place, “yes, we are all in the same class, in the same 

school, so technically we would be counted as a small community” (Survey 2). In Survey 1, 

three (out of 11) responses focused on group dynamics, like “we are all working towards the goal 

of learning social justice math and helping and uplifting each other when we need help.” Group 

dynamics were mentioned more in Survey 2, where 8 of the 17 “yes” responses shared feeling 

more comfortable discussing with one another and working together. A student shared,  

yes i feel this class is a community because there is never a time where we have to learn how 

to find an answer to something by ourselves, we will always work together to figure it out. it 

just makes us feel more comfortable about sharing ideas and asking questions. 

Another student shared, “yes, i feel open to discussions with the whole group and i'm not afraid 

to show my ideas.” Thus, group dynamics seemed to play a bigger role in why the class was 

considered a community in Survey 2 versus Survey 1.  

The number of students who had in between yes and no responses (e.g., “maybe”) decreased 

from six students to three students (21.4% versus 12%). Reasons for students’ uncertainty were 

linked to (1) how community was being defined, (2) sharing something in common, and (3) 

group dynamics. For example, a student wrote, “Maybe? It depends on how you define a 
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community, because we're all just people that want a math credit for the most part” and another 

student wrote, “i feel like it's sorta a community but i would still feel judged by my answers or 

responses by the class.” In Survey 2, of the 3 responses, only one student explained, “Somewhat, 

we're all here to pass and graduate.” These highlight how the shared class setting and common 

goal–getting a math credit or trying to pass and graduate–did not automatically create a sense of 

safety in the learning process. The number of students who said “no” to the class being a 

community stayed the same (n = 3) in both surveys. Reasons included students feeling that (1) 

the class did not operate as a community and (2) sharing something in common did not make 

them a community. For instance, a student wrote, “nope, we're just here to get a grade, yes some 

of us are friends but we in a whole do not communicate or interact like a community” (Survey 

1). Another student wrote “naw we're just kids trying to pass” (Survey 2). Thus, even though 

community was intentionally built in this class, it did not align with all the students' 

understandings of community.  

 

 

 

Figure 1: Survey 1 and Survey 2 Count of Whether the Class Was a Community 

Discussion 

Literature on social justice often talks about the importance of community for implementing 

SJM lessons (e.g., Thanheiser & Koestler, 2024) and ways to build community (e.g., Taylor et 

al., 2022), but often omits students’ perspectives from the discussion. In this study, we add to the 

literature by asking for students’ perspectives on community (RQ 1) and whether they believed 

community was built (RQ 2) in their SJM class. In response to RQ 1, the three aspects of 

community in students’ definitions were a group of people, sharing something in common, and 

group dynamics. In response to RQ 2, we found that the proportion of students who believed the 

class was a community increased from 39.3% to 68% from Survey 1 to Survey 2. 

These results suggest that teachers who intentionally incorporate community building as part 

of their practice can help students feel a sense of community in their SJM classes. As illustrated 

by students’ responses to Surveys 1 and 2, this sense of community helped them feel more 

comfortable sharing their ideas. In Survey 1, students tended to worry about being judged and 

did not say much about group dynamics, whereas in Survey 2, group dynamics were mentioned 

more. A student said, “I like the community builders because I actually know the people in this 

class, my other classes I don't know anyone and don’t feel like I can share my opinion” (Survey 
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2). This suggests that intentionally building community can foster a safe space where students 

feel comfortable sharing their thoughts. This has implications for the way teachers encourage 

discussions around sensitive social justice math topics. If students do not feel comfortable about 

these topics, then the conversations may not be productive. Thus, intentionally building 

community may be one way for students to feel more comfortable speaking about these topics.  

This shows the importance of intentionally building community and getting students’ 

perspectives. They felt they could share their opinions in this class. If we truly want teachers to 

be able to discuss sensitive topics in their math classes, then we need students to feel more 

comfortable speaking about these topics as well. Intentionally building community and knowing 

what is important to students when it comes to building community is one way to do that.     
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Better understanding preservice teachers’ current perceptions toward students with disabilities 

will allow mathematics educators to create specific strategies for helping students to develop 

perceptions promoting inclusive classroom environments. To access these perceptions, we 

developed an online survey that asks respondents about their knowledge of disabilities, their 

experiences with people with disabilities, and decisions they would make based on classroom 

scenarios that involve students with disabilities. We gave this survey to 14 preservice secondary 

school teachers (PSTs). Key findings include five PSTs presented an inclusive perception toward 

students with disabilities, seven PSTs presented an ambiguous perception and the perceptions of 

two PSTs remained unknown. All but the latter two PSTs provided at least some evidence of their 

willingness to fully include students with disabilities in their mathematics classrooms.  

Keywords: Equity, Inclusion and Diversity; Students with Disabilities; Teacher Beliefs; 

Preservice Teacher Education. 

Purpose of the Study 

History reflects a progression through four views about the participation of students with 

disabilities in classrooms: exclusion, segregation, integration, and inclusion (Sónia, 2012). 

Currently, the goal is classrooms with an inclusive environment for students (Radd et al., 2021), 

which means that students with and without disabilities are considered contributing members in 

the learning process. This requirement is what makes inclusion different from integration, as 

integration—the current norm—is satisfied merely by the presence of students with disabilities in 

the classroom without regard to the nature of their participation. Mathematics teachers, in their 

role as instructional leaders, affect the movement from integration to inclusion in their 

classrooms. Specifically, teachers’ perceptions toward students with disabilities can affect, either 

positively or negatively, the creation of an inclusive environment in their mathematics 

classrooms. Better understanding teachers’ perceptions is essential to being able to support them 

in making the transition from integration to inclusion, and being able to support preservice 

teachers to develop an inclusive perception at the beginning of their career will accelerate the 

change process. To move toward this understanding, our preliminary investigation used a 

classroom-scenario-based online survey to access preservice secondary school mathematics 

teachers’ perceptions toward students with disabilities.  
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Theoretical Framework  

Papadakis & Kalogiannakis (2020) defined teacher perceptions as “[t]he thoughts or mental 

images [that] teachers have about their professional activities and their students, which are 

shaped by their background knowledge and life experiences and influence their professional 

behavior” (p. 339). Following their definition, we use the phrase mathematics teachers’ 

perceptions toward students with disabilities to mean “the thoughts or mental images that 

influence teachers’ interactions toward students with disabilities” and assume that these 

perceptions are formed from teachers’ background knowledge about disability and life 

experiences with people having a disability. The same definition applies to preservice teachers 

with respect to their future students. 

To have a better understanding of teachers’ perceptions toward students with disabilities, it is 

first important to understand their perceptions toward disabilities. This is why our framework 

(see Figure 1) addresses both types of perceptions. Perceptions toward disabilities focus on two 

things: (1) the medical, social, and revolutionary models of disability described in Tan et al. 

(2019; see Figure 2 below) as a way to categorize the conceptualizations teachers have of 

disability, and (2) which health conditions teachers recognize as disabilities. Our 

conceptualization of teachers’ perceptions toward students with disabilities focuses on teachers’ 

practice in the classroom around (1) their considerations toward students with disabilities in 

comparison to students without disabilities, and (2) their application of fairness, justice, equity, 

and human rights from the perspective of disability. 

 

 
 

Figure 1: Conceptualization of Teachers’ Perceptions toward Disabilities and Students with 

Disabilities (adapted from Romero Castro & Van Zoest, 2023) 

 

We consider that teachers’ perceptions toward disabilities or toward students with disabilities 

can be identified as inclusive if they promote inclusive environments in classrooms. Otherwise, 
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they are identified as non-inclusive. The right side of Figure 1 illustrates two equity affirmations 

toward disability that promote inclusive environments and increase the possibility that students 

will have humanized experiences in their mathematics classrooms. We take the perspective that 

(1) in order to have an inclusive perception toward disability teachers need to embrace the fact 

that disability can be part of human identity, and (2) to have an inclusive perception toward 

students with disabilities they need to hold that every student has a voice in the classroom (for 

more details, see Romero Castro & Van Zoest, 2023). These two facts are considered 

affirmations of equity toward disability, and they are related to Gutiérrez’s (2012) two 

dimensions of the critical axis of equity: identity and power. Particularly, alignment of these 

equity affirmations with the critical axis of equity is the necessary condition for inclusion toward 

disability, whereas the relationship between teaching practice and the dimensions in the 

dominant axis of equity—access and achievement—is a sufficient condition for integration 

(Romero Castro, 2023). This can be explained by considering that the active participation of 

students with and without disabilities in the learning process (which requires students’ identities 

to be considered) is what makes an environment inclusive rather than integrative. On the other 

hand, access and achievement will guarantee that students are present for all classroom activities, 

which satisfies the definition of integration. 

Methods  

An anonymous classroom-scenario-based online survey was designed to assess the current 

perceptions of mathematics teachers. We gave this survey to 14 preservice teachers (PSTs) at the 

end of a secondary mathematics methods course at a mid-western U.S. university. Before 

accessing the survey, the PSTs were asked to accept the conditions of a consent form appearing 

on the first screen of the survey link; all 14 people enrolled in the course accepted. The survey 

was created using the software Qualtrics (2020) and has three components. The first component 

assessed which conditions PSTs considered as disabilities. Although other studies have asked 

preservice teachers to explain their concept of disability (e.g., Mason & Connor, 2022), for our 

purposes, it seemed more useful to draw on the existing legal documents in the United States that 

require the integration/inclusion of students with disabilities that belong to certain categories. 

Specifically, we drew on the categorization of disabilities from the Individuals with Disabilities 

Education Act of 2004 (as cited in Radd et al., 2021). The PSTs were provided with a list of 12 

health conditions and asked to indicate whether each was or was not a disability, or if they were 

“unsure.” The health conditions listed were cerebral palsy, blindness, hearing impairment, 

leprosy, panic disorder, autism, sleep-wake disorder, Tourette syndrome, spinal cord injury, 

Down syndrome, oppositional defiant disorder (ODD), and depression; leprosy and sleep-wake 

disorder are the only conditions on this list that are not considered disabilities in IDEA. For each 

of the conditions in the list, teachers were also asked to identify whether they have the condition, 

they have met someone inside/outside the school with the condition, or they have not had 

exposure to the condition. They also were provided with the opportunity to enter other 

disabilities and describe their exposure to them. Babik and Gardner (2021) established that 

exposure since childhood to people with disabilities is one of the factors that positively affect 

perceptions toward them.   

The survey's second component asked the PSTs to describe the nature of their experiences 

with people with disabilities. There are two questions related to this: one focused on their 
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interactions in their educational career (with teachers, school staff, classmates) and the other 

focused on their interactions with people outside of school. In each of these two questions, PSTs 

may choose if they have had only good experiences, at least one complicated experience, or no 

related experience in the respective environment. If they choose the second option, then they are 

encouraged to describe why it was complicated. In addition, they were asked to determine 

whether they felt “totally,” “enough” or “not” prepared to be the teacher of a student with a 

disability. All these questions help to understand PSTs’ backgrounds, which inform their 

conceptualization of disability and their perceptions toward students with disabilities in the 

classroom (see Figure 1).  

The third component of the survey positioned the PSTs in two classroom scenarios and asked 

them to respond to mathematical contributions from students with disabilities during a classroom 

discussion. The first scenario involves Sam, a student with cerebral palsy who, after working 

individually on a geometric problem the teacher provided in class, publicly gives an incorrect 

answer. The second scenario involves Chris, a student with a mathematical learning disability 

who, after working with a group on an algebraic problem the teacher provided in class, shared 

the group’s correct answer. As described in Romero Castro & Van Zoest (2023), each scenario is 

followed by a series of three questions, with each question having three to four choices and the 

option to write one’s own response if it is not captured by one of the options. Question 1, “What 

first comes to your mind?” is intended to access the extent to which teachers embrace the 

complex nature of disabilities as being part of students’ human identities (Figure 1: Equity 

Affirmation #1). For this question, they are asked to write their response before selecting the 

choice that best fits their response. Question 2, “What would you do next?” is intended to access 

the extent to which students with and without disabilities have a voice in the classroom (Figure 

1: Equity Affirmation #2). The response to Question 1 informs the response choices for Question 

2. Question 3, “Why did you choose that response?” is designed to access their justifications for 

their answer in Question 2 through a view of the student’s identity.  

For the analysis stage, responses to Question 1 were aligned to the models of disability’s 

conceptualization described in Tan and colleagues (2019). Figure 2 shows a brief description of 

each model and example choices for Question 1 to illustrate how the response options in the 

survey support identifying a respondent’s model based on their choices. 

 
Model of 

disability 

Description 

(Tan et al., 2019) 

Example Response Choices for Question 1 

Revolutionary considers disability as part of a person’s 

humanity and not something to be fixed  

“posits that mathematics belongs to all students, 

assuming that all learners, without distinction, 

are creative thinkers and doers in their 

multifaceted everyday experience of 

mathematics” (p. 39) 

(Scenario 1) I need to figure out what Sam is 

thinking because there are multiple ways they 

could have gotten that wrong answer. 

(Scenario 2) I need to figure out what Sam is 

thinking because there are some reasoning 

ways they could have answered. 

Social “points to the deficiencies within the 

environment that contributes to the construction 

of the disability or impairment” (p. 37) 

“addressing disability issues becomes more a 

matter of social change rather than individual 

fixing or even curing or correcting biological or 

(Scenario 1) Maybe this problem is too hard 

for Sam, so I should modify it to support Sam 

to get the right answer. 

(Scenario 2) I wish I knew more about Chris’s 

mathematical learning disabilities so I would 

know how to help Chris more effectively. 
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functional impairments” (p. 39) 

Medical “locates the deficit, impairments, or disability 

solely on the individual” (p. 34) 

“the mathematics learning 

environment and socially acceptable classroom 

rules, expectations, and circumscribed ways of 

knowing and doing mathematics are thought of 

as adequate and are unquestioned” (p. 36) 

(Scenario 1) That’s a common answer, even a 

normal student might come up it because 

everyone comes to the class with their own 

conceptions or misconceptions. 

(Scenario 2) It feels risky to have Chris 

present the solutions because their 

mathematical learning disabilities prevent 

Chris from making sense of it. 

 

Figure 2: Models of Disability and Their Manifestation in for Survey Response Choices  

 

Based on the first equity affirmation we mentioned—disability can be part of human identity, 

the revolutionary model reflects an inclusive perception toward disability whereas the medical 

and social models reflect a non-inclusive perception. The analysis for the responses to the first 

question was set up to determine the respondent’s perception toward disability in the following 

way: 

• Inclusive when the revolutionary model is shown across both the written and selected 

responses to both scenarios.  

• Non-inclusive when the medical or social models are shown across both the written and 

selected options respond to both scenarios.  

• Ambiguous when the responses vary within or across scenarios. 

Responses to Question 2 and Question 3 were analyzed to determine whether PSTs would 

consider people with disabilities for participating in class, from which it is possible to infer their 

perceptions toward students with disabilities (see Figure 1) in the following way:  

• Inclusive when there is consistent evidence the respondent considered students with 

disabilities for class participation. 

• Non-inclusive when there is consistent evidence the respondent would not consider 

students with disabilities for class participation. 

• Ambiguous when there is inconsistent evidence about the respondent’s consideration of 

students with disabilities for class participation. 

• Unknown when there is no response to Questions 2 and 3 for both scenarios. 

The survey responses were imported and organized into a Microsoft Excel spreadsheet by 

respondent number to support the analysis process. 

Results & Discussion 

Here we briefly discuss key findings for each of the three survey components. In the first 

component, cerebral palsy and blindness were the only health conditions identified by all 14 

preservice teachers (PSTs) as disabilities, even though only five and nine of them, respectively, 

indicated past interactions with people having those disabilities. Autism and Down syndrome 

were identified as disabilities by 13 PSTs; one PST was unsure about Autism and said Down 
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syndrome was not a disability. In general, the PSTs identified legal disabilities as disabilities, or 

were unsure. For example, depression is legally identified as a disability (ADA, 2018) and eight 

PSTs identified it as such, four were unsure, and only two said that it was not a disability. 

Interestingly, one of the two PSTs who said depression was not a disability identified themself as 

having depression and the other as knowing someone who did. Eight PSTs in total identified 

themselves as having one of the listed health conditions: one with hearing impairment, two with 

panic disorder, and five with depression4. In addition, one PST entered that they had post-

traumatic stress disorder (PTSD). Regarding interaction with others, 13 PSTs reported exposure 

to someone with autism, 10 for Down syndrome, and 9 for hearing loss. Interestingly, although 

five PSTs in the class reported having depression, eight of their classmates reported not having 

been exposed to anyone with depression, highlighting the invisible nature of depression as a 

disability. In addition to the health conditions on the list, one PST each entered that they had 

exposure to someone with the following: attention-deficit/hyperactivity disorder (ADHD), 

obsessive-compulsive disorder (OCD), multiple sclerosis, muscular dystrophy, hip dysplasia, and 

epileptic seizures. 

For the second component, seven PSTs (50% of the sample) declared they had all good 

experiences interacting with people with disabilities within school relationships, while the other 

50% declared having had at least one complicated experience. Among the reasons given by the 

PSTs who declared to have at least one complicated experience, the lack of preparation or 

knowledge about disabilities was the most common. For example, PST 10 wrote, It was one of 

my first times working with a student who had a disability [autism], and I felt ill-prepared in 

helping them. A different reason is illustrated by PST 6: How the teacher thought about the 

student was a negative. This PST did not identify any contact with a particular disability in the 

first component of the survey, but their answer implies that they could identify a teaching 

practice with a non-inclusive perception toward the student with a disability. PST 13 

distinguished among different types of disabilities: Sometimes, students who have disabilities can 

(not often) be disruptive to the class (especially those with neurodivergent ones). Disabilities that 

are purely physical are usually handled well by myself, classmates, and teachers. 

Similarly, six of the PSTs declared they had all good experiences interacting with people with 

disabilities outside school relationships, seven declared at least one complicated experience, and 

one had no experience. PSTs described complicated experiences around family issues and 

fluency in daily conversations. For example, PST 13 wrote: Being friends/family with someone 

who has a disability can be hard. Of course, I do not downplay the dignity of that person. 

However, loving them takes effort on their hard days and PST 8 expressed: Sometimes I struggle 

with navigating conversations with people and worry about what I might say, so I get worried 

about saying the wrong thing to someone with a disability. In the same survey component, one of 

the PSTs declared to feel totally prepared to be a teacher of a student with a disability, while 

twelve of them felt somewhat prepared and one of them not really prepared.  

The results of the third survey component are organized in Table 1. We first discuss the 

model of disability that the PSTs’ responses mapped to for each scenario and their resulting 

 
4 It is important to clarify that PSTs were not allowed to select more than one choice in the determination or the 

exposure parts. This is a design feature that we will modify in future uses of the survey so that respondents will be 

able to indicate both their own experience and exposure to others.  
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inferred perception toward disabilities. We then discuss the PSTs’ consideration of students with 

disabilities and their inferred perceptions toward students with disabilities. 

In Scenario 1, ten PSTs responses mapped to the revolutionary model, none to the social, 

three to the medical, and one presented as ambiguous. In Scenario 2, five mapped to the 

revolutionary model, three to the social, three to the revolutionary, and three presented as 

ambiguous. Table 1 shows that of the ten PSTs that mapped to the revolutionary model in 

Scenario 1, four mapped to the revolutionary model in Scenario 2, two to the social, one to the 

medical, and three presented as ambiguous. These differences in models across the two scenarios 

could be affected by the differences between the scenarios: type of disability (physical or non-

physical), evaluation of the student’s contribution (correct or incorrect), and type of work 

(individual or group). Considering the results, we conclude that four PSTs presented an inclusive 

perception toward disability, two PSTs presented a non-inclusive perception, and eight PSTs 

presented as ambiguous. The fact that only four PSTs presented an inclusive perception toward 

disabilities suggests that there is much work to be done to prepare teachers to promote an 

inclusive classroom. Furthermore, even PSTs who have an inclusive perception may need  

 

Table 1: Analysis of preservice teachers’ modeled perceptions toward disabilities and 

students with disabilities 

 

 

 

PST 

# 

 

Model of disability 

reflected (Q1) 

 

Perception 

toward 

disabilities 

Participation of students 

with disabilities 

(Q2 & Q3) 

Perception 

toward 

students with 

disabilities Scenario 1 Scenario 2 Scenario 1 Scenario 2 

4 Rev Rev Inclusive Yes Yes Inclusive 

7 Rev Rev Inclusive Yes Yes Inclusive 

11 Rev Rev Inclusive Yes Yes Inclusive 

13 Rev Rev Inclusive Yes Yes Inclusive 

5 Rev Med/Rev Ambiguous Yes Yes Inclusive 

10 Rev Med/Rev Ambiguous Yes Missing Ambiguous 

2 Rev Med/Rev Ambiguous Yes Missing Ambiguous 

12 Rev Med Ambiguous Yes Missing Ambiguous 

14 Med/Rev Med Ambiguous Yes Missing Ambiguous 

9 Rev Soc Ambiguous Yes Missing Ambiguous 

3 Rev Soc Ambiguous Yes Missing Ambiguous 

6 Med Rev Ambiguous Missing Yes Ambiguous 

1 Med Soc Non-inclusive  Missing Missing Unknown 

8 Med Med Non-inclusive  Missing  Missing Unknown 

 

additional opportunities to better understand disabilities. For example, PST 13 wrote in the blank 

box for Question 1 in Scenario 1: The first thing that comes to my mind, without even reading the 

numbers yet, relates [to Sam’s] perspective to the problem. Without solving and analyzing the 

error, I would wonder if Sam's experience with wheelchairs informs the solution. Since 
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Scenario 1 does not mention anything about Sam’s experience with wheelchairs, PST 13 may 

have assumed that Sam uses a wheelchair because he has cerebral palsy. The reality is that above 

50%-60% of children with cerebral palsy can walk independently (CDC, 2023).  

Five PSTs’ responses to the second and third questions provided evidence that they would 

consider further participation of the students with disabilities in the scenarios, and thus they were 

inferred to have an inclusive perception toward students with disabilities. Seven PSTs’ responses 

to one of the scenarios provided evidence that they would consider further participation, but 

because they were missing responses to Questions 2 and 3 for the other scenario, they were 

coded Ambiguous. Two PSTs’ perceptions toward students with disabilities remain unknown 

because they did not provide any responses to Questions 2 and 3. It is interesting to note that 

these two were the same PSTs who had non-inclusive perceptions toward disabilities.  

To illustrate, for Scenario 1, nine PSTs chose Ask Sam to explain their result (seven of them 

to better understand the root of [their] misconception and two to give other students a chance to 

notice whether they share Sam's argument), and one PST chose Ask someone else who had the 

same answer to share their thinking to promote discussion in the classroom. PST 14 chose to 

create their own response: Have Sam take me through step by step so I can understand their 

thinking and build from it, and their reason behind their response was: Sam is a person with a 

disability. He is more than the disability. All these PSTs were willing to include Sam in the 

conversation and seemed to value Sam’s contributions. For Scenario 2, five PSTs chose Ask 

Chris to give their reasoning for their answer (four of them to promote discussion in the class 

and one to deepen Chris's mathematical reasoning). In addition, PST 11 wrote: I would first ask 

Chris to explain their reasoning and then solicit help from the group if he struggled and chose as 

their reason to deepen Chris's mathematical reasoning. Four of these six (PSTs 4, 7, 11, and 13) 

demonstrated an inclusive perception both toward disabilities and toward students with 

disabilities. PST 5 demonstrated an inclusive perception towards students with disabilities and an 

ambiguous perception toward disabilities because they had one response that seems to reflect a 

medical model of disability. The fact that there was more missing data for Scenario 2, where the 

student was identified as having a mathematical learning disability, raises the question of 

whether PST 13 was correct in assuming that PSTs are more comfortable responding to students 

who have physical disabilities. However, Scenario 1 involved a student’s own contribution and 

Scenario 2 involved a student representing their group’s answer, which could also be a reason for 

the difference. 

Conclusion 

This preliminary investigation provides a glimpse into preservice secondary school 

mathematics teachers’ perceptions toward disabilities and toward students with disabilities. Our 

results suggest that PSTs have a fair amount of experience with people with disabilities, and 

much of it has been positive. Furthermore, all but two PSTs provided at least some evidence of 

their willingness to fully include students with disabilities in their mathematics classrooms. 

Despite these encouraging signs, there is much work to be done to support teachers in achieving 

the goal of creating an inclusive environment in their mathematics classrooms. Better 

understanding PSTs’ current perceptions toward students with disabilities will help teacher 

educators create specific strategies for helping them to develop perceptions promoting inclusive 

classroom environments from the beginning of their careers.  
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Having only two scenarios for PSTs to respond to meant that we could not clearly identify 

which aspects of the scenarios were responsible for the differences in the models of disability 

their responses reflected and inconsistencies between their consideration of students with 

disabilities as contributors of mathematics. Expanding the survey to additional scenarios would 

allow us to better identify nuances in their responses (e.g., physical vs. intellectual disability, 

individual vs. group work, accuracy of the contribution).  
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This exploratory, qualitative study looked at a mathematical routine, focused on family-

provided photos, that elicited children’s mathematical and general observations and inquiries and 

engaged caregivers in mathematical communications. As such, the study of this routine 

prioritizes family engagement in early mathematics learning through the theories of funds of 

knowledge (González et al., 2005) and parents as intellectual resources (Civil & Andrade, 2003). 

As intellectual resources, parents have knowledge and experiences that serve as funds of 

knowledge to strengthen children’s development of positive mathematics outcomes and 

dispositions, both at home and in school. (Vélez-Ibañez & Greenberg, 1992; Moll, et al., 1992). 

Set in three kindergarten classrooms serving a diverse, multilingual community in the northeast 

United States, teacher interviews utilized photo elicitation to study ways in which 

implementation of this culturally responsive, family-inspired mathematics routine revealed 

parents’ intellectual resources and family and children’s mathematical funds of knowledge.  

 

Research-Based Design  

This study followed three project teachers after one year of PD and lesson enactment to 

explore how they were expanding on what they learned from the PD. The focus of the follow-up 

was to learn how teachers engaged families in mathematics, particularly by amplifying family 

voices and learning ways to elevate families as assets and intellectual resources. In framing our 

work on Funds of Knowledge and Parents as Intellectual Resources, we added a component of 

“Family Inspiration” to a Mathematizing the World Routine (MWR). The original MWR was a 

routine that teachers engaged in, during year one of our project, focused on developing students’ 

observational and mathematical questioning skills related to some phenomenon, prompting 

students to notice, wonder, and pose mathematical questions Centered on this revised routine, 

our study focused on the following research question: What does the culturally responsive, 

family-inspired MWR reveal about family and children’s math knowledge, assets and practices? 

Findings  

Photo elicitation interviews allowed us to revisit the routine enactment as well as related 

teacher-family communications. We asked teachers to select the most memorable photos in terms 

of math talk and family engagement. Recurring themes fell into three categories: 1) Linking 

family practices with math practices; 2) Making connections among diverse families, peers and 

educators; and 3) Increasing communication and participation of diverse families. The family-

inspired MWR offers a unique integration of mathematical content and family engagement. 

mailto:jsuh4@gmu.edu
mailto:scalabre@gmu.edu
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Asian parents are often described as tiger parents in the U.S. media which is a monolithic 

representation of them. However, it does not consider cultural differences among subgroups in 

Asian populations. Korean mathematical expressions differ from the U.S. curriculum, and some 

Korean immigrant parents directly support mathematics at home. This research explores Korean 

immigrant parental involvement in home math support during the ongoing COVID-19 pandemic 

and remote schooling. My analysis reveals how these parents utilize culturally relevant 

approaches to help their children understand U.S. mathematics to negotiate differences in 

curriculum, cultural artifacts, academic language, and mathematics identities. 

Keywords: mathematical processes and practices; equity and justice; culturally relevant 

pedagogy  

Parental Involvement in Education  

The importance of parental involvement in children’s learning has never been in doubt" 

(Sénéchal & LeFevre, 2002). This quote emphasizes the positive relationship between parental 

involvement and their children’s learning. Parental involvement in education has three 

dimensions: involvement at school, involvement at home, and academic socialization (Wang & 

Sheikh-Khalil, 2014). Among these, home-based involvement happens at home and in local 

communities such as monitoring schoolwork and progress, supervising homework, setting time 

or location to do homework, and exploring local places, libraries, or museums. Academic 

socialization is communication with their children, sharing parental expectations about 

schoolwork and the importance of education, encouragement of educational goals, and making 

plans and preparations (Wang & Sheikh-Khalil, 2014).  

Parental involvement at home fundamentally influences children’s academic success (Jeynes, 

2003). Hyde et al. (2006) examined mother and child interactions while working on pre-algebra 

equivalence problems, such as 3 + 4 + 5 = 3 +      , and found children understand mathematical 

concepts better with parental support from home. Not only does it help in understanding 

concepts, but parental involvement at home also has advantages in shaping identities. According 

to Vukovic et al. (2013), parents help reduce mathematics anxiety, leading to progress in 

children’s mathematics achievement in higher-order mathematics such as word problems and 

pre-algebra.  

Korean Immigrant Parental Involvement in Education  

Asian parents are often described as tiger parents in U.S. media, which presents a monolithic 

representation of them (Juang et al., 2013). Although there may be commonalities in Asian 

parenting, parental approaches also vary across subgroups. Specifically, Korean cultural customs, 

ideas, and lived experiences—such as the devastation of the Korean War leaving the country 

mailto:yewon.sung@csusb.edu
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impoverished for over a generation, living under the North’s nuclear threats, and having hostile 

superpowers close by—surely influence parenting in unique ways. Contrary to the common 

belief toward Asian parents in general, Kim et al. (2018) found that only 11 percent of Korean 

immigrant parents in their study provided academic support among the 141 participants. This 

suggests that a small portion of Korean immigrant parents directly interact with their children’s 

education in the U.S. 

Culturally Relevant Practice at Home. Some Korean immigrant parents face difficulties 

due to a lack of English proficiency when supporting their children’s academic progress (E. Kim, 

2002), as they are not familiar with the U.S. curriculum and content jargon. For example, in 

mathematics education, Korean immigrant families encounter differences in the U.S. 

mathematics curriculum, including cultural, historical, and political contexts, as well as different 

learning styles, content, mathematical word problems, and so on. However, there has been 

limited attention given to interactions between Korean-born parents and their American-born 

children (H. Kim, 2019). To address this gap, the study reported here specifically focuses on how 

first-generation Korean immigrant parents support their children’s mathematical understanding at 

home by negotiating these differences. The data were collected during the middle of the 

pandemic in the summer of 2021, a period when such support was particularly salient.  

This article employs the theory of Culturally Relevant Practice (Ladson-Billings, 1995) as a 

lens to examine the efforts of parents in negotiating differences and enhancing their children’s 

understanding of U.S. mathematics. The study delves into the interactions of five Korean 

immigrant parents with elementary-aged children in the 4th, 5th, and 6th grades who are actively 

involved in their children’s mathematics learning at home. Narrative inquiry is utilized to 

comprehend the diverse experiences of the five participants' families through observations and 

interview sessions. Due to the literature gap on Korean-American family education in the U.S., 

this paper specifically focuses on the observational data that highlight Korean families’ 

mathematical interactions. The present article examines these interactions as the key 

methodology in this analysis. With this in mind, the research question for this study is as follows: 

How do first-generation Korean immigrant parents support their elementary-aged children’s 

understanding of mathematics across different cultures, languages, and identities? 

 

Methods  

Narrative inquiry investigates the story itself and subjective experiences (Riessman, 1993), 

which also include collective narratives among people to discern authentic meaning and value in 

conversation. The narrative inquiry method aligns well with this study, as it emphasizes the 

parents and their children’s collective narratives to discuss mathematical understanding. 

Participants 

I recruited five first-generation immigrant families with elementary-aged children via a 

Korean online community and Korean communities in the U.S. Since this study aims to explore 

mathematics support at home, participating parents must provide direct mathematics support at 

home. All participants’ names are pseudonyms, chosen by the participants themselves. Except for 

Seong Chan’s family, who stayed for 4 years, the other four families have resided in the U.S. for 

more than 10 years. Participating children were expected to enter 4th, 5th, and 6th grades, and 

the data collection period from June to August 2021. Seong Chan was the only father who taught 
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math at home, and his wife Hyeon Ji also occasionally participated in the interview sessions. 

Participants had varying immigration years, ages, occupations, and numbers of children.  

Data Collection and Analysis 

The results reported here are derived from observations, which included authentic 

conversations between Korean immigrant parents and their children regarding mathematical 

understanding and how to navigate mathematical expressions within two different cultures, 

languages, and identities. Observation sessions occurred twice, with each session lasting 40 

minutes. Follow-up interview sessions lasted about 20 minutes, resulting in a total observation 

time of 1 hour for each interaction. All sessions were transcribed using the Artificial Intelligence 

transcribing program, Naver Clova Note (https://clovanote.naver.com/). Each transcript 

underwent multiple checks, as the technology sometimes did not capture the correct narratives. 

Additionally, the transcripts were scrutinized for themes that participants highlighted on how to 

negotiate differences in culture, language, and curriculum. When a person used two languages, 

Korean and English, I translated the interview verbatim into English to aid the audience of this 

study. I inserted the translation in italicized fonts for the Korean parts. English-spoken parts were 

marked with bold fonts to indicate the code-switching from Korean. 

 

Results 
Korean immigrant parents and their children jointly ‘negotiated’ cultures, identities, and 

language differences in their interactions to enhance their mathematical understanding. Although 

the parents are not education experts, they endeavored to bridge differences in culture and 

language. Negotiation is the process by which two or more parties attempt to resolve perceived 

incompatible goals (Brett, 2000; Carnevale & Pruitt, 1992). Brett (2000) discussed intercultural 

negotiations involving cultural preferences, norms, priorities, and negotiation strategies. These 

communicative preferences meet in the middle of a negotiation, dealing with both similarities 

and differences. 

In alignment with Ladson-Billings’s culturally relevant practice (1995), I address cultural 

negotiation for mathematics understanding. This negotiation stems from interactions between 

Korean immigrant parents and their children, where mathematical meaning, concepts, and 

mathematics identities are jointly explored, revisited, revised, and negotiated in terms of different 

cultures, languages, and identities. This also provides insight into how immigrant parental 

involvement either strengthens or impedes children’s learning when navigating various cultural, 

national, and generational differences during the learning process. Parents' immigration with 

changed social location influences their children, exposing them to two languages at home. If 

immigrant parents attempt to teach academic skills to their children, their learned curriculums 

would differ due to generational gaps and diverse cultural backgrounds. However, all 

participating parents made efforts to connect their learned curriculum with their children’s U.S. 

mathematical concepts. Table 2 presents themes reflecting the differences parents observed and 

the ways they engaged in cultural negotiations to address disparities in curriculum, artifacts, 

academic language, and identities. 

 

Table 2: Cultural Negotiation for Differences in Mathematics Understanding 
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Differences Cultural Negotiation 

Curriculum Curriculum differences in Korea and the U.S. 

Artifacts Culturally relevant revision 

Academic language Cultural negotiation in language differences 

Math identities Sharing expectations 

 

Discussion 

This study explored how Korean immigrant parents support their elementary-aged children’s 

mathematical interactions at home by addressing differences. In alignment with Ladson-

Billings’s culturally relevant practice (1995), I address cultural negotiation for mathematics 

understanding based on observations of Korean immigrant parental involvement in four ways: 

negotiation in curriculum, artifacts, languages, and identities during mathematical interactions. 

While not experts in culturally relevant pedagogy, they provided cultural revisions to enhance 

their children’s mathematical understanding. Parents sought to connect their learned curriculum 

with the U.S. curriculum and endeavored to revise unfamiliar cultural terms (Ladson-Billings, 

1995) in word problems to help their children grasp the mathematical meaning. Regarding 

languages, when a child made an error using a Korean expression, parents explained the U.S. 

way. For instance, when a child said, 'Twelfth One,' the parent corrected him by saying, 'One 

Twelfth.' Beyond fostering understanding, parents also shared their mathematics identities and 

values in problem-solving to yearn for children’s academic success. Interestingly, their emphasis 

on the use of mental math varied, challenging common myths about Asian parents as a 

homogeneous population. 

Although some Asians have been perceived as model minorities inherently good at 

mathematics, findings reveal that Korean immigrant parents and their children’s narratives still 

need support in language and cultural differences in their mathematics schoolwork. This study 

uncovers Korean immigrant parents and their children putting effort into understanding U.S. 

mathematics, a challenging task. It is a winding road that must navigate many challenges, 

including cultural differences in mathematics terms and meaning, as well as the interweaving of 

parents’ and children’s mathematics curricula. This implies educators need to invite all students, 

regardless of immigrant backgrounds, cultures, identities, or linguistic assets. Furthermore, 

educators should conduct more professional development sessions to better understand students' 

backgrounds and incorporate them into their lessons. They should also invite parents to share 

their family narratives and culture. 

Limitation 

One limitation of this study is that it includes only narratives from five families. The 

observation data, along with my interpretation, may not be a direct representation. However, the 

follow-up interview session somehow covers the reasoning behind participating parents’ 

approaches.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

382 
 

Conclusion 

This study specifically uncovers Korean immigrant parents and their children’s cultural 

negotiation to build mathematical meaning at home during the COVID-19 pandemic. It 

illustrates that language and culture are interrelated, influencing conceptual differences in 

mathematics. Immigrant families put in extra effort to understand U.S. mathematics. The study 

delves into Korean immigrant parents' and children’s mathematical interactions, revealing their 

additional efforts. Future research is needed to understand how Korean immigrant students 

negotiate mathematical meaning in their classrooms. 
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This poster explores high school refugee students' mathematics learning experiences and 

identities using the Math-trivium framework (Umeh, 2023) and calls for support for Central 

Missouri high school teachers in adapting to asset-based pedagogical practices in mathematics to 

meet the academic needs of refugee youth. Central Missouri schools are seeing an increase in 

refugee students. The most recent available data shows that the percentage of Multilingual 

learners more than doubled (from 3.41% to 6.99% between 2009 and 2022 in Columbia Public 

Schools (CPS) (DESE, 2022), and the Democratic Republic of Congo, Afghanistan, Eritrea, 

Syria, Burma, and Sudan are the most common countries of nationality (RPC, 2023). While 

schools are expected to facilitate the reintegration of refugee youths into a new academic and 

social culture, they often lack the readiness to address these students' specific learning needs and 

identities (Hos, 2016). Thus, there is a need to provide adequate support for high school teachers 

to understand the refugee experiences and identity as assets for equitable mathematics 

instruction. 

Figure 1: Shows an Identity Map of Refugee Youth. 

 

Therefore, this poster explores the mathematical identities of refugee youth within the 

context of urban and rural refugees living in Central Missouri, United States of America. 

Although they have the same refugee status, their mathematics identities and experiences differ. 
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There is a need to prepare globally competent high school refugee teachers and mathematics 

teacher educators for more equitable mathematics instruction for refugee youths. 
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In this methodological paper, we describe our approach to engaging middle school students in 

identifying storylines at work in their experiences of mathematics learning. Storylines are an 

important part of the theorization of positioning but they are underexplored. Our focus is on 

students who identify (or are identified) with groups that have often been marginalized, namely 

Indigenous students and students who are newly arrived migrants. It was important for us to 

garner the trust and also the interest of students while guiding them to conceptualize storylines 

so that they are the ones identifying the storylines that impact their experiences. In the 

presentation we will share more data. 

Keywords: Equity, Inclusion, and Diversity; First Nations and Indigenous Cultures 

Student experiences of mathematics learning have been investigated using the theorization of 

positioning. Indeed, it is important for educators to understand how students understand 

themselves as learners and how they understand their actions. Students are positioned by 

teachers, classmates, media, community, organizations, language constructs, and families, 

through current and historical practices. We are particularly interested in the positioning of 

students who identify (or are identified) with groups that have often been marginalized, namely 

Indigenous students and students who are newly arrived migrants. 

A focus on storylines 

Most research using theories of positioning focuses on the positioning (e.g., Drageset, 2024, 

Sengupta‐Irving, 2021; Tait-McCutcheon & Loveridge, 2016). However, the tradition referred to 

as positioning theory sees a triad at work in human interaction, including the three elements of 

positioning, storyline and speech/communication act (e.g., Harré, 2012; Herbel-Eisenmann, 

2015). A storyline is a story known to a participants in an interaction. The people in the 

interaction are associated with positions in the story, which guides the people’s choices about 

how to interact. Storylines are important because they provide the repertoires for action for 

mathematics students. The storylines available (known) to students and their teachers make 

certain positions possible, and they exclude other positions from possibility. 

As far as we know, the research that focuses on storylines in mathematics education research 

investigates common stories that appear in public discourse (e.g., Andersson et al., 2022; 

Chorney et al., 2016; Herbel-Eisenmann et al., 2016; Rodney et al., 2016)—namely news and 

entertainment media. In our research project we work with Indigenous and new migrant students 

and aim to identify the storylines at work in their mathematics learning environments. In this 

paper, we describe how we have gone about doing this, noting the principles we embrace, the 

challenges we experience, and results of our choices. This is a methodological paper. 

We do not yet have detailed data sufficient to share in this paper, but we expect to have data 

to share for the conference. In this paper we describe our methodological choices and how they 
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manifest in our interactions with participants. The research aim is to identify storylines, animated 

with accounts of student experiences. We will next share these with teachers and work with them 

to develop alternative pedagogies that build on student strengths and experiences. (We have 

some detailed data already including accounts of student experiences, but to honour our 

anonymity promises, we cannot yet publish any of the accounts of experiences because that 

would make it possible for some people to identify the students who told us of their experiences.) 

 First context: Conversations with Indigenous students 

Our research project is situated on the traditional unceded and unsurrendered territory of 

Wolastoqiyik and Mi’kmaq peoples (often marked on maps as part of eastern Canada). Since 

colonization, the majority of people living here have been settlers, and there has been a recent 

surge in settlement with the general upswing in global human migration. Given the history of 

terrible experiences at the hands of settler people and colonizing institutions, it takes time and 

care to develop a relationship of trust with Indigenous students.  

In the first context of our research project, Dave (the first author) worked with a teacher who, 

for more than a decade, has worked as a support teacher for the Indigenous students from a local 

Wolastoqiyik community. We note that this teacher’s endorsement and collaboration accelerated 

the students’ willingness to speak openly about their experiences (i.e., to trust). In other words, 

trust can be shared, to some extent, from an already trusted person. Of course, the teacher was 

willing to endorse and collaborate with us based on our past interactions (also a development of 

trust). We also drew on the teachers’ knowledge of the students to decide on an approach to 

interaction, and thus decided to work for some time with a group of students (about 8 middle 

school students) in a series of six biweekly one-hour meetings. The group felt safe when they 

were all together, so dividing them up probably would have undermined that sense. 

In the first interaction Dave briefly described to the students what we hoped for in the 

research, and taught the students a game he learned from a Mi’kmaq student in a previous 

research project. The game play would develop relationship, and the Indigenous source of the 

game showed students that Dave had interacted with other Indigenous students before, attentive 

to their cultural heritage. Once we started the interactions focused on identifying storylines, we 

needed to find a way for students to understand the concept of storyline. How to do that was not 

straightforward, given that Dave and others in a sister research project (with some of the same 

research team members, also with a similar focus on storylines associated with Indigenous and 

newly migrated students, but in Norway) have been finding it challenging how to describe a 

storyline, as discussed in Simensen et al. (2022). The theory work on positioning has not been 

very helpful, and the paucity and inconsistency of examples of identified storylines in research 

has led to questions about how to describe storylines and how to name them. Should they be full 

sentences? Can they be described with a few words like a theme? Those questions persist. 

In the interactions, the approach that we settled into as productive (in terms of garnering 

quantity and quality sharing from the students) had Dave asking what has happened recently in 

math class or relating to the math they did in math class. After a student identified something that 

happened, then Dave probed with questions about what is “really happening” when things like 

that happen. Using the triad of positioning theorization, the happening is a communication act or 

a series of communication acts, and the description of what is really happening is the storyline. 

We discussed questions like “Why would [the person] do that?” Dave probed for other similar 
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experiences. It was very productive to compare the happening to parallel happenings outside of  

school math. For example, when students talked about feelings of success or failure it was 

helpful to consider feelings of success or failure in other contexts—which tended to be sports 

contexts, probably because of the passions of the most readily vocal among the students. Or, 

when talking about feelings within interactions with people in math class, it was productive to 

consider how that was different from interactions among friends. 

After this series of group conversations, the next step was for us to synthesize the stories and 

dialogue over the hours of interaction and bring them back to the students. The teacher arranged 

for each student to meet Dave individually, but it was hard to decide how to conduct those 

interviews. After Sacha and Dave discussed the deep knowledge emerging from the recorded 

interactions, Dave synthesized the foci with the following storylines: 

1. We have to try hard to learn math. 

2. Teachers respond to students differently based on the students’ reputations. 

3. Math is important. 

4. The math we do in school is not interesting. 

5. We are more worried about failure than attracted by success in math. 

6. How I feel about my math performance depends on my expectations for myself. 

7. Math teachers don’t understand native people [i.e., Indigenous people]. 

8. Math should be done in silence. 

9. Something about parents… <not sure what> 

In the interviews with individual students Dave told them he made a list of storylines from 

the conversations we had had. He said he would read them one at a time, and ask for example 

stories that illustrate those storylines. For #9 he said that there was a lot of talk about parents but 

he could not identify a storyline succinctly. He asked each student if they could say what the 

storyline might be. The fourth of the students (the most shy among them) provided a storyline: 

“Parents expect you to do well.” After this, Dave replaced #9 with the student-provided storyline. 

Also with the first few students it became clear that #5 and #6 were not like the others. Students 

said they were not sure about them. Emerging from those conversations, Dave learned that it was 

helpful to ask them if they thought the statement is true, or if they thought the statement is 

something people say or think. For #5 and #6 almost all the students said the statements were 

true (not surprisingly: these emerged from our earlier interactions) but that they were not 

statements that people think or say. Thus, we see that they are not storylines: they are not known 

stories. This reminds us that storylines do not have to be true to be well known. And their power 

is independent of their truth. The students provided rich accounts of the storylines, some of them 

repeated from earlier interactions. We look forward to reporting on the storylines illustrated by 

particular experiences. As noted, to protect anonymity we cannot do this yet. 

Following the principle of OCAP (ownership, control, access, possession), “First Nations 

have control over data collection processes, (…) they own and control how this information can 

be used” (https://fnigc.ca/ocap-training/). Thus, for the learning from our interaction with the 

Wolastoqiyik students, they themselves and their community are the most important people to 

report to. Sacha (the second author) identified a knowledge keeper (a.k.a., Elder) from the 

students’ community as a person to report to first, and the teacher endorsed this choice. Dave 

https://fnigc.ca/ocap-training/
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spent a couple hours with the knowledge keeper to report on what happened thus far in the 

research conversations, including the specific storylines discussed most recently in individual 

interviews. Dave did not tell the knowledge keeper about the experiences shared by students, but 

the knowledge keeper already knew the general nature of those experiences (knowledge keepers 

know things!). We invited the knowledge keeper to join the next gathering of the student 

research group.  The knowledge keeper told the students of their own experiences as a student 

and as an adult dealing with Indigenous and settler peers and with “authorities”. The students 

asked questions and told the knowledge keeper about some of their experiences in and related to 

school. That interaction reinforced our prediction—people tell different stories depending on 

whom they interact with. Dave closed by asking the students if they wanted to be kept in the 

loop—to be kept informed and to be given the opportunity to guide the future steps with the 

knowledge they generated and shared in our conversations. They said yes. 

Second context: Conversations with new migrant students 

The conversations with the Wolastoqiyik students informed our approach to newly migrated 

students. Again, the first challenge with addressing these students is garnering their interest and 

trust, but we did not have the benefit of the same kind of teacher ally with longstanding 

relationships because the students are newcomers. We also know that many newcomers are 

highly cautious about what they say about their experiences of migration because they are in the 

process of qualifying for residency status. Many of them come from situations that prompt them 

to be extremely careful of their information getting into the wrong hands.  

Dave and a graduate student met with some classes to tell them about the research and invite 

participation in interviews. He said that we are interested in interviewing any students but 

especially interested in the experiences of newcomers. In the first session, he used the approach 

he had used with the Wolastoqiyik students—asking for examples of things that happen in math 

class, and following up with questions about what is really happening when these things 

happen—but the students seemed bewildered by this. The dynamics of being in a larger group of 

people and also some linguistic barriers probably impacted their ability to focus on questions that 

are unlike the questions they are accustomed to in school. For the subsequent groups, Dave 

switched to an approach informed by the interviews with the individual Wolastoqiyik students.  

Dave said he would read some statements, and ask students to say if the statement is true, and 

then to say if they think others think the statement is true. He said that the interviews would go 

like this, but in the interviews the interviewer would also ask for examples of things that happen 

because of people thinking the given statement is true. He said that the interviewer would then 

go vice versa, and ask for accounts of things the students particularly liked or disliked in math 

learning. With the story of the liked or disliked thing, the student with the help of the interviewer 

would try to figure out what statements (storylines) people believed in order to get them to do the 

thing they were doing in that situation.  

For this set of storylines, Dave mixed together some storylines from the Wolastoqiyik 

students and from the research contexts in the sister project described above. So, Dave would 

say, for example, “When I do math, I need to use my first language” (i.e., a version of a storyline 

from the sister project) and ask students to put up their hands if they thought it was true (fewer 

than half of the students said it was true). And then to put up their hands if they thought some 

people think it is true (almost all the students thought that some people think it is true). The 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

390 
 

students were laser focused on these questions, locking eyes with Dave in a way he has not 

experienced in a classroom before. The struggle to decide whether to put their hands up or not 

was evident on students’ faces (even students who have been in Canada less than a month). In 

other words, the students were invested in these storylines. The students recognized importance 

of these storylines—the impact of these storylines on their experience of mathematics learning.  
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This report presents a case study of one teacher’s impactful implementation of a culturally 

affirming pre-calculus task, “Being Hispanic: Heritage or Self-Perception?” We observed a 

sustained engagement by the students and the teacher with the mathematics and the social 

context within the task. Through an analysis of the classroom discussions and the teacher’s 

reflection on the lesson, we identified a new critical consciousness resource (CCR) called 

criticality of racialized labels. Our findings highlight the moments and ways in which this CCR 

was activated. We propose that synergy of the teacher’s own resources and excellence, the 

culturally affirming curriculum, and an anti-deficit math workshop setting contribute to critically 

conscious engagement with mathematics. Such engagement promotes meaningful experiences for 

students and teachers thus supporting a more just and equitable mathematics education. 

Keywords: Equity, Diversity, and Inclusion; Curriculum; Culturally Relevant Pedagogy; 

Precalculus 

The question of what is meaningful to teachers and students while engaging with people and 

curriculum in mathematics classrooms is valuable for unpacking what the future of mathematics 

classrooms looks like. As culturally relevant (Ladson-Billings, 1995), responsive (Aguirre & 

Zavala, 2013), and affirming (Lozano, 2023) mathematics teaching practices continues to be a 

sought-after approach to creating more meaningful experiences for all students, in particular 

traditionally minoritized students, there is a need for growing our understanding of why and how 

these practices make an impact in the lives of students and teachers.  

In this case study, we describe how critically conscious engagement with mathematics 

emerged and was sustained by a college instructor, Sarah, (Author 4), at a large public Hispanic 

Serving Institution (HSI) in the Southwestern U.S. By illustrating what the classroom experience 

was and how it impacted Sarah and possibly her students, we elucidate specific factors that 

contribute to shaping the critically conscious engagement in the classroom, and afterwards.  

Our analysis centers around one Culturally Affirming (CulturA; Lozano, 2023) precalculus 

task implemented by Sarah during a weeklong summer bridge program. We analyze how the 

mathematics and the context of the “Being Hispanic: Heritage or Self-Perception?” (Being 

Hispanic) task, as well as its setting and implementation contributed to the emergence of 

critically conscious engagement. This window into a Culturally Affirming (CulturA; Lozano, 

2023) mathematics classroom serves as a possible model for intentionally co-creating with 
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students critically conscious mathematics learning experiences that transcend the walls of the 

classroom and the moments when a lesson was enacted. 

Prior studies identified opportunities and challenges linked to implementations of 

mathematics curriculum promoting critically conscious mathematics engagement. Some prior 

work acknowledges potential “pitfalls” (Harper, 2019) in implementing Teaching Mathematics 

for Social Justice (TMSJ) curriculum (e.g., Bartell, 2013; Brantlinger, 2013). Others (e.g., 

Gutstein, 2016; 2003) portray the “promise” (Harper, 2019) of these curricula by highlighting 

how students were able to see themselves in the curriculum and use it to “read and write the 

world with mathematics” (Gutstein, 2003). These studies provide a starting point for our 

discussion of what an impactful implementation of CulturA curriculum entails, by identifying 

some key contributing factors arising in this implementation of the Being Hispanic task. 

The purpose of this paper is to offer a proof-of-concept for how an impactful implementation 

of a culturally responsive mathematics curriculum can support the co-creation of critically 

conscious engagement by valuing, eliciting, and building upon students’ voices. This study also 

contributes to understanding the role curricula like CulturA can play in activating specific critical 

consciousness resources (CCRs; Witt, Lozano & Anhalt, in press), and the role these can have 

both within and beyond the classroom. We focus our investigation on the question: How might a 

culturally responsive mathematics task engage students and teachers’ critical consciousness?  

Frameworks 

CulturA 

The task featured in this study was created through Project (blind for review) along with over 

80 others designed to enhance relatability and connection through robust, authentic mathematics 

in the core precalculus curriculum (Lozano, 2023). We operationalize culturally responsive 

mathematics teaching (CRMT; del Rosario Zavala & Aguirre, 2023) through the implementation 

of CulturA curriculum. CulturA is a place-based, affirming curriculum mirroring the identities 

and strengths of the local area by, “…center[ing] cultures, peoples, and identities traditionally 

absent from standard curricular content, keeping an asset-based lens” (Lozano, 2023) and thus 

embodies the three strands of CRMT described by del Rosario Zavala and Aguirre (2023). By 

design, CulturA aims to center knowledges and identities through its tenet of affirming identity 

and strengths. It also promotes rigor and support by being authentic while also being 

mathematically robust. Finally, in being place-based, CulturA makes space for leveraging local 

students’ everyday experiences to enable power and participation.  

Critical Consciousness Resources and Critically Conscious Engagement 

Developing critical consciousness (CC) with students is one of the three core components of 

culturally relevant pedagogy (Ladson-Billings, 1995). This goal is vitally important to equipping 

future generations with the agency to initiate change in their lives and their communities, also in 

addition to its being associated with various positive well-being outcomes (Jemal, 2017). In this 

study, we take the perspective that ideas abstracted from our experiences, identities and 

backgrounds (see also Jemal, 2017; Watts, Diemer, & Voight, 2011; Freire, 1970) inform whether 

and how people critically engage in affecting change in the world around them. We define 

critical consciousness resources (CCR), “ideas that elevate a person’s awareness or sense of 

agency to ‘engage the world and others critically’ (Ladson-Billings, 1995, p. 162)” (Witt, 

Lozano, & Anhalt, in press). We are interested in moments when these CCRs are made public, 
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collectively shaped, and possibly transformed. We describe these moments as critically conscious 

engagement in mathematics which can lead to increased awareness and agency in social issues. 

In general, the activation of CCRs stems from perceiving affordances and constraints of present 

situations (e.g., within CulturA tasks) that may relate to sociopolitical contexts. Over 10 different 

CCRs were identified previously, and Witt, Lozano, and Anhalt (in press) documented nine 

prospective mathematics teachers eliciting these resources while engaging with the CulturA 

curriculum. We hypothesized that investigating CCRs can reveal teachers' strengths and shape 

the student experience in specific ways. The present study identifies and examines one new 

CCR, critically of racialized labels, activated through engagement in the Being Hispanic task. 

 

Methods 

Data Context and Sources 

The data from this study comes from a professional development project for university 

instructors with a focus on developing anti-deficit teaching with minoritized students (Adiredja, 

Civil, & Jarnutowski, 2024). One component of this project is a weeklong summer bridge 

program for local high school students in the Southwest U.S. to transition into the local 

university. Also inspired by Ladson-Billing’s (1995) notion of culturally relevant pedagogy, 

students’ voice and inquiry become the focus in the teaching as participants also engage in 

critical conversations about race, gender and mathematics.  

Sarah was an instructor participant in the project and implemented five CulturA tasks in her 

pre-calculus section. She had six students in the section, all of whom identified as Hispanic. In 

the classroom, the teacher sat shoulder to shoulder in a circle with students, at times holding a 

portable whiteboard to write down and share ideas that were raised during the discussion. 

Students had on average 5-10 minutes to work on a task, then she would ask students for their 

thoughts and possible solutions or strategies.   

Sarah voluntarily brought up the Being Hispanic task in a debrief discussion with Authors 2 

and 3 as “the most interesting because [she] kept thinking about it.” Figure 1 shows the entire 

task, but the first three of the seven questions are most relevant to this study. Her classroom 

implementation and a debrief/reflection interview occurred two weeks afterwards were video 

recorded. The transcripts for these two recordings are the main two data sources for this paper.   
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Figure 1. “Being Hispanic: Heritage or Self-Perception?” [reprinted with permission from 

Lozano et al. 2021]  

Analytic Approach 

We began our analysis by identifying instances when the teacher (Sarah) identified with the 

task from the curriculum, or what we call “I-statements” (e.g., “I keep thinking about [the 

task]”). This approach was similar to that of Witt et al. (in press) but was adapted to better suit 

the nature of our current data sources. We coded for this type of statement (I statements) and 

parsed out those statements as they are related to issues of identity, power, access, and 

achievement (see also Gutierrez, 2009) and relative to the perceived level of agentic disposition 

they convey. These statements can offer insights into ways that teachers are provoked by or 

intrigued by the issues raised in the task, whether it is mathematically or socio-politically. In the 

current paper, this pointed us to the Sarah’s implementation of the Being Hispanic task.  

We then conducted a thematic analysis (Braun & Clarke, 2006) to identify sociopolitical 

theme(s) that were raised during the class and interview discussions. We examine the extent that 

these themes coalesced into a critical consciousness resource. We then returned to the full 

transcript of the recordings to identify times when this CCR was activated during the classroom 
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implementation and reflection. We situated these moments in context to better understand what 

may have prompted these ideas to emerge. For more details about how to identify CCRs and 

their associated contexts see Witt et al (in press). 

Findings 

Criticality of Racialized Labels 

The Being Hispanic task offered an opportunity for Sarah and the students to draw from their 

personal experience to make sense of the mathematics in the task and prompted a rich discussion 

about heritage. Our analysis revealed a broader theme related to the students and the teacher 

questioning, describing, and contrasting racial and ethnic identities. For example, one of the 

students, José, after realizing that the graph of f was decreasing in the task, questioned what 

people would identify as if they identified less with Hispanic. This moment in class also led to 

Sarah discussing the differences between Latina, Chicana, and Hispanic that came up when 

talking to a friend. We identify this broader theme as a critical consciousness resource called 

criticality of racialized labels. 

This new CCR, criticality of racialized labels, was made explicit in the transcripts in five key 

moments across two interactional contexts (during Sarah’s reflection interview and during 

Sarah’s classroom implementation of the Being Hispanic Task). Three moments occurred during 

her interview reflection and two during implementation of the task. After sharing the details of 

these moments, we summarize the ways by which the CCR was activated as a way to 

operationalize critically conscious engagement. 

Criticality of Racialized Labels in Sarah’s Reflection 

Moment 1. In the quote below, Sarah is recalling how José’s question expanded the 

classroom discussion into one about how a decrease in people self-identifying as Hispanic 

suggests an assimilation of Hispanic identities occurring as generations go on.   

“I'm really trying to quote [José] as best as I can, [paraphrasing José]‘but then you're 

correlating an ethnic identity, and replacing it with a nat–, like a country identity, which are 

not the same thing…what is then an American identity? Because it's not ethnic, but if it's not 

ethnic, is it kind of secretly white—in its ethnicity? And are you just kind of all melting into 

whiteness?’” 

Moment 2. Seconds later Sarah described how her conversations in class became prominent 

in her conversations with friends. She continues,  

“....a friend was reading poetry by a leading Hispanic author, maybe poet?…[the author] 

identifies as Latina, or Chicana but not Hispanic, because it's the word that the community 

didn’t make and I had never heard that before. So I keep having conversations as a result of 

that–what my students said, which was so, man, it was really cool.”  

Moment 3. Approximately 15 minutes later, Sarah was asked how she felt navigating 

sensitive topics with her students. She states,   

“…It was intimidating in the best way possible…seeing his–the gears turning and also the 

disappoint–like the sadness in his face of what it would mean then to lose cultural identity in 
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favor of white culture...I was like, Oh, this is a lot of feelings in this group. But also man, you 

said something really profound.”  

These moments show how this new CCR was evident when she recalled her students’ words 

(Moment 1), when she describes how the conversation extended into her personal life (Moment 

2), and when she reflected on how she felt about facilitating this conversation (Moment 3).  

Criticality of Racialized Labels in Sarah’s Implementation 

Moment 4. During her implementation, as Author 4 and her students collectively interpreted 

what the Being Hispanic task must mean in everyday terms and the following exchanges took 

place. 

“Sarah (S): So, do we think it’s going to be increasing or decreasing? What do you say? 

[inaudible from student] 

S: Well, no, in general, do you think people will [inaudible], generation-wise get away from 

it, the more or less you identify as Hispanic?” 

      [multiple students respond, some say “More”, some say “Less”] 

S: I don’t know, it’s it’s completely subjective, what do you think? 

Student: Well, from (b), [inaudible] it’s already less,  

S: Somebody picked up on context clues! So yeah, would that be a decreasing or increasing 

function? 

Student: Decreasing. 

S: Decreasing. So the further you get away, you identify less? 

[nods from students] 

José(J): [inaudible] Then what do you identify more as?  

S: What if you identify more? 

J: Well, what replaces it?  

S: Yeah! Yeah, what *do* you identify more as then? 

Student: American 

J: How does a genealogical background get replaced by a national [background]?  

S: Yeah, that’s a really good question my friend.   

Student: What did he ask? 

J: So like Hispanic is like genealogical, [inaudible] but national is like a country?  

S: So an ethnic root versus a country identity. Well yeah, and then you also wonder at what 

point do you also lose track of your family as to what the heck the history of it was. How 

many generations does it take to be like, ‘I don’t know anymore!’” 

This exchange initiated a broader discussion where other racial identities were discussed. José 

continued, “But then like my question is, is the default that when you lose [said identity], you just 

become white?” 

Moment 5. Sarah then extended the conversation to how “hyphenated” identities (e.g., 

Mexican-American, Italian-American, African-American, etc.) may change over time and made 

a connection to what she knows regarding the term “Black.”  

     “Yeah, why is the default just white? I mean no one’s ever asked me where I’m really 

from…despite the fact that my mom is-I’m actually first gen on one side, but no one’s asked 
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and you’re very right, because I am white and so people won’t ask…No one would call me 

English-American, I’ve never heard of one. But also, what happens with an African-

American? … from what I’ve read and what I’ve been told, is they’re reclaiming the word 

Black because, it does describe the answer that, you don’t know, because you couldn’t know 

because it was taken from you…” 

These moments showcase how this CCR was initiated by José’s engagement with the task 

(Moment 4) and as a result an opportunity for critically conscious engagement occurred in 

students and the teacher. These episodes also show how Sarah’s affirming disposition and actions 

in the classroom allowed for her to inform her students of related ways in which racialized labels 

are critiqued (Moment 5). 

Discussion 

We argue that an impactful implementation of the CulturA task, Being Hispanic, supported 

the emergence of critically conscious engagement centered around the CCR, criticality of 

racialized labels. This engagement was initiated by a student, José, noticing and questioning the 

implications of what it means for self-identification as Hispanic to be a decreasing function of 

generation (see Figure 1). This prompts him to wonder whether this implies that people who are 

choosing to adopt a national identity, such as American, are then trending towards “becoming 

white.” This supports a theme in Harper’s (2019) qualitative metasynthesis of TMSJ research 

highlighting,  

“Four cases (Aguirre et al., 2013; Bartell, 2013; Turner & Font Strawhun, 2013; Turner et al., 

2009) provided evidence that the students themselves focused on race and racism in relation 

to the social justice topic without direct prompting from the teacher…” (p. 286).  

This is impactful because race and racism have the potential to emerge in many mathematics 

tasks coming from authentic contexts (e.g., Gutstein, 2003; Lozano 2023; Turner et al., 2022) 

and the ability to navigate these conversations in a safe and affirming way presents the potential 

for stronger relationships with students. 

José’s wondering and Sarah affirming his perspective enabled him to share with the rest of 

the class some of his background knowledge on the nuances between national and 

“genealogical” identities. This conversation appears to have been meaningful to Sarah in such a 

way that she felt comfortable discussing this idea with friends who then informed her more about 

the nuances between Hispanic, Latina, and Chicana identities. Thus, the critical consciousness 

engagement we describe extended through the walls of the classroom and instilled a sense of 

critical awareness and agency (Witt et al., in press) with respect to criticality of racialized labels.  

When Sarah describes the conversation as, “intimidating in the best way possible,” and 

“really cool” José’s words as “poignant” and “profound,” one could argue that the critically 

conscious engagement may have been supported by an anti-deficit perspective (Adiredja, 2019) 

that she embodies and is in accordance with CulturA’s affirming of identity and strengths tenet 

(Lozano, 2023). This is evident in the way she frames the interaction in a positive light, focusing 

on student strengths and the value of this discussion. By acknowledging the care that one needs 

to take navigating conversations about race and ethnicity and the value of José’s voice, Sarah is 

bringing an awareness of the sociopolitical context of mathematics spaces inhabited by 
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historically minoritized students (Gutiérrez, 2013). In addition to this awareness, one could argue 

that critically conscious engagement afforded the opportunity for emotional connections to be 

made between the teacher and students which is a key aim of the curriculum.   

Many might argue that our intuition leads us to believe that teaching can “feed one’s soul.” 

Teachers often reflect on how they learn just as much from their students as their students learn 

from them, but additionally in this case, we see how the CulturA curriculum coupled with the 

professional development setting accentuated the teacher’s strengths as an affirming person, 

allowing her to leverage student thinking to co-construct an impactful space for learning. This 

was impactful to Sarah’s self-reported learning about the nuances of Hispanic identities but also 

potentially impactful to her students who were encouraged to critically interpret the implications 

of the mathematics in the task. This vision for an experience that encourages an introspection 

that grows from thinking critically about mathematics is one that may be critically important for 

building positive dispositions towards one’s mathematical and racial identity. 

Our initial examination of this experience yielded criticality of racialized labels, being a 

salient theme in the teacher’s experience. Extensions of this work may more carefully examine 

how this work may connect with other established framings of equity in mathematics education 

(e.g., Aguire, Mayfield-Ingram, and Martin; 2024). Given the prominence of Hispanic identity in 

the task and analysis above, future work may benefit from making stronger connections to a 

LatCrit framing (e.g., Rolón-Dow & Davison, 2021; Solórzano & Yosso, 2001). This case may 

be analyzed trough a microaffirmations (Rolón-Dow & Davison, 2021) lens or considered a 

counter-story (Solórzano & Yosso, 2001) to narratives regarding the lack of enthusiasm that 

marginalized students may experience when engaging with critical mathematics curriculum (e.g., 

Brantlinger, 2013).   

Conclusion 

Given the potential “pitfalls” (Harper, 2019) of teaching a critically conscious mathematics 

curriculum (e.g., Bartell, 2013; Brantlinger, 2013), we present this implementation of the 

CulturA task as a counter story to those that have encountered issues such as: problematic 

negotiation of mathematics and social justice goals (Bartell, 2013), and resistance from students 

in having racial and political discussions in class (Brantlinger, 2013). We presented how 

engagement with CulturA curriculum, the affirming implementation of it, and the flexible setting, 

served as resources for a new CCR to be activated and thus critically conscious engagement. 

Further examinations into similar curricula, settings, and implementations may center the critical 

potential of other mathematics tasks and the role that professional development fostering an anti-

deficit perspective plays in supporting the development of personal connections between 

teachers, students, mathematics, and their lives. 
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While there is evidence to suggest that inquiry-based instruction leads to positive student 

outcomes (Freeman et al., 2014; Laursen et al., 2014), there have been several studies that state 

otherwise (Johnson et al., 2020; Reinholz et al., 2022). Thus, inquiry learning does not guarantee 

equitable student outcomes. Therefore, it is critical to identify the classroom conditions and 

aspects of inquiry that can impede or bolster equitable outcomes. Thus far, much of the research 

on student outcomes in inquiry classrooms focuses on achievement results (e.g., grades) or 

survey-based affective measures rather than students’ lived experiences (Melhuish et al., 2022). 

Therefore, it is imperative to ascertain methods for delving deeper into the human experience 

within inquiry courses. 

Purpose & Methodological Perspective 

This poster demonstrates how narrative inquiry can help illuminate women’s experiences in 

inquiry-based courses. Understanding women’s experiences may reveal conditions and factors 

that detract from or support equitable outcomes. I answer the research question: How might 

narrative inquiry provide insight into women’s experiences in an inquiry-based, proof-based 

course? Narrative inquiry has been gaining popularity within mathematics education research. 

Much of the mathematics education research incorporating narrative inquiry involves 

accentuating racialized, gendered, or religious identities (Allaire, 2018; McGee, 2011), possibly 

in hopes of revealing the stories of those whose voices generally go unheard. Narrative inquiry is 

a qualitative research methodology that focuses on studying and understanding the lived 

experiences of participants through the analysis of narratives or stories (Clandinin & Connelly, 

2004). These narratives provide rich data that reveal how individuals perceive and make sense of 

their experiences, identities, and the social and cultural contexts in which they are situated. 

Hence, I employ narrative inquiry to gain insight into women’s experiences in inquiry-based, 

proof-based courses. 

Study Context 

The participants are four undergraduate women across two inquiry-based proof-based 

courses taught in Fall 2023 and Spring 2024. Data collected includes two student interviews and 

weekly journal submissions. Additionally, weekly classroom observations were conducted to 

witness the classroom climate and assess the nature of the inquiry implemented. 

Results 

The four female participants’ narratives varied considerably, yet each elucidated their 

experiences in their inquiry-based, proof-based course. Therefore, narrative inquiry is an 
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appropriate methodology to answer the call by many (e.g., Adiredja, 2017) for additional 

research on equity issues in undergraduate education, particularly investigating perceptions of 

their inquiry learning experiences beyond survey results and achievement outcomes. 
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The spaces we inhabit provide the context in which we learn about ourselves and make sense of 

who we are; they shape our identities, our relationship with others, and our perspectives of the 

world. We introduce Mathematics Education Journey Mapping as a critical methodology to 

center teachers as co-designers in the educational design and research process. We first provide 

a socio-spatial analysis to mathematics education. Next, we introduce mathematics education 

journey mapping, a critical qualitative method adapted from Annamma’s (2018) Education 

Journey Mapping. Finally, we analyze Mathematics Education Journey Maps from ten bilingual 

mathematics educators to highlight the “geography of opportunity” (Butler & Sinclair, 2020) 

within the context of language, mathematics, and identities and the physical and ideological sites 

of resistance that bilingual teachers and communities inhabit. 

Keywords: Elementary School Education; Equity, Inclusion, and Diversity; Professional 

Development. 

Introduction 

The spaces we inhabit play an intricate part in our life experiences. They provide the context 

in which we learn about ourselves and make sense of who we are; they shape our identities, our 

relationship with others, and our perspectives of the world (e.g. Lefebvre, 1974). In this paper, 

we introduce mathematics education journey mapping as a critical methodology that centers 

bilingual teachers in the educational design and research process. We first provide a socio-spatial 

analysis to mathematics education. Next, we introduce Mathematics Education Journey 

Mapping, a critical qualitative method adapted from Annamma’s (2018) Education Journey 

Mapping, to examine how location, locale, and sense of place shape one’s mathematics 

experience as a learner and teacher. Finally, we analyze the Mathematics Education Journey 

Maps (MEJMs) of ten bilingual educators to showcase how place and space shape the 

“geography of opportunity” (Butler & Sinclair, 2020) for teacher and student experiences at the 

intersections of language, mathematics, and identities and the physical and ideological sites of 

oppression and resistance that bilingual teachers and their communities inhabit. 

Theoretical Framework and Literature Review 

Here, we draw on the definition of space by political geographer, John Agnew (1987), in 

which he describes it as spaces that people have made meaningful or have attached to in some 

way. Agnew’s (1987) definition of space has three fundamental aspects: (1) a location - a specific 

fixed point in space where a place exists, (2) a locale - the material setting in which people 

conduct their lives at that location, and (3) a sense of place - the meaning attached to a particular 

location or locale. We build on Agnew’s (1987) definition of space, alongside Soja’s (2010) 
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concept of “spatial justice” to highlight the connection between space, power, and resistance. 

Justice and injustice have spatial expressions or, what Soja (2010) has called, “consequential 

geography” (p.1). The concept of consequential geography highlights how justice and injustice 

shape - and are shaped by - the localized set of changing social, political, and historical 

conditions. Thus, the pursuit of educational justice requires a critical understanding and 

examination of space not as a background to our social lives but as active agents in shaping lived 

experiences and institutions, including mathematics education.  

There has been a growing call for a spatial turn in mathematics education (Larnell & Bullock, 

2018; Rubel & Nichole, 2020; Poling & Weiland, 2020). This body of work draws from 

scholarship in critical geography, urban education, and critical mathematics education to 

examine the role geography (space) have to generate, sustain, and disrupt inequalities. Larnell & 

Bullock (2018) offered a theoretical framework for thinking about urban mathematics education 

scholarship with an explicit focus on spatial logic in addition to the sociopolitical. Rubel and 

Nichole (2020) draw from frameworks of place, including indigenous ways of knowing, to 

include four thematic categories “geographies of human opportunity, mapping, human mobility, 

and land relations and obligations” (p. 6). Recent work on space highlights the potential to teach 

mathematics for spatial justice or using mathematics to identify power relations in and through 

space. For example, Rubel and colleagues (2016) investigated issues of social inequalities in 

New York City math classrooms by interrogating the structures of the lottery and paycheck loans. 

Poling & Weiland (2020) showcase the use of Common Online Data Analysis Platform 

(CODAP) and data from Public Use Microdata Areas (PUMA) to explore the “geographies of 

opportunities”that shape geographic, economic, and educational development across spatial and 

ideological boundaries, such as cities and suburbs. These studies highlight the potential in 

examining the arrangements of spatial geography and the distribution of social opportunity as 

well as levels of scale (e.g. classroom, school, state, etc.) in the scope of spatial consideration. 

Our project builds from this body of work that argues for considering the spatial dimension of 

mathematics education and extends the work to consider how the examination of space and the 

use of mapping can serve as a methodological and pedagogical tool for teachers to examine 

consequential geographies – the dynamic role that space plays in shaping justice and injustice – 

require critical examination since social processes and space influence each other (Annamma, 

2018; Soja, 2010). 

Research Approach 

This project builds on an existing partnership in a dual language school in Texas. With 

funding from the Elementary and Secondary School Emergency Relief, Texas schools were 

encouraged to address educational inequities through tier three pull-out mathematics 

interventions consisting of drills of previous grade level skills to “catch up.” School leaders 

noticed disproportionate representation of Black, Latinx, and refugee students from Afghanistan 

and Central America in the pull-out intervention—and the intervention was not leading to 

improved outcomes. Building on the belief that competence should be presumed for every 

student, the burden was on us - as educators and school leaders - to transgress and dismantle 

curriculum, pedagogy, and assessment practices that were leading to labeling, sorting, and 

separating of students across race, language, and class. The hope was to identify change within 

classrooms and also within the research process itself. Building from community engaged 
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research (Warren et al., 2018), this project uses a co-design approach (Ishimaru et al., 2018), a 

participatory approach to designing solutions in which the school community are co-designers in 

the collaborative research inquiry and design for educational change. The project follows 

Ishimaru and colleagues’ (2018) four stage co-design process for collaborative research inquiry: 

a) relationship building & theorizing; b) designing/developing tools to support new relationships 

and theories of change; c) enacting theories and practices in classrooms and schools; and d) 

analyzing and reflecting on our process for continued learning and innovation. 

Partnership activities require careful attention to historicity, power, and relationality (Warren 

et al., 2019). The Mathematics Education Journey Mapping served as a tool for the second stage 

of the co-design process using mapping to collectively develop theories for change that 

leveraged the historical experiences and unique understandings that we each bring to the project. 

The research team consisted of three bilingual teachers (Monique, Anath, and Patty), the two 

school math coaches (Jorge and Elyse), school interventionist (Lydia), and four university 

researchers (Catalina, Lorie, Frankie, and Danica). Understanding the potential for mapping to 

stimulate participants’ reflections about their identities across space and time, we adapted the 

techniques of Annamma’s Education Journey Mapping to create a Mathematics Education 

Journey Mapping. Specifically, we wanted the codesign team of researchers and teachers to think 

critically individually and collectively about the ways in which mathematical opportunities, 

identities, and languages were shaped by space and place. We adapted the framework specific to 

mathematics teaching and learning with the following prompt: 

Use words, drawings, pictures to tell your personal journey of mathematics teaching and 

learning. Reflecting: What are four or more critical teaching and learning moments? Looking 

forward: What are your hopes and goals? Use different colors, images, the math tools, and 

resources to highlight experiences, show different feelings, and to share your story. These are 

just suggestions. Be as creative as you like. We will later share our journey / number line 

with each other. 

After sharing the prompt visually, the first author read the prompt out loud and shared her own 

Math Education Journey Map (MEJM) understanding that identity exploration is a vulnerable 

process. We wanted to honor that vulnerability by opening up about our own process of identity 

formation as part of the process of mutual sense-making. After participants created their MEJMs, 

we each shared our narratives out loud to each other one-by-one. Participants had 15 minutes to 

work on their individual journey maps and group sharing lasted about 45 minutes. 

Data Analysis 

Primary data includes the video recorded session and its transcriptions as well as participants’ 

drawn MEJMs. To analyze the data, we relied on Agnew’s (1987) three fundamental aspects of 

space: location, the locale - the material setting at that particular location, and sense of place and 

alongside Soja’s (2010) concept of spatial justice and followed the analytic procedures for 

mapping from Knigge and Cope’s (2006), grounded visualization. To look for particular 

instances as well as general patterns in the MEJMs, we used Knigge and Cope’s (2006) entry-

level code categories for coding and solution driven theme-building – conditions, interactions, 

strategies and tactics, and consequences – to identify important connections within and between 

maps. 
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Findings 

We organized the preliminary findings into three themes that aligned with the conceptual 

framework of space. Each theme connects to Agnew’s (1987) three fundamental aspects of 

space: location, the material setting at that location, and sense of place, and Soja’s (2010) 

concept of spatial justice- the connection between space, power, and resistance. 

Although the prompt for the MEJMs focused on the participants’ personal journey teaching 

and learning mathematics, math was only explicitly mentioned twice throughout the group 

sharing of MEJMs. Both mentions of math were in reference to math classes that served as 

crucial deciding points for future STEM careers. Instead, participants focused on aspects of 

language, identity, and culture while sharing their journey teaching and learning mathematics. 

Findings 1: Systems of Power in Spaces 

Throughout their MEJMs, participants identified the distribution of opportunity and the ways 

in which place not only contains patterns of (in)equality but shapes - and is shaped by - patterns 

of inequality and systems of power and domination. For instance, Lydia drew a number line in 

which 0 represented her birth (see Figure 1). 

 

 

Figure 1: The start of Lydia’s Mathematics Education Journey Map 

 

Lydia starts her education journey map with her parents’ educational journey: 

This is me, resembling Lydia, when she was born. I didn't put years; I decided to use integers 

on my timeline. So, I was born (which is 0 on the timeline) but eight years prior, my parents 

interrupted their schooling to start working and helping - helping their families. My mom is 

from a large family. They came from a larger home. So, she was always helping with the 

little ones. As soon as you could start working, she started working and then supporting the 
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family. My dad, his family migrated up north (to the U.S. to work). So from even before, like 

way before I was born, I think because they were not able to, you know, continue their 

education, I knew education – bilingual education and mathematics education - were 

important. 

Lydia then continues to describe moving between the borders of Mexico and the U.S. throughout 

her K-12 schooling and how the movement between borders shape her bilingual and bicultural 

identity. Similarly, Anath discussed border crossing: 

I was born in the late 1900s. I did preschool and kindergarten in Mexico. That's where my 

family’s from. Spanish was my first language. Then when I turned six, we moved to Texas 

and started first grade in the U.S. with basically no English. Back then, I mean, it's still the 

same now, but it's mostly sink or swim, right? You got it or you didn't. Yet, it really helped 

that I had Spanish, my first language, which was very well built and that helped me grasp on. 

Then, there was the pull-out when I was 8. It wasn't beneficial because it was like cat is gato. 

I already know this. That’s also the start of the shift of speaking English only (in classrooms) 

because that's the only way you're allowed to learn. That's the only way you're gonna survive 

– English only. Then when I turned 10, that's when 9/11 happened. There was this huge shift 

again, towards people who don't speak English. Again, a force to speak English as much as 

you can, especially when you're crossing the borders, so they know that you belong here. 

 

 

Figure 2: Anath’s early school years on Mathematics Education Journey Map 

 

Both Anath and Lydia described space as both physical and ideological (e.g. English 

hegemony; watered-down curriculum; and the role of compliance in mathematics classroom) and 
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were naming the conditions and interactions within and across locations that perpetuated 

inequities and exclusion. Note how they both weaved and flowed between stories of their family, 

the classroom, to the state-national borders to highlight the ways which space is fluid and 

includes multiple levels of scale (e.g. classroom, school, state, nation). Soja (2005, 2010) 

describes the process of loosening of territorial boundaries created in terms of political power 

and cultural identity as processes of deterritorialization and reterritorialization, or debordering 

and re-bordering, as consequences of the globalization of capital, industry, and labor. This 

hybridization of spaces occurred throughout most of the teachers’ stories in which they, their 

families, and their students are contending with an assortment of geopolitical, economic, cultural, 

and oppressive factors across state-sanctioned racialized borders separating countries, 

classrooms, and families. 

Findings 2: Space as Sites of Resistance 

A repeated theme across MEJMs was how educational spaces such as schools are not neutral. 

Boundary lines (e.g., city, state, nation) are traditionally thought of as political dimensions of 

maps. Yet, the teachers provided expansive notions of boundaries; they name out the boundaried 

aspects (e.g., English-only instruction; carceral schooling, compliance education) of mathematics 

education systems. Yet, they also used counter-cartographies to identify, tear down, and 

reimagine boundaries. Anath did this counter-cartography: 

I switched from psychology to education when I was 19. I thought I was going to teach in the 

English as a Second Language classroom. And then luckily, my cooperating teacher, she was 

like, why are you not teaching bilingual? You speak Spanish. And I was hesitant. I am glad 

she put me in a Spanish class. The class helped me reconnect with my Spanish and not be 

scared and hiding my Spanish, learning in Spanish and teaching other kids Spanish. 

In this short description, Anath highlighted the collective nature of identification and disruption, 

naming a part of the re-boundarying in her mathematics educational journey that allowed her to 

honor herself. In mathematics education, where even access to one’s native language is a 

privilege that is often withheld, most of the mathematics teachers’ counter-cartographies 

demonstrated re-boundarying of their present, giving access to biliteracy and biculturalism for 

themselves and their students. Their responses challenge the neutrality in which mathematics 

education is often perceived as numbers only and decontextualizes from language and identities. 

Findings 3: Space as Spatial, Historical, and Communal 
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Figure 3: Frankie’s Mathematics Education Journey Map 

 

Frankie provides a timeline that marks 0 at “tú perteneces aquí.” Below is their description of 

that moment. 

This is Race and Ethnic Relations (class). She's teaching us about the history of Texas. One 

of the first things she says in much more words ––tú perteneces aquí–– y en la manera en lo 

que lo hace, nos explica que la gente que vivió aquí… en este estado en lo que se conoce 

como tejas ahorita, la gente que ha vivido en México, siempre han viajado entre los dos 

libremente y siempre ha habido gente ahí, entonces la gente mexicana, o parte indígena, o 

latinoamericana, pertenecen aquí en estados unidos diga lo que diga la ley. That was 

probably the strongest moment that I knew that I have the right to be here. Now, do I have a 

right to be here? I don't know if I see that politically anymore. I feel like I have a 

responsibility to be here and to view my education differently. And to also when I speak with 

other people say that very same tú perteneces aquí, whenever I'm working with children or 

working with others. 

Here, Frankie highlights the consequential geography of justice in which language justice is 

communal justice. Similar to Lefebvre (1996) arguments that all people, especially those from 

historically marginalized backgrounds, have a “right to the city,” Frankie is calling on the right 

for linguistic justice in mathematics education.  
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Discussion 

The project builds from a key premise that we - as an education community - arrive at better 

understandings and solutions to classroom and school-based inequities when those most 

impacted can influence key processes and decisions. Using the Mathematics Education Journey 

Map as a methodology allowed us to excavate individual and collective educational experiences 

in order to understand the particular historical experiences and unique understandings that the 

co-design team of teachers and researchers bring to the project. In this section, we briefly 

describe how these experiences can be utilized in the process of moving towards co-design 

professional learning spaces. 

Attending educational justice as a personal endeavor, bilingual educators hold understandings 

of how dominant constructions of language within mathematics education perpetuate systems of 

oppression. Their personal experiences conveyed great cost and sacrifice to assimilate. Dominant 

narratives about newcomers, biliteracy, and English hegemony remain deeply pervasive in 

educational institutions, including mathematics education, that it can be difficult for even 

bilingual teachers to perceive its insidious effects. The bilingual teachers drew on their 

experiences to critique the centering of English as power and potentially challenge it in their own 

teaching. 

Interactions within mathematics classrooms that reflected broader politics of 

transnationalism, immigration, and monoglossic language ideologies and policies emerged in the 

maps as a significant aspect of the material conditions of locations. The teachers described 

feelings of shame and othering and noted the immense power that teachers and schools had to 

impose a deviant identity upon them. Their MEJMs highlighted cultural tools such as 

standardized testing and remediation practices (e.g., labeling, separate classrooms) as 

stigmatizing. At the same time, they resisted these identities in the ways they authored their maps 

and stories. The mapping process of one’s journey as students to teachers allowed participants to 

be understood as whole, resilient beings navigating difficult experiences and refusing to accept 

identities of deficiency. They authored their own identities by critiquing interactions that 

positioned bilingualism and multilingualism as less than and articulated the creation of safe 

spaces for themselves and their students. In doing so, they insisted upon their robust 

competencies, right to belonging, and their humanity. 

The goal of the MEJMs was to provide a process for us to engage in discussion around 

theories of change. It was a space to identify our strengths, our goals, and our needs. These 

stories – our individual and collective stories – serve as a foundation to build together. As stated 

by Danica in explaining the last mark on her MEJM, “I just kind of put a pencil here because I 

feel like my story is not yet fully written.” The struggle for spatial justice is not an individual 

endeavor but requires the exercise of collective power to reshape the process of ownership. The 

MEJMs as a critical methodological tool allowed individual and collective examination of the 

physical and political dimensions of educational experiences with the goal of learning through 

these mappings to restructure spaces of learning. Our next step is to bring in families into the co-

design. 
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The purpose of this paper is to offer a critical review of the research surrounding sense of 

belonging to mathematics through a lens that exposes assimilatory perspectives and uplifts the 

fluidity and beauty of students’ ways of being. Guided by Anzaldúa’s (1999) concept of living 

and being in the Borderlands, as well as the mestiza consciousness this review resulted in 

identifying two types of sense of belonging research: work that aims to alter the student to fit the 

current constraints defining academic mathematics and work that considers how the system can 

be changed to best suit the student as they are. Implications from this review are discussed by 

envisioning what future sense of belonging to mathematics research might look like that would 

disrupt whiteness in mathematics education and offer space for healing.  

Keywords: Systemic Change, Equity, Inclusion and Diversity 

In a now frequently cited study that set out to understand member (under)representation in 

mathematics courses, degrees, and careers, Good, Rattan, and Dweck (2012) identified sense of 

belonging to math as a significant predictor to women’s desire to pursue mathematics, 

academically and professionally. Sense of belonging to math was defined as “one’s personal 

belief that one is an accepted [emphasis added] member of an academic community 

[mathematics] whose presence and contributions are valued” (p. 711). Although this study 

focuses on women, other sense of belonging studies echo the implications that the mathematics 

classroom can transform into a site for fostering belonging.  In the literature on sense of 

belonging to mathematics, many researchers point to their studies to recommend changes within 

mathematics classrooms to encourage a greater sense of belonging for marginalized students 

which would in turn lead to greater representation in mathematics as an academic discipline 

(e.g., Barbieri & Miller-Cotto, 2021; Bjorklund, 2019; Jaworski & Walker, 2023; Rattan et al., 

2012). So logically, starting from Good et al.’s (2012) definition, if we were able to increase a 

student’s sense of belonging to mathematics, a feeling defined by acceptance, then we would see 

an increase in historically marginalized students pursuing mathematics courses, degrees, and 

careers. Academic mathematics however, is “rooted in appeals to White nationality and White 

benevolence” and “is a colonizing form of education” (Martin, 2015, p. 21).  So, is acceptance 

truly what these students desire? Acceptance into the field that is used as a weapon (one of the 

many) to maintain and perpetuate white supremacy (Marchant et al., 2023)?  Even if we were to 

accept this definition of sense of belonging, are there changes that can be made within the four 

walls of a classroom that can actually combat the oppressive intentions of academic 

mathematics? 

In discussing belonging research, Rochelle Gutiérrez (2022) questions “when or how do we 

capture the complexity and contradictions in belonging research?” (p. 382). I believe part of the 

contradiction in belonging research is that either the goal of the work is to find ways to alter the 

students’ perspective (see growth mindset) on mathematics or somehow alter an instructional 
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component within the mathematics classroom that offers them a place of belonging to 

mathematics. Both goals still attempt to assimilate students as they want children to value a very 

specific definition of mathematics. This is not to claim instructional practices like cooperative 

learning, inquiry-based learning, or student-centered instruction are harmful to students, but 

rather, can these practices lead to a student feeling an increased sense of belonging to their 

mathematics classroom when the mathematics valued in this space has been curated by 

whiteness (Battey & Levya, 2016). 

The purpose of this paper is to offer a critical review of the research surrounding sense of 

belonging to mathematics through a lens that exposes assimilatory perspectives and uplifts the 

fluidity and beauty of students’ ways of being. This review is guided by Anzaldúa’s (1999) 

concept of living and being in the Borderlands, as well as the mestiza consciousness. Drawing 

from her experience living between the Mexico-United States border, Anzaldúa theorizes, “an 

emotional Borderlands which can be found anywhere where there are different kinds of people 

coming together and occupying the same space or where there are spaces that are sort of hemmed 

in by these larger groups of people” (Urch et al., 1995, p. 77). She capitalizes Borderlands to 

distinguish this emotional state from the physical borderlands of the Mexico-United States 

border. I provide more detail about these concepts in my theoretical framework, but wish to note 

here that throughout this study, I refer to all students who do not feel they belong to 

mathematics, as living within the Borderlands. In doing so, I am aim to be inclusive to the 

diverse group that the racist, sexist, and ableist structures of white supremacy oppress, while also 

not essentializing the experience of marginalized people. I claim that students who do not feel a 

sense of belonging to academic mathematics do so for good reason. These students live within 

the Borderlands of places they are told they belong, navigating the push and pull between the 

varying worlds in which they experience and perceive mathematics. 

Theoretical Framework 

“If we have been gagged and disempowered by theories, we can also be loosened and 

empowered by theories” (Anzaldúa, 1990, p. xxvi).  

Borderlands and Positionality 

This review is guided by Gloria Anzaldúa’s Borderlands/La Frontera: The New Mestiza 

(1999). In this work, inspired by her experience as a Chicana, lesbian, and activist, Anzaldúa 

examines the in-between spaces of the physical, cultural, and spiritual realms. Living on the 

Mexico-United States border, she describes a “border culture” where there are “two worlds 

merging to form a third country” (Anzaldúa, 1999, p. 3). In this borderland, that feels neither 

fully American nor fully Mexican, “is a vague and undetermined place created by the emotional 

residue of an unnatural boundary. It is in a constant state of transition” (p. 3). Existing in the in 

between is not a split 50/50 identity. Rather it is a fluid connection to the various cultures and 

lands that the borderland runs between. These lands are more than just a physical space, as they 

also represent something that is spiritual, cultural, and part of her identity. A capitalized, 

Borderlands, is used when referencing the spiritual, emotional, and cultural experience of being 

in-between spaces, identities, and categories (Anzaldúa & Keating, 2015).  

Anzaldúa (1999) not only defines the Borderlands as a place of being but demands that its 

residents be seen as they are, in this place; no longer pushed or pulled into categories that are 

uncomfortable and demand an assimilation into a permanent identity. Referring to herself, and 
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other Borderland people, Anzaldúa (1999) explains that we, “no longer feel that we need to beg 

entrance [into society], that we need always to make the first overture,” but rather “we ask to be 

met halfway,” on the puente (bridge) where acceptance and understanding reside (p. x). The 

existence of the puente resists the binary of us or them, in or out and instead allows for a middle 

ground that is not forcing labels or identities on anyone. Mestiza consciousness is understanding 

that the puente brings healing and that it is a place where transformation can occur and develop 

in a way that can have influence beyond the bridge. Anzaldúa further defines mestiza 

consciousness in Borderlands/La Frontera: The New Mestiza (1999),  

It is work that the soul performs. That focal point or fulcrum, that juncture where the mestiza 

stands, is where phenomena tend to collide. It is where the possibility of uniting all that is 

separate occurs. This assembly is not one where severed or separated pieces merely come 

together. Nor is it a balancing of opposing powers. In attempting to work a synthesis, the self 

has added a third element which is greater than the sum of its severed parts. That third 

element is a new consciousness–a mestiza consciousness…(p.85) 

Through my experience, as a Chicana of indigenous descent in the field of mathematics, I 

fully accept and claim as fact that White supremacy is woven into the hierarchical structure of 

academic mathematics (Battey & Leyva, 2016; Martin, 2015; Martin, 2008; and many others). 

Those who do not fit the mold that academic mathematics serves live in the Borderlands, being 

pulled into assimilation to “succeed” in academic mathematics while simultaneously being 

pushed out because of their various identities that are positioned as “other.” This literature review 

is driven by the desire to not only recognize those experiencing and existing within these 

Borderlands but also to provide a path in future research for mestiza consciousness. This concept 

recognizes the pain that exists within the Borderlands but asserts that “its energy comes from 

continual creative motion that keeps breaking down the unitary aspect of each paradigm” 

(Anzaldúa, 1999, p. 85). 

In my family, we often explain to people that “we didn’t cross the border, the border crossed 

us.” My ancestors are Genízaros, stripped of their tribal affiliation through enslavement and 

assimilation. As a result of generations of oppression and discrimination, assimilation became a 

means of survival. My sister and I were born into a lineage of borderland people but from the 

second we took our first breath we were pushed to find belonging within the United States 

culture of whiteness. Now, as a researcher in the field of mathematics education, one would 

assume my own sense of belonging to academic mathematics to be resoundingly positive. 

Although I have taught in the mathematics classroom and accomplished the highest academic 

achievements in this field as a student, I do not feel as though I belong to it. I do have an 

immensely strong connection to my identity as a mathematician, but so much of this connection 

stems from mathematical thought outside of academia and the relationships that mathematics has 

provided me. The mathematical thought that is behind every motion of my mother’s crochet 

hook connects to each stroke of hair color I painted on my client’s hair during my career as a 

hairstylist, which connects to each sprinkle of pepper and dash of allspice in my father’s secret 

family lasagna recipe. These are the types of mathematics that I identify with and feel as though I 

belong to and have a connection to, not logarithms and the rational root theorem. So, although I 

have fought through the battlefield of whiteness and stand on the other side of the border within 
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the academic mathematics community, I do not feel as though I belong. I am alone amongst my 

peers in positioning my journey through mathematics as my healer, as something of beauty. I do 

not live on the borderlands my ancestors belong to, but I feel their embrace and wisdom 

forgiving me for abandoning our home. So, while I stand on the white side of the border, I have 

made a choice. Rather than ensuring I leave the door open for others in the Borderlands, I desire 

to help open other doors that lead to paths yet unknown. Paths that do not require distance from 

the body and home or a compromise to belonging.  

Review of Research 

Sense of belonging literature focuses on students who live within the Borderlands of 

belonging to their educational institution or to the STEM field as a whole. In reviewing the 

literature, there are two contradictory positions I found on how to increase a sense of belonging 

to mathematics. I will first review the most common theme in this literature, which is a focus on 

how to increase a sense of belonging within the current constraints of academic mathematics. 

This field of thought aims to alter the student to fit the system. As Gutierréz (2022) has pointed 

out, “when we study students and try to capture what prevents them from feeling they belong 

(and supports them to feel included), we are expressing our own desires that we want that for 

them” (p. 382). To put this more directly, this type of work approaches belonging by encouraging 

assimilation of Borderland inhabitants into the walls of academic mathematics without regard to 

where students already feel a sense of belonging. I will then review literature that takes a more 

critical approach to investigating a sense of belonging to mathematics and accepts Borderlands 

as a place of being for students, letting them exist how they are. This approach allows space for, 

and invites, a mestiza consciousness for students, instructors, and researchers in the field. 

Assimilating to Belong 

The following studies seek to understand a sense of belonging to mathematics without regard 

to how the narrow framing of what is valued in academic mathematics could be acting as a 

deterrent to those who do not seek assimilation into whiteness. This work envisions a future in 

this field without a puente (bridge) that could help embrace mathematical ways of knowing and 

being outside of what is defined as academic. That is, it assumes a permanence in this field 

which smothers the beauty, diversity, complexity, and spirituality that exist throughout 

mathematics. 

Sense of belonging research has pointed to ethnicity/race as a predictor of sense of belonging 

in educational institutions and STEM as a field. Examining this connection, as early as middle 

school, Barbieri and Miller-Cotto (2021) look into the significance of a student’s sense of 

belonging in relation to other self belief measures of self concept, importance, and entity view. In 

this study, they find that “not only is sense of belonging to mathematics a significant predictor of 

middle school students’ learning, but it was the only significant predictor of the motivation and 

belief measures taken” (p. 7). These findings specifically call attention to underrepresented racial 

and ethnic minority students (URM), as these students “reported a markedly lower sense of 

belonging than non-URM students" (Barbieri & Miller-Cotto, 2021, p. 1). When investigating 

the cause for this racial gap in belonging, Morales-Chicas and Graham (2021) found that 

racial/ethnic makeup of a student's math class played a significant role in a student's sense of 

belonging. That is, “Latino and Black students in advanced math reported a greater sense of 

belonging in math when they perceived more similar racial/ethnic peers in class than in school” 
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(p. 9). These findings present major implications for districts that participate in math tracking 

that often results in Black and Latino students being underrepresented in advanced courses 

(Tyson, 2013). 

Some sense of belonging studies focus on students of color who are succeeding academically 

in an effort to understand how to replicate their success. Strayhorn’s (2008) study for example 

showed that there was a positive correlation between Latino college students earning a higher 

grade and their sense of belonging. But in a sample of 589 Latino and White students, descriptive 

statistics show that on average, Latino students receive lower grades in their courses than their 

White counterparts. To a similar result, Bjorklund (2019) found that “while more latinas/os are 

taking AP exams than in previous years, their passing rates have remained lower than other 

groups” (p. 109). So even when students of color are being ‘pulled out of their Borderlands’ and 

achieving some form of success, as defined by academic mathematics, they still remain othered 

in academia from their White counterparts. Furthermore, Bjorklund (2019) claims that the 

Latina/o participants in their study “leveraged their lack of sense of belonging to bolster their 

resilience and motivate themselves toward transformative resistance to succeed and prove others 

wrong” (p. 123). Although transformative resistance might seem like a positive step towards an 

equitable education for these Latino students, I wonder if we can create a system that allows 

students of color to succeed for themselves and their ancestors, rather than to prove their White 

counterparts wrong. 

Results from a nine-country survey showed that school sense of belonging is a significant 

predictor of how students value advanced math courses (Smith et al., 2021). When surveying 

women in the United States, Thoman et al. (2014) found that women “feel pushed out of STEM 

when they feel a low sense of belonging” (p. 246). These results echo findings by Good et al. 

(2012), that show that a low sense of belonging for women in STEM predicts a decrease in desire 

to pursue math in the future. Women in math environments receive social messaging that women 

have a lower math ability than men, which further leads to low sense of belonging in math (Good 

et al., 2012). Rogers et al. (2021) attempts to investigate a more specific association with gender 

discrimination, school connectedness, and math/science achievement motivation. In a sample of 

295 adolescent girls, they found that “gender discrimination was uniquely associated with girls’ 

lower sense of school connectedness” (p.417) along with being a predictor of below average 

math achievement motivations (but not science). 

Taking an intersectional approach, Rodriguez and Blaney (2021) investigate how Latina 

STEM majors develop their sense of belonging in academia. They find that “white and male 

classmates unjustly question the abilities and belonging of Latina students in STEM,” and that 

their participants found other spaces on campus to feel supported (p. 452). In these studies, we 

see the struggle of Borderland women trying to live “between los intersticios, the space between 

the different worlds she inhabits” and being told this place cannot be home (Anzaldúa, 1999, 

p.32). 

Belonging to Borderlands 

In accepting the Borderlands as a place of being and a place of home, it is important to not 

examine how Borderland students succeed in mathematics in an effort to recruit into the field, 

but rather use this examination towards a futurity praxis, for “students and teachers to live out a 

future to which they want to belong” (Gutiérrez, 2022, p. 383). We need to highlight that when 
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Latina students pursue STEM degrees it is driven by their sense of belonging and commitment to 

their families and communities (Acevedo et al., 2021). Accepting those in the Borderlands also 

requires partnerships, puentes. In their study with Black women in college, Cook-Sather and 

Seay (2021), demonstrate how “pedagogical partnerships respect Black, female students’ 

intellects; affirm their experiences and expertise; and make them feel they belong in 

conversations about teaching and learning” (p. 745). Positioning these women as experts of their 

own sense of belonging is key to acceptance in the field. Acevedo et al. (2021) also acknowledge 

changes required of the system to truly affect the sense of belonging to STEM. They recommend 

requiring an Ethnic Studies STEM course, “which confronts the issue of STEM reproducing 

white supremacy, whiteness and sexism” (p. 74). 

Another way to accept Borderlands as a place of home is to recognize that the current system 

is not a place where Borderland people belong. I want to be clear that this is not to say that they 

do not belong because they cannot belong but rather that forcing a sense of belonging would be 

an act of assimilation and colonization. In examining how ableism affects students’ sense of 

belonging in learning environments, Nieminen and Pesonen (2022) assert, “inclusive learning 

environment design cannot be a responsibility of individual teachers practicing ‘pedagogies of 

care’, as structural ableism needs to be challenged through systemic solutions from HE [Higher 

Education] institutions” (p. 2030). Furthermore, “while waiting for such radical changes, it might 

be more desirable – and safer – for disabled students not to belong to the learning environments” 

(p. 2031). In a similar argument, when investigating what effect Culturally Responsive Pedagogy 

might have for Australian students, researchers came to the conclusion that in order to actually 

improve sense of belonging, they would need to “conceptualize the role of education outside the 

desire to fit students into the mainstream culture of the school and its society” (Harrison & 

Skrebneva, 2020, p. 23). Stokes (2023) further highlights the problematic nature of most sense of 

belonging research as it represents “white supremacy as a normative construct for which people 

of color must adopt” (p. 30). Stokes continues by emphasizing a future that creates a new “us” 

which is in line with Anzaldúa’s (1999) mestiza consciousness, where those in the Borderlands 

reject the pushing and pulling into systems in which they do not find belonging. 

Envisioning a Future 

This review of sense of belonging to mathematics research demonstrates the need to envision 

a future for mathematics education that centers students who are currently othered by academic 

mathematics and intentionally aim for a mestiza consciousness in this field. In order to actually 

address the member (under)representation in mathematics that Good et al. (2012) sought out to 

understand, we must emphasize “healing us,” not “helping others,” by targeting the whole 

system as opposed to just specific parts (Gutiérrez, 2022, p. 383). 

Throughout this paper the word academic was placed in front of mathematics to emphasize 

that mathematics is so much more than what is valued as mathematical in academia. If we truly 

want students to find belonging in academic mathematics, we need to disrupt the hierarchy that 

whiteness has created in this field (Battey & Levya, 2016). As highlighted in the previous section 

researchers have begun this disruption, but we can build upon and continue this work by 

centering student perspectives. That is, rather than studying what negotiations or hurdles students 

must overcome in order to discover a sense of belonging to academic mathematics, instead 

respect youth as the experts of their own sense of belonging to guide us in defining this feeling. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

419 
 

Rather than research serving the current system it should serve Borderland students and bring 

their voice into the conversation. By engaging with students that live within the Borderlands of 

classroom mathematics and in examining sense of belonging while also rejecting a desire to 

recruit into a broken system, we can embrace a “relational understanding of knowing, existing, 

and healing that center values and ethics” (Gutiérrez, 2022, p. 381). Let us practice what we 

preach to our pre-service teachers and in professional developments and meet students where 

they are, on the puente. 
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We employed a dialogical self-approach to delve into the narratives of a group of seven women 

mathematics educators, including both graduates of the same doctoral program and their 

advisor. Through this lens, we gained insights into how we described ourselves, recounted 

personal experiences, and articulated our personal histories within the figured worlds. Three 

dialogical models emerged, including dialogues between past and present positions, dialogues 

between internal and external positions, and dialogues between self and societal norms. These 

models serve to offer insights into how intricate dynamics shape women mathematics educators' 

perceptions, interactions, and self-identities over time. By examining these dialogical 

interactions, we gain a deeper understanding of the multifaceted factors influencing the 

professional and personal development of women in mathematics education. 

Keywords: Dialogical Self, Identity, Narratives, Women Mathematics Educator  

Women mathematics educators often navigate the complex intersection of mathematics and 

education, experiencing a dynamic landscape where they simultaneously encounter both distance 

from and alignment with societal expectations (Zhou et al., 2023). On one hand, they are often 

stereotyped as extraordinary or exceptional, attributed to their significant involvement in 

mathematics. On the other hand, they also conform to societal expectations associated with the 

traditional female role as educators, nurturing individuals within society. This inherent 

contradiction shapes their professional journey, influencing their self-recognition. This study 

addresses the critical need to amplify the voices of women in mathematics education, 

highlighting the unique challenges and perspectives they bring. By examining these dialogical 

interactions, we gain a deeper understanding of the multifaceted factors influencing the 

professional and personal development of women in mathematics education, ultimately aiming to 

inform policies and practices that support their growth and retention in the field. Specifically, the 

following research question leads to the inquiry: What dialogical models emerge to interpret the 

identity of women mathematics scholars over their life-long journey? 
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Theoretical Perspectives 

Building on Bakhtin's dialogism, Holland and colleagues (1998) articulated the dialogical 

self approach to elucidate individual identity through the act of authoring oneself within figured 

worlds (for an overview, see Holland et al., 1998). The concept of the dialogical self is 

characterized by its social nature, not merely involving interactions between an individual and 

external people but encompassing a multitude of voices within the self (Hermans, 2001). 

Hermans additionally (2013) articulates the dialogical self within educational settings, 

emphasizing that dialogues can occur between different positions within the self, emerge 

between internal and external positions, or take shape between two external positions of the self. 

Thus, the dialogical self-approach promotes internal and external discourse, providing educators 

with a lens for authoring figured worlds and narrating multiple, affordably accessible I-positions.  

Akkerman and Meijer (2011) advocate for the adoption of a dialogical self-approach to 

investigate teacher identity, suggesting a threefold reconceptualization: viewing it as both unitary 

and multiple, continuous and discontinuous, and individual and social. So far, there are only a 

few studies in mathematics education which use a dialogical self approach as the analytic tool 

and theoretical framework to understand teachers’ identity.  

In Pipere and Micule (2014)’s exploration of three teachers’ lifelong relationships with 

mathematics, emergent dialogical models in the teachers' mathematical identity, intertwined with 

perceptions of students' mathematical inclinations. This provides valuable insights for practical 

implementation of exploring mathematics educators’ identity. Similarly, William (2011) delves 

into two mathematics teachers’ narratives in the figured world of mathematics teaching and 

learning, and discovered that their cultural resources such as family, background, school, 

university, and teaching experiences, provide insight into how they author selves in the teaching 

mathematics. With the aim to explore the extent of reflexivity in shaping new identity spaces 

within mathematics, Solomon’s (2012) study from the self-authored narratives of two 

undergraduate women in the figured world of mathematics, revealed the persistent challenge of 

altering the positioning of women in this field. Despite reflective efforts, the perception of 

mathematics as a gendered and predominantly masculine domain persists. 

Drawing upon methodologies in the reviewed literature and responding to the call made by 

Lutovac and Kaasila (2018) for a more balanced psychosocial theoretical perspective in 

exploring identity in mathematics education that equally considers both individual and social 

dimensions, we have embraced the dialogical self approach to investigate the narratives the 

women mathematics educators.  

Methods 

In our study, ongoing monthly meetings of the group, spanning two semesters, have become 

a dynamic space for intentional narrative construction and self-authorship through carefully 

crafted prompts. First, we discuss the prompts, and then we spend 30-45 minutes writing our 

own narratives or stories to respond to them. Finally, we come back together to share our stories, 

which leads to an evolving inquiry in the group. 

The prompts serve as catalysts for rich and dynamic internal and external dialogues. These 

prompts intricately weave dialogues within self and between self and others, fostering a holistic 

exploration of personal narratives. Internally, the prompts elicit dialogues within the individual, 

encouraging members to engage in reflective conversations with their past selves. As we delve 
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into significant memories and episodes, these prompts facilitate an ongoing dialogue with the 

various I-positions that have shaped our identities across different life stages. Externally, the 

prompts spark dialogues among group members, creating a shared space for collective reflection 

and exploration. The prompts encourage open discussions, allowing us to share our diverse 

perspectives, experiences, and I-positions. Instead of taking on the role of critical friends as self-

study (e.g., Hamilton & Pinnegar, 2000), the members primarily engage in active listening and 

understanding, fostering a strong sense of community and further promoting the group's 

collective narrative. 

Fueled by these prompts, the monthly meetings provide a structured yet open platform for the 

group members to engage in a continuous process of self-reflection and narrative development. 

The individual narratives and recordings of group discussions serve as data sources for this 

exploration.  

Findings from Interpretation of Dialogical Narratives 

Exploring the question of what dialogical models emerged to interpret the identity of women 

mathematics scholars over their lifelong journey, we intentionally sought the dialogical voices 

from the narratives, who they talk to, what they talk of. Three dialogical models have emerged: 

Dialogues between Internal Past and Present Positions, Dialogues between Internal and External 

Positions, and Dialogues between Self and Societal Norms.  

Dialogues between Internal Past and Present Positions 

When addressing the prompts, we naturally initiated dialogues among our different I-

positions, especially across the dimension of time. Engaging in a dialogue with our past selves 

from today's mathematics educator perspective can illuminate numerous challenging 

experiences, critical moments, and pivotal choices. Many past struggles can then be better 

explained and understood. Below is an example from Jill, sharing her nadir experience during 

her dissertation proposal defense with a reconciling perspective： 

I was not prepared for the high-stakes, high-pressure moment of my defense. I don’t 

remember any details about the meeting and any particular questions I was asked, but I sure 

do remember the feeling afterward - crushed, embarrassed, defensive, etc. I had passed, but 

with lots of critique and revisions and thinking to do… In hindsight, of course, I am grateful, 

but the memory is far from warm and fuzzy. 

A different example from Hyunyi involves her revisiting herself as a 13-year-old girl to 

express her earlier thoughts on teaching and mathematics back then: 

When my mom asked me what I liked and what I wanted to be in the future. As a 13-year-old 

girl, this question made me think about experiences that had made me happy. I told my mom 

that my friends in the classroom asked me about their homework and test prep problems, and 

I felt happy when they thought my collaboration was helpful to them. I continued to explain 

to my mom that I want to be a literature or mathematics teacher. Since many of my 

classmates think math is more difficult than literature, I thought it might be better for me to 

become a math teacher as I would be able to help more people. 

These dialogues explain the past challenges and perplexities and reconstruct experiences that 

align with current identities. By examining internal positions, past selves, and current selves, we 
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aim to understand decision-making processes, such as the choice to pursue a PhD in mathematics 

education and a commitment to mathematics. 

Dialogues between Internal and External Positions 

As women mathematics educators recall experiences imprinted in their memories, dialogues 

emerge between themselves and others. In the example below, Brooke expresses surprise at 

being called a leader, a role beyond her own self-identification. 

I recall being at my 20-year high school reunion. I had just finished my PhD within the last 

year and was a lecturer at a Midwestern University. One of my classmate’s husband was 

there, and he was 3 years older than me and the current high school principal. He said 

“you’re a leader why don’t you get things started.” It surprised me because I did not see 

myself as a leader. I just saw myself as being me.  

In another dialogical context, Ricki was questioned as a female pursuing mathematics. 

I received an interview for graduate school for mathematics. Upon entering the room for my 

interview, I was greeted with “Oh, you’re female.” The discovery of my femininity cast a 

shadow on the interview, disregarding the qualifications that I held. I didn’t get into graduate 

school for mathematics; it left me feeling “not good enough” in mathematics.  

The dialogues between internal and external positions confirm identity from others' 

perspectives. While some dialogues positively contribute to identity development, as seen in 

Bailey's example, others might negatively impact identity, as illustrated by Ryan's experience. 

Moreover, dialogues between internal and external positions indicate power inequity. These 

dialogues reflect not only how individuals perceive themselves internally but also how external 

factors, such as societal norms or institutional structures, may exert influence and contribute to 

power imbalances within personal narratives. 

Dialogues between Self and Societal Norms 

Dialogues between self and societal norms, such as being a woman or living in a specific 

culture, also emerged. In these dialogues, women mathematics educators author themselves in 

broader social contexts with collective identities, often grappling with struggles and uncertainty. 

Below are dialogues from Bima and Lindsay respectively, exploring aspects of culture, gender, 

and the intersection of both, shaping who they are. 

In the culture where I was raised, we do not usually say “no” when someone in a higher 

power asks you to do something. For example, when your senior colleagues interpret your 

ideas in a different way, I still cannot take a stance and say “that was not what I was 

thinking.” But I have begun realizing that is not going to serve me well. I need to be more 

strategic and defend my ideas.  

Another noticing is that things that challenge all these women’s identities - in one 

circumstance or another - is the desire to please others. We feel that tension from time to 

time, and it sounds like with age we are getting better at managing it, but it appears to be a 

challenge that can creep up on us again at times and interfere with our choices of how to 

divide our time between our personal and professional roles.  
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These narratives exemplify the complex interplay between individual identity construction 

and external societal influences. As we delve further into these dialogues, we gain valuable 

insights into the nuanced ways in which personal and social identities intertwine within the 

narratives of women mathematics educators. 

 

Discussion 

Using a dialogical self approach, we facilitate both internal and external discourses, 

exploring personal histories, narratives, and the development of evolving identities. Our findings 

indicate that exploring personal histories provides women educators with a deeper understanding 

of self within complex social relations. Encompassing both individual and social dimensions, the 

three identified dialogical models provide a foundation for future exploration of educators’ 

identity. These models, in particular, inform designing interview questions, discussion prompts, 

or survey inquiries. By keeping these dialogical models in mind, researchers can create spaces 

for participants to respond authentically and author selves in the figured worlds. 
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ELEMENTARY PRESERVICE TEACHERS’ ANGLE MEASURE APPROACHES 

GIVEN A CIRCULAR CONTEXT 

Hanan Alyami 

Purdue University in Fort Wayne 

alyamih@pfw.edu 

Curricular standards emphasize understanding angle measure as a fractional amount of a circle. 

However, learners struggle to connect angle measure to circular context. In this report, I explore 

65 elementary preservice teachers’ (PSTs’) strategies as they engaged with a circular context. 

Thematic analysis of PSTs’ drawings and written responses indicate that a little over a quarter 

of the PSTs utilized angle measure to complete the task. These findings suggest that despite the 

connection between angle measure and the circle concepts, such connection might not be 

spontaneous for learners. I conclude with implications and future considerations. 

Keywords: Geometry and Spatial Reasoning, Measurement, Preservice Teacher Education. 

Measurement is a critical mathematical domain for preservice teachers (PSTs) enrolled in 

teacher education programs (AMTE, 2017). Within this domain, the concept of angle and its 

measure are critical topics in school mathematics (Barabash, 2017; Thompson, 2008; Thompson 

et al., 2007). However, the concept is illusive, as learners (including PSTs) struggle with 

quantifying angle measure (Sinclair et al., 2017). Conventionally, angles are measured in relation 

to a circle centered at the angle’s vertex. The angle is measured using its subtended arc as a 

specific, yet arbitrary, fractional amount of the circle’s circumference. When measuring angles in 

degrees, the subtended arc is measured in units that are 1/360th of the circumference. This is 

known as the arc approach to angle measure (Moore, 2013), and is reflected in the Common Core 

State Standards for Mathematics (CCSSM), where angle measure is introduced in fourth grade: 

An angle is measured with reference to a circle with its center at the common endpoint of the 

rays, by considering the fraction of the circular arc between the points where the two rays 

intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree 

angle," and can be used to measure angles. (National Governors Association Center for Best 

Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010, p. 31). 

Despite the connection between the concepts of fractions, circles, and angle measure, 

researchers have reported that students do not relate angles to the circle context (Hardison, 2018; 

Hardison & Lee, 2019; Moore, 2013), and that students and teachers struggle with understanding 

angle and its measure (Crompton, 2017; Devichi & Munier, 2013; Keiser, 2004). However, while 

researchers have explored and reported PSTs’ and in-service teachers’ mathematical knowledge 

of various quantities (e.g., length, area, and volume), little is known about how PSTs and in-

service teachers quantify angle measure (Smith & Barrett, 2017).  

To provide PSTs with opportunities to develop a coherent understanding of mathematics 

(AMTE, 2017), as well as opportunities to use and connect mathematical representations 

(NCTM, 2014), it is important to explore PSTs’ approaches to solve a problem situation that 

involve a circular context. In this report, I present a task that would provide PSTs with an 

opportunity to utilize angle measure given a circular context, summarize my analysis of their 

mailto:alyamih@pfw.edu
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quantitative reasoning approaches (a construct I elaborate on in the following section), and 

provide insights on the implications of the findings. 

Theoretical Framework 

I build on principles of quantitative reasoning, which involves an individual’s mental actions 

for “conceptualizing an object and an attribute of it so that the attribute has a unit of measure, 

and the attribute’s measure entails a proportional relationship...with its unit” (Thompson, 2011, 

p. 37, emphasis added). Given this description, quantification involves coordinating three 

components: an object, its measurable attribute, and a quantification (measurement) process. 

Given the conventional approach to angle measure described earlier, the angle is considered 

the object; its measurable attribute of openness is quantified as a multiplicative relationship 

between the angle’s subtended arc and the circumference of the circle containing the arc. The arc 

approach to angle measure is beneficial, especially for the study of trigonometry (Moore, 2013, 

2014), and inverse trigonometry (Paoletti, 2020). However, students have applied other 

approaches to angle measure, such as iteration and partitioning (Hardison, 2020; Mullins, 2020). 

For example, ninth-graders described a 1° angle by attending to the space between the angle’s 

rays as the measurable attribute of angle, and utilized iteration (repeatedly producing 1° angle 

copies, where 360 copies would form a full circle) or partitioning (successively dividing a known 

angle into equiangular parts to produce a 1° angle) to quantify the attribute (Hardison, 2020).  

The CCSSM’s description of 1° angle as a turn through 1/360 of a circle suggests the amount 

of turn as a measurable attribute of angle. Clements and Burns (2000) have argued that 

understanding angle as a turn is important for students’ ability to estimate angle measure. 

However, conceptualizing angle dynamically as a turn does not guarantee that the angle is 

viewed quantitatively as an amount of turn. Mitchelmore suggest that the difficulty in this 

conceptualization could be because, “young students do not spontaneously conceptualize turning 

(as found in rotation and hinging situations) in terms of angles” (1998, p. 278, emphasis added).  

Since the quantification process being mental actions, where different individuals may have 

different quantification approaches for the same object, learners quantify angle measure using the 

length of the angle’s subtended arc (Moore, 2013) or the space between the angle’s rays 

(Hardison, 2020) as the angle’s measurable attributes. Additionally, researchers reported that 

learners often spontaneously attend to other measurable attributes of angle (Crompton, 2017; 

Devichi & Munier, 2013; Keiser, 2004; Lehrer et al., 2012; Thompson, 2013). For example, 

students associate angle measure with the length of its rays (Keiser, 2004), or the linear distance 

between the angle’s rays (Thompson, 2013). Additionally, students associate angle measure with 

the angle’s orientation, where a change in the angle’s orientation (e.g., from the horizontal) is 

conceptualized as causing a change in the angle’s measure (Crompton, 2017; Devichi & Munier, 

2013; Lehrer et al., 2012). 

Approaches to angle measure that are different from the conventional arc approach indicate 

that learners may not spontaneously consider the angle’s subtended arc as a measurable attribute 

of angle, suggesting a need for research that explores and acknowledges learners’ spontaneous 

approaches to angle measure (Hardison, 2019, 2020). I address this need by exploring PSTs’ 

spontaneous strategies to solve a problem situation that involves a circular context. 
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Methods 

Participants and Context 

The participants for this study are 65 PSTs who were enrolled in an elementary teacher 

preparation program at a Midwestern university in the United States. The PSTs were near the end 

of their program: They had already completed all the required mathematics for elementary school 

teachers courses and participated in this study as part of in-class activities in their elementary 

mathematics methods course.  

Task 

PSTs were given a task imbedded in an integrated science, technology, engineering, and 

mathematics (STEM) context, which involves designing a rocket. Through the design process, 

students learn that rockets need three fins to fly stably. Using rulers, tape measures, and waxed 

string to complete the task, the PSTs were given a table with two circles representing the body of 

two rockets from above to draw their fin placements (Figure 1). PSTs drew their representation 

of a rocket with three evenly spaced fins, and a second rocket with three randomly spaced fins.  

 

Rocket 1  

(with 3 evenly spaced fins) 

Rocket 2 

(with 3 randomly spaced fins) 

  

- What mathematical concept did you use to evenly space the 

fins? 

- Using the previously mentioned concept, what was your strategy 

to evenly space the fins? 

Figure 1. Placing Three Fins Around a Circular Rocket Model Task 

While the task does not explicitly refer to angle measure, the circular context builds on the 

convention of measuring angles in relation to circles. The task aimed to discern the measurable 

attribute the PSTs would spontaneously attend to, and to answer the research questions: 

(1) What proportion of participating PSTs would associate the circular context to angle measure? 

(2) Given a circular context, what measurable attribute do PSTs (spontaneously) attend to? 

Data and Analysis 

The data for this report are PSTs’ drawings and written responses to the previous task (Figure 

1). I initially sorted the PSTs’ drawings based on accuracy using a transparent template (Figure 

2) to assess if PSTs’ fins placement falls within an acceptable range (Zolfaghari, 2023).  
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Figure 2. Transparent Template of Acceptable Range for the Fins Placement  

PSTs’ drawings and written responses were then categorized using thematic analysis 

(Saldaña, 2013), with attention to the solution strategies and measurable attributes the PSTs 

attended to when completing the task. Specifically, some PSTs explicitly referred to using angle 

measure to complete the task, while other PSTs used partitioning.  Additionally, since 

quantifying angle measure involves using the length of the angle’s subtended arc (Moore, 2013) 

or the space between the angle’s rays (Hardison, 2020) as the angle’s measurable attribute, the 

initial categories were attending to circumference or circle interior as the measurable attribute. 

Table 1 shows the categories used to organize the data, which were not mutually exclusive. For 

example, a PST who operated on the circle’s interior could have also utilized partitioning. 

Table 1: Categorization of PSTs’ Written Response to the Task 

Category

/Code 

Accuracy Solution Strategy Measurable Attribute 

Within 

acceptable 

range 

Outside 

acceptable 

range 

Angle 

Measure 
Partitioning 

Circle's 

Interior 
Circumference 

D
es

cr
ip

ti
o
n

 Evenly spaced 

fins within an 

acceptable 

range based on 

the template in 

Figure 2. 

Fins placed 

outside the 

acceptable 

range of the 

template in 

Figure 2. 

Explicitly 

referring to 

angle 

measure in 

the response. 

Breaking a 

whole into 

different parts. 

Breaking the 

circle into three 
𝟏

𝟑
 fractions. 

Attending 

to the 

interior of 

the circle to 

complete 

the task. 

Attending to 

the circle’s 

circumference 

to complete the 

task. 

E
x
a
m

p
le

s 

  
 

   

Findings & Discussion 

In this section, I highlight the frequency of PSTs’ responses categories, and relate the 

findings to existing literature. Curriculum standards emphasize understanding angle measure as a 

fractional amount of a circle (NGA & CCSSO, 2010), suggesting a connection between fractions, 

circles, and angle measure concepts. Using and connecting these mathematical representations is 

considered an effective practice for learning and teaching mathematics (NCTM, 2014). However, 

only 26% of the PSTs connected the circular context to angle measure, suggesting that the 

connection between fractions, circles, and angle measure might not be spontaneous for learners 

(Hardison, 2020; Hardison & Lee, 2019; Moore, 2013).  
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Table 2. A Breakdown of Strategies and Measurable Attribute Applied by the PSTs 

 65 Participating PSTs completed the task 

 Within Acceptable Range 

57 

Outside Acceptable Range 

8 

Solution 

Strategy 

Angle Measure 16 1 

Partitioning 23 2 

Measurable 

Attribute 

Circle’s 

Interior 

43 7 

Circumference 14 1 

 

While seventeen PSTs utilized angle measure to evenly space the three fins, only one 

explicitly referred to angle measure and used a string to evenly space the fins (circumference). 

The remaining PSTs who used angle measure operated on the circle’s interior. Fifty-seven of the 

participating PSTs (88%) correctly spaced the three fins evenly around the circular rocket 

representation. Out of those fifty-seven PSTs, forty-three operated on the circle’s interior, while 

fourteen used the circle circumference. Regardless of accuracy, fifty PSTs (77%) attended to the 

circle’s interior as a measurable attribute, while fifteen PSTs (23%) utilized the circumference to 

complete the task. This suggests that understanding angle measure as a fractional amount of the 

circumference might not be supported (Moore, 2013; Thompson, 2008). 

Conclusion 

While measurement is a critical concept for (PSTs) enrolled in teacher education programs 

(AMTE, 2017), educators in such programs need to attend to and build on PSTs’ existing and 

spontaneous approaches. Moore (2013) utilized the conventional approach to angle measure by 

emphasizing the relationship between the arc length subtending the angle and a benchmark 

associated with the circle containing the arc and is centered at the angle’s vertex. Moore (2014) 

and Paoletti (2020) have demonstrated the benefit of the arc approach to angle measure for the 

study of trigonometry and inverse trigonometry, respectively. However, the arc approach was not 

spontaneous for participating PSTs, as most of them operated on the circle’s interior. Although 

the fins would be placed physically around the circle (i.e., circumference), the PSTs partitioned 

the circle’s interior as a solution strategy, reflecting that majority of the PSTs attend to the 

circle’s interior as the measurable attribute given a circular context. This finding is not meant to 

describe PSTs’ thinking as lacking. Instead, I would like to highlight PSTs’ ability to successfully 

complete the task using various sophisticated strategies without needing to connect angle 

measure to the circular contexts (reflected in the few examples provided in Table 2). This finding 

suggests that understanding angle measure in relation to circles could be supported by building 

on PSTs’ spontaneous attention to the circle’s interior. 
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We report on a collaborative research study that coordinated two prominent theoretical 

perspectives (units coordination and spatial-numerical structuring) to build second-order 

models of students’ geometric enumerations and measurement. We focus on one prospective 

elementary teacher, Jake, and his solution to a geometric enumeration task in two dimensions. 

This work contributes an in-depth explanatory account of Jake’s reasoning in terms of his 

available units-coordinating actions and spatial-numerical structuring processes. 

Keywords: Geometry and Spatial Reasoning; Number Concepts and Operations; Cognition; 

Learning Theory 

Much research has investigated students’ development of concepts and operations within 

geometric enumeration and measurement (e.g., Battista 2007; Barrett et al., 2017; Smith & 

Barrett, 2017). Spatial structuring, defined in the next section, is critical to students’ spatial and 

geometric reasoning. Spatial structuring occurs via coordinations of mental actions such as 

iterating, partitioning, disembedding, and distributing—all mental actions involved in students’ 

constructions and coordinations of numerical units (Hackenberg & Sevinc, 2024; Steffe, 1992)—

as well as spatial mental actions such as rotating, translating, and reflecting. Meaningful 

measurement reasoning entails a spatial-numerical linked structuring (SNLS; Battista et al., 

2018). Although units coordination and SNLS have similar constructivist roots and draw on a set 

of common mental actions, few studies (e.g., Antonides & Battista, 2022; Wheatley & Reynolds, 

1996; Zwanch et al., 2023) to date have explicitly coordinated these perspectives. 

In this paper, we coordinate the units coordination and SNLS perspectives to offer an in-

depth theoretical account one case-study student’s reasoning: Jake, a prospective elementary 

school teacher. We specifically focus on Jake’s solution to a non-routine geometric enumeration 

task within an area context. Consistent with our constructivist epistemology (Beth & Piaget, 

1966), we frame Jake’s solution in terms of his available mental actions and their coordination. 

In summary, we seek to answer the following research question: What spatial and numerical 

mental actions do students use and coordinate to solve non-routine area measurement problems? 

Theoretical Perspectives 

Units coordination is a theory that explains students’ capacities for constructing and 

coordinating multiple levels of quantitative units; for thorough overviews of the theory, see 

(Hackenberg & Sevinc, 2024; Ulrich, 2015, 2016). In brief, students at Stage 1 can reliably act 

on units of 1, through mental actions such as iterating and partitioning, to construct composite 
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units (or two-level units)—collections of units conceptualized as units themselves. Students at 

Stage 2 can act on units of one using the mental act of disembedding, and they can actively 

iterate composite units to construct composites of composite units (three-level units). Student at 

advanced Stage 2 (Hackenberg & Sevinc, 2022; Tillema & Antonides, 2024) can also flexibly 

switch between different two-level units in their problem solving, such as switching between 

three twos and six ones as measures of the same quantity. Students at Stage 3 can bring three-

level units into problem situations without needing to actively construct them.  

We use the term spatial structuring in two senses. On one hand, spatial structuring refers to 

the mental process (a coordination of mental acts) of constructing a spatial organization or form 

for one or more objects (Battista & Clements, 1996). On the other hand, we refer to the “spatial 

structuring perspective” to refer to the body of research literature that frames students’ spatial 

enumerations and measurement in terms of their structuring of spatial objects (e.g., Battista, 

1999, 2007; Battista et al., 1998; Barrett et al., 2017; Clements et al., 2018; Cullen et al., 2018). 

Within this perspective, researchers have long investigated students’ application of numerical 

concepts and strategies for enumerating spatial objects. Battista et al. (2018) introduced the term 

spatial-numerical linked structuring (SNLS) to capture reasoning that links spatial structuring 

and numerical structures; we view units coordination as a potentially powerful way of 

explicating students’ SNLS. 

Methodology 

Jake was a student enrolled in the first author’s content course focusing on geometry and 

measurement. Toward the start of the semester, we engaged Jake in one 45-minute semi-

structured interview (Clement, 2000) in which we asked him to “think aloud” about his 

reasoning. We chose geometric enumeration tasks (including length, area, and volume) that we 

hypothesized would evoke SNLS and units-coordinating actions, without evoking procedural 

responses (e.g., finding area by multiplying LW). We focus on Jake’s solution to one 

enumeration task in an area context. 

Pattern Tiles Task: (Part 1) How many green triangles would it take to cover Pattern 2 with 

no gaps or overlaps? (Part 2) How many green triangles would it take to cover the other 

patterns? [See Figure 1.] 

  
Figure 1: Image presented during the Pattern Tiles Task. 

Using guidelines for networking theoretical perspectives (Kidron & Bikner-Ahsbahs, 2015; 

Prediger et al., 2008), we developed a plan for analyzing data and integrating our analyses. The 

four researchers split into the “spatial team” (Antonides and Battista) and the “numerical team” 
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(Zwanch and Norton). Each team developed a codebook consisting of mental actions suggested 

by existing research literature. Certain codes were common to both teams (e.g., unitizing, 

iterating, partitioning and subdividing), while other codes were particular to the spatial team 

(e.g., decomposing, rotating, transposing) or numerical team (e.g., disembedding). Codes appear 

in our Findings section as italicized mental actions. Each researcher first independently coded 

Jake’s reasoning using their team’s codebook, followed by team meetings to discuss and resolve 

discrepancies. We then engaged in a multi-stage process of collaboratively writing and 

integrating explanatory accounts of Jake’s reasoning. For the Pattern Tiles Task specifically, 

Antonides wrote an initial analysis of Jake’s reasoning from a spatial structuring perspective, 

then Zwanch wrote an analysis from the units coordinating perspective. Battista then wrote an 

integration of the two analyses, which Norton further developed and refined. 

Findings 

Data Excerpt. Jake was posed with Part 1 of the Pattern Tiles Task (triangles in Pattern 2). 

Three excerpts from his response are provided. The interviewer (Antonides) asked only 

clarifying questions aimed toward better understanding Jake’s reasoning with minimal 

intentional influence.  

Jake: There’s six triangles in each hexagon. … And also same with the trapezoid one, it’s 

still a hexagon. It’s two trapezoids, though. So, then that would be six triangles as well 

for each hexagon, as well as each trapezoid that’s in there. So, but, some of them are cut 

off. So, there’d be 1, 7, because I counted those six. 10. 13. 16. Um. 22. Yeah. Um, 28. 

34. 40. 43. [pause] 49. 52. 58. 64. 72. 76. Um. That’d be 82. 88. 91. 92, 93. 99. 105. 111. 

117. 123. 129. [continues uttering number words inaudibly.] 144.     

Analysis. We infer that Jake’s solution of 144 green triangles was the product of his 

coordination of multiple spatial and numerical mental actions in an additive SNLS. To facilitate 

this SNLS, Jake seemed to treat each triangle, trapezoid, and hexagon as single entities 

(suggesting unitization) that he could iterate. Jake also established numerical relations between 

each shape by spatially subdividing, and numerically partitioning, each trapezoid into a unit of 

three triangles and each hexagon into a unit of six triangles. That is, each trapezoid and hexagon 

represented, for Jake, a two-level structure: one shape that can be subdivided into multiple 

congruent triangles. Moreover, Jake seemed to flexibly switch between two-level structures—six 

triangles to one hexagon, three triangles to one trapezoid, and two trapezoids to one hexagon—in 

his enumeration. This suggests Jake was operating at advanced Stage 2 of units coordination, 

though the image in Figure 1 may have provided material for facilitating Jake’s switching 

between unit structures.  

Data Excerpt. A moment later, Jake made comments relating Patterns 1 and 2. 

Jake: Pattern 2, the triangle is double the size of Pattern 1. … It just seems like the tip of 

Pattern 1 is like in the middle [of Pattern 2]. … So it, at first glance, it looks like it’s 

double. [pause] But it also may not be because in here [Pattern 1], there’s only four of the 

hexagons. And there’s a lot more than eight in that [Pattern 2]. 

Int: Okay. Yeah, what do you think is the relationship between Pattern 1 and Pattern 2? 
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Jake: There’s four of Pattern 1 in Pattern 2. … ‘Cause I can see the, the lines in it where you 

can break it up into the smaller Pattern 1 triangles.  

Jake [a moment later]: I guess I could divide that [144] by four to find that answer. … 

Actually no, I think you might divide by three, because you still want to keep one of 

them. So, if you divide it by three, that essentially eliminates those three triangles. … No, 

you divide by four because then you’re finding out how many is in each one. 

Analysis. We infer that Jake’s initial focus was not on the relative areas of each pattern, but 

rather on their relative heights, given his assertion that Pattern 2 is “double the size of Pattern 1.” 

Jake spatially subdivided (numerically partitioned) the height of Pattern 2 into two parts, each 

equal to the height of Pattern 1. He quickly re-conceived the relation between Patterns 1 and 2, 

shifting his attention from length to area. He first did this by disembedding and iterating 

hexagons within each pattern, and using the number of hexagons as an indicator of the patterns’ 

relative areas. Then, he unitized Pattern 1 and partitioned/subdivided Pattern 2 into parts that 

were each congruent to Pattern 1, articulating a four-to-one relationship between their areas. 

Having constructed a multiplicative SNLS relating Patterns 1 and 2, Jake anticipated he 

could divide 144 by some number to find the number of green triangles needed to cover Pattern 

1. However, he experienced uncertainty about the appropriate divisor: three or four. We infer 

Jake experienced a moment of transitioning between additive and multiplicative thinking: 

removing all but of Pattern 1 (divide by 3) versus finding the number of green triangles within 

one copy of Pattern 1. This kind of transitioning is characteristic of Stage 2 students since they 

need to build multiplicative structures in activity. Jake ultimately decided dividing by four made 

more sense, though he did not actually carry out the computation 1444. 

Data Excerpt. Jake was then posed with Part 2 of the Pattern Tiles Task. He first used a 

highlighter to subdivide Pattern 3 into units of Pattern 1. 

Jake: So, you just multiply 144 times four. Because this one [Pattern 2] has four [of Pattern 

1] right here, and then this one [Pattern 3] has 16 [of Pattern 1]. So that’s four times four 

is 16. … Same way I did Pattern 2 and made the individual triangles and realized that 

there’s one, two, three, four, five, six, seven on that first row. [Counted silently] Five on 

this row, three, and then one.  

Int: Is that 16? 

Jake: I think. [Counted subdivisions within Pattern 3] Yes, it does. So, in my head, I’m 

thinking it’s a multiple of four.  

Analysis. We infer Jake constructed a multiplicative SNLS by spatially subdividing 

(numerically partitioning) Pattern 3 into units of size Pattern 1, with the aid of the image. He 

also said that he could subdivide Pattern 3 into units of Pattern 2, but he seemed to need to 

engage in the act of counting units of Pattern 1 within Pattern 3 to conclude a four-to-one 

relationship between Patterns 2 and 3—indicating Jake may not have constructed this 

multiplicative relationship prior to counting. After constructing this relationship, however, Jake 

was able to use it to determine the number of green triangles needed to cover Pattern 3. We infer 

Jake constructed Pattern 3 as a three-level unit structure through his spatial and numerical 

activity: a unit of 16 units (Pattern 1), each containing some number of green triangles.  
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Discussion and Conclusion 

Jake applied and coordinated several spatial and numerical mental actions to solve each part 

of the Pattern Tiles Task. Both types of actions were critical to Jake’s constructions and 

coordinations of units. Our findings underscore the importance of researchers attending to both 

spatial and numerical mental actions in building second-order models of students units 

coordinating activities, especially in tasks embedded within spatial contexts. Although this work 

has clear limitations—e.g., working with a single student, and presenting data on only a single 

task—we view this work as an important step toward future research that incorporates both 

spatial structuring and units coordinating perspectives. We suggest two potential avenues for 

future research. First, researchers could further examine and explicate the role of students’ units 

coordinating structures in their SNLS (Battista et al., 2018). In particular, researchers could 

examine younger (e.g., Stage 0 and Stage 1) students’ SNLS, particularly their spatial structuring 

and units coordinating actions. Second, researchers could extend our work focusing on length, 

area, and volume, to the context of angle measurement (e.g., see Hardison, 2024; Mullins, 2020).  
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Currently, most of the research projects in math education involving virtual reality (VR) have 

its users interact with smaller-than-human scale geometrical objects. These projects leverage the 

immersive/interactive nature of the VR environments to provide spatial alternatives to teaching 

3D geometry through two-dimensional silhouettes (Palatnik & Abrahamson, 2022). While these 

initiatives are exciting, our goal has been to find ways VR allows its users to experience 

mathematical ideas that can’t be replicated in another medium. 

This pointed us towards the gap in the literature that involves exploration of geometric 

objects that are larger than what we can observe from a single vantage point. At these large 

scales, the defining features of geometric shapes will be lost to our senses. As an example, 

standing on top of a large rectangular prism is indiscernible from standing on top a large cube 

when the horizon extends far enough that the defining features of these solids- the shape of their 

faces- can’t be known trivially. Our goal with this project is to find out how these macro-scale 

geometric objects could be used in an exploration task. 

 

 
 

Figure 1: 2 rolling balls, green one disappearing off the horizon, red one is closer. 

 

With these considerations in mind, we designed Surface Explorer as a playful experience that 

allows students from all backgrounds to engage with a mathematical task in a way that doesn’t 

confront them with mathematics. The environment allows users to roll virtual balls on various 

surfaces to figure out the shape of the surface they are on. We argue that this novel experience 

enables students to make mathematical arguments using both mathematical and non-

mathematical content knowledge through verbal and non-verbal language. Furthermore, the 

students’ ways in orienting themselves in the space and describing what is happening around 
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them provides information about how they think about 3D geometry outside of a classroom 

setting. 

Through a more extensive study we aim to understand the potential value of investigating 

macro-scale geometries in classroom settings. We hope that investigating geometrical questions 

through a novel lens will create new learning opportunities for a wider range of students. 
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Precision in language plays an important role in spatial thinking as well as computational 

thinking. We present results of a study where 26 first and 25 third graders provided verbal 

instructions for how a character should move along a path to reach a target on two occasions: at 

the beginning of a study and after playing a programming game with a peer for three, 20-minute 

sessions. Some of the students also analyzed worked examples of programs at the beginning of 

their sessions. Results suggest that analyzing worked examples of programs supported students 

in using more specific spatial language and articulating the number of movements. 

Keywords: Geometry and Spatial Reasoning; Instructional Activities and Practices; Cognition; 

Computational Thinking 

Language plays a key role in spatial thinking (e.g., Clements & Sarama, 2009; Hallowell, 

2020; Owens, 2015). In line with the mathematical practice of attending to precision in language 

(National Governors Association Center for Best Practices & Council of Chief State School 

Officers, 2010), spatial tasks may involve students communicating and explaining specifics of 

direction, distance, and location using correct mathematical language (e.g., up, left, next to, etc.). 

This mathematical practice also plays a role in computational thinking practices that are aligned 

with programming (Wing, 2006). For example, a key computational thinking practice aligned 

with mathematics is algorithmic thinking. Algorithmic thinking involves being able to represent 

and make sense of steps of a process, whether it is interpreting equations in mathematics or 

programming a robot to complete a task in programming. Students might not realize the need for 

precision in their use and choice of language if they work alone to program characters to move; 

however, playing with a peer or analyzing worked examples of a program could help them see 

the need for precision in their language. The purpose of this study was to investigate how 

analyzing worked examples of programs and playing with a peer could support students in 

clearly explaining movements of a character on a grid as opposed to playing with a peer but 

without analyzing worked examples of programs. 

Theoretical Frameworks: Computational and Spatial Thinking 

Spatial Structuring, Orientation, and Language 

Many early programming games for young students involve controlling movements of a 

robot or character on a grid (e.g., Coding AwbieTM, ScratchJr, Code & Go® Robot Mouse). 

Programming movements typically requires students to input a direction and number of 

movements (and sometimes indicate a type of movement). However, to make sense of 

movements on a grid, students need to understand the columns and rows structuring of the grid 

(Clements & Sarama, 2009). Students who are developing their spatial structuring of arrays 

might double-count squares as they switch directions from counting along the column to a row 

(or vice versa; Battista et al., 1998). In programming, Kocabas et al. (2019) found that some first 

and third graders double-counted corner squares when programming a character to move on a 
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grid, and they also found that sometimes students double-counted the character’s initial square. 

Shumway et al. (2021) found similar results for kindergarteners who counted the initial grid 

space when programming a robot on a grid. To move a character on a grid, students need to have 

an external-based reference system for considering position and movement (Clements & Sarama, 

2009). Such positioning may be particularly confusing because different games handle 

directional movements in contrasting ways (i.e., depending on the character’s point of view 

versus the character’s overall position). For example, to move the Code & Go® Robot Mouse to 

the left, a student would need to program it to turn until it is facing left and then program it to 

move forward. However, in Coding AwbieTM, the student would only need to play a move left 

block (regardless of where the character Awbie is facing). Students must navigate these 

interpretations to create algorithms (the series of steps) for the program to execute. 

Aside from making programs, students, especially if they are working in groups or talking to 

others, also need to be able to verbally explain how the character should move. In other words, 

they need to be able to communicate the algorithms they create or want to create. Typically, 

children’s use of the words up and down develops early, followed by words such as beside and 

over, with horizontal directions left and right causing more difficulty (Clements & Sarama, 

2009). Compared to adults, Lloyd (1991) found that 10-year-olds tended to rely on landmarks, 

when sufficient, instead of directional words when describing a route based on a simple map. In 

another route-describing task, six-year-olds relied on language such as over there or forward to 

describe movements, only rarely using specific directions, such as right (Blades & Medlicott, 

1992). In the same study, eight-year-olds used left and right more often, but only used them 

correctly about a third of the time. Shumway et al. (2021) found that kindergarteners sometimes 

used right and left but more often used language such as here, there, and forward (often 

accompanied by gestures) when describing how to move a robot. Although Clements and Sarama 

(2009) suggest avoiding the use of words like “over” that are not specific enough in bi-

directional spaces, there is little work suggesting what conditions help students take up more 

specific language. 

Cohen and Emmons (2017) used the coding system developed by Cannon et al. (2007) to 

describe students’ language about space in block-building tasks that included several categories 

such as spatial dimensions and features. Aspects of the framework that align well with describing 

movements on a grid include language related to location and direction and continuous amounts. 

Kocabas et al. (2022) used a modification of this framework in their work where students had to 

identify and fix discrepancies between a Lego manual and a Lego structure. They further 

categorized references within the language categories as specific versus generic. We build on this 

work by focusing on the location and direction aspects of spatial language in describing how a 

character should move on a grid within a programming study. 

Worked Examples 

Students need explicit experiences connecting mapping experiences with math (Clements & 

Sarama, 2009). One way to do this is through the analysis of worked examples. When students 

analyze worked examples, they can identify the important problem features and learn about 

solution steps (Booth et al., 2015; Durkin & Rittle-Johnson, 2012). Studying worked examples 

can promote effective problem-solving strategies and precise use of mathematical language when 

accompanied by opportunities for self-explanation or guided practice (Booth et al., 2013; Lang et 
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al., 2014). Research has shown students’ conceptual knowledge improves when analyzing 

worked examples, particularly for novice learners, and when those worked examples are 

incorrect (Durkin & Rittle-Johnson, 2012). This way, students can make sense of common errors 

in a particular incorrect worked example. 

Current Study 

Although there is extensive research on the use of worked examples in learning mathematical 

concepts, particularly in algebra (e.g., Booth et al., 2015), less is known about its role in 

developing students’ mathematical practices and spatial language. In this study, using the context 

of the Coding AwbieTM programming game, we explored the role of analyzing worked examples 

of programs on students attending to precise mathematical language to explain movements on a 

grid. We focus on the following research questions: What is the role of analyzing worked 

examples of programs on students’ explanations of Awbie’s movements on a grid? What patterns 

arise in their explanations? 

Method 

Participants and Design 

For this paper, we analyzed data from 26 first and 25 third graders who were from a US 

midwestern elementary school. The school’s population included 45% economically 

disadvantaged students and 11% English Learners. In the study, students first took a pretest in the 

form of an individual interview. After the pretest interviews, students were randomly assigned to 

a play-group condition (n = 27) or an explain-group (n = 24) condition. Each condition lasted for 

six, 20-minute sessions during which students worked with partners to play a programming game 

where they controlled the character Awbie’s movements on the iPad using tangible programming 

blocks. Students who were in the play-group condition played the Coding AwbieTM programming 

game in pairs for three sessions, took a midtest, and then in the next three sessions, they 

explained worked examples of programs, corrected incorrect worked examples, and played the 

programming game in pairs. Students in the explain-group condition started the first three 

sessions by explaining worked examples of programs and playing the programming game, then 

they took a midtest and participated in a presentation about programming applications, and for 

the last three sessions, they only played with the Coding AwbieTM programming game. After 

students completed their six sessions, they took a posttest, which followed the same procedure as 

the pretest (see Figure 1).  For this paper, we focus on the pretest, first three sessions, and 

midtest, because changes from pretest to midtest reflect the difference between only playing the 

game (play-group condition) versus playing the game and analyzing worked examples (explain-

group condition).  
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Figure 1: Study Design 

Materials 

In the individual pretest and midtest interviews (taken about a month apart), students 

responded to problems such as explaining Awbie’s movement, debugging a program, and making 

a program. We focus on one of the problems that required students to explain how a character 

should move on a path (as an informal way of creating a program), which was given on the 

pretest and midtest (see Figure 2 below). The path was rotated 180o on the midtest so that 

students would not be able to use their explanations from the pretest. 

 

Pretest Instructions: Awbie (point to 

character) can jump over flowers, bushes, or 

small rocks but not trees. Tell us a story about 

the movements Awbie made to get to the Red 

strawberry (point to it) using this highlighted 

path (point to path). We will tell your story to 

another student without showing the path and 

see if they can guess which strawberry you 

had Awbie get, so make sure your story only 

works for getting this red strawberry (point to 

it again). 

Midtest Instructions: Tell me a story 

about how Awbie moves on the yellow path 

(point to path) to get to this strawberry (point 

to strawberry). Make sure you use enough 

details that I could figure out how Awbie 

moved, even if my eyes were closed. 

  
Figure 2: Explaining a Character’s Movement Task on the Pretest and Midtest 
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In each of the three sessions when students in the explain-group condition analyzed worked 

examples, they analyzed one correct worked example of a program and one incorrect worked 

example of a program. During the second session, they also analyzed and completed one 

incomplete worked example of a program, for a total of seven worked examples across the three 

sessions. The worked examples showed scenes from the game and tangible programming blocks 

organized into a program to control Awbie’s movements. As part of analyzing the worked 

examples, they also had to apply information from the worked example to a new program. The 

interviewer read the program to the students and then had the student pairs discuss their answers. 

Rather than giving feedback on their answers, the interviewer helped facilitate a conversation 

between the students, such as asking, “Do you agree with your partner?  What do you 

think?”  Figure 3 shows one of the worked examples of programs we used in the sessions. 

Importantly, in this incorrect worked example of a program, students were exposed to the 

directional words down and left and had to fix a double-counting error in the program (i.e., the 

correct program should be walk left (if no number is used, the default it 1), walk down 2, both of 

which are repeated 2 times). 

 

Figure 3: An Incorrect Worked Example of a Program in the Sessions 
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Analysis 

We coded students’ language by using a modified form of the framework described 

previously (Cannon et al., 2007) with the sub-category specific versus generic distinction used in 

Kocabas et al. (2022). Further, because our work involves situations where the character could 

move both up and down and left and right (i.e., specific language), in our sub-categories, we 

wanted to account for language that specified a horizontal movement but was not specific 

enough to describe which horizontal direction (e.g., “over”). We classified words that fell into 

this sub-category as semi-specific language. The location or direction category includes students’ 

use of words indicating where Awbie is or would go. The number category includes students’ 

descriptions of how far Awbie should move. The movement category includes descriptions of 

how Awbie should move (see Table 1 for examples). We ended up adding a descriptive sub-

category for the location or direction category to better capture the meaning of some students’ 

explanations. After coding the categories, we further tallied which words students used within 

the location or direction category.  

 

Table 1: Spatial Language Examples by Sub-Category Codes 

 

Spatial 

Language 

Specific Semi-

specific 

Generic Descriptive 

Location 

or Direction 

right, left, 

up, down 

sideways, 

next, over, 

straight 

here, (over) there, 

on the trail, this way 

easy, hard, 

long, short 

Number number 

words 

another a little bit n/a 

Movement walk, run, 

jump 

turn move(s), go(es) quickly 

 

Results 

Location or Direction Language 

Overall, the play-group condition started out on the pretest using the directional word up 

more than students in the explain-group condition (74% of students versus 33% of students). If 

students improved on language related to the vertical dimension, we would expect them to use 

the word down on the midtest (recall that the path went down instead of up on the midtest). We 

found this to be the case with 93% of students in the play-group condition and 79% of students in 

the explain-group condition using down in their explanations. The explain-group saw greater 

growth in using specific terms for the vertical dimension than the play-group (46% more versus 

19% more); however, the play-group also had less room to make gains since more used this 

language on the pretest.  As an example of students’ language changes, one first grader (ID: 

Duck4) in the explain-group condition explained the pretest path, “He has to walk over here and 

then go to here.” On the posttest, he said, “Go two. Go two more down, then over.” 

The results for language related to horizontal movement, however, add more nuance. 

Typically, students who used the incorrect term (e.g., right instead of left) also self-corrected and 
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used the correct term (see Table 2, e.g., left & right column); however, a couple of students did 

use the incorrect horizontal term exclusively (see Table 2, e.g., the right column percent is less 

than the left & right column percent for pretest). For example, one third grader (ID: Horse7) 

explained on the pretest, “He’s going to have to move twice to the right. Yes, twice to the right 

(points to the left).” Once again, the play-group condition used the correct term left more on the 

pretest than the explain-group condition. However, the play-group condition did not gain in the 

number of students using right in their midtest explanations; on the other hand, more students in 

the explain-group condition used right by the midtest and overall compared to students in the 

play-group condition. One third grader (ID: Horse5) from the explain-group condition had a 

dramatic change in explanation. On the pretest, she merely said, “He can walk.” On the midtest, 

she explained, “So he’s going to go over to the right two times. And then he’s going to go down 

two times, then over again to the right to get the strawberry. He will be walking.” 

Other interesting patterns in terms of directional language included that students who did not 

use the specific terms left or right were most likely to use semi-specific terms to the side, 

sideways, or over on the midtest as well as forward and straight on either test. They also used 

non-specific terms this/that way and over/right there. Often, students mixed terms. For example, 

a first grader in the play-group condition explained on the midtest, “So he goes this way twice, 

down twice, and over one” using a non-specific, specific, and semi-specific term. On the pretest, 

two students (one from each condition: ID: Sheep5 and Sheep7) even described the movement as 

a zigzag, finding a way to characterize the set of movements. Another first grader (ID: Duck7) 

just called this “making a Z.” 

 

Table 2: Percent of Students Using Specific Horizontal Direction Terms and Gain 

 

 Pretest Midtest Gain 

Gro

up 

Le

ft 

Ri

ght 

L

eft & 

Right 

L

eft 

Ri

ght 

L

eft & 

Right 

Corr

ect term 

Incor

rect term 

Lef

t & 

Right 

Play 
33

% 

19

% 

37

% 

11

% 

26

% 

37

% 
-7% -8% 

+0

% 

Expl

ain 

8

% 

8

% 

13

% 

0

% 

42

% 

42

% 

+34

% 
-8% 

+2

9% 

Note. Bold indicates percent of students using the correct term to describe the direction on the 

path. 

 

Number and Movement Language 

In terms of students’ use of numbers to help describe the movements, there were similar 

trends as with the directional language. The play-group condition had more students designating 

the number of movements on the pretest than the explain-group condition (20% versus 13%). 

However, on the midtest, the play-group condition had fewer students designating the number of 

movements than the explain-group condition (48% versus 58%). This means that 45% of 

students in the explain-group condition improved in using numbers in their explanations 
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compared to 28% of students in the play-group condition. 

Although some students used numbers, they double-counted and stated an incorrect number 

of movements. For example, eight students double-counted a corner square. On the midtest, a 

third grader (ID: Goat5) said, “I think he would do one, two to this way (points to the right) and 

one, two, three down and then one across. Five students also double-counted the initial square. 

For example, the same third grader (ID: Goat5) on the pretest said, “So you would go three and 

then stop, and then turn and go two, and then turn and get to the strawberry.” Another third 

grader (ID: Horse8) double-counted both the initial square and both corner squares, describing, 

“He can go from this by counting from one – it’s like one, two, three. And then three, you can go 

down one, two, three, and then over one – over two.” A third grader (ID: Rabbit5) explained the 

movements and revealed how some might consider double counting the initial square, “So he 

moved two, but he technically moved three because he’s on the third one. But he would move 

two.” Another first grader (ID: Goose8) explained the difficulty in a similar way, “Right, it’s 

three, but he’s on the first one. I think that’s go two…”  

Exclusively on the pretest, four students used individual movements to indicate the total 

distance to cover rather than using numbers. For example, one third grader (ID: Horse6) 

explained, “ It would be left, left, up, up, left. And then he gets the strawberry.” Another five 

students described how they needed to move two spaces on the horizontal and the vertical 

dimension but then used alternative words to indicate movement of one space on the final 

horizontal dimension. For example, one first grader (ID: Duck4) on the midtest said, “Go two. 

Go two more down, then over.” 

Discussion 

As with prior research (Blades & Medlicott, 1992; Clements & Sarama, 2009), students in 

this study had an easier time using specific words to describe movements on the vertical 

dimension (i.e., up, down) than the horizontal dimension (i.e., left, right). However, by the 

midtest, the students in the explain-group condition used the term right more than found in prior 

research, suggesting that analyzing worked examples where designating direction is important 

might help them see a purpose in using more specific language themselves. Such modeling might 

be especially important if in their typical spatial tasks, students are working together with the 

same vantage point and are used to assuming others know what they are talking referring to and 

can see where they are pointing. They need more experience considering situations where others 

might do a similar task later. Focusing on specificity of language tasks such as these could serve 

as a helpful foundation for considering precision in language for other areas of mathematics. For 

example, the class could consider what they mean by zigzag and come up with a definition for 

how to indicate the size or dimensions of a zigzag. This could lead to students adopting 

horizontal and vertical language or coming up with a class-accepted precise definition for zigzag. 

In turn, such discussion could support inquiry around the definitions of shapes. 

Interestingly, some students, even in the explain-group condition, double-counted after 

playing the programming game for three sessions. Students in the explain-group condition also 

analyzed a worked example that involved double-counting. It is possible that the double-

counting needed to be more explicit, such as was the case when kindergarten students 

programmed a robot, Shumway et al. (2021), to encourage students to consider the implications 

of double-counting. For example, in a revised version, students could compare a worked example 
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where a student made a program that involved double-counting versus a worked example where 

a student did not use double-counting and then could discuss which one works and why. 

Surprisingly, only third graders double-counted. One reason may be that first graders used 

numbers slightly less often. Yet, it is surprising that there was not even a single instance of a first 

grader double counting. The tension between seeing three spaces but only needing to move two 

spaces (because the character was on one of the three spaces) may be the reason that students 

double-counted the initial space. It is possible they were considering the initial space as where 

the character should be placed to start. Students might have also reverted to double counting the 

corner pieces if they were used to finding the area of arrays (where double counting the corner is 

needed to find the length of each side). 

Overall, the students in the explain-group condition appear to have benefited from the 

opportunity to analyze worked examples beyond what the play-group condition got from only 

playing the game. These results provide additional evidence for the benefit of using worked 

examples to support students’ learning of new concepts but also provide initial evidence for 

worked examples’ potential for supporting students’ precision in language use. Using worked 

examples to support mathematical practices is an area that needs to be explored further. 
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Are students who have been taught proofs more likely to respond to proof tasks correctly? In 

the study reported here, we describe differences in responses to proof items in tests used in a 

large-scale curriculum comparison study. The conceptual framework for this study was based on 

the proof schemes framework by Harel & Sowder (1998, 2007). In this framework, proving is 

“the process employed by an individual (or a community) to remove doubts about the truth of an 

assertion and includes two subprocesses: ascertaining (removing one’s own doubts about the 

truth of an assertion) and persuading (removing others’ doubts about the truth of an assertion).  

The data reported here were collected as part of a longitudinal study in U.S. high schools, the 

COSMIC study (Grouws et al, 2013; Tarr et al, 2013; Chávez et al, 2015). This longitudinal 

study examined the impact of different content organizations on student learning. As part of a 

curriculum comparison study, we included items involving proofs in geometry (Chávez et al, 

2011; Sears & Chávez, 2015). One of the items was designed to elicit an informal argument, for 

first-year high school students (n = 2508); the second was for students in the third year of high 

school (n = 1936) who had taken either a geometry course or an integrated course that included 

topics of proof in geometry. Given the longitudinal nature of the study, the students who took the 

second test had taken the first two years earlier. 

For the first problem, of 2508 first-year students, 29% gave a complete correct answer, 25% 

a partially correct answer, 31% gave an incorrect response and 9% did not attempt the problem. 

For the second problem, of 1936 students, 12% did not attempt the problem and 56% gave an 

incorrect answer. Only 28 students, less than 2%, gave a complete correct answer. 

As expected, first-year students did not attempt “formal” proofs. The answers given suggest 

that students relied on the pictorial representation and made reasonable assumptions that could 

be the basis of a correct proof. It is important to note that in their responses, students explained 

how they knew they had a correct answer. A vast majority of third-year students, more than half, 

did not give an incomplete or partially correct answer. 

It seems that the third-year students were not reasoning about the question but instead trying 

to remember how proofs are supposed to be written. In contrast, more first-year students felt 

reasonably confident about figuring out an answer for the first problem precisely because it was 

an unfamiliar problem. Students with little or no instruction in formal proof are more likely to 

attempt an informal justification. Students who have been taught proofs seemed to have 

developed an external conviction proof scheme, relying either on the form of the proof (e.g., 2-

column proofs) or on the authority of the teacher or textbook to determine what is a valid proof. 

This may explain why so many students did not write a correct or partially correct proof for the 

second problem. 

Our results suggest that we should give students opportunities to explain how they know, 

focusing on the ascertaining process of the act of proving and helping them to make this process 
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explicit.  For many of the students in this study, writing a proof may have become a recall 

exercise not an opportunity to explain or justify.  
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Learners engaged in reflective thinking often encounter a perplex, difficult, or hesitating 

situation and need to search for a solution that is not immediately apparent. Piaget (1960) 

described learners’ struggles as a process of resolving disequilibrium and developing new 

understanding. Recently, Bjork and Bjork (2011) stated that tasks containing “desirable 

difficulties” can “optimize long-term retention and transfer” (p. 57). Little is known about 

individuals’ internal struggles outside of whole-class discussion settings (Santagata, 2005). This 

study aims to use individual think-alouds and investigate how preservice elementary 

mathematics teachers’ (PSTs) navigate cognitive struggles or uncertainties through 

problematized spatial tasks. The theoretical framework builds on Warshauer’s (2015) 

categorization of learners’ struggles and Park et al.’s (2022) phases of sensemaking amid 

uncertainties: (1) phenomena representation where learners interpret and represent the tasks and 

generate initial thoughts; (2) exploration where learners are engaged in problem solving by 

analyzing existing and new information and ideas, and generate explanations and reasoning; (3) 

application and evaluation where learners apply the generated reasoning to the represented 

phenomena, evaluate the potential solution(s), and possibly revise the initial thoughts. 

This study is a part of a large study that explores the effects of technology and tangible 

manipulatives on PSTs’ spatial reasoning. PSTs are enrolled in teacher preparation programs in a 

public university. Preliminary results report 13 elementary PSTs’ spatial reasoning and learning 

struggles in eight 3D block building tasks. Using the think-alouds methods, PSTs’ spatial 

reasoning processes were recorded. PSTs used multi-link cubes, virtual 3D Block Builder, or 

both to make 3D structures. All 3D block building tasks are problematized in ways that contain 

ambiguous or missing information and make multiple solutions possible. Data are coded into 

three phases of sensemaking. PSTs’ certainties (e.g., confidence about an interpretation or a 

strategy) are coded along with uncertainties (e.g., confusion about some spatial vocabulary). 

Results show that only two PSTs provided alternative 3D structures whereas the rest thought 

of only one 3D structure. In the phenomena representation phase, PSTs likely interpreted the 

problematized task hints as close-ended rather than open-ended. For example, task#2 only 

provided information about green and orange blocks in a three-block tower; PSTs considered the 

third block as either green or orange. In exploration, about one third of PSTs’ spatial reasoning 

instances (104 in total) began with partial structures and then analyzed possible placements of 

other blocks. PST#6 built a two-block structure made of a green and a blue block before placing 

two other red blocks in task#5, which turned to be effective. In application and evaluation, some 

PSTs encountered an impasse when their initial ideas conflicted with given information; they 

tended to stick with their initial ideas without revisions when they applied their reasoning to 

build 3D block structures. These findings imply PSTs’ early certainties about block quantity, 
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colors, or spatial relationships in the phenomena representation phase could cause uncertainties 

in later phases. Investigating PSTs’ certainties and uncertainties in mathematical sensemaking 

sheds light on instructional scaffolds that teacher educators could provide. 
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In this study, we studied the impact of a one-time unscripted interaction with an applet on 

Preservice Teachers’ (PSTs’) justification of area formula of a circle. After just one classroom 

exposure including individual exploration, PSTs improved their understanding of this formula. 

However, for most PSTs, this one experience was not enough to overcome the epistemic gap 

between justifying the formula as an approximation of the area and a true deductive argument. 

Keywords: Technology, Geometry and Spatial Reasoning, Instructional Activities and Practice, 

Preservice Teacher Education 

Background and Literature 

Being able to give an informal derivation between the circumference and the area of a circle 

is a common middle-grades standard (CCSSO, 2010), yet the curved boundary lends challenge to 

students used to working with polygons. A growing number of online applets and DGS sketches 

utilize dragging actions to transform geometric figures and provide students with opportunities to 

explore and act on figures while forming and verifying conjectures about embedded 

mathematical concepts (Leung, 2011). Using Geogebra, Or (2012) developed one such applet 

based on the mathematical storyline depicted in Figure 1, to help students bridge the epistemic 

gap between interpreting the area formula of a circle as an approximation and an exact value. 

 

 

Figure 1: Illustrating the Storyline of Or (2013)’s Applet 

Using a slider, the applet leads students through subdividing a circle into an increasing 

number of pieces. This subdivision is visible as a full circle (Figure 1b), an “unwrapped” circle 

(Figure 1c) and all positions in between. Once the circle has been unwrapped, continuing to drag 

the slider rearranges the sectors so that they form an approximation of a parallelogram (1d and 

1e) that, if taken to infinity, would be a rectangle with dimensions r and πr. The area of which, 

we deduce, can be measured as πr2. 

In this study, we studied the impact of a one-time unscripted interaction with this applet on 

Preservice Teachers’ (PST) ability to justify the area formula for a circle. After giving PSTs time 

to explore the applet in small groups, we brought the whole class together for a discussion of 

those experiences. Collecting data before and after this event, we asked, to what degree does 

engagement with the applet change the way PSTs justify the formula, bridging the epistemic gap 

between interpreting the area formula of a circle as an approximation and an exact value? 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

457 

 

Methodology 

This study was conducted in a Midwestern university. All participants (n=70) were enrolled 

in one of two sections of a course on geometry for preservice elementary teachers taught by 

Author 1. The data used in this study were collected at the end of a unit on measurement in 

which significant work had been done toward a deep understanding of linear and area 

measurement. This work included activity related to the meaning of perimeter and area in the 

context of simple and composed polygons. It was our hope that prior experience with 

decomposition of polygons would support their engagement with circles. 

Instructional Sequence 

Or (2012)’s applet, was chosen as the primary lesson delivery system to assist participants in 

applying the technique of decomposition to circles. Participants had used other pre-designed 

sketches in a unit on classifying special quadrilaterals. Like this experience, participants were 

asked to engage with applets in small groups prior to whole class discussion about that activity.  

Following the applet experience, a whole-class discussion was facilitated by the instructor. 

During that discussion, the applet was projected at times on a pull-down screen and at times on a 

white board where PSTs could choose to draw, record predictions, or annotate images and 

locations where they found mathematical meaning. The goal was not to reteach or to make a 

demonstration, rather, to focus on specific interactions participants had with the applet and allow 

for reflection on the significance of those interactions. 

Data Collection 

Pre- and Post-test Data were collected to better understand how the applet is taken up by 

PSTs as a tool in justification. Prior to the applet exploration, PSTs were asked to write 

individual justifications for why the area of a circle could be found using a specified formula. We 

collected 69 hand-written justifications on blank white paper. Following the instructional 

sequence, we gave PSTs the same open-ended task of justifying the formula without specifically 

mandating or even suggesting the use of the applet as a tool. Specifically, PSTs were asked to 

submit work that “1) Shows that you understand the meaning of radius, diameter, circumference 

and area; and 2) Provides reasoning about the area formula for circles in your own words.” 

Data Analysis 

We analyzed the pre-justifications first which generated the framework summarized in Table 

1 along with our findings. We read through the set of all justifications looking for similarities and 

differences. Once an original set of categories were identified, we used an iterative process of 

reading through the data and refining the categories, such as with the category “dimensional 

analysis” which is described in more detail in a previous paper (Cox & Lo, 2019). When a 

response seemed to span two categories, we refined the categories when possible. However, 

when the category did not warrant subdivision, we placed each response according to the most 

sophisticated reasoning provided. We then applied this framework to the set of post-justifications 

and were able to use this data to refine the category of “decomposition.” This refinement is 

summarized in Table 2 along with our findings. 

Findings 

Exposure to the applet changed the way students thought about the formula for the area of a 

circle. These shifts are apparent in the type of attempted reasoning in the post-justifications 

compared to the pre-justifications (Table 1).  Prior to exposure, 43.5% (n=30) PSTs sought to 
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justify the symbolic formula through a process of symbolic deconstruction aimed at associating 

the dimensions of the circle with the symbols and operations within the general formula. We 

referred to this type of reasoning as Dimensional Analysis. In most cases, this meant finding 

meaning in the isolated terms r, r2, and π. While r was always defined as the radius of the circle, 

there was more variation in the ways that PSTs found meaning in r2 and π. Brandon was one who 

did reference π. He wrote, “Because radius is half of a circle in order to get the full circle, you 

must square the radius. You then multiply by π because π is a measurement used in circles.” 

Katie wrote, “We do πr to find the distance around the entire circle. Then, you must multiply that 

number r again to account for all the area from the edge of the circle to the center of the circle.” 

After exposure to the applet, only three PSTs used this type of reasoning. 

 

Table 1: Categorization of Pre- and Post-Justifications of the Area Formula for a Circle 

 

Strategy Description Pre Post 

Non-

Justification No attempt at justification. 

17 1 

Discrete Fact(s) 

Brief attempt to connect measurements within the circle to the task 

of justifying the area formula, but the response doesn’t exceed a 

true, discrete statement that does not support a justification. 

9 6 

  

Empirical Proof by example (Harel & Sowder, 1998). 1 0 

Dimensional 

Analysis 

Symbolic deconstruction aimed at associating meaning with the 

symbols and operations within the general formula 

29 3 

Approximation Comparison to the area of a square of length r or 2r 6 1 

Decomposition Attempt to decompose the circle into equal parts and sum. 7 59 

Total   69 70 

 

Decomposition was not common prior to exposure. Figure 2 shows one of the most advanced 

examples from the pre-justifications. The drawing and the accompanying explanation showed 

some evidence of finding the area of the circle by first decomposing a circle into many tiny 

sections and then summing the area of these tiny sections. 

   

 
Figure 2. Justifying the area formula using decomposition pre-exposure.  
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Compared to the work submitted prior to the applet experience, the justifications submitted 

following the experience were more diverse and contained explicit reasoning about 

decomposition and limit. For example, Elizabeth made the following argument: 

I made a circle and divided it into equal sections. Then, I arranged those parts in a 

formation that barely looks like a rectangle. However, after dividing the circle into very 

small sections, the shape looks more like a rectangle. The circle will transform into a 

perfect rectangle by dividing the circle into infinitely many times so we can’t point out the 

lines of the sections.  

After exposure, most students chose to decompose the circle. Some were able to connect that 

action to the symbolic formula, still others showed a partial understanding of limit in this 

context, and a select few (like Elizabeth) provided a deductive argument based on limits and 

infinity. This diversity of sophistication led us to refine the category (Table 2). 

At one end of the progression is disconnected decomposition. In these justifications, PSTs 

decomposed the circle, but made no attempt to link that imagery to the symbolic formula. Rather, 

the focus was on describing the “actions” on the screen. Tina wrote, “unravel the circle so that it 

lays flat and the triangles are all sticking up, still split down the middle by color.” At the other 

end of the progression were ten PSTs who were able to articulate the concept of limit as 

Elizabeth did above. 

 

Table 2: Progressive Reasoning for Strategies Incorporating Decomposition 

 

Description Pre Post 

Disconnected Decomposition: 

no attempt to link to the symbolic formula 

4 3 

Attempted Symbolism: 

made an unsuccessful attempt to link to the symbolic formula 

 
7  

Achieved Symbolism 

Connected the area formula symbolically with a decomposed circle. 

1 33 

Partial Limit 

Justification included the reasoning that more sectors yield a better approximation 

 
6 

Developed Limit 

Justifies the symbolic formula including reasoning about infinity. 

 
10  

Total 5 59 

Discussion 

Data from this study indicated that Or’s applet is a tool that PSTs consider interesting and 

useful. Imagery was represented by many in sketches, screenshots, and narrated video segments. 

Even deeper, most utilized multiple images and the storyline of the applet was clearly present in 

the set of post-justifications. It was a tool for mathematical exploration and learning, but 

also  became a tool for justification. Unfortunately, for most PSTs, this one experience was not 

enough to overcome the epistemic gap between approximation and deductive reasoning based on 
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limits. However, 16 PSTs did write or talk about subdividing the circle into ever-smaller 

segments (Figure 1e) in their post-justification and of those, 10 approached a full justification. 

That suggests that more effort to draw PSTs attention to this part of the storyline is warranted. 

There are two additional considerations for the PME-NA community. First, given the 

opportunity to explore differences between discrete and continuous data, is this an important 

opportunity to build that connection? Second, almost all participants showed conceptual growth, 

yet only few were able to walk across the epistemological bridge. How important is it for 

elementary teachers to provide a full justification for this formula? In these uncertain times, we 

feel more and more pressure to reduce the amount of content in preparation programs and 

discipline-specific professional development. We welcome the opportunity to talk about our 

future and conceptual priorities at the conference. 
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The study reported here is developing the curricular and pedagogical components of an 

approach to teaching qualitative change as it relates to deep creativity within elementary 

mathematics education. Through this work, the project aims to make three contributions to the 

fields of creativity, mathematics education, and the learning sciences: (1) new understandings 

about the development and multimodal expressions of children’s qualitative mathematical 

thinking, (2) new insights about the benefits children experience from their engagement in 

activities that develop their understanding of qualitative difference as a foundational dimension 

of learning for radical change, and (3) evidence of the transformative role of deep creativity in 

elementary mathematics education. In this brief research report, we share preliminary findings of 

pilot research through a case study of a 5-year-old child named “Opal.” 

Keywords: Elementary School Education, Geometry and Spatial Reasoning, Design 

Experiments, Cognition. 

Simply stated, STEM needs creativity. From equity to the economy to the environment, 

addressing major global issues demands both “deep creativity” and STEM knowledge and skills. 

Innovative solutions to address these large-scale problems can be derived through creative 

processes fundamental to scientific thinking (Cropley & Cropley, 2010). Regrettably, however, 

creativity is almost absent from mainstream approaches to STEM learning. If we do not resolve 

the disconnect between creativity, innovation, and the sciences, STEM graduates will be ill-

equipped to tackle the most critical and persistent global issues. The Stretchy Minds project 

brings together researchers working at the intersection of mathematics education, creativity, and 

embodied and emergent design to resolve this conflict. Working in collaboration with elementary 

math teachers, this project is leveraging the unique affordances of qualitative mathematics to 

develop a theoretical model for cultivating deep creativity. The vision is that this model will be 

used to catalyze the enactment of new and much-needed approaches to building foundations for 

children’s STEM creativity within elementary mathematics education. Conceived with an eye 

toward this imagined future, the purpose of this report is to share preliminary findings of pilot 

research through an exploratory case study of “Opal,” a 5-year-old participant in the project. 

Mathematics carries the intrinsic capacity to develop young learners’ skills and abilities in 

creativity and innovation through their engagement with qualitative forms of mathematical 

thinking and reasoning. Qualitative geometry (Greenstein, 2014, 2018), in particular, has unique 

affordances for this endeavor because it involves the core concepts of deep creativity – including 
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qualitative change and divergent thinking – and it is accessible to young learners (Greenstein, 

2014; George, 2017; Piaget & Inhelder, 1956). Accordingly, we’ve proposed that qualitative 

geometry can offer a transformative space in which to introduce young children to the concepts 

of deep creativity in ways that are conceptually understandable, materially tangible, and 

aesthetically driven. Project findings will enable us to contribute to the expansion of the 

theoretical understanding and instructional practice of creativity in the space of elementary 

mathematics education, and in STEM education more broadly.  

Our first research question focuses on the design of curricular tasks and the determination of 

pedagogical principles that engage and develop learners’ embodied understandings of qualitative 

difference as it relates to deep creativity. The following two research questions are the focus of 

this proposal: What ideas about qualitative difference are elicited and developed as a result of 

learners’ systemic engagement in these curricular experiences? How are their understandings of 

qualitative difference enacted, expressed, and made visible through their engagement?  

 

Theoretical and Conceptual Framing 

Creativity, Novelty, and Change. To conceptualize what we mean by deep creativity, we first 

define creativity not as an internal characteristic but as an active process for doing something 

novel and appropriate within a situated context (NACCCE, 1999; Sternberg & Lubart, 1999). 

Next, we propose that creativity is deep when it yields novel forms of change that have both 

quantitative and qualitative dimensions. These dimensions are defined in relation to the two 

types of change (Bergson, 1911; Deleuze, 1994; Deleuze, 1998): 

 

• Change-in-degree (Δ𝑑) is a quantitative change, which is (only) incremental.  

• Change-in-kind (Δ𝑘) is a qualitative change, which is wholly and genuinely novel. 

  

At the Intersection of Embodied Creativity and Qualitative Geometry. Simultaneous to a 

renewed interest in embodiment and collaboration in creative work (e.g., Feldman & Benjamin, 

2006), research suggests the promise of adopting an embodied and situated perspective on 

creativity – an embodied creativity as Malinin (2019) calls it. First, there is evidence that the 

features and qualities of the socio-material environment play a role in enhancing creative 

expertise (Malinin, 2016); insights into the roles they play can inform the pedagogical practices 

that lead to creativity. Second, an enactive approach to cognition (Thompson, 2007) has 

demonstrated that qualitatively novel ideas emerge via embodied actions, where doing precedes 

knowing. It’s the doing that enacts meaning into being (Kerr & Frasca, 2021). Conceived from 

this perspective, this project is testing the conjecture that learning qualitative difference requires 

open-ended, exploratory, experimental, and emergent educational experiences. 

Although mathematics is often viewed as the quantitative domain, it is also home to creative 

and qualitative processes. This is evident in the domain of topology, which is a non-metric, 

qualitative geometry. The “rubber sheet” conception of topology is useful for demonstrating its 

qualitative foundations. In general, any two curves are topologically equivalent if each can be 

bent and stretched, but neither glued nor broken, to produce the other. The property that 

determines their equivalence is the quality of connectedness that is invariant through the 

distortion of the rubber sheet. These elastic transformations produce curves that are equivalent 
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precisely because they vary by (quantitative) differences in degree. A segment cannot be bent or 

stretched into a triangle because their connectedness is a (qualitative) difference in kind. We 

chose Speks magnetic toys as a medium for children’s learning about qualitative difference, 

because one can imagine the topological concepts of connectedness and genus (i.e., the number 

of “holes” in a surface) embedded in them as loops formed by connecting their magnetic ends. 

The configurations of Speks toys in Figure 2 illustrate the two forms of change using “number of 

loops” as the criteria for equivalence (i.e., sameness in kind), and “size of loops” as the criteria 

for difference in degree. Shapes A, B, and C are different in kind, since they each contain a 

different number of loops. Shapes B and D are different in degree in that the loop in D is larger 

than the loop in B, and size is a matter of degree.  

 

 
Figure 2: Configurations of Speks toys express differences in kind and degree. 

 

Methods 

This project is employing multi-phase design-based research (Brown, 1992; Collins, 1992; 

DBRC, 2003) to produce responsive curricular experiences that engage and develop learners’ 

thinking about qualitative difference as it relates to deep creativity. Informing the design of those 

experiences are small-group teaching experiments (Cobb, 2000; Steffe & Thompson, 2000) that 

yield models of children’s thinking (Thompson, 1982), and microethnographic methods 

(Nemirovsky et al., 2012) that characterize children’s multimodal expressions (Edwards, 2009; 

Goodwin, 2014) of their thinking by tracing their moment-to-moment bodily and situated 

mathematical activity. Analyses of these expressions entail a grounded, bottom-up approach of 

constant comparisons (Glaser & Strauss, 1967) that generates inferential interpretations of the 

children’s elicited understandings of qualitative difference. 

Participants range in age from 5 to 10 years old. The age-related criterion is informed by 

research which finds that the development of children’s spatial thinking begins as early as 3.5 

years of age (Piaget & Inhelder, 1956). A related rationale is found in researchers’ calls for 

deliberate creativity learning to begin in early childhood (Resnick, 2007; Yardley, 2011). 

Collected data includes video recordings of the children’s small-group participation in design 

sprints; their drawings, magnetic toy structures, and other artifacts; and analytic memos (Strauss 

& Corbin, 1998) and field notes (Van Maanen, 1988) about the children’s goal-oriented actions. 

Video recordings allow for in-depth analysis of the dynamic interplay between the children’s 

whole-body movement, their material interactions, and their verbal explanations, conversations, 

and collaborations, as they relate to processes of deep creativity. A review of research that 

employed qualitative methods to analyze observational data of children’s embodied expressions 

confirms the viability of this analytic approach (McCluskey et al., 2023). 

 

Preliminary Findings  
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Our pilot study work is exploring whether we can support the development of children’s 

understandings of deep creativity through game-based (Nguyen, 2020) learning activities we 

designed based on the following conjecture: Conceptual knowledge of difference-in-kind and 

difference-in-degree can emerge for the child in instrumented (Vérillon & Rabardel, 1995) fields 

of promoted sensorimotor interactions (Abrahamson & Sánchez-García, 2016; Abrahamson, & 

Trninic, 2014; Reed & Bril, 1996) with the cultural artifacts (Vygotsky, 1978) into which these 

target concepts are embedded (e.g., playing the game of Sprouts (see NRICH, n.d.) with Speks 

toys provided phenomenal grounding for the proto-conceptual learning of genus and 

connectedness). This conjecture about mathematical learning organizes the concepts of deep 

creativity as follows: In qualitative geometry, there is a property that defines the qualitative 

difference (or equivalence) of two shapes. That property can be considered a rule that determines 

whether two shapes are different or equivalent. By changing that rule, new shapes emerge as 

different or equivalent. These different shapes exhibit a truly novel distinction. 

What new worlds arise when children come to understand that qualitative difference is a 

foundational dimension of learning for creative change? This is the question that framed the 

summer camp that provided the context for the second pilot study, which was held over 3 days 

with 8 children (3F, 5M) ages 5 to 10. Thirteen teacher-collaborators joined in to support and 

promote the children’s agentive and exploratory play. Here we share some preliminary findings 

through an exploratory case study (Yin, 2014) of “Opal” (F), who was 5 years old at the time. 

Opal was the youngest child at the camp; she was also the least verbal. A focal moment in 

Opal’s activity elucidates her emergent thinking. At one point, we incorrectly inferred from her 

struggle to learn how to use the Speks toys to play Sprouts that the issue may be developmental. 

When we revised our approach to try and give her access to it, we learned from her responses 

that it was the scaffolding that we provided to Opal that was the source of the problem. Our 

approach was confusing Opal’s already emergent ways of knowing about differences in kind and 

degree. For reasons that have to do with the rules of Sprouts, we had been promoting the use of 

“3-piece” Speks toys to form loops, and “2-piece” toys to enlarge or reduce the size of those 

loops. At the point at hand, Opal had already realized that a 3-piece could accomplish both tasks! 

At various points throughout her play, she used these 3-pieces to form loops and then make 

distinctions between shapes in terms of differences in kind based on the number of loops they 

possess. She also used those same 3-pieces to enlarge or reduce the size of loops and then make 

distinctions between shapes in terms of differences in degree. We had very little access to Opal’s 

cognition through verbal expressions, but the enactive perspective (Thompson, 2007) revealed 

them via instrumental and embodied actions with Speks toys that provided evidence of her 

emergent cognitive structure (Varela et al., 1991) of qualitative difference. 

A related conflict arose shortly thereafter when we sought to promote the use of “same” to 

name shapes that are alike in kind (i.e., topologically equivalent). In contrast, Opal enacted a 

more elaborate conception of same-ness, saying that two topologically equivalent shapes are 

actually not the same if they have “the same number” of loops, yet those loops and other features 

of a shape vary by degree. Thus, according to Opal’s conception, two shapes are the same if and 

only if they are alike in kind and also alike in degree.  
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Conclusion 

This case of Opal’s experiences suggests the promise of this empirical exploration into 

developing the curricular and pedagogical components of an instructional approach to teaching 

qualitative change as it relates to deep creativity within elementary mathematics education.  

As this work continues, this project aims to make three contributions to the fields of creativity, 

mathematics education, and the learning sciences: (1) new understandings about the development 

and multimodal expressions of children’s qualitative mathematical thinking, (2) new insights 

about the benefits children experience from their engagement in activities that develop their 

understanding of qualitative difference as a foundational dimension of learning for radical 

change, and (3) evidence of the transformative role of deep creativity in elementary mathematics 

education. In this brief research report, we share preliminary findings of pilot research through a 

case study of a 5-year-old child named “Opal.” 
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Students come with a wealth of knowledge in elementary mathematical spaces. Moll and 

colleagues (1992) refer to this informal cultural knowledge as students’ Funds of Knowledge 

(FoK). Each culture brings their own unique perspective, background knowledge, and 

experiences (Banks, 1993; Pradhan, 2020). However, there exists the expectation that students be 

fluent in dominant mathematics (Gutiérrez, 2017). In the elementary classroom, dominant 

mathematics is displayed through strict processes, structures, and algorithms, leaving little room 

for instructional variation and multiple ways of knowing (Atwater et al., 2013). This limited 

view of mathematics continues to perpetuate the inequities in the US education system (Ladson-

Billings, 2006). 

Scholars document students’ development of geometry concepts when students have agency 

around their learning (Civil, 2002; Natalija et al., 2019; Ng & Sinclair, 2015; Ng & Ye, 2022). 

Nevertheless, there is little to no research observing and documenting what connections students 

make from their FoK to the formal mathematical content. Because Clements and colleagues 

(1999) show primary students continued struggle to identify shapes, this study investigates 

students’ connection between the formal mathematics and their FoK in the elementary classroom 

setting, specifically in the three-dimensional (3D) shapes unit.  

3D shapes are important to teach because they strengthen students’ ability to identify and 

organize visual information (Tsamir et al., 2015). Two overarching questions guide this study: 

How do primary elementary students incorporate their informal mathematical home-culture 

knowledge into their geometric units? How do students make connections between their informal 

mathematical knowledge and the formal mathematical terminology in a geometry unit in 2D and 

3D shapes? In this study, students participated in their usual 3D shapes unit. I audio and video 

recorded their daily lessons consisting of a fifteen-minute, whole group mini-lesson followed by 

practice opportunities through table work. During the table work, I recorded a small group of six 

students (one table) and conducted five-minute, one-on-one interviews with the same students. 

The interviews focused on what shapes students drew and where they might see those shapes at 

home. Additionally, I collected the written work from the entire class.  

To analyze the data, I use Bloome and colleagues’ (2005) discourse analysis. The data will be 

transcribed and evaluated for common themes found between interviews, small group work, and 

whole class discussions. Through this analysis, I anticipate identifying key ways students talk 

about geometric shapes informally. I will identify the home contexts that are particularly relevant 

for students. I anticipate that students will use their FoK to distinguish between 3D shapes. I also 

expect students to use their FoK to describe the attributes of shapes. 

https://www.zotero.org/google-docs/?7HSpB7
https://www.zotero.org/google-docs/?7HSpB7


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

468 

 

By documenting the common connections students make between formal mathematics in 3D 

shapes and students’ FoK, educators will be able to help students more authentically engage 3D 

shapes in ways beyond the current dominant mathematics in the formal academics. The students 

will be able to see themselves, their culture and community in their learning. 
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In this study, we considered how two teachers’ use of invariant properties of draggable 

geometric objects are related to their geometric reasoning. We used a Discernment of Invariance 

theory to look at these teachers’ levels of invariant properties as a way to make sense of their 

reasoning. Our analysis suggests that these teachers’ ability to discern invariant properties at an 

advanced level was a key aspect for making meaningful conjectures, justifying, and explaining 

them. However, such an ability seems necessary, but not sufficient to explain and justify a 

geometric phenomenon. We found that unpacking more level-1 invariant properties and making 

more invariants level-2 connections between them can offer a richer exploration. We also found 

that an invariant property can be described as a feature of change. Implications for professional 

development and teacher education are discussed. 

Keywords: Geometry and Spatial Thinking; Reasoning in Dynamic Geometry Environment; 

Variance and Invariance; Technology 

Purpose and Background 

Research shows that teachers’ ability to discern invariant properties is a necessary skill in 

developing rich and deep understanding of draggable geometric objects (e.g., Leung 2015; 

Nagar, Hegedus, & Orrill, 2022b; Sinclair, 2018; Sinclair, Pimm, & Skelin, 2012). Despite its 

importance, invariance is often not as readily apparent among teachers; and when teachers 

considered invariant properties, they associated them mainly with shape, measurement, location, 

and calculation (Nagar, Hegedus, & Orrill, 2022a). Leung, Baccaglini-Frank, & Mariotti (2013) 

developed a Discernment of Invariance theory distinguishing between two levels: Invariant 

properties level-1 are invariant properties that a person might perceived, while invariants level-2 

connections are possible logical connections between level-1 invariant properties. Most research 

is focused on examining how a person might discern invariance and what type of invariant 

properties are discerned. More research is needed to unpack possible connections between 

invariant properties as part of reasoning. Thus, in this study, we investigated the following 

question: How do two teachers use invariant properties at two different levels (invariant 

properties level-1 and invariant level-2 connections) as part of their geometric reasoning? 

While Leung et al. (2013) focused on students’ awareness of invariant properties and whether 

they succeeded or failed to express awareness of level -2 invariant properties, in this study, we 

focused on what invariant properties level-1 teachers might use as part of their reasoning; what 

connections they might make; the direction and frequency of such connections; and whether 

there are other types of invariant properties that a person might discuss compared to previous 

results (e.g., Nagar et al., 2022a). 
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Theoretical Framework 

Invariant properties are certain geometrical properties that remain unaltered when a 

transformation on the object is applied (Baccaglini-Frank, Mariotti, & Antonini, 2009; Hadas, 

Hershkowitz, & Schwarz, 2000; Laborde, 2005; Yerushalmy, Chazan,  & Gordon, 1993). We 

consider a variable object as a draggable object under transformation, and the property that is ‘an 

invariant satisfied’ (i.e., remains unaltered) as an invariant property (Nagar et al., 2022b).  

We drew on Leung et al.’s (2013) Discernment of Invariance theory to distinguish between 

two levels of discernment of invariant properties in a DGE. Discernment of invariant properties 

level-1 denotes to the awareness of invariant properties of a dynamic figure perceived under 

different dragging strategies; and discernment of invariant level-2 connections refers to the 

awareness of different types of control on level-1 invariant properties to imply logical 

relationship between them. We used a tablet based DGE, so the user could place one or more 

fingers to enact movement (by dragging an object). The use of dragging allows the user to “feel” 

the variation of the construction (Baccaglini-Frank & Mariotti, 2010) and to discern invariant 

properties (Nagar et al., 2022b; Sinclair et al., 2012), which can be help in unpacking the 

situation at hand. 

Data Sources and Method 

(a) Activity 1 

 

 
Participants could manipulate a draggable point 

(point C) connected to two fixed points A and 

B. Based on idea presented by Leung (2003). 

Point C could be dragged anywhere on the 

screen and leaves a colored trace. 

(b) Possible Generalization 

 

 
Generalizing that as long as point C (the 

center of the desired circle (“dashed circle”) 

is being dragged along the perpendicular 

bisector of segment AB, it is possible to 

maintain a circle that changes its size. 

Construction: Drawing three points, setting A and B to be fixed points, and constructing 

segments AC and BC. 

Figure 1: Activity Used in the Study 

 

The work reported here is part of a larger study where the primary data came from a set of 

two 45-minutes video recorded task-based interviews with six high school mathematics teachers: 

Four females - Amanda, Lisa, Diana and Susan; and two males - Andy and Mark (pseudonyms). 

Each interview focused on a set of four activities that were designed using the Sketchpad® 

Explorer (Jackiw, 1991). Figure 1 presents one of these activities. All interviews were videotaped 

and transcribed verbatim. We focus on Activity 1 Part 2 where participants were asked to think 

about ways to drag point C so that a circle passing through A and B with C as its center can exist; 

and then, if possible, to maintain such a circle.  
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 The analysis included two cycles of coding. In the first, we used descriptive coding (Miles, 

Huberman, & Saldaña, 2014) and created four spreadsheets to look at what participants said 

(verbally) and did (through actions). In the second cycle, we coded characteristics related to the 

two levels of invariants (invariant properties level-1and invariant level-2 connections). We also 

tracked the justifications and explanations provided by participants (if any), as well the direction 

and relative frequency of these connections. We then created connection maps (see below) to 

focus on both the invariant properties level -1 (represented by nodes) and invariant level-2 

connections (represented by arrows). Connections map visually shows the logic relationships 

(level-2 connections) between the level-1 invariant properties. Lastly, we used a pattern coding 

method (Miles et al., 2014) to look for major themes and patterns. 

Results 

Invariant Properties Connections Maps  

 

 

 

Table 3: Invariant Properties Connections Maps 

Andy’s use of invariant properties connections map 
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Mark’s use of invariant properties connections map 

 

 
Note: A node represents the invariant property discerned (Level-1) and describes it.  

The numbering inside the nodes is used to order the properties according to the participant's 

order of discernment.  

An arrow between two nodes represents a connection between two invariant properties and 

its direction (Level-2).  

A connection is a conditional/conjecture of the form "if ... then..." statement. 

The prime numbering (e.g., 1', 2', etc.) indicates the order of the connections participant 

made. When a bidirectional arrow appears then the parenthesis indicates the direction of that 

connection – for example in Andy’s map the connection 3’(1→4) means that the participant 

made a statement (in his 3rd connection) saying that if the distances AC and BC stay equal (Node 

1), then C remains on the vertical line (PB-perpendicular bisector) to AB (Node 4).  

The thickness of an arrow indicates the relative frequency of the connection. The frequency 

can also be calculated by counting the prime numbers appearing on a single arrow – that is the 

number of times a connection was made. 

 

Comparing between Andy’s and Mark’s Invariant Properties Connections Maps 

In looking at both connections maps, it seems that both Andy and Mark were able to make 

important connections between key level-1 invariant properties to unpack the situation and to 

generalize that the perpendicular bisector of AB is a path that allows for the desired circles to be 

constructed. In addition, they both drew on the definition of a circle to make these connections. 

However, while Andy discerned only five invariant properties, Mark discussed twelve invariant 

properties. Mark offered advanced reasoning combining several big ideas in geometry such as: 

circle, right triangles, hypotenuse, perpendicular bisector, etc., and he also discussed several 

interesting invariant properties related to a feature of change. 
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While Andy made seven invariant level-2 connections, Mark made sixteen such connections 

and it seems that his reasoning was more coherent (using the same ideas more frequently). Mark 

was also able to generalize and formulate more connections between level-1 invariant properties 

and to unpack the situation in more depth. Lastly, although both participants were able to discern 

invariant properties at an advanced level (in both levels of invariant properties), still we saw that 

Andy did not justify all his conjectures even when was asked directly to try. Also, Mark did not 

provide justifications for his last two invariant level-2 connections (14’ and 15’).  

Discussion and Conclusions 

Our analysis shows that identifying different level-1 invariant properties and making 

invariant level-2 connections between them were key aspects in unpacking a dynamic geometric 

situation. Similar to Leung et al. (2013) who “were able to gain insight into explorations within 

DGE, analyzing in fine detail how discernment unfolds” (p. 458), we saw that both levels of 

invariant properties seem to be the basis for having the skills to make conjectures, state 

theorems, justify them, and make links to generalization. Thus, it is suggested that teachers might 

benefit from not only discerning multiple invariant properties, but also making and justifying 

possible connections between them. It also seems that if a person is able to unpack more level-1 

invariant properties and make more connections between them (level-2), the exploration can be 

richer and deeper. We conclude that future research should focus on how to design opportunities 

in dynamic environments to support teachers in developing such skills. 

We also found that some invariant level-2 connections were not justified. Maybe some 

connections are difficult to explain (e.g., Mark’s connections 14’ and 5’). Thus, it seems that the 

ability to identify level-1 invariant properties and make connections (level-2) is necessary, but 

not sufficient to explain and justify a geometric phenomenon. More research is needed to 

examine what challenges teachers might express in working with both levels of invariants, and 

how it is possible to overcome such challenges. 

Lastly, Mark drew on an interesting idea - an invariant feature of change (e.g., describing a 

distance as changing in length but having a feature that remains the same – always increasing). 

He used this not only to explain a phenomenon about the size of the circle as increasing or 

decreasing, but also to experience the object has having different formations (continuous 

variation). Doing so, he offered a richer exploration and unpacked more sophisticated ideas. This 

adds to previous results (Nagar et al., 2022a) where we analyzed more than 150 descriptions and 

found four categories of invariant properties (Shape, Measurement, Location, and Calculation). 

So, in this paper, instead of just looking at something that stays constant like a circle (Shape) or 

distances (Measurement), it is possible to have a feature of change as invariant property. This 

might be an important aspect of geometric reasoning. Thus, the role of such invariant property 

(feature of change) in reasoning is worth further examination, as well as whether such an 

invariant property can be easily accessible to teachers or not. 
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Graphical representations are commonly used in everyday life and are important in STEM fields. 

Interpreting graphs entails understanding the underlying structures of graphs, including 

coordinate systems and reference frames. In this report, we characterize one student’s 

constructions of coordinate systems. These constructions indicate two distinct types of reference 

frames not currently distinguished in the literature: (a) continuous and (b) ordered-discrete. 

Using data from a 10-session teaching experiment, we discuss the interplay of a student’s 

perception of tasks, the reference frames she reasoned with, and differences in those reference 

frames. We consider how the interplay of the aforementioned items may have influenced the 

quantities she considered as well as the coordinate systems she constructed. We conclude with 

suggestions for research and teaching that support students’ productive graphing activity. 

Keywords: Geometry and Spatial Reasoning, Mathematical Representations, Cognition, Middle 

School Education 

Graphs are a powerful way to visualize, explore, and communicate relationships between 

quantities. In STEM contexts, graphs can be used to mathematize spatial situations or represent 

relationships between covarying quantities (Paoletti et al., 2020; Glazer, 2011). In our view, 

students’ meanings for graphs should depend on their meanings for coordinate systems, 

especially if their meanings for graphs are to be productive (Lee et al., 2020). Recent research 

has focused on differences in the underlying coordinate systems that students construct and how 

reasoning within these coordinate systems explains their graphing activity (Paoletti et al., 2018, 

2022; Parr, 2023). In this report, we offer another contribution to this literature by characterizing 

two novel types of reference frames that underlie coordinate systems and by describing how 

students may use these reference frames to reason about quantities represented in coordinate 

systems. We begin with a theoretical background that defines two different types of coordinate 

systems and establishes a distinction between types of reference frames. We describe one 

student’s use of both types of references frames within each coordinate system. We conclude 

with implications for teachers, curriculum designers, and researchers.  

Theoretical Background: Two Types of Coordinate Systems and Reference Frames 

Researchers (Lee, 2017; Lee et al., 2019, 2020) have distinguished between two kinds of 

coordinate systems (CSs): spatial and quantitative. Each type of CS is built by coordinating one 

or more reference frames. Reference frames (RFs), which are constructed to gauge relative 

extents of attributes in phenomena, consist of some orienting reference objects, directionality, 
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and some anticipation of a measurement process that could be carried out (Lee et al., 2020; 

Joshua et al., 2015). When students consider quantities (Thompson, 2011), there must be at least 

one RF involved. We provide several examples of abstract quantities, using parentheticals to 

provide specific examples of situational quantities with explicit RFs: Distance (e.g., number of 

miles east a person is from school), time (e.g., number of minutes after passing a rest stop), and 

temperature (e.g., degrees Fahrenheit above 0).  

A spatial CS involves the mental coordination of one or more RFs and a selection of units of 

measure which are imposed onto a physical space of interest. In this case, RFs are used to gauge 

the relative locations of objects within that space. In a spatial CS, locations in the space may be 

tagged with coordinates guided by these RFs and obtained through carrying out the anticipated 

measurement. For example, a student might organize the map in Figure 1a by constructing a 

spatial CS consisting of two RFs that imply the consideration of distinct distances from a 

reference object (like the star icon). The spatial CS could then be used to describe the X’s (or any 

object’s) location in terms of unique pairs of distances from the star icon. 

A quantitative CS involves the mental coordination of one or more quantities which are 

activated upon assimilation of a situation, disembedded from it, and inserted into a new 

representational space through the coordination of their RFs. For example, a person may 

coordinate the relationship between the time and temperature throughout a day and represent this 

relationship via a graph in a quantitative CS. Within both spatial and quantitative CSs, locations 

within the CS are imbued with quantitative extents, which necessarily involve RFs.   

In this paper, we add a fourth dimension to thinking within RFs: continuity. In addition to 

reference object, directionality, and some anticipated measurement process, we have found in our 

work with students that the notion of directionality and some anticipated measurement process 

could be established either discretely or continuously. Hence, we distinguish between two kinds 

of RFs that students indicated when reasoning in both types of CSs: ordered-discrete RFs and 

continuous RFs. A continuous RF involves understanding a continuum of an attribute’s extents 

relative to the reference object and guides measuring activities that would lead to measurements 

as continuous quantities. An ordered-discrete RF involves segmenting an attribute’s extents 

according to distinct, bounded regions that are arranged in some (implicit or explicit) sequence. 

Ordinal or directional language can be an indication of an established ordered-discrete RF and 

guides measuring activities that would lead to measurements in discrete units. For example, an 

individual who has established an ordered-discrete RF within a designed region might describe 

sub-regions in ordinal terms (e.g., second row or last circle from the center) or directional terms 

(e.g., left side or near the middle).  

a)  b)  c)  

Figure 1: A map indicating: a) no CS, b) a spatial CS constituted by coordinating two 

continuous RFs c) a spatial CS constituted by a coordination of two ordered-discrete RFs. 
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We note an individual may understand an attribute as continuous and still construct an 

ordered-discrete RF; such a construction is dependent on the student’s conceived context, goals, 

or current quantitative constraints in their reasoning. For example, Figure 1b shows how a spatial 

CS could be constituted by coordinating two continuous RFs. Figure 1c shows how a spatial CS 

could be constituted by coordinating two ordered-discrete RFs. In this report, we address the 

research question: How does a student’s construction of continuous and ordered-discrete RFs 

impact her reasoning in spatial and quantitative CSs? 

Methods 

To address our RQ, we report on data from a teaching experiment (Steffe & Thompson, 

2000) with three sixth-grade students: Nina (who self-identified as Latina), Tara (who self-

identified as a White female), and Jacobi (who self-identified as an African American male). We 

focus this report on Nina’s activity because she provided the strongest indications of the RFs of 

interest. The teaching experiment took place in a middle school whose population consisted of 

over 75% students of color. Participants were recruited based on teacher recommendation and 

student availability. Nina attended 10 teaching experiment sessions each lasting 35–40 minutes 

(Table 1). We video- and audio-recorded each session to capture utterances and gestures. Student 

activity on the Desmos platform was screen recorded, and we digitized all written work. 

Table 1: Small Group Teaching Experiment Sequence 

Session Students Present Task Intended Student Goal 

0 Nina Pre-Interview Various 

1 
Nina, Tara, Jacobi 

X Marks the Spot – Guess 

Where 
Construct and/or interpret 

spatial RFs and CSs to 

describe and/or identify 

locations in space 

2 
Nina, Tara 

 

X Marks the Spot – Anywhere 

3 X Marks the Spot – Classmates’ 

Descriptions 

4 Nina, Jacobi X Marks the Spot – Anywhere 

5 Nina, Tara, Jacobi North Pole Task 

6 Nina, Tara, Jacobi 

 
Zoo Task 

Interpret points in a 

quantitative CS 7 

8 Nina, Tara, Jacobi 
Kodiak Task 

Interpret graphs in a 

quantitative CS 9 Nina, Tara 

10 Nina, Tara Post-Interview (Growing Fruit) Various 

 

Tasks 

We describe Nina’s activity across several tasks from Sessions 3, 4, and 10. In the X Marks 

the Spot-Anywhere and -Classmates’ Description tasks (Sessions 2–4), students took on the roles 

of Describer and Guesser in Desmos. The Describer was prompted to mark an X on the map and 

then generate a description of the X’s location. The Guesser used that description to mark an X 

on their own version of the map. Students had access to a set of digital overlays (e.g., vertical 

lines, horizontal lines, concentric circles anchored at the star icon) that could be activated to 
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potentially support students’ location descriptions. For example, in Figure 2, the ‘Horizontal’ and 

‘Vertical’ overlays are activated. In the Anywhere variation of the task, a pair of students take 

turns as Describer and Guesser for each other. In the Classmates’ Descriptions variation, the 

students worked together as Guessers, with hypothetical classmates as Describer. The 

hypothetical classmates’ descriptions were researcher-authored and sequenced to progress from 

(what we then considered) less precise to more precise descriptions in both polar-like and 

Cartesian-like CSs. We had yet to distinguish between continuous and ordered-discrete RFs 

when we authored these descriptions. However, in retrospect, the descriptions that we considered 

less precise used language indicative of ordered-discrete RFs while the descriptions that we 

considered more precise used language indicative of continuous RFs. In Session 10 Nina and 

Tara completed a post-interview together wherein they attempted tasks individually, and the 

teacher-researcher (TR) facilitated discussion across their responses. The fourth task of the post-

interview, Growing Fruit, asked students to describe a situation that would be reflected by a 

given graph representing the relationship between a hypothetical fruit’s weight and calorie 

content, both of which changed over time (Figure 3a).    

Analysis 

Consistent with teaching experiment methodology, we analyzed the data via conceptual 

analysis, which entails “building models of what students actually know at some specific time 

and what they comprehend in specific situations” (Thompson, 2008, p. 45). We watched all 

videos and identified moments that offered insight into the CSs and RFs Nina constructed as she 

addressed each task. We then created models characterizing whether Nina was constructing 

quantitative or spatial CSs. As we described Nina’s reasoning in each type of CS, we 

characterized continuous and ordered-discrete RFs as an important distinction in her reasoning; 

we had not considered this distinction prior to conducting this analysis.  

Results 

Nina used two distinct types of RFs, ordered-discrete and continuous to construct and 

interpret both spatial and quantitative CSs. Further, the RF Nina constructed influenced her 

reasoning in each CS. Because Nina constructed both types of RFs within both types of CSs, we 

present these types of reasoning in a two-by-two matrix and detail four examples from the 

teaching experiment that demonstrate each combination (Table 2).  

 

Table 2: Task and activity in which Nina constructed a CS using each type of RF 

 Ordered-discrete RFs Continuous RFs 

Spatial CS Describing locations in X-marks the 

Spot-Anywhere 

Interpreting locations in X-marks the 

Spot Anywhere 

Quantitative 

CS 

Interpreting a given graph in the 

Growing Fruit task  

Interpreting a modified graph in the 

Growing Fruit task  

 

Continuous Reference Frames in Spatial Coordinate Systems 

In Session 3, Nina interpreted continuous RFs in a spatial CS when she followed a 

hypothetical classmate’s description to mark an X in the X Marks the Spot – Classmates’ 
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Descriptions task. Nina’s interpretation of the following description shows her ability to 

construct continuous RFs in a spatial CS:  

Click the Star (1) and Circles (3) options. Imagine the star is like a clock with the line going 

straight up being 12 o'clock and the line going straight down being 6 o'clock. The X is 1.25 

miles from the star [icon] halfway between 10 and 11 o'clock. 

This description is intended to introduce a pseudo-polar, spatial CS in which the continuous RFs 

are the radial distance (explicitly in ‘miles’) from the star icon and angle measure (implicitly in 

‘hours’) from the top vertical line. After reading the description, Tara moved the cursor to an 

approximately correct location. Nina grabbed a measuring device (a wax-covered string bent at a 

length equivalent to the ‘1 mile’ key on the map), which she used to confirm Tara’s 

approximation. Specifically, Nina placed one end of her measuring device at the center of the 

star overlay and oriented the other end halfway between the lines representing 10 and 11 o’clock, 

near where Tara had placed the cursor. Nina reasoned that if the string piece was one mile, then 

the X must be slightly beyond it. Hence, Nina reasoned about distance from the center as a 

continuous quantity (i.e., 1.25 miles is slightly more than 1 mile) while also attending to the 

clock description as a continuous quantity (i.e., a location halfway between 10 and 11 o’clock). 

Thus, Nina used continuous RFs to generate an exact location in a spatial CS. 

Ordered-Discrete Reference Frames in Spatial Coordinate Systems 

In Session 4, Nina primarily used ordered-discrete RFs. For example, in her third turn as 

Describer in the Anywhere variation of the task, Nina established a spatial CS using two ordered-

discrete RFs to describe a region in which her X was located. Nina marked an X as in Figure 2a 

and provided the description “Use horizontal and vertical lines. The lines make squares so count 

from the left, go all the way to the bottom, and count 6. Then go up 2, the x is in the right 

corner.” To Nina, the combination of the vertical and horizontal overlays created distinct 

‘squares’ (discrete regions) that Jacobi could count (ordering language) to identify which region 

contained the X (Figure 2a). Reflecting the non-continuous nature of the RFs Nina was 

constructing, the relative size of these ‘squares’ was not relevant from her perspective; her 

description did not distinguish the partial boxes in the bottom-most row and left-most column 

from the other boxes in the grid. Hence, we infer she was reasoning about discrete, ordered, 

regions from the bottom left corner. Hence, Nina established a spatial CS to describe a region by 

coordinating two discrete ordered RFs (The number of boxes to the right starting from the left 

side of the map and the number of boxes vertically up from the bottom of the map).  

a)   b)    

Figure 2. Representation of Nina’s ordered-discrete reasoning in space in a) the first part 

and in b) the second part of the description 
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Nina’s use of ordered-discrete RFs influenced her activity in the spatial CS as it led her to 

using more than one set of ordered-discrete RFs as she described increasingly narrow regions in 

which points were located. That is, we infer that Nina’s addition of “x is in the right corner” was 

a second ordered-discrete RF she constructed within the first box she described. (We note Nina 

did not specify between top or bottom right corner, but we conjecture she meant top-right based 

on the X’s placement.) Our inference is based on her use of “right corner” as a location rather 

than a reference object (i.e., “in the right corner” as opposed to “1 cm from the right corner”). 

One possible way she could have done this is by mentally subdividing the ‘square’ into (at least) 

four discrete, ordered quadrants (i.e., top-left, top-right, bottom-left, bottom-right; Figure 2b).  

Thus, we infer that Nina could have coordinated two ordered-discrete RFs (left/right and 

top/bottom from the midpoint of the box) to describe a narrower region within a particular region 

of a spatial CS.  

Reference Frames in Quantitative Coordinate Systems 

In Session 10, Nina addressed the Growing Fruit task (Figure 3a). A normative explanation 

would include a description that at first the fruit gains weight while its calories remain the same 

and then the fruit’s weight and calories increase simultaneously. Based on Nina’s activity in 

Sessions 7-11, we anticipated Nina would use continuous RFs to interpret the given graph and 

produce a normative explanation. However, we infer that Nina initially reasoned about the 

quantities using an ordered-discrete RF and shifted to using a continuous RF when the TR added 

numbers to the horizontal axis. We provide evidence for each claim in the next two sections.  

 

a)  b)  

Figure 3: a) Growing Fruit Task as presented and b) a potential depiction of how ordered-

discrete RFs could be coordinated to reason about the horizontal segment of the graph. 

 

Ordered-discrete reference frames in quantitative coordinate systems. When initially 

interpreting the horizontal segment (and possibly the entire graph), Nina employed an ordered-

discrete reference frame. Describing a situation that created this graph, Nina explained:  

N: The fruit starts off, like, without any calories [points to horizontal segment] and doesn’t 

weigh a lot. And then while it grows [traces curve] it gains calories and … weighs more. 

TR:  Gains calories and weighs more?  

N: Yeah. 
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TR:  [referring to the curved part of the graph] So that’s sort of what you [Tara] were saying, 

too. So, I think you’re both in agreement. Now let me ask you [Nina] this question. If we 

start say, here [gestures to the vertical intercept] and just paying attention to this part 

[tracing the horizontal portion of the graph]. What’s changing? 

N:  Nothing. 

Considering Nina’s argument, Tara disagreed with it. Tara traced the horizontal part of the graph 

saying, “Well as you go right the weight is getting bigger because it’s getting closer to ‘more’ 

weight, I guess. But the calories would stay the exact same right here.” Nina explicitly disagreed 

with Tara’s argument stating, “I don’t think here it’s getting bigger [traces horizontal segment]. 

‘cause it’s like [pointing to “Less” markers on each axis]...[3 second pause] For me it’s like not 

getting bigger cause it’s like still at less.”  

We interpret Nina as reasoning with ordered-discrete RFs as she interpreted the weight and 

calories of the fruit for the horizontal segment. In particular, she argued the horizontal segment 

was representing the quantities as both being in a static state of ‘small’ because the segment was 

close to the ‘Less’ label on each axis. Like her activity in X Marks the Spot - Anywhere, Nina was 

reasoning about ordered-discrete RFs on each axis by creating regions based on the ‘Less’ labels 

along each axis. We show one potential illustration of the resulting regions Nina may have been 

reasoning about in Figure 3b. 

We note Nina’s initial description of the curved segment (“while it grows it gains calories and 

… weighs more”) could be indicative of reasoning with either ordered-discrete RFs or 

continuous RFs. If Nina understood that the curved graph spanned the (Less, Less) region and 

the (More, Medium) region, then she might have argued that the weight and calories both 

increased by some unknown amount as each moved into a higher-ordered region. If, however, 

Nina understood there to be a continuum of values beyond the (Less, Less) region, then she 

could have been using a continuous RF to reason about this part of the graph. As the TR was not 

aware of the distinction between the two types of RFs in the moment, he did not explore this 

possibility further. However, he did conjecture the ‘Less’ and ‘More’ labels on the axes, which 

were novel relative to quantitative CS used in previous sessions, may have been the catalyst for 

her reasoning about the straight segment. Hence, he opted to add numbers to the horizontal axis 

(0, 10, 50; seen in Figure 3b) to see if this change would lead Nina to a different interpretation.  

Continuous Reference Frames in Quantitative Coordinate Systems. When the TR added 

the numbers to the horizontal axis, Nina immediately engaged in reasoning about the horizontal 

segment using a continuous RF in a quantitative CS and generated a normative interpretation of 

this part of the graph: 

TR: But say if there were numbers here. Say this was like 0, 10, and like 50 [writes in 

numbers on horizonal axis as shown in Figure 3b] 

N:  Then it would get bigger 

TR: Then you think it would- 

N:  It would weigh more 

TR: You think it would weigh more? 

N:  Yeah 

TR: And what about the calories? Would that be changing?  
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N:  No [shakes head] 

TR: No? Okay so it’s sort of like this distinction between sort of like ‘less’ like we’re in this 

less state- 

N:  Yeah 

TR: -versus if there were numbers, you’d say they were changing? [Nina nods head] 

When the TR added numbers to the horizontal axis, Nina immediately interpreted the horizontal 

segment as showing the weight increasing (“It would weigh more”) as the calories remained 

constant. Thus, we infer Nina understood the horizontal axis as a continuous RF representing the 

weight of a hypothetical fruit. Furthermore, she agreed with the TR that the distinction between 

viewing the horizontal segment as representing a state of ‘less-ness’ versus viewing it as a record 

of change was based on the addition of the numbers. Hence, we infer the addition of numbers to 

the axes changed Nina’s interpretation of the graph (and of the situation) as she shifted from 

using an ordered-discrete RF to using a continuous RF. Further, she exhibited reasoning 

compatible with a continuous RF on the next task in the post-interview, which asked her to 

construct a graph to represent the weight and calories of a novel fruit. 

Discussion, Implications, Limitations, and Concluding Remarks 

Addressing our RQ, we have shown how Nina used ordered-discrete and continuous RFs to 

reason within both spatial and quantitative CSs. Within a spatial CS, Nina’s use of different RFs 

led to different strategies to mark or describe a location. With continuous RFs, Nina could 

identify an exact location, but she reasoned about increasingly narrow regions when using 

ordered-discrete RFs. In a quantitative CS, Nina’s use of RFs impacted her interpretation of a 

situation represented graphically. When engaging with ordered-discrete RFs, Nina treated a 

segment of the graph as a single object, representing a static condition (i.e., Less-Less). 

However, with a minor alteration to the task, Nina considered the weight RF as continuous, 

thereby interpreting the segment as representing a record of change.   

We note that Nina’s construction of different RFs was influenced by her interpretation of 

and/or goals in the task. Although she was capable of reasoning with continuous RFs in both 

spatial and quantitative CSs, she opted to use ordered-discrete RFs when they satisfied the 

demands of a given task as she perceived it. We have observed other students who, like Nina, are 

capable of reasoning about continuous RFs in a spatial CS but opt to use ordered-discrete RFs to 

satisfy their perceived demands of a given task. 

Implications for Curriculum and Instruction 

We consider it likely that a continuous RF supersedes an ordered-discrete RF. Our hypothesis 

is that individuals who have constructed a continuous RF in a context would necessarily be able 

to construct an ordered-discrete RF in the same context, whereas an individual who constructs an 

ordered-discrete RF may not yet be able to construct a continuous RF in that context. 

However, we emphasize that one type of RF is not inherently preferred; rather, their utility is 

determined by an activity’s (or student’s) context and goals. In spatial CSs, regions can be 

described using continuous RFs (e.g., Webb & Abels, 2011), but there may be instances in which 

ordered-discrete RFs are sufficient or even more appropriate. Although continuous RFs are more 

commonly used when constructing quantitative CSs, there are situations in which ordered-

discrete RFs are useful. For instance, Webb and Abels (2011) describe using combination charts 
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to describe the relationship between three quantities, such as cost of a number of pencils 

(represented along a horizontal axis), cost of a certain quantity of erasers (represented on the 

vertical axis), and total cost of n-pencils and m-erasers (represented in the cell (n, m)). Such a 

combination chart is an example of a quantitative coordinate system made up of two ordered-

discrete RFs, in which number of pencils and number of erasers are discrete quantities.  

It is important to be aware of the distinctions between these types of RFs, as their conflation 

can lead to unintended graphical interpretations. For instance, Figure 1c depicts a spatial 

coordinate system, but it is ambiguous whether each RF should be treated as continuous or 

ordered-discrete. On one hand, the vertical numeric labels suggest that students could describe 

the X’s position using a continuum, but the use of letters as labels on the horizontal axis limits 

the ability to refer to non-discrete positions. Further, the positioning of the labels between tick 

marks rather than on tick marks may promote the creation of regions rather than a continuum. 

Depending on how an activity using a similar map is enacted, students may not conceive a 

distinction between the two types of RFs. Teachers and curriculum designers should be 

deliberate in crafting tasks and graphs such that students are prompted to engage with both types 

of RFs and explore the affordances and limitations of each in a variety of spatial and quantitative 

contexts. 

Limitations and Concluding Remarks 

This report is limited in that we only analyzed the activity of one student in a particular set of 

tasks. Future researchers may be interested in exploring how a wider range of students 

spontaneously construct and utilize both continuous and ordered-discrete RFs in quantitative and 

spatial CSs. Such research can support the field's understanding about how students reason about 

graphs and how such reasoning can be supported towards more normative graphing meanings. 

Understanding the ways in which students interpret and construct the fundamental components 

of graphs, such as RFs, is crucial to supporting students’ developing meanings for graphs, which 

are ubiquitous in STEM contexts.  
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We conducted an analysis of children's literature centered on area and perimeter, using an 

adaptation of a framework for assessing the characteristics of picture books for learning 

mathematics. This paper focuses on the presence and absence of specific elementary and middle 

school Common Core State Standards related to area and perimeter within twelve picture books. 

We also consider whether the mathematics content is explained within each picture book. 

Findings reveal there are available picture books for teaching area and perimeter throughout 

elementary and middle school grades, except for sixth grade. We also found that most of the 

books presented the mathematics with explicit explanations, instead of implicitly. These findings 

could aid in teacher’s selection and use of picture books when teaching mathematics. 

Keywords: Elementary School Education, Geometry and Spatial Reasoning 

Introduction 

As educational practices evolve in these changing times, it is critical to envision the future of 

mathematics teaching. With traditional approaches being reevaluated, innovative teaching 

methods are becoming essential to meet the changing needs of students. Using picture books in 

mathematics instruction can meet those needs in the following ways. 

Picture books enhance student engagement by immersing them in captivating stories, where 

interactions with characters and mathematical content make learning exciting (Skoumpourdi & 

Mpakopoulou, 2011). These books provide relatable contexts that allow students to apply their 

knowledge and see the relevance of mathematics in their daily lives (McAndrew et al., 2017). 

Lastly, picture books offer a promising way of teaching novel terms and associated properties of 

geometry specifically, by using both pictures and words. Further classroom discussion of these 

terms within the context of the books encourages students to make sense of and communicate 

with new mathematical language (Capraro & Capraro, 2006; McAndrew et al., 2017; 

Skoumpourdi & Mpakopoulou, 2011).   

Despite these advantages, not all picture books related to mathematics are equally useful for 

teaching (Skoumpourdi & Mpakopoulou, 2011; Nurnberger-Haag et al., 2021). For example, 

how the mathematical content is presented influences the way a teacher incorporates the book in 

their teaching. If the mathematical content is only implied in the story, and not explained, the 

teacher would need to bring out the mathematics and help students build their understanding 

(Austin, 1998). However, if the mathematical content is explicit, there is danger it is being used 

to “tell” the mathematics, which can hinder cognitive engagement among students (Lobato et al., 

2005). Thus, picture books’ effectiveness in teaching mathematics must be assessed individually. 

However, there is limited research evaluating picture books for their effectiveness in teaching 

mathematics (Nurnberger-Haag et al., 2021), and most focus on the topic of shape (e.g., 
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McAndrew et al., 2017; Skoumpourdi & Mpakopoulou, 2011). Our goal is to aid in broadening 

this field, by focusing on assessing picture books covering the concepts of area and perimeter, 

chosen due to students' common struggles in understanding these topics (Milinia & Amir, 2022). 

Using an adaptation of van den Heuvel-Panhuzen and Elia’s (2012) f Framework of Learning-

Supportive Characteristics of Picturebooks for Learning Mathematics, we intend to address the 

overarching question: How does the presentation of area and perimeter in picture books relate to 

their usability for teaching, based on the framework's learning-supportive characteristics? In this 

preliminary study, we focus on two questions: (1) Which elementary and middle school Common 

Core State Standards about area and perimeter are represented in picture books?; and (2) How 

are these concepts presented—implicitly or explicitly? 

Theoretical Framework 

In this study, we draw upon van den Heuvel-Panhuzen and Elia’s (2012) Framework of 

Learning-Supportive Characteristics of Picturebooks for Learning Mathematics as a foundation. 

This framework identifies characteristics of picture books that contribute to the learning of 

mathematics by kindergartners. It consists of two main sections: (1) Supply of mathematical 

content identifies the mathematical content within a picture book; and (2) Presentation of 

mathematical content indicates how the mathematics is presented (e.g., explicitly or implicitly) 

and the characteristics that could prompt specific behaviors from children.  

 

 

 

Figure 1: Mathematical Content Domains and Way of Presenting (Adapted from van den 
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Heuvel-Panhuzen & Elia, 2012) 

 

We adapted van den Heuvel-Panhuzen and Elia’s (2012) framework to apply to picture books 

focusing on area and perimeter across various grade-levels. The primary change was replacing 

A.2—Mathematical content domain—with the Common Core State Standards of Mathematics 

(CCSSM) related to area, perimeter, circumference, and surface area for elementary and middle 

school grades. Notably, kindergarten, first, fifth, and eighth grade have no standards on these 

topics. We defined each characteristic of the framework, except for the CCSSM, was defined 

using our interpretations of van den Heuvel-Panhuzen and Elia’s (2012) explanations. Although 

other adaptations were made, they fall beyond the scope of this paper. 

In this report, we will focus on characteristics A.2—Mathematical content domains—and 

how they were presented, implicitly or explicitly, within B.1—Way of presenting—as shown in 

Figure 1. Content presented explicitly means the mathematics was explained in the words or 

images, while an implicit presentation includes no explanations of the mathematics. 

Methods 

The picture books we analyzed were chosen based on their connection to area, perimeter, 

circumference, and surface area. These were found by searching Google and the Western 

Michigan University library database for the following keywords: children's book or picture 

book and area or perimeter or circumference. Once we identified a potential book, we read it and 

kept it if it was related to area and/or perimeter, resulting in twelve books (Figure 2).  

 

Adler, D. A. (2012). Perimeter, area, and 

volume: A monster book of dimensions.   

Brucke, C. Y. (2009). Wrappers wanted: A 

mathematical adventure in surface area.   

Burns, M. (1997). Spaghetti and meatballs for 

all!   

Gabriel, N. (2006). Sam’s sneakers squares. 

Murphy, S. J. (2001). Racing around. 

Murphy, S. J. (2002). Bigger, better, best! 

Neuschwander, C. (1997). Sir Cumference 

and the first round table.  

Neuschwander, C. (1998). Sir Cumference 

and the dragon of Pi. 

Neuschwander, C. (1999). Sir Cumference 

and the Isle of Immeter. 

Pilegard, V. W. (2004). The warlord’s kites.   

Pollack, P., & Belviso, M. (2002). Chickens 

on the move. 

Reisberg, J., & Hohn, D. (2006). Zachary 

Zormer: Shape transformer: A math 

adventure. 

 

Figure 2: Picture Books Focusing on Area and Perimeter 

 

We began by independently analyzing each picture book using the framework in Figure 2. 

We individually highlighted any characteristic in the framework present in the book and included 

significant notes about its presence or absence. We then met to ensure consistency, discussing 

any differences, and clarifying definitions until agreement was reached. 

Findings 

Figure 3 identifies the CCSSM about area and perimeter addressed in each picture book. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

488 

 

Most CCSSM standards in second, third, fourth, and seventh grade were addressed by multiple 

books; yet, no picture book focused on the third grade standards, G.A.2 or MD.C.7.C, which 

refer to partitioning shapes to represent fractions and modeling the distributive property with 

area, respectively (see Figure 1). However, these standards teach other concepts through area, 

rather than area itself, which may explain their absence from the books in our study. We also 

found that no books in our collection covered the sixth grade standards, G.A.1 or G.A.4 (see 

Figure 1). While one book, Sir Cumference and the First Round Table cut apart shapes and 

moved portions around, it did not find area by decomposing shapes as in G.A.1. Similarly, 

Wrappers Wanted described finding surface area by adding the area of each face of a box, but the 

idea of nets was not utilized as in G.A.4. Thus, none of the sixth grade standards were fully 

covered within any of the picture books analyzed. 

When considering the way of presenting, Spaghetti and Meatballs for All! and Chicken's on 

the Move presented mathematics implicitly, as opposed to the other ten books which did so 

explicitly. For example, in Spaghetti and Meatballs for All!, the characters consider how many 

chairs fit around different configurations of tables. This implies the relationship between area 

and perimeter without explaining the mathematical concepts or using mathematical language. 

 

Grade 2nd 3rd 4th 6th 7th 

CCSSM 
G.A

.2 

G.A

.2 

MD.C.

5 
MD.

C.6 

MD.C.7 MD.

D.8 

MD.

A.3 

G.A

.1 

G.A

.4 

G.B.

4 
G.B.6 

A B A B C D 

Adler X   X X X X X    X X    X  

Brucke    X   X    X    X 

Burns          X      

Gabriel X  X X X X X         

Murphy 01          X X     

Murphy 02 X    X X X  X  X     

Neuschwander 

97 
        X X      

Neuschwander 

98 
             X  

Neuschwander 

99 
  X X X X    X X   X  

Pilegard   X X X X X    X     

Pollack & 

Belviso 
         X X     

Reisberg & 

Hohn 
   X   X   X      

 

Figure 3: CCSSM for Area & Perimeter Addressed in Picture Books 
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Discussion and Conclusion 

Our findings reveal there are picture books available for teaching a range of CCSSM related 

to area and perimeter throughout elementary and middle school grades. However, a gap exists in 

the representation of the sixth grade standards as seen by the absence of coverage for G.A.1 and 

G.A.4, which describe decomposing shapes to find area and using nets to find surface area. Both 

standards involve manipulating and visualizing spatial elements, ultimately enhancing students' 

ability to understand and solve complex spatial problems (Davis et al., 2015). Thus, picture 

books focusing on these standards would provide much needed resources for teachers. 

Ten of the twelve picture books explicitly incorporated mathematics content. Teachers may 

find it convenient to include these books in lesson plans as they require minimal interpretation on 

the teacher’s part. However, it is crucial to use picture books as part of an integrated approach 

that enhances students' understanding of mathematical concepts (Austin, Thompson, & 

Beckman, 2005). Presenting mathematics implicitly requires students to actively engage with the 

material and draw connections between the story or illustrations and the mathematical concepts, 

fostering a deeper understanding of the mathematical content (Austin, 1998). Therefore, 

increasing the availability of picture books that implicitly present mathematics related to area 

and perimeter would benefit both elementary and middle school students and teachers. 

By assessing these twelve picture books based on the CCSSM for area and perimeter, 

teachers can identify which ones may be beneficial for teaching their intended standard(s). We 

recognize we may have missed relevant books, which could be a limitation of our study. For 

example, books that present mathematics implicitly may not use the terms area and perimeter, so 

they may not have come up in our search. Our framework directs teachers’ attention to specific 

learning-supportive characteristics (e.g., way of presenting) that may influence how picture 

books are used in their classroom. Looking forward, we anticipate this framework serving as a 

guide for categorizing the usability of picture books for teaching mathematical content, aiding 

educators in making informed decisions tailored to their classrooms’ needs. 
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This paper explores how nine-year-old Loren described the duration of common experiences 

through qualitative perceptions and quantitative measurement. After organizing four “everyday” 

activities from shortest to longest duration (sleeping at night, watching a movie, eating lunch, 

brushing teeth), Loren justified their ordering through contrasting the paradox of how each 

experience felt against a quantified length of each duration. These distinctions demonstrate the 

complexity of temporal and durational reasoning and evidence potential conceptions that 

elementary-age children may have when reasoning about time—a consideration that 

mathematics teachers and researchers have often overlooked.  

 

Keywords: measurement, elementary school education, problem-solving 

 

When reflecting on the duration of common activities, elementary-age children draw on 

numerous aspects of their lived experiences (Smith, 2021). Many of these attributes are 

quantifiable in and of themselves, such as knowing that you have a long way to walk (distance) 

so it will take a while or building a Lego with 500 pieces (500 being a larger quantity) taking 

longer than a mini-figure (with only three pieces to construct). However, some aspects of 

experience are not measurable in the same, mathematical sense, such as having the long walk be 

on a hot (or cold) day which will make it feel like it is taking longer or having a knowledgeable 

sibling help build the Lego so it will not take as long (but a less-practiced sibling may cause it to 

take even longer). These less well-defined attributes of experience are not considered when 

formal time teaching and learning are established in early elementary school (see Common Core 

State Standards Initiative, n.d.); yet, they are commonly, informally prevalent in durational 

experiences throughout an individual’s life, and thus, should be explored. The present case 

exemplifies one such child’s attempt to articulate this mathematical paradox. 

Theoretical Framework 

Young children develop an intuitive sense of duration based on their perceptions of 

succession—the sequence in which events occur, and duration—the intervals of and between 

events (Piaget, 1969). These perceptions develop through conclusions made as they reflect on 

their lived experiences. Children who reason intuitively, for example, may consider duration as a 

result of their efforts, believing that because more work was done, the duration was necessarily 

longer (Piaget, 1969; Smith, 2021). A child reasoning in such a manner might conclude that 

because they drew lots of lines, the duration was long. As they grow and through experience, 

children’s conceptions of time develop from intuitive—based purely on observations—to 

operational—based on the relationships abstracted from their observations (Long & Kamii, 2001; 

Piaget, 1969). When reasoning operationally, children recognize the reciprocal relationship of 
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succession and duration (Piaget, 1969). When the previous child, for instance, can reason that 

they were able to draw a lot of lines because they took more time to complete it and that taking 

more time allowed them to draw more lines, they would demonstrate an operationalization of 

durational reasoning. This reasoning is necessary for durational measurement (Kamii & Russell, 

2010, 2012; Piaget, 1969).  

Flaherty and Meer (1994) posited a general theory of lived time, where the retention and 

recollection of durational events are defined by an individual’s engagement, attention, emotional 

connection, and habituality of the event. In other words, how an individual might measure the 

duration of their experiences is impacted by how they processed the experience in the first place. 

Events that are common or less engaging might be perceived as taking more (or less) time than 

the actual, measured duration. This processing can lead to uneven durational perceptions, such as 

time feeling like it is “flying by” (temporal compression) or “dragging on” (protracted duration; 

Flaherty & Meer, 1994), which can impact durational measurement and reasoning (Smith, 2021). 

Qualitative durational reasoning corresponds with Piaget’s gross quantification (1952), 

where asymmetrical relations engender the difference between two quantities. Such comparison 

allows for the distinction of more (longer), less (shorter), or the same. Quantitative durational 

reasoning utilizes numbers as the units of measure (Russell, 2008). This occurs when an 

individual can distinguish space measurement from time measurement (i.e., can account for the 

duration of an event disparate from their perception of the event). This durational measure is no 

more or less cognitively demanding than qualitative reasoning because both require the 

individual to reflect on, and abstract, the durational relationships they experience (Piaget, 1969). 

Rather, these are two distinct ways that individuals might reflect on their durational conceptions. 

Methodology 

The case presented (Yin, 2003) came from a larger study that explored how elementary-aged 

children (age 4-11) organize the duration of common experiences (Smith, 2020, 2021). Each 

participant was asked to organize four activities: brushing teeth, eating lunch, watching a movie, 

sleeping at night, from the shortest to longest duration. Then, the interviewer inquired into the 

child’s reasoning. This case illustrated markedly different reasoning from other participants. 

Participant and Data Collection 

The data presented come from an interview with nine-year-old Loren1. Loren was a third 

grader from a large suburban city in the Midwestern United States. The interview was video 

recorded to capture Loren’s words and actions. During the interview, Loren was given four cards 

with images and words of the four activities and asked to put the activities in order from what 

took the least amount of time to the most amount of time, then discuss their reasoning.  

Data Analysis  

With the distinct nature of Loren’s responses, I used a phenomenological lens during analysis 

(Creswell, 2013; Hycner, 1999) to understand as much as possible about Loren’s reasoning. 

Following Wolcott’s (1994) three-part analytic framework, I worked to create “data out of 

experience” (p. 13), by first incorporating all of Loren’s words, actions, wait times, and 

inflections into a descriptive transcript. From my analysis, I distinguished Loren’s quantitative 

durational reasoning from their qualitative perceptions of the durations. Reflecting on Loren’s 

 
1 Gender neutral pseudonyms were used as gender identity was not the central to the research focus. 
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data as a whole, I returned to existing theories to better interpret how Loren conceived of 

duration as a measurable attribute of their lived experience.  

Findings: Description and Analysis 

When initially asked to organize the four activities, Loren placed the “sleeping at night” card 

on the far-left side of the table, indicating the shortest duration. They then placed “brushing 

teeth” at the far-right side, indicating the longest duration. This process was similar to how 

individuals bound the duration of their experiences, finding the upper and lower durational 

limits, then constructing the unit within (Smith, 2021). Interestingly, Loren’s placement of these 

cards (longest/shortest), was backward/opposite of all other participants interviewed. Loren then 

placed the “watching a movie” card after sleeping at night, indicating that to them, watching a 

movie took longer than sleeping at night. Finally, they placed “eating lunch” between watching 

and movie and brushing teeth.  

Sleeping at Night 

Loren began describing how they considered the duration of each activity with what they 

conceived of as the shortest duration—sleeping at night. Loren explained, “When I fall asleep 

and I know that’s like 12 hours, I wake up [swiped hand through air] and it feels like it’s 30 

seconds.” This description was one of Loren’s clearest examples of their qualitative reasoning 

distinct from quantitative reasoning. Qualitatively, and paradoxically, Loren explained that they 

knew the duration of their experience as one quantity (12 hours) despite that it felt like a 

different, much shorter quantity (30 seconds). Quantitatively, Loren attributed the duration of 

their sleep through two different standardized units of measure: 12 hours versus 30 seconds. I 

inferred that their motioning of swiping their hand through the air was an iconic gesture 

(McNeill, 1992) of the comparison between these two units, symbolizing their acknowledgement 

that 30 seconds is a quantifiably different durational amount than 12 hours. Remembering that 

Loren placed this activity as the shortest of the four, it seems that their qualitative durational 

reasoning guided their overall consideration of the durational organization. 

Watching a Movie 

After justifying their placement for sleeping at night, Loren immediately went on to explain, 

“I feel like movies are short, but when you look at the time, it’s already like, if you started 

watching at 3:30 it’s already 5:54 and I just feel like watching a movie is fun, and something that 

I enjoy.” Similar to sleeping at night, Loren seemed to openly distinguish between their 

qualitative perceptions of the duration and the quantitative measurement—even providing a 

somewhat reasonable approximation of the duration of a typical movie (around 2.5 hours). 

Multiple times, Loren reflected specifically on how the duration felt, noting that it felt “short” 

and was “fun”/enjoyable. These perceptions were countered by Loren’s hypothetical description 

of looking at a clock to note the start and end times of the movie (quantitative measurement).  

Eating Lunch 

Loren placed the eating lunch event last when organizing the events. Unlike the previous two 

experiences, Loren’s reflection on the duration of eating lunch was less defined both 

quantitatively and qualitatively. Loren stated, “Eating my lunch, I usually don’t eat that much, 

um, I have a salad and eggs, but I chose eating my lunch here [pointed to placement] because I 

feel like it’s just, um, [hesitated three seconds] uh, I don’t know.” Initially, it seemed that Loren 

reflected on the quantity of food as related to the measure of the duration. This reflection on 
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gross quantity as a proxy for durational length has been evidenced by other children (Smith, 

2021), though never with explicit relation to qualitative durational reasoning. Loren did go on to 

state that they felt like it belonged in the placement it was but was unable or unwilling to 

elaborate on why this experience felt the duration it did, either qualitatively or quantitatively.  

Brushing Teeth 

Brushing teeth was the second event placed during Loren’s initial organization and bound the 

“upper limit” (longest duration) of Loren’s established durational timeline. Loren explained, 

“Brushing my teeth, I feel like it’s two minutes, but when I go downstairs my dad will say, what 

are you doing, I told you to brush your teeth, you’ve only been up there for 30 seconds 

[laughed].” This explanation echoed Loren’s previous descriptions in the use of measurable, 

quantitative durations based on established time units (two minutes, 30 seconds). However, 

Loren’s qualitative explanation that brushing their teeth felt like two minutes but was, in fact, 

much less than that (30 seconds), yet was situated as the longest duration of the four events, 

highlights the impact that qualitative reasoning had on Loren’s overall durational reasoning. I see 

Loren’s last response, a laugh, as a critical piece of evidence of this durational paradox. Loren 

seemed aware that the quantitative duration of this event did not align with their qualitative 

experience of the event. Yet, even with this awareness, Loren maintained the order of the events 

as they were originally situated, from shortest (sleeping at night) to longest (brushing their teeth). 

Discussion: Interpretation 

The data presented highlight Loren’s diverse durational reasoning. Quantitatively, Loren 

demonstrated understandings of various standard durational units—seconds versus minutes 

versus hours—and provided verbal evidence and non-verbal cues of an awareness of the 

relationship between these units (that seconds are a smaller duration than hours, etc.). 

Additionally, Loren quantitatively bound events (starting a movie at 3:30 and ending it at 5:54), 

providing evidence of unitizing duration (Piaget, 1969; Smith, 2021). Qualitatively, Loren 

explicitly stated that each of the four events “felt” a specific way. Some of these “feelings” 

provided context for their numerical quantification (12 hours of sleep feels like 30 seconds) 

while others provided evidence of Loren’s appreciation for the paradoxical nature of duration 

and temporal events (“time always goes slow on something you don’t enjoy”).  

Loren’s ability to distinguish between the qualitative nature of the duration of their 

experiences and the quantified measurement of these durations aligned with various established 

durational and temporal conceptions. Specifically, Loren’s descriptions provided evidence of 

four temporal and durational conceptions: 1) how engagement/enjoyment can impact perceived 

durations (Flaherty & Meer, 1994; Smith, 2021); 2) the correlation between gross quantity and 

durational measurement (Piaget, 1969; Smith, 2021); 3) how an individual’s actions can impact 

the duration of their experiences (Piaget, 1969; Smith, 2021); and 4) how parents can impact 

children’s perceptions of durations (Piaget, 1969).  

Implications 

When considering Loren’s durational understandings, it is important to consider implications 

this may have both in formal schooling and in life. Clearly, Loren has a much richer bank of 

conceptions to their durational reasoning than established state and national standards consider. 

As they are currently situated, standards for time teaching and learning focus solely on analog 

and digital clock reading and hypothetical elapsed time calculations (CCSSI, n.d.). There are no 
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math standards nor expectations for durational reasoning nor is there any consideration of how 

qualitative perceptions of time might impact or coordinate with quantified, standardized time 

(hours, minutes, seconds). Instead, time teaching and learning is siloed to elementary classroom 

clock reading, yet time-related concepts span the K-12 curriculum (e.g., time as an independent 

variable, Thompson, 2012, or scientific uses of time, Tasar, 2010). Shifting out of the elementary 

classroom, temporal and durational reasoning is an essential “life skill” in our Western society. 

Time management and scheduling are critical skills that rely heavily on durational reasoning, 

both quantitatively (“clock time”; Earnest, 2018) and qualitatively (“event time”; Earnest, 2018). 

To support students like Loren, we need to appreciate the complexity of time and consider how 

children’s perceptions of this abstract, invisible quantity (Earnest, 2019) might impact their 

durational measurement.  
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Teachers, students, and designers of exams must make choices in how they represent a 

mathematical object so that it helps them attain their goal. To be able to make choices in the use 

of geometry representations, teachers, students, and test designers need to know which 

representations are available, how to use them, and what are some benefits of using one over 

another. In this study, I analyze the geometry representation on state, national, and international 

exams at the secondary level in order to see what is deemed necessary as students leave high 

school and prepare for college and/or a career. 

Besides the above, there are a few more reasons why studying representations is valuable. 

First, we all want students to solve problems with a high degree of accuracy and efficiency, and 

representations help us manage mathematical information. Students who coordinate different 

mathematical representations well solve mathematical problem better than those who do not 

(Gagatsis & Shiakalli, 2004). Second, to solve problems students need to use aids or tools like 

representations to reduce the complexity of a problem. We use representations as a kind of 

external memory, where we can offload some of the information from our working memory 

(Scaife & Rogers, 1996). Third, in the digital age, there are also practical reasons to study 

geometry representations. We are beginning to develop digital textbooks, online environments, 

etc., where the choice of representations is important (Presmeg et al., 2016).  

Methods 

I have examined standardized test given at the end of secondary school. Some of the exams 

are designed and administered at the state level like New York’s Regents. Some are more 

regional/national like the PAARC and Smarter Balanced. Some exams like the SAT are national 

and designed as college readiness exams. Finally, some are international like PISA.  

The unit of analysis is one question/problem from the exams. I searched for a minimum of 10 

questions from each test, which were downloaded from the agencies that administered and/or 

designed the exams. If there were fewer than 10 questions, I looked at a related website that had 

a recent exam. If an exam had more than 10 question, I used no more than 20, selecting those 

that most resembled Euclidean geometry. 

Results 

From the preliminary result, many exams have typical problems with diagrams, but some 

avoided using diagram. There were few problems using real-world physical language on many of 

the exams, but the PISA math assessment contained multiple examples of this type with very 

complex diagram. On some exams the meta-language was quite complex, e.g., refute a claim is 

an abstract level higher than actually solving a problem. Calculator buttons were used to enter an 

answer such as a ration instead of selecting an answer as in multiple choice questions or writing 

the answer.  
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In this report, we share analysis of 55 students’ interview responses to a “suspension of sense-

making” story problem involving how far two people live from one another. The prompt 

occasioned different ways of reasoning. Some students reasoned about lines; others about 

triangles; and still others about circles. Students’ differing responses indicate across-student 

variation in spatial organization and the quantitative roles of distance in those spatial 

organizations. We describe students’ mental operations of reasoning about points as varying and 

static and relate it to research on students’ meanings for a circle as representing all points an 

equal distance away from a center point. Overall, this study provides a quantitative reasoning 

lens to better understand how students make sense of a well-studied problem. 

Keywords: Geometry & Spatial Reasoning, Mathematical Representations, Cognition  

Over the past several decades, researchers have described the importance of students’ 

quantitative reasoning (Thompson & Carlson, 2017). Research has also shown that school 

mathematics can constrain what students might consider when responding to certain problems 

(Palm, 2008). In this study, we report on high school students’ responses to a question about the 

distance between two places (Figure 1). One productive response involves students constructing 

circles. An individual’s spontaneous consideration of a circular path when tasked with 

identifying locations that are a specified distance from a fixed point is an indication of what 

Hardison et al. (2017) referred to as an operative conception of a circle; such a conception 

involves a smooth radial operativity if the individual anticipates a rotating segment of constant 

radial length around one fixed endpoint while the other endpoint traces out a circular path. 

However, there exist responses contraindicating students considering circles with this problem, 

and thus, we sought to answer the question: “What ways of reasoning do students indicate when 

considering distances between objects? What are the figurative and operative aspects of these 

ways of reasoning, and how do they relate to the realistic nature of students' responses?” 

 

Bruce and Alice go to the same school. Bruce lives at a distance of 17 kilometers from the 

school and Alice lives at 8 kilometers. How far do Bruce and Alice live from each other? 

Figure 1: The School Problem (adapted from Treffers & de Moor, 1990) 

In this report, we first review existing literature around The School Problem, the word 

problem used in this study (Figure 1), highlighting reported findings on students’ reasoning. We 

then consider this problem and prior findings in relation to the Piagetian constructs of figurative 

and operative thought (Piaget, 1970; Thompson et al. 2024); we specifically build upon Hardison 

et al.’s (2017) definitions and examples of figurative and operative conceptions of circles. We 

then report on the ways of reasoning indicated by 55 high school students who answered this 

problem. We focus on distinguishing figurative and operative aspects of the imagery indicated by 
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students’ responses and compare this analysis to previous findings on the realisticness of 

responses to this problem.  

Literature Review 

In this literature review, we report on findings on the School Problem and situate those 

findings within the literature on quantitative and covariational reasoning. We conclude the 

literature review with a focus on figurative and operative thought.  

Problem Solving 

The context of the study reported on here developed from a larger interest in understanding 

students’ realistic mathematical sense-making (Reusser & Stebler, 1997). Researchers have 

reported on students’ suspension of sense-making (Schoenfeld, 1991) when solving word 

problems (e.g., Palm, 2008), noting that students rely more on procedural mathematics than 

conceptual applications to solve these word problems. Researchers have also reported that 

students’ suspension of sense-making increases over time as they develop more experience in 

problem solving and modeling in school (Mellone et al., 2017).  

Verschaffel and colleagues explored this suspension of sense-making through word problems 

designed to have different responses depending on the extent to which students are attending to 

the realistic nature of the problem. One of these problems was used in this study (Figure 1) (from 

Verschaffel et al. (1997), as worded in the English-translated Treffers & de Moor (1990)). 

Verschaffel et al. classified it as a “problematic” item because the underlying mathematical 

modelling assumptions are problematic from a realistic point of view. According to the authors, 

there are two non-realistic answers and one realistic answer to this problem. The two non-

realistic answers they provide are 9 km (i.e., 17−8) and 25 km (i.e., 17+8). The realistic answer is 

“you cannot know how far Saskia [Alice in our study] and Bruno [Bruce in our study] live from 

one another” (p. 344). Verschaffel et al. (1994) conducted a study with 75 students (aged 10–11), 

and only 3% of students provided a realistic answer to this problem. In Verschaffel et al. (1997), 

out of 332 pre-service teachers from three different institutes for elementary school teacher 

training in Flanders, 48% gave realistic reactions. This 48% includes responses with realistic 

answers and other responses researchers indicated as including “activation of real-world 

knowledge” (p. 345) (e.g., gave an indication that more than two answers were possible). In both 

studies, few details were provided into specifics of the “non-realistic” and “realistic” reasoning 

the participants engaged to determine their solutions. In this study, we use the ideas of 

quantitative reasoning and figurative and operative thought to understand students’ ways of 

reasoning when solving this problem. 

Distances and Quantitative and Covariational Reasoning  

The School Problem can be interpreted in terms of quantities and their relationships. 

Quantities are measurable attributes an individual conceives in a situation, and, over several 

decades, researchers employing principles of quantitative reasoning have provided insights into 

the quantities students construct and quantitative operations students enact (Thompson & 

Carlson, 2017). This subfield has offered explanatory models for students’ construction and 

interpretation of various representations (e.g., graphs, tables, geometric shapes).  

For example, Carlson et al. (2002) elaborated differences in students’ reasoning about the 

relationship between volume and height of water in a bottle as it is filled. Some students engaged 

in directional covariational reasoning by stating that the water’s height increases as the volume 
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of water added to the bottle increases. Here, students consider height and volume as quantities 

and reason about them changing in tandem via quantitative operations (e.g., addition, subtraction 

of quantities or states of quantities). 

Previous research on the School Problem has not taken up this focus on quantitative 

reasoning. In this study, we do, and we specifically identify three quantities are of interest (from 

our perspectives): the distance Bruce lives from the school, the distance Alice lives from the 

school, and the distance Bruce and Alice live from each other. 

Figurative and Operative Thought 

Beyond quantities and quantitative reasoning, the Piagetian constructs of figurative and 

operative thought are relevant for the present study; these are two complementary aspects of 

thought. Piaget (1970) defined the figurative aspect of thought as “an imitation of states taken as 

momentary and static” (p. 14). In Piaget’s view, figurative thought serves important cognitive 

functions involving, for example, perception and mental imagery. In contrast, the operative 

aspect of thought “deals not with states but with transformations from one state to another…it 

includes actions themselves, which transform objects of states” (p. 14). In Piaget’s work, 

operative thought necessarily entails reversibility and is at the level of interiorization. 

Reversibility can be considered as follows: if an initial state is subjected to an operation, A, then 

an inverse operation, B, can be subsequently enacted to revert to the initial state. To say that 

operative thought is at the level of interiorization means that the operations can be carried out in 

the mind without being enacted physically. We emphasize that the figurative-operative 

distinction characterizes complementary aspects of thought in that the latter cannot exist without 

the former; operations require some (figurative) state on which to operate. However, Piaget 

(1970) clearly stated his interest in understanding operative aspects of thought in particular 

remarking, “...to my way of thinking the essential aspect of thought is its operative and not its 

figurative aspect” (p. 15).  

For example, in Lee et al., (2018), the authors describe a student, Lydia, who conceived a 

slope of a given graph as “rising” three, which perturbed her when the researcher rotated the 

given graph counterclockwise 90 degrees. She struggled to conclude if the slope value should 

stay positive or become negative, given that the graph was no longer “rising.” Moore et al. 

(2019) described this reasoning as figurative because her meanings for increasing and decreasing 

values were constrained by orientation.  

In Moore et al. (2019), emergent shape thinking is provided as an example of operative 

thought. Emergent shape thinking involves covariational reasoning with quantities (e.g., 

reasoning with volume and height in the bottle problem) and transforming figurative entailments 

constructed from that reasoning (e.g., identifying amounts of change in volume for a change in 

height) into a quantitatively equivalent representation (e.g., a coordinate system).  

Hardison et al. (2017) introduced the idea of figurative and operative circle concepts and 

reported on reasoning associated with an individual reasoning with figurative circle concepts. In 

the present study, we identify figurative and operative aspects of student thinking as indicated by 

their responses to the School Problem (Figure 1), specifically attending to the construct of an 

operative circle construct. The next section details this construct.   
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Conceptual Framework 

In 2017, Hardison et al. considered figurative and operative aspects of thought in the context 

of one prospective teacher’s thinking about circles. Specifically, they offered definitions for 

figurative circle concept and an operative circle concept (Figure 2). A figurative circle concept 

“consists of an individual’s ability to recognize or re-present a circle as a static form.” A 

figurative circle concept functions as a mental template for producing or assimilating a circle. An 

individual can bring forth an image of a circle in visualized imagination or recognize circle 

models (e.g., a hula hoop) as being circular in shape. In contrast, an operative circle concept 

entails an individual’s mental image of a segment of fixed length rotating around a fixed 

endpoint while the other endpoint traces out a circular path. We emphasize that this smooth 

radial operativity is one of several operative possibilities for circles. In their 2017 work, 

Hardison et al. did not consider other forms of operativity for circles, and we will not either in 

this report because they were not identified within our given dataset. 

 

 

Figure 2: (left) Figurative circle concept and (right) smooth radial operative circle concept 

We extend the work of Hardison et al. (2017) by noting that the smooth radial variety of an 

operative circle concept entails the following two aspects: Constructible and Quantitative (Figure 

3). The constructible aspect of an operative circle concept involves an individual’s anticipation 

that a circular arc will necessarily result when one considers a set of locations that are a fixed 

distance away from a fixed point (Figure 3 top). In contrast, the quantitative aspect of an 

operative circle concept involves an individual’s anticipation that, when starting with a path 

known to be circular, all points along the path are necessarily the same distance from a particular 

(center) point (Figure 3 bottom). The distinction between these two aspects of an operative circle 

concept lies in what is taken as (a) the initial state and (b) the resultant state. In the constructible 

aspect, the initial state involves a fixed distance from a fixed point, and the resultant state is a 

(subset of) a circular path. In the quantitative aspect, the initial and resultant states are reversed. 

Common to both constructible and quantitative aspects is a mental rotational motion of a radial 

segment that enables transitioning between initial and resultant states in each case.  
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Figure 3: Reversibility of an Operative Circle Concept: Constructible (top) and 

Quantitative (bottom) Aspects 

To demonstrate these concepts, Hardison et al. (2017) reported on a 12-session, semester-

long teaching experiment (Steffe & Thompson, 2000) with a prospective secondary mathematics 

teacher (Lydia) at a large institution in the southeastern U.S. Lydia was working on the two tasks 

in Figure 4: Going Around Gainesville and Where Did They Go? For Going Around Gainesville, 

students were tasked with creating a graph relating the car’s total distance travelled and its 

distance from Gainesville during the trip (Figure 4 top left). For Where Did They Go?, students 

were tasked with constructing a path representing the same relationship between distances from 

two points (A and B) in the given graph.  

 

 

 

 

 
 

Figure 4: Going Around Gainesville Task and Lydia’s work (top) and Where Did They Go 

Task? and Lydia’s diagram (bottom) 

In Going Around Gainesville, Lydia recognized the (semi-)circular portion of the road and 

drew red and blue line segments emanating from Gainesville and extending to the semi-circular 

portion (Figure 4, top right). She identified the distances represented by the red segments as “the 

same…because that’s the radius length.” Thus, Lydia recognized the static form of the a (semi-
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)circle in this situation which is evidence of at least a figurative circle concept. The same was not 

true for the blue lines where she thought “at some points in the circle we’re going to be closer to 

Gainesville”. Thus, the quantitative aspect of an operative circle concept is contraindicated since 

Lydia’s recognition of a semicircular path did not entail her immediate anticipation of equal 

radial distances from the center (i.e., Gainesville).   

In Where Did They Go?, after drawing portions of a road map (Figure 4, bottom right) to 

appropriately account for the pink portions of the provided graph (Figure 4, bottom left), Lydia 

considered drawing a curved green path, which she called a “loop” in the road, to account for the 

green horizontal segment in the graph. She rejected her “loop” because she recognized from the 

graph that the distance from City A was “not supposed to change” and, according to Lydia, the 

loop had “changing distances.” Thus, although Lydia recognized the need for a path that was a 

fixed distance from City A, this did not immediately evoke for Lydia a circular arc. In summary, 

Lydia’s initial reasoning on this task contraindicated an operative circle concept precisely 

because Lydia’s observable activities were contrary to the constructive aspect of operativity.  

We expand on Hardison et al.’s (2017) work with Lydia in two ways. First, we identify 

examples of students who indicated operative circle concepts. Second, we discuss how other 

students’ reasoning and diagrams seemed to contraindicate an operative circle concept. 

Methods and Analysis 

The study included 55 high school students from three settings: 17 enrolled in a 90-day 

English-speaking, island-based semester-program with a place-based curriculum, and 38 in a 

regular high school setting (16 with placed-based tasks). Each student participated in a 30-minute 

clinical interview, which included responding to three story problems, the third of which was the 

School Problem (Figure 1). The individual interviews occurred via video-conferencing software, 

and there was an audio recording and an image recorded of students’ final written solution. 

Students were encouraged to think aloud. Video records were transcribed using natural language 

processing software (NLP) and then refined by a research assistant.  

Analysis began with two rounds of coding: the first replicated Verschaffel et al.’s (1994) 

coding scheme, categorizing student work according to realistic reasoning (No answer, Expected 

Answer, Technical Error (e.g., subtraction miscalculation), Realistic Answer), and the second 

involved open coding to identify differences in students’ approaches and strategies. In this 

second round, approaches were distinguished in terms of: (i) how many configurations of the 

locations of the houses and school the student considered (ii) how many configurations the 

locations of the houses/school the student thought were possible, (iii) whether students identified 

the minimum or maximum distances possible, and (iv) the various diagrams the students used. 

This second round of analysis inspired further consideration regarding how students' 

configurations foregrounded figurative and operative thought, given the variety of student 

responses and diagrams. Thus, a third round of analysis attended to students’ figurative and 

operative thought—with students’ solutions grouped by type of diagram and ways students 

within in each diagram type category described their images of the situation (i.e., more than a 

mental picture [see Thompson, 1996]).  
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Results 

In this section, we discuss the responses from the 55 high school students. Recall that for the 

School Problem that an awareness of multiple solutions indicates realistic reactions. From the 

first round of analysis using the Verschaffel framework, we identified that 31 (~56%) of the 

students provided a realistic reaction. However, in the subsequent analysis of student responses, 

we identified that these realistic responses varied in the extent of potential alternatives. For 

example, 12 (~22%) students identified the maximum and minimum distances Bruce and Alice 

could live from each other by rearranging the order of the locations on a straight line, but this 

indicated awareness of only two potential Bruce-Alice distances. Two others indicated different 

configurations were possible, but not necessarily all values between 9 and 25; that is, the number 

of configurations of buildings was more than two, but the number of possible Bruce-Alice 

distances was still finite. Only five students clearly identified a range of values (two others 

indicated a range but did not provide numerical bounds). The remaining realistic responses 

indicated a multitude of configurations, but not necessarily a continuous range of Bruce-Alice 

distances. A summary of these considerations, including non-realistic responses (i.e., one 

configuration considered; no others), is in Table 1 (left). This distinction is relevant to 

figurative/operative thought because an activated operative circle concept would necessarily 

result in the consideration of two circles with each delineating the possible locations for each 

house, thus representing all possible configurations simultaneously.  

Table 1 (right) summarizes the results from the second round of analysis, and the remainder 

of the results are from the third round of analysis which highlights the figurative and operative 

nature of select students’ reasoning as indicated by the representations they drew. It is important 

to note that two students interpreted the distances as along paths and not as the crow flies and 

seven (different) students did not physically draw diagrams when working on the problem, so 

their results are excluded from Table 1 (right). It is also important to note that several students 

drew more than one diagram (e.g., triangle and circle), and so their work is counted more than 

once in Table 1 (right) unless they drew multiple cases of the same diagram (e.g., straight line 

segment switching whether the school is on the left or the middle of the segment). 

Table 1: (left) Diagram Configurations Considered and (right) Student Diagrams  

 

 

Consideration # Students  Diagram/Configuration Count # Students  

One configuration considered; no 

indication others are possible 

 24  Straight Line Segment 34 

One configuration considered; 

indication others are possible 

 6  Multiple Line Segment Cases 3 

Multiple configurations considered; 

no indication others are possible 

 13  Triangle 9 

Multiple configurations considered; 

indication others are possible 

 5  Circles 3 

Range of possible configurations  7    
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Operative Circle Conception  

Seven (~13%) students identified a range of possible configurations for the locations of 

Alice’s and Bruce’s houses respective to the school. Three of these students drew diagrams with 

circles (one of whom also drew a triangle). Two others drew multiple line segment cases (one of 

whom also drew a triangle) and the remaining two did not draw diagrams. For those who drew 

circles, the school was the center for two circles, each of which had a radius length 

corresponding to the given distances Bruce and Alice were from the school. Student A stated, 

“We don’t actually know how far Bruce and Alice live from each other”. He then noted a range 

of potential solutions: “At the least, they live nine kilometers away. At the most. I think it's, um, 

yeah, at the most it's 25 kilometers away.” Student B wrote that Alice and Bruce “could be 

anywhere”, providing several options around the perimeter of the circles. Student C, similarly, 

noted that the distance would be “at least nine”. These three student responses demonstrate an 

operative circle construction. Like Lydia from Hardison et al. (2017), these students began with 

an initial state involving a fixed distance from a fixed point (i.e., the school) and a goal to 

construct a continuous path maintaining that distance from the fixed point. But unlike Lydia who 

did not demonstrate an operative circle concept, these students produced representations 

suggestive of a mental radial rotation resulting in circular paths (Figure 4). 

 

 

Figure 4: Student diagrams of circles for Student A, Student B, and Student C 

Figurative/Operative Results Amongst Various Diagrams and Configurations  

Most students created diagrams that were not circles. For instance, 24 students (44%) 

considered a single configuration of the buildings. Of these, 16 students considered a single 

straight-line configuration of the homes and school, answering either the sum or difference of the 

given distances (see Figure 5a). Four constructed triangle diagrams (two of which were right 

triangles), and the remaining four did not draw diagrams. Given that an operative circle concept 

necessarily involves considering multiple locations, we infer the 44% of students who considered 

only a single configuration likely did not leverage an operative circle concept in their solution 

strategy. If so, these students did not assimilate the School Problem to an operative circle concept 

or were yet to construct such a concept.  

Instead, these students indicated relying on operations on static locations. For example, one 

student described the problem as “your classic triangle problem,” which is, due to the static 

locations involved, evidence against an activated operative circle. These students considered the 

three buildings as three vertices of a triangle and solved for the unknown distance. For example, 

in Figure 5d, Student D used the Pythagorean Theorem to calculate the hypotenuse as 17.  

However, not all students who only drew straight line diagrams or triangles only considered a 

single configuration. Eleven of the 34 students who only drew straight line segments considered 
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multiple configurations of them. Three of the six students who only drew triangles considered 

multiple configurations of them. The remaining three students who drew triangle diagrams also 

drew other diagrams, indicating they considered multiple configurations. These students, along 

with one of the three students who drew multiple line segments, are examples of the 24 total 

students (43%) who were aware that multiple configurations of the buildings were possible, but 

who did not provide a range of values as their solution to the problem. Thus, an awareness of 

multiple configurations is not only insufficient for the construction of a circle but also in 

providing a range of potential distances as the solution to this problem. 

 

 

Figure 5: Student diagrams of a (a) line segment, one configuration (b) line segments, 

multiple configurations, (c) multiple line segments and (d) triangle 

Conclusions 

Verschaffel and colleagues’ research on the suspension of sense-making on the School 

Problem has provided initial insights into the realisticness with which students solve the 

problem. This realisticness involves considering more than one configuration of the locations of 

two houses, each a fixed distance from the school. In this report, we have connected that 

consideration to operative and figurative circle concepts. In particular, we have expanded on 

Hardison et al.’s (2017) initial characterization of figurative/operative circle concepts by 

proposing the constructive and quantitative aspects involved. These aspects provided novel 

insights into students’ quantitative reasoning on the School Problem. For instance, although 56% 

of students provided what Verschaffel would classify as realistic responses, only 12% of students 

identified a range of response, and 3 of the 7 of them did so with indications of enacting 

operative circle concepts. We also noted that 44% of students only considered a single 

configuration of buildings, which given our definition of an operative circle concept as including 

a variation, entails contraindications they were engaging in operative thought. These results 

imply a need to understand the relationship between students’ realistic responses and the nature 

of their quantitative reasoning, particularly with regards to figurative and operative thought.  
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We investigate prospective geometry teachers’ (PSTs) transformational reasoning when 

analyzing symbols and construct a lesson play based on the results. The primary symbols used 

are Adinkra, prominent icons in Ghanaian culture. We find that the PSTs exhibited formal and 

informal reasoning about transformational relationships about the symbols, exercising precision 

in describing some features but not others. This paper contributes a lesson play which may help 

teacher educators apply similar activities focusing on non-Western cultural symbols and support 

student development of transformational reasoning. 
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Introduction 

Transformational reasoning can refer to (at least) two related but distinct forms of reasoning. 

First, there is reasoning about geometric transformations. One might evoke this type of 

transformational reasoning to justify that the opposite angles of a parallelogram are congruent, 

via an argument about rotating the parallelogram 180 degrees about its center and finding the 

coincidence of the preimage and image. Transformational proofs in geometry use the existence 

and properties of transformations such as rotations, reflections, translations, and dilations in 

deductive reasoning (GeT: A Pencil (2022; St. Goar & Lai (2022). The Common Core State 

Standards (2010) advocate for students to provide justifications involving transformations for 

defining congruence and similarity.  

Secondly, transformational reasoning can also refer broadly to dynamic mental imagery (both 

with or without perceptual referents). Building on Piaget’s extensive works (e.g., 1970), Simon 

(1996) defined this second form of transformational reasoning as the mental or physical 

enactment of an operation or a set of operations on an object or set of objects that allows one to 

envision the transformations that these objects undergo and the set of results of these operations. 

Central to transformational reasoning is the ability to consider, not a static state, but a dynamic 

process by which a new state or continuum of states are generated. (p. 201) 

In this report, we describe an activity for prospective secondary geometry teachers (PSTs) 

which utilized both forms of transformational reasoning about Adinkra, symbols rooted in 

Ghanaian culture (Babbitt et al., 2015). We created a lesson play (Zazkis et al., 2009) to extend 

the activity to deepen connections to secondary geometry teaching.  

 

Theoretical Background 

The research in this proposal fits broadly within the umbrella of design research in that it 

networks multiple theoretical perspectives to inform the design and refinement of instructional 

materials (Swan, 2014). This includes applying a radical constructivist lens (Glasersfeld, 1995) 

for modeling students’ transformational reasoning as the product of their mental actions as well 

mailto:mtsutsui@pdx.edu
mailto:sboyce@pdx.edu
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as a socio-cultural lens for understanding students’ learning about the meanings of Adinkra as 

both a window into another culture and a mirror into their own (Gutiérrez, 2008). This report 

uses activities from a lesson study (Cerbin & Kopp, 2006) to investigate the transformational 

reasoning of PSTs, which also included objectives for learning about Adinkra. The creation of 

the lesson play itself can be considered the product of duoethnographic research, with its focus 

on simulating and fostering salient aspects of our observations of PSTs interacting in classrooms 

over the course of iterations of instructional design (Zazkis & Koichu, 2015). 

 

Methods 

The methods we used in the lesson study were qualitative, as we analyzed video-recordings 

of classroom observations as well as (primarily text-based) written artifacts. Our coding 

approaches fit within the grounded theory tradition (Corbin & Strauss, 1990), as we used the 

constant comparative method and axial coding to identify and code themes in the data as part of 

a larger analysis team (Boyce et al., 2023).  

Participants and Activities  

The participants in this study are 15 PSTs from a college geometry course. The PSTs finished 

a unit on transformations and symmetries prior to the lesson on Adinkra. We analyzed the 

students’ responses from two lesson activities. The first activity involved students' observations 

during class about the three Adinkra symbols Boa Me Na Me Mmoa Wo, Funtummiereku 

Denyenmireku, and Bese Saka (see http://www.adinkra.org and Figure 1). They provided 

individual, written observations about the symbols’ symmetries and features in small groups via 

Geogebra classroom. In the second activity, which followed the class as a homework assignment, 

students were asked to create their own symbol, and then identify transformations within another 

student’s symbol. IRB approval was granted for analyzing artifacts from students’ work. 

Pseudonyms are used in the analysis section of this report to protect student privacy. 

 

             

Figures 1A, 1B, and 1C. Adinkra Symbols Boa Me Na Me Mmoa Wo, Funtummiereku 

Denkyemiereku, and Bese Saka  

Analysis of Data 

We analyzed each of the PSTs’ written responses to investigate the qualities of their 

transformational reasoning. After compiling responses across both activities, we categorized 

sections of their responses based on which transformations they described, and then we analyzed 

http://www.adinkra.org/
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their transformational reasoning by categories: reflection, rotation, translation, and dilation. 

After analyzing the responses in these categories, we took note of a central theme: the degree of 

precision in students’ transformational reasoning.  

Creating the Lesson Play 

Zazkis et al. (2009) defines lesson play as “imagined interaction related to a particular 

student’s difficulty” (pg. 43). These interactions usually take the form of a pre-written script 

before teaching instruction. The key difference between a lesson plan and lesson play to Zazkis 

and colleagues is the spotlight remains on students’ mathematical topics which emerge from 

interaction rather than guided notes for teaching instruction. In research, lesson plays can be used 

to investigate a teacher’s interaction with a student or group of students (e.g., Dooley & Grimes, 

2023), and sometimes lesson play script writing can be delegated as a task for a group of 

prospective student teachers (e.g., Zazkis & Zazkis, 2016). We construct our lesson play to be 

used for these purposes as well by using a virtual duoethnography approach (Zazkis & Koichu, 

2015). This type of lesson play creation involves characters which typify the writers’ experiences 

with students learning the particular topic. After finishing the analysis, two student characters 

were drafted by the first author to reflect the themes in our participants’ transformational 

reasoning. The second author then reviewed the lesson play to suggest revisions to reflect his 

teaching experiences. 

Analysis of Student Reasoning About Transformations    

Rotations and Reflections 

The most frequent type of symmetries PSTs identified were rotational and reflection 

symmetries. Some students connected the presence of reflectional symmetry with 180 degree 

rotational symmetry when referring to Boa Me Na Me Mmoa Wo (Figure 1A): 

Saul: There is "near" reflective symmetry horizontally and vertically, the exception being the 

negative/positive space of the square and circle. In this way there is also rotational 

symmetry (180 deg)  

It appears that some students may have conflated reflections and rotations. Although it is 

possible in some cases–such as Kip below–students were using the term “reflect (around a 

point)” to refer to a 180-degree rotation. 

Kip: two triangles that are reflecting around the vertex that is touching…  

Dilations and Translations 

Some students also reasoned about dilations and translations. Of the five students who 

described dilations, two seemed to only consider the scale factor as relevant, neglecting or 

omitting identification of the center of dilation. This was the only time a student described a 

dilation with a scale factor less than one; the rest of the students who stated dilation relationships 

started with the smallest shape and described the larger, similar ones as the scaled up images.  

As for translational relationships, six students identified them in symbols where a regular 

shape appeared to them to be “copied and pasted” in different locations. One PST even identified 

a star that seemed to be “created” from copied and translated triangles. 

Role of Precision  
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A common theme across PSTs’ writing about transformations and symmetry patterns regards 

the structure of precision in their articulations. We posit that PSTs may view their 

transformational reasoning within the symbol and their transformational reasoning of the symbol 

(within the plane) as having different standards for precision. The figures they were transforming 

were not explicitly embedded within a coordinate system, and most students did not add labels 

for points or lines to identify with transformations. PSTs instead mostly described reflectional 

symmetry via sketching lines of reflection or using descriptors such as horizontal or vertical. For 

rotations and dilations, PSTs did not usually identify a center. 

A main struggle emerged with identifying symmetries in symbols like Bese Saka (Fig. 1C). 

By this we mean those symbols also had four congruent subshapes attached to a common center 

shape. At least a couple PSTs identified diagonal lines of symmetry or extra rotational 

symmetries (one incorrectly said this is demonstrated via a 45-degree rotation rather than a 90-

degree one). However, even then, students ignored the details of the center shape. Bese Saka has 

an oval which would disrupt this symmetry; the student-created symbols  “like” Bese Saka 

involved hexagons in the center, which do not have 90-degree rotational symmetry.    

Lesson Play Construction 

We wrote a lesson play following the analysis to assist teachers in navigating dialogue with 

students about the concept of transformations. This lesson play draws inspiration from our 

interactions with the PSTs in a college geometry course; however, it is tailored to include a 

broader audience of teachers introducing the concept of transformations for the first time with 

students.  

Hypothetical characters for the lesson play, Art and Bo, were based on PSTs who reflect 

familiarity with communicating transformational reasoning in different ways. Specifically, Art 

communicates his transformational reasoning with drawings, gestures, and verbalized visual 

imagery. Bo communicates her transformational reasoning with specific terms and values (e.g., 

“center of rotation”). It seemed common for students to have a general concept of 

transformational relationships and symmetries but either omit necessary mathematical details 

explaining their reasoning or fail to visualize the complete image of a transformation.  

In our presentation, we will present and get feedback about this script.  

Discussion and Next Steps 

Our analysis of the Adinkra activities gave insight to how this particular group of PSTs in our 

lesson study reasoned in their descriptions of symbols’ properties and meanings. After analyzing 

the data of PSTs engagement with the two activities, we described ways in which they reasoned 

both formally and informally about transformations. We then wrote a lesson play to capture some 

identified PSTs’ strengths and struggles and provide a resource for instructors. 

The analysis results provide two key research takeaways we will explain in further detail in 

the presentation. The first is findings consistent with St. Goar and Lai’s (2022) study with PSTs: 

even college students in mathematics or education tracks did not fully understand that 

transformations map every point on the plane. It was common for students to imagine 

transformations affecting only parts of a figure and not others to argue the existence of 

symmetries. The second takeaway is evidence of students exercising transformational reasoning 

through analyzing figures, both existing symbols like Adinkra and student-created ones. A few 
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PSTs even imagined how a figure could have been ‘created’ through copying and transforming 

parts of a figure.  

The lesson play is another contribution. Teacher educators can have PSTs in a workshop or 

course create or edit an existing lesson play script around a specific math topic. This activity can 

serve as a conceptual analysis (Thompson, 2008) of a math topic; that is, a means of detailed 

thinking from a student’s perspective on how to make sense of a concept mentally. Creating a 

lesson play might also unveil a teacher’s implicit biases: what characters do they create? What 

details about them matter? Who are the authoritative voices? Researchers can test the 

generalizability of this script by seeing how well the student characters in it (Art and Bo, in our 

case) represent the thinking of other high schoolers or PSTs when working with transformations.  

We presented our lesson play to another group of PSTs in the same undergraduate geometry 

course. We gave these PSTs the same symmetry task with the same Adinkra symbol, Bese Saka, 

as provided in the lesson play and determine if they encounter the same hurdles as characters Art 

and Bo. We also gave the PSTs a chance to engage with the lesson script after and modify it 

themselves. For the presentation, we will report our findings from this activity in the presentation 

along with the original lesson play script.   
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We are interested in the following questions:  1) What misconceptions do students have about 

defining and representing triangles? 2) How do students resolve these misconceptions over time? 

A mix of middle-school and high-school students participated in our study, including 10 

seventh graders, 8 eighth graders, 5 tenth graders, and 5 eleventh graders. All participants 

attended the same school in a mountainous area of the California Central Valley. In each 

interview, participants were asked to do the following tasks: (1) define a triangle and (2) split up 

a rectangle, hexagon, and a star into triangles.  

The students’ definitions of a triangle were scored (out of 3 points) based on if they 

mentioned: (1 point) three sides, (1 point) three vertices/three angles/closed, and (1 point) 

planar/polygon. We deemed a students’ attempt of splitting up a shape as successful if: (1) the 

shape was completely split up into triangles, (2) the edges of the triangles were straight, and (3) 

the triangles were closed. 

Our results suggest that the high school students perform better on both tasks, but the 

differences are less significant than we originally expected. Due to the small sample size and the 

limited details the students gave as reasoning, we cannot draw any substantial conclusions at this 

time. 

Instead, we see this study as a jumping off point to further explore findings that piqued our 

interest. For example, six out of the 28 participants did not split the inner pentagon of the star 

into triangles. Three out of the six participants mentioned above successfully split up the 

hexagon into triangles. Since a pentagon and hexagon are structurally similar shapes, we are 

curious about this inconsistency and want to further explore whether it is due to the students’ 

limited geometrical understandings or merely due to inattention. 

During several interviews, we noticed that the participants interpreted our “simple” tasks as 

an insult of their intelligence. We believe we may be able to resolve this issue by asking 

participants to complete a longer and more challenging test with our original tasks included in 

the assessment. This way participants will feel mentally stimulated, and we will be able to better 

assess their geometric knowledge. 

We are also interested in if there is a statistically significant correlation between the teachers’ 

geometric knowledge and their students’ geometric knowledge. Hence, in our future research, we 

have plans to assess the teachers the same way we do the students. 

Based on conversations with other educators and working with students one-on-one, it seems 

that geometry often falls between the cracks in K-12 classrooms, which we believe is a great 

disservice to students. Furthermore, we believe that even small gaps in a student’s geometric 

understanding have a lasting impact on their mathematical performance. So, we hope our 

research sheds light on how fundamental geometric concepts, such as the definition of a triangle, 

relate to more involved geometric tasks, such as splitting shapes into triangles. 
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Algebraic equation solving is a fundamental skill within the secondary education 

mathematics curriculum, playing a pivotal role in shaping students' mathematical reasoning and 

problem-solving abilities as well as serving as a foundation where more complex mathematical 

concepts can be built (Mamba et al., 2017; Salani & Jojo, 2023). Mastering algebraic concepts is 

essential for academic success and equipping students with critical thinking skills applicable to 

various real-world scenarios (Mamba et al. 2017; Sandoval et al., 2023). The competence of 

preservice secondary teachers in imparting this knowledge is crucial, influencing the quality of 

instruction and the development of students' mathematical proficiency (Kennedy & Ebuwa, 

2022, Kleickmann et al., 2013, Sam et al., 2023, McCrory et al., 2012). Van Dooren et al. (2002) 

focused on underscoring the relevance of preservice teachers' proficiency in discerning and 

guiding students through problem-solving processes, particularly in the context of algebraic 

reasoning. Therefore, secondary mathematics preservice teachers are required to possess 

mathematical content knowledge which will help them to teach effectively in the classroom 

(Daniel, 2015). This study aims to explore how preservice teachers' pedagogical content 

knowledge relates to their ability to effectively teach and create meaningful learning 

opportunities for secondary school students in solving algebraic equations. 

The Mathematical Knowledge for Teaching (MKT) framework, developed by Ball et al. 

(2008), expands on Shulman's (1986) concept of Pedagogical Content Knowledge (Nolan et al., 

2015). MKT can be referred to as mathematical knowledge required by teachers to teach 

mathematics in the classroom (Nolan et al., 2015). The MKT framework addresses PCK and 

Subject Matter Knowledge (SMK), which are two important domains of teacher knowledge 

described by Schulman (1986). The MKT framework emphasizes the significance of teachers' 

adaptive expertise in problem-solving, encouraging flexibility in selecting appropriate strategies 

and recognizing the diverse ways students may approach algebraic tasks (Van Dooren et al., 

2003). 

This study comprehensively reviews the existing literature on preservice secondary teachers’ 

knowledge of solving algebraic equations. The PRISMA principles were followed in this review 

(Liberati et al., 2009). ERIC and Google Scholar are selected as online databases to find relevant 

articles. There are inclusion and exclusion criteria along with the justification. The ERIC and 

Google Scholar databases were searched using the following keywords with connectors “AND” 

“OR” words: ("pedagogical content knowledge" or PCK) AND ("teacher candidates" or 

"preservice teachers" or "student teachers" or "pre-service teachers") AND ("secondary school" 

or "high school" or" secondary education") AND "solving algebraic equations" AND ("math 

education" or "mathematics education" ) OR algebra while in Google Scholar the same search 

terms are used without quotation and parenthesis. The search terms produced a total number of 
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184 articles (ERIC  157 and Google Scholar 27). To narrow down these numbers using the 

inclusion and exclusion criteria produced a dataset of 15 research publications, which served as 

the basis for the current contribution. The preliminary findings align with these datasets, 

highlighting that preservice teachers' pedagogical content knowledge is crucial for effectively 

teaching algebraic equations and promoting meaningful learning opportunities for secondary 

school students. 
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Referent unit is foundational knowledge for rational numbers and quantity. This exploratory 

study examined how sixteen practicing teachers reasoned about a mathematical situation during 

an interview requiring the use of referent unit. Half of the teachers correctly reasoned with 

referent unit and a quarter made a referent unit error. This error may have been connected to a 

previous interview question as opposed to indicating a misunderstanding about referent unit. 

However, attending to details, particularly language, is important. Considerations for 

professional development and preservice education are discussed. 

Keywords: Teacher Knowledge, Rational Numbers & Proportional Reasoning, Rational 

Numbers 

The importance of referent unit for both students and teachers for understanding fractions has 

been established (e.g. Hackenberg, 2007, Izsák, 2008; Steffe & Olive, 2010). Focusing on 

teacher understanding of referent unit; Izsák, Tillema, and Tunc-Pekkan (2008) showed data 

from Ms. Reese’s lessons on addition and subtraction of fractions on number lines and a 

student’s interpretation of these lessons. These researchers suggested teachers need to focus on 

particular details such as language. Ms. Reese tended to refer to fractions as “amounts,” and this 

added to a misunderstanding of referent unit for at least one of her students. Armstrong and 

Bezuk (1995) documented challenges middle school teachers faced as they explored 

multiplication and division of fractions in a PD setting. One challenge was identifying the 

referent unit for each number in a fraction number sentence. Orrill, Izsak, Jacobson and de 

Araujo (2010) focused on teachers using drawn representations to solve fraction problems, and 

one of their findings indicates that the teacher often “resisted thinking in terms of nested levels of 

units” (p. 339). For example, one teacher struggled to correctly explain why 2/3 ÷ 1/4 = 8/3 using 

drawings. In her representation, she drew a rectangle and divided it into thirds. After shading 

two-thirds, she discarded one-third, stating that the problem only concerned 2/3. She further 

divided the remaining thirds into four pieces and claimed that these eight pieces represented the 

numerator of the answer, while the thirds served as the denominator. However, her interpretation 

of fourths in the answer was incorrect as she “eliminated crucial units that the answer referred” 

(p. 339) from her representation. These studies highlight the importance of referent unit to 

teachers’ own understanding as well as their support of their students’ understanding. 

In this study, our research question was how do practicing teachers reason about a question 

requiring the use of referent unit? 
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Theoretical Framework 

In this exploratory study investigating practicing teachers understanding of referent unit, we 

define referent unit as the unit of measure (Olive & Çağlayan, 2008) or how a quantity is 

measured (Epstein, Orrill & Brown, 2023). The knowledge of referent unit is foundational 

knowledge, and we view the knowledge of teachers through the lens of the Knowledge Quartet 

(Rowland & Turner, 2007; Orrill, Brown, Thapa, & Nti-Asante, 2022). As Rowland et al. (2005) 

state: the Knowledge Quartet “is about raising awareness; it is not about being judgmental. 

Whilst we see certain kinds of knowledge to be desirable for elementary mathematics teaching, 

we are convinced of the futility of asserting what a beginning teacher, or a more experienced one 

for that matter, ought to know.” (p. 257). Thus, the intent of this study is to become aware of how 

some practicing teachers found the answer to a question involving referent units. 

Methods 

As part of a larger study, we interviewed 16 practicing teachers from two different states on 

the east coast of the United States. Eight of the teachers were currently working in public schools 

and eight were currently working in a private, religiously affiliated school. Two identified as 

male; the average years of teaching math was a little over 15. Three participants identified as 

Hispanic and 14 identified as White/Caucasian (with 1 indicating both). Half the teachers had 

facilitated professional development themselves with two of them being related to mathematics 

education. Half also had a master’s degree with two in mathematics education. One teacher 

indicated they had non-math related accommodations at some point in their educational process.   

The interviews were conducted via Zoom using a Google jamboard to share items and see 

any markings the participant made while solving the mathematical problem shared with them. 

Eleven situations were shared with two to six questions asked for a total of 36 questions asked. 

The interviewer asked clarifying questions about their solution. The interviews lasted about an 

hour. All interviews were recorded and transcribed. The transcript was used to determine if a 

teacher’s response was correct and to note how the teacher solved the problem. One participant 

experienced technological issues so was unable to write on the jamboard during the interview. 

For this exploratory study, we considered one of the subitems in the interview requiring the 

teachers to find the size of part of a rectangular area (see Figure 1). This was the fifth question 

asked regarding the Garden situation. All of the garden questions were designed to address a 

teacher’s understanding of referent unit. This particular item was selected because teachers were 

familiar with the context and were applying their knowledge of referent unit to find the answer.  
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Figure 1: Math problem from interview 

 

Three researchers coded the response for correct reasoning with 100% agreement. Then one 

researcher went back through transcripts and images from jamboards to detail how the teachers 

approached the question. These descriptions were shared with the other two researchers to see if 

there were any disagreements and to discuss the analysis.  

Results 

Of the 16 teachers interviewed, eight correctly reasoned three sixteenths of the garden was 

purple impatiens. In their explanation of how they found their answers, half the teachers used 

sixteenths and the other half used eighths.  

For the sixteenths, one teacher explained their reasoning this way (representative of how the 

other 3 solved the problem): “so I like counted in basically in their 16 little lantanas, right? So if 

I break it all up, it's four by four. So it's 16”. This teacher described how they broke up the entire 

garden into sixteen pieces (and sketched that on the jamboard as well). The teacher went on to 

explain the impatiens were 6/16 of the garden so the purple impatiens would be 3/16. One 

teacher who reasoned this way simplified 6/16 to 3/8 but then interestingly decided taking half of 

6/16 was easier.  

For the eighths, the teachers found all the impatiens to be 3/8 of the garden. For example, one 

teacher said: “I think that the lilies is a quarter, and that's the same. And then this is half of a 

quarter, which is an eight. So I've got two eighths plus one eighth. So I'm saying that impatiens 

make up three eighths of the garden”. Once they knew the whole area of the impatiens, the 

teachers found half of 3/8 with three teachers writing a numeric representation of either ½ * 3/8 

or 3/8 * ½.  

For the remaining eight teachers who did not reason correctly, one teacher looked at the five 

colors of the garden and concluded 1/5. Another teacher estimated their answer, while another 

teacher just generically described the steps they would take which may or may not have been 

correct reasoning (thus not coded as correctly reasoned). Of the remaining five teachers, one 

teacher made a calculation error, one made both a referent unit and calculation error and three 
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made a referent unit error. For the calculation errors, if the teacher did not realize the 

unreasonableness of their answer than we did not code as correctly reasoned even if they 

correctly described the area of the impatiens and needing to find half. The referent unit errors 

were based on not attending to the whole in the question (the whole garden). One teacher used 

the area of impatiens as the referent unit, and another identified the area of impatiens as ¾. Two 

used the area of the lily as the referent unit, based on the previous interview question that asked 

if the Lilies section is one acre of land, what fraction of an acre are the Impatiens? One of these 

teachers also miscalculated.  

Discussion 

Given the small sample size, this exploratory study highlights a few ways in which teachers 

may apply their understanding of a referent unit to a specific garden problem. Half the teachers 

correctly reasoned both about referent unit and arithmetically. Another quarter of the teachers 

made a referent unit error. This referent unit error may have been connected to the previous 

question in the interview and may not reflect a misunderstanding. However, if a teacher does not 

attend to the details around language, this may have a negative impact on their students, similar 

to the findings of Izsák et al. (2008). 

Looking at the erroneous thinking, there is lots of potential to support teachers to correctly 

reason by modifying the question to emphasize the whole garden, asking if an answer is 

reasonable, or asking for more detail in the situation. The intent of the interview was to see what 

knowledge teachers already had about referent unit prior to a professional development 

experience that would focus on referent unit. Future research should examine how these teachers 

continue to use referent unit reasoning in the professional development experience.  

Acknowledgments 

We would like to thank the teachers for their willingness to participate in the study. This 

material is based upon work supported by NSF DRK12 2201127 & 2331772. Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views of National Science Foundation. 

References 
Armstrong, B. E., & Bezuk, N. (1995). Multiplication and division of fractions: The search for meaning. In J. T. 

Sowder & B. P. Schappelle (Eds.), Providing a foundation for teaching mathematics in the middle grades (pp. 

85–120). Albany, NY: State University of New York Press. 

Epstein, M. L., Orrill, C.H., & Brown, R.E. (2023). Toward a shared definition of quantity. Manuscript submitted 

for publication. 

Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting 

hypothesis. The Journal of Mathematical Behavior, 26(1), 27–47. https://doi.org/10.1016/j.jmathb.2007.03.002 

Izsák, A. (2008). Mathematical knowledge for teaching fraction multiplication. Cognition and Instruction, 26(1), 

95–143, https://doi.org/10.1080/07370000701798529 

Izsák, A., Tillema, E., & Tunc-Pekkan, Z. (2008). Teaching and learning fraction addition on number lines. Journal 

for Research in Mathematics Education, 39(1), 33–62. 

Olive, J., & Çağlayan, G. (2008). Learners’ difficulties with quantitative units in algebraic word problems and the 

teacher’s interpretation of those difficulties. International Journal of Science and Mathematics Education, 6, 

269–292. 

Orrill, C. H., Brown, R., Thapa, R., & Nti-Asante, E. (2022). Adapting the knowledge quartet for for non-didactic 

classrooms. In Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (Eds.), 

https://doi.org/10.1016/j.jmathb.2007.03.002
https://doi.org/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1080%2F07370000701798529&data=05%7C02%7Creb37%40psu.edu%7C85c79014f98e4b9663a908dc2ca8dfe6%7C7cf48d453ddb4389a9c1c115526eb52e%7C0%7C0%7C638434351017612717%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=f2fzPN0u1maIDrfziLjaxPCqd9%2BSUmVEZuJAO3grBlk%3D&reserved=0


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

523 

 

Proceedings of the 44th annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. (pp. 761–762). Nashville, TN. 

Orrill, C., Izsak, A., Jacobson, E., & de Araujo, Z. (2010). Teachers’ understanding of partitioning when modeling 

fraction arithmetic. In Gomez, K., Lyons, L., & Radinsky, J. (Eds.), Learning in the disciplines: Proceedings of 

the 9th International Conference of the Learning Sciences (ICLS 2010) (Vol. 2, pp. 338–339). International 

Society of the Learning Sciences.Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ 

mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics 

Teacher Education, 8, 255–281. http://doi.org/10.1007/s10857-005-0853-5 

Rowland, T., & Turner, F. (2007). Developing and using the ‘Knowledge Quarter’: A framework for the observation 

of mathematics teaching. The Mathematics Educator, 10(1), 107–123. 

Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. Springer. 

 

  

http://doi.org/10.1007/s10857-005-0853-5


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

524 

 

BROADENING & CONNECTING MATHEMATICS: EXPLORING HOW 

ELEMENTARY TEACHERS CONCEPTUALIZE THE BIG IDEAS 

Marjorie M. Hahn 

Stanford University 

mhahn3@stanford.edu 

Miriam S. Leshin 

Stanford University 

mleshin@stanford.edu 

Megan E. Selbach-Allen 

Stanford University 

mselbach@stanford.edu 

Jo Boaler 

Stanford University 

joboaler@stanford.edu 

The new California Mathematics Framework provides a roadmap for organizing mathematical 

knowledge around broader, integrated concepts (“big ideas”), with equity as a focus (CDE, 

2023). This study involved collaborating with a local school district to select and train eight 

elementary teacher leader fellows in professional development (PD) focused on big ideas 

instruction and examining their conceptualization of the big ideas in mathematics after PD. 

Analysis of interviews with the eight teachers revealed they employed real-world analogies, 

education-specific schemas, and distinct content examples to understand and explain the big 

ideas. These methods allowed them to perceive the big ideas as central and interconnected 

within their mathematics instruction, encompassing a range of concepts wider in scope than 

traditional standards. We discuss implications for teacher learning around mathematics content. 

Keywords: Mathematical Knowledge for Teaching, Professional Development, Elementary 

School Education 

Purpose of Study 

Critical to envisioning a just future for mathematics education is addressing the persistent 

inequities in students' access to meaningful opportunities to learn. While numerous initiatives 

focus on supporting teachers through the adoption of inclusive and dialogic pedagogies (Smith & 

Stein, 2018; Joseph et al., 2019) and/or culturally relevant curricula (Gutstein, 2007), an 

underlying concern remains: Could the very nature of the mathematical canon contribute to the 

perpetuation of these inequities? Our study investigates mathematical knowledge, emphasizing 

overarching, unified ideas over fragmented, smaller concepts, as this shift facilitates the 

enactment of equitable pedagogy (Boaler & Staples, 2008; Cabana et al., 2014). 

The evolving landscape of mathematics education, notably marked by the adoption of the 

National Council of Teachers of Mathematics (NCTM) standards in the 1980s and the Common 

Core State Standards in the 2010s, has heralded calls for a coherent teaching approach. Despite 

these aspirations, the predominance of state standards emphasizing a disaggregated list of skills 

and procedures has persisted, influencing both assessment and instruction. The new California 

Mathematics Framework delineates a visionary shift towards organizing mathematical 

knowledge and practices around foundational “big ideas,” with equity as a focus (California 

Department of Education [CDE], 2023). Our study directly engages with this transformative 

moment, responding to the critical need for empowering teachers and administrators to navigate 

and implement this innovative framework. Researchers partnered with a local school district to 
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support elementary teachers in engaging with a big ideas approach in their mathematics teaching, 

thereby advancing equitable mathematics instruction for all students (CDE, 2023). This paper 

explores these teachers’ emergent understandings of the big ideas. In particular, we ask: After a 

professional development (PD) focused on big ideas instruction, how do elementary teachers 

conceptualize the big ideas of mathematics for their grade level? 

Theoretical Perspectives 

Our study is informed by two related yet distinct theoretical perspectives on mathematics 

content. First, we discuss what we mean by the term “big ideas” as it relates to mathematics 

teaching and learning. Second, given that our focus here is on teachers’ conceptions of big ideas, 

we draw on Ball and colleagues’ (2008) notion of “mathematical knowledge for teaching” to 

theorize teachers’ interactions with and perceptions of the big ideas. 

Big Ideas in Mathematics 

Too often, students view mathematics as an abstract, arbitrary, and disconnected set of rules. 

In the big ideas approach, however, students engage with the essential concepts in mathematics, 

which are composed of smaller, connected ideas. We adopt Charles’s (2005) definition of a big 

idea as “a statement of an idea that is central to the learning of mathematics, one that links 

numerous mathematical understandings into a coherent whole” (p. 10). This focus on the 

“coherent whole” enables teachers and students to grapple with the “essential mathematical 

meaning” of the idea (Charles, 2005, p. 10). Although the big ideas approach overlaps with 

similarly minded pedagogies (e.g., conceptual teaching, reform-oriented instruction), it explicitly 

relates to mathematics content and curriculum. As such, teaching to the big ideas necessitates a 

focus on a smaller set of essential mathematics concepts that coherently link numerous ideas.  

The National Research Council (1999) recommended this approach over two decades ago: 

“Superficial coverage of all topics in a subject area must be replaced with in-depth coverage of 

fewer topics that allows key concepts in the discipline to be understood” (Bransford et al., 2000, 

p. 20). Students who work “in-depth” forge connections between mathematical ideas. This 

approach builds on research that has shown that teachers who organize content around big ideas 

and teach with an equity focus bring about higher and more equitable achievement (Boaler & 

Staples, 2008; Cabana et al., 2014). 

Mathematical Knowledge for Teaching  

To implement this approach, teachers need to be able to construct their own meanings of the 

big ideas, growing both their subject matter knowledge and their pedagogical content knowledge 

(Koellner et al., 2007). In their work on mathematical knowledge for teaching, Ball and 

colleagues (2008) specify three types of subject matter knowledge that mathematics teachers 

need: common content knowledge (CCK), specialized content knowledge (SCK), and horizon 

content knowledge (HCK). CCK refers to mathematics knowledge and skills that are used in 

non-teaching settings. In contrast, SCK refers to mathematical knowledge and skills unique to 

teaching, involving the “unpacking of mathematics” (Ball et al., 2008, p. 400). Further, HCK is 

teachers’ awareness of how mathematics concepts are “related over the span of mathematics 

included in the curriculum” (Ball et al., 2008, p. 403). 

We contend that when teachers engage with and make sense of the big ideas of mathematics, 

they are simultaneously building all three types of subject matter knowledge (CCK, SCK, and 

HCK). As they grapple with the big ideas on math tasks as learners themselves, they build CCK, 
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while as they analyze their curriculum to unpack what comprises each big idea and where the big 

ideas live, they build SCK and HCK, respectively. Accordingly, we view teachers’ emergent 

conceptions of the big ideas of mathematics as amalgamations of all three types of subject matter 

knowledge. In examining how teachers make sense of the big ideas, we take up Ball and 

colleagues’ (2008) call for supporting and empowering teachers to understand how mathematical 

knowledge is generated and structured. 

Methods 

This qualitative study uses a multiple-case design with eight participants (Yin, 2016). The 

case study methodology enabled us to provide an in-depth and nuanced exploration of teacher 

conceptualization of big ideas for a small number of participants. 

Setting and Participants  

In spring 2021, research team members met with administrators from a local school district 

in Northern California to understand their needs and discuss possible ways of supporting them 

during the pandemic, given prior work together. One-third of the elementary schools in this 

district are classified as Title I, and 37.4 percent of students received Free and Reduced-Price 

Meals (FARM) in the 2019-2020 school year. 

The administrators and research team members co-constructed a teacher leadership 

fellowship to leverage the research team’s expertise to develop teacher leaders who could 

support their colleagues with math instruction. In the 2021-2022 school year, the research team 

and administrators worked together to recruit site-based teams of two to three elementary 

teachers who applied to become “mathematics teacher leader fellows.” The teachers admitted to 

the fellowship also consented to participate in this study. Our purposeful sample of teachers 

included sufficient variability in teaching experience and grade levels taught (Table 1).  

 

Table 1: Participant Characteristics 

 

Participant* School* Grades Years Teaching 

Amber Tabitha Elementary 4/5 Combo 24 

Sam Pinewood Elementary 3 9 

Stephanie Pinewood Elementary 3 22 

Denise Jackson Elementary 5/6 Combo 6 

Erin Jackson Elementary 3/4 Combo 5 

Nicole Golden Sierra Elementary 2 13 

Elizabeth Golden Sierra Elementary 2 15 

Heather Golden Sierra Elementary 2 20 

*All names are pseudonyms.  

 

Professional Development Context 

The teachers participated in five professional learning days (PD) in the spring and summer of 

2022. In these sessions, teachers worked in small groups on mathematics tasks and participated 

in mathematics discussions of these tasks and the big ideas embedded within them. Additionally, 
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they examined the big ideas in their grade level and collaborated with grade-level colleagues to 

construct unit and year-long plans for the 2022-2023 school year. 

Data Collection 

The data collected for this paper are part of a larger data corpus. Here, we focus on two semi-

structured Zoom interviews with eight teacher participants (n = 16 interviews). These interviews 

took place after the PD during the school year: in Oct/Nov 2022 (“Int2”) and in Apr/May 2023 

(“Int3”). In both interviews, interviewers asked teachers role-playing questions (Patton, 2002) to 

ascertain their conceptualization of the big ideas, e.g., “How would you explain ‘big ideas in 

math’ to a colleague who was not familiar with the term?”  

Data Analysis 

Our data analysis centered on teachers’ responses to questions about the big ideas during the 

mid-year and end-year interviews. A team of five researchers engaged in a collaborative process 

of codebook development, refinement, and application. The analytic process included multiple 

rounds of coding, memo-writing, and discussions about emerging themes (Saldaña, 2009). 

Codebook Development. The codebook was created through inductive analysis. Our team 

initially coded a subset of transcripts, then engaged in discussions to compare coding approaches 

and resolved disagreements regarding the definitions and criteria for inclusion or exclusion 

(Campbell et al., 2013). We then developed a second iteration of our codebook that expanded it 

from three codes to six, all under the domain “Conception of Big Ideas,” with a definition and 

example quotes from the data (Creswell, 2013). We applied this codebook to the interview 

excerpts related to big ideas. Using Dedoose, the researchers eliminated one undersaturated code 

and determined the final codebook to be applied to all 16 interviews (Table 2).  

 

Table 2: Code Descriptions 

 

Code Description 

Analogy Draws parallels or constructs similes and metaphors that liken big ideas to 

universally comprehensible or visually representational objects, such as 

umbrellas, webs, and circles.  

Schema Refers to a structure that helps organize and interpret big ideas based on 

common attributes, experiences, or concepts – particularly using educational 

terms, e.g., essential questions, enduring understandings, guiding questions, 

key points, units, frameworks, etc. 

Open Tasks Refers to big ideas as open tasks utilized in instruction.  

Active 

Pedagogies 

Refers to big ideas as student-centered instruction and other active learning 

pedagogies, e.g., changing environment and questioning; describing how 

students engage with the content and each other in the classroom, how they 

enact big ideas in the classroom through particular practices. 

Specific 

Content 

Statements in which teachers refer to a specific idea in their grade-level 

mathematics content, e.g., equivalence. 
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Thematic & Content Analysis. To examine the data (n = 72 excerpts) for emerging themes, 

we exported the Dedoose quotes grouped by code to Google Sheets. This extraction allowed us 

to re-code the interview excerpts with pattern coding (Saldaña, 2013). Through this process, we 

continued to memo on emerging themes, descriptive notes, and representative quotes. Once our 

final themes were decided (Table 3), we conducted content analysis (Patton, 2002) to provide a 

quasi-quantification of the number of teachers aligned with each theme.  

Results 

Teachers drew on various conceptual tools and content examples when asked how they 

would explain the big ideas of math to a colleague unfamiliar with the term. Table 3 shows the 

three most common themes in teachers’ responses. To differentiate between analogy and schema, 

we draw upon Parsons and Davies (2022), who articulate that reasoning by analogy is a 

comparison of two concepts at the same concrete level of abstraction, whereas mapping a more 

general schema may help learn the abstract sense of an idea. Half of the teachers used real-world 

analogies to illustrate how they conceptualize the big ideas in mathematics, while all teachers 

drew on education-specific schema to articulate their conceptualization. Additionally, all teachers 

shared examples of specific grade-level content to explain the big ideas further. In this section, 

we delve into these three findings, then close by how these come together in describing teachers’ 

emergent conceptualization of big ideas in mathematics.  

 

Table 3: Themes and Representative Quotes from Interviews 

 

Themes Representative Quotes 

Analogy used to conceptualize big ideas. (4 / 8 teachers) 

Concretized big ideas by 

using analogies to 

connect to something 

visual. 

“I see the visual of the web in my mind and how all of these 

big ideas really connect to each other to form the standards 

that my students will learn in third grade” (Erin_Int2) 

Illustrated the centrality and 

connectedness of big 

ideas using analogies.   

“And so to me, a big idea is this umbrella of one idea that has a 

bunch of ideas within it. All of these little things that we go 

through that all tie back to that and intertwine with each 

other.” (Amber_Int2) 

Schema used to conceptualize big ideas. (8 / 8 teachers) 

Built on prior knowledge 

through a professional 

lens.   

“In the old days, when you looked at state testing, you wanted 

to know what your power standards were. I kind of likened 

the bigger circles to the power standards.” (Elizabeth_Int3)  
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Situated big ideas as 

broader in grain size.  

“My current understanding is a lot of super smart people looked 

at the standards and distilled it down to some monster 

conceptual topics that I feel vertically align throughout the 

grade levels, are foundational and integrated.” 

(Elizabeth_Int2)  

Specific mathematics content referenced in relation to big ideas. (8 / 8 teachers) 

Referred to specific math 

topics as big ideas.  

“For third grade, big ideas are multiplication, division, 

fractions, time down to the minute, area and perimeter.” 

(Sam_Int2) 

Discussed connections 

between topics. 

“I would explain it as an understanding of how to process math, 

like learning about patterns in place value or understanding 

what 100 is, is kind of a general descriptor of what you 

might think or connect to.” (Heather_Int2) 

 

Analogy Used to Conceptualize Big Ideas 

Four of the eight teachers utilized analogies (e.g., umbrella, web, tree, brainstem) to help 

them concretize this abstract concept into a familiar visualization, many of which specifically 

highlighted the centrality of big ideas and their connectedness. One participant explained:  

And when we look at some of these main ideas, these big things that all kind of go together, I 

think of it as an umbrella. Everything is underneath, and it's, there's so many things that are 

connected with each other. A big web, I mean, that's just like a big web, and you can make 

the connections between different concepts and different reasonings and activities. And to 

me, the big ideas is the idea that everything's connected. So, it's not just these small little bits 

of things and then you go, and you're done. (Amber_Int3) 

In this description of the big ideas, Amber emphasized two everyday visuals: an “umbrella” and 

a “big web,” while also attending to the specificity those two analogies brought to her 

conceptualization – connectedness and centrality. In this excerpt, she stated some iteration of 

“connect” three times. To her, this analogy was also based on the resemblance of everything 

being “underneath” the umbrella, eliciting a visual focal point for the big ideas to reside under. 

Schema Used to Conceptualize Big Ideas 

Expanding beyond a visual analogy, all eight teachers used a schema with teacher-facing 

language to discuss how they conceptualized a big idea (Table 3). Participants built on prior 

knowledge through a professional lens, referencing backward planning, units, frameworks, and 

red checks. As participants drew on other educational terminology, they conceptualized big ideas 

as broader in grain size than other units of content. For example, one participant noted: “If you 

take your long plan for math, and you have your standards, you have all these standards, your 

standards are then grouped” (Sam_Int2). Here, Sam not only drew on her prior work with 

standards to think about big ideas but emphasized that big ideas are bigger than standards; they 

are groups of standards. 

Specific Mathematics Content Referenced in Relation to Big Ideas 
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In addition to drawing on the conceptual tools of analogy and schema, all teachers referenced 

mathematical content to explain the big ideas. Teachers identified specific topics, such as 

“fractions” (Erin_Int3), as big ideas at their grade level. Further, some teachers demonstrated an 

appreciation for the depth of these topics. A notable example includes Amber’s discussion of 

fraction multiplication: 

If one of the big ideas was understanding fraction multiplication, visually, that's not one 

thing. That's not one activity, and you're done. There's so much underneath that, so much 

within that that it just comes off of it. It's not one thing. A big idea is just not one great idea. 

It's a bunch of things that make up this whole big topic with all these different appendices. 

(Amber_Int2) 

Amber’s nuanced understanding of depth mirrors the analogies (e.g., umbrella) frequently 

employed by teachers to describe their grasp of big ideas. Our analysis also showed that teachers' 

discourse demonstrated a more generalized understanding of mathematical content. For example, 

conventional topics such as addition and subtraction were conceptualized in broader terms like 

“groupings of things” or “composing and decomposing numbers” (Heather_ Int3). Rather than 

emphasizing content as standards, they discussed broader concepts.  

Another emergent pattern pertains to the interconnectedness of specific pieces of content. For 

instance, Amber highlighted how the big ideas encapsulated a holistic view that interlinked 

“multiplication, factors, and number sense” (Int3), illustrating the content's connected nature 

within her teaching practice. Similarly, Heather discussed how the big ideas allowed her to draw 

connections between addition and subtraction properties, along with number sense, to support 

her students in utilizing number lines and hundreds charts—underscoring how big ideas facilitate 

a deeper understanding and teaching of mathematical concepts, enabling teachers to link specific 

classroom strategies with the foundational concepts their students are exploring. 

Teachers’ Emergent Conceptualizations of Big Ideas 

Taken together, our findings uncovered three key takeaways about teachers' emergent 

understandings of big ideas: the centrality and connectedness of big ideas using analogies, the 

big ideas as broader in grain size, and the connections between topics. The centrality and 

connectedness of big ideas, illuminated through the use of analogies such as webs and umbrellas, 

enabled teachers to grasp how individual concepts are not isolated but rather part of a larger, 

interconnected framework. This visualization process helped teachers conceptualize the 

curriculum not as a series of discrete lessons but as a cohesive narrative where each concept 

contributes to the understanding of a central, larger idea. Addressing the big ideas as broader in 

grain size, teachers acknowledged that these encompass larger conceptual domains compared to 

the more finely partitioned content typically encountered in standard curricula. Lastly, the 

connections between topics as part of the big ideas were further emphasized. Teachers 

recognized that effectively teaching to the big ideas involves drawing explicit connections 

between seemingly disparate topics, thereby unveiling the cohesive structure of mathematical 

knowledge. These articulations of the big ideas demonstrate that teacher participants employed a 

variety of conceptual tools to both comprehend and conceptualize the big ideas. 
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Discussion 

Our results show that teacher participants drew on various real-world and education-specific 

conceptual tools to understand and explain the big ideas. Further, teachers utilized examples of 

specific grade-level content to support them in describing the big ideas. Through these tools, 

teachers saw the big ideas as central to their content, composed of multiple connected ideas, and 

broader in grain size than the standards with which they were used to working. Our findings 

highlight several main points, with implications for related research and professional learning. 

Tools for Conceptualization 

First, we found that conceptualization tools–schemas and analogies–were pivotal in helping 

teachers make sense of big ideas. Analogies help by linking new concepts to familiar ones, 

facilitating the application of known knowledge to new ideas (Parsons & Davies, 2022). This 

cognitive strategy enhances learners' ability to abstract, generalize, and transfer knowledge 

across different contexts, which is crucial in education. Our study supports existing literature 

indicating that individuals connect new information to prior knowledge when learning new 

concepts (Bransford et al., 2000). For instance, participants used the analogy of a web, relying on 

their understanding of a spider web or a graphic organizer, to grasp the interconnected nature of 

essential mathematics concepts. Here, our data highlighted the effectiveness of using analogies to 

connect new abstract concepts with familiar understandings. 

Schemas, on the other hand, act as the cognitive structures that organize and interpret 

information, playing a crucial role in the way new knowledge is integrated into existing 

cognitive frameworks (Gick & Holyoak, 1983). As "mediators" of knowledge transfer, schemas 

enable individuals to categorize and store new information efficiently, facilitating easier retrieval 

and application in future learning situations (Gick & Holyoak, 1983, p. 2). Our findings showed 

that teachers used existing schemas to make sense of big ideas within their professional 

knowledge. Teachers assimilated new pedagogical approaches by mapping them onto familiar 

educational constructs such as standards, units, and frameworks. Therefore, providing teachers 

adequate time and support is crucial to linking big ideas with prior knowledge and tangible 

concepts during their learning journey.  

Second, teachers drew on specific content examples as another tool to support their learning 

and uptake of some of the big ideas at their grade levels. Interviews showed that teachers offered 

deep, conceptual descriptions of topics such as addition and subtraction, pointing to their 

“unpacking of mathematics” (Ball et al., 2008, p. 400). This approach transforms abstract 

mathematical concepts into accessible knowledge for students, requiring a dynamic interplay 

between common content knowledge (CCK) and specialized content knowledge (SCK) as 

teachers master and teach the subject matter (Ball et al., 2008). Likewise, incorporating horizon 

content knowledge (HCK) into this discourse reveals a forward-thinking aspect of teachers' 

engagement with big ideas. By acknowledging the interconnectedness of mathematical concepts 

across different grade levels and curricular structures, teachers are aware of the "span of 

mathematics included in the curriculum" (Ball et al., 2008, p. 403). This awareness aligns with 

the complex nature of mathematical content knowledge (MKT), which includes multiple forms 

of knowledge about mathematics, students, curriculum, and pedagogy. This study demonstrates 

the utility of MKT in theorizing teachers' interactions with and perceptions of big ideas. 

Implications for Policy and Practice 
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The new California Mathematics Framework advocates for moving away from lists of 

discrete and disconnected skills and procedures (CDE, 2023). This shift is challenging for 

teachers, administrators, and professional developers because state standards have driven 

assessment and instruction for decades. Additionally, viewing mathematics as a list of procedures 

aligns with dominant discourses that mathematics is a fixed body of knowledge to be practiced, 

further complicating the shift (Louie, 2017).  

As teachers in our study conceptualized the big ideas in mathematics education—a central 

component of the new framework—they highlighted elements of centrality, connectedness, and 

broad grain size. Teachers recognized that effectively teaching to the big ideas involves drawing 

explicit connections between seemingly disparate topics, thereby unveiling the cohesive structure 

of mathematical knowledge. This approach challenges the traditional compartmentalization of 

mathematical topics, advocating instead for a curriculum that mirrors the inherent connectedness 

of mathematical concepts. Viewing mathematics content as a set of fewer, connected, and 

conceptual big ideas has the potential to make mathematics activity more expansive and 

inclusive (Louie, 2017; CDE, 2023). Importantly, this approach supports teachers in developing 

mathematical knowledge for teaching (MKT), particularly horizon content knowledge (HCK), as 

it emphasizes connections across grade levels and units (Ball et al., 2008). 

Our findings indicate areas for growth in how teachers develop a deep, conceptual, and 

connected understanding of the big ideas at their grade levels, particularly at the elementary 

level. Traditionally, teacher training has emphasized common content knowledge (CCK) more 

heavily than specialized content knowledge (SCK). Our results suggest the benefits of engaging 

teachers in grade-level teams to develop their SCK related to the big ideas and to build HCK 

through connections to other grades. This underscores the necessity of ongoing conceptual work 

to aid teachers and administrators in navigating this pedagogical shift. Future research should 

explore how teachers and school administrators adapt their practices to incorporate big ideas, 

including and beyond the new California Mathematics Framework. This inquiry could reveal 

insights into the systemic adoption of the framework and its impact on mathematics education, 

contributing to a more equitable and effective system for all learners.  
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While researchers have characterized what procedural fluency of numerical computation entails 

at the elementary level as well as identified instructional methods that support its development, 

secondary teachers do not have access to the same resources. To support these teachers, we 

must first understand how they perceive and attempt to foster procedural fluency. To do so, we 

interviewed eight experienced secondary teachers about how they teach factoring of quadratics 

and their associated goals. Results indicate that teachers lack an in-depth understanding of 

procedural fluency associated with factoring. While some teachers hope students develop more 

conceptual understanding, they ultimately teach rote algorithms that lack meaningful insight into 

the process. We outline what methods teachers use to teach factoring and provide a framework 

highlighting three different ways teachers approach the teaching of procedural knowledge.  

Keywords: Algebra and Algebraic Thinking, High School Education, Mathematical Knowledge 

for Teaching 

The relationship between the role of conceptual and procedural understanding in 

mathematics education has long been explored and argued (Rittle-Johnson, et al., 2015). This 

debate was at the center of the heated math wars in the 1990s (Schoenfeld, 2004) and continues 

today as states like California rewrite their mathematics curriculum. Researchers, often critical of 

the elevated attention to procedures in classrooms, have advocated for an emphasis on 

conceptual understanding, making this the focus of the reform movement. However, as 

Kilpatrick et al. (2001) explained, pitting one against the other creates a false dichotomy. 

Procedural and conceptual understanding are not separate, competing forms of knowledge, but 

are interwoven competencies that support each other. As such, rather than characterizing one as 

more or less valuable than the other, a more productive approach is to describe ways in which 

different manifestations of each are robust or not (Star, 2005).   

Nevertheless, researchers continue to emphasize conceptual understanding, paying less 

attention to procedural fluency (Bay-Williams, 2020). The one exception has been at the 

elementary level where a significant effort has been made to explicitly characterize what 

procedural fluency of numerical computation entails as well as identify instructional methods 

that support its development (Bay-Williams & San Giovanni, 2021). This has led to a robust 

understanding of the types of strategies and reasoning involved in this critical mathematical 

understanding, previously only known by vague terms such as “number sense.” Such details 

have begun to appear in our standards and curriculum documents (CCSS, 2010), providing 

guidance for teachers to shift away from teaching rote algorithms and now target robust 

procedural knowledge. In addition, math educators have collectively developed various activities 

that support its development as well as numerous tools (rekenreck, number lines, area models, 

etc) that promote such ways of thinking. Such findings mean that what was once viewed as an 
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innate quality in only a few students can now be developed in all students (Bay-Williams & San 

Giovanni, 2021).  

Notably, in light of these advances, instruction in the US still tends to predominantly 

emphasize rote procedures. While we know that at the elementary level teachers’ lack of 

mathematical knowledge is a contributing factor (Ma, 2010), there are limited studies that 

explore how teachers understand and attempt to foster procedural fluency at the secondary level. 

There have been multiple theoretical pieces characterizing the relationship between procedural 

and conceptual knowledge as well as empirical studies exploring how different instructional foci 

support student learning, but we do not have a strong understanding of what procedural fluency 

looks like for different secondary topics or what teachers’ perspectives of procedural fluency is. 

Establishing such views is critical, enabling the field to develop targeted ways to better support 

teachers in engaging in more conceptually connected instruction of different procedures. The aim 

of this study was to fill this void. To do so we focused on the topic, quadratic factoring, to 

explore the question, What understandings and perceptions of procedural fluency shape 

secondary teachers’ instruction of factoring quadratics?  

Conceptions of Procedural Knowledge 

Both procedural skills and conceptual understanding have long been valued components of 

mathematics education, but have historically been viewed as separate entities. Notably, when 

Hiebert and Lefevre (1986) first introduced and defined the terms procedural and conceptual 

knowledge, while they explored relationships between the two and acknowledged that it is hard 

to imagine students developing one without the other, they still positioned them as different types 

of reasoning, defining procedural knowledge as a familiarity with syntactic manipulation and 

conceptual knowledge as a deep, connected understanding. Fundamentally, they characterized all 

learning with meaning as conceptual, aligning with Skemp’s (1978) notion of robust relational 

understanding and all procedural knowledge as rote, equivalent to the more superficial 

instrumental understanding. Critical of such an association, Star (2005) argued that knowledge 

type and quality should be treated as independent dimensions, challenging the field to 

conceptualize deep procedural knowledge and make it an instructional goal.  

Today, scholars agree that robust procedural fluency should be an instructional goal, but there 

is debate over how best to foster it. NCTM (2014) advocates for instruction that extensively 

develops conceptual knowledge before procedural knowledge. However, Rittle-Johnson, et al. 

(2015), after a comprehensive analysis of multiple empirical studies, found no evidence for 

fostering one type of knowledge prior to the other. Instead, they concluded that the two serve to 

support each other and should be developed simultaneously.   

More recently, in an effort to formalize this work, Fan and Bokhove (2014) offered a 

framework characterizing instructional foci that foster procedural fluency at three different levels 

(see Figure 1). In the first level, the focus is on rote practice with the goal of developing an 

instrumental understanding to consistently and correctly carry out the steps. The second level is 

characterized by a relational understanding of why the algorithm works and how it can be 

modified to accommodate different situations. The final level inherently involves familiarity with 

different algorithms as it consists of the ability to judge and compare the efficiency of different 

algorithms. Level 3 also includes the ability to construct or generalize new algorithms.  
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In addition to highlighting the type of student thinking associated with each level, Fan and 

Bokhove (2014) also highlight how the nature of the algorithms taught shape the level of 

thinking. While certain algorithms make the foundational ideas driving the algorithm quite 

accessible, others mask these underlying concepts making it difficult or impossible to unpack 

them. Drawing on Kilpatrick et al. (2001), they propose five different features (certainty, 

reliability, transparency, efficiency, and generalizability) to analyze the quality of algorithms 

themselves, which they see as aligning with the different levels of their proposed framework. 

Specifically, they argue that algorithms that only focus on the certainty that given steps are fixed 

and unambiguous correspond to level 1. Procedures that provide transparency for why they work 

as well as the reliability to consistently obtain correct answers characterize level 2 thinking. 

Finally, algorithms that allow for efficiency and generalizability are associated with the top level.  

 

Level of Thought  Fluency with Algorithms Features 

Level 1: Knowledge and  

              Skills 
• Reproducing steps of a procedure Certainty 

Level 2: Understanding 

and              

              Comprehension 

• Describing why a procedure works 

• Applying procedure in a complex situation 

Reliability 

Transparency 

Level 3: Evaluation and  

              Construction 

• Comparing different algorithms 

• Judging efficiency of an algorithm 

• Constructing new algorithms (strategies) 

• Generalizing 

Efficiency 

Generalizability 

Note. Recreation of image created by Bay-Williams (2020) based on Fan & Bokhove (2014) 

framework including algorithm features. 

 

Figure 1: Procedural Fluency Framework with Corresponding Bloom’s Taxonomy  

 

While this framework provides a theoretical lens to categorize procedural knowledge in 

general, it lacks details about what these different categories entail for different content areas. As 

noted, one exception where such details have been developed has been at the elementary level, 

where Bay-Williams and colleagues (2021) have developed an in-depth characterization of 

fluency with numerical operations. In addition, they articulate how fluency goes beyond simply 

speed and accuracy, identifying different strategies which illustrate flexibility as well as provide 

a broader view of efficiency that incorporates appropriateness. While such work offers a 

powerful resource to support teachers at the elementary level, we have a limited understanding of 

procedural fluency at the secondary level. One example is Durkin et al. (2017), who worked with 

algebra teachers to explore if instruction that focused on comparing different solution methods of 

symbolic algebraic equations would support students in developing procedural knowledge. They 

found students developed more robust procedural knowledge in classrooms where teachers used 

the curricular materials more, but also found that most teachers did not engage students in these 

activities and struggled, in particular, to facilitate conversations around different methods. Such 
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results hold promise, but indicate that more work is needed exploring how teachers understand 

and attempt to foster procedural fluency.  

Factoring 

Factoring provides a productive context to explore teachers’ perceptions of procedural 

fluency as there are multiple different and well-known ways to approach this topic. However, to 

analyze these different approaches, we first define the conceptual understandings associated with 

factoring. We see two interrelated concepts that are critical to understanding factoring. First, 

students must recognize that the factoring process serves to transform algebraic expressions from 

an additive to a multiplicative structure. They must understand that the two forms are equivalent 

expressions, but that the different structures elevate different characteristics. However, in most 

cases this process cannot be determined directly. Instead, it requires carrying out the distributive 

property and observing patterns to be able to reverse the process. Such pattern recognition 

characterizes the second conceptual component. While often taught as rote rules, the ability to 

effectively identify and generalize useful forms involves the mathematical practice Looking for 

and Using Structure (CCSS, 2010). As teachers know, fostering this practice is challenging, as 

the ability to strategically decompose algebraic expressions relies on a combination of goals and 

student understanding and thus cannot be taught as a rule.   

Features of Quadratic Factoring Algorithms 

With these underlying conceptual ideas in mind, we apply the Fan and Bokhove framework 

to the different quadratic factoring methods that have emerged. Considering which features each 

algorithm possesses, highlights the levels of thinking they afford.  

Slide, divide, bottoms up-level 1. A well-known algorithm that focuses on certainty, without 

transparency is Slide, Divide, Bottoms Up, also known as Slip Slide (Steckroth, 2015). However, 

while it provides a sequence of easy-to-follow steps to factor all nonmonic quadratics, most are 

not only unjustified, but mathematically incorrect. So illogical are the different steps that the 

only way to know how to carry out the algorithm is by following the steps outlined in the name 

(see Figure 2). Since the underlying rationale is hidden, this algorithm allows for only a level 1 

level of thinking. Moreover, it encourages students to treat algebraic expressions as a collection 

of disconnected symbols that can be moved and manipulated as isolated characters, serving to 

undermine the development of any structural sense.  

 

 

Figure 2: Outline of steps involved in Slide, Divide, Bottoms-up 
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AC method-level 1+. Another systematic approach that provides a consistent and reliable 

algorithm for all cases is the AC Method. This method relies on creating a 4-term expression, 

which can be factored using grouping, by splitting up the linear term into two factors of the 

product AC that add together to form b (see Figure 3). However, while each step follows 

correctly from the previous and the grouping provides a clear connection between factoring and 

distributing, there is no transparent reason for why the factors of AC should lead to 4 terms that 

can be reliably grouped. Moreover, to avoid challenges associated with grouping, teachers often 

use a 2x2 Box. Each of the 4 terms are placed in a separate box and the GCD from each row and 

column is factored out. In contrast to grouping, this avoids conceptualizing the binomial (x + 3) 

as a single algebraic entity, a key component of structural reasoning (Musgrave, et al., 2023) and 

again encourages students to treat each symbol as an isolated object, rather than a meaningful 

expression. As such, this method has attributes of level 2, offering some insight into how the 

multiplicative structure is formed, but still lacks full transparency, leaving it at the lower level 1.  

 

 

 

 

 

Figure 3: Symbolic and Box approaches to the AC Method of Factoring 

 

Guess and check-level 2. As noted above, conceptually understanding factoring requires 

seeing the connection to the distributive property which inherently involves pattern recognition 

to reverse the process. Such a method is often referred to as guess and check. While the pattern 

for monic quadratics is reliably the same, this is not the case for quadratics when the leading 

coefficient is not 1. Such a method can definitely be characterized as transparent and at times 

efficient, However, when applied to numbers with multiple factors, this method loses efficiency.  

Scaling-level 3. One algorithm that is not only consistent and transparent, but also 

generalizable is a scaling method (see Figure 4) offered by Cuoco (2009) as part of the CME 

project. This algorithm uses substitution to transform all quadratics into a monic quadratic. Such 

a method provides a systemic approach that allows students to use the general pattern of looking 

for two factors of the constant term that add to the linear term.  

 
Figure 4: Scaling method which transforms quadratics to a monic form 

 AC = -36 

9(-4) = -36     

 9 + -4 = 5 
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Methods 

To explore how teachers view and foster procedural fluency associated with quadratic 

factoring, we conducted and videotaped one-hour individual semi-structured interviews 

(Ginsburg, 1997) with eight high school teachers (1 male, 7 female; all white). Overall, the 

teachers possessed a wealth of experience and expertise, with four to 34 years in the classroom 

and an average of 17 years teaching. All but one had a graduate degree, with the majority 

studying specifically mathematics education, and had experience teaching multiple grades and 

classes. To ensure a diversity of perspectives, teachers were selected from seven different schools 

across two different states. The schools represented a wide range of student populations in terms 

of their socioeconomics (30%-88% poverty rates) as well as prior achievement (27%-65% 

meeting minimal proficiency levels on state algebra test). In particular, two schools were among 

the top performing in the state and two were among the lowest in the state. 

Interview questions focused on identifying what methods the teachers have taught and 

currently teach in different classes as well as different questions aimed at eliciting their 

instructional motivation for choosing these. In addition, we asked the teachers about their 

instructional goals associated with factoring, their familiarity and understanding of different 

factoring methods, and ways they differentiated instruction including the use of different tools 

(i.e. algebra tiles). We began our analysis by identifying statements that referenced the methods 

they teach, the rationale behind those methods, and their understanding of the conceptual value 

of factoring. This led to several codes marking the overall conceptual understandings of factoring 

teachers possessed which we refined through multiple iterations of analysis. Ultimately, we 

found three categories that were representative of how teachers understand procedural fluency 

and their teaching of factoring.  

Results 

We organize our results around two major findings. First, we outline the actual methods that 

teachers instruct in class (see Table 1), separated by the tracked level assigned to students (see 

Prins & Hawthorne (2024), for more information about how tracking shaped teachers’ instruction 

of factoring). Because some used more than one method, totals add to more than the number of 

participants. We then outline the different goals that teachers communicated about factoring. 

Together these methods and associated goals provide insight into the approach these teachers use 

to foster procedural fluency. 

Table 1: Factoring Methods Used by Teachers for Different Levels 

 
Level 1 Level 2 

Lev

el 3 
 

 
Slide 

Divide 

AC Method 
Guess & 

Check 

Sca

ling 

Calcul

ator 
 Group

ing 

Box 

Method 

High 

Track 

1 2 0 6 0 0 

Low 

Track 

2 2 5 1 0 1 
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As the above table illustrates, the majority of the teachers use the Guess and Check method 

in their honors classes, while teaching the Box-AC method for their lower tracked students. 

Thus, teachers implement more conceptually grounded methods with their higher tracked 

students, but teach rote algorithms with limited to no transparency to their lower tracked 

students. Notably, when asked why they teach guess and check in honors, only one teacher made 

reference to the conceptual value of such a method. All others, even when probed multiple times, 

explained that they taught it for efficiency reasons, as they saw it as the best way to quickly 

arrive at the answer. Conversely, the teachers collectively taught the lower tracked students 

methods void of meaning, explaining that they saw the consistent steps of the Box-AC and Slide-

Divide methods as the easiest to follow. Looking through these results through the Fan & 

Bokhove (2014) framework, such methods ensured that only students deemed advanced had 

access to more robust procedural fluency, but to support efficiency, not conceptual 

understanding. Ultimately, these teachers picked these methods not to foster procedural fluency 

grounded in flexibility or sensemaking, but rather out of a desire for speed in the higher tracks 

and a deficit perspective towards students in the lower tracks.  

Probing deeper into the motivations behind such choices, we found that the majority of 

teachers saw factoring as simply a tool used to produce an answer, rather than a conceptual topic. 

As a result, they teach their students rote algorithms which allow students to arrive at a factored 

form, but without having to struggle with the deeper mathematics that are at play. Moreover, 

when asked, the teachers were unable to provide justification for these different methods and in 

most cases were unaware. However, results provide nuance to the teachers’ understanding of 

factoring which led to three distinct categories that characterize the different ways in which 

teachers viewed factoring: conceptual value, general value, and performance value (see Table 2).  

Table 2: Characterization of Instructional Value Associated with Procedures 

 

Categories Teachers Characterization 

Conceptual value 1 
Articulated conceptual value in factoring and 

taught methods that aim to foster such understanding  

General value 3 

Alluded to vague notions of conceptual value 

(logical and reasoning, graphical and symbolic, 

multiplying and dividing), and focused on speed and 

answers 

Performance value 4 
Saw no conceptual value in factoring and taught 

methods that solely got an answer 

 

Conceptual value 

The first category, conceptual value, consisted of a single teacher who was able to speak to 

the conceptual value of factoring and as a consequence taught methods that aimed to foster such 

understanding. Throughout the interview, her responses indicated that she wanted students to 

understand the basis of different factoring forms and intentionally pushed back against methods 

that did not allow students to see the conceptual foundation associated with factoring. When 

asked about these other methods, she said, “kids don’t understand the concept of what factoring 
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is… they get caught up in learning this trick and memorizing it verses teaching them that 

factoring is just the reverse of multiplication.” It is important to note that because of these 

beliefs, she teaches the guess and check and grouping methods to all students, regardless of 

track, and was the only teacher to do so. When asked why she preferred teaching guess and 

check, she emphasized that this method supports students in “understand[ing] the concept” and 

“it sticks with them longer.” While her description of the underlying concepts was not 

necessarily robust, her appreciation of such understanding was significant enough to strive to 

support all students to engage in the thoughtful understanding of factoring.  

General value 

The second category, general value, was composed of three teachers who, when prompted, 

alluded to vague notions of a conceptual value in factoring. These notions included logic and 

reasoning skills, understanding graphical and symbolic relationships, or multiplying and 

dividing. As one teacher explained, “Understanding that factors are things you multiply to get 

this, and now we can do this with expressions the same way we do it with numbers.” In 

particular, they predominantly focused on applications when describing the value of factoring (as 

opposed to thinking), citing that factoring is needed for finding zeros, and simplifying rational 

expressions. While these teachers were able to identify instructional goals that went beyond 

simply getting answers, these were vague without clear methods to foster such goals. 

Consequently, without more explicit understanding of the value of factoring, their instruction 

was characterized by a focus on speed and answers. All teachers in this category opted for 

methods they saw as producing answers quickly for their honors classes, and taught their lower 

tracked either the Box-AC method or Slide-Divide, believing these would be the easiest to 

produce correct answers. A quote from one teacher summed up how teachers’ vague notion of 

conceptual understanding shaped their teaching of procedural fluency, “It is definitely a good 

thing to use sound methods, I don’t know if that means that it is more advantageous to another.” 

Despite her seeing value in using more conceptual methods, she ultimately opts for an algorithm 

that is less mathematical and easier for students. 

Performance value 

The last category was representative of 4 teachers who did not see any conceptual 

understanding in factoring and therefore teach factoring methods they believe will most easily 

produce correct answers. When asked about what they see as the value of factoring, these 

teachers cited needing to know how to factor for future math classes, application problems and 

solving for zeros. Representative of this category was one teacher who said, “The whole point 

[of factoring] is can you see some function and find out features of that function... most of the 

things we want to know is what can we solve this function for, which relates to the x-intercepts, 

so factoring is just simply a way to do that.” Due to a lack of more in-depth goals, teachers in 

this category focused on getting to the answer most accurately and with the least amount of 

struggle for students. For the lower track, these teachers used the Box-AC method or Slide-

Divide, with the exception of one teacher who had eliminated factoring from her instruction to 

exclusively teach the use of the quadratic formula as this had proven to be the easiest for students 

to get to an answer. While these methods do not foster a robust procedural knowledge, their 

instruction makes sense given their understanding and perspective. If teachers do not see any 

value in the process of factoring, then there is limited justification for using more challenging 
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methods that lead to more student pushback and possibly lower accuracy.  

Discussion 

We found that teachers lack an in-depth understanding of procedural fluency associated with 

factoring, with half of the teachers teaching mathematically superficial and incomprehensible 

methods that serve to only produce answers. In addition, another group of teachers wanted 

students to develop a more robust procedural fluency, but were unable to articulate what this 

would entail. Without clear goals, these teachers eventually focused on speed and ease as well. 

However, there was one teacher using more conceptually grounded methods to instill a more 

meaningful understanding in all her students.  

Notably, all of the teachers we interviewed had tried a variety of different methods, 

suggesting they had autonomy for their instruction of factoring. Furthermore, none of them 

spoke of stresses associated with testing, curricular demands, or department or administrative 

pressure. While this might be because most of the participants were highly experienced and 

taught in states without an end of the year exam past Algebra I, such independence distinguishes 

secondary teachers from their K-8 colleagues. Instead, what shaped their instruction was a 

narrow view of procedural fluency of factoring with a sole focus on answers combined with 

beliefs about their students. These teachers had each invested significant amounts of time 

learning multiple factoring algorithm along with different scaffolds to help students easily and 

reliably carry them out. So focused on simplifying the process that issues of productive struggle, 

mathematical practices, or possible messages about mathematics were overlooked. Even 

questions about why such algorithms worked were not considered, as teachers were not only 

unable to explain various steps of these algorithms, but had clearly never thought about this.  

As noted earlier, the field has limited insight into how secondary teachers perceive and teach 

procedures. These results fill that void, highlighting that teachers need guidance in what 

procedural fluency entails and how to foster it. Moreover, they need support in understanding 

how different algorithms (and tools) aid or hinder procedural fluency.  
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The study of teachers' knowledge and competence in integrating mathematical modeling has 

gained recent attention, particularly in German research (Greefrath et al., 2022). Such knowledge 

and competence have been explored by academics with the purpose of, on the one hand, 

designing teacher training strategies and, on the other hand, measuring the impact of these 

strategies. The present study explored eight educators' testimonies and how they implement 

modeling in their classrooms to address the research question: What pedagogical approaches do 

practitioner teachers use to design and apply mathematical modeling tasks that integrate virtual 

simulations? 

Methodology. This study conducted eight semi-structured interviews. Data sources 

encompassed video recordings, transcripts, activity handouts, and researchers' notes. The 

constant comparison method (Merriam & Tisdell, 2015) was employed for data analysis, 

involving open coding to identify main themes across all activities and interviews. Additionally, 

we utilized Kaiser and Sriraman's (2006) classification of modeling perspectives to categorize 

the pedagogical approaches described by the teachers. Our focus on simulations serves as a 

compelling example of the purposes of the whole project. The themes we will discuss are: (1) 

simulation promotes a change of beliefs about chance, and (2) simulations through embodied 

modeling generate empathy.  

Conclusions. Overall, our findings underscore the importance of teachers' specialized 

knowledge in designing effective simulation-based activities that cater to their students' diverse 

needs and contexts. Teachers can create transformative learning experiences that promote critical 

thinking, problem-solving, and socio-cultural awareness by recognizing and leveraging the 

power of simulations in mathematics classrooms. A limitation of this study corresponds to the 

number of participants and tasks included. However, we identified differences with the 

perspective on teacher knowledge described by Gerber et al. (2023), which are based on work 

done mainly by European authors, primarily German. In this sense, our results add to the efforts 

of Cordero et al. (2022) to seek alternative perspectives to the dominant demands of Europe. 
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Introduction 

Students’ stages of units coordination are closely related to constructing schemes for 

fractional knowledge (Hackenberg, 2013). While students learn fractions in their elementary 

school, there are many middle school students who have difficulty coordinating multiple levels 

of units (Zwanch & Wilkins, 2021). Furthermore, some Pre-Service Teachers (PSTs) have not 

reached to stage 3 of units coordination (Jacobson & Izsák, 2014; Son & Lee, 2016). Although 

there are many studies about students’ stages of units coordination (e.g., Hackenberg, 2007; 

Hackenberg & Lee, 2015; Hackenberg & Sevinc, 2024; Hackenberg & Tillema, 2009; Steffe, 

1992, 2003), little is known about teachers’ stages of units coordination (e.g. Izsák et al., 2012). 

Teachers’ mathematical meanings for teaching fractions may give more context to teachers’ 

understanding and their scheme related to teaching. While there are studies about teachers’ 

mathematical knowledge for teaching fractions (Copur-Gencturk, 2021; Izsák et al., 2012; 

Olanoff et al., 2014; Veloo & Puteh, 2017), little is known about teachers’ mathematical meaning 

for teaching fractions (Thompson, 2013). This study examines how PSTs' capacity for units 

coordination is related to how they construct fraction schemes and create mathematical meanings 

for teaching fractions with two research questions: (1) Which cognitive processes might PSTs go 

through? What modifications to their fractional reasoning schemes might be noticed? and (2) 

How are PSTs' unit coordination stages related to the development of their Mathematical 

Meanings for Teaching Fractions? 

Methodology 

I intend to initiate the data collection by administering a written task to eight elementary 

PSTs, aiming to select four (out of the 8) candidates for the subsequent 10-episode teaching 

experiment and post-test. The data collection will involve two distinct phases. Initially, I will 

enlist 8 PSTs for a written task focusing on units coordination and fractions for the pre-test by 

using instrument by Norton et al (2015). Subsequently, I aim to conduct 10 episodes to delve into 

fractional knowledge. The initial five episodes will concentrate on their first-order knowledge, 

engaging participants in fraction-related problems accompanied by 45-minute discussions. The 

latter five episodes will center on the PSTs' second-order knowledge, involving their 

interpretation of elementary students' problem-solving videos related to fractions. Following the 

10 episodes, the 4 selected PSTs will undertake a post-test similar to the pre-test, again 

performing written tasks on units coordination and fractions while recording videos. 
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This theoretical analysis examines the diverse designs and intentions behind mathematics 

teacher educators (MTEs)' diagnostic interview assignments for elementary preservice teachers 

(PSTs). It underscores the necessity for PSTs to develop integrated specialized content 

knowledge and pedagogical skills. The study establishes a framework to assess alignment 

between MTEs' design goals and actual practices. Through cross-institutional collaboration, 

common phases of diagnostic interviews were identified, focusing on evaluating PSTs' abilities 

to analyze student thinking and apply pedagogical strategies. The analysis emphasizes the 

importance of intentional design tailored to PSTs' needs, prompting educators to review 

interview design and rubrics for effective course planning. 

Keywords: Instructional Activities and Practices; Mathematical Knowledge for Teaching; 

Preservice Teacher Education; Elementary School Education 

Effective mathematics teachers evaluate and reflect on both the mathematics content and 

teaching methods they use in the classroom to support the learning of a diverse student 

population (Association of Mathematics Teacher Educators [AMTE], 2017). To learn how to 

enact that reflective practice, well-prepared elementary preservice teachers need opportunities to 

build a cohesive understanding of specialized mathematics content knowledge (SCK) and how to 

apply that knowledge through effective pedagogical practices (Ball et al., 2008; Li & Howe, 

2021; National Council of Teachers of Mathematics [NCTM], 2014). However, preservice 

teachers (PSTs) in the U.S. experience a wide variance in the number of opportunities to learn 

how to teach mathematics effectively in their teacher training due to differences in program and 

course structures (Bertolone-Smith et al., 2023; Cochran-Smith et al., 2015). Mathematics 

teacher educators (MTEs) with limited time to prepare their PSTs, must design methods courses 

in innovative ways and scaffold instruction so that their PSTs build an integrated knowledge base 

of mathematics content and pedagogy (Harr et al., 2014; Saclarides et al., 2022).  

Diagnostic interviews are one type of assignment often used by MTEs in math methods 

courses to create integrated opportunities for PSTs to develop various types of knowledge and 

practices necessary for their future career, while assessing PSTs’ competencies for teaching. 
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However, MTEs' designs and goals for diagnostic interviews are diverse. The purpose of this 

theoretical analysis is to understand the diversity and intentionality of MTEs' designs and goals 

for diagnostic interviews and create a framework for them to reflect on and self-evaluate the 

alignment of these two elements. 

Theoretical Framework 

There are two core elements to teaching mathematics that all PSTs must know: 1) Specialized 

Math Content Knowledge (SCK); and 2) Pedagogical Content Knowledge (PCK). These two 

elements are the foundation of the theoretical framework for the theoretical inquiry presented in 

this analysis.  

Mathematics teachers should elicit students’ mathematical thinking and use it as evidence to 

inform their instruction (Forzani, 2014; NCTM, 2014). To enact this practice effectively, teachers 

need a strong foundation in domains of SCK (Ball et al., 2008). These domains include being 

able to notice and understand students’ mathematical thinking; evaluate the accurate, flexibility, 

and fluency of students’ mathematical strategies; as well as the differences between conceptual 

understanding of a topic and procedural strategies to apply that conceptual understanding (Bahr 

& de Garcia, 2010; Ball et al., 2008; Jacobs et al., 2010). Teachers also need a strong foundation 

in the domains of PCK. These domains include knowledge of the content, curriculum, students, 

and teaching practices (Ball et al., 2008). Pedagogical practices for teacher noticing focus on 

interpreting students’ knowledge of the math content, where that knowledge falls within the 

curriculum and using evidence to adjust instruction as needed to support student learning (Jacobs 

et al., 2010; NCTM, 2014). Additional pedagogical curriculum teaching practices that support 

mathematics learning important to our theoretical framework include establishing goals, 

purposeful task design for reasoning and problem solving, using representations, posing 

purposeful questions, building understanding and using evidence of student thinking for 

curriculum planning (Litster et al., 2020; NCTM, 2014). 

Analysis of the Issues 

This theoretical analysis is one component of a cross-institutional study that examines how 

PSTs in elementary mathematical content and methods preparation courses develop and use SCK 

and PCK for teaching. During 2023, representatives from eleven universities met and discussed 

activities in their programs that integrate specialized math content and pedagogical methods. One 

common activity across multiple institutions was the use of a diagnostic interview given to K-12 

students in a clinical setting. However, the interview at each university was unique in design. 

Through an iterative qualitative process, the group identified and refined five common phases of 

the interview process that may showcase evidence of PSTs’ SCK and PCK from the theoretical 

framework (see Table 1). Then, each researcher reviewed their own design using a self-

evaluation model that identified the tasks they require in each phase of the interview, whether the 

design allows the teacher educator to strongly evaluate, partially evaluate or not evaluate PSTs 

SCK and PCK from Table 1 for that phase, as well as any factors that contributed to the 

intentionality of that design.  This analysis will first present potential evidence of SCK and PCK 

at each phase from our analysis in Table 1 and then present findings from the diverse MTE 

interview designs and intentionality behind those designs.  

It is important to note that the potential tasks and knowledge that can be evaluated in this 
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table is a compilation of information from all university interviews; there was not a single 

interview that encompassed every aspect of the table. The knowledge that can be evaluated is 

based on the design of the individual interview and the purpose behind the interview design 

 

Table 1: Diagnostic Clinical Interview Phases and Knowledge Types 

 

Interview Phase Specialized Math Knowledge Pedagogical Knowledge 

Preparing Interview 

-choosing tasks 

-solving tasks/answer 

key 

-narrating background 

-establishing trajectory 

-adapting question 

-open/closed quality of math 

tasks  

-accuracy/strategies for solving 

the task/problem  

- mathematical decomposition 

of the learning goal 

-trajectory/ standard alignment 

-appropriate for student/goal  

-quality of task 

- common misconceptions  

-reasoning/problem solving 

- purposeful question design 

Implementing the 

Interview 

-asking questions 

-adapting questions 

-requiring 

representations 

-taking notes/ transcript 

-adaptability for follow-up 

questions 

-cognitive demand 

-accuracy of questions and 

responses to students 

-teacher noticing: attend to 

math  

-adaptability  

-pose questions 

-productive struggle 

-representations 

-teacher noticing: attending to 

student thinking 

Evaluating Student 

Thinking 

-concepts/procedures 

-math accuracy/fluency  

-flexible 

strategy/represent 

-strengths vs areas need  

-common vs specialized 

“acceptable” strategies. 

-noticing math 

strengths/weaknesses  

-difference between procedures 

and concepts 

-use evidence of student thinking 

-teacher noticing: interpreting 

student thinking 

 

Informing Instruction   

-identify objectives 

-develop individual plan 

-develop class lesson 

plan 

-Math in new 

lesson/individualized plan is 

accurate (math aligns with next 

step) 

 

-appropriate math progression  

-teacher noticing: deciding how 

to respond based on student 

thinking 

-differentiation  

Self-Reflection 

-reflecting (Multiple 

Stages) 

-reflection on personal math 

understanding 

-reflection for personal 

professional growth 

 

In order to more closely evaluate the purpose of the interview design and how that design 

influences what PST knowledge can and cannot be measured, we used a collective self-study. 

Each researcher reviewed their own design using a self-evaluation model that identified the tasks 

they require in each phase of the interview and whether the design allows the teacher educator to 

strongly evaluate, partially evaluate or not evaluate PSTs’ knowledge from Table 1 for that phase.  

Researchers justified any rationale to support their design choice such as point in the program, 
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content vs. methods course, or access to children. Finally, they identified any formal evidence 

collected to evaluate PST knowledge. 

Results showed that the needs identified by the teacher educator for their PSTs influenced the 

design. Results also showed areas of self-evaluations indicating a strong evaluation of PSTs’ 

knowledge or skills were directly tied to lines in the assignment grading rubrics. A few examples 

organized by interview phase are shared below. 

Time, type of course, and PSTs’ mathematical and pedagogical abilities played a part in 

preparation design. For example, one researcher noted in their self-evaluation that due to time 

constraints they did not feel PSTs in their math methods course were ready to design their own 

questions in the preparation phase; as a result, they provided appropriate questions to choose 

from. This led to no strong areas of math or pedagogical knowledge evaluation, and there were 

no items on the rubric relating to preparation of the interview. In a second example, a researcher 

noted in their self-evaluation that one goal of the interview in their content course was to 

consider a variety of student strategies to solve math problems; as a result, they provided specific 

questions that allowed for a variety of strategies. Although nothing in the preparation phase was 

evaluated on the rubric, a major component of the rubric was “rich descriptions of how the 

student solved the problem” which ties directly into the purpose of the preparation design.  In a 

final example, a researcher noted that their partner schools were concerned about PSTs’ ability to 

align math content to the standards and solve the mathematics themselves; as a result, they 

required students to design three questions that align to a standard and solve the problems. The 

rubric for this design has points for alignment to the standard as well as accurate solution 

strategy and representation. 

Two key aspects of implementation design focused on teacher noticing of student thinking 

and adaptability based on student responses. All self-evaluations indicated a strong ability to 

evaluate teacher noticing and ability to evaluate accuracy of student responses or strategies. 

Although many of the interviews required a copy of notes or a transcript, rubric items to evaluate 

these two areas of implementation were done concurrently with phase 3 (evaluation of student 

thinking). Adaptability was another common area with high evaluative potential (partially or 

strongly). A few interviews with strong potential for adaptability required PSTs to preplan 

potential misconceptions and follow-up questions (scaffolds or higher-order) based on student 

responses to help facilitate adaptations and measure adaptability. 

Across all self-evaluations, results showed the evaluation phase is the keystone of the 

interview design and purpose. Researchers indicated the ability of their design to help PSTs 

notice and interpret student strength in accuracy, fluency or flexibility of mathematics. 

Additionally, PSTs were required to use evidence from their interview to support their 

interpretations across all interview designs. This did look slightly different across rubrics for 

grade alignment. For example: Rubric 1: “The profile contains rich descriptions of how the 

student solved the problem, with ample relevant and revealing evidence of their thinking. Key 

mathematical details from the student’s thinking are attended to and interpreted in a way that 

creates reasonable models of the student’s understanding.” Rubric 2: “Describe the student’s 

specific math strengths and weaknesses relating to accuracy, fluency, and flexibility. Support 

with evidence from notes.” 

The key aspects for design when planning next steps relied on when and where the interview 
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was taking place as well as the similarity in interview topics. For example, one researcher who 

had all the PSTs do the same interview with students of the same grade level, had groups of PSTs 

co-create a lesson plan based on evidence from the interviews. The purpose was on using 

information about multiple students to plan for instruction. In another interview where PSTs’ 

interviews covered a variety of math topics and grade levels, the next steps focused on the 

individual child’s needs and scaffolds. 

As this analysis has shown there is diversity in the intentionality of interview designs across 

institutions. There are many factors that can influence design such as timing, PSTs’ knowledge, 

type of math preparation course, access to children, or other needs of the community. 

Implications for Practice 

In conclusion, this study supports our collective development and refinement of elementary 

math methods course assignments that seek to integrate content and pedagogy. Working across 

institutions will allow us to develop adaptable assignments that can be used in diverse contexts, 

and will support our collective efforts to improve elementary math teacher preparation. 

As shown in this theoretical analysis, there is not one correct way of designing a diagnostic 

clinical interview. However, the design should be intentional for preparing, implementing, and 

evaluating the interview to meet the needs of PSTs at that institution.  As societal shifts change 

the needs of PSTs entering the teaching profession, this analysis presents one way MTEs can 

review and analyze the intentionality of an interview design or rubric in their mathematics 

preparation courses or analyze a public interview design they may want to adopt for use to 

ensure it meets the needs of their unique population. 
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Fraction is one of the most challenging mathematical topics to learn and teach. Teachers often 

lack a profound understanding of fractions, which may lead to students working with fractions 

procedurally. In this paper, by drawing upon the commognitive framework, we offer an in-depth 

examination of two preservice elementary teachers' (PSTs') fraction understanding. We show 

how two PSTs who solve the same comparing fraction task, follow similar steps, and get the 

same correct answer, participate differently in the discourse about fractions. This different 

participation was identified by the extent to which the PSTs individualized the standard routine 

of comparing fractions, which we conceptualized in this paper. We discuss the affordances of the 

commognitive discursive lens on PSTs' understanding of fractions and highlight the study's 

contribution to teacher educators and teacher preparation programs. 

Keywords: Preservice Teacher Education, Teacher Educators, Classroom Discourse, Learning 

Theory, Rational Numbers.  

Fractions are widely recognized as one of the most challenging mathematical topics for both 

learning and teaching across K-12 education (Liu & Jacobson, 2022; OECD, 2014; Siegle, 

2017). Despite the importance of teachers supporting students in developing a deep 

understanding of fractions and providing opportunities to explore underlying concepts, studies 

reveal that many teachers, especially prospective teachers (PSTs), often lack this foundational 

knowledge (Olanoff et al., 2014). While PSTs can often correctly solve fraction problems using 

established procedures, they frequently overlook the conceptual meanings and mathematical 

connections behind these procedures. This gap significantly limits their ability to effectively 

teach fractions in a way that fosters true understanding among all students in the future. 

To address this challenge and enhance PSTs' proficiency in teaching fractions for 

understanding, the first author conducted a research project aimed at improving PSTs' teaching 

knowledge toward teaching fractions for understanding (Liu, 2021). This current study serves as 

a follow-up, focusing on a subset of data from the larger project and conducting a detailed 

analysis using a commognitive theoretical lens. Through this focused approach, we aim to 

uncover fresh insights into how PSTs conceptualize and understand fractions. 

Specifically, our study examines how two PSTs individualize a standard routine for 

comparing fractions, known as the common denominator strategy. Our research questions guide 

this exploration: How do these PSTs individualize the standard routine for comparing fractions? 

Additionally, what are the differences in their de-ritualization processes? 

Theoretical background 

A Commognitive Theoretical Perspective 

From a commognitive theoretical perspective, mathematical thinking is viewed as a 

discourse, a form of communication (Sfard, 2008). Learning within this framework is seen as a 
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transformation in discourse—specifically in how learners talk about and interact with 

mathematical objects. According to commognition, any discourse can be characterized by four 

key elements: the use of specialized terms, visual tools, endorsed narratives, and discursive 

routines—patterns of actions performed in discourse (Steiner, 2018).  

The evolution of learners' routines can be understood as a process of discourse development, 

where learners personalize established routines (Lavie et al., 2019). Initially, they repeat shared 

routines in society. Over time, they individualize the shared routines– “into independent, 

agentive implementers of those routines"(Lavie et al., 2019, p. 156). This gradual shift from 

ritual to explorative engagement is termed de-ritualization (Lavie et al., 2019). 

Lavie et al. (2019) identified six key desirable characteristics of routine: flexibility, 

bondedness, applicability, performer's agency, objectification, and substantiation. They 

distinguish between ritual and explorative actions for each characteristic to describe learners' 

participation in discourse. This study specifically investigates how PSTs demonstrate 

bondedness, substantiation, and objectification within their mathematical discourse.  

Bondedness refers to the interconnectedness of steps where the output of one step feeds into 

the next (explorative). When a performer precisely follows an expert's procedure but lacks 

awareness of these step relations, it results in disjointed steps (ritual). 

Substantiation involves justifying or explaining a routine through reasoning. Ritual 

performances often focus on detailing the actual actions taken (object-level) for substantiation. In 

contrast, explorative performers base their justification on the meta-rules accepted by the 

community (meta-level). 

Objectification encompasses reification, alienation, and saming. Reification occurs when 

participants shift from discussing processes to nouns (e.g., from "multiply 3 and 8 to get 24" to 

"24 is the common denominator"). Alienation involves excluding human agents from the 

discourse (e.g., from "I multiply 3 by 4 to get 12" to "12 is the product of 3 and 4"). Saming 

refers to treating seemingly different concepts as identical (e.g., "2/3 could be rewritten as 

16/24"). More explorative objectification is indicated by increased reification, alienation, and 

saming in discourse. 

A Standard Common Denominator Routine  

In this study, we define and standardize a commonly used strategy for comparing fractions, 

known as the common denominator strategy, referred to as the CD routine. The CD routine 

addresses a mathematical challenge: the inability to directly compare or order fractions with 

unlike denominators and unlike numerators (Fractions_udun) in their symbolic form because a 

fraction's value depends on both its numerator and denominator. Thus, by applying the CD 

routine, we can standardize one variable (the denominator) by converting Fractions_udun to their 

equivalent forms with a common denominator (Fractions_cd) and then order the Fractions_cd by 

comparing their numerators. 

This CD routine represents the culmination of historical development and expert consensus 

in fraction comparison strategies, typically codified in textbooks, curriculum standards, and 

educational guidelines. It comprises three essential subroutines: finding a common denominator, 

converting fractions to their equivalents using this common denominator, and listing them in 

order (referred to as finding, converting, and listing). 
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The first subroutine is finding a common denominator among the given fractions' 

denominators. A common denominator is a common multiple of these denominators, and while 

numerous numbers can serve as a common denominator, the least common multiple is often 

chosen for efficiency. Methods such as factor trees and listing multiples are commonly used to 

determine this common denominator.  

Once the common denominator is established, the following subroutine is to convert each 

fraction to an equivalent form using this common denominator. This conversion follows a meta-

rule: multiplying both the numerator and denominator by a nonzero number preserves the 

fraction's original proportion. This principle stems from the mathematical property that 

multiplying any number by one leaves its value unchanged. 

By executing these subroutines—finding the common denominator and converting 

fractions—we transition from comparing Fractions_udun to comparing Fractions_cd. The third 

subroutine involves listing fractions in order, where the order of Fractions_cd is established by 

sorting their numerators. This is based on the understanding that a fraction a/b can be interpreted 

as the product of its numerator a and the reciprocal of its denominator (a * 1/b). 

By the above conceptualizations, we could then examine how PSTs individualize the CD 

routine for comparing fractions, suggesting a better understanding of how they participate in the 

fraction discourse. 

Methods 

The setting, participants, and data source 

This study draws data from a larger project aimed at enhancing PSTs’ proficiency in fractions 

through an intervention. The focus of this study is on two participants: Hannah, a junior who 

completed required mathematics content courses on numbers and operations, as well as 

geometry; and Oprah, a senior who completed the same content courses along with a 

mathematics method course. Hannah and Oprah were chosen based on their positions within the 

teacher preparation program—Oprah being two years senior than Hannah. This educational 

difference potentially provided Oprah with more opportunities to develop a more explorative 

discourse, which in turn could increase variations in how they personalized and adapted the CD 

routine for fraction comparison. This selection is aligned with the purpose of this study.  

As part of the intervention, PSTs were assigned the task of ordering fractions (2/3, 3/4, and 

3/8) using various strategies, documenting their thought processes through written and verbal 

explanations (similar to a think-aloud activity) both before and after the intervention (pre- and 

post-test). The PSTs' responses, including their use of the CD routine, were recorded on video 

and transcribed for detailed analysis. This study specifically aims to explore how PSTs 

individualize the CD routine differently. Therefore, our focus is solely on analyzing the initial 

data from Hannah and Oprah: their respective pre-test excerpts. 

Data analysis 

We started the data analysis by consolidating each participant's written responses and verbal 

transcripts from the pre-test excerpts into cohesive documents. When verbal communication was 

ambiguous, we referred to video recordings to capture non-verbal cues. Each excerpt was 

systematically divided into lines based on the PSTs' speech patterns and narratives. Through 

regular meetings and discussions, we identified the specific subroutines within the CD routine 

that each PST utilized—namely, finding the common denominator, converting fractions, and 
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listing them in order. To answer the research question, our analysis focused on pinpointing the 

characteristics of these subroutines, particularly examining bondedness, substantiation, and 

objectification. Subsequently, employing a comparative perspective, we assessed to what degree 

the characteristics of their routines leaned towards ritual or explorative practices. Since we view 

learning as a progression from ritual to explorative, our approach focuses on comparatively 

situating each PST's discourse along this continuum rather than categorically labeling any PST's 

discourse as strictly ritual or explorative. 

Findings 

As depicted in Figure 1, both PSTs compared 2/3, 3/4, and 3/8 using the three subroutines of 

the CD routine outlined earlier. Initially, they identified the common denominator 24 for the 

fractions 2/3, 3/4, and 3/8 (subroutine 1). Subsequently, they converted each fraction to its 

equivalent form (e.g., 2/3 to 16/24) (subroutine 2) and then established the order of the fractions 

(e.g., stating 2/3 as the second largest) (subroutine 3). 

Our analysis revealed that while both PSTs followed these subroutines and achieved 

consistent outcomes, their discourse surrounding the process differed, indicating variations in 

their individualization processes and suggesting different levels of engagement in the discourse 

on fractions. In the following sections, we provide a detailed description of how each PST 

performed the three subroutines. Additionally, we delve into how they personalized each 

subroutine by examining variations in three key characteristics: bondedness, substantiation, and 

objectification. 

 

  Oprah Hannah 

Written 

response 

 

  

  

Finding “And a multiple of 3, 4, and 8 is 24.”   "So, instead, I'm going to use 24"  

Converting e.g., “So, a new fraction is 16/24.”  “So, 2 times 8 becomes 16, and 24.”  

Listing 

"Our second largest is that (circled 

2/3) because then we have 16 over 

twenty-fourths."  

“Then the next lowest, the middle 

one, is going to be the 16/24.”  

Figure 1. PSTs’ Written Responses and Indication for The Performed Routines 
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Subroutine 1: Finding the common denominator 24  

Oprah: Oprah initiated the task by clearly connecting the subroutine of finding the common 

denominator with the broader goal of ordering fractions. She expressed, "You can solve it (the 

given task) by getting common denominators for all of them," indicating a direct alignment with 

the macro task. Oprah further detailed her approach by considering 24 as a common multiple of 

3, 4, and 8. She justified her choice of 24 by explaining that it is divisible by each of these 

denominators, noting that they are factors of 24 (“a multiple of 3, 4, and 8 is 24, 24 is divisible 

by all of these numbers.”). 

Hannah: Hannah's initiation to the task was more procedural-focused. She stated her intent 

to "find a common denominator" without explicitly linking it to the larger task of comparing 

fractions. She then elaborated on the steps she took to arrive at 24, mentioning specific 

calculations ("between 3 and 4…is 12 to me… I also have to include 8… So, instead, I'm going 

to use 24").  

The Characteristics of PSTs' Individualization of Subroutine 1 

The descriptions above show that both PSTs identified the common denominator 24, yet they 

differed in their approach to bondedness, substantiation, and objectification. Regarding 

bondedness, which pertains to the awareness of connections between steps, Oprah integrated 

subroutine 1 of finding the CD with the overarching goal of comparing fractions. In contrast, 

Hannah focused solely on the procedural steps for finding the CD, highlighting a less integrated 

approach compared to Oprah's more explorative bondedness. 

In terms of substantiation, which concerns how the procedure was justified, Oprah supported 

why 24 was chosen as the common denominator using meta-rules endorsed by the mathematics 

community. These included the concept of a common denominator as a multiple of denominators 

and its divisibility by each individual denominator. In contrast, Hannah detailed the calculations 

to explain why 24 was selected as the CD, focusing more on the process than the conceptual 

rationale behind it. Thus, Oprah's approach demonstrated more explorative substantiation 

compared to Hannah's. 

Regarding objectification, Hannah's discourse involves more references to herself performing 

the procedures to find the common denominator. She uses phrases like "I'm going to use..." or 

"I'm going to do..." which place greater emphasis on her actions and decision-making processes 

rather than on the properties of the resulting object (24). In contrast, Oprah's discourse treated 24 

as an abstract concept with inherent properties, discussing its divisibility without explicitly tying 

it to the procedural steps undertaken. This distinction suggests that Oprah's discourse was more 

objectified, focusing on the abstract properties of 24 itself, whereas Hannah's discourse was more 

human-centered and process-oriented, reflecting a more ritualistic approach. 

Subroutine 2: Converting to equivalent fractions 

Similar to subroutine 1 of finding the common denominator, subroutine 2 also concluded 

with both PSTs achieving the same outcome – three fractions with a common denominator of 24 

that are equivalent to the three given fractions, respectively (16/24, 18/24, 9/24. See the written 

responses row in Figure 1). However, upon examining their discourse comprehensively, several 

differences in their discourse of this subroutine become evident. 

Oprah: Oprah began by meta-discursively describing the actions required to maintain 

equivalence between two fractions. She stated: "What you have to do to the bottom, you have to 
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do to the top." She applied this meta-rule to convert 2/3 to 16/24 and justified this approach by 

aiming "to make it proportionate." Oprah consistently followed this procedure of multiplying 

both the numerator and denominator by the same number for the other two fractions, resulting in 

three equivalent fractions. 

Hannah: Hannah initiated this subroutine with a clear arithmetic objective – "to make all 

these [three fractions] out of 24." She then detailed the operational procedures while working 

with the fractions. Starting with 2/3, she first aimed "to get to 24 from 3." Hannah explained that 

achieving 24 from 3 required multiplying 3 by 8. After identifying this factor of 8, she proceeded 

to multiply both the numerator and the denominator of 2/3 by 8, resulting in 16/24 ("So I'm 

going to do the same thing on the top. So, 2 times 8 becomes 16."). Hannah followed a similar 

process for 3/4 and 3/8, obtaining 18/24 and 9/24, respectively. 

The Characteristics of PSTs' Individualization of Subroutine 2 

Similar to the first subroutine, Oprah's approach in subroutine 2 demonstrates both 

bondedness and substantiation. When revealing the equivalent fractions, Oprah seamlessly 

integrated the output of each procedural step into the next, such as increasing the denominator 

eight times, followed by increasing the numerator eight times to convert 2/3 into 16/24. Such 

kinds of interconnectedness reflect an explorative bondedness. Moreover, Oprah substantiated 

her actions by first establishing meta-rules ("what you have to do to the bottom, you have to do 

to the top") and then illustrating this rule through specific examples, like converting 2/3 to 16/24. 

She articulated this as creating "a six more relationship," emphasizing the systematic approach of 

multiplying both the numerator and denominator by the same number to maintain 

proportionality, which adds to the explorative substantiation in her discourse. 

In contrast, Hannah's approach to subroutine 2 is characterized more by ritual substantiation. 

While she also applied the meta-rule of "doing the same thing on the top and the bottom," 

Hannah primarily focused on detailing the procedural steps without justifying them with broader 

meta-rules or conceptual explanations. For instance, she methodically described steps like setting 

24 as the new denominator, dividing this new denominator by the old denominator (24 ÷ 3 = 8), 

multiplying this outcome (8) by the old numerator (2), and obtaining the new numerator (16). 

However, Hannah did not delve into the rationale behind these steps or the mathematical 

principles supporting her actions, illustrating a ritualistic approach to substantiation. 

Regarding bondedness, Hannah connected her steps using transitional phrases like "So," 

indicating her awareness of the sequential relationship between actions. However, her discourse 

was characterized by a loose structure where individual steps appeared somewhat disconnected, 

lacking the cohesive flow observed in Oprah's approach. This mixture of goal-oriented phrases 

and rigidly performed steps suggests a relatively more ritual bondedness in Hannah's routine. 

In terms of objectification, both Oprah's and Hannah's discourse employed human actors and 

emphasized the process (such as "You have to …" and "you would" in Oprah, and "I am going 

to …" and "You have to…" in Hannah), indicating ritual objectification. However, Oprah's 

discourse is a slightly more objectified exploratively regarding how she communicated about the 

number used to multiply. Oprah named it as “times of relationship” (e.g., eight times more 

relationship), while Hannah called it as a number itself.  

In summary, while both PSTs achieved the same outcomes in subroutine 2, their discursive 

approaches differed significantly in terms of bondedness and substantiation and slightly different 
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in terms of objectification. Oprah's discourse exhibited explorative bondedness and 

substantiation by integrating procedural steps with meta-rules and conceptual reasoning, whereas 

Hannah's discourse leaned towards ritualistic substantiation and bondedness, emphasizing 

detailed processes without the same depth of conceptual justification. 

Subroutine 3: Listing the fractions in order As a result of the preceding routines, both PSTs 

obtained the same converted fractions: 16/24, 18/24, and 9/24. These fractions served as the 

starting point for the third subroutine. 

Oprah: Oprah structured her approach by ranking the fractions based on the quantity of 

"twenty-fourths" each possessed. She asserted that 18/24 was the largest because it represented 

"eighteen of the twenty-fourths," identifying it as equivalent to three-fourths. She then identified 

2/3 and 16/24 as the second largest by noting they both represented "sixteen over twenty-

fourths." Finally, she designated 3/8 and 9/24 as the smallest due to having "the least amount of 

twenty-fourths." 

Hannah: Hannah's method began with a focus on comparing the numerators directly. She 

determined that 3/8 was the smallest fraction by noting, "So we have 16, 18, and 9... So, the 

smallest one is going to be 9 out of 24, or the original fraction we were given is three-eighths." 

Hannah repeated this process with the other two fractions and got the correct fraction order. 

The Characteristics of PSTs' Individualization of Subroutine 3 

Both Oprah and Hannah demonstrated strong bondedness in their discourse by explaining 

how they determined the order of the fractions based on the results of subroutine 2, which 

provided fractions with a common denominator. Hannah emphasized the process by stating, "We 

can just compare the numerators," while Oprah provided a more detailed explanation. Oprah 

substantiated her process by describing how each fraction's numerator related to the total twenty-

fourths, such as 18/24 having "eighteen of the twenty-fourths" and 9/24 having "nine of the 

twenty-fourths," thereby facilitating their comparison based on their numerators. This detailed 

substantiation made Oprah's discourse more explicit than Hannah's, which primarily focused on 

the method of comparing numerators, reflecting a higher level of explorative bondedness and 

substantiation in Oprah’s discourse. 

In terms of objectification, both Oprah's and Hannah's discourse employed human actors and 

emphasized the process (such as "I have …" and "our second largest" in Oprah, and "so we 

have…" and "We were given…" in Hannah), indicating ritual objectification. However, Oprah's 

discourse demonstrated a relatively more objectified approach in how she communicated about 

fractions compared to Hannah. For instance, Hannah primarily referred to the numerator as an 

object ("we can just compare the numerators"), whereas Oprah discussed the fractions 

themselves as objects ("amount of twenty-fourth") and contextualized the numerator within the 

fractions (e.g., "our second largest is that [circled 16/24] because then we have sixteen over 

twenty-fourths". Meanwhile, while both Oprah and Hannah samed equivalent fractions, Oprah’s 

saming was much more straightforward (Oprah: "eighteen of the twenty-fourth…which was 

three-fourths" vs. Hannah: "nine out of twenty-four. Or the original fraction we were given is 

three-eights). 

In summary, while both PSTs successfully completed the third subroutine with consistent 

outcomes, their discursive approaches varied in terms of bondedness, substantiation, and 

objectification. Oprah's discourse demonstrated deeper substantiation, stronger bondedness, and 
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more objectified language compared to Hannah's, which was more process-oriented and human-

centered. 

Summary and Discussion 

Based on the examination of each PST’s individualization of the CD routine, with particular 

attention to routine characteristics, we present two different prototypes for individualizing the 

CD routine, which also reflect varied participation in the discourse on fractions. These cases are 

intriguing because despite following the standard routine, both PSTs exhibit notable similarities 

and differences. 

Both Hannah and Oprah correctly identified the common denominator of 24, converted the 

fractions accordingly, and ordered them, adhering to the three subroutines typical in such 

comparisons. As Lavie et al. (2019, p. 156) observe, "Since the source of an individual's routines 

is in what other, more experienced performers are doing, we all end up acting in similar, 

compatible ways." Hence, it's expected that Hannah and Oprah follow the routine similarly. 

However, upon closer examination of their discourse characteristics, we observed that 

Hannah and Oprah individualized the CD routine of comparing fractions in distinct ways, 

indicating varying degrees of de-ritualization from ritual to explorative characteristics. Generally 

speaking, Oprah’s engagement in the discourse exhibits more explorative elements compared to 

Hannah’s, particularly evident in how they approached substantiation, objectification, and 

bondedness. This study demonstrates that beyond mere correctness, there exists ample 

opportunity for further exploration and improvement (Liu & Zhuang, 2013). This study also 

expands upon our prior understanding of PSTs’ fractional knowledge (Olanoff et al., 2014) and 

offers valuable insights into improving PSTs’ proficiency with fractions. 

The commognitive theory, which offers a unique perspective on learners’ discourse as a 

reflection of their mathematical understanding, provided insights into the PSTs’ potential 

learning processes and their individualization of standard routines. In the realm of teacher 

education, this analysis and its insights into how PSTs engage differently in the discourse about 

fractions can assist teacher educators in identifying specific areas for improvement. For instance, 

there could be a focus on supporting Hannah in justifying her procedures using meta-rules. 

Our findings underscore the value of analyzing PSTs' discourse through a commognitive 

lens, offering a practical framework for examining how they individualize common 

mathematical routines. This approach provides an operationalized tool for understanding their 

learning and growth in mathematical pedagogy. 
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Math anxiety can affect students and teachers in many ways, including student performance and 

instructional practices. Math anxiety has been well documented in elementary teachers, but little 

research has occurred on math anxiety at the middle and secondary levels. This study analyzed 

the ways in which math anxiety can manifest in middle and high school math teachers. Using 

phenomenological analysis methods on interviews with 11 teachers, findings from this study 

revealed that middle and high school math teachers with math anxiety see their anxiety manifest 

in three different ways: (1) in specific mathematical subjects; (2) when doing math in front of 

others; and (3) as a fear of new or unknown mathematics. These results demonstrate  

Keywords: Affect, emotion, beliefs, and attitudes; teacher beliefs 

Math anxiety, which researchers have long defined as feelings of fear or discomfort when 

dealing with mathematics (Ashcraft, 2002; Maloney & Beilock, 2012), can greatly impact 

student learning. This is true whether it is the student who is anxious (e.g., Sorvo et al., 2017) or 

the teacher (Beilock et al., 2010). Studies have shown that elementary teachers commonly have 

math anxiety (Hembree, 1990) and that it can impact their teaching practices (Hadley & 

Dorward, 2011). Research has also shown a negative correlation between math anxiety and 

attitudes about mathematics in elementary teachers (Çatlıoğlu et al., 2014; Jackson, 2015). 

However, little is known about math anxiety in middle and high school mathematics teachers. 

A recent doctoral study (Mannix, 2022) demonstrated the presence of math anxiety in middle 

and high school math teachers. This study further uncovered a curious phenomenon in that 

secondary math teachers (which, for the purposes of this study,  those teaching middle or high 

school) do not seem to experience math anxiety in the same ways as students or elementary 

teachers. Specifically, SMTs do not seem to feel math anxiety as a fear of mathematics itself. In 

fact, many of the participants from Mannix’s (2022) study described pleasant, even joyful, 

feelings toward mathematics. This curious finding begs the question, in what ways does math 

anxiety manifest in middle and high school math teachers? Note, this brief report will examine 

this question as it manifests generally, not specifically in their teaching practices. 

Methods 

This study is part of a larger research project on the experiences of secondary math teachers 

with math anxiety. The larger study consisted of a survey that used convenience sampling to 

recruit participants with experience teaching at the middle and high school level, defined as 

grades five through 12. In this survey, participants responded to questions about their teaching 

experiences and their anxieties about math and teaching math. The current study focused on a set 

of interviews with 11 middle and high school math teachers who identified themselves as having 

some amount of math anxiety. Some information about each of the participants can be found in 
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Table 1. Transcripts from the interviews were analyzed using descriptive phenomenology, as 

outlined by Giorgi (Vagle, 2018). 

 

Table 1: Participant Information 

Pseudonym Years Teaching Degrees Held 
Teaching 

Experience 

Autumn 34 BA Math Ed; MS Math High School 

Brittany 7 BA Psychology; MA Math Ed 

Elementary 

and Middle 

School 

Charlie 17 BA English; MA Education 

Elementary 

and Middle 

School 

Daisy 33 BS Education; MA Education Middle School 

Georgia 16 
BA Elementary Ed (Math Add-on); 

MA Education (Math Add-on) 

Middle and 

High School 

Hannah 2 BS Math; MS Math 
High School 

and College 

Michelle 11 
BA Math Ed; MA Math;  

PhD Math Ed 

High School 

and College 

Oliver 5 BS Math High School 

Rachel 7 
AA English; BA Math Ed;  

MS Math; MA Education 
High School 

Sarah 30 BA Math Ed; MA Education High School 

Whitney 4 BS Math; MA Math Ed High School 

 

Findings 

The teachers in this study shared many interesting experiences and observations about their 

math anxieties. Notably, it seems that their math anxiety manifests in three different ways. For 

some, their math anxiety manifests within or around a particular subject, like geometry or 

statistics. For others, their anxiety manifests in front of other people. Finally, several of the 
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teachers explained that their math anxiety manifests when confronted with new or unknown 

mathematics. 

Math Anxiety in Particular Subjects 

Each of the teachers in this study cited an anxiety with a particular branch of mathematics or 

a specific math course. For many, those anxieties stemmed from negative experiences in math 

classes at one level or another. For example, Georgia enjoyed math until she got to geometry, 

which she said was “frustrating in a bad way and made math lose its excitement” in her eyes. 

Similarly, Charlie shared an experience that would make anyone turn away from mathematics. 

He explained that, when he struggled in his high school AP calculus course, his teacher told him 

that he “may have hit his [mathematical] limit.” This insidious comment made Charlie feel as 

though he had gone as high as he could with mathematics and that he wouldn’t be able to 

understand the material in any further math courses. While he wouldn’t consider it a traumatic 

experience, he does feel that it altered his trajectory and stunted his mathematical journey, 

causing him to refuse to take math courses in his undergraduate career. 

Several of the teachers cited an anxiety with statistics. Specifically, Autumn said she doesn’t 

like statistics because “it is often about making decisions that don’t always make sense and may 

not seem logical,” though she admitted that she didn’t take a statistics course until graduate 

school, which might explain her anxieties around and biases against the subject. Rachel, on the 

other hand, did not care for the overlap between statistics and probability and found the multiple 

types of probability to be very confusing, causing her to feel anxious around any sort of 

statistical topic. 

Brittany and Hannah shared an aversion to higher-level mathematics. Brittany explained that 

she was most anxious with courses like linear algebra and calculus because she feels she “lacks a 

foundation in those areas.” Hannah, on the other hand, pursued a PhD in mathematics, but she 

had to leave the program after failing one of her qualifying examinations. “I had all of these 

dreams revolving around math, and I felt like they all shattered. So my relationship with math is 

definitely different.” Hannah went on to say that she enjoys teaching math at the high school 

level, but she doesn’t think she’ll ever revisit the doctoral level mathematics that she had been 

doing. 

One teacher, Whitney, said she felt most anxious not in a particular course but with a 

particular type of problem. For Whitney, multiple choice math problems cause her the most 

anxiety, particularly those with an answer choice of “answer not here.” These problems, she says, 

cause her to second guess herself, so she prefers problems that are open ended as they allow her 

to share her thinking.  

Math Anixety in Front of Others 

For six of the participants in this study, their math anxiety affected them greatly when they 

were tasked with doing mathematics in front of people. Charlie and Georgia both felt anxious in 

front of their peers who taught higher-level math classes than they do or who have been teaching 

the courses for much longer than they have. Charlie shared that he “feels like he doesn’t know 

what he is doing” when in these situtations, while Georgia said she knows she’s smart enough to 

do and teach the math that her colleagues can do and teach, she just “doesn’t have the knowledge 

right now,” in the moment like they do, which makes her feel anxious and lesser than her peers. 
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Similarly, Daisy said she feels most anxious when being observed or when she knows someone 

might look over her work. 

Oliver said he felt anxious when students would ask him for help with advanced math 

problems, like those they faced in math competitions. These problems are generally geared 

toward problem solving and tend to be critical-thinking heavy, and this teacher explained, “If I 

feel in the moment that I can’t help with that question, I’m a little bit anxious…I don’t feel as 

confident on those [types of problems].” Similarly, Whitney said she used to get anxious when 

students would ask about why certain topics or structures worked the way they do, but she said 

this has gone away with time and practice. For Michelle, that anxiety has not gone away. She 

said she can feel anxious when standing at the board in front of students, “even if I’m prepared 

or over prepared, I get that anxious feeling… I think that comes from the fact that I really do 

strive to let the students create discourse and conversation.” She went on to explain that it was 

letting go of the control in a mathematical space, where there are so many different solution 

strategies, that made her anxious. “It’s not just black and white, like everybody thinks.” This 

ambiguity, mixed with having to make judgment calls on whether or not a specific strategy will 

always work, still cause her to feel anxious when in front of students. 

Math Anxiety with New or Unknown Mathematics 

Two of the teachers, Georgia and Autumn, emphasized moments when their math anxiety 

manifests as a fear of the unknown. Material they are unfamiliar with (as a teacher or student), in 

topics ranging from geometry to statistics to calculus and beyond, can cause them to feel 

anxious. Specifically, Georgia said she was most anxious when “performing math [she] doesn’t 

know yet,” and Autumn explained that she was most anxious when she had to tackle a problem 

with which she was unfamiliar or one that required her to combine skills and content areas in 

new ways. Similarly, any topic that requires her to memorize things can cause her anxiety as she 

struggles with memorization. “I like math because I am a problem solver. I’m not a good 

memorizer.” It’s the problem solving aspect of mathematics that she likes and is largely why she 

decided to be a math teacher. In general, though, the teachers said they feel least anxious with 

math they have taught previously, since they have had time to get used to it and figure out the ins 

and outs of the material. 

Conclusion 

While there has been a great deal of research in math anxiety throughout the years, only 

recently have researchers turned their attentions to math anxiety in middle and high school math 

teachers. This study examined how math anxiety manifests in 11 teachers of middle and high 

school mathematics and found that there were three primary manifestations: (1) in particular 

subjects; (2) in front of others; and (3) in new or unknown mathematics. These findings indicate 

a very real presence of math anxiety in secondary teachers and suggest that additional research is 

needed to further explore this phenomenon. Are there other ways in which math anxiety can 

manifest for secondary teachers? What effects, if any, does math anxiety have on math teachers’ 

instructional strategies or pedagogical beliefs and attitudes? What impact does a secondary 

teachers’ math anxiety have on their students’ learning? Additionally, what supports would help 

these teachers overcome their math anxiety? These are all questions that should be addressed by 

future research. 
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Research has shown that typical undergraduates have difficulty solving compare word 

problems (Heagarty, Mayer, & Green, 1992; Haegarty, Mayer, & Green, 1995) in which a central 

term such as “more” is indicated but the problem is most easily solved with its inverse operation, 

such as subtraction. This study examined 1) if pre-service teachers also make these errors, 2) if 

there are differences in these errors before and after receiving instruction and 3) if these errors 

are related to beliefs preservice teachers hold about operations (addition, subtraction, 

multiplication and division) and 4) if these beliefs are influenced by their preservice training.  

Method 

Ten participants (one male and nine female) were given pre and post instruction think aloud 

problem-solving interviews and 22 item surveys asking how much they agreed or disagreed with 

true and false statements about operations such as “if you the see the word 'more' then that means 

you should always use addition.” The identical survey items were repeated pre and post while the 

interview problems were each given a different cover story to make them seem less familiar but 

retain the same mathematical relations. The interviews were retrospective think aloud interviews 

in which participants reasoned with problems ranging from start unknown, change unknown, 

result unknown or compare word problems and explained their reasoning upon completion (Van 

den Haak, de Jong, & Schellens, 2003). 

Results 

Results indicate that participants were successful both pre (93.75%) and post (85.25%) 

instruction solving the range of word problems but scored slightly lower on the post after 

seeming to become more complacent when a compare problem came directly after a typical 

result unknown item. 

Despite being able to solve these problems, survey data indicated that pre and post data 

demonstrated distributions of faulty beliefs about operations overall and keywords more 

specifically at the posttest. Qualitative comparison of the pre-and post-survey data suggests that 

pre-service teachers still hold patterns of misconceptions about operations that are influenced by 

instruction to shift but remain part of their mathematical knowledge. In many cases increased 

support for true statements would be offset by greater support for false ones and vice versa. 

Discussion/Conclusion  

Results indicate that although pre-service teachers can successfully manipulate word 

problems, they frequently still have misconceptions in their understandings for the underlying 

operations. These misconceptions may not simply increase or decrease but vary in their support 
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for believing true or false statements about the operations making them complex and difficult to 

address.  
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The purpose of this study was to investigate 236 U.S. in-service elementary and middle grades 

teachers’ responses to a measurement fraction division problem including their strategies and 

types of errors. Using an inductive content analysis approach, one main result was that 

relatively high number of teachers (218 out of 236 teachers; 92.4%) responded to the problem 

correctly. A second main result was that a greater percentage of teachers had the quantitative 

meanings of measurement division, indicating flexibility with referent units, in comparison to 

those teachers and preservice teachers in past research. Regarding informal strategies, teachers 

relied on the common denominator and decimal strategies; however, strategies such as repeated 

subtraction, unit rate, or dividing numerators and denominators were not present. We discuss 

implications for improving teachers’ knowledge of fraction division.  

Keywords: Mathematical Representations; Rational Numbers; Teacher Knowledge 

Part of teaching students mathematical concepts entails the teacher knowing and 

understanding the concepts themselves (National Council of Teachers of Mathematics [NCTM], 

2000). However, U.S. teachers have performed poorly on content-based assessments in 

comparison to their international counterparts from top performing countries (e.g., Center for 

Research in Mathematics & Science Education, 2010). Further, the concept of fractions has been 

identified as one of the “most cognitively challenging” topics in school mathematics for both 

teachers and their students (Lamon, 2007, p. 629).  

According to recent curriculum standards such as the Common Core State Standards for 

Mathematics (CCSS-M; National Governors Association Center for Best Practices & Council of 

Chief State School Officers, 2010), teachers and their students need to have both conceptual and 

procedural understandings of fractions. This includes knowing how to compute with fractions 

and explaining why computations work when fractions are situated within problem contexts. 

Much of the existing research on teachers’ reasoning about fractions, however, has reported that 

in-service and pre-service teachers struggled with reasoning about fractions despite their facility 

with fraction computation based on memorized rules and procedures (Jansen & Hohensee, 2016; 

Ma, 1999). Additionally, in an extensive review of past research on preservice teachers’ 

understanding of fractions by Olanoff and colleagues (2014), most preservice teachers were 

found to have a hard time reasoning about fractions in terms of quantities, indicating preservice 

teachers’ limited conceptual understandings about fractions.  

For improving teachers’ conceptual understanding of fractions, studies show that 

understanding and reasoning about referent units is critical (Izsák, 2008; Izsák et al., 2019; Lee, 

2017; Lee, Brown, & Orrill, 2011; Philipp & Hawthorne, 2015). As an example, Izsák et al. 

(2019) administered a novel fractions survey to a national sample of 990 U.S. in-service middle 

grades teachers and found that teachers’ proficiency with referent units were linked to their 

performance with the remaining components of reasoning about fractions. On the other hand, 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

571 

 

Izsák and colleagues (2019) found that only 30% of the teachers in the national sample 

demonstrated proficiency in referent units. One key characteristic of referent units is flexibility 

with referent units, defined as “a teacher’s ability to keep track of the unit to which a fraction 

refers … and to shift their relative understanding of the quantities as the referent unit changes” 

(Lee et al., 2011, p. 204). In the present study, we investigated U.S. teachers’ flexibility with 

referent units in a fraction division situation, to better understand their strategies and types of 

errors. 

Conceptual Framework 

Starting in the 1980s, researchers attempted to identify what teachers need to know for 

examining mathematical knowledge of teachers. Based on this line of research, teachers need to 

have both content knowledge (CK) and knowledge unique to teaching, called as pedagogical 

content knowledge (PCK; Shulman, 1986). PCK includes understanding students’ particular 

difficulties and facilities on a topic, identifying their potential misconceptions, and being familiar 

with particular representations that are helpful for students to learn specific topics. For example, 

PCK about fraction division implies knowing why the invert-and-multiply algorithm works, 

being aware of students’ potential misconceptions about this algorithm (e.g., inverting the 

dividend instead of the divisor), and selecting specific visual models to uncover and support 

students’ understanding (e.g., double number lines, area models). Ball and colleagues (2008) 

articulated and expanded the body of knowledge that Shulman (1986) introduced as 

mathematical knowledge for teaching (MKT).  

By drawing from both frameworks, based on what teachers need to know for teaching 

mathematics to their students, we refer to this construct as specialized content knowledge that 

includes teachers’ understanding of mathematics unique to teaching. In the context of the present 

study, the key characteristic of specialized content knowledge is flexibility with referent units. 

Because conceptual understanding is a main strand for proficiency in mathematics and the ability 

to represent problem situations is an important indicator of such understanding  (Kilpatrick et al., 

2001), using visual models such as number lines, length and area models are strongly 

recommended in fraction instruction to support students’ learning (CCSS-M, 2010). On the other 

hand, most teachers use drawings for the purpose of illustrating final answers, instead of 

supporting early understanding (Izsák, 2008).  

Referent units are units when numbers are embedded in problem situations, and they are 

necessary for conceptual understanding of fractions (Philipp & Hawthorne, 2015). For the 

problem “Julia’s cat eats 1/3 cups of cat food each day. If she has 1/2 cups of cat food, for how 

many days can she feed her cat?”, it is possible to obtain the answer by using the invert-and-

multiply algorithm. On the other hand, a teacher who has conceptual understanding of fractions 

is expected to keep track of the referent unit and think accordingly as the referent unit changes 

(i.e., flexibility with referent units). In terms of the measurement meaning of division, the teacher 

may interpret this situation as how many groups of 1/3 are in 1/2. While the referent units for 1/2 

and 1/3 are the same one whole, the referent unit for the quotient is 1/2 of the whole. Lee et al. 

(2011) documented the need for teachers to have flexibility with referent units to interpret 

drawings appropriately in a way that makes sense to them and their students. Thus, we assume 

that teachers’ showing flexibility with referent units would support their students’ conceptual 

understanding of fractions, especially in fraction multiplication and division problem situations.  
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Literature Review 

Existing research on understanding of fraction multiplication and division have reported that 

teachers (e.g., Copur-Gencturk, 2021; Izsák, 2008; Izsák et al., 2019; Webel & DeLeeuw, 2016) 

and preservice teachers (e.g., Baek et al., 2017; Tobias, 2013) struggled with identifying the units 

appropriately. For example, Baek et al. (2017) examined 85 preservice elementary and middle 

grades teachers’ understanding of referent units through their valid and invalid pictorial strategies 

to the Paycheck problem shown as follows: 

 

Emily receives her paycheck for the month. She spends 1/6 of it on food. She then spends 3/5  

of what remains on her house payment. She spends 1/3 of what is then left for her other bills.  

Finally, she spends 1/4 of the remaining money for entertainment. This activity leaves her  

with $150, that she puts into savings. What was her original take-home pay? (p. 4)  

 

Based on preservice teachers’ responses to this problem, Baek and colleagues reported that 

most had trouble keeping track of the referent units in each step of the Paycheck problem. As an 

example for fraction division situations, Jansen and Hohensee (2016) examined how 17 

preservice teachers’ conceptions of partitive division with fractions were connected and flexible 

when solving a partitive division problem. As a result of interviews conducted with these 

preservice teachers, Jansen and Hohensee found that they demonstrated inflexible conceptions of 

partitive division with fractions. In a recent study, Copur-Gencturk (2021) examined 303 U.S. in-

service elementary mathematics teachers’ responses to a fraction division problem and found that 

only 14% of the teachers used the referent units correctly.  

In addition to those difficulties, several studies have documented that in-service and 

preservice teachers had trouble showing flexibility with referent units in fraction multiplication 

and division situations (e.g., Baek et al., 2017; Copur-Gencturk & Olmez, 2022; Izsák, 2008; 

Lee, 2017; Lee et al., 2011; Webel & DeLeeuw, 2016). In one such study, Son and Lee (2016) 

analyzed 60 preservice primary and middle grades teachers’ written responses to a fraction 

multiplication problem and found that while 40% were able to identify and draw the problem 

correctly, only 30% of preservice teachers treated the underlying concept of fractions as “finding 

portions of portions”, an indication of flexibility with referent units, and others applied a 

standard algorithm without considering referent units. In another study, Lee and colleagues 

(2011) interviewed 12 in-service middle grades teachers and analyzed their responses to eight 

multiple-choice items that required using drawings. Lee and colleagues reported that teachers 

relied on referent units correctly in only 25% of the problems, indicating teachers’ difficulty of 

making the referent units explicit. Specifically, in one item, Lee and colleagues asked teachers to 

identify the number line that shows 1/5 x 1/4 (Figure 1). While Figure 1a demonstrates 1/4 – 1/5 

= 1/20 with each number’s referring to the same referent unit, which was one whole, Figure 1b is 

the correct number line representing 1/5 x 1/4, where the referent unit for 1/5 is the 1/4 of the 

whole and the referent unit for 1/4 is the whole. Lee and colleagues reported that only four of the 

12 teachers were able to identify the referent units correctly in this problem. 
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Figure 1: a) Number line for 1/4 – 1/5; b) Number line for 1/5 x 1/4 = 1/20 (Lee et al. 2011, 

p. 209) 

 

In a recent study, Lee (2017) examined 111 U.S. preservice elementary teachers’ written 

solutions to the stick problem using a length model in Figure 2. Lee found that while 52 

preservice teachers (47%) gave a correct response to this problem, only 13 of those 52 preservice 

teachers (11.7% of the sample) reasoned through drawings, indicating flexibility with referent 

units. Eight preservice teachers relied on informal strategies of common denominator (or making 

equivalent fractions) and decimal strategies (Son & Crespo, 2009), whereas the remaining 31 

preservice teachers gave a correct response using the invert and multiply strategy.  

 

 

Figure 2: Stick problem (Lee, 2017, p. 335) 

 

By building off the work of Lee (2017), the present study investigated in-service teachers’ 

flexibility with referent units in the Stick problem and has two major contributions to the field. 

First, most studies that examined in-service and preservice teachers’ flexibility with referent units 

were based on fraction multiplication situations rather than fraction division situations (e.g., 

Baek et al., 2017; Webel & DeLeeuw, 2016). Second, most studies examining in-service 

teachers’ flexibility with referent units were conducted with either a small number of teachers 

(e.g., Izsák, 2008; Lee et al., 2011) or used an area model (e.g., Copur-Gencturk & Olmez, 

2022). Given that Lee’s (2017) study focused on preservice teachers who were taking the same 

methods course at the same institution, our study relied on 236 U.S. in-service elementary and 

middle grades teachers in the U.S with a wide range of backgrounds, giving us the opportunity to 

contribute a broader description of in-service teachers in terms of their strategies and types of 

errors.  

The research questions guiding our study were as follows: 

1. To what extent do teachers solve a measurement fraction division problem correctly?  

2. What strategies and types of errors do teachers demonstrate in solving a measurement 

fraction division problem? 
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Methods 

Participants 

The sample of this study consisted of 236 in-service elementary and middle grades 

mathematics teachers in Grades 1–8 (i.e., children ages 6 to 14) from 48 states in the U.S. We 

collected data during Spring and Summer 2020 using an educational research company that 

provided contact information of teachers and partner professional development organizations. 

Teachers received an invitation email with an online screening survey that started with general 

questions about the teacher’s educational background and teachers who were currently teaching 

mathematics in grades 1-8 were eligible to participate. In addition to providing information about 

their educational background, teachers answered the Stick problem by uploading their responses 

including drawings and descriptions. Participants were 80.5% female and 72% were White. The 

participants also had an average of 9.2 years of mathematics teaching experience, with a standard 

deviation of 8.04 years.  

Fraction Division Problem and Coding of Teachers’ Responses 

We used the Stick problem to capture teachers’ flexibility with referent units (see Figure 2). 

The stick problem was a measurement fraction division problem asking teachers to come up with 

a solution and a drawing that represents how they reached the solution. We coded teachers’ 

responses to the Stick problem independently by following the categories in Lee’s (2017) study 

and our agreement was over 90%. We discussed any disagreements and resolved them.  

Specifically, based on Lee’s (2017) coding scheme, we classified teachers’ correct responses 

into three categories: (1) computing based on algorithms without quantitative reasoning, (2) 

reasoning through computations not tied explicitly to quantities, and (3) reasoning with 

quantities. For the category of computing based on algorithms without quantitative reasoning, 

teachers’ solution was computationally correct, but did not include any reasoning about 

quantities. Teachers in this category used either a formal strategy (invert and multiply strategy) 

or cross-multiplication but indicated no flexibility with referent units. They also might have not 

produced any drawing, their drawings might have been incorrect, or their drawings might have 

only shown the final answer. For the category of reasoning through computations not tied 

explicitly to quantities, teachers’ solution was based on computations not tied explicitly to 

quantities. Teachers in this category used an informal strategy (common denominator strategy; 

repeated subtraction strategy; decimal strategy; unit rate strategy; and strategy of dividing 

numerators and denominators; Son & Crespo, 2009), but indicated no flexibility with referent 

units. They also might have not produced any drawing, their drawings might have been incorrect, 

or their drawings might have only shown the final answer. For the category of reasoning with 

quantities, teachers’ solution was based on reasoning with quantities. As opposed to previous 

categories, teachers in this category focused on drawings before using formal or informal 

strategies, identified referent units, and demonstrated flexibility with referent units. Their 

drawings also indicated appropriate use of mental operations such as partitioning, iterating, and 

disembedding. Specifically, teachers obtained three parts through partitioning, added two more 

fifths to make a whole stick (i.e., the referent unit), then obtained 20 pieces from the whole stick 

through partitioning and counted the number of twentieths corresponding to the 3/5 stick. 

Regarding incorrect responses, based on Isiksal and Cakiroglu’s (2011) coding scheme, we 

classified their incorrect responses into five categories: (1) algorithmically based mistakes, (2) 
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intuitively based mistakes, (3) mistakes based on formal knowledge of fraction operations, (4) 

misunderstanding of the symbolism of a fraction, and (5) misunderstanding of the problems. In a 

fraction division operation, algorithmically based mistakes included misapplication of basic 

operational rules such as inverting the first term instead of the second term (e.g., 
7

8
÷

1

3
=  

8

7
•

1

3
). 

Intuitively based mistakes consisted of inappropriate application of the properties of whole 

number operations to fractions such as thinking that one could get a smaller number when 

dividing 7/8 by 1/3 because dividing a whole number by another whole number results in a 

smaller number. Mistakes based on formal knowledge of fraction operations were based on lack 

of knowledge about the properties of fraction operations such as thinking that a given problem 

was a fraction multiplication problem ( 
7

8
•

1

3
 ) instead of a fraction division problem ( 

7

8
÷

1

3
). 

Misunderstanding the symbolism of a fraction was based on limited understanding of the 

notation of fractions such as considering 7 as denominator and 8 as numerator for 7/8. Lastly, 

misunderstanding the problem results from limited understanding of the problem due to lack of 

mathematical knowledge or language.  

 Data Analysis 

We used an inductive content analysis approach for analyzing teacher responses to the Stick 

problem (Grbich, 2007). First, we created an Excel spreadsheet of the raw data of teachers’ 

responses, including images and descriptions. Then, we made initial coding of a subsample of 

the data to ensure reliability in our analysis and finalized coding schemes with examples. We 

then identified each response as correct or incorrect and coded all data based on the finalized 

coding schemes. This process was done for all data individually and we met to discuss 

discrepancies in coding. Our coding scheme allowed us to examine how teachers solved the 

problem and we report percentages of teachers who demonstrated flexibility with referent units 

and/or used certain strategies (formal and informal) for the correct solutions, along with certain 

errors for the incorrect solutions. 

Results 

Based on teachers’ responses to the Stick problem, while relatively high number of teachers 

(218 out of 236 teachers; 92.4%) provided correct solutions, 18 teachers (7.6%) provided 

incorrect solutions. Regarding the correct solutions of the 218 teachers, 93 teachers (39.4%) 

demonstrated reasoning with quantities through drawing (i.e., flexibility with referent units); 106 

teachers (44.9%) showed reasoning through computations, although they were not tied explicitly 

to quantities; and 19 teachers (8.1%) showed reasoning based only on computations.  

The 93 teachers who showed reasoning with quantities (i.e., flexibility with referent units) 

focused on the drawing before computing any formal or informal strategy, obtained three parts 

through partitioning, added two more parts to make a whole stick, obtained 20 pieces through 

partitioning each part into 4 pieces (totally 20 pieces), and counted the number of pieces that 

align with the 3/5 stick (Figure 3). 
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Figure 3: Example of teacher solution based on reasoning with quantities 

 

The 106 teachers who showed reasoning through computations not tied explicitly to 

quantities used informal strategies for solving the Stick problem (Figure 4). In particular, while 

almost all of those teachers (103 teachers) used the common denominator strategy, by making 

equivalent fractions between 3/5 and 1/20, the remaining three teachers relied on decimal 

strategy by performing the division operation as a result of converting the given fractions into 

decimals. On the other hand, the strategies of repeated subtraction, unit rate, and dividing 

numerators and denominators were not present.    

 

  

Figure 4: Example of teacher solution based on the common denominator strategy 

 

The 19 teachers who showed reasoning based only on computations, 18 of them relied on the 

invert and multiply strategy and converted the fraction division expression into multiplication 

and only one teacher used the cross-multiplication by multiplying the numbers across each side 

of the equation (Figure 5).  
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Figure 5: Example of teacher solution based on the invert and multiply strategy 

 

Regarding the incorrect solutions of the 18 teachers, 11 teachers showed misunderstanding of 

the problems, indicating limited understanding of the problem due to lack of mathematical 

knowledge or language. These teachers interpreted 1/5 of the given stick as “20 pieces” and 

stated that the answer is “60 1/20 pieces” or partitioned 1/5 of the given stick into 5 pieces 

instead of 4 pieces. Three teachers showed mistakes based on formal knowledge of fraction 

operations, indicating a lack of knowledge about the properties of fraction operations. These 

teachers appeared to consider the Stick problem as a fraction multiplication problem by 

multiplying 3/5 by 1/20 instead of fraction division problem. One teacher showed 

misunderstanding the symbolism of a fraction by multiplying the numerator and denominator 

with different numbers to make an equivalent fraction. Three teachers made incomplete drawings 

and wrote that they have no idea about how to solve the problem. Lastly, none of the teachers 

made algorithmically based mistakes and intuitively based mistakes.  

Discussion 

The purpose of the present study was to examine U.S. in-service elementary and middle 

grades teachers’ responses to a measurement fraction division problem using a length model 

including their strategies and types of errors. One main result was that a relatively high number 

of teachers responded to the problem correctly. While only 47% of the preservice teachers (52 

out of 111 preservice teachers) provided correct solutions for the Stick problem in Lee’s (2017) 

study, the percentage of the in-service teachers with correct solutions was 92.4% (218 out of 236 

teachers) in our study. A second main result of the present study was that a greater percentage of 

teachers had the quantitative meanings of measurement division, indicating flexibility with 

referent units, in comparison to those teachers and preservice teachers in past research (e.g., 

Authors, 2022; Baek et al., 2017; Copur-Gencturk, 2021; Lee, 2017; Lee et al., 2011; Son & Lee, 

2016). While only 11.7% of the preservice teachers (13 out of 111 preservice teachers) in Lee’s 

(2017) study showed flexibility with referent units through reasoning with quantities, the 

percentage of the in-service teachers who demonstrated flexibility with referent units was 39.4% 

(93 out of 236 teachers). 

Furthermore, our results reveal that in-service teachers in our study outperformed preservice 

teachers in Lee’s (2017) study in terms of the use of strategies and types of errors. In particular, 

while 44.9% of the in-service teachers (106 out of 236 teachers) in our study showed reasoning 

through computations although they were not tied explicitly to quantities, the percentage of the 

preservice teachers who reasoned through computations not tied explicitly to quantities in Lee’s 

(2017) study was only 7.2% (8 out of 111 preservice teachers). Those in-service teachers relied 

on common denominator and decimal strategies as informal strategies, but not on repeated 

subtraction, unit rate, and dividing numerators and denominators. This result suggests that like 

preservice teachers, in-service teachers in the U.S. may have insufficient experience of providing 

alternative strategies for solving fraction division problems. Thus, professional development 

programs should emphasize teachers using a variety of informal strategies in classroom 

instruction.  

In terms of types of errors, only 7.6% of the in-service teachers (18 out of 236 teachers) in 

our study responded to the problem incorrectly. Most of those teachers’ errors were based on 
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mistakes resulting from misunderstanding of the problem based on Isiksal and Cakiroglu’s 

(2011) framework. As opposed to our study, 53% of the preservice teachers (59 out of 111 

preservice teachers) in Lee’s (2017) study responded to the problem incorrectly and most of their 

errors were related to mistakes resulting from misunderstanding of the problem, mistakes based 

on formal knowledge of fraction operations, and algorithmically based mistakes.  

Despite a better positive picture in terms of a greater percentage of in-service teachers who 

demonstrated flexibility with referent units compared to prior studies, teachers should be 

supported in teacher education and professional development programs to improve their 

flexibility with referent units. These supports include awareness of different visual models, such 

as length, area, and set, emphasis on making drawings in classroom settings, and encouragement 

for identifying the referent units in the drawings. Future studies should focus on examining in-

service teachers’ flexibility with referent units in partitive fraction division or fraction 

multiplication problem situations.   
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In this paper, we present Epistemic Network Analysis of 32 teachers knowledge resources used 

to solve two different tasks. Using Drijver’s (2018) framework about ways technology can be 

used for learning, we argue that using technology supports teachers to activate more knowledge 

resources and to use them in connected ways. We propose that this may offer insight into the 

design of professional development aimed at supporting teachers in the development of 

connected knowledge.  

Keywords: Technology, Teacher knowledge, Rational Numbers and Proportional Reasoning 

Purpose 

In this paper, we address two research questions: 

• What knowledge resources do teachers use to solve two proportional reasoning tasks? 

• Are those knowledge resources connected in ways that seems to support Skills 

Practice, Conceptual Understanding, or some combination of both? 

We argue that technology provides a different experience than static tasks for teachers as they 

engage with mathematics, thus allows a different kind of thinking. Further, we suggest that using 

technology to think about mathematics opens opportunities for teachers to develop more 

connected understandings of the mathematics they teach. We end with a discussion of the 

implications of this work.  

Perspectives 

We draw from two perspectives to make our case for the value of technology in supporting 

teacher conceptual understanding. First, we use a Knowledge in Pieces (KiP) lens to contemplate 

cognition and how it can be conceived of in teacher learning. Then, we draw from Drijvers’ work 

on technology in mathematics education to situate the ways in which we use technology. 

Knowledge in Pieces 

Knowledge in pieces is a theory of conceptual change that considers knowledge to be 

comprised of fine-grained resources (diSessa, 1988, 2018; diSessa, et al., 2016). In KiP, learning 

can be viewed as creating new knowledge resources, refining existing knowledge resources, 

and/or creating connections between and among knowledge resources. For this paper, we are 

particularly interested in the connections participating teachers were making between their 

knowledge resources. 

To make knowledge resources visible and to focus on interactions between knowledge 

resources, we rely on Epistemic Network Analysis (ENA; Shaffer et al., 2009). ENA is a 

quantitative ethnography (Shaffer, 2017) method that, in our case, allows knowledge resources to 

act as nodes and for lines between nodes to indicate the relative frequency of the co-occurrence 
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of the knowledge resources. A co-occurrence, for us, is any instance in which more than one 

knowledge resource is used to solve a single task. We consider co-occurrences to be proxies for 

connections between knowledge resources. 

Technology in Mathematics Education 

In their conceptualization of the uses of technology in mathematics education, Drijvers and 

his colleagues (e.g., Drijvers, 2015, 2018) have developed a heuristic for technology use in 

mathematics education. They posit that the ways in which we think about technology in 

mathematics education should be driven by the function of the technology rather than the form of 

the technology. Thus, they conceive of technology as either helping us Do math or Learn math. 

And, in the case of technology that helps us Learn math, there is technology that helps with 

Skills Practice and technology that helps with Conceptual Development. It is this kind of 

technology that is the focus of this paper. By using KiP, we are able to think about knowledge as 

a series of fine-grained understandings that can be grouped in myriad ways. By using the 

Drijvers framework, we have a language for characterizing the ways in which the knowledge 

resources are interacting. 

Methods 

The data reported here comes from a pair of interviews conducted with a convenience sample 

32 middle grades teachers from four states. The first interview was a think aloud protocol in 

which the participants responded to a set of tasks using a LiveScribe pen to capture and 

coordinate their voices and inscriptions. The second interview was a face-to-face interview with 

similar mathematics tasks, however some of the tasks used dynamic sketches on an iPad. The 

live interviews were recorded with two video cameras: one focused on the participants’ faces and 

one on anything they wrote or at which they pointed.  

For this analysis, we focused on two tasks: the Santa Task (Figure 2) and the Bears Task 

(Figure 3). For the Santa Task, which was based on a task from de Bock, Van Dooren, Janssens, 

& Verschaffel, 2002), we provided scaffolded prompts to support teachers in thinking about the 

situation. These included: 

• Ms. Yarbrough’s class had two favorite answers. About 40% of her class chose 18 ml and 

about 40% chose 54 ml. What might the students who were wrong been thinking about? 

Is that something you see commonly with your own students?  

• One of Ms. Yarbrough’s students drew rectangles around the images. Do you think this is 

a helpful strategy for a student? Why or why not?  

 For the Bears Task, we asked the teachers: 

• Describe what is happening as you drag the slider. How is the image changing? When we 

started, the two figures were similar. Where you have ended, are they still similar?  

• How would you characterize the growth as you move the slider? Is there anything in the 

relationship of the bears to each other that stays the same? How would you describe how 

many times larger the new bear is than the original? How would you describe the scale 

factor of the new bear to the original?  
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• What is the ratio of the bear’s belly to the frame? Does that ratio stay the same as the bear 

change size?  

These tasks were selected for this analysis because they engaged the teachers with similar 

mathematics, though Santa was done on paper and Bears was an interactive app. 

Data were coded using an emergent coding scheme (Weiland et al, 2021) in which each code 

was a knowledge resource. We used ENA for the data analysis (Shaffer et al., 2009), which 

meant that each utterance was coded using a binary system (present/not present). In this case, an 

utterance was the answer to a single task. Once coding was done, the ENA webtool created the 

maps of participants’ use of knowledge resources. For these maps (Figure 2a & b), the nodes 

indicate the knowledge resources being used by the participants. The size of the node is relative 

to its frequency in the dataset. The lines connecting knowledge resources indicate that those pairs 

of knowledge resources occurred together within an utterance. The thickness of the line indicates 

the relative frequency of the co-occurrence.  

 

 

Figure 1. The Santa Task (based on de Bock, Van Dooren, Janssens, & Verschaffel, 2002) 

 

 
Figure 2. The Bears Task 

Results 

As shown in the ENA graphs (Figure 3a & b), the teachers relied heavily on Rules (mostly 

cross multiplication) and Scaling Up and Down to solve the Santa Task. Because they jumped to 

these two procedures, most of the teachers missed that the relationship between height and 

amount of paint is not a proportional one. The proportional relationship is between the area of the 

big Santa and the area of the small Santa (for a full qualitative analysis of the answers given, see 
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Brown et al., 2020). There were few connections made between knowledge resources, meaning 

that teachers often went straight to an algorithm and did not invoke other proportional knowledge 

resources. Most interestingly, most of the resources they did use were focused on answer finding, 

which is more related to Skills Practice than Conceptual Understanding (Drijvers, 2018). We 

argue that the only structures they attended to in connected ways were Covariation (e.g., the 

numerator and denominator change together) and the Between Measure Space relationship (e.g., 

attending to the relationship of one quantity, such as height, to the other, such as width), both of 

which were used less than the two skills.  

 

 

(a)                                                                           (b) 

Figure 3. ENA results for the static Santa Task (a) and dynamic Bears Task (b) 

 

In contrast, on the Bears Task, these same teachers did not rely on Rules at all. Further, there 

is much more interaction between knowledge resources., overall. While we still see a reliance on 

procedures with most of these interactions, we do see more variety in approaches. This suggests 

that there is something about the dynamic representation that both cues more knowledge 

resources and promotes more interaction between those resources. 

Discussion and Conclusions 

Given that learning in the KiP framework can happen through development of new resources, 

refinement of existing resources, or making new connections between resources, we posit that 

using technology-based tasks is a way to engage teachers in learning. Further, we suggest that 

doing this may support the development of connections between knowledge resources, which is 

potentially useful for supporting teacher learning. Consistent with Drijvers (2018) framework, 

the technology-based task seemed to offer more opportunity for Conceptual Understanding than 

did the static task. To this end, we propose that developing professional development that is 

designed to take advantage of technology in ways that supports the development of conceptual 

understanding may be fruitful for support teachers in better connecting their already-existing 

mathematics knowledge resources. 
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The implications of this are pragmatic. Too often, professional development is focused on 

building new knowledge without regard to the knowledge teachers already have. Because they 

are adult learners, often with degrees beyond a bachelors, teachers need professional 

development that caters to them. As shown in Figure 3, the teachers in our sample all had 

knowledge resources important for understanding proportional relationships. However, they 

needed the Bears task to activate some of them and to activate more than one in an utterance. 
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There are urgent calls for teaching methods which foster students’ problem solving in 

mathematics (NCTM, 2000; NGA, 2010). To do this, teachers and pre-service teachers (PTs) 

need the knowledge and skills to successfully teach for problem solving. This base of knowledge 

and skills is called Mathematical Problem Solving Knowledge for Teaching (MPSKT); that is, 

the knowledge needed to help students develop mathematical problem solving proficiency (Ball 

et al., 2008; Chapman, 2015). MPSKT consists of six subcomponents: knowledge of problem 

solving, problems, problem posing, students as problem solvers, and instructional practices, as 

well as affective factors and beliefs (Chapman, 2015). While some research has investigated the 

MPSKT of teachers and PTs (Chapman, 2016; 2017; Clivaz et al., 2023; Owens, 2023; Owens & 

Nolan, 2021a; 2021b; Piñiero et al., 2021), very little of this work has holistically examined the 

MPSKT of secondary PTs. This is an unfortunate limitation as secondary PTs are vital to our 

goal of fostering problem solving skills in all students.  

Purpose, Methods, and Analysis  

This poster presents details of a qualitative pilot study on secondary PTs’ problem solving 

proficiency, MPSKT, and the relationships between them. PTs (n=4), who had recently 

completed a geometry methods course which focused on how to teach secondary geometry 

topics with student-centered approaches, took part in two interviews. The first was a task-based 

interview that assessed problem solving proficiency using think aloud protocols (Cowan, 2019). 

The second was a semi-structured interview examining each of the six subcomponents of 

MPSKT. Analysis focused on describing the problem solving proficiency and MPSKT of each 

PT as well as identifying any relationships that emerged between MPSKT and problem solving 

proficiency. A future study will build on this work with a larger sample. 

Results and Implications 

PTs’ overall MPSKT was grounded in their personal experiences as students but lacked skills 

we would expect of experienced teachers. For example, when discussing their knowledge of 

beliefs and affective factors, PTs focused primarily on either the emotional needs of students or 

beliefs about the nature of mathematics, but never on both (as we would expect from experienced 

teachers). PTs typically held very little knowledge of problem posing. In addition, a complex 

interplay between PTs’ problem solving proficiency and MPSKT emerged. PTs with weaker 

problem solving proficiency tended to demonstrate weaker MPSKT. However, higher problem 
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solving proficiency did not necessarily predict comprehensive MPSKT in all six subcomponents, 

suggesting teacher educators may need to deliberately teach MPSKT. As we envision the future 

of mathematics education, we will need to better understand secondary PTs’ MPSKT and our 

role, as teacher educators, in helping them further develop their knowledge and skills to ensure 

all students develop rich problem solving proficiency.  
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In this poster, we discuss the development and validity argument for the Mathematical 

Knowledge for Teaching (MKT) of fractions measure (MKT-Fractions). Ball et al. (2005; 2008) 

defined MKT as including specialized content knowledge (SCK) and pedagogical content 

knowledge (PCK) for teaching mathematics. PCK includes knowledge of content and students 

(KCS) and knowledge of content and students (KCT). Whereas SCK involves understanding the 

different valid, and invalid, approaches to engaging in certain procedures or approaches, PCK 

involve understanding children’s mathematical reasoning (KCS) and appropriate pedagogy to 

scaffold students’ reasoning (KCT) (Ball et al., 2006; 2008).  

We surveyed 103 undergraduate students from two Midwestern U.S. universities to evaluate 

an updated version of the MKT-Fractions measure (University A=49.5%; University B=50.5%). 

Prior versions of the measure included only KCS items, while this updated measure includes 18 

multiple-choice items assessing: KCS (n=8), SCK (n=5), and KCT (n=5). Prior versions of the 

MKT-Fractions measure have collected validity evidence on test content, response processes, 

reliability and internal structure (Zolfaghari et al., 2021; 2022). In this paper, we used Rasch 

modeling to collect data on reliability and internal structure.  

Rasch analysis began with a Principal Component Analysis (PCA), which provided support 

for unidimensionality across all KCS, KCT, and SCK items (λ=2.28, disattenuated correlation = 

1.00). Item fit, another indicator of unidimensionality, suggested good model fit with an average 

mean square for item infit (MNSQ =.99, Z=.00) and outfit (MNSQ=.98, Z=.00). The samples’ 

model fit was also supported with person infit (MNSQ= 1.00, Z=.00) and outfit (MNSQ = .98, 

Z=.00). Item and person reliability provided additional validity evidence. Item reliability was .96 

with an item separation index of 5.09, indicating the measure's consistency in distinguishing 

between item difficulties. Person reliability was 0.64, with a person separation index of 1.33. 

Pragmatically, the statistics suggest participants can be categorized into two different levels 

(Boone et al., 2014). Analyses of prior versions of the MKT measure suggest the lower person 

reliability is primarily due to our sample being limited to undergraduate students, as in-service 

teachers typically score higher on PCK (Zolfaghari et al., 2021, 2024). 

Examination of validity evidence for internal structure and reliability indicates that the MKT-

Fractions measure is sufficient for evaluating teachers' mathematical knowledge for fractions. 

The results from this study show that the majority of PSTs demonstrated above-average 

knowledge in teaching fractions, as evidenced by the MKT-Fractions scores (M = .41, SD = .99), 

where 0.00 represents the average level of knowledge. This result is not surprising, given all of 
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the participants had completed at least one mathematics methods coursework and grades 3-6 

field experience. Both the mean scores and lower person reliability suggest a need for a more 

diverse sample, including experienced in-service teachers and more novice preservice teachers. 
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Chapter 6: Mathematical Processes and Practices 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

590 

 

MATHEMATICAL PROOF IN STANDARDS AND PRACTICES: A CONTRADICTION 

Shahabeddin Abbaspour 

Tazehkand 

University of Central Florida 

Shaha8@ucf.edu 

Maral Karimi 

University of Central Florida 

Maral.Karimi@ucf.edu 

Farshid Safi 

University of Central Florida 

Farshid.Safi@ucf.edu 

Mathematics educators universally agree that mathematical proofs stand as the core of 

mathematics, highlighting a significant consensus on their importance. Despite this agreement, 

research consistently shows that both students and teachers encounter substantial difficulties in 

teaching and learning proofs. These challenges underscore a critical gap in educational 

practices and comprehension. This study wants to bring the attention about the importance of 

studying the proof in standards and practices which directly affects teacher preparation 

programs. 

Keywords: Reasoning and Proof, Standards, Teaching Practices. 

There has been extensive research on mathematical proofs in school mathematics. Students 

are not only expected to learn but also to construct various types of proofs, including proof by 

contradiction, proof by induction, pictorial proofs, paragraph proofs, flowchart proofs, and two-

column proofs. Despite the emphasis on its role and importance in school mathematics, research 

shows that no matter what grade they are in, students encounter difficulties when involved in 

proof-related activities (Weber, 2001; Knuth et al., 2002). This problem is universal and not 

limited to school students; even college-level mathematics major students struggle when working 

on proving mathematical statements (Zazkis, Weber & Mejia-Ramos, 2014). However, this 

doesn’t mean students are incapable of building proofs. According to Lester (1975), students in 

all grades can understand and even construct proofs despite facing obstacles and difficulties. 

According to Usiskin (1987), a root problem is how students are introduced to proof in 

school mathematics. It seems teachers are not adequately prepared, lacking exposure to proving 

tasks, which hinders their ability to teach proofs effectively and engage students in proof-related 

activities. A significant issue is the absence of explicit experiences to enhance content and 

pedagogical teaching knowledge (Abbaspour, 2022). It was for this reason that the researchers of 

this study tried to examine the standards and teaching practices to investigate if the expectations 

the mathematics education community has of students are consistent with the standards and 

practices defined for teachers to be prepared to help students learn mathematical proofs. For this 

purpose, this study analyzes the role of proof in NCTM’s Principles and Standards for School 

Mathematics (2000) and Common Core State Standards for Mathematics (NCTM, 2010), 

Principles to Actions (NCTM, 2014), Catalyzing Change in High School Mathematics (NCTM, 

2018), Standards for the Preparation of Secondary Mathematics Teachers (NCTM, 2020), and 

AMTE’s Standards for Preparing Teachers of Mathematics (2017). 

Standards and Teaching Practices 

The Common Core State Standards for Mathematics mention proof primarily in high school 

geometry, without significant expansion. "Principles to Action" focus on reasoning and problem-

solving but lack explicit proof instruction, missing guidance for teachers. "Catalyzing Change in 
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High School Mathematics" broadens proof application across disciplines, detailing the creation 

and validation of proofs. The "Standards for the Preparation of Secondary Mathematics 

Teachers" highlight the importance of reasoning and proof construction but lack detailed 

preparation standards, suggesting Linear Algebra for proof engagement. The "Standards for 

Preparing Teachers of Mathematics" emphasize mathematical arguments and reasoning, offering 

general course guidance but insufficient preparation standards for effective proof teaching. 

 

Conclusion 

It can be seen that the Standards go in depth with details when it comes to expectations for 

students regarding learning proofs. However, when reviewing the standards and preparations for 

teachers to teach proofs efficiently, there is a huge gap, which seems to be one of the underlying 

problems behind students' difficulties and teachers’ obstacles in teaching and learning proofs. 

This study aims to highlight the importance of studying proof standards and practices, which 

directly affect teacher preparation programs. 
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Recent studies underscore the importance of teaching logic in elementary education, stressing its 

crucial link to reasoning. This study aims to analyze students' mathematical activity during logic 

tasks, employing Toulmin’s (2003) theoretical framework to explore how students adapt to the 

specific rules of a logic game. The results provide diverse problem-solving strategies used by 

students, alongside the challenges they faced while reasoning. The discussion encompasses the 

challenges and the potential of such tasks to develop mathematical reasoning skills and the 

necessity of nurturing this skill in educational practices. 

Keywords: Reasoning and proof, elementary school education, problem-solving 

Introduction 

In this project, we experiment a sequence of mathematical logic tasks, progressively 

integrating language and mathematical concepts, with two groups of 4th graders in primary 

school to explore how logic tasks could foster the development of mathematical reasoning. This 

angle is interesting given that mathematical reasoning lies at the heart of the mathematical 

activity (Mason et al., 2010). Moreover, its significance is reflected in various curriculums and 

institutional documentation (e.g., Common Core State Standards Initiative, 2024), highlighting 

its pivotal role in shaping educational practices. Yet recent and increasingly convergent research 

underscores the importance of teaching logic in elementary school: "logical thinking is not a 

natural talent [...], but a skill that can be trained, like say muscles are trained at the gym" 

(Adkhamjonovna, 2022, p. 915). The aim of this study is to describe and analyze the 

mathematical reasoning of elementary school students as they solve a logic game task. 

Theoretical framework 

The concept of mathematical reasoning is often used intuitively, without definition or 

characterization (Yackel & Hanna, 2003). Given the context of logic games established in this 

research, Toulmin's (2003) model helps us to describe the potential of mathematical reasoning 

for this type of task. Indeed, this model sheds light on the argumentative, logical and persuasive 

aspects of mathematical reasoning, offering a deeper understanding of the cognitive process 

involved. It emphasizes the importance of context and therefore can be used to understand how 

students adapt their reasoning to the game specific rules. The model enables the highlighting of 

reasoning steps and their analysis, facilitating the study of what Knipping (2003) calls chain of 

reasoning. Toulmin’s model emphasizes three main elements: data, warrant, and claim. Starting 

from data and an often implicit warrant, it is possible to formulate a claim. Substantiating a claim 

requires offering evidence which constitutes the data. It is also necessary to convince oneself, 

that is to accept as valid or plausible the connection between the data and the claim. This is the 

role of the warrant, it supports the inference from the data to the claim (Toulmin 2003).  
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Three other elements may appear in a reasoning step: the backing, the qualifier and the 

rebuttal. The backing supports the warrant and consists of elements that have a certain consensus 

in a given community, upon which one can rely. The qualifier refers to the epistemic value of the 

claim, determining its truth value or plausibility. One way to decide about the status of this 

epistemic value is to use a rebuttal. A rebuttal is a statement that, if proven true, leads to the 

rebuttal of the claim, admitting it to be false.  

Method 

To achieve our goal, we selected one logic task and undertook a descriptive case study (Yin, 

2018). The logic task examined in this paper was part of a larger project conducted over an entire 

year in two 4th grade classes (9- and 10-year-olds).  Researchers visited the classrooms once or 

twice a month to introduce new types of tasks, which were then piloted by the teachers in the 

following weeks. The researchers interviewed six students to study their mathematical activity in 

greater depth. All activities were filmed. We chose this task firstly because it was used during the 

initial interview. Secondly, the task is a strictly visual mathematical logic game2, minimizing the 

influence of reading skills and prior mathematical knowledge. Thirdly, the order in which the 

clues are presented does not strictly lead to a deductive chain, allowing for different types of 

claims and various reasoning steps.  

The objective of this logic puzzle is to place all nine geometric pieces within a 3x3 grid, 

following the provided visual clues (See Figure 1). Each clue offers information related to the 

placement of pieces. While several strategies are possible, we opted to encourage students to 

interpret the clues sequentially, noting their resolutions as they progress (by temporarily 

positioning pieces in the grid).  

 

Figure 1: Logic puzzle used in this research (Lyons and Sabinin, 2015)  

A qualitative analysis helps us examine the meaning of the material collected through 

Toulmin’s (2003) framework. Firstly, we looked at the task in terms of its potential to foster 

students' mathematical reasoning. Second, we construct an analysis grid for the task, highlighting 

the elements of potential reasoning steps in this type of task for each of the puzzle's clues. Third, 

we studied the nature of the task according to two criteria: explicit/implicit and positive/negative 

information. We determined a list of possible inferred claims that can come from the data and 

warrant; and analyzed their qualifier (or epistemic value). Secondly, we studied the mathematical 

activity of the six students who solved this task using the same framework. 

 
2 https://apps.defimath.ca/gym-logique/  

https://apps.defimath.ca/gym-logique/
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Results 

Task Analysis Results 

Based on Toulmin’s (2003) model, we can say that it is the combination of multiple clues that 

provides enough information to generate the data and warrants necessary to infer all the claims to 

solve the puzzle. Furthermore, the mathematical reasoning that takes place relies  on some shared 

ground (backing), i.e. the common knowledge (the name of the geometric piece, the color, the 

position) and to the "graphic" elements established by the task itself (the grid is 3x3, the waving 

pattern indicating the place of a piece (e.g., Clue 1), the X indicating the impossibility of placing 

a piece).To carry out our analysis, we processed the indices one after the other, since it was the 

strategy that has been valued in class. We present in table 1 a summary of the analysis of the first 

four clues.  

Table 1: Analysis of the first four clues 

 

Clues Data Inferred claims (qualifier) Chains of reasoning 

 

Any form  

Blue  

Top left 

Corner 

Blue circle is top left (P) 

Blue square is top left (P) 

Blue triangle is top left (P) 

One blue piece is top left (T) 

 

 

Circle 

Red 

Bottom line, 

center or 

right corner 

Red circle is center of bottom 

line (P) 

Red circle is bottom right corner 

(P) 

Red circle is bottom center or 

right (T) 

 

 

Square 

Blue 

Center or 

Bottom line, 

2nd or 3rd 

column 

Blue square is center (P) 

Blue square is center of bottom 

line (P) 

Blue square is center 3rd column 

(P) 

Blue square is bottom right 

corner (P) 

Blue square is in one of the four 

right bottom places (T) 

With Clue 1:  

Blue square is top left (F) 

 

 

Triangle 

Any color 

NOT 1st nor 

2nd column. 

3rd column 

Red triangle is top right corner 

(P) 

Red triangle is center 3rd column 

(P) 

Red triangle is bottom right 

corner (P) 

Blue triangle is top right corner 

(P) 

Etc. 

With Clue 1:  

Blue triangle is top left (F) 

Blue circle is top left (T) 

With Clue 2: 

Red circle is bottom right 

corner (F) 

With Clue 3:  

Blue square is in the right 

column (F) 

Blue square is center (T) 
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There is no circle nor square in 

the last column (T) 

Legend: italic (multiple possibilities), blue (implicit data), red (negative data), P (plausible), 

F (false), T (true) 

The first thing we can notice from table 1 is that Clues 1 and 2 are independent and do not 

provide enough information to place a piece. We must process all clues up to the fourth one 

before being able to place a first piece with certainty, i.e. to infer a true positive statement about 

one singular piece. However, this true statement was first inferred as plausible while processing 

Clue 1. To validate that claim, Clue 4 must be combined with Clue 1 and Clue 3. Clue 4 also 

refutes inferred plausible claims from Clues 1, 2 and 3. Those refutations will be useful later to 

eliminate possibilities and solve the puzzle. Moreover, Clue 4 is the first one with negative 

information. For all those reasons, we can hypothesize that Clue 4 could be an obstacle to the 

resolution of this puzzle.  

Analysis of students’ mathematical activity 

We analyzed the mathematical activity of the students by comparing their traces and 

discourses for each clue. Two strategies were observed for Clue 1. Four students placed all blue 

pieces in the top-left square, resulting in three plausible claims. Two students opted to place only 

the blue circle, inferring the claim "the blue circle goes in the top-left corner" and considering it 

true. Presumably, they initially scanned all the clues before processing them one by one. For 

Clue 2, all students positioned the red circle between the two bottom-right squares (See Figure 

2). For Clue 3, all students place the blue square at the intersection of the four bottom-right 

squares (See Figure 2). Regarding Clue 4, students place a pile of triangles either at the top of the 

right-hand column or next to it (See Figure 2), except for E6, who stated, "we don't know yet." 

E6 seemed unable to infer that the triangles must be in the last column from the data and warrant 

for this clue. 

      
Figure 2: Traces of students E4 and E5 after processing Clues 1 to 4. 

Our previous analysis of the task suggests that Clue 4 could lead to a chain of reasoning; it 

changes the epistemic value of the claims made in Clues 1, 2 and 3 from probable to true. We 

now know the place of the red circle and, consequently, the place of the blue square. However, 

none of the students relocate these pieces at first, thereby failing to alter the epistemic value of 

the previously inferred claims. This analysis confirms that Clue 4 certainly represents a turning 

point in this puzzle. Contrary to Clue 1, they cannot manage the consequences of this clue by 

relying solely on their traces. Indeed, for Clue 4, they seem to remain in a state of uncertainty. 

They are unable to make a definitive placement for the red circle and the blue square. Certainly, 

this chain of reasoning represents complex reasoning. It requires the student to manage several 

elements that can change status (e.g., the claim becomes a refutation for a previous reasoning 

step). 
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Discussion and Conclusion 

This project aims to describe the mathematical reasoning of primary school students through 

their engagement in logic tasks.  In both analysis (the task and the students’ mathematical 

reasoning), Clue 4 appeared as an obstacle.  Firstly, Clue 4 provokes a particularly complex 

chain of reasoning. The claims inferred from this clue can be used to validate or refute previously 

established claims with plausible status. This is reminiscent of Knipping's (2008) proposal 

around local and global arguments. She suggests that, starting from local arguments, it is possible 

to restructure the whole reasoning. That's what is at stake here. The processing of Clue 4 is local 

but enables a restructuring of previous reasoning steps. This type of reasoning chain is complex 

and represents advanced reasoning. The student participants seem not to be able to change the 

epistemic value of previously established claims, keeping their already produced traces. The 

change in epistemic value is based on an argument that must be accepted as true by the student. 

They must be convinced. It is the argumentative aspect, among others, that students must be able 

to use when constructing proofs, for example. However, even in a highly controlled environment, 

students have difficulty relying on these established facts as true. This environment is controlled, 

e.i. their choices are restricted by the task. A very narrow set of claims is possible, and the 

backing is rather clear and circumscribed. This is different from an open-ended task, where 

students rely on a broader set of mathematical facts to formulate a conjecture with no alternative 

if it turns out to be false. Our analysis also highlights the challenge of managing these traces. 

Students must decide what information to collect, how to collect it, and how to use these traces 

to guide their reasoning.  
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The models of teaching and learning mathematical proving and mathematical proofs are 

narrowly focused on the mathematics discipline. Scholars in mathematics education theorized 

the formal-embodied-symbolic triad as a basis of understanding teaching and learning 

mathematical proving and mathematical proofs. This paper, in contrast, adopts a 

multidisciplinary perspective of the teaching and learning of mathematical proving and 

mathematical proofs. By proposing a novel model of teaching and learning, this paper aims to 

improve the extant state of the teaching and learning mathematical proving and mathematical 

proofs in a PK-20 context. 

Keywords: Proof; Reasoning; Modeling 

Mathematical proving and mathematical proofs are the heart of mathematics; yet it is seldom 

the focus of students. Students in contrast view mathematics as discrete branches of 

mathematical knowledge that one usually picks up starting from Algebra 1 classes to Advanced 

Placement examinations (e.g., Calculus BC). From the teaching and learning perspective, the 

scholarly work on teaching and learning mathematical proving and mathematical proofs are 

bifurcated into teaching (by teachers) and learning (by students) perspectives. This thinking and 

way of doing things is outdated with the leveraging of generative artificial intelligence in 

learning mathematical proving and mathematical proofs. 

Objectives 

By adopting a practitioner-scholar perspective, this paper puts forth a novel theoretical 

framework of the teaching and learning of mathematical proving and mathematical proofs that 

incorporates insights from computer science, economics, epidemiology, mathematics, physics, 

psychology, and statistics. This model incorporates a diversity of approaches and emphasized the 

applications of mathematical proving and mathematical proofs beyond the discipline of 

mathematics.  

Theoretical Framework 

Discussion on the teaching and learning of mathematical proving and mathematical proofs 

tend to originate from the mathematics discipline (Stylianides et al., 2024; Tall et al., 2012). This 

paper goes beyond this narrow focus and examines mathematical proving and mathematical 

proofs from a multi-disciplinary perspective: computer science, economics, engineering, 

epidemiology, mathematics, physics, political science, psychology, and statistics (e.g., Brauer et 

al., 2019; Franklin, 1983; Gersting, 2007). 

Coming from the perspective of mathematical thinking, Tall et al. (2012) adopts a learner-

centered approach and posits that mathematical proving and mathematical proofs should be 

examined from three categories: formal, embodied and symbolic. Scholars in non-mathematics 

mailto:ychua01@wm.edu
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discipline tend to adopt an applied perspective by focusing on using mathematical proving and 

mathematical proofs to explain a real-life phenomenon. The theoretical framework is multi-level 

and its focus starts from fundamental forces from neuron level to humans, classrooms, schools, 

families, and to the large geographical areas (e.g., regions); thereby overcoming narrow dualism 

of teaching (by teachers) and learning (by students). 

Methods 

This paper adopts a review of the theories of the teaching and learning of mathematical 

proving and mathematical proofs in computer science, economics, engineering, epidemiology, 

mathematics, physics, psychology, and statistics by reviewing the top five journals of each field 

from 2010 to 2024. The first step is a title search, and the keywords include terms such as 

“proofs” and “mathematical proving,” The second step is to review the abstracts and the third 

step is to read the shortlisted articles in-depth and to tease out the models of teaching and 

learning mathematical proving and mathematical proofs.  

This paper adopts a practitioner-scholar perspective, and it will review the five most 

commonly use mathematics textbook in computer science, economics, engineering, 

epidemiology, mathematics, physics, political science, psychology, and statistics (e.g., Pipes & 

Harvill, 2014). It will also review mathematical proving and mathematical proofs courses in PK-

20 sectors in California, Florida, Massachusetts, New York, and Texas. 

 

Results 

The preliminary results show that there are fundamental models that can explain real-life 

phenomena that students can relate to. These models can be a good starting point for courses that 

would incorporate theory-based and evidence-based methods of teaching and learning 

mathematical proving and mathematical proofs. The model focuses on fundamental forces from 

the neuron level to large geographical areas (e.g., regions); thereby overcoming narrow dualism 

of teaching (by teachers) and learning (by students). In the age of generative artificial 

intelligence, my model centers on self-learning and continual learning of mathematical proving 

and mathematical proofs under highly trained mentors. 

Discussion 

This paper goes beyond the conventional way of teaching and learning mathematical proving 

and mathematical proofs. By examining how non-mathematics disciplines use mathematical 

proving and mathematical proofs to examine real-world phenomena, this paper’s model provides 

an alternative way of teaching and learning mathematical proving and mathematical proofs in 

PK20. 

 

References 
Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical models in epidemiology. Springer.  

Franklin, J. (1983). Mathematical methods of economics. The American Mathematical Monthly, 90(4), 229–244. 

https://doi.org/10.1080/00029890.1983.11971202  

Gersting, J. L. (2007). Mathematical structures for computer science. Macmillan.  

Pipes, L. A., & Harvill, L. R. (2014). Applied mathematics for engineers and physicists. Courier Corporation.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

599 

 

Stylianides, G. J., Stylianides, A. J., & Moutsios-Rentzos, A. (2024). Proof and proving in school and university 

mathematics education research: a systematic review. ZDM – Mathematics Education, 56(1), 47–59. 

https://doi.org/10.1007/s11858-023-01518-y  

Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M., & Cheng, Y.-H. (2012). Cognitive 

development of proof. In G. Hanna & M. d. Villiers (Eds.), Proof and proving in mathematics education (pp. 

13–49). Springer.  

 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

600 

 

SCAFFOLDING MOVES THAT ELICIT MODELING COMPETENCIES 

Jennifer A. Czocher 

Texas State University 

Czocher.1@txstate.edu 

Alex White 

Texas State University 

alewhite@txstate.edu 

Andrew Baas 

Texas State University 

umg8@txstate.edu 

Elizabeth Roan 

Indiana University 

eaw109@txstate.edu 

Situated within efforts to understand the complex interplay among learners, teachers, and tasks 

in mathematical modeling education, we examine how contingent scaffolding moves influence 

the modeling process. Using mixed methods, we coordinated qualitative frameworks for 

scaffolding and modeling competencies through their application to task-based cognitive 

interviews with undergraduate STEM majors. A mixed logistic regression model with participant 

random effect analyzed the temporally-linked frequencies of codes. The model sustains claims 

about the compatibility of the frameworks and predicts moves eliciting competencies. 

Keywords: modeling, advanced mathematical thinking, cognition, mathematical representations 

In any didactic situation, there is a triadic interaction among the learner, the teacher, and the 

task environment (Brousseau, 1997; Koichu & Harel, 2007). Understanding how the teacher 

influences the interaction between learner and task environment is a major research objective in 

mathematics education. In learning environments that focus on developing mathematical 

modeling skills, learners are assumed to enter with real-world knowledge (and therefore 

assumptions) that may not afford the intended mathematics (Cai et al., 2014). A number of 

studies have shown that educators may respond to the learners’ work in ways that amount to 

consistent negative feedback or diminish learner autonomy in decision-making while modeling 

(Verschaffel et al., 2020). Additionally, support which may, on the surface, seem adaptive to error 

is not always contingent to a learner’s in the moment needs (Wischgoll et al., 2015). For these 

reasons, educators have sought means for scaffolding learners’ modeling processes that maintain 

cognitive demand, endorse and extend their autonomous ways of reasoning, and do not 

inadvertently teach the idea that there is a “school math” entirely distinct from “real math” (see 

Nunes et al., 1985; Watson, 2008). Our study is situated within the broader agenda to understand 

which kinds of scaffolding moves are effective in supporting modelers as they learn to construct 

and validate meaningful models of real-world scenarios. In particular, the aim of this study was 

to investigate the influence of facilitators’ micro interventions on undergraduate STEM majors’ 

modeling processes. 

Literature Review 

Mathematical modeling is a cognitive process. 

Cognitive perspectives on mathematical modeling conceive it as a process of transforming a 

question about the real world into a mathematically well-posed problem (Kaiser, 2017). For 

example, one way the question How rapidly will a disease spread through a community? can be 

answered is by using the equation 
𝒅𝑺

𝒅𝒕
= 𝝉𝑺𝑯 as a model of the scenario. Using an equation as a 
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model means the modeler constructs quantitative meanings for the variables 𝑺 and 𝑯 which 

represent the number of sick people and healthy people at time 𝒕, respectively. This sub-process 

is known as mathematizing.  Another important sub-process of modeling is validating. This is 

done by adopting (implied or explicit) assumptions about how the world works and evaluating 

the adequacy of the resulting representation against those assumptions. Assuming that having the 

disease does not confer immunity to it is consistent with the model in the example. In general, 

modelers decide which real-world conditions and assumptions are important (or not) to 

incorporate into their model as mathematical properties, parameters, and relationships 

(Schwarzkopf, 2007; Zbiek & Conner, 2006). This sub-process is known as simplifying & 

structuring. Mathematical modeling cycles (MMCs) provide a descriptive framework that 

organizes the cognitive sub-processes as a set of phases connecting stages of model construction 

(Blum & Leiß, 2007). Table 1 shows Blum and Leiß (2007)’s cycle for the stages a modeler 

passes through and the sub-processes that connect those stages. 

Table 4 Modeling competencies from (Blum & Leiß, 2007) 

Sub-Processes Definition Connects Stages 

Understanding Forming an initial idea about what the 

problem is asking for 
real world → situation 

model 

Simplifying & 

Structuring 

Identify (un)important real-world entities and 

relationships 
situation model → real 

model 

Mathematizing Represent idealized version of the real-world 

problem using mathematical conventions 
real model → mathematical 

model 

Working 

Mathematically 

Analyze or solve mathematical problem mathematical model → 

mathematical results 

Interpreting Re-contextualize mathematical results mathematical results → real 

results 

Validating Verify results against constraints real results → real situation 

 

Many studies have investigated the sub-processes and their manifestations across grade 

levels and content areas (Cevikbas et al., 2021), the characteristics of tasks that evoke them 

(Bock et al., 2015; Maaß, 2010), and the challenges learners face in carrying them out (Galbraith 

& Stillman, 2006; Klock & Siller, 2020). Importantly, many studies have found modeling does 

not proceed linearly through the sub-processes (Ärlebäck & Bergsten, 2010; Borromeo Ferri, 

2007; Czocher, 2016, 2018). Despite the low predictive power of MMC’s, they remain powerful 

descriptive models of desirable learner engagement with modeling tasks. There are robust 

analytic frameworks of observational indicators for which sub-process the modeler is engaged 

with that are applicable across content areas and grade bands (Czocher, 2016; Maaß, 2006). 

Within working mathematically, for example, learners are seen to exhibit procedural and 

conceptual mathematics knowledge whereas during simplifying and validating, learners are seen 

to articulate and justify assumptions they make and may not draw overtly on mathematical 

knowledge at all. Because carrying out the sub-processes successfully is critical to constructing a 

viable mathematical model, they are styled as modeling competencies (Maaß, 2006). Modeling 

competencies are learning objectives in their own right and a major goal of research in modeling 
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is understanding how a teacher, who is using modeling problems to teach mathematics (or to 

teach modeling), can scaffold and thereby promote learners’ modeling competencies.  

Scaffolding in mathematical modeling ought to be contingent. 

Scaffolding a learner as they develop and validate a model has two goals. The local goal is 

helping the modeler arrive at a viable model for a particular problem. The global goal is 

promoting competencies that can be used in other problems. Both are challenging because 

facilitators need to focus on learners’ current knowledge and understanding as it is expressed 

within a given sub-process of the MMC (Blum & Borromeo Ferri, 2009; Doerr, 2006; 

Schukajlow et al., 2015; Stender & Kaiser, 2015; Wischgoll et al., 2015). The high-level idea is 

that because the nature of a learner’s engagement in modeling changes across modeling 

competencies, there are likely to be differing (and specific) moves a facilitator can make that 

would support each sub-process. Providing hints towards a normatively correct mathematical 

representation when the learner is mulling over which variables are important to include robs her 

of the modeling experience and does little to cultivate competencies. Investigating this 

conjecture calls for a view of scaffolding suitable for studying learners’ productions and their 

relations to facilitator moves at a within-task grain size, rather than broader views that take into 

account classroom-level organization or cross-lesson supports (Anghileri, 2006). For these 

reasons, the active trend in modeling research is to adopt a Vygotskian view of scaffolding as an 

interactive process between a teacher and a learner that gives support to the learner as she works 

on a task she might not otherwise be able to accomplish (van de Pol et al., 2010, p. 274). 

Building on the scaffolding means and intentions framework (van de Pol et al., 2010; van de 

Pol et al., 2015), Stender and Kaiser (2015) assumed that scaffolding the modeling process may 

be productive under three conditions: the learner has disengaged (and therefore requires 

motivation to re-engage in the problem), the learner asks a question, or the learner has been 

working unproductively for an appreciable time and does not realize it. The latter case presents 

the most challenging aspect of designing and evaluating scaffolding moves. Effective in-the-

moment scaffolding is contingent, meaning that the proffered support increases facilitator control 

when the learner is struggling and decreases control when the learner is succeeding. In some 

studies, contingency is conceived as being along three-point ordinal scale (van de Pol et al., 

2015). Çakmak Gürel (2023) examined the interplay between teachers’ participation structures 

and their scaffolding methods and found that the level of support could vary according to 

modeling competency. These findings did not directly relate level of support to modeling 

competency, instead showing that scaffolding method is mediated by the teachers’ preferred form 

of engagement in the classroom. Additionally, modeling tasks can be quite open and learners’ 

engagement in the modeling process is idiosyncratic, based in part on their highly individual 

previous knowledge and experiences (Borromeo Ferri, 2006; Stillman, 2000). Thus, contingency 

for scaffolding modeling processes means adapting support to be responsive to the particularities 

of a learner’s constructed knowledge and how it manifests during the modeling process, not only 

attending to the accuracy of learners’ intermediate productions – requiring the facilitator to 

engage in diagnostic activities before intervening (Kaiser & Stender, 2013).  

To address the research need for analyzing contingent support, Stender (2016) developed a 

framework to capture contingent interventions in learners’ modeling processes that are 

responsive to a learner’s current conceptual and (partially formed) mathematical models of the 
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real world scenario, anticipate the specific cognitive needs of the learner, and are calibrated to 

provide minimal in-the-moment support such that the learner will retain control of their 

modeling process (excerpt in Table 2). We focus on the “B3 Codes”, which classify the 

contingent moves.  Stender and Kaiser (2015) found that requesting leaners to summarize the 

work they’d done thus far (code B3.1 Work Status) enabled them to continue working 

independently or aided the facilitator in diagnosing their work to proffer further supports, 

regardless of how far along the learners were in model development. Stender and Kaiser (2015) 

also found some expected associations between scaffolding moves and particular modeling 

competencies. Thus, some scaffolding moves could be competency-general while others may be 

capable of promoting specific competencies.  Stender and Kaiser (2015) also cautioned that it 

was not always possible for them to determine success of an intervention because there wasn’t 

sufficient information in the students’ work. They focused on only on the few minutes before and 

after the facilitators’ intervention into a few focal groups’ work and on normative correctness of 

the students’ models. In this study, we used task-based cognitive interviews to generate 

facilitator-learner interactions that could be analyzed for the extent that scaffolding moves 

promote modeling competencies. This maximized the amount of information available to the 

facilitator for informing which moves to attempt and to the analysis for examining the impact of 

the proffered support. We address the research question: Which modeling competencies were 

more frequently elicited by which kinds of scaffolding moves? 

Table 5 Scaffolding moves (Stender & Kaiser, 2015), fitted with instances from this study. 

Code Name Description Rule to use Example 

B3.1 Work 

status 

Learner asked to 

describe current 

work status or what 

they are currently 

working on 

Can be a direct question 

or implicit; Intended to 

orient facilitator to the 

learner’s reasoning 

Can you summarize what 

you have done here, so 

far? 

Can you share what 

you’re thinking about? 

B3.6 Prompt to 

include real-

world aspects 

Learner asked or 

encouraged to 

include a certain 

aspect 

Learner asked to add an 

aspect to the model. Can 

be used to increase 

complexity or to draw 

attention to specific 

variable or quantity 

Are there any factors that 

negatively influence the 

number of current 

infections? 

B3.10 Request 

reason or 

explanation 

Interviewer 

requests a reason, 

explanation, or 

justification 

The reason can be about 

assumptions made, refer 

to algebra steps, or to the 

whole modeling process 

Why did you choose 

multiplication here? 

What leads you to think 

that way? 

Methods 

We used explanatory sequential mixed methods (Creswell, 2014). We deductively coded 

task-based interviews according to the modeling competencies framework for participants’ 

modeling processes and the contingent scaffolding framework for interviewer moves. The 

quantitative analysis used mixed logistic regression model with a participant random effect. 

Data Collection 
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Twenty four undergraduate STEM majors at a large southern university were recruited from 

differential equations courses or courses listing it as a pre-requisite to participate in a set of 10 

hour-long task based interviews conducted over zoom. Each participant worked on between four 

and eleven modeling tasks across the sessions. The modeling tasks had well-defined goals and 

ill-defined answers (Yeo, 2007) and were designed based on canonical problems from 

differential equations featuring feedback loops. We studied participants’ model construction 

(simplifying & structuring, mathematizing), interpretations of models (interpreting), and 

justifications of model adequacy (validating) and ignored understanding and working 

mathematically. The tasks were given as written statements so the understanding competency is 

primarily indicated by “reading the problem statement” (Czocher, 2016), and occurs without 

contingent scaffolding. Additionally, many of the resulting differential equations models cannot 

be solved analytically, so we did not ask for their solutions (also, contingent support would be 

highly tailored to the mathematical content instead of participants’ modeling needs).  

The tasks were sequenced so that later tasks presented scenarios whose mathematical 

structures subsumed the structures of earlier tasks.  The first 4 tasks included embedded 

scaffolding (sub-tasks) oriented towards learners’ quantitative reasoning to aid them in 

constructing or transferring quantitative structures to the task scenario (Moore et al., 2022; 

Thompson, 2011). The remaining tasks did not include embedded scaffolding and featured only 

contingent scaffolding provided by the interviewer. Not every participant saw all tasks, 

depending on how “far” they got through the trajectory, which was based on their capacity to 

work autonomously on the tasks. A lead interviewer and a witness from the research team were 

present during each interview (Steffe & Thompson, 2000). The interviewer intervened in the 

participants’ modeling process if the participant requested help, if it seemed that the participant 

got stuck, or to generate and test conjectures about the participants’ ways of reasoning about the 

mathematical or real-world aspects of the task. The probing questions were designed to focus on 

aspects of quantities and quantitative reasoning, but overall interviewer turns were formulated so 

they could map to the scaffolding moves framework. The alignment between interviewer moves 

and the scaffolding framework was achieved through several rounds of pilot interviews and 

subsequent analysis, not reported here. In this paper, we consider only the tasks without 

embedded scaffolding to isolate the influence of contingent scaffolding. The dataset for this 

study comprised 51 hour-long modeling sessions. 

Table 6 Summary of interview tasks 

Task Name Intended Canonical Model 𝑛  Median Task Time 

Tropical Fish Contaminated tank 18 1:10:11 

Tuberculosis Two compartment disease transmission 17 0:47:07 

Ebola Three compartment disease transmission 11 0:53:03 

Bobcats & Rabbits Two-species predator prey 2 1:04:44 

Diffusion Fick’s first law (one dimension) 2 0:20:18 

Kidneys Dialysis across a one-dimensional membrane 1 0:42:26 

Data Analysis 

Qualitative analysis proceeded with deductive coding procedures based on pre-defined, 

published codes for engagement in modeling processes (MMC codes) and contingent scaffolding 
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moves (B3 codes). Participant engagement and interviewer moves were coded separately. To 

code for participant engagement, we viewed the videos in MaxQDA  and assigned an MMC code 

if an indicator for that code could be observed in the participant’s speech or writing. The MMC 

codes were not mutually exclusive; a participant’s actions at a given time could indicate both 

interpreting and validating, for example. Start and stop times for the codes were determined 

independently of the start and stop times for other codes. Because much of the modeling process 

takes place in the mind of the modeler, when a modeler “really starts” to make assumptions is 

not accessible information. Thus, we assigned a timestamp to the earliest moment there was 

verbal or written evidence of an indicator for the code. To code interviewer moves, the 

recordings were segmented into durations of 30s and each segment was assigned each 

intervention code the segment evidenced. In this way, the scaffolding moves codebook produced 

time series corresponding to if the code is “on” or “off” during each 30s segment. Pilot studies 

(not reported here) adapted the scaffolding moves codebook to the research setting.  We then 

mapped each instance of a scaffolding move to the MMC by identifying which stage of model 

construction the intervention referenced (situation model, real model, mathematical model, 

mathematical results, real results). For example, the move “Let's work on just the susceptible and 

infectious. And we'll pick back up the removed later” was coded as B3.23 Narrowing scope 

because the interviewer suggested the participant to ignore the removed population. Because the 

move referred to the distinct populations identified by the learner (susceptible, infectious, 

recovered), we inferred it to refer to the Real Model stage of the MMC. In this way, we obtained 

a description of the move and its modeling-stage referent. 

Due to the complexity of the codebooks, total duration of the 51 sessions, and planned 

quantitative models, our primary concerns about reliability were the chance of missing codable 

segments and consistent application of the codebooks across participants and tasks. Thus, two 

analysts independently coded each event. To mitigate coder drift, six pairs of analysts were 

formed from four research team members and rotated. Pairs met regularly to reconcile codebook 

application and resolve disagreements based solely on code definitions. Since neither codebook 

was mutually exclusive, multiple codes could be added to the same data segment if warranted. 

Remaining disagreements were considered by the whole group and resolved by consensus.  

To investigate the impact of the contingent scaffolding moves (B3 codes) on the modeling 

competencies (MMC phases), at each instance of a B3 and for each MMC phase, we determined 

if the competency was observed during the subsequent two-minute window.  If the competency 

was observed at least once in the window, we said the B3 move was taken up by the participant.  

Combining the results across tasks and participants, we estimated the probability of uptake for 

each competency and set of B3 codes.  

As seen in Table 4, the number of instances observed varied considerably by competency. As 

expected, understanding (233) and working mathematically (261) competencies were rarely 

elicited, and so were excluded from analysis. However, validating was observed nearly twice as 

often as interpreting. To account for variation, we estimated a base probability under the null or 

no effect model where the null assumption is that MMC codes are uniformly distributed across 

the sessions.  Under the null model, we let 𝑋𝑘 be the number of instances of MMC code 𝑘 in a 

given two-minute window. Then 𝑋𝑘 follows a binomial distribution with size equal to the total 

number of instances of code 𝑘 and probability equal to 2 divided by the total combined time of 
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the sessions. The base probability is 𝑝𝑏𝑘
= 𝑃(𝑋𝑘 > 0).  We then normalized the probability of 

uptake, by computing an odds ratio: 

OR = 
(𝑝/(1−𝑝)

(𝑝𝑏𝑘
/(1−𝑝𝑏𝑘

)
. 

If the uptake probability equals the expected value under the null model, then 𝑂𝑅 = 1, and 

indicates the contingent scaffolding move is not associated with an increased uptake of 

competency 𝑘.  On the other hand, 𝑂𝑅 > 1 indicates that the contingent scaffolding move 

promotes competency 𝑘.    

Initial investigations indicated that the proportion of uptake depended on the modeling stages 

referred to. Hence, we used the analysis of B3 code instances in terms of model construction 

stage to collapse to four broad categories: Real (scaffolding move refers to situation and/or real 

model), Math (scaffolding move refers to mathematical model), Both (scaffolding move refers to 

both Real and Math), and Neither (scaffolding move refers to neither Math nor Real). Only 15 

instances of intervention codes referring only to math result, 14 referring only to real result, and 

9 referring to both were observed. We excluded the low counts. Instances of B3.10 Request 

Reason or Explanation could fall into distinct secondary categories, depending on the stage 

referred to by the specific move at that time in the interview. 

Results and Interpretations 

Figure 1 shows variation in the odds of uptake of each competency following interviewer 

moves referring to the stages of model construction.  To fully characterize the differences 

observed in Figure 1, for each competency we fit a mixed logistic regression model with a 

participant random effect, 𝒖𝒊, to account for dependence (Agresti, 2012): 

log (
𝑝

1 − 𝑝
) =  𝛽0 +  𝛽1Real +  𝛽2Math +  𝛽3Both + 𝑢𝑖 

Results of the models are shown in the Relationship with Stage Referred to column of Table 4. 

“𝐴 < 𝐵” indicates that the Odds of uptake for that competency is significantly less for stage 𝐴 

than 𝐵.  “𝐴 = 𝐵” indicates no significant difference. 
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Figure 3 Odds ratio of uptake of modeling competency by stage of scaffolding move 

referred to. 

  Table 7 Summary of competencies, relationship with stages referred to, and log odds for 

three of the contingent scaffolding moves from Table 2 

Competency Count Relationship Stage Referred to B3.1  B3.6  B3.10  

Simplifying & 

Structuring 
1218 Neither = Math = Both < Real 

-0.289 0.027 -0.100 

Mathematizing 929 Neither = Math < Real = Both 0.391 0.943 -.656 

Interpreting 787 Neither< Real = Math < Both 0.208 0.408 0.192 

Validating 1428 Neither< Real = Math = Both 0.552 -0.139 -0.101 

 

As expected, contingent scaffolding moves referring to the Real stages were much more 

likely to elicit simplifying/structuring than those referring to other stages. Specifically, the odds 

are 1.4 times expectations under the null model.  Scaffolding moves classified as Real and Both 

had the greatest odds of eliciting mathematizing, which is sensible because the mathematizing 

competency bridges thinking about real-world conditions and assumptions to reasoning about 

mathematical properties and parameters (Zbiek & Conner, 2006) it also, according to the MMC, 

ought to follow chronologically from thinking about real-world conditions and assumptions. 

Additionally, the odds of eliciting the interpreting competency are greatest when a move refers to 

Both (Math and Real) stages of model construction. This makes sense theoretically because 

interpreting competency, like mathematizing, bridges real-world and mathematical knowledge. 

Finally, a wide range of scaffolding moves can elicit validating – as long as the move refers to 

either Real or Math or Both -- corroborating claims in previous work that validating arises 

throughout the modeling process in response to multiple knowledge sources (Czocher, 2018; 

Ishibashi & Uegatani, 2022).  

Due to space constraints, we discuss only three of the 48 B3 Codes. The log odds (Table 4) 

show increased rates of mathematizing, interpreting, and validating followed a request for the 
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participant to summarize their current work (B3.1 Work Status), relative to the base rates of 

occurrence for these competencies, while it is not an effective move for eliciting simplifying & 

structuring. Because mathematizing and interpreting are likely to follow B3.6 Prompt to Include 

Aspects (of the real world), moves which primarily refer to Real stages of model construction, it 

seems that prompting learners to attend to their ideas about how the world works leads to 

competencies associated with increasing model complexity and scope. We are not surprised to 

see a positive association between B3.10 Request Reason or Explanation and interpreting, 

because asking a learner their rationale for a modeling decision would often necessitate 

interpreting situationally relevant meanings. However, its negative association with validating, 

which shares aspects of justifying and explaining (Czocher et al., 2018) was surprising. We had 

anticipated that B3.10 would increase elicitation of validating.  

Finally, there were several scaffolding moves for which the odds of eliciting any of the four 

focal competencies were less than the base rate predicted by the null model. The move 3.11p 

Math Procedure was one such example. In contrast, the move B3.14 Suggestion for Action, 

Related to Content (focus on directing attention to variables and quantities) elicited all four focal 

competencies more than expected. Thus, it seems attending to the role of quantities and 

quantitative reasoning promotes modeling competencies. 

Conclusions 

We conclude that the logistic regression model adequately captures expected relationships 

between contingent scaffolding moves, their referents relative to the MMC, and elicitation of 

modeling competencies. We view it as an initial model capable of sustaining claims about (a) the 

compatibility of the analytic frameworks and (b) predicting which moves are capable of eliciting 

which modeling competencies. Importantly, the regression model quantifies variation and 

differences across competencies, scaffolding moves, and the likelihoods of their interactions. 

This is a promising advance for work seeking to understand the impact of modeling-forward 

learning environments on learners’ modeling competencies. The approach retains the nuance of 

the critical aspects of contingent scaffolding, as articulated by the scaffolding moves framework, 

while offering a vision of the larger cross-participant and cross-task patterns. One limitation is 

that presently, it is unclear the extent to which the random effect model adequately accounts for 

the person-dependence of each competency. Future iterations would improve on this uncertainty. 

In the end, the holy grail is a model capable of informing facilitators which contingent 

scaffolding moves are most and least likely to promote which competencies so they may focus 

on developing powerful moves.  Due to the large number of codes, we clumped them according 

to the stage they referred to. Future iterations can examine individual moves to understand which 

perform similarly with respect to competency elicitation and distill move types into strategies. 
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Our study explored how fifth-grade students compare and adopt integer-multiplication 

strategies. They solved ten problems before instruction and answered seven reflective questions 

to reveal new strategies. Responses were analyzed across four dimensions: Focusing, Judging, 

Comparing, and Adopting. The findings show students' intuitive grasp of negative numbers and 

their willingness to engage with strategies. Teachers can support adoption and enhance 

understanding by attending to students’ focus, judgment, and comparison processes. 

Keywords: Algebra and Algebraic Thinking, Number Concepts and Operations, Elementary 

Education 

Perspectives and Theoretical Framework 

Comparing and discussing solution methods is recognized as an effective learning strategy in 

mathematics (Rittle-Johnson & Star, 2007; 2009; Silver et al., 2005). The National Council of 

Teachers of Mathematics Standards also endorses this practice (NCTM, 1989; 2000). However, 

concerns exist regarding potential overreliance on teacher guidance versus student-led thinking 

(Richland et al., 2007; Rittle-Johnson & Star, 2007). Effective implementation of comparing and 

discussing solution methods often involves presenting two examples with instructional support 

(Rittle-Johnson & Star, 2009). Our study builds on this research, focusing on integer 

multiplication and strategy adoption. 

Previous work by Rittle-Johnson & Star (2007; 2009) explored how comparisons affect 

procedural knowledge, flexibility, and conceptual knowledge. They found that students who 

compared examples were more likely to transfer methods to novel tasks, enhancing conceptual 

knowledge and flexibility (Rittle-Johnson & Star, 2007; Rittle-Johnson, Star, & Durkin, 2020). 

Comparing correct and incorrect methods helped students identify important characteristics and 

differentiate usefulness in various situations (Rittle-Johnson & Star, 2007). Students who 

compared strategies focused more on methods for solving rather than final solutions, thus 

attending to the key similarities and differences between methods, which influenced subsequent 

judgment (Rittle-Johnson & Star, 2007). 

Research in cognitive science suggests that exposure to novel transfer problems prompts 

adaptation (Paas & Van Merrienboer, 1994; Rittle-Johnson & Star, 2009). Analyzing examples 

with unfamiliar solution strategies and answering similar problems aids in studying the adoption 

process. Researchers must assess the extent to which learners change strategies to accommodate 

task differences (Lamb et al., 2023). Providing opportunities for students to explore multiple 

strategies may enhance learning. Identifying how students focus and judge examples during 

comparison tasks can offer insights into adopted strategies for future problems. 

Our study aims to understand how students compare strategies and their subsequent use in 

tasks, particularly in the context of integer multiplication. Carpenter and Wessman-Enzinger 
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(2018) highlighted the inventive nature of students' pre-instructional strategies in early integer 

multiplication, making it a valuable domain for comparison and adoption research. We explore 

how focusing, judging, and comparing influence strategy adoption through two main research 

questions: How do students attend to the strategies and descriptions of others and to what extent 

is that attention influenced by similarities to their own reasoning? Additionally, to what level and 

in what ways do students adopt the strategies of other students in the domain of integer 

multiplication? 

Methods 

Seven fifth graders from two different schools were interviewed for our study. We share the 

results of our interview with one student, Nico, because of the variations in adoption he 

exhibited. Throughout the interview, Nico was asked to answer open number multiplication 

problems (e.g.,    x -3 = -18) before being asked to explain his strategy (adapted from Bishop et 

al., 2018; Lamb et al., 2018). The unknown and the distribution of negatives varied across all 

problems (e.g., -4 x 3 =   , 5 x    = -20,    x -3 = 9). Interspersed throughout the interview 

were opportunities for the students to reflect on sample strategies that we provided to them. We 

developed these strategies by adapting the strategies of students from our own pilots and from 

the strategies described by Carpenter and Wessman-Enzinger (2018). Each of these strategies 

included the name of a fictionalized student and a brief description of their work, written in first 

person natural language. For clarity, the interviewed students will continue to be referred to as 

the students and those whose strategies we introduced will henceforth be referred to as the 

Sample(s). After a student had completed two or three tasks, we presented the student with a 

Sample’s strategy for answering the most recent question(s). Once a student had read a Sample’s 

description aloud, they were asked to describe how the Sample was thinking and how it was 

similar to or different from their own reasoning. The student was then asked to rate the Sample’s 

strategy on a modified scale (Rittle-Johnson, Star, & Durkin, 2012) with the following options: 

Very good way; OK to do, but not a very good way; Not OK to do; Not sure if this is OK to do. 

Student responses were analyzed on three a priori dimensions – Focusing, Judging, and 

Comparing (adapted from Rittle-Johnson & Star, 2007) and the induced adoption dimension (see 

Table 1 below). Researchers also took note of the multiplication strategies, following Carpenter 

& Wessman–Enzinger’s (2018) framework, which were used to identify changes over the course 

of the interviews. 

Table 1: Dimensions and Codes 

 

Dimension Code Description. Students...  

Focusing 
On the Method Focus on how a Sample reasons 

On the Answer Focus mostly on the result of the Sample’s work 

Judging 

Efficiency Judge clarity or speed 

Confidence Judge a Sample’s certainty and/or confidence  

Accuracy Judge correct or incorrect use of a rule 
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Comparing 
Between Samples Compare two Samples to one another 

To Own Work Compare one or both Samples to their own work 

Adopting 

Authentic Adoption Use a Sample’s strategy  

Quasi-Adoption Use a strategy that is modified from a Sample 

Lack of Evidence of Adoption Use a strategy that is not from a Sample 

 

Results 

From Nico’s written work, explanations, and use of provided materials, we found that he 

aligned closely with many of our dimensions and codes. Although all our codes are presented in 

Table 1, the following results and discussion only include the dimensions and codes that fit 

Nico’s responses. Nico focused predominantly on Sample methods, not their answers, and 

judged those methods on matters of confidence and accuracy. For question nine (-2 x    = 6), he 

had episodes of judging methods based on a Sample’s confidence and accuracy. Sample Sofia 

had identified a counter movement technique that yielded not only the correct answer but also 

the same answer that Nico had found. However, Sample Sofia also conveyed a lack of 

confidence in her strategy when she shared, “Wait, is it six? Can you do that? But they’re 

negatives. Hmmmm, I’m not positive.”  Nico thus chose to assess Sample Sofia's work as OK to 

do, but not a very good way because “she isn’t sure, and you should always try to be sure.” This 

response suggests that uncertainty was important to Nico in judging the worth of a strategy. The 

act of gauging clarity and confidence may be a result of classroom practices and teacher 

feedback. For this same problem, Nico judged accuracy when he noted that Sample Louis’ 

methods were flawed because he had “treated negative numbers as subtraction, which would be 

okay if this was adding.” Sample Louis had answered the problem by filling the box with 8 and 

justifying his choice by saying that 8 - 2 was 6. Throughout the interview, Nico noted that 

treating a negative as subtraction was inaccurate. This identification seemed to affect how he 

assessed Sample strategies. 

The Sample responses to question five (   x -3 = -18) sparked an episode in which Nico 

compared the Samples to each other and to his own work. His response that Sample Fatima and 

Sample Gabriel “thought the same way as me…[but] I think that Gabriel did a miscalculation” 

seemed to double down on his choice to focus and judge the method primarily over the answer. 

Comparing them to one another presented the idea that Gabriel’s “strategy was good…but result 

wasn’t.” Nevertheless, Nico marked both methods as very good way, implying that the 

miscalculation did not affect the quality of the strategy. Earlier in the interview, Nico had used 

the same methods of repeated addition that were used by both Samples and comparing his work 

to theirs seemed to serve as a method of validation. 

The path to adopting a strategy seems to relate to a chain of focus, judgment, and 

comparison. What Nico attended to and how he did so ultimately informed the degree to which 

he made sense of and replicated the strategy in novel tasks. When answering problems four (5 x 

   = -20) and five, Nico explicitly named Sample Abbi as influential to his thought process. 

Sample Abbi used the language of groups in her descriptions, particularly when working with 
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negatives which she described as groups of negatives. Nico suggested that Abbi would have read 

problem four as “five groups of negative four” and problem five would similarly be read as “how 

many groups of negative three would you need to get negative eighteen.” Nico’s work on 

questions one through three suggested that he was relying on multiplication facts and making 

attempts to induce a rule for how to work with negatives, a rule of which he was uncertain. In 

being exposed to Sample Abbi’s work, Nico was able to identify a legitimate strategy that was 

based on existing techniques with which he was comfortable, thus adopting authentically. 

Discussion and Implications 

The results of this study illustrate some of the features found in the work of Rittle-Johnson & 

Star (2007; 2009) and the strategy adoption that may follow. We hypothesize that Nico attended 

to the reasoning of other students because he was looking to identify familiar patterns as well as 

a justification of his own intuition. His tendency to judge accuracy suggested that he was looking 

to uncover and understand methods that were seemingly familiar. At a pre-instructional stage, he 

was hesitant to completely discount or support a solution or a strategy, but he was comfortable 

judging the elements of a strategy. His judgment, however, was not just a matter of accuracy, but 

also a matter of the Sample’s confidence, which affected his perception of their work and his 

willingness to adopt that strategy. 

When comparing, the decision to weigh one element of a strategy more than another may 

have been due to comfort with procedural multiplication skills (such as repeated addition), fact 

memorization, or could have resulted from comfort with strategies used throughout a Sample’s 

method. In line with the findings of Rittle-Johnson & Star (2009), Nico benefited from viewing 

two Samples at once as he was able to compare methods more deeply than if he had seen them 

one at a time. Attempting to uncover the mathematical thinking of the Samples seemed to 

suggest that Nico was prepared to go beyond the rules of integer multiplication, looking for 

potential traces of the underlying relationships between integers under multiplication. 

The decision to adopt a strategy was the result of many considerations for Nico, such as 

whether he felt like he could reproduce the strategy in a similar setting. However, the decision to 

adopt, or not, could also have been based on the need for, or lack of, a strategy. Adoption is 

informed by all three of the a priori dimensions but is perhaps most influenced by the 

comparison stage. In some sense, adoption is built upon the constructivist concepts of 

accommodation and assimilation, in which decisions are made based on whether and how to 

accept new environmental stimuli into an existing conceptual understanding. In the comparison 

stage, students get an opportunity to identify how their work aligns with that of others. By 

identifying the varying degrees of similarities and differences, Nico had the potential to create a 

new understanding that combines the most salient and perceived accurate elements of each 

strategy. This process is iterative as it continues to occur with exposure to every new Sample as 

well as with the ideas that arise when a student attempts to reason through a problem themselves. 

Nico held some intuition of negative numbers and was willing to attempt to reason through 

integer multiplication before and after exposure to Sample strategies. There are rich opportunities 

for growth if instructors better understand what students are coming into the classroom knowing 

and thinking. Attending to how a student focuses, judges, and compares their strategies to others 

may reveal what they are comfortable accepting as mathematical fact as well as the content 

knowledge and intuition they already possess. Furthermore, interpreting how those factors result 
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in their level of adoption may inform how to enact teaching practices so that all students have the 

opportunity to authentically adopt rich strategies. Future work on this project might benefit from 

tracing the process of adoption across multiple mathematical topics in a classroom setting. We 

may also wish to explore other factors that contribute to flexibility and the willingness to adopt 

strategies, such as mathematics maturity and mathematics anxiety. 

A thorough understanding of the intuitions and thought processes of students is vital to the 

future of mathematics education. Students come to the classroom with vast arrays of prior 

knowledge and experiences. The ways in which they employ those in the classroom is of 

particular interest when considering how they might try to incorporate new strategies into their 

own problem-solving schemes. We envision a future that highlights student thinking and the 

teaching methods that might nurture student learning. 
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We propose the construct of playful math to support instances of student authoring. Authoring 

positions students as authors of mathematics in an environment in which students and teachers 

meet as epistemological equals. By emphasizing student agency and autonomy, playful math 

encourages students to explore self-selected goals as they design novel problems for one another 

or for their teachers. We introduce two types of novel mathematics that emerged from student 

authoring, Unfamiliar Problem and Catalyst, and share one example of each to envision a 

mathematics education future that celebrates student authoring. 
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Supporting students to develop and solve their own problems can enhance creativity, 

understanding, and positive attitudes towards mathematics (Kaur & Rosli, 2021; Kontorovich et 

al., 2012). Problem posing is seldom considered in relation to creating new mathematics, but 

some researchers have written about the experience of learning new ideas from their students’ 

activity. For instance, Norton and Flanagan (2022) described how the ideas they developed about 

nested number sequences and logarithms as maps between multiplicative worlds were informed 

by their research on children’s mathematics, and Ellis (2022) noted that her participants’ 

mathematics “served as a source of novel mathematics for me as a researcher, as it could also do 

for teachers” (p. 24). We propose that student authoring of mathematics can create opportunities 

for both students and their instructors to experience new ideas, and that one way to foster 

authoring is through playful math. By authoring of mathematics, we refer to students producing 

something original (Cheng et al., 2022), using their mathematical voices to “enquire, interrogate, 

and reflect upon what is being learned” (Povey et al., 1999, p. 243). This use of authoring draws 

on Povey et al.’s (1999) notion of author/ity, in which teachers and students consider themselves 

to be members of a knowledge-making community where they “meet as epistemological equals” 

(p. 234). This perspective positions students as creators, not just doers, of mathematics.  

Playful math describes the activities and features of an instructional environment that can 

facilitate mathematical play (Ellis et al., 2022). This can include task features, instructional 

moves, and engagement with artifacts. In playful math, students have agency to explore self-

selected goals and to author novel problems. We present two examples of student authoring that 

introduced new mathematics both for the students and for us. We distinguish two types of new 

mathematics that can emerge from these contexts, Unfamiliar Problem and Catalyst.  

Problem Posing and Mathematical Play 

Problem-posing tasks are ones that “require teachers or students to generate new problems 

and questions based either on given situations or on mathematical expressions or diagrams” (Cai 

et al., 2020, p. 2). Problem posing can counteract the belief that there is one right way to do 

mathematics, as there is no one “right” question to ask (Palmér & van Bommel, 2020). It can 
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also promote a sense of agency (Brown & Walter, 2004) and can improve motivation and 

creativity (Kontorovich et al., 2012). We have developed playful math environments as a vehicle 

for fostering student agency and author/ity. When students experience author/ity, they author 

problems that raise new mathematics not only for them, but also for us as teacher-researchers. 

Defining and Designing for Mathematical Play 

We define mathematical play to include (a) agency in exploration, (b) self-selection of goals, 

(c) immersion, and (d) enjoyment (Ellis et al., 2022). Agency in exploration means that students 

choose whether and how to participate (Huizinga, 1955) and how to accomplish their goals 

(Jasien & Horn, 2018). Self-selection of goals acknowledges that a learner’s agency in 

determining goals (or sub-goals) is crucial for play (Dewey, 1916/1966). The final two traits are 

immersion and enjoyment. Mathematical play is imaginative and creative (Featherstone, 2000), 

and most accounts of students’ mathematical play mention enjoyment (e.g., Sukstrienwong, 

2018). Mathematical play can support experimentation, reflection, and persistence (Barab et al., 

2010; Gresalfi et al., 2018), and it can provide a productive route for exploring and conjecturing 

(Mason, 2019; Williams-Pierce, 2019). Given these benefits, we set out to see if we could 

encourage mathematical play for secondary and undergraduate students. 

We have established playful math five design principles to encourage (but not guarantee) 

mathematical play. They are (1) enable free exploration within constraints; (2) engender 

anticipation within the task; (3) provide a method for intrinsic feedback; (4) offer meaningful 

challenge while still being feasible; and (5) allow the student to act as both designer and player.  

As an example, we draw on an activity in which students investigate growing shapes, graphing a 

shape’s area compared to its length as it sweeps left to right. To playify the task, we created the 

Guess My Shape game, in which students create secret shapes of their choice (design principles 1 

and 5), construct graphs comparing length and area (principles 2, 4, and 5), and challenge each 

other to determine the shape based on the graph alone (or vice versa; principles 2, 3, and 4). Our 

principles are consistent with several features of problem-posing tasks, but the open nature of the 

Guess My Shape game offers greater agency than typical tasks to support author/ity and enable 

students to author problems reflecting their own mathematical interests. 

Data Examples: Sector Areas and Vertical Line Segments 

Unfamiliar Problem: Determining Areas in a Semicircle 

In the following example, Phyllis and Ryan (secondary pre-service teachers) decided to 

create a heart shape (Figure 2a). They imagined a line segment on the x-axis that swept 

counterclockwise, rotating 360 to sweep out the shape. The task for the other students was to 

graph the area swept as a function of the angle swept by the line segment. Phyllis and Ryan 

reasoned that the initial part of the graph, from 0 to 90, would increase at a decreasing rate 

(Figure 2b). However, when the other students encountered the challenge, they thought that the 

area would first increase at an increasing rate from 0 to the peak of the semi-circle, and then 

increase at a decreasing rate from the peak to 90. To determine this, they created equiangular 

partitions and reasoned perceptually about the rates of change (Figure 2c), deciding that the area 

should be “bigger and then smaller” (Figure 2d). 
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        (a)                 (b)                          (c)                              (d)                        (e) 

 

Figure 2: Heart shape (a), Phyllis and Ryan’s graph (b), partitioning the semi-circle (c), 

Meredith and Toby’s graph (d), and a semicircle with radius 1 (e) 

 

When the groups compared their solutions, they resolved the discrepancy by redrawing a 

more precise version of Figure 2c with smaller partitions. They concluded that the area indeed 

increased at a decreasing rate throughout the semi-circle, but they acknowledged that this 

decision was based on a perceptual judgement. The students’ disagreement led us to realize that 

we did not know how to directly compute the area of these equiangular portions. We wondered 

how to find the area between two non-radii chords without computing a double integral in polar 

coordinates. Thus, the students’ authoring led to a novel Unfamiliar Problem for us. An 

Unfamiliar Problem is a problem addressing a new mathematical idea or challenge for the 

problem-solver, in this case, us as the teacher-researchers. Certainly, the mathematical ideas in 

the problem are not novel, but we experienced them as unfamiliar in that we were not aware of a 

solution method. We solved the problem by drawing a semicircle whose radius is 1 (Figure 2e). 

Denote by A the area covered by ∠𝐶𝑂𝐵, which can be decomposed as the sum of the area of 

triangle ⊿𝐶𝑂𝐸, denoted by 𝐴⊿𝐶𝑂𝐸, and the area of the sector corresponding to ∠𝐶𝐸𝐵, denoted by 

Asec. If we take 𝑂𝐸 as the base of ⊿𝐶𝑂𝐸, the length of the height is 𝐶𝐷̅̅ ̅̅ , which is sin(2𝜃). So, we 

find 𝐴⊿𝐶𝑂𝐸 =
1

2
(1) sin(2𝜃) and 𝐴𝑠𝑒𝑐 =

1

2
𝑟2𝛼 =

1

2
(1)2(2𝜃) = 𝜃, hence 𝐴 =

1

2
sin(2𝜃) + 𝜃. This 

function does indeed increase at a decreasing rate from 0 to 
𝜋

2
. 

Unfamiliar problems can emerge when students have the freedom to explore directions of 

their own interest. They introduce genuine problem-solving experiences for one another and, in 

this case, also for us as teacher-researchers. Even though the mathematics was not novel from the 

perspective of the field, we found the problem to be interesting and worth exploring. Unfamiliar 

problems create problem-solving experiences, rather than problem-posing experiences. 

Catalyst: Vertical Line Segments 

The second example comes from teaching sessions with three middle-school students, 

Artemis, Apollo, and Francis, who had limited familiarity with graphing or linear functions. In 

this example, the students decided to create a Guess My Shape challenge for the teacher-

researcher (TR), inventing a shape that they called “waves” (Figure 3a). The students graphed 

the first “wave” correctly, but beginning with the second “wave”, they made an iconic translation 

of the vertical section of their shape directly into the graph, in which the vertical segment 

represented an increase of 2 square units with no change in the horizontal distance of the graph. 

They repeated this iconic translation for the final “wave.” 
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                    (a)                          (b)                    (c)                           (d)                          (e) 

 

Figure 4: The wave drawing (a), the associated area-length graph (b), TR1’s graph (c), up-

down square task (d), graph of up-down square task (e)  

 

The vertical line segments created a perturbation for the TR, who wondered how to represent 

an increase in area without gaining any horizontal length. She proposed a solution in the moment 

by setting up a new convention of a “bubble”, in which there is only one point on the line of 

horizontal sweeping that nevertheless generates an amount of area (in this case, 2 square units, 

Figure 3c). This task also resulted in establishing a new convention that any area generated in 

future tasks should be attached to the line of sweeping, to avoid the difference between the 

rectangular area in the first “wave” of Figure 3a with that seen in Figure 3c.  

The bubble was a spontaneous response to a puzzling situation, but it led us to wonder 

whether we could create a swept shape that would produce a legitimate vertical segment for its 

area / length graph. In this case, the students’ authoring resulted in an Unfamiliar Problem for 

themselves, as they tackled the challenge of creating the graph, but it also created a Catalyst for 

us, in that it provoked a new question: What if an area / length graph could have a vertical line 

segment? What shapes could produce such a segment? A Catalyst is a situation that challenges or 

reveals an ambiguity about an accepted (or implicit) convention or rule. It can thus engender 

problem-posing activity, such as the creation of novel sweeping shapes.  

We continued to wonder about this question and reasoned that the x-axis quantity would need 

to stop growing as the area continued to grow. This led to the shape in Figure 3d. In this shape, 

the square first grows both in length and height, producing area at a constantly changing rate of 

change (a quadratic graph). Once the square reaches 1 square unit, it then grows up to produce an 

additional square unit, but without sweeping additional horizontal length, resulting in a vertical 

line segment. The rectangle then sweeps to the right, producing an additional 4 square units of 

area at a constant rate (producing a linear graph, Figure 3e). In the graph, the x-axis quantity is 

the horizontal distance traveled by the dot. We also realized that once the dot stopped moving 

horizontally, the area could grow up and down multiple times. In creating this problem, we 

reflected on the fact that the shape of the graph and the trace of the graph are different. This 

realization led to further problem posing, creating related tasks that incorporated both linear and 

quadratic growth in the vertical line segments, which can only be distinguished by considering 

the graph’s trace. 

Discussion 

In both examples, the students experienced Unfamiliar Problems through authoring. 

However, the novel mathematics that we experienced as teacher-researchers differed. With the 

semicircle, we experienced an Unfamiliar Problem that required us to devise a solution method 
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we had not previously encountered. The mathematical ideas were not new, but we were 

challenged to solve a novel (to us) problem. In contrast, the vertical line segment acted as a 

Catalyst to challenge us to imagine new mathematics. By asking “What if an area / length graph 

has a vertical line segment?”, we introduced new questions for ourselves, such as “Are there 

sweeping shapes that could produce such a graph, and if so, what would they look like?” This led 

to a novel set of problems inspired by up-down square, as well as a consideration of the ways in 

which two graphs can look identical even as their traces differ.  

Student authoring can raise unique challenges for teachers, who may be faced with 

navigating unfamiliar ideas or puzzling situations while interacting with their students. We 

acknowledge that this can be difficult. However, we envision author/ity environments in which it 

is allowable for teachers and students to occasionally shift roles, in which teachers experiencing 

puzzlement or new learning can be normalized and celebrated, and in which we see our students’ 

activity as sources of new learning for us, just as our instruction can be for them.  
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This large-scale study investigated high school students’ reasoning of spatial and quantitative 

Cartesian coordinate system, meanings of a point and graphing. By integrating related 

frameworks, data from 229 students across different grade levels were analyzed through nine 

open-ended questions. Results revealed that students had critical difficulty in conceiving axes as 

frames of reference to represent quantities as horizontal and vertical directed distances from the 

origin in coordinating quantities. A significant number of students carried non-normative 

meanings for points in terms of multiplicative objects, and relatedly had difficulties in 

envisioning the graph as emergent trace of multiplicative objects. We discuss the implications of 

the results for learning, teaching, and curriculum development. 

Keywords: Cartesian Coordinate System, Graphing, Multiplicative Object, High School Students 

Coordinate systems are one of the most commonly used representational tools in learning and 

doing mathematics, and in science, technology, mathematics, and engineering (Paoletti et al., 

2016; Roth et al., 1999). Cartesian coordinate system (CCS) enables representing attributes of 

two or more quantities on axes, where uniting their orthogonal projection results in forming a 

multiplicative object in mind. This allows students to conceive and represent the relationship 

between quantities’ values and magnitudes (Thompson et al., 2017), which contributes to the 

development of covariational reasoning and reasoning about graphs (Moore et al., 2013). CCS 

also lays the foundations for function and rate of change ideas (Thompson et al., 2017) as well as 

to reason about ratios and proportional relationships, number systems, geometry, algebra, 

functions, vectors, and matrix quantities (CCSM, 2010). Therefore, forming a solid 

understanding of CCS and closely related concepts such as meanings for point and graphing is of 

great significance, particularly at the high school level. 

Despite their significance in mathematics, the construction of coordinate systems receives 

little instructional time, and is taken for granted by researchers, teachers, and curriculum 

developers (Lee, 2017). Yet, constructing a coordinate system (Lee, 2020) and plotting a point at 

the quantitative level is non-trivial (Frank, 2016). Students from middle school to undergraduate 

level face several difficulties in constructing and interpreting graphs (Moore & Thompson, 

2015). Despite demonstrating an understanding of quantitative relationships, preservice teachers 

struggled in clinical interviews when confronted with unconventional aspects of coordinate 

systems, such as conceptualizing y as the horizontal and x as the vertical axis. Researchers (e.g., 

Frank, 2017; Stevens & Moore, 2017; Thompson & Carlson, 2017) suggest that part of these 

challenges arise from an inability to conceive points as multiplicative objects.  

While not exhaustive, the reported difficulties above highlight the need for research on 

students’ meanings of CCS, especially on a large scale and at the high school level. It is in this 

regard that we investigated the following research questions: 1) How do high school students 

reason about Cartesian coordinate system and graphs within spatial and quantitative CCS? 2) 
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What are high school students’ meanings of a point in terms of multiplicative object, point on a 

graph, and outputs of a function? 

Bringing together frameworks related to CCS, this study extends the literature by 

investigating high school students’ reasonings of CCS in a more comprehensive way through 

investigating their construction of spatial and quantitative CS, reasoning of a point in terms of 

multiplicative object, and graphing in spatial and quantitative CS, which are all components of 

robust and coherent understanding of CCS. Results shed light on high school students’ 

weaknesses and strengths, hence imparting implications for learning and teaching mathematics at 

various academic levels. 

Conceptual Framework 

We used the literature on CCS (e.g., Battista, 2007; Demir, 2012; Knuth, 2000; Lee et al., 

2019; Moon, 2019) the framework on the use of multiplicative object (Tasova, 2021), and the 

framework for reasoning about graphing in spatial and quantitative Cartesian coordinate systems 

(Paoletti et al., 2018) in juxtaposition to each other, as these ideas relatedly and collectively 

might provide a more comprehensive picture of high school students’ reasoning about the CCS. 

In this study, we define a coordinate system as “a mental system of coordinated 

measurements [of quantities] obtained through coordinating multiple frames of reference” and a 

frame of reference as “a mental structure through which an individual situates a quantity where 

the structure is constructed through the process of committing to a reference point, a unit 

measure, directionality of measure comparison” (Lee et al., 2019, p.82). A quantity is a 

measurable quality of an object that emerges when conceptualizing a situation by considering the 

measurable attribute of the object (Thompson, 1994).There are two types of coordinate systems 

based on their intended uses: spatial and quantitative CS (Lee et al., 2020).  

A spatial CCS can be constructed by overlaying a reference point and two orthogonal lines 

passing through reference point onto physical or imagined space. Then quantities are produced 

by measuring attributes of the space using frames of reference and coordinating such 

measurements to represent attributes of the objects in the space or situation. For instance, a 

spatial CCS can be laid onto a Ferris Wheel such that the axle is located at the origin. Then the 

location of the car at a specific moment is described by Cartesian coordinates found by 

orthogonal distance from the origin. Constructing quantitative CCS, entails extracting quantities 

from the space a situation or phenomenon occurs and projecting them onto new space. In 

quantitative CCS, quantities are overlaid onto two orthogonal number lines and a point is formed 

by uniting their orthogonal projections forming a multiplicative object in the context of graphing 

(Tasova & Moore, 2020). For instance, in the Ferris Wheel example, height of the car from the 

ground and time can be extracted from the problem situation and their varying magnitudes are 

represented on number lines, e.g. time by the horizontal and distance from the ground by the 

vertical axis. By Cartesian product of distance and time {time x distance}, a two-dimensional CS 

is constructed which is different than the space containing the problem situation (Foerster, 2005). 

Method 

In this study phenomenography was used to identify and categorize student’s meanings of 

CCS as phenomenographic study mainly aims to identify various ways in which people 

experience, interpret, understand, perceive, or conceptualize a certain phenomenon (Orgill, 
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2012). In phenomenography, collecting data through open-ended questionnaire is advantageous 

when the number of participants is relatively high (Han & Ellis, 2019). The study took place in 

the Spring semester in 2021-22 academic year at a private high school in Istanbul which requires 

high performance at the national high school entrance exam, indicating high potential and 

capability in learning and doing mathematics. The sample consisted of 229 volunteer students 

from grade level 9 to 12 who had former experience with graphing, modeling, and forming 

various types of functions such as linear, quadratic, and exponential. Therefore, students’ such 

lived experiences (i.e., the phenomenon) provided a rich information base for the study. Students 

worked on the hardcopies of the inventory in 70-80 min. within their two back-to-back classes. 

Students had access to computers, tablets, or phones to explore the simulations in some of the 

questions. Since the study aimed to explore students’ reasoning skills with quantities, questions 

mostly did not include numerical values. Therefore, we provided them with scissors, wire, and 

papers to use as straight edge as optional tools to use in questions. 

Inventory was developed in light of the existing research (e.g., David et al., 2019; Lee et al., 

2020; Sencindiver, 2020; Tasova, 2021). After taking expert opinion from four mathematics 

educators who conducted research on students’ understanding of CCS, opinions of three high 

school mathematics teachers teaching at the same school where the study took place were taken 

about the content and language of the inventory. Next, we conducted a pilot study with two high 

school students and revised the inventory again. This way, content’s appropriateness of the and 

the inventory’s language were ensured. The final version consists of nine open-ended questions 

with question 6 through 8 including sub-questions.  

In this paper, in lieu of space we report on Q1, highlighting prominent findings on students’ 

construction of CCS. In Q1, students’ construction of CCS, more specifically, how students 

leverage their ways of spatial coordination to coordinate quantitatively was explored. In the 

problem, two ants (represented by points) move haphazardly in tubes that can be rotated and 

moved in a dynamic geometry environment. The question was “Can you describe mathematically 

the locations of the two ants with a single point that moves along with the ants?”.  

In the analysis, students’ responses were categorized using coded analysis mainly based on 

the frameworks as shown in Table 1. In order to obtain reliable and consistent results, the authors 

analyzed, reviewed, and discussed each item in the inventory regularly. 

 

 Table 1: Table of Specification for the Analysis 

 

Goal Questions Analysis 

Students’ meanings 

of a point in Cartesian 

coordinate system as a 

multiplicative object 

Q2, Q3, Q4, Q5, 

Q7 

Framework for representing a 

multiplicative object in the context of 

graphing (Tasova & Moore, 2020; 

Tasova, 2021) 

Students’ graphing 

in Cartesian coordinate 

system 

Q6a, Q6b, Q8a 

(in spatial CS) Framework for reasoning about graph 

in spatial Cartesian coordinate system 

(Paoletti, Lee & Hardison, 2018) 
Q8b, Q9 

(in quantitative 

CS) 
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In coded analysis of Q1, students’ spatial and quantitative coordination was investigated 

according to their uses of frames of reference (Joshua et al. 2015). Students established either a 

spatial or quantitative CS; they gave no answer or incorrect answer. 

Results 

As depicted in Table 2, results showed that unfortunately 86% of the students couldn’t 

generate a solution for Q1. Only 5% of the students constructed a quantitative CS by spatially 

orienting the tubes and using them as axes to represent distances with respect to the reference 

point origin. These students were aware of the quantities to describe location of a point 

mathematically and how to measure and represent them using a CCS (Figure 1a). On the other 

hand, 9% of the students formed a spatial CS by laying a CCS onto the figure and assigned 

coordinates of the points accordingly. These students failed to describe location of the two ants 

as one single point that moves along with the ants. Instead, they relied on conventional tasks 

such as finding mid-point and connecting two points by line (Figure 1b). They didn’t seem to 

conceptualize axes as tools to represent the directed distances from the origin and coupling these 

quantities to represent the location of a point.  

 

Table 2: Frequency and Percentages for Question 1 

 

Responses for Question 1 

Quantitative CS 12 (5%) 

Spatial CS 20 (9%) 

No Answer 129 (56%) 

Incorrect 68 (30%) 

Total 229 (100%) 

 

 
 

Figure1: a) Quantitative Cartesian CS b) Spatial Cartesian CS 

Discussion and Conclusion 

Results from Q1 support that constructing a coordinate system by organizing multiple frames 

of reference is a non-trivial task for high school students even when they have high capability in 

learning and doing mathematics (Drimalla et al., 2020; Lee et al., 2020). Results showed that 
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students exhibited critical difficulty in conceiving axes as frame of references to represent the 

horizontal and vertical distance from the origin, thus failed to envision point as union of 

orthogonal projections of quantities represented on axes. Instead, they relied on procedural tasks 

that they were familiar from their mathematics classes such as finding mid-point or drawing 

graphs to depict distance traveled by time. As suggested by Karagöz Akar et al. (2022), results 

highlighted conceptualizing a point, for instance (a, b), as combination of directed lengths 

between origin and (a, 0) and origin and (0, b) rather than combination of just two labels. Future 

studies might investigate students’ construction and understanding of coordinate systems further 

through design-based research studies. Finally, although this study provided a picture of 229 

students’ understanding of CCS, point and graphing in CCS, their meanings might be elaborated 

more in depth through clinical interviews. 

 

Acknowledgement 

This study is a part of the first author’s master thesis, which was completed under the 

supervision of Dr. Gülseren Karagöz Akar at Boğaziçi University, Turkey.  

References 
Battista, M. T. (2007). The development of geometric and spatial thinking. In J.F.K. Lester (Ed.), Second Handbook 

of Research on Mathematics Teaching and Learning, Charlotte, NC: Information Age Publishing, (Vol. 2, pp. 

843–908). 

Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. Mayes & L. L. Hatfield (Eds.), Quantitative 

reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context (Vol. 2, 

pp. 55–73). Laramie: University of Wyoming College of Education. 

David, E. J., Roh, K. H., & Sellers, M. E. (2019). Value-thinking and location-thinking: Two ways students 

visualize points and think about graphs. The Journal of Mathematical Behavior, 54(100675), 1–18. 

https://doi.org/10.1016/j.jmathb.2018.09.004  

Demir, O. (2012). Students’ concept development and understanding of sine and cosine functions. M.S. Thesis, 

Retrieved from ProQuest. 

Drimalla, J., Tyburski, B. A., Byerley, C., Boyce, S., Grabhorn, J., Roman, C. O., & Moore, K. C. (2020). An 

invitation to conversation: Addressing the limitations of graphical tasks for assessing covariational reasoning. In 

A.I. Sacristán, J.C. Cortés-Zavala & P.M. Ruiz-Arias (Eds.), Proceedings of the 42nd Meeting of the North 

American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2270–2278). 

PME-NA: Mexico. 

Foerster, P. A. (2005). Calculus: Concepts and Applications. Emeryville, CA: Key Curriculum Press. 

Frank, K. M. (2016). Plotting points: Implications of "over and up" on students' covariational reasoning. In M. B. 

Wood (Ed.), Proceedings of the 38th Annual Meeting of the North American Chapter of the International 

Group for the Psychology of Mathematics Education (pp. 573–580). Tucson, AZ: The University of Arizona. 

Frank, K. M. (2017). Examining the development of students’ covariational reasoning in the context of graphing. 

(Doctoral dissertation). Arizona State University. 

Han, F., & Ellis, R. A. (2019). Using phenomenography to tackle key challenges in science education. Frontiers in 

Psychology, 10, 1–10. https://doi.org/10.3389/fpsyg.2019.01414  

Joshua, S., Musgrave, S., Hatfield, N., & Thompson, P. W. (2015). Conceptualizing and reasoning with frames of 

reference. In N. E. T. Fukawa-Connelly (Ed.), Proceedings of the 18th Meeting of the MAA Special Interest 

Group on Research in Undergraduate Mathematics Education (pp. 31–44). Pittsburgh, PA: RUME. 

Karagöz Akar, G., Zembat, I. O., Arslan, S. & Belin, M. (2022). Geometric transformations through quantitative 

reasoning. In G. Karagöz Akar, I.O. Zembat, S. Arslan & P.W. Thomson (Eds.), Quantitative Reasoning in 

Mathematics and Science Education, Springer, 21(1), (pp. 199–221). 

https://doi.org/10.1016/j.jmathb.2018.09.004
https://doi.org/10.3389/fpsyg.2019.01414


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

629 

 

Lee, H. Y. (2017). Students’ Construction of Spatial Coordinate Systems. (Doctoral dissertation). University of 

Georgia. 

Lee, H. Y. (2020). Tell me where they are. Mathematics Teacher: Learning and Teaching PK-12, 113(11), 78–84. 

https://doi.org/10.5951/MTLT.2019.0125 

Lee, H.Y., Hardison, H. L., Kandasamy S., & Guajardo, L. (2020). Establishing a Cartesian coordination in the ant 

farm task: The case of Ginny. In Mathematics Education Across Cultures: 42nd Meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education, pp. 931–939. 

https://doi.org/10.51272/pmena.42.2020-142  

Lee, H. Y., Moore K. C. & Tasova, H. I. (2019). Reasoning Within Quantitative Frames of Reference: The Case of 

Lydia. The Journal of Mathematical Behavior, 53, pp. 81–95. https://doi.org/10.1016/j.jmathb.2018.06.001 

Moon, K. (2019). Preservice teachers' understanding of two-variable inequalities: APOS theory. In Proceedings of 

the forty-first annual meeting of the North American Chapter of the International Group for the Psychology of 

Mathematics Education, S.C. Otten (Ed.), St Louis, MO: University of Missouri. 

Moore, K. C., Silverman, J., Paoletti, T., Liss, D., & Musgrave, S. (2019). Conventions, habits, and U.S. teachers’ 

meanings for graphs. Journal of Mathematical Behavior, 53, 179–195. 

https://doi.org/10.1016/j.jmathb.2018.08.002 

Moore, K. C., Silverman, J., Paoletti, T., Liss, D., LaForest, K. R., & Musgrave, S. (2013). The primacy of 

mathematical conventions in student meanings. In M. Martinez & A. Castro Superfine (Eds.), Proceedings of 

the 35th Annual Meeting of the North American Chapter of the International Group for the Psychology of 

Mathematics Education (pp. 837–840). Chicago, IL: University of Illinois at Chicago. 

Moore, K. C., & Thompson, P. W. (2015). Shape thinking and students' graphing activity. In Proceedings of the 

18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 782–789). Pittsburgh, PA. 

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). 

Common Core Standards for Mathematics. Washington DC: Author. 

Orgill, M. (2012). Phenomenography. In Encyclopedia of the Sciences of Learning (pp. 2608–2011). Boston, MA: 

Springer. 

Paoletti, T., Lee, H. Y., & Hardison, H. L. (2018). Static and emergent thinking in spatial and quantitative 

coordinate systems. In T. E. Hodges, G. J. Roy & A. M. Tyminski (Eds.), Proceedings of the 40th Annual 

Meeting of the North American Chapter of the International Group for the Psychology of Mathematics 

Education (pp. 1313–1315). Greenville, SC: University of South Carolina & Clemson University. 

Paoletti, T., Rahman, Z., Vishnubhotla, M., Seventko, J., & Basu, D. (2016). Comparing graph use in STEM 

textbooks and practitioner journals. In Proceedings from the 20th Annual Conference on Research in 

Undergraduate Mathematics Education (pp. 1386–1392). 

Roth, W. M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph related practices between high school 

biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 977–1019. 

https://doi.org/10.1002/(SICI)1098-2736(199911)36:9<977::AID-TEA3>3.0.CO;2-V  

Sencindiver, B. D. (2020). Success in calculus-I: Implications of students' precalculus content knowledge and their 

awareness of that knowledge (Publication No. 28024542). (Doctoral dissertation). Colorado State University-

Colorado. 

Stalvey, H. E., & Vidakovic, D. (2015). Students’ reasoning about relationships between variables in a real-world 

problem. The Journal of Mathematical Behavior, 40, 192–210. https://doi.org/10.1016/j.jmathb.2015.08.002  

Stevens, I. E., & Moore, K. C. (2017). The intersection between quantification and an all-encompassing meaning for 

a graph. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th Annual Meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education (pp. 709–716). Indianapolis, 

IN: Hoosier Association of Mathematics Teacher Educators. 

Tasova, H. I. (2021). Developing middle school students’ meanings for constructing graphs through reasoning 

quantitatively. (Doctoral dissertation). University of Georgia. 

Tasova, H., & Moore, K. C. (2020). Framework for representing a multiplicative object in the context of graphing. 

In Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education (pp. 236–245). Mexico. https://doi.org/10.51272/pmena.42.2020-24  

https://doi.org/10.5951/MTLT.2019.0125
https://doi.org/10.51272/pmena.42.2020-142
https://doi.org/10.1016/j.jmathb.2018.06.001
https://doi.org/10.1016/j.jmathb.2018.08.002
https://doi.org/10.1002/(SICI)1098-2736(199911)36:9%3C977::AID-TEA3%3E3.0.CO;2-V
https://doi.org/10.1016/j.jmathb.2015.08.002
https://doi.org/10.51272/pmena.42.2020-24


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

630 

 

Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. 

Vergnaud, G. Harel, and J. Coufrey (Eds.), The development of multiplicative reasoning in the learning of 

mathematics, (pp. 179–234). SUNY Press. http://pat-thompson.net/PDFversions/1994ConceptSpeedRate.pdf 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking 

mathematically. In J. Cai (Ed.), Compendium of Research in Mathematics Education (pp. 421–456). Reston, 

VA: National Council of Teachers of Mathematics. 

Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byereley, C. (2017). Covariational reasoning among U.S. 

and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48, 95–111. 

https://doi.org/10.1016/j.jmathb.2017.08.001 

  

http://pat-thompson.net/PDFversions/1994ConceptSpeedRate.pdf
https://doi.org/10.1016/j.jmathb.2017.08.001


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

631 

 

STRENGTHENING SMALL GROUP LEARNING ENVIRONMENTS 

 

Jill V Hamm 

University of North Carolina-Chapel Hill 

jhamm@email.unc.edu  

Daniel J Heck 

Horizon Research, Inc. 

dheck@horizon-research.com   
Keywords: Classroom Discourse, Instructional Activities/Practices, Middle School Education 

 

Background and conceptual framing. PEARL (Peers Engaged as Resources for Learning) 

research project studied an integrated understanding of effective small group learning 

environments, drawing on conceptual frameworks addressing demanding and groupworthy tasks 

(Lotan, 2003; Stein et al., 1996), productive mathematics discourse (Sztajn, Heck, & Malzahn, 

2021), and peer cultures of effort and achievement (Hamm et al., 2012). Small group 

environments offer opportunity to address goals in Principles to Actions (NCTM, 2014) and 

Common Core State Standards for Mathematics (NGA, 2010).  

Research Question. In what ways do resource lessons providing teacher and student 

supports and a teacher professional learning program enhance high school Math 1 students’ 

experience of small group learning environments? 

Research Design and Findings. The research team combines expertise in mathematics 

instruction for conceptual understanding and adolescent classroom peer processes. In this 

naturalistic study, three high school teachers taught four lessons on algebra and statistics topics 

intended for group work in their Math 1 courses during a baseline year. They engaged in two-day 

professional learning (PL) program in the following summer focused on high-functioning 

groupwork and were introduced to re-designed versions of the lessons that incorporated teacher 

and student supports for engaging with the task, in math discourse, and with peers as partners in 

learning. During the subsequent year, the teachers taught the re-designed lessons in comparable 

classes. Following each lesson (at baseline and post-PL), the students individually completed a 

survey to report on their experience working in small groups. The survey included scales for 

task, discourse, and peer interaction, as well as a single item on group collaborative focus. 

Surveys from 328 students in 46 groups in 4 lessons across the 3 classrooms were analyzed using 

3-level (students in groups in classrooms) HLM to compare results from the baseline and post-

PL. Students’ self-report of their groupwork experiences indicated a significant, positive 

difference in their attention to demands of the task (M = 4.32, SD = .79 pre vs. M = 4.51, SD = 

.69 post; treatment coeff = .23 p <  .01), and group focus (M = 4.11, SD = 1.03 pre vs. M = 4.39, 

SD = .77 post; treatment coeff = .27, p <  .01;). Comparisons of student-rated group discourse 

and peer interaction were not significantly different pre- versus post-PL. Qualitative evidence 

from audiorecordings of these students engaged in groupwork will be presented, that provides 

corroborating illustrations of interaction sequences within groups that demonstrate greater 

engagement with task demands and stronger collaborative group focus post-PL using the 

enhanced resource lessons.  

Conclusion. The project aims to build stronger theoretical and practical framing of small 

group learning environments to inform teachers’ professional practice. Situated authentically in 

classrooms, the study attends to mathematics content, student learners, and the learning context. 

Initial findings reveal opportunities and challenges for teachers to produce and maintain balance 
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within and across three dimensions of small groupwork to deliver on the promise of peer-to-peer 

learning. 
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This paper juxtaposes Schoenfeld’s (2010) decision making theory with the literature on math 

identity to investigate the ways in which a Calculus student’s decision making and math identity 

co-evolved. Through a detailed analysis of the student’s identity stories, goals, orientations, 

resources, and decisions over the course of a semester, this study illuminates the complex process 

through which she transitioned from pursuing deep understanding as an aspiring math major to 

dropping Calculus and admiring math only from afar. Notably, the student’s evolving math 

identity stories were closely connected to her consequential decision making. The findings 

suggest a plausible mechanism for the co-evolution of students’ math identity and decision 

making, extending Schoenfeld’s theory across temporal dimensions.  

Keywords: Calculus; Equity, Inclusion, and Diversity; Affect, Emotion, Beliefs, and Attitudes  

High attrition rates in STEM fields significantly impact students, families, communities, and 

the nation (Lee & Ferrare, 2019). Calculus exacerbates this issue by eroding students’ confidence 

(Bressoud et al., 2015) and disproportionately “filtering” students based on gender, race, ethnici- 

ty, socio-economic status, and first-generation college status (Seymour & Hunter, 2019). This 

study examines a Latina Calculus student’s recalibration of her math identity alongside her deci- 

sion making, linking the literature on identity with Schoenfeld’s (2010) theory to expand both. 

Scholars have varied views on math identity (Langer-Osuna & Esmonde, 2017). This study 

adopts a narrative approach to foreground historically marginalized students’ narrativization of 

their math-related selfhoods. Gee (2000) defines identity as “being recognized as a ‘certain kind 

of person’ in a given context” (p. 99), while Sfard and Prusak (2005) view it as “reifying, endor- 

sable, and significant” (p. 16) stories. Martin (2000) underscores the role of community and 

institutional forces, framing identity as beliefs about self and math. Prior research suggests that 

identity can change across time by analyzing students of different age groups (Nasir, 2002) or by 

focusing on micro-level positioning moves (Langer-Osuna, 2011). This study expands on these 

approaches by linking identity narratives with decision making mechanisms (explained below) 

and tracking their co-evolution over time.  

Schoenfeld’s (2010) theory models how individuals make decisions in the moment: 

Decisions are shaped by three factors: resources, goals, and orientations. Resources include all 

elements (e.g., knowledge) available to individuals during decision making, goals encompass 

both conscious and unconscious aims, and orientations cover “beliefs, dispositions, values, 

tastes, and preferences” (p. 29). Given the theory’s focus on short time frames, there is a lack of 

studies examining how individuals’ goals, orientations, and resources evolve and shape decision 

making over extended periods. This paper addresses this gap by offering an explicit mechanism 

for implementing Schoenfeld’s theory across temporal dimensions. 
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Methods 

From over 1,511 students enrolled in a first-semester Calculus course for STEM majors at a 

prestigious U.S. university in Fall 2023, 57 participated in the larger Calculus Learning 

Experience study. The course included large lectures and smaller discussion sections, with 80%-

90% of students having taken Calculus in high school, yet 36.7% either dropped out or received 

failing grades (C-, D, F, NP). This paper focuses on Grace, a second-year Latina student who 

demonstrated significant changes in major selection, career path, and approach to learning math 

within a semester, reflective of the students who failed the course.  

The primary data for this case study include video recordings of three 50-minute interviews, 

observations of lectures and discussions, field notes from 13 informal tutoring sessions, and 

Grace’s written artifacts and survey responses. Interviews involved open-ended questions and 

problem solving tasks designed to elicit conceptual understanding and deep contemplation of 

Calculus concepts. Data analysis followed five phases: 1) conducting a holistic review of 

recordings, interactions, and notes to develop an overview of Grace’s major decisions and math 

identity trajectory; 2) transcribing recordings to detail Grace’s self-narratives and utterances 

during problem solving; 3) developing a conceptual framework grounded in Schoenfeld’s theory 

and the referenced math identity studies; 4) chronologically organizing data to identify emerging 

themes; and 5) conducting a comprehensive review of all data to ensure accuracy and 

thoroughness in the analysis and revising the conceptual framework accordingly (see Figure 1).  

 

 
 

Figure 1: Conceptual framework connecting mathematical identity and decision making 

 

Results 

Weeks 1-4: An Aspiring Math Major Who Proactively Sought Deep Understanding 

Math Identity Stories. Grace noted that she did not have a solid math foundation in high 

school but transformed from a state of confusion to “thoroughly enjoy[ing] math” through the 

Pre-Calculus course she took at the university (Interview, week 14). Although none of her family 

members pursued STEM-related fields (Field Note, week 2), Grace aspired to double major in 

math and philosophy (Field Notes, weeks 1 & 3). Her confidence was palpable. She stated, “My 

relationship with math, before I took this [Calculus] class, was really good. I think I understood, 

like, all the foundational aspects of math before going into Calculus” (Interview, week 14). She 

elaborated, “This [Calculus] class is pushing me more towards math because I really enjoy it… I 

came to understand why there’s Pre-Calculus in the first place… I don’t think there’s a 

challenging part [about the course] because it all makes sense” (Interview, week 4).  

Goals. Grace succinctly summarized her goal: “To understand Calculus!” (Survey, week 1).  

Orientations. Grace perceived math as interconnected, logical, and coherent, believing it 

makes sense and prioritizing understanding in learning (Field Notes, weeks 1-4).  

Resources. Grace leveraged her Pre-Calculus foundation, consulted textbooks, actively 

participated in discussions, derived meaningful insights from lectures, and regularly engaged in 
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in-depth conversations about Calculus with the author (Field Note, week 2; Interview, week 4). 

Decisions. Grace actively engaged in the course, sought deeper math understandings, and 

assisted peers with challenging concepts (Discussion Observations, weeks 2-4). She demonstrat- 

ed a strong commitment to understanding by posing questions such as “What if…?”, “Why 

must…?”, “Why don’t you…?”, “Without…, how would you…?” (Field Notes, weeks 1-4).  

Weeks 5-9: A Disheartened, Resilient Math Learner Who Adapted Learning Strategies 

Math Identity Stories. Grace faced increasing challenges in the course, noting the 

accelerated pace and her need for more time to understand concepts (Interview, week 14). Her 

relationship with and confidence in math declined significantly after the first midterm (Figure 2).  

 

 
 

Figure 2: Grace’s drawing of her relationship with and confidence in math (Interview 3) 

 

Despite growing frustrations, Grace persisted. During problem-solving, she encouraged 

herself with affirmations like “That’s hard. It’s okay, I got this.” or “I don’t wanna give up. OK, 

let me think.” ((Field Notes, weeks 5 & 7; Interview, week 9). When receiving low scores, she 

reassured herself, saying, “At least I’m learning,” or “It’s okay. The class is about learning, 

right?” (Field Note, week 6-9). She remained hopeful: “After the midterm, my relationship with 

math stabilized because I changed my learning strategies, and then I was like, okay, maybe I 

could do this” (Interview, week 14). She continued to find joy in math (Field Note, week 9).  

Goals. Grace prioritized a deep understanding of Calculus (Interview, week 9; Field Notes, 

weeks 5, 7, 8) and planned to persist in the course by “toughing it out” (Interview, week 9).  

Orientations. Grace recognized the substantial effort required for understanding Calculus 

concepts and derived satisfaction from achieving conceptual clarity (Interview, week 9). Her 

resilience was evident in her perseverance through challenges (Field Notes, weeks 5-9).  

Resources. Grace supplemented the instructor’s lectures with Youtube tutorials, engaged in 

challenging problems during discussions, practiced additional textbook exercises, and engaged in 

in-depth mathematical conversations with the author (Interview 2; Field Note 6 & 8).  

Decisions. Grace adjusted her learning strategies and sought deeper conceptual 

understanding in this phase (Field Notes, weeks 8 & 9; Interview, week 9). She reflected: 

After the first midterm, I realized I needed to change something. I started watching Youtube 

tutorials and re-watching lecture recordings… I tried to do the homework more before the 

quizzes because I learned that’s what you need to do in order to do well on the quiz. I also 

increased my study time and did additional problems from the textbook. (Interview, week 14) 

Grace consistently posed insightful questions to deepen her understanding, such as “How would 

you see a horizontal asymptote without a graph?”, “Why does the derivative of the sine inverse 

function not have any trigonometric expressions in it?”, and “What if a non-continuous function 
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has a zero? Will the theorem still apply?” (Field Notes, weeks 6, 7, 9).  

Weeks 10-14: A Mathematics Admirer from Afar Who Dropped Calculus 

Math Identity Stories. Grace’s informal calculations of her potential course grade threaten- 

ed her established identity as an “A+” student, instilling a fear of failure and a sense of alienation 

in the course (Field Notes, weeks 11 & 12). Grace’s parents’ advice to prioritize her mental heal- 

th and withdraw from Calculus negatively impacted her confidence in math (Interview, week 

14). Reflecting on her experience, Grace revealed that while law school had been a distant con- 

sideration, Calculus unexpectedly propelled her towards a career in law and humanities (Inter- 

view, week 14). Notably, Grace maintained a genuine appreciation of math after withdrawal: 

The course was challenging but it was definitely a growing experience… I just think I needed 

more time to process it in order to really do well on exams, and I didn’t have that time. But 

yeah, math is an interesting field. It’s delicate, complicated, and beautiful. I don’t think I’ll 

ever not like math… So math is like, my soulmate, I guess? (Interview 3, week 14) 

Goals. Grace’s primary objective was to “just pass the class” (Field Notes, weeks 11 & 12). 

Additionally, she emphasized the need to “focus on other things” (Interview, week 14). 

Orientations. Grace continued to appreciate the beauty of math, believing that everyone, 

including herself, can excel through hard work (Field Notes, weeks 10-12; Interview, week 14). 

Resources. In addition to the resources used in the previous phase, Grace sought emotional 

support from friends, input from family, and advice from the author (Interview, week 14).  

Decisions. Grace reconsidered her career paths, asked fewer questions aiming for a deeper 

conceptual understanding, and dropped the course. There was a noticeable decrease in Grace’s 

enthusiasm and instances of seeking deep understanding (Field Notes, weeks 11-13). Figure 3 

summarizes the evolution of Grace’s math identity and decision making over the semester. 

 

 
 

Figure 3: The evolution of Grace’s mathematical identity and decision making 

 

Discussion 

This paper documents how Grace’s math identity and decision making co-evolved over time. 

Notably, Grace’s evolving math identity stories were closely connected to the decisions she 

made. Her active engagement in the course and proactive pursuit of deep understanding were 

congruent with her identity as a math major, holding potential benefits for her aspirations. As a 

resilient learner, Grace’s adaptation of learning strategies and quest for deeper understanding 

were her natural responses to unsatisfactory feedback. The dissonance between her established 

identity as an “A+” student and the emerging narrative of failing in the course contributed to 

Grace’s reconsideration of career pathways. Considering her new future self-image where math 

was no longer indispensable, it was understandable that Grace asked fewer questions aiming for 

a deeper conceptual understanding. Dropping Calculus allowed her more time and energy to 
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focus on things that mattered to her new career trajectory while safeguarding her GPA.  

Examining students’ co-evolving identity narratives alongside their goals, orientations, 

resources, and decisions yields valuable insights into how they navigate learning challenges. 

These theoretical linkages are particularly crucial given the lack of connections between math 

identity literature and decision-making studies. Furthermore, since decision-making theories 

have yet to extend to temporal dimensions (A. Schoenfeld, personal communication, June 2, 

2024), this study paves the way for more in-depth investigations into the evolution of decision 

making over time, as well as the identity-related factors influencing these changes.  
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Students’ use of representations yields insights into their learning of mathematical concepts. 

Thus, utilizing students’ representations can reveal how they construct mathematical models for 

dynamic situations.  In this brief research report, we investigate an undergraduate STEM 

major’s use of multiple representations while modeling an exponential growth scenario. Through 

constructing second-order accounts of Liv’s modeling activities, we demonstrate the ways in 

which she used multiple representations to arrive at a symbolic representation that predicts the 

growth of a yeast colony.  

Keywords: Cognition, Representations, Mathematical Modeling 

Mathematical modeling (hereafter, modeling) is the process of constructing mathematical 

structures to mathematically represent a situation. Scholars within the cognitive modeling 

perspective (see Kaiser, 2017) have extensively studied the process of modelers representing 

activities, with explicit attention on mathematizing (e.g., Suh et al., 2017; de Almeida, 2018). 

Yet, the difficulty in examining students’ modeling process and helping them advance continues 

to be a significant challenge (Cevikbas et al., 2021). Particularly arduous is the task of guiding 

modelers towards constructing mathematical equations that establish relationships among 

conceived quantities symbolically (Jankvist & Niss, 2020)—a predictive component of a model. 

Fundamentally, modeling is the process of re-presenting a modeler’s conception of the scenario 

through representations (Lesh et al., 2003). Therefore, the cognitive process involved in 

modeling can be investigated via the different representations a modeler uses (Duval, 2006). In 

particular, a modeler’s representations and transformations of those representations over time are 

fertile ground for guiding modelers towards constructing expressions for situations. In this 

preliminary study, we report on one undergraduate’s use of multiple representations to construct 

a symbolic representation for an exponential growth scenario.    

Theoretical Framing and Background  

Duval (2006) proposed looking at semiotic representations as a means for analyzing students’ 

cognition as they engage in mathematical activities. This is because “mathematical processing 

always involves substituting some semiotic representations for another” (p. 107), and therefore 

the analysis of mathematical activities can be afforded through the transformations of 

representations. Duval distinguishes semiotic representations from mental representations. While 

mental representations are in the mind of the learner, semiotic representations are externalized 

mental representations that are observable by an outsider. In this study we consider semiotic 

representations as the objectifications (Radford, 2013) of mathematical thinking. Within this 

perspective, a sign can be verbal or non-verbal, and its role is to represent something else (Pierce 

1998, Colapietro, 1993). Pierce (1998), defined sign as a triadic relationship among an object 
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(signified), representamen (signifier) and interpretant (the effect it has on an individual whether 

it is the utterer or the interpretant).  

Examples of non-verbal registers include graphs, symbols, equations, and tables. These are 

often referred to as the types of representations. Whether a representation is verbal or not is 

determined by the mode of production, such as written, spoken, or gestured (Goldin, 2020). A 

mathematical object can be represented via multiple semiotic representations. For example, an 

exponential growth can be represented via the symbolic form 𝑦 = 𝑒𝑥, or through a graph that 

depicts how 𝑦 changes with respect to 𝑥.  

Duval (2006) posits two types of transformations of semiotic representations: treatment and 

conversion. While treatments are transformations of representations that happen within the same 

register, conversions are transformations of representations that entail converting to a different 

register but the same mathematical object (pp. 112-113). For example, a student who used an 

exponential function to model the growth of a continuously compounding bank account, may 

choose to work mathematically within the function to evaluate the amount of money in the 

account after 5 years. In contrast, the student may choose to create a table that coordinates the 

amount of money in the bank account with number of years, to represent her perception of the 

scenario. Despite the use of multiple representations, the underlying mathematical object—

exponential function—remains the same. Duval (1999) calls the ability to use multiple 

representations to reason mathematically about the same object as coordination. Dreyfus (1991) 

posited that students’ ability to use more than one representation, connecting and integrating 

representations can be taken as an indication of advancement in their learning process. More 

recently, Fonger (2019) defined representational fluency as “the ability to create, interpret, 

translate between, and connect multiple representations” (p.1). Scholars have investigated 

students’ construction of mathematical ideas (Fonger, 2019; Selling, 2016) through the 

representations students produced and the evolution of those representations. However, research 

is still scarce on students’ transformations of semiotic representations while constructing a 

mathematical model for a situation. In this report, we explore how did an undergraduate STEM 

major used multiple semiotic representations to construct an exponential growth model?  

Methods 

For this preliminary analysis we draw on one undergraduate STEM major’s—Liv 

(pseudonym)—work on the Baker’s Yeast task. The Baker’s Yeast task was an exponential 

growth modeling task in which a colony of yeast cells reproduces every 30 minutes. Liv was 

tasked with constructing an expression for the number of cells present in the bowl at any given 

time. The data was collected through a 1-hour clinical interview (Goldin, 2012). Data was 

analyzed through constructing second-order accounts (Steffe & Thompson, 2000) of Liv’s 

mathematizing activities. Explicit attention was paid to Liv’s written semiotic representations 

and their transformations, while utilizing her spoken and gestured representations primarily as an 

explanatory source.  

Findings 

We present three phases of Liv’s work which were pivotal in helping her construct a general 

symbolic representation of the number of cells present in the bowl.  

Construction of Source Representation 
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Liv represented the scenario using a table where she coordinated the values of time and 

number of cells (Figure 1). Liv wrote 30min + 2 ∙ 𝑥 to represent the number of cells after a 

particular time. She defined 𝑥 to signify the number of cells. She decided that the equation did 

not require 30min, and scratched it out. Liv expressed frustration that she did not know “how to 

figure this out,” referring to the construction of an expression that would give the number of cells 

in terms of time. Liv further expressed, “for me the easiest is to draw chart, but I don’t know 

there is some faster way [referring to a formula].” 

 

 
(a) 

 
(b) 

 

Figure 1: Liv’s Source Table (a) and Treatment of Table (b) 

Treatment of Source representation to Determine a Symbolic Representation 

To help Liv transform her table into a symbolic representation, the interviewer asked Liv 

what the reproduction would look like if there were 𝑐 cells present in the bowl initially. Liv 

constructed the chart in Figure 1(b), where she wrote the number of cells at time 𝑡 in terms of the 

number of cells present at time 𝑡 − 1. On her calculator, Liv checked the values of 24 and 25 to 

see if they aligned with the number of cells at 𝑡 = 2 hours and 𝑡 = 2.5 hours as depicted in her 

table in Figure 1(a). In doing so, we interpret that Liv was implicitly considering 𝐶4 =  𝐶3 ∙ 2 =
 𝐶2 ∙ 2 ∙ 2 =  𝐶1 ∙ 2 ∙ 2 ∙ 2 = 𝐶 ∙ 2 ∙ 2 ∙ 2 ∙ 2. After confirming that the numbers do align, Liv first 

wrote 𝐶𝑋+1 to represent the number of cells. Unable to explicitly state what 𝐶 or 𝑋 in her 

expression represented, Liv wanted to determine a way to include “number of half hours” in her 

expression. To accomplish this, Liv considered a specific case of 𝑡 = 10 hours and posited that 

there would be 20 half hours. She then modified her symbolic representation to be 2𝑋, where 𝑋 

was the number of half hours. She then wrote that 1 ∙ 2𝑋 would be the number of cells if there 

were 1 cell initially. 

Conversion of Source Representation to Determine a Symbolic Representation 

To determine a more general expression, Liv considered a specific case: 5 cells were present 

initially. Liv wrote 52∙20, where 20 in her expression signified the number of half hours and 2 

signified the cells doubling. Upon request, Liv compared her model for the number of cells 

present when starting with 5 cells — 52∙20—to her model when starting with 1 cell—2𝑋. She 

compared the values of 220 and 12∙20, and realized that they did not have equal outputs. 
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Upon suggestion by the interviewer, Liv drew diagrams for when there was initially one cell 

(Figure 2(a)) and 5 cells (Figure 2(b)) in the bowl. After drawing the diagram, Liv reasoned: 

“each individual cell [when starting with 5 cells] will follow the same pattern as if it were just 

starting out with just one cell.” She further stated that in Figure 2(b), 5 copies of the process in 

Figure 2(a) were taking place. Through her reasonings, we interpret that Liv was comparing the 

number of cells present in the scenario as depicted in Figure 2(b) to the number of cells present 

in the scenario depicted in Figure 2(a), at each time step. She referred back to her table in Figure 

1(a) and said that there would be 5 ∙ 4096 = 20,480  cells at the end of 6 hours.  

Consequently, she modified the number of cells present in the bowl at 𝑡 = 10 hours as  5 ∙
220 (Figure 2(c)). Liv generalized this expression by nominalizing what each of the numbers in 

her expression signified: 5 signified the number of cells, 2 signified the process of cells doubling, 

and 20 signified the number of half hours (see Figure 2(c)). She checked her model by 

considering a known case of 𝑡 = 6 hours and got 20,480 yeast cells, where she simultaneously 

moved between her representations in figures 1(a) and 2(c). Liv produced 3 types of written 

semiotic representations (table, diagram, symbolic) in which the treatment and conversion of her 

source representation (Figure 1(a)) aided her in constructing a symbolic representation for the 

Baker’s yeast scenario (see Figure 2(a)).  

 

 
(a)  

 
(b)  

 
(c)  

(d) 

Figure 2: Liv’s diagram for cells populating (a, b), symbolic representation (c), and 

network of types of representations (d). 

Discussion 

Students’ reasonings, as they engage in modeling activities, are ongoing. However, students 

transforming from one representation to another can be taken as pivotal moments in their 

cognitive processes. This is because, during these shifts, students are either reorganizing their 

already existing conceptual structures or developing new ones. Therefore, these shifts can be 

seen as sensitive points to learning. Our findings suggest that students’ representations can be 
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leveraged to not only trace the evolution of their model through the inscriptions they make 

(Czocher & Hardison, 2019), but also in guiding them towards the modeling goal educators have 

for them. Students’ learning of modeling and students’ creations, interpretations, and 

coordination of multiple representations while doing modeling are interconnected (Dreyfus, 

1991). Therefore, our study instigates a conversation within the modeling education community 

to answer questions such as how can a modeler’s representations be leveraged to articulate what 

that modeler has learned during model construction? —a research problem yet to be solved. 

While our analysis attended to the transformations of representations, the focus of analysis was 

not on the mental operations that aided those transformations. Future research can network 

theories (Radford, 2008) of representations together with other compatible theories to capture the 

complexities and intricacies of model construction.  
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Tape diagrams, which are also known as strip diagrams, bar models, bar diagrams, length 

models, model-drawing strategy, percentage bars, and model methods, may be a powerful tool 

for developing students’ conceptual understanding and problem solving abilities in mathematics. 

Murata (2008) observes that students in Japan and Singapore outperformed U.S. students in the 

Trends in International Mathematics and Science Study (TIMSS) in 2003, and associates this 

finding with a systematic and consistent curricular emphasis on tape diagrams across grades, 

unlike the U.S.’s inconsistent usage. She and Timothy (2022) argue that mathematical word 

problems across grade levels can be solved using tape diagrams. Empirical studies have also 

shown that tape diagrams have the potential to improve students’ problem-solving skills in the 

context of algebraic word problems involving both whole numbers and fractions (e.g., Ng et al., 

2009), addition and subtraction problems involving whole numbers (e.g., Osman et al., 2018), 

algebra word problems involving whole numbers (e.g., Baysal et al., 2022), fraction and 

percentage problems (e.g., Dennis et al., 2016; Sharp et al., 2017). 

In the above-mentioned studies, none of the studies focused on lower-achieving students. The 

participants in these studies were students with learning disabilities, average-ability students, 

above average-ability students, and randomly selected students. Of these studies, some studies 

randomly recruited their participants (e.g., de Koning et al., 2022). One study focused on 

students with mathematics difficulty (i.e., Morin et al., 2017). One study focused on higher-

achieving students and average-achieving students (i.e., Ng et al., 2009). One study focused on 

higher-achieving students (i.e., Maglicco et al., 2016), and one study focused on average-

achieving students (i.e., Mahoney, 2012). Two studies applied different scales of criteria. The 

synthesis of the participants in these studies revealed that there is no study focused on lower-

achieving students. Lower-achieving students constitute a significant proportion of U.S. students 

and should be researched and offered support. Therefore, the focus on lower-achieving students 

might be one study area of using tape diagrams. 

In the above-mentioned studies, few studies used tape diagrams as the sole intervention. Of 

these studies, eight studies used tape diagram drawing with step-by-step instructions on problem 

solving (e.g., Green, 2009; Preston, 2016; Dennis et al., 2016). Four studies did not have any 

information about the intervention (i.e., Putrawangsa et al., 2021; Osman et al., 2018; Van Galen 

et al., 2013; Madani et al., 2018). Two studies included some information about the intervention 

(i.e., Shah et al., 2021; Baysal et al., 2022). The synthesis of the intervention showed that tape 

diagrams might not be the sole intervention. Other types of interventions are always 

accompanied with tape diagrams. More studies can be conducted on students’ understanding of 

tape diagrams and how students develop tape diagrams as an effective tool to solve problems. 

Of these works, most of the studies focused on students’ correct problem solving (e.g., 

Preston, 2006; Mahoney, 2012; Maglicco, 2016; Putrawangsa et al., 2012). Only three studies 

described students’ obstacles while using tape diagrams to solve problems (i.e., Baysal et al., 

2022; Green, 2009; Madani et al., 2018). By learning students’ obstacles in using tape diagrams, 

mailto:yuemajoy@udel.edu
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more effective instructions can be developed to support students’ learning. Further exploration on 

“what do students notice and wonder about while they are using tape diagrams and how are the 

things that they notice and wonder about related to the errors they make?” can be done. 
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En respuesta a las iniciativas globales que abogan por la integración de problemas reales en la 

educación matemática para estimular el desarrollo de conocimientos y habilidades matemáticas, 

así como reflexiones sobre los desafíos ambientales, este estudio se centró en analizar el 

conocimiento matemático que emerge cuando un grupo de estudiantes universitarios aborda una 

actividad (MEA) en el contexto de la escasez de agua. El marco teórico fue la Perspectiva de 

modelos y modelación. El análisis cualitativo permitió concluir que la MEA propició que los 

estudiantes profundizaran en el contexto e incorporaran sus experiencias personales en el 

proceso de modelación. Además, exhibieron el uso de sus conocimientos como razones, 

porcentajes, proporciones, variación, razón de cambio constante, y estimación para describir y 

predecir la escasez de agua en el lago de Chapala. 

Palabras clave: Modelación, función, representaciones matemáticas 

Introducción  

De acuerdo con la UNESCO & MGIEP (2017) se requiere ampliar los esfuerzos educativos 

para introducir en la educación matemática problemáticas reales para apoyar el desarrollo de 

conocimiento, habilidades matemáticas y la reflexión de los estudiantes hacia los retos 

ambientales del mundo. En este artículo se reportan los resultados de una investigación que se 

enfocó en describir el conocimiento matemático relacionado con el concepto función que emerge 

cuando un grupo de estudiantes de nivel universitario resuelven una situación-problema cercana 

a la vida real. La situación-problema fue creada en el contexto de la escasez del agua, tópico 

importante en los Objetivos de Desarrollo Sostenible. La pregunta de investigación fue ¿qué 

conocimiento matemático relacionado con funciones exhiben los estudiantes universitarios al 

construir modelos para resolver una situación problema cercana a la vida real? 

Marco Teórico  

Este estudio se basó en la Perspectiva de Modelos y Modelación (MMP, por sus siglas en 

inglés), la cual plantea que el proceso de desarrollo de conocimiento matemático puede 

describirse como un proceso no lineal de desarrollo de modelos que se modifican de manera 
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continua durante la interacción de un individuo o estudiante con sus compañeros o maestro para 

resolver una situación problemática (Ärlebäck & Doerr, 2015; Lesh, 2010). 

Dentro de esta perspectiva, un modelo se define como un sistema formado por elementos, 

relaciones, reglas y operaciones que pueden utilizarse para dar sentido, explicar, predecir o 

describir otro sistema (Doerr & English, 2003; Lesh & Doerr, 2003). De acuerdo con Lesh y 

Doerr (2003) cuando los estudiantes construyen modelos, sus ideas se expresan a través de una 

variedad de medios de representación, en los cuales los significados matemáticos están 

distribuidos (Figura 1). La elaboración de modelos implica que los estudiantes sigan múltiples 

iteraciones donde expresan, prueban y validan el modelo (Lesh & Lehrer, 2003). Estas 

iteraciones implican “la comprensión de la situación problemática, el desarrollo de un modelo 

matemático como solución al problema planteado, la expresión del modelo a través de alguna 

forma de representación como tablas, gráficos y ecuaciones, la comprobación de la utilidad del 

modelo y la revisión/refinamiento del modelo si es necesario” (Sevinc, 2021, p. 80). 

 

Figura 1: Medios de representación que pueden ser utilizados en un modelo. Esquema 

tomado de Lesh y Doerr (2003, p. 12) 

 

La MMP propone que se utilicen Actividades Provocadoras de Modelos (MEAs, por sus 

siglas en inglés Model Eliciting Activities) para propiciar el aprendizaje de las matemáticas. Las 

MEAs son actividades diseñadas para conocer las concepciones e ideas matemáticas iniciales de 

los alumnos mientras desarrollan sus habilidades como solucionadores de situaciones 

problemáticas reales y significativas (Doerr, 2016). Resolver MEAs implica que los estudiantes 

puedan construir maneras útiles de interpretar la naturaleza de los datos, las metas y posibles 

trayectorias de solución de la situación problema; estas actividades demandan procesos de 

matematización que apoyen la toma de decisiones de un cliente a través la creación de modelos 

compartibles y reutilizables (Ärlebäck & Doerr, 2018; Sevinc & Lesh, 2018). 

Metodología 

La investigación fue de tipo cualitativo. Participaron 12 estudiantes que cursaban los últimos 

semestres de una licenciatura en matemáticas, quienes fueron organizados en cuatro equipos (A, 

B, C, D), cada uno conformado por tres integrantes. De acuerdo con el profesor del curso, esta 

fue la primera vez que los estudiantes participaban en la resolución de una MEA. 

La MEA titulada "El día cero" fue construida con base en los seis principios de diseño 

descritos por Lesh et al. (2003). El contexto aborda uno de los problemas medioambientales 

relacionados con la escasez de agua, específicamente el decrecimiento del volumen de agua del 
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Lago de Chapala del estado de Jalisco. En la MEA se solicita a los estudiantes que ayuden a 

Sonia a describir la disminución de agua del Lago de Chapala y predecir el desabasto a la Zona 

Conurbada de Guadalajara (ZCG) con el paso de los años. En la nota periodística los estudiantes 

pueden identificar información como la siguiente: la población total de la ZCG según el Censo 

de Población y vivienda en 2010, la capacidad total del Lago de Chapala, así como el porcentaje 

de agua en el Lago hasta el 28 de febrero de 2023. La actividad se llevó a cabo en dos sesiones, 

cada una de aproximadamente 60 minutos. En la primera sesión los estudiantes escribieron la 

carta y la leyeron a todo el grupo. En la segunda, en una discusión plenaria, explicaron con 

detalle su carta. Para ello realizaron dibujos, tablas y gráficas en el pizarrón. La toma de datos 

fue a través de la recolección de las cartas escritas, audios de la sesión grupal, y fotos de las 

contribuciones en el pizarrón durante la sesión plenaria. Tres de los autores de este reporte 

apoyaron al investigador principal en la recolección de datos, transcribieron y codificaron la 

información en: a) conocimiento matemático asociado al concepto de función utilizado en la 

construcción de los modelos y b) uso de representaciones (Figura1). Finalmente, analizaron y 

discutieron en grupo los hallazgos y redactaron el reporte. 

Resultados y Discusión 

A continuación, se hace una descripción de los modelos construidos por los estudiantes y los 

conocimientos matemáticos subyacentes. Los modelos se denominaron de acuerdo con la idea 

principal utilizada en las cartas. Durante el proceso de creación de modelos, todos los equipos 

discutieron el fenómeno y reflexionaron sobre el cúmulo de variables que lo afectaban. Sin 

embargo, ante la solicitud de la MEA de escribir una carta para ayudar a Sonia, tomaron 

decisiones que les permitieron construir respuestas. 

Modelo: el volumen del lago cambia 

El equipo A sugirió medir el volumen de agua del lago de Chapala. Propuso atar un objeto 

pesado a una cuerda, sumergir el peso al lago y determinar la profundidad del lago. Con base en 

ello, sugirió calcular el volumen del lago y seguir este procedimiento cada año para predecir la 

disminución del nivel de agua. El equipo explicó que podrían partir de la hipótesis de un lago 

con forma semiesférica para hacer más fáciles los cálculos. Considerando las representaciones 

mencionadas por Lesh y Doerr (2003), el equipo A utilizó principalmente: lenguaje hablado, 

diagramas o dibujos y modelos concretos. El conocimiento matemático distribuido en estas 

representaciones fue: longitud, volumen y razón de cambio (volumen/año). 

Modelos: el desabasto de agua puede ser en tres años 

El equipo B sugirió calcular el gasto del agua del lago de Chapala mediante el uso de los 

datos incluidos en la nota periodística. Obtuvo el volumen porcentual del agua del lago y supuso 

un consumo constante de 8.27% cada tres meses. Este planteamiento de una razón de cambio 

constante de consumo de agua permitió al equipo crear su modelo y estimar cuándo podría 

ocurrir el día cero, sin necesidad de conocer el volumen preciso del agua del lago. Predijo que en 

tres años se acabaría el agua del lago bajo las condiciones iniciales planteadas.  

Considerando las representaciones mencionadas por Lesh y Doerr (2003), el equipo B 

utilizó: lenguaje hablado y símbolos escritos. El conocimiento matemático distribuido en estas 

representaciones fue: porcentajes, razones, proporciones y estimación, todos ellos asociados a 

una función lineal ya que se partió de la idea inicial de un consumo constante de agua.  

Modelo: muchas variables y poca información  
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El equipo C comentó que había poca información en el problema y para describir el 

fenómeno influían diversas variables como la cantidad de agua utilizada por los habitantes y las 

empresas, la influencia del crecimiento poblacional y de la cantidad de empresas, y el historial 

del uso del agua en el transcurso de los años. En la sesión plenaria el equipo construyó un 

histograma para explicar cómo podría comportarse la disminución de agua del lago de Chapala 

cada año. Además, argumentó que la fecha en la cual llegaría el día cero dependía del consumo 

por los habitantes y del consumo por las empresas, el cual es mayor. 

El equipo consideró que debido a que no tenían muchos datos en el problema y la 

disminución del agua podía deberse a muchas variables, no podía construir y proponer un 

modelo matemático preciso. Requerían de más información por la gran cantidad de variables que 

influían en un fenómeno como este. Esta percepción de falta de información es común que 

emerja al resolver problemas abiertos (Vargas-Alejo et al., 2018a; Vargas-Alejo et al., 2018b). 

Algunos estudiantes enfocan su discusión en la diversa cantidad de variables que hay alrededor 

de un fenómeno y la dificultad de construir algún modelo ante esa situación. 

Considerando las representaciones mencionadas por Lesh y Doerr (2003), el equipo C 

utilizó: lenguaje hablado y gráficas. Algunos de los objetos matemáticos distribuidos en estas 

representaciones fueron: razones y porcentajes.  

Modelo: el desabasto del lago puede ser en 60 años 

El equipo D hizo suposiciones con base en la información de la nota periodística y datos que 

investigaron en internet, por decisión propia, para describir la disminución de agua del Lago de 

Chapala y predecir el desabasto a la ZCG. Estimaron que había un decrecimiento constante que 

equivalía al 1% por año, desde el año 2010 hasta el 2023. Con este dato, propusieron un modelo 

lineal y predijeron que bajo estas condiciones iniciales planteadas podríamos tener agua por un 

periodo de 60 años más. El uso de porcentajes obtenidos en su búsqueda en internet y en la nota 

periodística, así como el planteamiento de la hipótesis de una razón de cambio constante para 

estimar el desabasto de agua, permitió al equipo construir su modelo y estimar cuándo podría 

ocurrir el “día cero” para el Lago de Chapala, que definió como el momento en el que quedara 

del 5 al 8% de agua en el lago. 

Considerando las representaciones mencionadas por Lesh y Doerr (2003), el equipo D 

utilizó: lenguaje hablado, símbolos escritos y gráficas. El conocimiento matemático distribuido 

en estas representaciones fue: variables, variación, proporciones, razón de cambio (porcentaje de 

desabasto / año), función lineal y estimación.  

Conclusiones  

El conocimiento matemático exhibido por los estudiantes al construir sus modelos para 

describir la disminución de agua del Lago de Chapala y predecir el desabasto a la ZCG puede 

resumirse en lo siguiente. El equipo A usó longitud, volumen y razón de cambio (volumen / año), 

mientras que el equipo C utilizó razones y porcentajes para describir el comportamiento del 

fenómeno. Ninguno de los equipos A y B predijeron una fecha de desabasto. Los equipos B y D 

usaron razones, porcentajes, proporciones, variación y razón de cambio constante para estimar 

una solución. Los equipos consideraron la necesidad de describir el desabasto con base en alguna 

tasa de cambio, conocimiento asociado al concepto de función. Tal como señala Lesh y Doerr 

(2003) las experiencias personales, así como académicas influyeron en el proceso de modelación 

y, por lo tanto, en las reflexiones sobre la problemática.  
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La MEA, diseñada bajo los seis principios de Lesh et al. (2003), permitió que los estudiantes 

se enfrentaran a la construcción de un modelo, una experiencia novedosa para ellos. Los 

estudiantes matematizaron, es decir, tomaron decisiones para reducir variables y relacionarlas, 

estimaron una respuesta que funcionara bajo ciertas condiciones; finalmente, documentaron y 

auto evaluaron su modelo. La MEA posibilitó que los estudiantes conectaran conocimientos 

matemáticos con la situación planteada, desarrollaran y discutieran sus habilidades de 

modelación y reflexionaran sobre temas de sostenibilidad, respondiendo así a las necesidades 

planteadas por la UNESCO y MGIEP (2017) para ampliar los esfuerzos educativos frente a los 

retos ambientales del mundo que estamos viviendo. 
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In mathematics education, knowledge is often divided into conceptual knowledge and procedural 

knowledge. These two knowledge types are sometimes seen as competing for teachers' attention 

and curricular focus. Similarly, there exists a perceived dichotomy between proof-based 

mathematics and procedure-based mathematics. In this context, learning procedures, which 

include computations and calculations, is frequently viewed as learning how to execute them to 

obtain answers. However, from our perspective, procedures should be understood as a sequence 

of inferences. Thus, we propose the construct of inferential knowledge as an alternative to the 

traditional conceptual-procedural divide. We present inferential decomposition as a technique to 

deconstruct the knowledge required in understanding a procedure inferentially. We advocate for 

using inferential knowledge to integrate sensemaking and explanation within procedures.  

Keywords: Algebra and Algebraic Thinking, Reasoning and Proof, High School Education, 

Undergraduate Education 

Deductive inference-making is paramount to mathematics. However, in some sub-disciplines 

of school mathematics, the core inferential basis is sometimes hidden behind routines and 

algorithms. We address this by introducing an inferential knowledge framework that serves a 

dual purpose of highlighting the inferences within procedures and also deconstructing the types 

of knowledge underlying an understanding of the validity of these inferences. Our inferential 

knowledge approach: 1) sheds light onto decades-long debates about procedural knowledge 

versus conceptual knowledge, 2) highlights a viable opportunity for incorporating sensemaking 

into learning already standardized procedures, and 3) provides potential avenues for smoothing 

the transition from calculation-centric mathematics (where inferences are often below the 

surface) to proof-centric mathematics (where inferences are more transparent). 

Inferences Hidden in Procedures: Two Examples 

To help illustrate the fundamental perspective driving this work, that inferences underlie 

procedures, we discuss two typical procedure-centric examples: The first is in the context of 

introductory calculus, specifically “implicit differentiation”3. 

Example 1: The Ladder Problem and Implicit Differentiation 

Consider the procedure of implicit differentiation. Figure 1, below, displays an example of a 

fairly common introductory calculus problem whose standard solution utilizes such a procedure.  

 
3 We refer to the described method for solving this problem as “implicit differentiation” for 

convenience, even though it may not technically qualify as such (Mirin & Zazkis, 2020). 
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Figure 1: The Ladder Problem 

A student is likely to procedurally take 
𝑑

𝑑𝑡
 of both sides of  

1.  𝑥2 + 𝑦2 = 9, 

substitute in the given information, perform some manipulations, and then arrive at the answer. 

Mirin and Zazkis (2020) propose a way of conceptualizing this implicit differentiation procedure 

in a way that coheres with typical introductory calculus material: viewing the equation (1) as an 

equality of functions (of t), we use the fact that sameness of function implies sameness of 

derivative to infer that the derivative (with respect to t) of the function represented by the left 

hand side is the same as the derivative of the function represented by the right hand side. This 

then implies that: 

2. 
𝑑

𝑑𝑡
(𝑥2 + 𝑦2) =

𝑑

𝑑𝑡
(9). 

While there are more steps (inferences) to solve this particular problem, here we focus on the 

very first step in transitioning from equation (1) to equation (2). We note that understanding why 

a procedure is valid encompasses other mathematical understandings. In the context of the ladder 

problem, Mirin and Zazkis (2020) propose that understanding why implicit differentiation is 

valid is tantamount to viewing the procedure as an inference from function equality to derivative 

equality (from equation (1) to (2)), and the authors consider the conceptualizations involved in 

understanding such an inference. Understanding equation (1) as a statement of function equality 

acts as a warrant for writing (2), a statement of derivative equality, which in turn acts as a 

warrant for performing the differentiation procedure. While there might be other productive ways 

of understanding (1) and (2) besides function and derivative equality (e.g. using a calculus 

grounded in differentials, as in Ely, 2021), our central point here is that underlying this common 

procedure of differentiating both sides of an equation is an inference from equation (1) to (2). 

Our broad point is that deductive inferences, such as the one shown above, are omnipresent in 

procedures but are often left tacit outside proof centered contexts. 

Example 2: The Number Line Problem and Solving Inequalities 

We now consider another example to guide our discussion: a typical secondary school 

algebra problem, which we hereafter refer to as the number line problem.  

 
Figure 2. The Number Line Problem 
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The typical procedure for solving this problem is to start with the initial inequality shown below:  

3.  2𝑥 − 5𝑥 ≤ 12 

Then the left-hand side is usually simplified by collecting like terms, resulting in the inequality: 

4. −3𝑥 ≤ 12. 

The standard final step for solving the inequality is to divide each side by −3  and reverse the 

inequality sign, yielding: 

5. 𝑥 ≥ −4. 

Finally, the number line is shaded to the right of the point representing the value of −4, and a 

solid dot is drawn on the point representing −4. 

Let’s consider how we could conceptualize this procedure inferentially. Like with the Ladder 

Problem, these inferences are often left tacit. Because 2𝑥 − 5𝑥 = −3𝑥 for all values of 𝑥 (and 

underlying understanding this equation entails other conceptualizations, which are not discussed 

here), we can infer that the values of 𝑥 that satisfy (3) are precisely those values of 𝑥 that satisfy 

(4). Therefore, solving (4) is tantamount to solving (3). Similarly, using the fact that 𝑎 ≤ 𝑏 is 

equivalent to  𝑎/(−3) ≥ 𝑏/(−3) and that 12/(−3) = −4, we can conclude that the values of 𝑥 

that satisfy (4) are precisely those values of 𝑥 that satisfy (5). Hence, we can conclude that the 

values of 𝑥 that satisfy (3) are the same as those that satisfy (5), and then we can appropriately 

highlight all values on the number line that are greater than or equal to −4. 

Our Framework: Inferential Knowledge and Inferential Decompositions 

The two problems in the previous section can be solved by implementing known procedures 

with little or no attention to why those procedures work. However, as we demonstrated, each step 

in those procedures relies on an underlying inference. This observation is true in general of any 

legitimate mathematical procedure. We leverage this observation to define and delineate a type of 

knowledge that underlies understanding procedures inferentially. In other words, we define our 

novel construct, inferential knowledge, to characterize the knowledge involved in 

understanding a procedure as a chain of valid inferences. 

To contextualize and demonstrate the utility of our inferential knowledge construct, we first 

explain how inferential knowledge is novel in relation to mathematics education discourse on 

knowledge types. Then, we describe and illustrate what we call inferential decomposition. An 

inferential decomposition is the process by which one makes explicit the often tacit inferences 

involved in performing a procedure and then characterizes the types of knowledge and 

understandings (Figure 3) associated with the procedure. We then make the case that performing 

an inferential decomposition is a valuable activity for both educators and students. 

Situating Inferential Knowledge in the Literature 

Much of the discourse around procedures within mathematics education has been situated 

within the procedural-conceptual dichotomy (e.g., Hiebert & Lefevre, 1986). In these works, 

procedures are commonly characterized as little more than a rote series of steps to be followed. 

For example, Hiebert and Lefevre (1986) describe procedural knowledge as skill-based, rote, and 

lacking meaning. In contrast, they characterize conceptual knowledge as meaningful and based 

on understanding. Star (2005) contributed nuance to this discussion by separating out knowledge 
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type (procedural versus conceptual) from knowledge quality (shallow versus deep) and thus 

introduced the notion of deep procedural knowledge. Star’s deep procedural knowledge, like 

Hatano’s (2003) adaptive expertise, accounts for the fact that procedures can be implemented in 

skillful, teleological (goal-oriented), and non-rote ways. However, even this approach omits any 

clear indication or discussion of the inferential basis that lies at the core of why procedures work. 

In other words, the “deep” part of deep procedural knowledge appears to come not necessarily 

from understanding its inferential basis. Instead, it comes from flexibility and adaptability in 

implementing the procedure. This means there is little space within the procedural-conceptual 

literature for highlighting the inferential basis for procedures. In fact, a review of the literature 

(e.g., Baroody, 2003; Baroody et al., 2007; Hiebert & Lefevre, 1986; Ma, 1999; Peled & 

Zaslavsky, 2008; Rittle-Johnson et al., 2015; Star, 2005, 2007) on procedural and conceptual 

knowledge indicates no explicit reference to the notion of procedures being understood as valid 

inferences.  

However, the literature does provide some hint into how some authors might categorize 

inferential knowledge in the procedural-conceptual divide. Hiebert and Lefevre’s (1986) 

classification of procedural knowledge as how-to and conceptual knowledge as why seems to 

suggest that inferential knowledge goes in the conceptual knowledge classification – however, 

this classification appears not to be associated with procedures, nor is the inferential basis 

explicitly discussed. On the other hand, Star’s (2005, 2007) characterization of procedural 

knowledge as being knowledge about procedures suggests that inferential knowledge associated 

with a particular procedure can be viewed as a type of procedural knowledge – indeed, this is the 

approach that Mirin and Zazkis (2020) take when discussing implicit differentiation. However, 

Star (2005, 2007) does not provide inferential examples when illustrating the construct of deep 

procedural knowledge. So, authors using the procedural-conceptual dichotomy do not seem to 

agree on how to classify inferential understanding of a procedure, nor have they specifically 

addressed the inferential basis for procedures.  

Further, discussing the inferential knowledge associated with a particular procedure, such as 

implicit differentiation, will often entail discussing conceptualizations (e.g. of functions) that do 

not directly reference any procedures and are thus not necessarily about procedures. While the 

construct of adaptive expertise (Baroody, 2003) keeps procedural and conceptual knowledge 

intertwined, this construct appears to be more about transfer and flexible adaptation of 

procedures to varying contexts than it is about understanding the validity or legitimacy of 

procedures. One aspect of Baroody’s adaptive expertise is knowing when to use a particular 

procedure, which is not wholly unrelated to knowing when to use the procedure. For example, 

part of knowing when to use implicit differentiation could relate to recognizing statements of 

function sameness. Yet, recognizing appropriate situations and understanding the inferential 

basis for why those situations are appropriate are not necessarily the same. 

Although not explicitly addressed, we believe our approach, focusing on the inferential bases 

underlying procedures, echoes ideas hinted at by others in the mathematics education 

community. For example, Ma (1999) discusses ways that someone might be able to make sense 

of subtraction algorithms in terms of place value. Peled and Zaslavsky (2008) also seem to hint 

at the notion of inferential understanding by focusing on the meta-knowledge of procedures, such 

as in the context of the regrouping procedure when performing subtraction. Although not 
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explicitly referred to as such, this type of understanding is closely related to understanding 

procedures inferentially. The procedure of regrouping when subtracting 53 by 25 could be 

understood, for example, by reasoning that a 1 in the tens place is the same as ten 1’s in the one’s 

place. In other words, someone could understand facts about place value as warrants for 

performing a grouping procedure. Another context where the notion of inferential reasoning 

within procedures is alluded to can be found in the National Council of Teachers of Mathematics 

(NCTM)’s Standards and Procedures. Specifically, in the document titled Procedural Fluency, 

the NCTM (2023) suggests that an “effective strategy” for solving for x in 4(x+2)=12 involves 

“using relational thinking to recognize that the quantity inside the parentheses equals 3, thus x 

equals 1.” (p.1). While the NCTM seems to be advocating for this sort of reasoning as an 

efficient way of getting answers and as part of procedural fluency, we find it notable that they 

seem to be at least implicitly referring to inferences that one might make in an equation-solving 

context.  

In summary, even if we find where our notion of understanding procedures inferentially falls 

within the discourse on knowledge types, we note that there is no consistent agreement amongst 

authors, nor has this past discourse explicitly addressed the inferential basis for procedures. Our 

approach does not ignore the procedural-conceptual distinctions, nor does it attempt to categorize 

every aspect of inferential knowledge as procedural or conceptual. Instead, by focusing on the 

inferential basis for a procedure, we are highlighting where the inferences lie within the 

procedure as a way to approach mathematical teaching, learning, and understanding.  

Inferential Decompositions 

We delineate three types of inferential knowledge associated with understanding a procedure 

inferentially: (I) Content-Specific Knowledge, (II) Deductive Knowledge, and (III) Inferential 

Orientation.  

 

 
Figure 3: Inferential Knowledge 
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Using the ladder problem (Figure 1) and the number line problem (Figure 2), we outline 

inferential decompositions. An inferential decomposition is the process of identifying the 

knowledge and conceptualizations, and where they fall in the associated three categories (Figure 

3), involved in understanding a procedure inferentially. This involves looking at how one 

conceptualizes the specific mathematics involved as well as how one understands the logic 

connecting those inferences and the role of inferences within procedures more generally. Figure 

3 reflects how these different layers of knowledge relate to how “zoomed in” the type of 

knowledge is in relation to the procedure at hand, which we describe in more detail below. It is 

important to note that the descriptions below serve the purpose of illustrating our constructs of 

the three different types of inferential knowledge, which in turn helps illustrate the process of 

inferential decomposition. We are not claiming that these are complete inferential 

decompositions, nor are we claiming that these are the only ways of understanding the 

procedures described. Instead, we are illustrating how one might approach deconstructing the 

types of knowledge and understanding involved in conceptualizing a procedure inferentially. 

We define Content-Specific Knowledge of a procedure as the conceptualizations that enable 

one to understand the individual inferences associated with each step of a procedure as valid. For 

example, Mirin and Zazkis’ (2020) describe the content-specific knowledge involved in 

understanding implicit differentiation as a valid inference from function identity. This involves 

knowledge about functions, derivatives, the equals sign, and so on. In other words, this is what 

we think of as typical mathematical content knowledge and is often the focus of mathematics 

education research. In doing an inferential decomposition, we determine the specific content 

knowledge involved. By focusing on function and derivative knowledge in relation to implicit 

differentiation, Mirin and Zazkis have performed an aspect of an inferential decomposition. They 

then used this inferential decomposition to investigate the various obstacles that students may 

encounter on their way to developing such conceptualizations. We understand content-specific 

knowledge as being the most zoomed in of the knowledge types within an inferential 

decomposition in the sense that it largely focuses on the types of knowledge involved in 

conceptualizing an individual line, equation, or step in the procedure. For example, content-

specific knowledge, in this case, involves how someone understands the equation (1) on its own 

as a statement of function equality and the equation (2) as a statement of derivative equality. This 

is the calculus content knowledge someone should have in order to view (2) as a valid inference 

from (1). In other words, content-specific knowledge is how someone understands the 

inscriptions and their mathematical referents (e.g. function, derivative) and need not entail how 

someone understands the relationships between these inscriptions.  

We define Deductive Knowledge to be knowledge of the logical relationships between the 

different steps of a procedure. This is what is required for understanding the relationships 

between each line and is needed to make inferences and string them together to achieve a desired 

goal. In this sense, while content-specific knowledge can be understood as intra-line, deductive 

knowledge can be understood as inter-line. Returning to the ladder problem example, a series of 

line-by-line inferences are required to go from the initial statement of function equality, 𝑥2 +

𝑦2 = 9, to the final answer 
𝑑𝑥

𝑑𝑡
=

0.1𝑦

𝑥
 . Deductive knowledge can also appear in single-line 

inferences. Consider how someone could reason from line (1) (function equality) to line (2) 

(derivative equality). They could first have the content-specific knowledge about functions and 
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derivatives that a derivative is determined by a function’s graph or that the same function implies 

the same derivative. They could also have the content-specific understanding that line (1) 

expresses that two functions are the same.  From these two facts, they would then need to 

conclude that the functions defined on the left side and the right side of line (1) do indeed share a 

derivative. This sort of reasoning is inter-line and is akin to a modus ponens argument (Same 

function →Same derivative. Same function. Therefore, same derivative). Similarly, in the 

number line problem, deductive knowledge is used for concluding that line (3) is equivalent to 

line (5) on the grounds that they are both equivalent to line (4).  

Knowing how to identify and sequence inferences to reach a desired goal is non-trivial and 

requires a more global view. Our choice of the word inferences here is intentional. If the 

individual steps are chained together skillfully without attention to their inferential basis, then 

what is happening is inherently not deductive. In such a case, what is happening is akin to what 

Star (2005) calls “deep procedural knowledge”. What we describe as deductive knowledge  

differs in terms of understanding the core activity involved. That is, deep procedural knowledge 

is goal-oriented, where the goal is to get a result/answer, while deductive knowledge is oriented 

toward deducing why that same procedure results in that particular answer. 

Someone can have strong deductive knowledge and content-specific knowledge yet still not 

understand procedures inferentially. We define Inferential Orientation as the view that a given 

procedure has a logical structure that can be understood as a chain of inferences. This is the most 

zoomed-out category in that it does not concern specific lines in a procedure. It entails 

understanding that, at the end of a procedure, we have constructed a chain of inferences to get 

from the premises we stated in the problem to the deduction (the answer) required by the activity. 

An inferential orientation reflects a view regarding what procedures, taken as mathematical 

objects, are. A student can theoretically have a robust understanding of logical arguments with 

strong deductive reasoning skills and a mastery of content-specific knowledge, yet still not have 

an inferential orientation due to not viewing implementing mathematical algorithms as grounded 

in inferences.   

The precise delineation for categorizing each particular piece of knowledge is beyond the 

scope of this paper. The focus of this paper is to shed light on the inferences required to choose, 

understand, and complete a valid procedure. From this perspective, inferences are the glue that 

hold together any valid mathematical procedure. If we view procedures as stemming from an 

inferential basis, then exploring this basis is an avenue for a deeper understanding of procedures. 

We argue that we should not dismiss procedures as a series of steps (that can potentially be 

implemented skillfully), but rather treat procedures and inferences as inextricably linked.  

Treating procedures inferentially can help students evaluate and interpret their own work. 

Students are better positioned to interpret their answer in relation to the original problem, and 

thus also check for reasonableness of their answers, if they attend to the logical relationship 

between the initial problem being operated on and their result or answer. That is, presenting 

procedures as inferential reasoning can empower students to verify their answer by a using a 

series of inferences rather than troubleshooting by revisiting each of the calculations that led 

them to that answer. Consider, for example, the common mistake in inequality-solving in which 

students forget to flip the inequality symbol when dividing by a negative number, such as when 

transitioning from lines (4) to (5) in The Number Line Problem (El-Shara’ & Al-Abed, 2010). 
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Taking an inferential approach enables a student to catch this common mistake by evaluating the 

original inequality at some number and comparing the truth-value of the resulting inequality at 

the same number. Relatedly, approaching procedures inferentially is also a useful way for 

helping students interpret atypical results from procedures. Multiple mathematics education 

researchers (e.g. Frost, 2015; Sfard & Linchevsky, 1994) observed that students struggled to 

interpret the results of their solution procedures when such procedures yielded atypical solutions. 

For example, Sfard and Linchevsky (1994) observe that students tended not to differentiate 

between dependent and inconsistent systems of linear equations since in both cases “the system 

disappears” (p. 298). Through the lens of Inferential Knowledge, students did not have the  

inferential knowledge to interpret their result in terms of the original problem.  

Conclusion and Discussion  

This work contributes to the literature in three significant ways: 1) It provides a new lens for 

making sense of a several decades-long debate on conceptual vs. procedural knowledge. 2) 

Inferential Decomposition is valuable because it parses where the inferences and by extension 

the concepts are within a given procedure. It also illuminates the varying layers at which that 

inferential structure occurs. Finally, 3) it provides a tool that could potentially smooth the 

transition from calculation-centered mathematics to early proof education.  

Our construct of inferential knowledge provides a valuable lens for making sense of the 

procedural verses conceptual debate that’s been a theme in mathematics education for several 

decades. From the perspective of inferential knowledge, procedures are not treated as inherently 

rote applications of pre-determined steps. Instead, they are treated as a sequence of steps glued 

together by inferences (content-specific knowledge), which are, then, linked together toward the 

goal of a logically deductive argument (deductive knowledge) and broadly situated within an 

inferential mathematical landscape (inferential orientation). Procedures are thus not inherently 

purely “procedural”; instead, they can become procedural when those implementing them lose 

sight of or are unaware of their inferential basis.  

Inferential decomposition provides a valuable tool for identifying the inferences, and hence 

the conceptual bases, for procedures. An inferential decomposition performed by an educator can 

help highlight to both that educator and their students where the inferences and concepts are 

within a procedure. This may allow for a more conceptual approach to teaching a procedure that 

is grounded in reasoning and sense-making. Additionally, an inferential decomposition can be 

used to identify gaps in students’ knowledge of the inferences involved in a procedure, which in 

turn can illuminate aspects of the student’s conceptual knowledge. Finally, as a research tool, an 

inferential decomposition can highlight which inferences within a procedure are less or more 

common in comparison to other procedures. This may facilitate the creation of activities and 

interview questions which may lead to a deeper understanding of how students understand 

certain aspects of procedures inferentially.  

The transition to proof-based mathematics both in high school, when students encounter 

Euclidean geometry, and in post-calculus undergraduate introduction to proof courses is 

notoriously difficult (Stylianides et al., 2017). We believe that inferential decomposition can be 

used to help highlight the core inferential structure present in procedure-based mathematics, 

making the transition to proof less abrupt. Thus, introducing inferences within procedure-centric 

mathematics may help promote much-needed curricular coherence particularly with regard to 
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this transition (Stigler & Hiebert, 1999; Thompson, 2008). We are not diminishing the 

differences between calculation and proof, nor are we suggesting that every calculation or 

procedure be written up as a formal proof. Proofs often require stringing together inferences in 

novel ways, or in collegiate proof contexts, generating novel inferences. However, both proof 

and procedure can be viewed as constituting strings of inferences, and highlighting this similarity 

has the potential to increase curricular coherence and in doing so improve both proof-centered 

mathematics and calculation-centered mathematics. 
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Purposes of the study 

The purpose of this study was to explore the use of mathematical modeling in engineering and 

mathematics. I interviewed an engineering professor, a math professor, and a high school math 

teacher to better understand how they use modeling. As my guide for this study, I used the 

following research question: What are the pedagogical approaches to utilizing mathematical 

modeling problems in teaching among an engineering professor, mathematics professor, and high 

school mathematics teacher? How do these approaches compare across different educational 

levels and disciplines? 

Theoretical Framework 

This research was guided by an iterative modeling framework. This involved taking a real-world 

problem and transferring it into a theoretical context for analysis using a model. The insights 

gained were then applied back to the real world. This approach is similar to the interdisciplinary 

math modeling (IMM) framework proposed by Doğan et al. in 2019 and Stacy's mathematisation 

cycle, which consists of a four-step iterative process: real world, mathematical problem, 

mathematical solution, and real solution. Additionally, Galbraith et al. (2013) begin their iterative 

framework for mathematical modeling with a real-world "messy" problem. 

Methods 

In this qualitative exploratory study, I triangulated the modeling investigation by interviewing an 

engineering professor, a mathematics professor, and a high school math teacher. Each participant 

had a minimum of 10 years experience in their field. Through a semi-structured interview 

process, I asked them to define mathematical modeling, identify how it is used in their 

classroom, if and how engineering is represented in their classroom, and what they think students 

need to understand about engineering. The interviews were analyzed using an inductive open-

coding process (Saldaña & Omasta, 2022).  

Summary 

Results of this study show that participants in different disciplines have similar applications of 

mathematical modeling, challenges with students, and challenges with creating good 

mathematical modeling. Unsurprisingly, the use or application of mathematical modeling 

differed between the engineers and mathematics instructors. However, all three participants used 

mathematical modeling to generate questions about the curricula (Blomhøj, 2019); identified that 

designing mathematical models takes time and experience (Blomhøj, 2019; Diefes-Dux et al., 

2004); and modeling provides students opportunities to persevere (Firouzian et al., 2012; Kashefi 
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et al., 2012). The study demonstrates the need for more intentional planning when using 

mathematical modeling to represent engineering. Collaborating with diverse groups of people 

can boost confidence in teachers and students when using mathematical modeling for 

coursework.  
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A research divide between mathematics education and special education has led to significant 

gaps in research on the conceptual understanding of students with disabilities (Lambert & Tan, 

2017). This study addresses this research gap through an exploration of disabled students’ self-

corrections of mathematical thinking as an indicator of conceptual reasoning. 

Theoretical Framework 

Disability Studies scholars consider disability to be a socially constructed disadvantage that 

can be altered through changes in the environment and in society (i.e. social model) rather than 

deficits within an individual (i.e. medical model), implying that all students, disabled or not, 

have the capacity to engage in problem-solving and conceptual reasoning (Lambert & Tan, 

2017). Conceptual understanding is vital to students’ learning of mathematics (NCTM, 2000) and 

students with disabilities deserve the opportunity to develop their conceptual understanding. 

Methods 

Two 9th grade participants, Adam (Moebius Syndrome, high-functioning autism, ADHD, and 

anxiety) and Cohen (math and reading specific learning disabilities), were individually 

interviewed in three video-recorded interviews. Each interview comprised of two problem-based, 

open-ended tasks on rate of change, a topic integral to students’ conceptual understanding. 

Findings 

I used a general inductive approach (Thomas, 2006) to analyze the students’ self-corrections. 

First, I coded moments of self-correction, where the students verbally or physically adjusted their 

work. Then, I created subcodes for what seemed to prompt self-corrections. Findings show that 

66.67% of Adam and Cohen’s self-corrections led to improved or fully corrected mathematical 

thinking. They were prompted to self-correct their work in three different ways: self-detections 

(61.9%), routine questions (28.6%), and facilitating questions (9.5%). A self-detection prompt 

occurred when the participant adjusted their mathematical thinking with no feedback or input 

from the researcher. Routine questions were asked for each task regardless of the correctness of 

the student’s work. Facilitating questions were asked with the purpose of moving the student 

forward in their thinking after a mistake was made by the student. 

Scientific or Scholarly Significance 

The participants’ ability to self-correct suggests: first, students with disabilities can engage in 

mathematical reasoning without constant correction and handholding; and second, the mistakes 

they make can be poor indicators of whether or not they are capable of engaging in deep 
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mathematical thinking. Their ability to correct their thinking was likely a result of time with the 

task and reflection opportunities created by routine and facilitating questions. Future research 

should extend this existence proof to include more participants with a wide variety of disabilities.  
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As graph literacy continues to be necessary to communicate in STEM fields, conventions around 

such graphs have developed for students to work and reason with. We describe a fifth grader’s, 

Emma’s, thinking through non-conventional graphical representations of a linear relationship. 

We argue that Emma relied on mathematical reasoning when faced with conflict in conventions 

and was able to make sense of unconventional graphs by using quantitative strategies. Although 

Emma acknowledged her known conventions of graphing, she was not bound by these 

conventions but rather leaned on her reasoning about quantities and flexible use of reference 

frames. We use Emma’s activity to argue possible implications for research and teaching 

regarding graphing conventions. 

Keywords: Mathematical Representations, Cognition, Middle School Education   

Graphical representations are commonly used in STEM fields, and relatedly, the ability to 

read and write graphical representations is important for students to progress in STEM 

coursework and careers (Costa, 2020). These graphical representations commonly draw on 

conventions. For example, many graphical representations are constructed upon the Cartesian 

plane, with two perpendicular axes (i.e., x and y axes) with the intersection of the axes at (0, 0), 

named “the origin”. Because such conventions are used widely and often, it is important that 

students know these conventions and use them to communicate ideas with others. However, 

despite their effectiveness for communication, too much emphasis on conventions can become a 

hurdle for students. Researchers have shown that students’ meanings for graphs are often 

constrained to a ‘a set of rituals’ (e.g., Mamolo & Zazkis, 2012; Thompson, 1992). For example, 

researchers have noted an over-reliance on the vertical line test to determine if a graph represents 

a function even in cases where this procedure does not apply (Breidenbach et al., 1992; Even, 

1993; Montiel et al., 2008; Moore, Silverman, et al. 2019; Oehrtman et al., 2008). Student 

adherence to conventions used for the Cartesian plane has similarly provoked struggles while 

creating/interpreting a polar coordinate system (Sayre & Wittman, 2008; Moore et al., 2014). 

Further, some researchers have shown that some conventions commonly used in math classes are 

not consistent with how STEM fields use graphical representations in practice. For example, 

Paoletti et al. (2022) showed that the origin is typically not (0, 0) in graphs used in several STEM 

fields. Collectively, these studies show that too much attention to conventions might take away 

students’ focus from more important reasoning that could support their graph literacy.  

Although the aforementioned studies provide insight into the complexities students can 

experience when it comes to graphing conventions coming in conflict with their graph reasoning, 
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we note that these studies involved older students, who have had many years of experience with 

graphing conventions. In our work, we have been working with Grade 5–8 students who are yet 

to or are in the early stages of learning about graphs in school. We aim to document how students 

at this earlier stage are capable of reconciling conflict between learned graphing conventions to 

view them as conventions rather than as required rules, in conjunction with their budding 

quantitative strategies and thinking within frames of reference (hereafter referred to as “reference 

frames” (RFs)). In this paper, we describe a fifth grader’s, Emma’s, thinking about graphical 

representations of what we deemed to be a linear relationship. We describe how Emma’s 

attention to graphing conventions, quantitative strategies, and thinking within RFs interplayed 

throughout her engagement with a graphing task. We argue that Emma relied on her quantitative 

reasoning when faced with conflicts with learned graphing conventions to make sense of 

unconventional graphs. We close with a discussion on the implications of Emma’s work for 

future research and teaching regarding students’ developing meanings for graph conventions. 

Theoretical Underpinnings and Relevant Literature 

In this section, we discuss the theoretical underpinnings that guided our task design and data 

analysis. We also review literature relevant to our specific focus on students’ interpretation of y = 

2x graphs in both conventional and unconventional forms.  

Conventions 

Thompson (1992) differentiated students’ understanding of conventions as conventions 

(conventions qua conventions) versus students’ understanding of conventions (to teachers and 

researchers) as rules that must be followed (ritual use of conventions). We used Thompson’s 

distinction between conventions qua conventions and ritual use of conventions to characterize 

Emma’s attention to graphing conventions in our analysis. That is, we attended to whether Emma 

viewed certain features of graphs presented to her as mere conventions that could be changed or 

as rules that need to be followed when constructing or interpreting graphs.  

Moore and colleagues examined students’ interpretations of simple graphs, like y = 3x, 

constructed in nonconventional variations of the Cartesian plane (Moore & Thompson, 2015; 

Moore, 2016; Moore, Stevens et al., 2019; Moore, Silverman et al., 2019). Graphing tasks like 

this were used to develop models of students’ graphing activity, with specific attention to what 

aspects of the graphs were prioritized in students’ focus. In doing so, the researchers were also 

able to examine students’ meanings for conventions interplaying with their reasoning about 

quantitative relationships. Moore, Stevens et al. (2019) provided numerous examples of pre-

service teachers (PSTs) whose graphing activity was constrained to maintaining conventions as 

rules. In many cases, the PSTs’ reliance on conventions took precedence over their quantitative 

meanings for the situation, leading them to claim that mathematically accurate graphs (from the 

researchers’ perspective) were wrong due to the graphs differing from their expected conventions 

in some way. For example, only 31% of PSTs from the study deemed an accurate graph of y = 3x 

with x and y represented on the vertical and horizontal axis, respectively, to be an accurate 

representation of the relationship defined by y = 3x. Inspired by this line of work, we designed 

the “Variations of y = 2x” task to vary conventional features of the canonical y = 2x graph and 

asked students to check whether the graph accurately depicted the relationship between x and y. 

Variations included changing the axes and/or the orientation of axes like in Moore and 
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colleagues’ work. Other features, such as the location of the origin and the scale of each axis, 

were also varied (see the Methods section for more details).  

Quantitative Reasoning and Reference Frames 

We conjectured students could rely on their quantitative reasoning to develop meanings for 

graphing conventions as conventions. We adopt Steffe, Thompson, and colleagues’ (e.g., Smith 

& Thompson, 2008; Steffe, 1991) description of quantitative reasoning, which characterizes 

quantities as conceptual entities individuals construct to interpret their experiential worlds (von 

Glasersfeld, 1995). Quantitative reasoning, then, entails an individual conceiving of and 

reasoning about the relationships between quantities (Smith & Thompson, 2008; Thompson, 

2011). Engaging with algebraic situations should entail quantitative reasoning (Smith & 

Thompson, 2008; Steffe & Izsák, 2002). With respect to “y = 2x” in our work, a student 

reasoning quantitatively may quantify a relationship between y and x as multiplicative (i.e., the y-

value is always twice the x-value).  

In the context of quantitative reasoning, Joshua et al. (2015) defined a RF as “a set of mental 

actions through which an individual might organize processes and products of quantitative 

reasoning” (p. 2). Joshua et al. identified three related mental actions—committing to a unit of 

measure, committing to a reference point, and committing to a directionality of measure 

comparison (p. 32). Further, Joshua et al. defined a coordinate system as the product of the 

mental activity involved in conceptualizing and coordinating multiple RFs, which allows 

individuals “to represent the measures of different quantities simultaneously when those 

measures stem from potentially different frames of reference” (ibid., p. 35).  

Similarly, but more broadly, we use RFs to refer to mental structures used to gauge the 

relative extent of various attributes in the phenomenon (Levinson, 2003; Lee, 2017; Joshua et al., 

2015). Thinking within RFs entails attending to and establishing reference objects, directionality, 

and having an idea of what and how to measure the quantities being depicted (Joshua et al., 

2015; Lee et al., 2019). For example, to create or interpret the graphical representations like 

those in Figure 1, an individual will need to establish x and y in terms of where they start, in 

which direction they move/change, and how each quantity is measured (e.g., unit of measure). 

Relatedly, coordinate systems refer to the geometric coordination of the RFs (e.g., axes). A 

coordinate system allows an individual to systematically express and coordinate RFs; a graph 

refers to a collection of points depicted upon the underlying coordinate system. Considering such 

a collection of points, an individual can hold in mind both quantities’ (potentially varying) 

magnitudes simultaneously (Thompson et al., 2017). The nature of graphs and hence, ways of 

thinking about a graph, fundamentally depends on the RFs and coordinate systems upon which 

the graphs are created and how individuals make sense of the quantities depicted.  

Lee et al. (2019) documented shifts in how a PST constructed and reasoned within RFs when 

engaging in graphing activities with non-canonical coordinate systems. Specifically, Lee et al. 

attended to the PST’s reference points and directionality of measure comparison, which shifted 

from relying on perceptual features of graphs to focusing on coordinated actions such as 

quantitative relationships. The researchers hypothesized that the PST’s shift was supported by 

perturbations from the unconventional graphs. Building on this work, in our work with Emma, 

we attended to her RFs, specifically, her attention to some reference point(s) and directionality of 

measure comparison.  
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Guided by these ideas, our research question is, “When faced with unconventional graphical 

representations of y = 2x, what reasoning does one fifth grader employ between her conventions, 

quantitative meanings, and reference frames?”   

Methods 

In this paper, we present data from a larger project that uses clinical interviews (Ginsburg, 

1997; Clement, 2000; Goldin, 2000) to examine students’ current ways of graph thinking. The 

project goal is to examine middle school students’ graphing activities that could inform theory 

and practice.  

Participant and Data Collection 

The participants were recruited locally via social media and ranged from fifth to eighth 

grade. Four students met with the researchers on a university campus in the southern United 

States to participate in a sequence of four hour-long individual clinical interviews. Interviews 

had an interviewer (IR) and witness-researcher (WR) present; they were video-recorded with a 

focus on student work and any interactions and gestures between the student and IR. We 

digitized student work through scanning and screen-recordings. The participant we focus on in 

this paper, Emma, was a fifth grader. Specific to the task, Emma self-reported that in school, she 

had not seen graphs like the ones from the task. However, Emma did describe exposure in school 

to using coordinate grids to plot points, where the origin would be placed at (0, 0). Although she 

had experience with “conventional” coordinate systems in school, these conventions had not 

necessarily been emphasized yet in relation to linear graphs such as y = 2x. We note that Emma 

reported studying additional mathematics outside of school, and she demonstrated familiarity 

with linear graphs throughout her interviews. 

This paper focuses on data from one task in Emma’s third interview, “Variations of y = 2x”, 

implemented through the online, interactive teaching and learning platform, Desmos. We 

designed the task while considering the work discussed above with unconventional coordinate 

systems and graphs. Our task contained four slides, where each slide contained a graph of the 

line y = 2x with differing orientations of axes, scaling, or origin changes (Figure 1). Specifically, 

Graphs A and B (Figure 1a and b) showed the x- and y-axis with differing scales, Graph C 

(Figure 1c) had positive x-values oriented to the left and positive y-axis values oriented 

downwards, and Graph D (Figure 1d) showed the axes intersecting at (-2, 0). When opening each 

slide, we asked Emma if the graph represented the relationship between x and y in the equation y 

= 2x by selecting “Yes,” “No,” or “I don’t know”. Because our goal was to investigate how the 

student might make sense of the quantitative relationship and not their ability to read an 

equation, if the student had a difficult time interpreting the equation y = 2x, we explained to the 

student that the equation meant the y value is always twice the value of x.  

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

670 

 

(a) Graph A 

 

(b) Graph B 

 

(c) Graph C 

 

(d) Graph D 

 

 

Figure 1: “Variations of y = 2x” Graphs  

 

Data Analysis  

In our analysis, we created a thick description of Emma’s activity with the task (Geertz, 

1973). We used this description to build a model of Emma’s current meanings through 

conceptual analysis (von Glasersfeld & Steffe, 1991; Thompson, 2008). As we attempted to build 

this model, we characterized Emma’s quantitative reasoning, attention to conventions, and 

thinking within RFs. Specifically, we examined Emma’s activity for her quantitative reasoning, 

potential habitual use of conventions, relevant RFs Emma used, and shifts between habitual use 

of conventions and using conventions qua conventions. During this process, we re-examined 

previous parts of the description to support our working model, identify possible shifts in 

Emma’s reasoning over the episodes, or negate our original interpretations.  

Results 

Although Emma expressed her known conventions around graphs, she was able to rely on 

her quantitative meanings for the relationship y = 2x, in conjunction with the use of flexible RFs, 

to determine if a(n unconventional) graph accurately depicted the relationship. Notably, her 

flexible use of RFs included interpreting shifts in directionality (i.e., representing positive x-

values to the left), unconventional units (i.e., tick marks not representing 1 unit), and different 

reference points (i.e., unconventional intersection of axes). In all four graphs, Emma consistently 

used quantitative reasoning and RFs to resolve conflicts that arose when aspects of a graph did 

not match the conventions she assumed needed to be maintained. 

Conventions, Quantitative Reasoning, and RFs Aligned: Graph A 

In Graph A (Figure 1a), Emma’s meanings for conventions, RFs, and quantitative reasoning 

aligned. After some conversation about how y = 2x may be represented in a graph, the IR asked 

Emma what she thought about the relationship as meaning y is always twice x. Emma first 

implicitly considered if the graph represented a rule in which x was two more then y by checking 

if the point (0, 2) was on the graph before realizing she should consider if y-values were double 

x-values. She then moved her cursor to (0, 0) and over horizontally to x = 2, claiming, “If x is 

that [two], y is that [moving her cursor up vertically to intersect the graph and then horizontally 

over to y = 4 on the y axis].” With the cursor on (2, 4) on the graphed line, Emma argued that 

this point was correct based on four being “two times x”. Emma decided to answer “yes” to the 

prompt and provided more explanation to back up her claim, such as (4, 8) being another point 

on the graph reflecting her quantitative meaning for y = 2x of y being “two times x”.  
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Across her activity, we infer Emma used the x- and y-axis each as a RF. She identified 0-

points for each axis, worked with an implicit direction, and understood each tick to represent the 

appropriate number of units. For example, for Emma, x = 2 meant starting at 0 and moving two 

units right via 1 tick mark jump. Finally, we note Emma relied on a quantitative meaning for the 

relationship (y is “two times x”) to determine if the graph reflected the relationship. Emma 

continued to use this quantitative meaning in the rest of the graphs of the task. In some cases 

when Emma became perturbed as she addressed a novel graph, the IR referred back to her 

quantitative meaning to help remind Emma of the connection of the equation to the relationship. 

Conventions Superseded by Quantitative Reasoning and RFs: Graph B and C 

The unconventional nature of Graphs B and C (Figure 1b, 1c) created perturbations for 

Emma as she attempted to interpret novel coordinate systems. However, Emma leveraged her 

quantitative meanings along with flexible reasoning about RFs to interpret both graphs as 

accurate representations of the relationship y = 2x. 

In each case, as Emma tried to apply her quantitative meaning, the unconventional nature of 

the graph created a complexity. When initially addressing each graph, Emma decided that the 

graphs did not reflect the relationship. In Graph B, this happened as Emma was looking for x = 2 

and y = 4 to touch on the graph; as she moved up from x = 2 to the graph, she said, “It doesn’t 

[represent the relationship]. Four would be right there [motioning over the graphed line above x 

= 2 between the y-values tick values of 3 and 6].” We conjecture the point not being at the 

intersection of two gridlines created a complexity for Emma. As the y-axis was scaled by 

increments of 3, 4 was not represented on the scale or by a gridline; we infer this broke from the 

convention Emma (implicitly) used in the prior graph that each tick mark along the y-axis 

represented a change of 1. Emma rejected Graph C even faster, calling it “wrong” due to its 

unconventional nature, saying, “From what I see, those [referring to the x and y values on the left 

and down of the intersection of the axes] have to be negative numbers because that is the… I 

think that’s the third quadrant…” In each case, we inferred that conventions around coordinate 

systems, implicitly in Graph B and explicitly in Graph C, influenced Emma’s initial decisions for 

if the graphs represented the relationship. 

However, Emma reconsidered each graph as she returned to her quantitative meanings and 

adapted her RFs when asked to explain her original decision. In Graph B, Emma reorganized her 

RFs such that the unit of measure of each tick mark represented matched those depicted. After 

her last comment above regarding Graph B and her conflict with the point (2, 4), she tilted her 

head and wondered aloud, “actually, it does [represent the relationship].” She then decided to 

check that x = 3 corresponded to y = 6 in the given graph, confirming that the graph represented 

the quantitative relationship. Emma then returned to checking x = 2. She placed the cursor 

directly above the x-axis and defined the distance between the x-axis and her cursor as a unit 

length, “the top of the circle [cursor] would be one”. She then iterated that length by moving the 

cursor up three more times, intersecting the graph at the y-value of 4. We infer Emma had re-

established her RFs constituting each axis to attend to the non-normative scaling of the y-axis as 

compared to Graph A. Using this reorganization in conjunction with her quantitative reasoning of 

checking the pairs of points, she determined that Graph B accurately depicted the relationship. 

Emma similarly switched decisions with Graph C by reasoning flexibly with RFs and 

maintaining a focus on the quantitative relationship. In particular, after verbally identifying the 
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unconventional axes different from Emma’s expected signs for “Quadrant 3,” the IR asked 

Emma what her answer to the prompt would be. After a 6-second pause, Emma responded “it 

does [represent the relationship].” Emma then gestured to the 2 on the x-axis down to the 

graphed line and horizontally over to the 4 on the y-axis explaining, “It shows it because the two 

and the four touch right there, on the line.” Emma smiled and decided confidently to answer 

“Yes.” She further demonstrated how when x equaled 4, y equaled 8 on the line as “another way I 

can prove it.” Although Emma’s initial reaction was to reject Graph C, she re-considered her 

decision after reorganizing her RFs, attending to the changed direction of the values on the x- and 

y-axis. This reorganization of her RFs allowed her to use her quantitative meaning for the 

relationship to confirm Graph C did, in fact, represent the relationship. Emma’s work with 

Graphs B and C evidence her understanding of convention qua conventions, where she leaned on 

her re-organization and use of RFs and quantitative reasoning to overcome an initial hesitation 

towards the representation that was depicted differently than she seemed to expect. 

Conventions in Conflict with Quantitative Reasoning and RFs: Graph D 

The unconventional location of the intersection of the axes in Graph D created a greater 

complexity for Emma as she considered if the graph correctly represented the relationship. 

However, as before, she eventually was able to reorganize her RFs and leverage her quantitative 

meanings to interpret the graph as correct. When first viewing Graph D, Emma expressed 

concern with the intersection of the axes: 

Why do they have…Um. I think that this line [traces y-axis on the screen] has to be moved 

over more… the y line, has to be moved over more [gestures to the zero on the x-axis] to the 

zero because, um, I, well, maybe it doesn’t… uh, it does. Um, it has to be, the origin is 

always (0, 0). 

Emma’s reaction seems indicative of a ritual use of conventions regarding the intersection of the 

axes (“always (0,0)”). In fact, her tone changed as she emphasized the origin “has to be” (0, 0). 

However, there was also a note of suspicion that “maybe it doesn’t” have to be at zero. 

Immediately after making this comment, Emma critically investigated between the current origin 

(Figure 2a) and her desired origin, (0, 0) (Figure 2b). She then discussed (0,0)’s placement, 

“Hmm. That does… That shows zero, too. That’s showing… Hmm, actually… Actually, that 

shows (0, 0). But I don’t think, was it… I don’t understand this. How are the, why is the y line 

like that?” We infer that Emma realized the point (0, 0) was on the given graph, which she 

understood was consistent with the given relationship y = 2x. However, the unconventional 

placement of the y-axis persisted in creating confusion as Emma again declared that the graph 

would not represent the relationship. 
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(a)  

 
 

(b) 

 

 

Figure 2: Graph D’s (a) Depicted Origin, and (b) Emma’s Desired Origin at (0, 0) 

 

Emma continued to consider whether the intersection of the axes at (0, 0) was a rule that 

must be followed in relation to her inferences regarding RFs and her quantitative meaning. As 

Emma considered Graph D, she motioned along each axis to show that the graph represented 

should depict x = 2 corresponded to y = 4. However, we infer that in the moment, Emma still 

considered the graph to be incorrect. She opted to check another point, moving her cursor along 

the x-axis to 1, then moving up and horizontal to the y-value of 2. As she did this, she paused and 

looked closer, “Wait… but it does! It shows it… Hmm, it does.” She then moved on to the point 

(0, 0) and reasoned that doubling zero should achieve that point, laughing to herself, seemingly 

with surprise. The IR then asked her where zero should be on the graph, and Emma repeated her 

original reasoning, “If I could have the zero anywhere, I would have the zero right here [places 

cursor on the intersection that currently had x = -2 in Figure 2a].” We infer Emma wanted the 

intersection of the axes to be (0, 0), not (-2, 0). She stared at the screen again for about five 

seconds and calmly decided, "It does show it both ways, though… because, I can do it with the 

one and the two [gestures up to the graph from x = 1]… Oh, one and a half would be about there 

[puts mouse between the 1 and 2 on the x-axis]… One and a half, three [motioning from the x-

axis to the graph at y=3]!” She then pulled herself back and smiled, concluding, “I think it’s 

actually yes”. We infer that Emma’s initial reaction to the graph involved the intersection of the 

axes at (0, 0) to be a rule rather than a choice. However, as she focused on the RFs represented 

by each axis (rather than the intersection point), she reconsidered the graph in terms of her 

quantitative meaning, concluding the graph accurately reflected the relationship. Although she 

still expressed preference towards the intersection of the axes to be at (0, 0), Emma treated this 

as a conventional choice (convention qua convention) rather than a rule that must be followed 

(ritual use of convention). 

Although Emma initially rejected each of Graphs B, C, and D due to something 

unconventional about each, she eventually reorganized her RFs to consider if the graph reflected 

the underlying quantitative relationship. Reflecting a conscious awareness of the unconventional 

nature of such graphs, Emma referred to unconventional aspects of the graphs such as the axes as 

possible “mistakes” or “there to confuse [me].” But, consistent with understanding graphical 

conventions qua conventions, Emma understood each graph as reflecting the quantitative 

relationship defined by y =2x. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

674 

 

Discussion 

Addressing our research question, we showed interactions between Emma’s meanings for 

conventions, quantitative reasoning, and use of RFs as she explored representations of y = 2x. 

Emma’s strategies were powerful in leading her to reconcile unconventional graphs by focusing 

on the quantitative relationship and re-organizing her RFs. Emma’s flexibility was illustrated 

through her reasoning through unconventional axes directions, scaling, and origin as she 

continued to rely on y being twice x and thus checking if appropriate points met on the graph. 

Emma’s activity exemplifies the merit in students grappling with conventions on their own 

before directly being adopted throughout their schooling; we conjecture such discussions that 

allow students to consider quantitative meanings for algebraic equations and RFs may be fruitful 

in supporting students understanding graphing conventions as conventions. Further, such 

unconventional graphs can also be fruitful for supporting students in moving beyond a ritual use 

of conventions, such as realizing the intersection of the axes did not have to be “always (0, 0)”. 

Connecting back to the literature, several researchers have conjectured that students’ 

meanings for algebra and graphs as a set of rituals may stem from a lack of opportunities to 

construct and reason about relationships between quantities (Moore, Silverman et al., 2014; 

Moore, Silverman et al., 2019; Paoletti, 2020; Paoletti et al., 2018; Thompson & Thompson, 

1995). We note how Emma, as a fifth grader, was focused on a quantitative relationship in her 

activity, which allowed her to exhibit more flexible reasoning than the PSTs reported on 

addressing similar tasks (Moore, Silverman et al., 2019; Moore, Stevens et al., 2019). We 

conjecture Emma’s flexibility relative to the PSTs may be due to her having significantly less 

school experiences adhering to conventions. That is, we conjecture conventions become rules for 

students when they are always used without explicit conversations or opportunities to consider 

other choices. In reality, students need this flexibility when faced with unconventional 

representations found to be applied in real-life contexts (e.g., as in STEM fields), especially as 

fields continue to evolve unpredictably over time along with possible new developments for 

representing quantities and needs for students reasoning within those developments arising. 

Based on Emma’s interactions with the given representations moving beyond conventions to 

determine the quantitative relationship depicted, we conjecture providing students with such 

unconventional coordinate systems early in their learning about graphs could support them in 

developing meanings for conventions qua conventions. However, our sample consisting of one 

student in one session limits our ability to evidence such conjecture. We call for future research 

to explore this possibly. Such research can support teachers and researchers in understanding and 

supporting flexible meanings for graphs that support students across STEM fields and real-world 

contexts.  
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Educators and education researchers have looked for many years at methods to improve 

mathematics achievement for all students and to address gaps in achievement. In a study 

conducted in the early 1990s, Gray and Tall (1994) showed that math achievement in elementary 

students correlated with flexible use of numbers, also known as number sense. This study sought 

to replicate their findings in the context of a US elementary school and incorporate a new 

cognitive development in understanding students' mathematical thinking, “groupitizing.” The 

results from 76 students in grades 2-5 confirm the earlier finding with a strong association 

between achievement and number sense. Groupitizing was also found to associate positively with 

math achievement and strategic flexibility in the use of numbers. These findings have important 

implications for early childhood mathematics instruction.  

 

Keywords: Number Concepts and Operations    

 

For many years, the average US student has remained in the middle of the pack in 

international assessments of mathematics achievement (Mullis et al., 2020; OECD, 2023). This 

middling “average” statistic covers over the more educationally relevant story that US student 

performance reveals staggering differences across various groupings of students, driven largely 

by differences in access to high quality educational opportunities and fiscal supports for schools 

(Reardon et al., 2019). In the 1990’s two researchers in the United Kingdom, Eddie Gray and 

David Tall, provided a keen insight into how high and low achievers think through the most basic 

aspects of mathematical operations. In their interviews of groups of young children rated ‘high’ 

versus ‘low’ in math achievement, striking contrasts emerged in the step-by-step thinking process 

the two groups employed when showing how they reason through elementary problems. 

Remarkably, these two groups in the very same grade appeared to use fundamentally different 

strategies in basic arithmetic problems, even for problems that both groups solved 

accurately. More recently, cognitive scientists have established profound links between a child’s 

global math achievement and more elemental cognitive developments in number sense. ‘Number 

sense’, according to Dehaene, is short-hand for our rapid intuitive ability to approximate, 

manipulate, and understand numerical quantities (Dehaene, 2011).  

This study seeks to determine how well Gray and Tall’s insights into United Kingdom 

students, circa the 1980s-1990s, holds true in a US elementary school decades later. Our more 

contemporary take on their question includes new measures of number sense and strategic 
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flexibility, including recent advances in the cognitive development of “groupitizing”— a child’s 

emerging ability to conceptualize and enumerate larger sets of objects via flexible combinations 

(i.e. grouping) of smaller number group concepts (i.e. subitizing). 

 

Research questions: 

● To what extent does a student’s overall math achievement reflect their use of arithmetic 

strategies or step-by-step thinking processes? 

● Does cognitive development of groupitizing help explain the emerging influence of “number 

sense” in the context of arithmetic strategy use? 

 

Perspectives/Theoretical Framework 

Number Flexibility 

Achievement scores in elementary mathematics have been strongly linked to children’s 

ability to approach simple arithmetic problems in flexible ways (Gray, 1991; Gray & Tall, 1994). 

Gray (1991) distinguished different approaches to solving addition and subtraction problems. For 

example, when given two numbers to add, a child may: (a) count-all  by applying their counting 

skills, starting at one, to each number in succession to arrive at the sum (e.g., when finding the 

sum of 4 and 7, a child will count to 4 and then keep counting 7 more units to get to the sum of 

11); (b) count-on by starting with the cardinal value of one of the numbers and using the other 

number as a way to know how many times to increment the count by one (e.g., when finding the 

sum of 7 and 4, a child might begin with 7 as a whole,  then count-up 4 more places in the 

number sequence to get to 11); (c) derived fact: mentally break up one of the operands to enable 

the convenient use of a memorized fact (e.g., when finding the sum of 7 and 4, a child might 

decompose 7 into 6 and 1 so they can apply their “6+4=10” knowledge, then increment by 1). 

Since this strategy depends upon a child’s larger emerging construct of “number sense” 

(McIntosh et al., 1992), for the rest of this paper we will equate use of this strategy with the 

development of number sense. Finally, a much larger shift in arithmetic processing occurs as 

older students engage in (d) direct retrieval of declarative memories of known arithmetic facts.  

In the current study we focus our analysis on strategy (c) described above as critical, since 

the emergence of number sense strategies has been associated with greater mathematics success, 

not only in terms of students’ efficiency with simple arithmetic but also their subsequent success 

in more complex mathematics (Hornung et al., 2014; Jordan et al., 2010). Gray and Tall (1994) 

found that higher achieving students tend to display more flexible strategies (including the 

selection of more appropriate procedures), consistent with number sense, whereas lower 

achieving students rely on the less flexible procedural methods of counting. 

Groupitizing and Subitizing 

Groupitizing, a novel theoretical construct introduced by McCandliss et al. (2010), refers to 

rapidly enumerating arrays that are spatially grouped into subitizable subgroups. Groupitizing is 

typically assessed by presenting 4 to 9 dots and requiring an exact numerical answer, so that even 

very young children can accurately respond with minimal instructions (i.e., “How many dots all 

together?”). In the grouped condition the dots are grouped by spatial proximity into obvious 

subgroups of 1-4 dots. In the ungrouped condition no grouping cues are present. A child’s 

groupitizing ability is calculated by comparing the speed and accuracy of enumeration between 
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grouped and ungrouped dot arrays. When grouping cues allow a child to enumerate the whole set 

faster, it is taken as evidence that they are accessing and combining the cardinal values of the 

subsets, rather than counting the dots in a successive fashion,  

Extensive research reveals a grade-level effect in groupitizing abilities. Starkey and 

McCandliss (2014) studied 378 typically developing children from kindergarten through third-

grade and found no evidence for groupitizing in kindergarten, an emerging effect in first grade, 

and a robust effect in second and third grade. This effect progressively develops across additional 

years of schooling, through at least 9th grade, as demonstrated by Guillaume et al. (2023), who 

investigated 1,208 children ranging from beginning of 3rd through the end of 8th grade. Their 

study demonstrated a remarkable growth trajectory in groupitizing that shows significant within 

school year growth within every school-year. In addition, groupitizing also underlies complex 

cognitive processes that are essential for understanding children’s overall math abilities. 

Research indicates that groupitizing not only strongly correlates with neuro-cognitive measures 

of math fluency, but also outperformed every other measure investigated in its ability to account 

for unique variance in state mandated standardized test scores for mathematics, even after taking 

into account socioeconomic, domain-general, and domain-specific factors (Starkey & 

McCandliss, 2014; Guillaume et al., 2023). These findings collectively emphasize that 

groupitizing is a continuous construct that grows stronger year-over-year across K-9 schooling 

and it is fundamental for capturing key features of number cognition and math achievement 

beyond what is evident in symbolic numerical tasks. 

 

Methods 

Participants 

Participants in this study were elementary students from a school in the California Bay Area 

in grades 2-5 and were nominated by teachers as their ‘highest’ and ‘lowest’ achieving math 

students. Teachers were not told what factors to use when selecting ‘high’ and ‘low’ achieving 

students, although most teachers reported using district test scores on a computer based 

standardized test as their metric for choosing students. Ultimately 76 students were included in 

the final data.  

Data Collection 

The research team conducted individual cognitive interviews with students. These interviews 

consisted of students completing a dot enumeration task on an ipad to measure their groupitizing 

ability and then they were asked six short arithmetic questions. For the dot enumeration task, 

dots were randomly set to appear as either grouped or ungrouped arrays. In ungrouped arrays the 

dots were roughly evenly spaced but appeared random on the screen while in the grouped arrays, 

the distance between groups was at least three times larger than the distance of dots within any 

group. For the grouped arrays, the number of subgroups and the maximum number of dots in any 

subgroup was varied. In total the task asked students to count 90 arrays in approximately three 

minutes - see Guillaume et al. (2023) for further details. Math problems were printed on a sheet 

of paper and handed to students so that they could write with a pencil or pen, if desired. They 

were also provided with small double-sided counters for optional use. Problems consisted of 

addition and subtraction of single digit numbers, addition and subtraction of a single- and 

double-digit number, and addition and subtraction of two double digit numbers.  
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Data Analysis 

Using the framework from Gray (1991), students’ strategies were categorized as known fact, 

derived fact (which we describe as number sense), count on/count back/count up or count 

all/take away. Two researchers initially coded independently, and then came together to discuss 

and reconcile all disagreements. Groupitizing ability is calculated based on the number of items 

children solve correctly per minute (Guillaume et al., 2023). We classified students into two 

groups based on their performance: individuals whose performance on grouped arrays improved 

by more than 10% compared to ungrouped arrays are classified as “high groupitizing”; those 

who showed minimal improvement on grouped arrays relative to ungrouped arrays are 

categorized as “low groupitizing”. After all student strategies were coded, the data was compiled 

together with student characteristics such as grade level, whether the student was rated as ‘high’ 

or ‘low’ by the teacher, students’ results from the groupitizing task, and students’ results and 

strategy from each math problem. Since many students used different strategies on different 

questions, each instance of a strategy was treated separately. 

 

Results 

The results of this study confirm the conclusions from Gray and Tall (1994) - showing a clear 

relationship between achievement and number sense in arithmetic. Students, rated by their 

teachers as ‘high’ achievers in mathematics, used strategies reflecting number sense on over half 

the problems (mean=57.1%, 95%CI [49.1, 65.0]) - nearly four times the frequency of students 

rated as ‘low’ achievers (mean=15.3%, 95%CI [7.4, 23.2]). Students with high performance on 

the groupitizing measure also demonstrated higher rates of number flexibility. Specifically, the 

high groupitizing students also used number sense strategies over half of the time (mean=54.5%, 

95%CI [45.5, 63.5]), which was roughly double the frequency with which the low groupitizing 

students did so (mean=26.7%, 95%CI [16.6, 36.7]). The alignment of these results further 

supports a relationship between the emergence of groupitizing, students' use of number sense 

strategies in the context of solving arithmetic problems, and ultimately achievement in the 

mathematics classroom. Additionally, students who were rated by their teachers as the lowest 

achievers were significantly less likely to exhibit high groupitizing profiles, and conversely, 

students rated as high achievers by their teachers were more likely to be identified with high 

groupitizing ability in the cognitive test. A chi-square test confirmed the significance of this 

result (𝑋2(1, n=74) = 15.074, p<0.000). 

 

Discussion 

These results replicate the prior study of Gray and Tall (1994) which is now over 30 years 

old. Students who were rated highly by their teachers in mathematics were significantly more 

likely to use number sense when solving simple arithmetic problems. As noted in the earlier 

study, the students rated ‘low’ in math were in fact often doing much harder work as they 

attempted to count numbers of increasing magnitude which made the possibility of error much 

higher and required extra time. The groupitizing effect also replicates Guillaume and colleagues’ 

(2023) findings that increases in groupitizing abilities are tightly linked to increases in estimates 

of math achievement. This work extends the research on groupitizing by identifying associations 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

681 

 

between students’ groupitizing ability (high versus low) and number sense. It suggests that these 

skills may share the same underlying cognitive mechanisms.  

The results suggest two major implications for teaching and learning elementary 

mathematics. First, to improve fluency in simple arithmetic, teaching students to visualize how 

subgroups of numbers (or sets of objects) constitute larger numbers (or sets of objects) may be a 

powerful and highly inclusive scaffolding device for eventually escaping counting strategies and 

beginning to employ and master number sense strategies. While verbal memorization of 

declarative number facts can be helpful in some ways, it seems preferable that students learn how 

to work flexibly with numbers so that they can make use of a smaller set of learned facts and 

apply them in many novel situations. 

Second, the relationship between groupitizing and number sense suggests that teaching 

groupitizing and a flexible approach to number, rather than a focus on memorization of facts,  

will help improve students’ number sense. Classrooms across the US typically focus on the 

memorization of math facts, and the use of worksheets to practice them (Boaler, 2019). This 

study found that the ways students visually see the composition of numbers, and their use of 

flexible strategies of decomposition was associated with higher achievement. 
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We present three cases of how in-service secondary teachers took up the 5-Practices 

instructional framework to support mathematics discussions in their classrooms. The data comes 

from the teachers first implementation of researcher designed and teacher modified mini-units in 

their classrooms that were part of a 3-year design experiment. The cases illuminate common yet 

subtly different affordances and challenges that the in-service teachers experienced in using the 

5-Practices. They also highlight how the research team adjusted the professional support they 

provided to the teachers after the first implementation of the mini-units. One outcome of this 

adjustment was the development of a multi-tiered framework that relates teaching moves, 

practices, instruction, and instructional routines. The findings and framework contribute to the 

body of research on how in-service teachers can learn to support mathematics discussions.   

Keywords: Core practices, teacher learning, mathematics discussion, design experiments  

Mathematics educators have characterized rich mathematical discussions as ones that are 

centered on students’ mathematical reasoning and are aimed at accomplishing specific 

instructional goals (Jacobs & Spangler, 2017). As such, mathematical discussions have been 

found to be a vehicle through which students have opportunities to learn substantive mathematics 

(Boaler & Staples, 2008). Opportunities for learning arise as students clarify (Goos, 2004), refine 

(Richland et al., 2019), expand (Webb et al., 2014), generalize (Land et al., 2014), and justify 

(Brodie, 2010) their mathematical reasoning through sharing it with their peers and by engaging 

with their peers’ reasoning. Facilitating productive mathematics discussions relies on complex 

teaching capacities including making quick decisions, eliciting students’ thinking, being 

responsive to students’ contributions, and managing cognitive demand. Given these 

complexities, researchers have found that teachers often need support to effectively learn to 

facilitate productive discussions (Boston & Smith, 2009) where this support often occurs through 

decompositions, representations, and approximations of practice (e.g., Staples & Truxaw, 2010). 

We use this paper to report on a cross-case comparison of three experienced secondary 

teachers who were learning to adapt and incorporate the 5 Practices (5Ps) (Smith, Steele & 

Sherin, 2020) into their teaching. The teachers were part of a 3-year design experiment whose 

aim was to study how secondary in-service teachers facilitated students’ mathematical 

generalizing. We introduced the teachers to the 5Ps framework for two reasons: (a) we 

considered ourselves more likely to see high quality and varied instances of how teachers’ 

supported student generalization if the teachers were also supporting student discussion; and (b) 
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we wanted teachers to have a common instructional framework to support cross-classroom 

conversations about instruction. The data we report on in this paper is from the first time the 

teachers implemented researcher-designed and teacher modified mini-units in their classroom. 

We respond to the following research question: What affordances and challenges did the teachers 

experience in their re-composition of the 5Ps over the course of implementing their mini-unit? 

Literature Review 

Many early studies that investigated how teachers facilitated productive mathematical 

discussions occurred in classrooms with teachers who had considerable content and pedagogical 

expertise: often the teacher was a researcher (e.g., Ball, 1993, Heaton, 2000; Lampert, 1990). 

These studies yielded substantial information about teaching practices that support mathematics 

discussions. Subsequently, mathematics educators transformed this information into practitioner 

friendly frameworks that could be used to support both pre- and in-service teachers (PSTs and 

ISTs, respectively) to support mathematical discussions (e.g., Chappin, et al., 2003/2013; Stein, 

et al., 2008). Researchers have used these frameworks with PSTs in mathematics methods 

courses (e.g., Ghousseini & Herbst, 2016; Tyminski, et al., 2014) and with ISTs in professional 

development settings (e.g., Reinsburrow, et al., 2022) to study the PSTs and ISTs learning of 

discussion-based practices. However, Ghousseini (2015) and Pang (2016) both identified a 

dearth of research that examines how PSTs or ISTs learn to use discussion-based frameworks in 

actual classrooms (as opposed to in methods courses or professional development settings).  

Researchers (e.g., Bağdat & Yanik, 2023; Heyd-Metzuyanim et al., 2019; Kooloos, et al., 

2023; Martins et al., 2023) have begun to respond to this lack of research. Within this work, they 

have reported that practices that occur prior to teaching (e.g., setting goals, identifying tasks, and 

anticipating) are easier for teachers to learn than those that occur during teaching (e.g., 

monitoring, selecting, sequencing, and connecting) (Pang). We use this study to contribute to this 

growing body of research by identifying how teachers adapt and incorporate discussion-oriented 

practices, specifically the 5Ps, into classroom instruction. We were particularly interested in how 

the teachers transitioned from using decompositions, representations, and approximations of 

practice in professional development to implementation of these practices in live instruction. 

Analytic Framework 

Jacobs and Spangler (2017) define teaching moves as “actions that teachers take that 

observers can see or hear, such as asking a question, providing a representation, or modifying a 

task” (p. 778). They differentiate teaching moves from goals, which they define as “the 

intentions teachers have….(which) typically must be inferred by researchers because they are not 

usually stated explicitly” (p. 778). Jacobs and Spangler acknowledge that moves and goals take 

place at different grain sizes. However, they do not introduce a language to differentiate among 

the different grain sizes. To capture these differences in grain size, we introduce a four-tiered 

nested framework that preserves Jacobs’s and Spangler’s distinction between observable actions 

and goals a teacher has for these actions. Moving from smallest to largest grain size, we use the 

term teaching move to mean actions that occur during moments of interaction with students. 

Teaching practices (Smith & Stein, 2017) occur over a longer timeframe within a lesson where 

multiple teaching moves are embedded in each teaching practice. Teaching practices, then, 

function together to comprise instruction where we use the term instruction to refer to teaching 
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that occurs in a single lesson. We use the term instructional routines for patterns in a teacher’s 

instruction that can be discerned over multiple days of instruction. At each grain size, it is 

possible to characterize both a teacher’s observable actions and their goals. 

In outlining the 5Ps, Smith, et al. (2020) do not make the same distinctions we do in grain 

size, but it is possible to interpret the 5Ps relative to these distinctions, particularly the distinction 

between teaching moves and practices. In Table 1 we define Smith, et al.’s practices that occur 

while teaching, Practices 2-5—monitoring, selecting, sequencing, and connecting—and give 

examples of observable actions and goals that are at the practice and move grain size. In Table 1, 

we omit Practice 0, setting goals/selecting tasks, and Practice 1, anticipating, because they occur 

prior to teaching, and our primary interest in this paper is what happened while teaching.  

Table 1: Monitoring, Selecting, Sequencing, and Connecting Practices (Smith et al., 2020) 

 

5Ps Defined  Actions Related to 

Teaching Practice 

Goal(s) of the 

Teaching 

Practice  

Actions Related to 

Teaching Moves  

Goals of the 

Teacher Moves 

Monitoring: 

Attending to 

student 

thinking while 

students work 

on a problem 

• Circulates among 

groups of 

students, 

revisiting groups 

when appropriate 

• Asks assessing 

and advancing 

questions 

• Track student 

thinking  

• Assess student 

thinking 

• Advance 

student 

thinking (p. 86)  

• Asks an assessing 

or an advancing 

question 

• Uses a talk move 

• Understand 

student 

thinking 

• Move a 

student 

toward a 

learning goal 

Selecting & 

Sequencing: 

Choosing 

what student 

work to 

discuss and 

organizing 

that work in a 

specific order 

• Records the range 

of strategies from 

which to choose 

(selecting) 

• States the order of 

student 

presentations 

(sequencing) 

• Ensure student 

work to be 

shared 

connects to all 

learning goals  

• Establish a 

coherent 

storyline for 

the work 

presented (p. 

122)  

• Asks a student 

(privately) if they 

will share their 

work  

• Calls on a 

specific student to 

share their work 

first 

• Ensure a 

student is 

willing to 

present  

• Indicate to an 

individual 

student when 

to share 

Connecting: 

Using student 

work to make 

connections to 

learning goals 

or 

connections 

among 

• Asks questions to 

all presenters to 

highlight 

connections to 

learning goals 

• Records student 

observations 

about  similarities 

• Connects 

student work to 

the full range 

of learning 

goals for the 

lesson 

• Connects the 

set of selected 

• Asks a question 

to highlight how a 

particular piece of 

student work 

connects to a 

learning goal(s) 

• Has students turn-

and-talk about 

• Makes 

connections 

between an 

individual 

presenter’s 

work and 

learning goals 
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different 

pieces of 

student work   

and differences 

across all student 

work 

student work to 

each other (p. 

172)  

 

how a new piece 

of work is related 

to their own 

• Makes 

connections 

between two 

specific 

pieces of 

student work  

 

The four-tiered framework was an outcome of the first year of our design work. We introduce 

it here because it supports what follows. We see the distinctions in grain size as important to 

framing the claims a researcher is making about a teacher’s teaching. That is, it is different to 

make claims about a teacher experiencing success at the smallest grain size, teaching moves, 

than it is to make claims about a teacher experiencing the same success at the largest grain size, 

instructional routines. It is different because the grain size of an action impacts the ease with 

which a teacher will successfully integrate that action into their instruction. For example, it is 

easier for a teacher to introduce smaller grain size teaching moves like wait time, re-voicing, 

asking an assessing question, or inviting students to participate than it is to adopt larger grain 

size instructional routines like consistently using the 5Ps over the course of a mini-unit. Our aim 

in this study is to describe instructional routines that we could discern over multiple lessons 

taught by the ISTs; in particular, we investigate the way that the ISTs fit together practices, from 

the 5Ps, in instruction, and identify patterns (i.e., instructional routines) related to how they did 

so. Although important, we have a smaller focus on specific teaching moves and practices.  

Methods and Methodology 

Design experiment research involves researchers designing an intervention, testing that 

intervention, and then refining the intervention during subsequent iterations (Cobb et al., 2003). 

As part of this process, researchers identify conjectures they have that guide the design of the 

intervention, where one result of a study involves documenting how they modified their 

conjectures for future iterations of the intervention. We focus on one conjecture we made related 

to our work with the teachers relative to the 5Ps. Conjecture: Decompositions, representations, 

and approximations of individual teaching practices and moves within practice was sufficient 

support for ISTs to recompose these practices in instruction in ways that would support them to 

develop reliable new instructional routines. 

During the summer, prior to implementing the mini-units in their classrooms, all three 

teachers participated in eleven, 3-hour professional collaboration sessions. The first and third 

authors designed these sessions to focus on four themes: (a) the mathematical content of the 

mini-units; (b) student reasoning related to the mathematical content, which included video cases 

(Burch, et al., 2021); (c) instructional planning for the mini-units using the 5Ps as a guide for this 

planning (Smith, Steel, Sherin, 2020); and (d) a teacher-appropriate framework for supporting 

generalization in the classroom (Driscoll, 1999). The mini-units were initially developed by the 

third and first author (Burch & Tillema, unpublished) and were subsequently modified by the 

teachers as part of the process of planning for the implementation. Each mini-unit lasted 3-7 

days, depending on the length of each teachers’ class period (i.e., 45-, 50-, and 70-minutes). All 

lessons in the mini-unit were videotaped using three cameras: one captured the whole classroom, 
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one captured the teachers’ interactions with students, and one focused on a small group of 

students as they participated in the lessons. The three participating teachers—Celine, Felix, and 

Hazel—had 30, 21, and 6 years of teaching experience, respectively. We use Table 2 to briefly 

characterize classroom structures and opportunities for discussion in each teachers’ classroom. 

The observations are based on field notes taken during five visits to each teacher’s classroom and 

an interview about their instruction, which occurred in the year prior to teaching the mini-units. 

None of the teachers used student driven discussion as the primary organizational tool for 

instruction in their classrooms, but all incorporated, to varying degrees, elements of discussion. 

Table 2: Brief Characterization of Teacher’ Instruction Prior to the Project 

 

Celine Celine relied largely on problems from traditional textbooks in which more open-

ended application problems occurred after problems involving a particular skill. 

Celine’s normal instructional routine was to have students begin class in small groups 

to discuss the previous evening’s homework. She, then, introduced new content 

through a teacher led problem solving session, which she considered a guided-

discovery approach. Celine’s guided discovery consisted of her publicly solving 

problems where she directed the solution of the problem, but students were expected 

to contribute key pieces to the solution of a problem. Celine had carefully identified 

the key pieces students were expected to contribute based on what they had already 

worked on. Celine, then, offered students time to solve several similar problems in 

small groups where she had an array of mechanisms in place to support student to 

student interactions. She assigned 3-5 homework problems at the end of class to work 

on outside of class. 

Felix Felix relied largely on problems from traditional textbooks. He began class with two 

students each presenting a homework problem where students explained their 

solution to the class. During this time, other students in the class asked the presenters 

questions. Felix, then, used the student presentations to highlight key ideas that he 

anticipated other students might have struggled to understand. After student 

presentations, Felix gave a lecture on the topic for the day, with some students taking 

notes and others listening to the information. Felix, then, assigned 8-10 homework 

problems and gave students time to work. 

Hazel Hazel often started her class with an open-ended problem that students worked on 

individually, in small groups, or as a whole class. She used the problem to hook 

students and highlight key ideas she intended for them to work on in class that day. 

Once the class discussed this problem, they typically worked either individually or in 

small groups on more common textbook problems. The outcome of this work was for 

students to present their solutions to other students either in small groups or whole 

class. Hazel, then, assigned students 3-5 homework problems at the end of class to 

work on outside of class. 

 

For analysis, we mixed the whole classroom video and teacher video into a single video file. 

One mathematics education faculty member and six graduate students coded 45-minute segments 

of Celine’s mini-unit using the 5Ps framework. After coding a 45-minute segment, the team met 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

688 

 

to discuss and refine codes where this part of analysis focused on what observable actions 

corresponded to codes for each practice. The research team continued this process until coding 

for Celine’s entire mini-unit was complete; at this point code definitions were relatively stable. 

Next, the team coded one lesson from Felix and one from Hazel to make additional minor 

adjustments in the code book based on differences across the three teachers’ instruction. The 

result of this process was a code book with stable code definition for 10 codes: launch; 

monitoring; assessing questions; advancing questions; selecting: evidence of teacher choosing 

student’s work; selecting: evidence of what student work was presented; sequencing; connecting 

to learning goals; connecting student work; and student work time. The research team, then, 

broke into two subgroups, and used the, now stable, code book to code the remaining lessons 

from Felix and Hazel’s mini-units. This coding occurred similarly to what is described above. To 

respond to our research question, we used descriptive statistics to capture the percentage of time 

each teacher spent on each practice, which supported our qualitative interpretations of how the 

teachers recomposed the 5Ps in instruction and what patterns emerged as instructional routines. 

Results 

In Table 3, we identify the percentage of time and coding frequency for each code. We use 

this information to highlight salient features in each teacher’s re-composition of the practices in 

instruction to characterize their instructional routines. It is important to note that none of the 

teachers wanted to use a monitoring chart (cf. Smith et al., 2020) the first time they implemented 

their mini-units. Their concerns were rooted in perceived trade-offs between a monitoring chart’s 

helpfulness to organize their thinking and distraction from staying present with their students. 

Table 3: Descriptive Statistics Related to Each Practice4 

 

 Felix Celine Hazel 

# of Lessons 3 7 5 

Total Time 3:45:59 5:44:16 3:53:15 

  

Total 

Time 

(hr:min

:sec) 

Cover

age 

(%) 

Code 

Fre-

quency 

Total 

Time 

(hr:min

:sec) 

Cover

age 

(%) 

Code 

Fre- 

quency 

Total 

Time 

(hr:min

:sec) 

Cover

age 

(%) 

Code 

Fre 

quenc

y 

Launch 57:00 
25.22

% 
13 57:26 

16.69

% 
33 47:59 

20.57

% 
17 

Monitoring 1:08:45 
30.43

% 
16 1:57:57 

34.27

% 
21 1:56:23 

49.90

% 
20 

Assessing 

Questions 
7:02 3.11% 11 10:52 3.16% 20 34:31 

14.80

% 
75 

Advancing 

Questions 
6:49 3.02% 8 22:03 6.41% 43 47:13 

20.25

% 
59 

 
4 Percentages exceed 100% because of overlapping codes (e.g., monitoring and assessing questions).  
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Selecting 

(Choosing) 
11:38 5.15% 11 9:37 2.79% 38 3:44 1.60% 16 

Selecting 

(Presenting) 
31:28 

13.92

% 
11 34:47 

10.11

% 
39 12:51 5.51% 19 

Sequencing 25:33 
11.31

% 
2 49:48 

14.47

% 
9 16:06 6.91% 7 

Connecting 

Learning goal 
57:31 

25.46

% 
8 1:41:10 

29.39

% 
46 35:32 

15.23

% 
21 

Connecting 

Student work 
31:11 

13.81

% 
9 3:01 0.88% 3 10:11 4.37% 10 

Student work 

time 
6:54 3.06% 4 22:12 6.45% 10 0 0.00% 0 

 

Felix spent 30.43% of the total instructional time monitoring students, while they worked on 

problems. Of that time, he spent the lowest percentage of time asking assessing or advancing 

questions (i.e., 10.18% and 9.80%, respectively, for a total of 19.98% of his monitoring time5). 

Instead, Felix tended to listen to and observe student-to-student conversations while they worked 

in small groups. For 15.35% of the time he was monitoring, we double-coded selecting 

(choosing)—a code we used when there was observable evidence that a teacher was choosing a 

particular student’s work to share later in the lesson. We infer, then, that, while he was listening 

to and observing student conversation during monitoring, he was also focused on determining 

what work he would select to have students share with the class. Moreover, Felix did not have 

any sequencing codes that occurred while he was monitoring. This indicates there was no 

observable evidence that he was considering how to sequence student work while monitoring. 

We infer from this combination of codes, and our qualitative observations, that Felix was 

challenged to coordinate asking students assessing and advancing questions (relatively low 

percentage of his monitoring time) while also aiming to determine what student work to select 

(relatively high percentage of his monitoring time) and sequence that work (none of his 

monitoring time). Our inference is that he was heavily focused on what work he would select 

while he was monitoring over, for example, assessing differences in student thinking.    

Among the teachers, Felix had the highest percentage of time coded for selecting (presenting) 

(13.92%) and the lowest number of code instances (11 coded instances). We used this code when 

students presented their own work to the class. This combination of codes meant that Felix had 

fewer, but substantially longer periods of time during which students presented their work to the 

whole class than the other teachers. We attribute the length of student presentations to two 

factors: Felix spent minimal time asking assessing and advancing questions, which meant that 

sometimes significant mathematics surfaced for the first time during these presentations; and he, 

among the teachers, allowed for the most open ended whole class discussion of student ideas.  

Felix managed the sequencing practice by having multiple students put their work on the 

white board at the same time. Doing so meant that he had very few instances of the code 

 
5 These percentages differ from those in the table because they represent the percent of time he was asking each 

kind of question relative to the total time he was monitoring rather than relative to the total time of instruction. 
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sequencing, in part, because all student work was displayed simultaneously with students often 

comparing multiple pieces of student work to each other at the same time. One affordance of this 

instructional decision was that Felix had ample opportunity to engage in the practice of 

connecting student work (13.81% of his total instructional time). This code was double coded 

with selecting (presenting) for 63.38% of the total selecting (presenting) time. Thus, Felix often 

actively asked questions of students as they presented their work—questions that focused on 

making connections to other students’ work. We also coded a substantial portion of Felix’s total 

instructional time as connecting to learning goals (25.46%); however, this code was only double 

coded for 4.6% of the total time coded selecting (presenting). This indicated that Felix often 

made connections to learning goals after students presented their work either by asking further 

questions of them or by making his own explicit statements of connection.  

Celine spent 34.27% of her instructional time monitoring student work. She spent a relatively 

low percentage of her monitoring time asking assessing questions (9.18%) with a larger 

percentage of that time spent asking advancing questions (18.64%) for a total of 27.82% of her 

monitoring time. Celine, like Felix, spent much of her time monitoring by listening intently to 

small group conversations and observing the work that students produced during this time. One 

reason Celine had a lower percentage of time coded for assessing questions than advancing 

questions was she often used her assessing listening as a basis to ask advancing questions.  

Celine’s data also indicates that she experienced a challenge in coordinating asking assessing 

and advancing questions with engaging in initial phases of selecting and sequencing while 

monitoring. However, this challenge expressed itself differently in her re-composition of the 

practices in instruction than it did in Felix’s instruction. That is, in contrast to Felix, only 1.6% of 

her total time monitoring was double coded with selecting (choosing). Her monitoring, then, 

included little observable evidence that she was considering what student work she would select.  

Celine had a lower percentage of total instructional time coded for selecting (presenting) 

(10.11%) as compared to Felix (13.92%), but a high number of instances of the selecting 

(presenting) code (39 coded instances). This set of code combinations indicates that she had 

frequent but short times during which multiple students had the opportunity to present their work, 

and they presented sequentially. She did have a substantial percentage of her total instructional 

time coded as connecting to learning goals (29.39%). However, the code connecting to learning 

goals was double coded only 1.4% of the total time the selecting (presenting) code was used. 

This indicates that Celine tended to have students present their work, and then once they had 

presented it, she made connections to learning goals by either asking the class additional 

questions or by making her own explicit statements of connection to the learning goals. This 

sequential code structure indicates that Celine often prepared questions to ask the class as 

students presented their work but did not integrate this questioning into student presentations. 

Another consequence of Celine’s students presenting their work one-by-one was that, in many 

instances, the record of student work was gone after it was presented. As such, it was challenging 

for Celine to make connections across student work. This is supported by only 0.88% of her total 

instructional time being coded as connecting student work; moreover, this code was never double 

coded with the selecting (presenting) code. 

Hazel spent 49.90% of her total instructional time engaged in the practice of monitoring, a 

substantially higher percentage than either Felix or Celine. Hazel also spent 70.28% of the time 
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she was coded as monitoring asking either assessing or advancing questions (29.66% and 

40.62%, respectively)—also substantially higher than Felix or Celine. Among the three teachers, 

Hazel’s monitoring practice provided the most concrete, observable evidence that she was using 

her time monitoring to make sense of details about her students’ thinking and, therefore, would 

be well-positioned to both choose student work to share with the class and to consider a sequence 

for this work. However, only 0.01% of her monitoring time was double coded with selecting 

(choosing), meaning there was little observable evidence she was engaged in the initial processes 

of selecting student work while monitoring and no evidence she was considering sequencing it. 

This code structure again indicates that Hazel was challenged to coordinate monitoring with the 

initial phases of selecting and sequencing student work.   

We infer a challenge for Hazel was balancing the time she spent monitoring with foreseeing 

the amount of time she would need to effectively engage her class in whole-class discussion 

about their work. Of the three teachers, she had the lowest percentage of her instructional time 

coded as selecting (presenting) (5.51%), as sequencing student work (6.91%), and connecting to 

learning goals (15.23%). These percentages support our observation that she often did not have 

sufficient time at the end of her lesson to connect to learning goals even though she did engage in 

this practice at the end of each lesson. The combination of percent of instructional time with 

frequency for the selecting (presenting) code indicates that Hazel was in between Celine’s 

frequent, short student presentations, and Felix’s less frequent, longer student presentations.  

The percentage of instructional time coded selecting (presenting) that was double coded as 

connecting to learning goals was 59.33%. This indicated that, when students were presenting 

their work, Hazel was often actively questioning them in ways that supported connecting to 

learning goals, a phenomenon we attribute to her careful use of assessing and advancing 

questions while monitoring. Overall, 4.37% of Hazel’s total instructional time was coded as 

connecting student work—again between Felix (Felix had a percentage about 3 times higher) and 

Celine (Celine had a percentage about 1/5 as much). Hazel, like Celine, frequently had multiple 

students present their work one-by-one often without having a way to simultaneously display 

multiple pieces of student work. This organization for presenting student work meant that, while 

students were presenting, Hazel focused on connecting to learning goals rather than connecting 

student work, which did not occur as a double code with selecting (presenting). 

Discussion 

One possible way to read the data is that each of the three teachers, in one way or another, 

was relatively far away from a high-level implementation of the 5Ps. We caution against this 

interpretation; we were specifically interested in documenting the affordances and challenges 

that experienced ISTs faced when coordinating the practices together in instruction for the first 

time, and how to support them in the emergence of new instructional routines. With this 

observation, we return to the conjecture that guided our design: Decompositions, representations, 

and approximations of individual practices and moves within practice was sufficient support for 

in-service teachers to recompose these practices in instruction in ways that would support them 

to develop reliable new instructional routines. During the professional collaboration sessions, the 

ISTs were all able to engage with the practices individually, demonstrating, for example, what we 

considered to be high level approximations of each individual practice. However, in their 

classroom teaching, a substantial challenge they faced was how to coordinate the practices with 
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each other in instruction to produce new reliable instructional routines. Moreover, that was how 

they judged their success; they judged their success, at least initially, in terms of how the 

practices fit together within a single lesson, and how multiple days of instruction produced new 

reliable instructional routines—criteria that were neither explicit for them, nor to us, until they 

implemented the mini-units. Given these observations, we refine our conjecture: the ISTs needed 

support, in decompositions, representations, and approximations, that focused more explicitly on 

coordinating practices with each other to produce reliable instruction and instructional routines. 

The three cases offer insight into what this support could look like. That is, one common 

challenge across all three teachers was to coordinate monitoring with the early phases of 

selecting and sequencing. This challenge may have been due to the teachers’ choice not to use a 

monitoring chart, however, we do not attribute this challenge only to this decision. Moreover, 

there were subtle differences in their experience of this challenge, and thus differences in the 

support that could address it. Felix, for example, while monitoring, was consumed with what 

work to select, and as such asked a relatively low number of assessing and advancing questions. 

His listening, while monitoring, was often focused on what work he would choose rather than 

using an assessing, and then advancing question cycle to help him determine what students were 

thinking and then to move that thinking forward. On the other hand, Hazel focused extensively 

on asking assessing and advancing questions, while monitoring. Doing so gave her the most 

detailed information about her students’ thinking and thus prepared her to ask students questions 

to make explicit connections to learning goals. However, there were very few observable 

teaching actions focused on preparing to select student work, which was related to her 

inefficiency in transitioning from monitoring to selecting and sequencing student work. These 

different challenges call for differences in support each teacher needed.  

We close by identifying one contribution of this study. Research reports on teachers’ use of 

the 5Ps often focus on characterizations of an individual practice (e.g., Dunning, 2022; 

Reinsburrow, et al., 2022; Tyminski, et al., 2014) even in reports where multiple of the practices 

are considered (e.g., Bağdat & Yanik, 2023). These accounts offer important details about a 

specific practice, including the distinct goals and uses that teachers have for the practice. We 

think another important point of focus is on how teachers learn to coordinate the practices 

together (e.g., Pang, 2016), and how this coordination evolves over time into new instructional 

routines. Our assertion is supported by Felix, Celine, and Hazel’s initial judgements of the 

success of a given lesson (i.e., their instruction) as based—not on their use of individual 

practices, but rather—on how the practices fit together for them within the lesson and across the 

mini-unit. Given that experienced ISTs’ instruction is rooted in established instructional routines, 

working with them to experience what they deem to be successful instruction is important as 

they determine for themselves whether to adopt new practices that alter established routines. 
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We examined students’ thinking of graphs around a graphing task from 14 individual interviews, 

in terms of three layers—frames of reference, coordinate systems, and graphs—and explored 

their productive and intuitive strategies. As a result, we present a framework that offers a 

characterization of students’ graphing activities. We then discuss implications of the framework.   

Keywords: Mathematical Representations, Cognition, Middle School Education. 

Graph literacy is important for students to progress in STEM coursework and careers 

(Paoletti et al., 2020; Costa, 2020) and for making sense of, and responding to, information in the 

real world (Yore et al., 2007). Sherin (2000) argued researchers should move beyond identifying 

students’ difficulties to explore students’ natural inclinations when developing graphical 

representations and how these inclinations can be leveraged to support graph literacy. In line 

with researchers who have focused on asset-based accounts of students’ strategies, the work we 

report in this paper was guided by the question, ‘What cognitive strategies and intuitive insights 

do middle school students invent or draw upon when representing quantities in a graphical 

representation?’ To address this question, we present a framework we developed and refined 

through analyzing interviews with 14 middle school students on the Family Frenzy graphing 

task. We close by discussing the broader implications of the presented framework.  

Some Relevant Literature and Brief Theoretical Underpinnings 

Researchers have identified many difficulties students encounter with graphs. Of relevance to 

this report, researchers identified that students often treat graphs as literal representations of a 

situation (Bell & Janvier, 1981; Clement, 1989; Lai et al., 2016; Oehrtman et al., 2008). For 

example, Clement (1989) described students interpreting a speed-height graph of a bike rider as 

representing a hill the bike rider traveled over. To explore ways students may reason as they 

construct graphs, we modified Swan’s (1985) “Bus Stop Queue” task (Figure 1a), which 

requested students to interpret a scatterplot by matching each person in the picture to their 

appropriate point. Note that height and age were labeled along the horizontal and vertical axis, 

respectively; from this we inferred one goal of the task was to perturb students who interpreted 

graphs as literal pictures, i.e., interpreted the height of a point as the height of a person. We 
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modified the task by switching the axes labels (Figure 1b) and asking students to create their own 

graph, as our goal was to examine students’ generative activities and intuitions they can build on.   

Our work builds on previous work that examined students’ generative activities (diSessa et 

al., 1991; Sarama et al., 2003; Sherin, 2000). Sherin (2000) described students’ intuitive 

representations when tasked to create a picture to describe a motorist’s motion over time. 

Students’ depictions often contained pictorial features (i.e., using symbols such as lines to 

represent more or less of a quantity) that could lead to ideas akin to conventional graphs. 

However, as Sherin stated, he did not “attempt to be more specific about how this collection is 

constituted in detail (for example, in terms of knowledge structures)” (p. 413). In this paper, we 

account for cognitive strategies students draw upon to identify knowledge structures (i.e., 

thinking patterns that might be involved in students’ graph literacy).  

 

 

Figure 1: (a) Bus Queue task from Swan (1985); (b) The Family Frenzy task  

 

Frames of Reference, Coordinate System, and Graph 

Graphical representations involve spatial depictions of quantities (Thompson, 2011) and are a 

way to mathematize phenomena. A graphical representation consists of three layers: frames of 

reference, a coordinate system, and a graph (a collection of points). Frames of reference refer to 

mental structures used to gauge the relative extents of various attributes in the phenomenon 

(Levinson, 2003; Lee, 2017; Joshua et al., 2015). Thinking within frames of reference entails 

attending to and establishing reference points, directionality, and having an idea of what 

attributes to consider and how to measure them (Joshua et al., 2015; Lee et al., 2020). The nature 

of graphs and hence, ways of thinking about a graph fundamentally depends on the frames of 

reference and coordinate systems upon which they are created.  

Methods 

The data presented here comes from 14 clinical interviews (Ginsburg, 1997) across two 

projects, both aimed to examine middle school students’ (5th to 8th grades) graphing meanings. 

We collected video recordings, screen recordings, and digital copies of students’ written work. 

The projects recruited students from various mathematical and socio-economic backgrounds. In 

this paper, we present data from the Family Frenzy task (Figure 1b) which was used in these 

clinical interviews. We initially examined students’ thinking in Family Frenzy and sorted them 
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related to frames of reference, coordinate systems, and graphs (three layers) using the Analytical 

Framework for Making Sense of Students’ Graphical Representations (Lee, 2024). Next, using 

open and axial techniques (Corbin & Strauss, 1996), we created descriptions of themes within 

each layer; from these descriptions, we further abstracted and classified the students’ strategies, 

and we present those results in Table 1. We note that the resulting codes are meant to be a holistic 

characterization of the students’ strategies for each attempt they made at the task.  Each graphing 

attempt received a set three of codes where one code was from each category (graphing activity, 

reference frame activity, coordinate system activity). Results 

Students demonstrated a variety of intuitive approaches, which is organized in Table 1. In the 

table, representational objects refers to the (often geometric) objects students physically 

inscribed on the paper, which included stacked dots, stick people, and bubbles (regions). To 

distinguish students’ inscriptions from the pre-made, two-line segments labeled as Age and 

Height (what the researchers intended as axes), we call the totality of the two-line segments and 

the space they span as the graph space. We take both the graph space and students’ 

representational objects to constitute their representation of the Sun Family’s height and age. We 

next present one student’s strategies to exemplify a subset of these strategies.  
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Table 1: Summary of Students’ Representation Strategies 

 Graphing Activity Reference Frame Activity 

Height • Spatial Transfer: Uses fingers or 

other physical materials to transfer 

the height of members in the picture 

to the graph space and marks the 

height using representational objects.   

• Non-physical Transfer: Estimates 

relative heights of each member, 

without using any observable 

physical action or object to transfer 

length and indicates such heights in 

the graph space using 

representational objects. 

• Pictorial Ordering: Represents 

height in the order of the members 

standing in the picture (e.g., 

Grandma, Claudia, Grandpa, Harper) 

in the graph space. 

• Quantitative Ordering: Represents 

height in ascending or descending 

order of heights of the members (can 

be different order than in picture; 

e.g., Harper, Claudia, Grandma, 

Grandpa). 

Age • Indexing: Estimates relative ages of 

members based on picture and writes 

the age of members near the 

representational object used for 

height in the graph space. Ages’ 

representations are add-ons to those 

used for height.  

• Non-indexing: Estimates relative 

ages of members based on picture 

and indicates such ages using 

representational objects in the graph 

space. Ages’ representations are 

independent of (though could be 

related to) those used for height. 

• Pictorial Ordering: Represents age 

in the order of the members standing 

in the picture (e.g., Grandma, 

Claudia, Grandpa, Harper) in the 

graph space. 

• Indexed Ordering: Represents age in 

the same order of height in the graph 

space because age is indexed onto 

height’s representational objects.  

• Quantitative Ordering: Represents 

age in ascending or descending order 

of ages of the members (can be in 

different order than in the picture). 

Height 

and Age 

Together 

(Coordinate 

System 

Activity) 

• One, implied axis as an ordered number line: One of the axes in the graph 

space is acting as an ordered number line while the other is not; 1-D 

coordination.  

• Two, separate, implied axes as number lines: Both axes in the graph space are 

acting as an ordered number line for each quantity but the two number lines 

are used individually; two 1-D coordinations.  

• Two, overlapping, implied axes as number lines: One axis in the graph space 

acts as an ordered number line for both quantities; both quantities are 

represented on a single axis: stacked 1-D coordination. 

• Two, coordinated, implied axes as number lines: Each axis in the graph space 

is acting as an ordered number line for a quantity; both quantities are 

represented in the two-dimensional space produced by the product of the two 

axes: 2-D Cartesian coordination 
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Thomas’ Representation and His Strategies 

Six students used a spatial transfer strategy when graphing the family’s height. Transferring 

was evidenced by measuring the height in the picture in some manner (e.g., using a ruler, using 

the span of two fingers) and then marking this measurement directly in the graph space, resulting 

in a literal copy of the cartoon’s height. Figure 2 shows Thomas enacting spatial transfer (and his 

final representation). Thomas partitioned the Height axis into what he called centimeters. He then 

used his fingers to measure Grandma’s height and then maintained this gap to represent her 

height on the vertical axis (Figure 2 left and middle). He used this strategy for all the family 

members, which yielded a set of stacked names on the y-axis (Figure 2 right). Further, this 

strategy yielded a quantitative ordering for heights in that the heights of family members were 

ordered from shortest to tallest in his representation.  

 
Figure 2: Thomas’ Strategy and Final Representation 

Thomas used a non-indexing strategy for age as he inferred ages based on the picture and 

represented them along the horizontal axis in the graph space. Specifically, he placed 60 tick 

marks on the Age axis, and plotted the family members from youngest (Harper) to oldest 

(Grandpa) along the axis. Thomas ordered the ages in ascending order (see Figure 2 right), and 

we inferred this order was independent of his representations of height, yielding a quantitative 

ordering for age. Thomas’ graphing was indicative of using two, separate, implied axes as 

number lines. Based on how he partitioned each axis into unit-heights and unit-ages and plotted 

family members’ height and age on each axis, we inferred he treated each axis as a number line. 

Note, Thomas plotted each family member twice, once along each axis. When the interviewer 

asked if he could find a way to mark each family member only once, Thomas maintained that 

age and height could not be represented together with a single point. Thus, we inferred his graph 

space remained as two, separate, implied axes as number lines. 

Discussion 

We presented a framework characterizing a variety of strategies students used when creating 

graphical representations given a pictorial scenario. Our framework attends to students’ graphing 

activities of each quantity, height and age before potentially being coordinated together. The 

framework provides more nuanced “knowledge structures” (Sherin, 2000, p. 413) that students 

draw on when constructing graphs than previously described, attending to their graphing 

activities in relation to their reference frame and coordinate system activities. These activities 

refer to mental actions we inferred from observing students’ physical graphing actions. We do 

not intend our framework to be exhaustive, but instead a starting point for future research that 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

700 

 

can contribute additional strategies to the framework. We believe the students’ strategies in the 

framework can be leveraged to support students in achieving more conventional graphing 

meanings. For example, we can build from students’ creations of 1-dimensional graphs as 

conceptual starting points to motivate the potential construction of a 2-dimensional coordinate 

system from their 1-dimensional graphs. While most research has described students’ literal 

translations as hindering, we view it as a tool that could be productively used and subsequently 

modified to lead to more productive graphing meanings. We will be further examining these 

constructions as we continue in our research. 
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In this paper, we present part of a larger study investigating the development of multiplicative 

ideas in young children before their introduction to multiplication. Arrays were displayed as 

Quick Images (briefly displayed for 5-10 seconds), including those with hidden and missing 

amounts, over nine days across 3 weeks. Second-grade students (n=20) were asked to determine 

the total amount, followed by whole-class sharing and discussions. Using a constant 

comparative method, we analyzed students’ problem-solving strategies reported here. Results 

indicated an initial reliance on subitizing and counting strategies, with neglect of row/column 

size in determining the total amount. Students exhibited a shift in attending to rows/columns as 

composite units, indicating early multiplicative ideas, particularly when making sense of arrays 

with partially missing amounts. Implications for teaching and research are also discussed. 

Keywords: Number Concepts and Operations, Mathematical Representations  

Introduction 

Multiplicative reasoning holds crucial significance in mathematics, particularly for 

proficiency in advanced concepts such as algebraic reasoning, ratios, proportions, and 

measurement, extending beyond the primary grades. Students gradually cultivate multiplicative 

thinking (Vergnaud, 1994), and making sense of multiplication as part of this thinking requires 

understanding the iteration or replication of a composite unit rather than a mere enumeration of 

individual elements (Killion & Steffe, 1989; Steffe, 1992). Specifically, recognizing 

multiplication as distinct from addition involves acknowledging its binary nature, perceiving the 

factors as two distinct inputs—the number of groups and the quantity in each group—rather than 

a singular entity. Scholars contend that students' grasp of the "equal grouping" structure is 

fundamental to their ability to think multiplicatively (Killion & Steffe, 2002; Sullivan & 

Mousley, 2001). 

Many studies (e.g., Barmby et al., 2009) provide evidence that array models can support 

students’ understanding of multiplication and have the potential to pave a way for multiplicative 

ideas. In particular, arrays encompass both an “equal grouping” structure and a binary spatial 

structure with rows and columns as composite units, and thus can offer a visual model “to fully 

appreciate the two-dimensionality of the multiplicative process” (Young-Loveridge, 2005, p. 39). 

Unfortunately, the prevailing literature also provides evidence that many children do not perceive 

the row-by-column spatial structure of an array and resort to inefficient strategies such as 

counting the objects one-by-one (Battista et al., 1998) and do not consider rows and columns as 

composites when asked to find the total amount (Barmby et al., 2009). In fact, several 

researchers have argued that students do not automatically attend to spatial structure but 

construct it according to how they perceive a situation, shape, or object (Battista & Clements, 

1996; Mulligan et al., 2005). For example, when considering a 2-by-3 dot array, students may 

recognize the total amount as 6 due to subitizing it without needing to consider coordinating the 
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2 units of 3 each.  

Furthermore, tasks in U.S. third-grade textbooks, which is when multiplication is formally 

introduced, primarily involve direct counting of objects in arrays to determine the total amount 

(Kosko & Singh, 2018), potentially further constraining the utility of the array representation in 

fostering multiplicative concepts. Arrays are introduced to students in second grade with the size 

of the arrays presented under 5-by-5, with a focus on repeated addition. However, research 

indicates that students tend to count one-by-one when presented with smaller arrays, again 

ignoring the row-by-column structure the representation affords. Given the research examining 

the potential of arrays in supporting students’ development of multiplicative ideas, our interest 

was in exploring how arrays could be employed to prompt strategies beyond simple counting to 

notice the rows or columns as composites. Additionally, in light of some evidence that Quick 

Images can prompt students to observe the row and column structure of the array when 

determining the total amount (e.g., Jacob & Mulligan, 2014), and arrays with hidden and missing 

amounts can reveal how students make sense of the arrays, we leveraged Quick Images as an 

instructional routine to examine the emergence of multiplicative ideas in young children. 

Specifically, our research question was: 

 

• How do Quick Images using arrays, including those with missing or hidden amounts, 

impact students’ strategies, particularly, their emergence of multiplicative ideas?  

 

While Quick Images are incorporated in primary education, there is limited focus on using 

this routine to reveal students' array conceptions and elicit early multiplicative ideas. This paper 

presents the strategies students employed in transitioning from subitizing and counting to 

considering rows or columns as composites, along with operating on them, when presented with 

array images and arrays containing missing objects. 

Theoretical Background 

We considered learning from an emergent perspective wherein it evolves from participation 

in social practices, classroom norms, and interactions around the mathematical content employed 

in problem-solving scenarios. As noted by Cobb and Yackel (1996), children's learning is shaped 

by their ability to articulate their thoughts to others, while also being influenced by discussions 

with peers in the classroom. Thus, classroom interactions served as the backdrop where meaning 

was co-constructed by engaging in social practices and the mathematical content as facilitated by 

the teacher through prompts and discussion of student strategies.  

To identify early multiplicative ideas, we draw from Steffe's (1992) research on unit 

construction based in children’s numerical progression, involving singletons (units of 1), 

composite units (units larger than 1), and the types of units they construct within their number 

sequences – rooted in counting activity. Steffe characterizes early multiplicative actions as 

extensions of children's natural counting behavior, emphasizing that construction of a composite 

unit marks an essential milestone in early multiplicative reasoning. Specifically, children initially 

count objects one-by-one (referred to as being at Initial Number Sequence stage). The first 

milestone is achieved when they move from counting one-by-one to counting repeatedly by the 

same group size (termed as Tacitly Nested Number Sequence). According to Steffe, within the 
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context of array structures, a student who simply counts by same group size does not necessarily 

demonstrate multiplicative thinking. To think multiplicatively, a student must also recognize the 

array as a composite formed of individual units and understand the role of individual units within 

a row (or column) as an iterative unit (Steffe, 1992). For example, they should be able to count 

three singles as one unit (the composite or row) and then count the composite unit. Additionally, 

because arrays are spatial structures, for this study, we considered unit organization with spatial 

structuring (Mulligan & Mitchelmore, 2009; Mulligan et al., 2005) to identify multiplicative 

ideas.  

Methodology and Methods 

This study was conducted with 20 second grade students in a small public elementary school 

in the Midwestern United States. Students were seen within their whole classroom and were 

engaged in Quick Image routines for 25-30 minutes 3 times a week for 3 weeks, for a total of 

nine days, outside of their regular math instructional time. We started with dot images displayed 

to elicit equal grouping structures on the first day (see Bajwa et al., 2023 for sample images). In 

each session, 3-4 Quick Image tasks were administered one at a time and displayed for 

approximately 5-10 seconds. Consequently, students had a limited timeframe to observe the 

image and were asked to determine the total count of dots/squares/objects within the presented 

image. After presenting each image as a Quick Image, students were asked to share their solution 

in whole classroom discussions that focused on students' solutions and strategies for determining 

the total amount. Thus, we focused on analyzing their collective activity.  

Data Collection and Analysis 

The gathered data included video recordings of all 9 days of whole class sessions, 

subsequently transcribed, as well student’s written responses on selected tasks that required them 

to draw a representation prior to discussing their solutions, and notations written on the 

whiteboard during classroom discussions. Additionally, the dataset included research team field 

notes and pre-and post-planning meeting notes.  

To analyze students’ collective activity as part of their classroom discussion, we analyzed the 

data using a constant comparative method (Glaser & Strauss, 2017). Both authors independently 

coded transcripts from each of the sessions to identify student strategies used for determining the 

total amount and then met to compare codes for each session to identify employed strategies, 

which included instances of counting, adding, and early multiplicative strategies. These codes 

were then cross-examined with other students to determine if additional ideas beyond those 

initially identified had emerged.  

Results and Findings 

Student Strategies Involving Subitizing and Additive Strategies with Complete Arrays 

under 5-by-5 

On Days 1 and 2, students demonstrated additive strategies including repeated addition, 

chunking, and subitizing to determine the total amount. Specifically, on Day 1, students utilized 

both subitizing and repeated addition when presented with a 4-by-3 dot array. The teacher 

introduced the term "rows" for the first time during this session as depicted in the excerpt below.  

This exchange occurred after the teacher presented the dot card with the array and instructed the 

class to discuss their observations with their partner. Following the pair-share activity, during 

which the teacher listened in on students sharing from a distance, the teacher summarized what 
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they had heard several pairs discuss and selected a volunteer to represent a common strategy that 

was heard. Below is an excerpt from one of the students, Foti. All names are pseudonyms.  

Foti: I saw 6. 

Teacher:  Where did you see 6? 

Foti:  I saw 6 at the top (referring to the top 2 rows of 3). 

Teacher:  Okay. Did you see them all the way across, 6 at the top? 

Foti:  No, I saw three, and then under that 3… 

Teacher:  Okay, so you saw 2 rows. Then you saw other two rows? (Circling the two rows 

on the image) 

We approached this strategy with caution, recognizing it may entail a form of subitizing, 

specifically conceptual subitizing, which entails identifying a whole set of objects by quickly 

(perceptually) subitizing and combining smaller amounts (Sarama & Clements, 2009). 

MacDonald and Wilkins (2019) note that conceptual subitizing is fundamentally linked to 

students’ construction and coordination of units. By composing two sets (3 and 3 is 6), Foti was 

likely developing a “units of units” understanding. Subsequent prompts did not clearly establish 

whether students perceived the 6 first and the 3 as parts of 6 or considered 3 as a row (viewing a 

row as a composite unit) to reach 6. 

Apart from subitizing the number in a row, certain students employed additive strategies. 

These strategies involved breaking the array into smaller chunks and subitizing groups to 

determine the total (see Figure 1). 

Neha:  So, this was 7, I knew that, so there was 3 here, right, and 3 here (top two rows of 

3). That was 6. I added these 2, that was 8. Then…there was 4 here. I added 4, 

and that was 12. 

 

 
 

Figure 1. Using Chunking to Find the Total 

Neha’s strategy included breaking the array into different sized chunks by considering the top 

two rows and breaking the bottom two rows into a 2 and a 4 and adding those numbers together 

to find the total amount without considering a row or column as a composite unit. They initially 

state 7 but pointed to what they saw when figuring out the total, to get to the right answer of 6 

dots with the top two rows.  

In addition to subitizing and chunking, we also found some students began to use repeated 

addition or skip counting to figure out the total amount by Day 3. However, we found that not all 

who skip counted used the size of a row or column. Some students skip counted without 

considering the size of a row or column. For example, when presented with a 4-by-4 square array 
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on Day 3, we had some students who skip counted by 4s. However, Odelia figured out that the 

image had 16 squares by skip counting by 2s.  

Teacher: You counted by 2s? How did you count by 2s, can you show me where you 

counted by 2s? (shows Odelia the card again). 

Odelia:  2, 4, 6, 8, 10, 12, 14, 16 (moves finger while counting sets of 2 squares, left to 

right, top to bottom).  

Teacher:  Okay. So, you went along the rows and skip counted by 2s, like that. 

On these initial days, it first seemed that students counted based on the numbers in a row or 

column. However, as they elaborated their strategies, it became apparent that students weren't 

consistently utilizing or identifying the amount in a single row or column. This became evident 

when students, such as Odelia, noted that while they could determine the total in the image, they 

weren't necessarily focusing automatically on the quantity in one row or column but instead on a 

number they could readily recognize or subitize – in this case 2. Notably, when using this 

strategy, students did not engage with three levels of units. In this task, the students were shown 

the full array (image) instead of being told that there are 16 dots in the full array. Therefore, the 

students did not need to double-count to note that two repeated 8 times equals 16 as they could 

refer to the visual of the image to know when to stop. Despite these inconsistencies between 

what initially appeared and what students were actually focusing on, we found that most students 

were abandoning counting one-by-one to find the total utilizing other counting strategies, such 

as, repeated addition, chunking, and skip counting to figure out the total amount in an array by 

Day 4.  

Student Strategies Involving a Row or a Column as Composites in Incomplete Arrays  

Students were presented with incomplete arrays with missing parts (or composite arrays) on 

Day 7. We first presented students with a 5-by-5 composite array (see Figure 2). We were 

interested in getting students to utilize rows or columns as composites and so when this image 

was presented the teacher asked students to find the total and utilize what they know about 

arrays. The use of composite arrays with missing elements indeed draws students’ attention to 

considering the composite of rows or columns in different ways as depicted below. 

 

Arianna:  I counted 3 all the way down. So it was 3, 6, 9, 12, 15, 18, and then there was one 

3 on the side, so I counted that, which was 21. Then there were 2 left, which 

was… 

Teacher: Like that? 3, 6, 9, 12, 15, 18? [circling 3 squares, from left to right, in each row]. 

Arianna:  Yeah, and then one on the side. That way [finger pointed to the board, circling 

vertically]…Yeah, then there was a 2 going down. And then I added, so, it was 21 

plus 2 got me 23.  

Arianna utilized composites of the initial row, made of 3 squares and used skip counting to 

determine the total. On the other hand, another student (Keena, see below) also utilized arrays 

but by mentally moving the squares to form a complete array using the given squares.  

Keena:  See that two right over here [pointing to the column of 2 on the card]? I actually 

just moved this 2, like, all the way into this space [pointing to the space at the top 

of the column with 3 squares].  
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Teacher:  So, you moved this up here? 

Keena:  Yeah, and then I know that there was four here [pointing across card, indicating 

the number of columns] and there was five here [pointing up and down on card, 

indicating the number of rows], and it was 20. 

Keena used the template of a complete array to visually create a full array by moving the 

squares mentally. This then led them to notice that using all the given squares a 5-by-4 array 

could be formed, resulting in the answer of 20. While we cannot say which particular strategy 

they utilized to get to 20 (e.g., repeated addition or multiplication), this strategy and others, 

representative of Arianna indicated that students were getting comfortable with creating and 

utilizing rows and columns as composite to find the total.  

 

 

 

 
 

Figure 2. Example of an Incomplete Array  

Student Strategies Involving a Row or a Column as Composites in Arrays under 5-by-5 

with Missing Objects 

We found that when presented with arrays smaller than 5-by-5 with missing elements (See 

Figure 3, left), students initially resorted to either one-by-one counting or attempted to memorize 

the number of squares, often facing difficulties in accurately tracking the total count, partly due 

to the limited time for which the images were presented. These difficulties prompted students to 

explore alternative strategies when presented with larger arrays. On subsequent days, to get 

students to consider or invent alternative strategies, we introduced a real-life scenario involving a 

tray with some seedlings missing (see Figure 3, right). After reminding the students that the 

image would be displayed for 5 seconds, we posed the question to the students, “How many 

seedlings can fit into the container?” 
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Figure 3: Examples of Arrays with Missing Objects 

When sharing their strategies, we found that most students regarded the row or column size 

as a composite unit. Among those few who explored alternative approaches, they drew from their 

experiences with complete arrays as a reference, disregarding or intentionally ignoring the 

absence of seedlings to help them determine the total amount. Overall, student strategies varied, 

from determining the total by forming equal groups unrelated to the row (or column) size to 

treating the row or column size as a composite, iterating it, and mentioning multiplication as 

depicted in the excerpt below. 

Sage: 20. I counted the columns. 

Teacher: You counted the columns. So, how did you count the columns? 

Sage:  [while drawing her finger downward] 4, 4, 4, 4, and 4 

Owen: 20. I used multiplication 

Teacher: Okay, you said you used multiplication? Okay, how? 

Owen: So, I counted all of them down, and that was 4, and I counted across and that was 

5. So, I did the 4 times 5 and counted by 5. So, I counted 5, 10, 15, 20. 

By the last day, we observed that the majority of students demonstrated flexibility in making 

sense of the total amount in an array despite certain objects missing. In the seedling task, for 

instance, numerous students determined the total by identifying the size of a row or column as a 

unit and iterating it to find the total number of seedlings. Notably, there was a shift in language 

usage as students explained their process of iterating rows and columns. Among those identifying 

rows or columns, some began using the term "times" to indicate the number of times they added 

(iterated) the row or column. For instance, one student when figuring out the total in another 

seedling tray (3-by-9) with some seedling missing, mentioned, “I counted by 3s, so I counted by 

'3s nine times.'” Intriguingly, a specific student (Owen) even used the term "multiplication." In 

summary, the introduction to arrays larger than 5-by-5 with missing amounts prompted various 

responses, with many students engaging in early multiplicative ideas. 

Student Strategies Utilizing the Rows-by-Columns in Arrays Over 5-by-5 with Hidden 

Objects 

We found that when presented with a task involving larger arrays with hidden amounts, 

students began to utilize the row-by-column structure of the array inherent in their strategies. We 

presented students with an image with windows, an example of a real-world 6-by-10 array. 

Initially, we presented the windows without the hidden amount. The teacher reminded the 

students that the image will be showed for a short time. As anticipated, students employed 

various strategies to determine the total number of windows—many focused on identifying both 
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row and column sizes. After concluding the discussion on the presence of 60 windows, we 

presented the next card to students using hidden windows as a "challenge card." In this card, we 

used the same image and obscured windows in the middle of the top three rows (see Figure 4).  

 

 
 

Figure 4: Windows Task - Array with Hidden Amount 

Since the students had already established the total number of windows in the picture, they were 

asked to determine the quantity that was hidden. We found that while students used a variety of 

strategies, certain students concentrated solely on the hidden section, deducing the number of 

hidden rows/columns and the size of each column/row.  

Omar:  12. Because, I see that there are 1, 2, 3, 4 here and 1, 2, 3 there, so 4 columns of 3. 

Teacher:  Did you hear what Omar had to say about that? That there were 4 columns, he 

said, of 3 that were hidden. Austin, did you do something different? 

Austin:  Yeah, I just pretended to move that down and counted by 3s down. 

Teacher:  Okay, so you, you imagined that this was actually moved down here and counted 

this part here? Okay. Alright. 

The use of hidden amounts in a larger array resulted in eliciting a variety of strategies. Some 

students identified the how many rows and columns might be hidden to determine the hidden 

amount; representative of what Omar did. This indicated that these students may have been 

considering the hidden amount as an array itself, but we say this with caution as we did not ask 

students to determine if this was indeed the case. Some identified the number of rows and 

amount in each column (like Austin) and repeatedly added those.  

Discussion and Implications 

Quick Images with arrays provided a valuable avenue for students to delve into early 

multiplicative concepts prior to their formal introduction to multiplication. Initially, smaller 

arrays of 5-by-5 or less were presented, facilitating subitizing and counting to determine the 

total. As expected, some students counted the objects one-by-one, some formed various-sized 

groups, not necessarily tied to the size of a single row or column but instead based on groups 

they could subitize or effortlessly skip count. As the instructional days progressed and students 

encountered arrays with missing objects as well as larger arrays exceeding 5-by-5, there was a 

noticeable shift in most students’ approach. They began considering the quantity within a single 

row and/or column, iterating or coordinating the two to calculate the total but inconsistently. 

Specifically, by restricting the display time of images and providing multiple opportunities for 

students to construct and count composites, students began to leverage the spatial structure of 
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arrays. Most found the total by combining both the spatial arrangement (arrays as rows of 

objects) and numeric composites (row size as a unit). The introduction of arrays with missing or 

hidden elements further encouraged students to consider the structure of the array as comprised 

of equal-sized rows and columns, and iterate them to find the total amount in the presented 

image. 

Our results indicated that the presence of arrays larger than 5-by-5 may impact students’ 

development of early multiplicative ideas. More research is needed to determine if the use of 

composite arrays and/or arrays with hidden amounts fostered that understanding or if this was 

due to the array itself being larger, because it could not be counted quickly. Additionally, more 

research is needed examining how the amount of time students have to view an image, especially 

when the array is larger, impacts the strategies they use to find the total amount. Our results seem 

promising that a combination of these infused during instruction may contribute to students’ 

development of multiplicative ideas prior to formally being introduced to multiplication.  

Conclusion 

This paper presented results from a larger study examining second grade students’ 

understanding of multiplicative ideas who have not yet been formally taught multiplication. 

Initially, students were found to count objects one-by-one, subitize, or use groupings to find the 

total amount in an array and could do so without attending to a row of a column as a unit. When 

presented with larger arrays, in particular composite arrays and those with hidden/missing pieces, 

we found that students began to attend to a row or column as a unit which could then be iterated 

to find the total amount in the array. Our findings have yielded encouraging results illustrating 

that young students can consider and utilize multiplicative ideas prior to a formal introduction to 

multiplication as they engage in making sense of images presented as Quick Images.  
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CHILDREN’S USE OF MANIPULATIVES WHILE INVENTING NEGATIVE 

INTEGER MULTIPLICATION STRATEGIES 
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Negative integers are a contextually difficult subject for children to comprehend due to their 

abstract nature. 35 grade 5 children, from two qualitative studies, invented strategies to solve 

open-number sentences involving the multiplication of negative integers prior to formal 

instruction. The strategies that children used were categorized in order of success as (1) direct 

modeling, (2) repeated addition and subtraction, (3) recalled fact, (4) procedure, (5) counting, 

and (6) analogy. Upon examining children’s invented strategies, the results indicated that 

manipulative use (i.e. unifix cubes, two-sided chips, and number lines) could inform educators as 

they provide negative integer operation instruction. Implications for teaching integers and future 

research are also discussed. 

Keywords: Number Concepts and Operations, Elementary School Education, Cognition 

The mathematics education field recognizes the importance of examining children’s thinking 

across multiple number domains (Carpenter et al., 2015; Empson & Levi, 2011). Although there 

is a rich understanding of the ways that children think about whole number operations (Carpenter 

et al., 2015) as well as negative integer addition and subtraction (Bofferding & Hoffman, 2019; 

Wessman-Enzinger, 2019a; Whitacre et al., 2017), we lack descriptions of how children think 

about and invent uses of multiplication with negative integers. Making sense of how children 

invent strategies to reason with negative integer multiplication is important because it empowers 

children, educators, and researchers by highlighting the sophisticated mathematics children 

already know. Because invented integer operation models often differ significantly from 

traditional models (Wessman-Enzinger, 2019a), examining children’s use of operations with 

negative integers provides vital insight into the knowledge that children already possess prior to 

formal instruction. 

Children invent sophisticated ways of reasoning about integers (Bishop et al., 2014; 

Bofferding, 2014). However, the transition from additive structures to multiplicative structures 

can be challenging (Carpenter et al., 2015). As children approach addition and subtraction of 

integers they often use strategies such as moving forward for addition and backward for 

subtraction. When multiplying, children are taught to move forward on a number line, therefore 

when introduced to negative integer multiplication, moving backwards on a number line may 

seem like an illogical solution. Negative integers are difficult for children to model and create 

contexts for due to their abstract nature. 

Baek (1998) demonstrates that children understand multiplication with greater success when 

they are permitted to invent their own strategies. These invented strategies can also be used to 

teach children as they begin to reason with negative integers. As children solve problems 

involving the multiplication and division of integers, they often invent strategies that make use of 

counting, repeated addition, or direct modeling (by grouping collections of countable objects) 

(Carpenter et al., 2015). These strategies provide insight into the ways that students may solve 

multiplication tasks involving negative integers. 

mailto:Chcarp1@ilstu.edu
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Theoretical Perspective 

Cognitively Guided Instruction (CGI) is a framework developed to help educators understand 

how children’s mathematical ideas evolve. Integer addition and subtraction literature indicates 

that children use several strategies that are derived from the CGI framework. Some of these 

strategies include, creating analogies (Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger 

2017; Whitacre et al., 2017), using procedures (Bishop et al., 2014), and drawing upon recalled 

facts. This report will draw upon both single-digit (Carpenter et al., 2015) and multi-digit 

strategies (Baek, 1998) for multiplication of whole numbers, as well as the CGI strategies for 

integer addition and subtraction. 

Additionally, this report will draw upon the framework, seen in Figure 1, created by 

Carpenter and Wessman-Enzinger (2018) to analyze children's thinking as they invent ways to 

multiply using negative integers. This previous study identified the following six categories of 

strategies that children invented while interacting with negative integer multiplication: (1) direct 

modeling, (2) repeated addition and subtraction, (3) recalled fact, (4) procedure, (5) counting, 

and (6) analogy. 

 

 
 

Figure 1: Sample Children’s Invented Strategies for Integer Multiplication 

Methods 

The data presented in this report was gathered from two qualitative studies. The first study, 

conducted by Carpenter and Wessman-Enzinger (2018) examined how children invent strategies 

for solving negative integer multiplication prior to formal instruction. The participants consisted 

of 23 grade 5 students attending a rural school in the Pacific Northwest, United States. The 

children each participated in one clinical interview (Clement, 2000) and were asked to solve four 

open-number sentences, all with varying degrees of negative integer inclusion. They were asked 
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to solve each number sentence and describe their strategy, before creating a story to represent 

their solution path. This study resulted in the production of an inaugural framework that 

described the ways that children invent strategies to solve negative integer multiplication. 

The second study was conducted by Carpenter (2024) to validate the findings of the first 

study. The participants of the second study consisted of 12 grade 5 students attending a 

laboratory school in the Midwest, United States. In congruence with the first study, all children 

participated in one clinical interview. However, as seen in figure 2, half of the participants (6 

children) were given the four open-number sentences in the order presented in sequence 1, 

identical to the order presented in the first study by Carpenter and Wessman-Enzinger (2018). 

The other half of the participants (6 children) were given the open-number sentences in the order 

shown in sequence 2. The sequence that each child received was chosen at random and was blind 

to the researcher. Following their strategy invention for each number sentence, children were 

asked to create a story to represent their solution path. 

 

 
 

Figure 2: Open-Number Sentence Order 

 

The results of the second study confirmed the validity of the framework previously created 

by Carpenter and Wessman-Enzinger (2018), despite the tasks being presented in a different 

order and to a different participant pool. While the results of both studies highlighted the 

sophisticated reasoning present within the strategies that children invented; the present report 

will provide distinct recommendations for the use of specific strategies and manipulatives that 

educators should include within their instruction to help students successfully develop an 

understanding of negative integers and their operations. This report will answer the following 

research question: 

1. What types of strategies do children invent while operating with negative integer 

multiplication? 

Interpreting Negative Integers 

Negative integers are a difficult area of study for children to conceptualize. Since negative 

integers are difficult to represent physically, many children struggle to develop strategies that can 

represent them in various operations. Conceptualizing negative integers requires children to 

acknowledge the existence of numbers less than zero (Bofferding, 2014). While there are a few 

models that can be used to represent the addition and subtraction of negative integers, such as 

moving on a number line, solving tasks involving multiplication and division can become much 

more difficult. The children in this report were not yet taught any de-contextualized rules or 
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algorithms about integer multiplication, which is a common practice among classroom teachers 

when they begin negative integer instruction. 

Without prior formal instruction about negative integers and how to operate with them, these 

children developed insightful strategies that have the possibility to help future educators 

understand the best methods to introduce children to negative integer multiplication. These 

invented strategies do not always produce mathematically correct results; however, they are often 

rooted in logic (Carpenter and Wessman-Enzinger, 2018; Wessman-Enzinger, 2020) and provide 

useful information about misconceptions that children may have as they make sense of such an 

abstract concept. Understanding the connections between the strategies that children use and the 

misconceptions that arise as a result of an invented strategy can provide educators with useful 

information about the tools they should be presenting to children as they interact with negative 

integer multiplication for the first time. The successes and challenges that children face as 

negative integers are introduced into their operations for the first time can be seen in Table 1. 

 

Table 1: Children’s Correct and Incorrect Solutions 

 
 

When presented with an open-number sentence containing two positive integers, all children 

(100%) were able to successfully invent strategies to solve for the correct answer. This indicates 

a robust understanding of single-digit whole number multiplication. However, as the open-

number tasks involve more negative integers, success in creating a viable strategy for solving 

drastically declines. Two-thirds of children (66%) correctly solved multiplication number 

sentence tasks containing only one negative integer. Interestingly, this finding was identical for 

both tasks containing only one negative integer, despite children receiving the tasks in two 

distinct ordering sequences. Finally, only two children (6%) were able to invent a strategy to 

correctly solve a multiplication number sentence containing two negative integers. The decline in 

children’s success while solving each open-number sentence involving negative integers is 

partially caused by a lack of understanding of how to interpret a negative integer (Fuadiah et al., 

2019). As seen in Figure 3, the children demonstrated a wide variety of negative integer 

interpretations while solving each task. 
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Figure 3: Children’s Negative Integer Interpretations 

 

The broad range of negative integer understanding amongst the children in both studies is far 

from abnormal. There are many common misconceptions that arise as the children invent 

strategies for operating with negative integers for the first time. In congruence with previous 

literature, some children believe a negative integer is equivalent to zero and others ignore the 

negative sign altogether (Bofferding, 2014). Some children approach the negative sign as 

equivalent to the subtraction symbol (Stephen & Akyuz, 2012), while others simply assign a 

negative value to the product after they multiply both integers as positives (Wessman-Enzinger, 

2020). However, a less common approach to operating with negative integers is also present 

within the data. Several children invented a procedure to multiply the integers as if they were 

both positive and then proceeded to subtract the negative integer present in the original number 

sentence from the product. The difference between the product and negative integer was then 

declared as the solution. This understanding builds upon the interpretation that the negative sign 

and subtraction symbol are equivalent. Children who use this strategy are drawing upon their 

understanding of whole number multiplication and subtraction, in a logical attempt to make 

sense of a new symbol (the negative sign) that they have not seen before. 

Modeling Negative Integers 

Using the framework developed by Carpenter and Wessman-Enzinger (2018), the student-

invented strategies are sorted into six categories: (1) direct modeling, (2) repeated addition and 

subtraction, (3) recalled fact, (4) procedure, (5) counting, and (6) analogy. These strategies are 

used with varying degrees of frequency and success, as seen in Table 2. 

 

Table 2: Children’s Use of Invented Strategies 
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As children solve tasks using their invented strategies, they have the most accuracy with the 

implementation of (1) recalled fact (94% correct), (2) repeated addition and subtraction (75% 

correct), and (3) direct modeling (53% correct). Despite being used more than all three 

aforementioned strategies; procedure (37% correct) and counting (16%) prove to be the least 

successful strategies other than analogy (0% correct) which is not used accurately in any 

interviews. 

Recalled fact is the most accurately used strategy by the children to invent a solution. They 

also rely heavily on direct modeling and repeated addition and subtraction. Direct modeling 

demonstrates a child’s attempt to physically represent the negative integers within the task, while 

repeated addition and subtraction is used to justify the role of multiplication within the task. 

Both are important to understand in order to invent a viable solution path for negative integer 

multiplication. Children’s strategies are characterized as a procedure when they invent a rule for 

solving and continue to apply it throughout the other tasks. Although children also produce 

solutions by inventing counting strategies, these solution paths, often involving the use of a 

number line, are much less successful than the other invented strategies. 

Although many children demonstrate proficiency with the use of recalled fact to produce 

correct solution paths, it will not be a focus of this report. Recalled fact is used almost 

exclusively with open-number sentences containing two positive integers and is often the result 

of children memorizing de-contextualized rules which are demonstrated to them by others. Since 

the children in both studies were exploring negative integer operations prior to formal 

instruction, it makes sense that they would not know, and therefore not use, any memorized rules 

for solving tasks involving negative integers. Due to its lack of use among any of the open-

number sentences containing negative integers, it will not be highlighted as a recommended 

strategy in this report. Despite being the most used invented strategy, developing a procedure did 

not produce a high level of solution accuracy. Common procedures included appending a 

negative sign to the solution, interpreting negative integers as equivalent to zero, and assuming 

exclusive negativity. An uncommon procedure also presented itself in both studies, however, due 

to their complexity, these findings will be discussed in future proceedings.  

Children developed several different strategies to make sense of negative integer 

multiplication, however, this report will recommend the use of (1) direct modeling (i.e. unifix 

cubes and two-sided chips) and (2) counting (i.e. number line) to current and future educators as 

they approach negative integer operations with their students. Both strategies use physical 

manipulatives or contexts to model negative integer multiplication and although they were 
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ultimately coded as direct modeling or counting because of the manipulatives used, both 

strategies often also relied on repeated addition to complete their strategy. Thus, the 

recommended use of repeated addition is not included as it is embedded within the use of all 

contextual manipulatives discussed in this report. Understanding how often children use and are 

successful with these invented strategies, seen in Table 3, informs the recommendation of this 

report. 

Table 3: Children’s Use of Physical Manipulatives and Accuracy 

 

Children’s Use of Manipulatives 

Twenty-one children (60% of participants) invented strategies using manipulatives as they 

attempted to model negative integers physically. Manipulatives are necessary for instruction of 

negative integers as they provide children with operational context, rather than the rote 

memorization of rules. Additional guidance for the use of contextual manipulatives such as (1) 

unifix cubes, (2) two-sided chips, and (3) number lines will be demonstrated through the 

invented solution paths of three children. 

Unifix Cubes 

While they are closely related in many aspects, unifix cubes differ from two-sided chips 

because they lack the binary restriction of just two sides or two colors. Unifix cubes present as 

3D objects that come in color groupings of ten and are often used to physically represent whole 

number operations. Despite being used in almost equal comparison to the number line, this 

manipulative had a 66% success rate among children who used it to invent their strategies. 

Children using unifix cubes to model negative integer multiplication apply their whole number 

multiplicative reasoning of creating groups to construct “groups of” negative integers that 

represent their solution, as seen in Figure 5. 

 

 

Figure 4: Koda’s Use of Unifix Cubes to Solve 3 x -4 = __ 
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Koda invented his strategy by organizing the unifix cubes into three groups of four cubes. He 

did not assign a negative value to a specific color. Instead, he stated that all cubes were 

representative of a negative (regardless of color) and used both red and pink cubes in his 

representation. unifix cubes are used by children to solve each open-number sentence, regardless 

of the number of negative integers present, making it a versatile tool for negative integer 

exploration. They differ from two-sided chips in their ability to link together. Because of their 

ability to connect, children do not use them regularly to create arrays, but invent representations 

using groups instead. 

Two-Sided Chips 

Two-sided chips are uniquely qualified manipulatives for representing negative integer 

operations because of their ability to represent both a negative and positive value using the same 

object. The children who invent strategies successfully with the two-sided chips regularly assign 

a negative value to one side of the chip and a positive value to the other. In this study, most 

children who use two-sided chips do so by inventing strategies that create arrays of negative 

integers, as seen in Figure 4. 

 

 
Figure 5: Zach’s Use of Two-Sided Chips to Solve -2 x 3 = __ 

Zach invented a model using an array that assigns a negative value to the yellow side of the 

two-sided chips. He explained his strategy by saying “I got 2, 4, 6, so my answer was negative 

6… I multiplied negative 2 by 3.” Two-sided chips encourage children, like Zach, to discover 

that values less than zero can be modeled with physical objects by assigning a negative value to 

that object. Surprisingly, this tool is only used by children in three of the four tasks given. 

Although this manipulative is used less than all others available, children who use two-sided 

chips in their invented solutions demonstrate the second highest levels of success in solving the 

tasks. Given the success rate of children who use the two-sided chips, educators should consider 

these manipulatives as paramount for implementation within their instruction of negative integer 

multiplication. 

Number Line 

Although number lines are a useful tool for the instruction of whole number operations, this 

instrument does not serve as a benefit to children who use it to invent strategies for negative 

integer multiplication prior to formal instruction. This manipulative is used more than any other 

by children in the study, however, it also produces a 0% success rate among its users. Children 

face a variety of obstacles while using the number line, but many instinctively gravitate towards 

it initially due to their familiarity with it in primary mathematics and whole number operations.  
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Figure 6: Arlo’s Use of the Number Line to Solve -4 x -2 = __ 

 

Arlo started their number line at -4 and skip-counted two groups of four until determining a 

solution of 5. Arlo decided to start skip-counting at -4, because it was the first integer presented 

in the open-number sentence. This invented strategy presents some successes, but also highlights 

several challenges that accompany the use of a number line to represent negative integer 

operations. Arlo’s directional movement and total number of “jumps” indicate promising 

conceptual foundations but fall short of the correct solution due to Arlo’s chosen starting point 

and omission of zero on the number line. Although number lines are regularly used to teach 

whole number operations, the starting points and directional movements required for negative 

integer operations are not intuitive for children. Additionally, minor computational errors, such 

as omitting zero from the number line can cause children to arrive at an incorrect solution, even 

if they performed all other steps accurately. For these reasons, number lines should be used with 

caution while providing instruction on negative integer operations. 

Discussion and Conclusion 

Although the literature examining the ways that children operate with negative integers using 

addition and subtraction is growing (Bofferding & Hoffman, 2019; Wessman-Enzinger, 2019a), 

there is a continuous need for research on children’s thinking about negative integer 

multiplication and division. The ways that children interpret the negative symbol has direct 

implications for how they approach negative integer operations. Future research should examine 

the ways that children approach the negative symbol that are unique to negative integer 

multiplication (i.e. multiplying both integers as positive and subtracting the negative integer from 

the product). 

Implications 

Although children in both studies were asked to pose stories for negative integer 

multiplication number sentences, it was not discussed in this report. Storytelling has proven to be 

an excellent tool to encourage contextual understanding for abstract mathematical concepts. 

Future research should examine whether there is a connection between the stories children create 

and the strategies that they invent while solving negative integer multiplication tasks. 
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Researchers have argued that pictorial illustrations of multiplication should contain visual 

information that highlights the various meanings of multiplication (e.g., equal groups, 

rectangular array, cartesian product) and its structural elements (e.g., relations between units; 

Jitendra et al., 2022; Kosko, 2020). Not all illustrations that accompany mathematical tasks are 

equally effective for learning, however (Berends & van Lieshout, 2009; van Lieshout & 

Xenidou-Dervou, 2018). First, illustrations designed to serve different purposes (e.g., to 

represent concepts or to decorate) vary in their effectiveness (Carney & Levin, 2002). Second, 

the perceptual features in illustrations can be relevant to the target concept or not (Belenky & 

Schalk, 2014), thereby impacting student learning in different ways (e.g., Kaminski & Sloutsky, 

2013; McNeil et al., 2009). The objective of the current study was to analyze the illustrations 

used in multiplication problems in elementary textbooks. The findings will provide insight into 

the ways in which the conceptual structure of multiplication is conveyed through illustrations 

and more generally, how multiplication is taught in elementary classrooms (Porter, 2002). 

Third- and fourth-grade textbooks from two publishers (TAM TAM, Deshaies et al., 2022; 

Lincourt et al., 2022; and Matcha, Borduas et al., 2019a, 2019b) adopted in a large metropolitan 

area in Eastern Canada were selected for analysis. The textbooks contained 171 exercises, each 

of which contained either one task or a subset of tasks of the same type. We first coded the 

exercises as either including a decorative illustration or not, defined as one that was not related 

to the targeted concept but intended to capture student interest (Lenzner et al., 2013). Second, the 

tasks (n = 573) were coded as: (1) symbolic (i.e., words or symbols only) or (2) illustration. 

Illustrations were further coded as either: (a) representational, showing the meaning and 

structure of multiplication (e.g., three bunches of 5 bananas); (b) irrelevant, a symbolic problem 

embedded in an illustration unrelated to the meaning of multiplication (e.g., 3 x 5 = __ placed in 

an image of a bowling pin); or (c) organizational, a structural framework for solving a given 

problem (e.g., an empty number line to show three groups of 5). 

Over half (59%) of the exercises included a decorative image in the margin, revealing a 

relatively large number of illustrations that were not related to multiplication concepts. The task 

analysis revealed that of all multiplication tasks, only 25% incorporated a pictorial illustration, 

revealing a preponderance of symbolic problem presentations. Just over 55% of the illustrations 

were representational, meaning that only 14% of all tasks contained illustrations showing the 

structure of multiplication. Of all illustrations, 26% were not related to multiplication and used as 

a pictorial backdrop for a symbolic problem. Given the existing empirical evidence on pictorial 

illustrations supporting the understanding of multiplication (e.g., Jitendra et al., 2022), the small 

percentage of representational illustrations currently used in at least some popular Canadian 
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textbooks is noteworthy. Future research should examine how the distributional frequencies of 

the different types of multiplication tasks with illustrations may influence student learning. 
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This study investigates the development of spatial reasoning and counting skills in third-grade 

students through instructional scaffolding within a programming game. We focus on two pairs of 

students who engaged in the game Coding Awbie, using number and movement blocks to 

navigate a grid. Over six 30-minute sessions, qualitative analysis revealed challenges in 

counting within rows and columns, alongside effective use and potential misdirection caused by 

game scaffolds. Peers offered suggestions that partially alleviated scaffold-related difficulties. 

The study's findings illuminate the role and challenges of programming games as instructional 

tools in enhancing children's spatial cognition and numerical fluency. 

Keywords: Number Concepts and Operations, Geometry and Spatial Reasoning, Computing and 

Coding, Problem Solving 

There has been growing recognition of the importance of spatial reasoning and counting 

skills in children's mathematical development (Baroody & Wilkins, 1999; Battista et al., 1998; 

Owens, 2015; Siegler & Ramani, 2009). One avenue of exploration for supporting these skills 

lies in using instructional supports and scaffolding within programming games. Programming 

games offer a unique environment where children can engage in problem-solving activities that 

require spatial manipulation and numerical reasoning (Jiau et al., 2009; Ma et al., 2011). These 

games often embed scaffolds, supportive structures, or cues to assist learners in navigating 

challenges (Kim & Hannafin, 2011). However, the extent to which such scaffolds effectively 

facilitate the development of spatial reasoning and counting skills remains an area of inquiry.  

Spatial Reasoning and Counting 

Spatial development encompasses a child's ability to understand and navigate space 

(Clements & Sarama, 2009). These abilities are fundamental in mathematical problem-solving, 

providing the cognitive basis for concepts such as geometry, measurement, and spatial 

relationships (Mulligan, 2015). Spatial reasoning involves identifying and manipulating objects' 

spatial characteristics and relationships (Lowrie et al., 2016; Mulligan, 2015). Kocabas et al. 

(2022) noted that children commonly employ spatial connections to determine an object's 

location relative to reference points, utilizing mathematical cues like distance. Strategies for 

counting or adding distances can be either informal or formal, developing as children participate 

in mathematical tasks. A common problem seen in young learners in both programming and 

mathematics is the challenge of double counting, where pupils tend to count an object or space 

more than once (Kocabas et al., 2019; Fuson, 2012; Shumway et al.,  2021). In the game used for 

this study, students have made double counting errors when the game character changed 

directions, and they counted a corner square twice (Kocabas et al., 2019). Although students have 

issues with double-counting, there is less detailed evidence on how they overcome their double-

counting difficulties. 

mailto:lbofferd@purdue.edu
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Theoretical Framework 

According to Vygotsky (1978), children's cognitive development is intertwined with their 

social interactions and cultural context. In the context of programming games like Coding 

AwbieTM, Vygotsky's theory suggests that collaborative peer interactions play a crucial role in 

how students interpret symbols within the game and respond to scaffolds provided by the game 

environment (Schunk, 2012). Additionally, Vygotsky's concept of the Zone of Proximal 

Development (ZPD) is highly relevant to understanding the role of scaffolding in facilitating 

learning (Vygotsky, 1978). Within the ZPD, students can complete tasks with the support of a 

more knowledgeable peer or instructor. The scaffolds provided in games, such as modeling, 

probing, and hints, serve to support students as they navigate the complexities of spatial 

reasoning and counting within the game environment (Wood et al., 1976; van de Pol et al., 2010). 

This study adds to the literature by examining how instructional support and scaffolding 

within a programming game, Coding Awbie, play a role in third-grade students’ spatial reasoning 

and counting skills. Drawing upon qualitative analysis of six sessions, this research investigates 

the challenges encountered by students and the efficacy of scaffolds in supporting their learning 

processes (Van de Pol et al., 2010; Wood et al., 1976). Therefore, we investigate the following 

research questions: (1) How do third graders utilize instructional scaffolding in developing 

spatial reasoning abilities? and (2) How do their use of scaffolds (highlighted path) in the game 

influence their counting and use of programming blocks? 

 

Method 

We recruited first and third-graders from a midwestern public elementary school in the US 

where 45% of students qualified for free and reduced lunch, and 11% were classified as English 

Language Learners. A total of 55 students, 28 first graders, and 27 third graders, participated. For 

this paper, we focus on two pairs of third graders: Emma and Quincy, Sophie and Marcus. In the 

game Coding Awbie, the objective is to move Awbie to gather strawberries while avoiding falling 

into the water, thereby advancing to the next level. Students use physical programming blocks to 

control Awbie's actions (walking, jumping, grabbing), direction (up, down, left, right), and 

number of movements (ranging from 1 to 5). When students place the blocks, with the initial 

command placed at the top, the screen highlights where the character would go based on the 

code, an important in-game scaffold. During their six game sessions, pairs played until the end of 

their 20-minute session. Upon completing a level, students advance to the subsequent one. If 

students did not complete a level during a session, they restarted it the following session.   

Through analysis of video recordings and transcripts of peer conversations during sessions of 

playing Coding AwbieTM, we examined how students used instructional supports and scaffolds 

within the game to coordinate movements, use numbers, and count spaces. We coded instances 

where students employed single blocks versus multiple blocks to denote movement, used 

addition to cover distances, and relied on movement blocks, hints, and highlighted paths. 

Furthermore, we observed whether students counted spaces manually or relied solely on the 

highlighted path feature. We analyzed cases where students' use of coding blocks interacted with 

peer dynamics and instructional supports. We documented changes in students' strategies and 

interactions, marking shifts in their use of numbers and counting methods, and delved into the 

spatial characteristics of the game during these transitional moments.  
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Findings 

Using Highlighted Path, Board, and Explicit Hints 

The game had hints that helped students to navigate the space with varying success. For 

instance, Sophie and Marcus thought the highlighted path coming out of trees meant their code 

would work, even though it had Awbie hitting trees, which did not work (see Figure 1, left). 

However, when they came to a board with a question mark that revealed an explicit hint, they 

matched their code to move Awbie accordingly (see Figure 1, right).  
 

  

 

Figure 1: Highlighted Path into the Trees and Using Board Hints 
 

In Emma and Quincy’s second program, they traced the screen and used the highlighted path 

as a guide to check each block as they placed them (see Figure 2, left). Later, they received a hint 

from the game to guide Awbie off of a lilypad. However, instead of repeating the hint for the 

next, similar span, they omitted the walk down 1 instruction and once more stopped on a lilypad. 

Using Partners 

There were times when partners helped each other. For example, Sophie struggled to 

understand the rows and columns despite correctly predicting a jump up two spaces from Q16 to 

Q12 (see Figure 2, left). She mistakenly thought their next move should be a walk right one 

space to Q11, but Marcus placed a walk up one instead. Despite Sophie's attempts to use jump 

blocks, Marcus intervened when she next tried to place jump right two, pointing out that it would 

lead Awbie into the water (on U11). Sophie tried placing two jumps right one blocks, but still 

faced the same challenges, prompting her to let Marcus take over. Quincy also helped Emma 

change her use of numbers so that Awbie would not jump into the water (see Figure 2, right). 
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Figure 2: Partner Help and Use of Numbers 
 

Use of numbers and counting 

Sophie and Marcus’s code to navigate Figure 2 (left) used patterns of numbers to make 

Awbie's movements through jumps very smooth (jump up 2, walk up 1, jump right 2, walk right 

1). As they encountered a new path layout, they strategically adapted their approach. They 

omitted the numbers, changed the walk direction (see Figure 2, middle) and retained the 

movement sequence (jump up, walk right, jump up, walk right, jump up, walk right). 

Emma and Quincy struggled to coordinate their counting to match a lengthy, straight section 

of the path. Initially, they moved Awbie right twice, successfully reaching a strawberry, but 

Awbie stopped on a lilypad, causing him to fall into the water and return to his original spot. 

They adjusted and instructed Awbie to walk right five and three times. Once again, they found 

themselves on a lilypad with a strawberry, and Awbie fell into the water again. This sequence of 

events suggests that the duo's challenge might lie in their focus on reaching the next strawberry. 

 

Discussion and Implication 

In this study, we investigated the role of instructional support and scaffolding in the 

development of spatial reasoning and counting skills among third-grade students, focusing on the 

context of the programming game Coding AwbieTM. Drawing upon Vygotsky's Sociocultural 

Theory and the concept of the ZPD, we explored how game scaffolds influenced students' spatial 

reasoning abilities. Our findings revealed that instructional scaffolding was vital in supporting 

students' spatial reasoning abilities. Through collaborative peer interactions and providing 

scaffolds such as modeling, probing, hints, and direction, students could navigate the 

complexities of spatial manipulation more effectively. These scaffolds served to bridge the gap 

between student's current level of understanding and the desired learning outcomes, facilitating 

their progression within their ZPD. The use of scaffolds, particularly the highlighted path feature 

in the game, had a significant impact on students' counting strategies and utilization of 

programming blocks. The highlighted path scaffold provided students with visual clues and 

guidance, helping them to overcome challenges related to double counting and spatial 

structuring. As a result, students demonstrated increased proficiency in spatial reasoning and 

counting skills throughout the study. The findings of this study have important implications for 

educational practice and research. Our results underscore the importance of incorporating 
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instructional supports and scaffolding mechanisms into educational games and learning 

environments.  
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Undergraduate developmental mathematics students’ difficulties with fractions, a known 

gatekeeping topic for this demographic, are well documented. Yet, research on fraction 

understandings for this population is scarce. In this paper, I synthesize relevant literature 

regarding undergraduate developmental fraction understandings and related K–12 fraction 

literature. I then report preliminary findings from a teaching experiment that highlights part of 

the fraction journey of Vivian, an undergraduate developmental mathematics student, as she 

constructs an understanding of unit fractions. Vivian merges two separate, but equally valid, 

fraction worlds as she constructs a unit fraction understanding. 

Keywords: Rational Numbers, Undergraduate Education 

Many students experience difficulties when working with fractions, a gatekeeping topic for 

college-level mathematics courses (Mesa et al., 2014; Ngo, 2019). In this preliminary report, I 

share part of Vivian’s journey as an undergraduate developmental mathematics student at a large 

research institution in the southern United States, as she merged the two fraction worlds she 

experienced, both of which she deemed as equally valid ways to view fractions. Vivian came to 

question her own thinking and merged these fraction worlds. This preliminary report comes from 

a larger dissertation study. I draw from data from a teaching experiment (TE) (Steffe & 

Thompson, 2000) with an initial task-based clinical interview (CI) (Ginsberg, 1997).  

Literature Review and Theoretical Framework 

Research on the fraction understandings of undergraduate developmental mathematics 

students is scarce (Alexander, 2013; Mesa et al., 2014). Studies involving the mathematical 

thinking of undergraduate developmental mathematics students builds on K–12 research since 

undergraduate developmental mathematics students study K–12 topics while being college 

students (Alexander, 2013). Fraction knowledge has been shown to function as a gatekeeper for 

algebra readiness, though further need for research has been suggested (Booth & Newton, 2012; 

Ngo, 2019; Siegler et al., 2012). In my study, I draw on the fraction literature of Lamon’s (2020) 

fraction understandings and Steffe & Olive’s (2010) fraction schemes. 

For the purposes of my study, I define fractions as numbers written in the form of a/b, where 

𝑎 and 𝑏 are not necessarily integers, such that 𝑏 is not equal to zero (Lamon, 2020; Empson & 

Levi, 2011). Vivian’s fraction story includes the way she understands unit fractions, or the unit of 

measure when a whole is partitioned into unit fractions. For example, 1/𝑛 is a unit fraction, 

where 𝑛 is a natural number, for a whole that is partitioned into 𝑛 segments (Hackenberg et al., 

2016; Lamon, 2020; Steffe & Olive, 2010). Unit fractions can then be used as building blocks as 

they are iterated to create composite units (Steffe & Olive, 2010).  

Methods 

In this paper, I present data from a larger dissertation study. The overarching goal of the 

dissertation is to get a picture of the way the participant is currently understanding fractions 
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using Lamon (2020) and Steffe & Olive (2010) and then to attempt to create an environment to 

foster the strengthening of the measurement understanding of fractions (Lamon, 2020). In this 

section, I will briefly explain TEs, CIs, and the methods used for this study. 

Teaching Experiments and Clinical Interviews 

A TE is a type of qualitative research that allows the teacher-researcher (TR) a way to have 

firsthand experience of their participant’s mathematical learning and reasoning (Cobb & Steffe, 

1983; Steffe & Thompson, 2000). TEs are composed of episodes using tasks designed to test 

hypotheses the TR has formed about their participant’s thinking (Steffe & Thompson, 2000). In a 

TE, the TR seeks to create an environment to foster a change in thinking (Steffe & Thompson, 

2000). But the TR does not assume they are the cause of thinking changes (Thompson, 1979). 

Thus, the construction of knowledge is the result of the participant’s work. The witness’s (WR) 

main job is to observe the interaction between the TR and the participant and may also suggest 

follow-up questions the TR may not think of (Steffe & Thompson, 2000; Steffe & Ulrich, 2020). 

The CI is a semi-structured interview that focuses on describing the participant’s current thinking 

and reasoning (Ginsberg, 1997; Steffe & Thompson, 2000). Data for TEs comes from video 

recordings, the participant’s written work, and any field notes taken (Cobb & Steffe, 1983; Steffe 

& Thompson, 2000; Steffe & Ulrich, 2020). Both ongoing analysis and retrospective analysis are 

utilized (Steffe & Thompson, 2000).  

Participants, Data Collection, and Analysis for This Study 

Vivian was recruited from a randomly selected undergraduate developmental mathematics 

class at a large research university in the southern United States. She participated in a CI that 

included 12 fraction tasks, divided among two 45-minute sessions. She continued into TE phase 

of the study, participating in six hour-long teaching episodes. Data was collected during the 

spring and fall semesters of 2023 in the form of video recordings, Vivian’s written work, and 

field notes taken by the TR and WR. We filmed sessions with two cameras. The primary camera 

captured Vivian’s written work. The secondary camera recorded the interactions between Vivian 

and the TR. Screen recordings were captured when Fraction Bars software was in use. Ongoing 

analysis took place during and after each session and retrospective analysis is still underway 

(Steffe & Thompson, 2000). 

Results 

I realized that Vivian viewed fractions as living in two different worlds during episodes 3 and 

4 of the TE. Once viewed as equally valid, Vivian’s and the teacher’s worlds merged in episode 

5. Note: 1/5 often refers to Vivian’s thinking, not necessarily the normative meaning of a fifth. 

Vivian’s Two Worlds 

Vivian demonstrated a discrete view of fractions during her CI. This was evident while 

sharing her understanding of 2/3, which she described 2/3 as being the majority of something 

(see Figure 1(a)). Vivian also drew discrete representations of 1/2 and 1/3 when comparing the 

two fractions during a number line task (see Figure 1(b)).  
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(a) 

 

 

(b) 

 

Figure 1: Vivian's representations of 2/3, 1/2, and 1/3 during her clinical interview. 

The third teaching episode brought more insight into Vivian’s view of unit fractions. Vivian 

was asked to cut 1/4 from each of four different sizes of rectangles. When explaining how she 

made 1/4, Vivian said, “It’s folded and then folded again so you have four significant parts. I cut 

one off so that’s one of four pieces.” Vivian used the phrasings 1/4, “one fourth,” and “one of 

four pieces” interchangeably during this session. Next Vivian was tasked with showing 1/5 using 

Fraction Bars software. The program had a split function to equipartition units automatically. 

However, Vivian chose to manually split the unit into five unequal pieces. Vivian pulled out two 

of her splits and said that each of these pieces was 1/5 (see Figure 2). She used the context of a 

farmer’s field to explain that while the pieces were different sizes and that “one buyer needs to 

go look somewhere else, but these are both still one fifth.” Vivian added, “Comparing this [top] 

slice of land to this [second from bottom] slice of land, this buyer is getting a lot more land for 

the same fraction.” In short, for Vivian, the size of the piece did not seem to matter.  

 

 

Figure 2: Vivian splits the land into fifths. 

However, it wasn’t until the fourth teaching episode that I became aware of Vivian’s two 

fraction worlds. When revisiting our task to cut off 1/4 of a paper rectangle, Vivian showed two 

different ways of finding the 1/4 (see Figure 3). After creating different fourths, Vivian shared 

that the paper shown in Figure 3(a) is “more precise” than the one in Figure 3(b), saying, “one is 

bigger than the other so they can’t both be 1/4 on a test.” Vivian described a teacher’s fraction 

world where it would be incorrect to call both 1/4. Vivian also shared that there were other 

situations where her folded “fourth” would still be one fourth since there were four pieces using 

paper folding (see Figure 3(b)). In Vivian’s eyes, one section in each figure was equivalently 1/4, 

even though she recognized that a teacher would view them differently. Vivian later created a 

farmer’s field, where each section was “one fourth but a different size” (see Figure 3(c)). She 

then defined 1/4 as “an obvious portion because each section is one of four pieces,” adding a 

caveat that the meaning of 1/4 would change if you add in measurements. Vivian focused on the 

number of pieces in the whole to determine the unit fraction, but not the visual size of the part.  
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(a) 

 

 

(b) 

 

 

(c) 

 

 
Figure 3: Vivian shows various ways to make a fourth. 

Reconciling Two Worlds into One 

Near the end of episode 4, Vivian was asked again about whether sections 2 and 3 of Figure 

3(c) were still 1/4. Vivian responded, “Yes but no,” since they were each one of four pieces but 

had different areas. We picked up this line of thinking in episode 5 using Fraction Bars. Taking a 

cue from Vivian, the first task of the day used the context of a farmer fairly dividing a field for 

their children to use as they see fit. This scenario was used for three and then five children. Using 

program functions, Vivian automatically split the field into thirds but manually split the field into 

fifths (see Figure 4(a)). The WR asked Vivian how many copies she would need to make of one 

of her fifths to show that a split was really 1/5. Vivian chose one of her fifths and stated that she 

would need at least five copies to check if it was 1/5 (see Figure 4(b)). Vivian also acknowledged 

that the computer could have done a better job than she did in splitting the whole. However, she 

still viewed each split as 1/5 regardless of the method used in the process. Vivian questioned 

whether her perspective is valid, saying, 

If we’re just gonna take one of the one-fifths, which it happens to be smaller than the other 

one-fifths, then I don’t think on its own it would be able to create perfectly the pink again if 

we were to copy it a bunch of times. But does that mean that it’s not one fifth anymore? 

 

(a) 

 

 

(b) 

 

 
Figure 4: Vivian (a) splits a "field" into fifths and (b) checks if a split is really 1/5. 

When asked what she thought, Vivian responded that she did not know, adding, “This whole 

time I’ve been thinking that this is still a piece of the whole. But if the piece by itself, copied, 

can’t make up the whole, is it the correct fraction?” We changed the language in our sessions to 

distinguish between pieces of the whole and fractions. The session continued with creating 

wholes and splitting them to find various unit fractions. This unit fraction was copied to create 

the requested fraction of the whole. When checking her work for 5/7, Vivian demonstrated that 

she needed five copies of 1/7, which could come from any 1/7 of the unit. She also recognized 

that it took seven copies of the same size pieces of 1/7 to get to the whole. 
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Discussion 

Vivian had a system of working with fractions from the beginning of our time meeting 

together. This system, which reminded me of Erlwanger’s (1973) Benny, included understanding 

unit fractions as one of n pieces. During the fourth episode, Vivian spontaneously started labeling 

one of her farmer’s fields with sided lengths, areas, and perimeters as she showed different ways 

to find 1/4. It was during this task that Vivian may have begun to realize that the areas need to be 

the same for unit fractions to be equivalent. This is suggested in her “Yes but no” response to 

deciding if two different pieces out of 4 were both 1/4.  

During episode 4, Vivian stated “The whole is easier to understand when the pieces are the 

same.” However, it wasn’t until Vivian was asked if it was important for all the pieces to have 

the same size to be a fraction that she expressed her question about if her fifth was really 1/5. 

Vivian’s recognizing that 5/7 is five copies of 1/7, using copies from any 1/7, provides evidence 

that she had established a unit fraction understanding consistent with Seffe & Olive (2010). 
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Reasoning 

Engaging students in mathematical practices such as collaborative problem-solving, 

justification, and explanation has long been accepted as beneficial for student learning (Staples, 

2007; Stein, Engle, Smith, & Hughes, 2007) As the presence of technology in classrooms 

continues to grow, students are asked to explain their mathematical ideas through typing and 

digital tools that can be easily shared and saved (Engelbrecht, Llinares, & Borba, 2020; Thomas 

& Palmer, 2014). The increased prevalence of student explanations in digital form can offer new 

opportunities for teachers and students (e.g. the ability to edit/revise explanations, increased 

access to student work for teachers), but can also provide increased insight into student thinking 

over time for researchers and teacher educators. Large databases of students’ typed explanations 

have been used to develop machine learning-algorithms to provide feedback to students on 

isolated items in science education research (Shin & Shim, 2021), yet we know less about 

student mathematical explanations and how they develop over time and across contexts. Further, 

students’ use of proportional reasoning to make sense of our world does not receive enough 

attention across different mathematical contexts.  

In our analysis of students’ digital explanations, we draw from larger design-based research 

to develop a digital collaborative platform for students and teachers, which allowed students to 

collaborate with peers and type explanations across multiple connected units of a problem-based 

curriculum. This research is guided by the following research questions: 1) What are the 

characteristics of middle-grades students’ digital mathematical explanations of proportional 

reasoning? and 2) How do middle grades students’ digital explanations develop across 

mathematical contexts? The primary data source is a large database of student written responses 

to mathematical problems across three curricular units focused on proportional reasoning, 

created from log files of student actions in the digital platform. We use learning analytics 

methods (e.g. text-mining) to identify key words of student written text describing proportional 

reasoning, as well as how characteristics of student explanations (e.g., length, mathematical 

focus) might change across number and operations, geometry, and algebra/functions contexts. 

Secondary data include classroom observations and teacher interview recordings to identify 

larger trends and themes in the students’ digital explanations across units. Findings will provide 

insights into the nature and development of student proportional reasoning, and how teachers can 

support deep and flexible ways of knowing. Our analysis and findings provide insight into how 

students communicate their mathematical thinking and understanding, a critical perspective in 

technology design and the development of machine-learning algorithms for feedback/assessment.  
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The purpose of this study was to determine if visual imagery in the form of Quick Looks could 

promote the development of multiplication fact reasoning strategies. It was conducted from 

August to March during one school year and involved three experimental third-grade classrooms 

who received instruction using visual images. Corresponding control classrooms from the same 

schools received instruction from the district-adopted curriculum. Using a mixed-methods 

design, students from experimental and control classrooms were compared with respect to 

progress towards fact fluency and overall multiplicative understanding. Analysis revealed that 

the experimental group made statistically greater gains, suggesting that image-based instruction 

may encourage greater progress towards multiplication fact fluency. 

 

Keywords: number concepts and operations, elementary school education, curriculum 

 

The learning of basic facts, or sums and products of numbers 0-10 and their related 

differences and quotients, has always been a high priority for elementary school teachers. These 

early skills form a necessary and significant component of a student’s procedural fluency, or 

“skill in carrying out procedures flexibly, accurately, efficiently, and appropriately” (National 

Research Council, 2001, p. 5). Although fluency with basic facts functions as a gateway for 

future mathematical success, “many educators find that children, even in the upper grades, 

continue to draw tally marks and count by ones as their dominant solution approach in solving 

problems” (National Council of Teachers of Mathematics [NCTM], 2020, p. 82).  

In attempts to address this issue, numerous research studies (e.g., Brendefur et al., 2015; 

Cook & Dossey, 1992; Thornton, 1978) have established that multiplication facts instruction that 

is based on students developing reasoning strategies as opposed to rote memorization of isolated 

facts produced significantly higher levels of fluency. In their study, Brendefur et al. (2015) 

utilized a cognitive framework focused on Bruner’s Three Modes of Representation (1966). 

Students first explored multiplication strategies with hands-on activities (enactive), then through 

pictures (iconic), and finally, with number sentences and words alone (symbolic). The idea of 

using representation to scaffold strategy development also aligns with recent research on the 

importance of visual imagery. For example, Park and Brannon (2013) found that individuals who 

were given frequent opportunities to compare approximate sums and differences of dot patterns 

(i.e., using approximation to determine if the sum of the dots on two arrays is greater or less than 

the dots on a third array) showed statistically significant growth in their symbolic computational 

abilities as compared to control groups. They note the results “strongly corroborate the 

proposition that nonsymbolic-arithmetic ability and symbolic-math ability share cognitive 

foundations” (p. 2017). Thus activating both visual and symbolic thinking simultaneously during 

instruction may have promise for enhanced fluency development.  

Our study attempted to build upon these findings to explore the use of visual imagery as a 

means of motivating multiplication fact strategies with third grade students. More specifically, 

mailto:kling@hope.edu


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

745 

the study utilized dot patterns in equal group or array formations that were shown for 2-3 

seconds followed by students sharing how many dots they saw and how they saw it. This “Quick 

Look” routine utilized carefully designed and sometimes sequenced images as shown in Figure 1 

so that key multiplication fact strategies were likely to naturally emerge. 

 

Strategy Image 1 Image 2 Symbolic Representation of the Strategy 

Doubling  

 

4 x 7 = ? If I already know 2 × 7 = 14, I 

double to get 4 x 7 = 28. 

Subtracting 

a Group   

9 x 4 = ? If I know 10 x 4 = 40, then I 

subtract one group of 4 to get 40 – 4 = 36. 

 

Figure 1: Quick Look Activities: Sequencing Images to Encourage Strategy Development 

 

The purpose of this study was to examine the results of using an enhanced and deliberate 

collection of lessons with visual imagery in a Quick Look format. This involved a comparison 

between classrooms who received the Quick Look treatment and those who utilized the existing 

curriculum. The following research questions involved these ideas and were used to guide the 

study: 1) Is there a difference in fluency obtained by students who engage in visual imagery 

activities as compared to students who do not receive this instruction? and 2) Is there a difference 

in multiplicative understanding obtained by students who engage in visual imagery activities as 

compared to students who do not receive this instruction? 

 

Theoretical Frameworks 

This study drew from various areas of research, including intuitive multiplicative concepts, 

fact fluency development, and visual mathematics, and thus was grounded in several theoretical 

frameworks. Various researchers (e.g., Clark & Kamii, 1996; Mulligan & Mitchelmore, 1997; 

Wright et al., 2012) have developed similar trajectories for classifying intuitive models of 

multiplication. One limitation of these trajectories is that their levels often differentiated various 

counting-based methods, such as unitary counting, rhythmic counting, and skip counting, but 

combined reasoning strategies and recall into a single level. A more nuanced framework was 

required for the purposes of this study, leading to the development of the Multiplicative 

Understanding Levels (MUL) shown in Table 1. 

 

Table 1: Sample Codes for Multiplicative Understanding Level (MUL) 

             Level                            Description    Code 

Numerical Composite Counting by 1s using unitary or rhythmic 

counting 

UC or 

RC 

Abstract Composite 

Unit 

Skip counting or repeated addition SC or 

RA 
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Emergent Composite 

Unit of Composite Units 

Recognizes the opportunity to apply a strategy 

but unable to successfully execute 

ECU 

Facile Composite 

Unit of Composite Units 

Successfully implements the strategy FCU 

 

In particular, the distinction between the Emergent Composite Unit of Composite Units 

(ECU) and Facile Composite Unit of Composite Unit (FCU) levels was not incorporated in any 

of the previous studies on which this framework was based, but was used in our study to capture 

the subtle differences in how students make sense of and develop proficiency with fact strategies. 

For example, if asked to provide a strategy to solve 6 x 8, a student at ECU might just identify  

5 x 8 as a viable helper fact but then not know how to proceed, where as a student at FCU could 

complete the strategy: 5 x 8 + 8 = 48. 

While the MUL framework was utilized to capture multiplicative understanding, a three-

phase framework adapted from Baroody et al. (2003, 2006, 2009) was used to provide a measure 

of overall progress towards fact mastery. With respect to multiplication, Phase 1 incorporates any 

methods that rely on unitary counting, rhythmic counting, or skip counting. In contrast, Phase 2 

involves reasoning strategies based on known facts. Phase 3, the Mastery Phase, is reached when 

children can quickly generate an answer for a fact either through recall or highly efficient 

strategy application. These two frameworks were useful for measuring student understanding and 

fluency growth, but Bruner’s Modes of Representation (1966) drove instructional design. In 

particular, our study focused on using discussion of Quick Look images to bridge iconic and 

symbolic thought as shown in Figure 1. An integration of these theoretical perspectives led to a 

grounded supposition that attaining a complete concept of multiplication, as well as attaining 

basic fact mastery, requires students to be able to operate in the symbolic mode with ease. Thus, 

frequently recording student thinking in words and symbols as they explained how they made 

sense of the images was an important part of the intervention, facilitating the eventual fading of 

the iconic as students transitioned to mainly symbolic work (Fyfe & Nathan, 2019). 

 

Methodology 

The study took place in three rural/suburban schools in Southwest Michigan, USA, from 

August to March of one school year. Each school contained one experimental classroom and one 

or two control classrooms with a total of 26 experimental and 25 control students. The 

intervention consisted of six experimental lessons taught by Kling that each utilized discussion 

around 4-6 purposefully sequenced Quick Look images, followed by a written partner activity. 

These lessons replaced existing lessons with the same objectives from the regular curriculum 

used in the control classrooms, which primarily used number stories to motivate multiplication 

fact strategies. There were no other differences in instruction between the control and 

experimental groups aside from expected natural variation due to different classroom teachers. 

Data collection utilized five semi-structured interviews conducted throughout the school 

year, including a pre-assessment interview at the beginning of the year and interviews following 

Lessons 1, 3, 5, and 6. The pre-assessment interview included addition and subtraction facts and 

served as a baseline measure to establish comparability of groups. Interviews 2-5 used a semi-

structured protocol consisting of seven bare numeral multiplication facts and one open response 

task. For the bare numeral tasks, students were asked to explain how they figured each one out, 
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regardless of the speed or accuracy with which they answered. This allowed for both the phase 

and strategy to be recorded. The recorded phase (1, 2, 3) was combined with a 1 if correct for a 

total fluency score of up to 4 points per bare numeral fact, 28 points per interview. Mean scores 

were compared to determine statistically significant differences. The open response tasks 

prompted students to interpret or apply particular strategies and were coded qualitatively based 

on MUL. For example, Interview 4 contained the following open response task: How could you 

use doubling to help you to figure out 8 × 4? Can you solve it a different way now?  

 

Results 

The first research question explored differences in levels of fluency obtained by experimental 

and control students. Mean scores for the seven bare numeral items on Interviews 2-5 were 

compared. Steady gains were made by the experimental group while the control group 

fluctuated, culminating in the experimental group demonstrating a statistically higher fluency 

level (p = 0.047,  = 0.05) on the final interview conducted in March. Furthermore, 77.5% of the 

tasks were answered by the experimental group using either a strategy or recall (Phase 2 or 3), 

compared to only 63.4% by the control group, for whom the second most common approach 

across the tasks was unitary counting (Phase 1). Proportion testing on these results found the 

experimental group scored statistically higher at the  = 0.05 level (p = .002). Thus, it is possible 

that the intervention was more successful in encouraging movement away from counting to the 

development of reasoning strategies and higher levels of fluency. 

The second research question explored differences in multiplicative understanding and thus 

called for a qualitative approach. Interview open response items were coded for MUL using the 

coding scheme shown in Table 1, with a particular focus on emergent and facile composite unit 

of composite units thinking (ECU and FCU) as both were indications of movement towards 

strategy acquisition. An examination of Table 2 shows that the control classrooms generally had 

a sizable portion still in ECU, indicating incomplete strategy development. However, when 

examining FCU, results favored the experimental group as they had statistically higher 

proportions of FCU on Interviews 2, 3, and 5 (p values shown for FCU only). 

 

Table 2: Summary of MUL Codes: Interview Open Response Tasks 

  ECU FCU p value 

Interview 2 Experimental 

Control 

3.8% 

12.0% 

38.5% 

16.0% 

0.036 

Interview 3 Experimental 

Control 

26.9% 

40.0% 

50.0% 

20.0% 

0.013 

Interview 4 Experimental 

Control 

11.5% 

20.0% 

73.1% 

52.0% 

0.060 

Interview 5 Experimental 

Control 

0% 

20.0% 

73.1% 

36.0% 

0.004 

 

Discussion and Conclusion 

The purpose of this study was to determine if the intentional design and use of visual imagery 

in the form of Quick Looks could promote multiplication fact strategy acquisition and fluency 
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development. As summarized above, there were several indicators that the intervention was in 

fact successful in doing so. This adds to the research on the importance of visual mathematics for 

learning (Boaler et al., 2016). Visual imagery has promise perhaps because it is accessible to a 

wide variety of students; even students who are still in the counting phase can make sense of the 

images and the class sharing of strategies may help provide them with efficient alternatives to 

adopt in the future. Furthermore, the deliberate connections made between the images (iconic) 

and symbolic expressions used to represent student thinking during class discussion of the 

images may have helped promote a deeper understanding of the multiplication reasoning 

strategies developed in the lessons as well as more flexibility in working simultaneously within 

each mode of representation. Visual imagery, in the form of Quick Looks, may provide a much-

needed pathway for all students to achieve the lasting and meaningful fact fluency necessary for 

future mathematical success. 
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ANALYSIS OF STUDENT’S REASONING ON FRACTIONS FROM A VIDEO GAME 

WITH A COORDINATION CLASS 
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Given that previous studies about video games and students’ math learning focus on the 

quantitative aspect of students’ learning (e.g., post-test scores), this research applies a 

coordination class from the Knowledge in Pieces framework in order to analyze fine pieces that 

emerge in students’ reasoning around fractions in the context of a video game. This study 

analyzed one student’s reasoning around fractions emerging during the interview about his 

gameplay. The analysis shows that rich inferences around fractions get activated in different 

contexts and how unrecognizably the inferences the student employs in each context shift and 

mix up with other inferences. In order to support students to expand their intuitive understanding 

of fractions into a more systematic understanding, the rich inferences from students’ intuitive 

reasoning need to be incorporated into instructions on fractions.   

Keywords: Rational numbers, Cognition, Elementary school education  

 

Previous studies have demonstrated positive impacts of video games on students’ 

mathematics learning by showing improved post-test scores (Braithwaite, & Siegler, 2020; 

Denham, 2015; Hulse et al., 2019; Ke, 2008a, 2008b; Kim & Ke, 2017; Litster & Moyer-

Packenham, 2020; Liu et al., 2017; Moyer-Packenham et al., 2020; Vogel et al., 2006). It is 

surprising, however, that few studies analyze any qualitative changes in students’ mathematical 

reasoning emerging during gameplay. Hence, this study proposes to design a math video game 

around fractions and to conduct a qualitative analysis on students’ reasoning about fractions 

emerging from gameplay with a coordination class theory. 

 

Literature Review  

     Researchers analyzed rational numbers into several sub-constructs (e.g., Kieren (1980) : 

part-whole, measure, quotient, ratio and operator, Behr et al. (1992) : part-whole, quotient, and 

operator) and the subconstructs have been applied in previous studies (Cramer et al., 2019; 

Lopez-Martin et al., 2022; Moyo & Machaba, 2021; Witherspoon, 2019; Wood et al., 2013). The 

various facets of rational numbers can be approached with the Knowledge in Pieces (KiP) 

framework (diSessa, 2002). Knowledge of rational numbers can be framed as a complex 

knowledge system that consists of various knowledge pieces of different types. Among the 

possible knowledge types in the system of rational numbers, this study approaches the 

subconstructs of rational numbers as a coordination class (diSessa & Sherin, 1998; diSessa & 

Wagner, 2005; Levrini & diSessa, 2008).   

Coordination class theory  

diSessa and Sherin (1998) introduce a coordination class as one type of knowledge pieces as 

“systematically connected ways of getting information from the world (p.1171)”. There are two 

sub-classes in a coordination class. The one sub-class of a coordination class is called 

extractions. One example shared by diSessa (2004) is that we notice that an object is bigger or 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

750 

smaller than another object and that the information of size difference relates to mass. The other 

sub-class of a coordination class is inferential net, which is “the set of all possible inferences 

that lead to determining the relevant information (diSessa, 2004, p.141)”. A specific collection of 

parts of a full coordination class activated in a specific context is concept projection. 

For example, let’s say there is a circle that is divided into four equal parts and two of the four 

parts are shaded. One student might attend to that the four parts are all equal size and only two 

parts are shaded, which are extractions. The student would coordinate the two extractions with 

inferences such as ‘the one circle is a whole’ and ‘two shaded parts of the four parts can be 

represented with fractions.’ These are the inferences that the student projected at the moment 

from the inferential net of a coordination class of fractions. The student would get to a 

determining information that the two parts represent 
2

4
. The two extractions and the two 

inferences are one concept projection of a coordination class of fractions by the student in this 

context with a circle representation. All processes from extractions to information determining 

about the context from an inferential net are called as readout (for more details, see diSessa et 

al., 2016).  

As students accumulate experiences where they apply a coordination class in various 

contexts, the span of the coordination class gets extended. As students construct more expert-like 

knowledge system by extending the span of a coordination class, they will come to conclude the 

same valid interpretation of a coordination class across contexts, which is alignment. (for more 

details, see Levrini & diSessa, 2008; diSessa & Wagner, 2005).  

Reapproach fractions as part-whole with a coordination class theory 

Behr et al. (1992) introduce two interpretations of the part-whole construct: parts of a whole 

and a composite part of a whole in both continuous quantity and discrete quantity. Behr et al. 

(1983) analyze children’s reasoning related to the two interpretations with a circle representation 

and categorize students’ reasoning around fractions into three levels based on whether students 

can or cannot label each part of the circle with both names. It is not enough, however, to 

categorize at which level students’ understanding on fractions as part-whole is in terms of why 

some students can label a given representation with two labels but other cannot, and in what 

ways students come to be able to label the representation with both labels in what contexts. It is 

worth analyzing the information students attend to and the inferences they coordinate with when 

interpreting fractions as part-whole in different contexts beyond just categorizing students’ 

understanding about fractions as a part-whole into a few levels. 

Video games in elementary math education  

In this research, math video games refer to games whose designs and goals focus on 

supporting students to have a designed experience (Squire, 2006) around mathematical concepts 

introduced in school mathematics (Braithwaite, & Siegler, 2020; Denham, 2015; Hulse et al., 

2019; Kim & Ke, 2017; Litster & Moyer-Packenham, 2020; Liu et al., 2017; Moyer-Packenham 

et al., 2020; Vogel et al., 2006). Even though many studies show that video games are effective 

for students’ math learning quantitatively (Karki et al., 2022; Kiili et al., 2018; Tsai & Yen, 2016; 

Zhang et al., 2019), it has not been uncovered enough in terms of what happens in students’ 

reasoning behind their post-test scores. Given that there is a lack of a qualitative analysis around 

students’ reasoning around fractions in the context of video math games, this study conducted a 

qualitative analysis applying a coordination class theory within the Knowledge in pieces 
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framework to focus on small knowledge pieces and coordination that emerge from the process of 

students’ reasoning around fractions in a video math game context.  

 

Methods 

This method section is based on the Knowledge Analysis (KA) methodological framework 

suggested by diSessa et al. (2016). 

Empirical set-up 

1. Based on the definition of a video-based game as a designed experience (Squire, 2006) 

delivered on digital devices (e.g., tablets, computers or consoles, etc.) with openness to various 

ways to achieve game goals, the researcher designed and developed one math video game, 

Bridge the Cloud, with a Unity 3D game engine. (For more information about the game, please 

try the game here using a Chrome browser). In the game, players need to make clouds at 

different locations in order to block stones falling from the sky. To make clouds at position 

players want, players need to use different numbers for denominator and numerator (Figure 1).  

 

            
  

Figure 1: Screenshots of the game, Bridge the Cloud  

 

2. In each 1-hour game session, a student played the game on a given android tablet device 

for the first 30 minutes while the researcher sat next to the student. The gameplay was recorded 

using the screen recorder function of the tablet device. For the next 30 minutes, the researcher 

interviewed the student and asked questions about the student’s gameplay. The entire game 

session was recorded with two camcorders. 

3. One 4th-grade student, Jason (pseudonym) was recruited for this study at one public 

charter school in the southern US and total 10 game sessions (one game session per week) were 

held in one classroom at the school.  

Capture and Reduction  

The focus of this study is to observe extractions and inferences, if any, that emerge in 

students’ reasoning around fractions. To serve the purpose, an interview format was chosen 

because an interview allows researchers to ask additional questions to students about their 

reasoning. All verbal expressions, written expressions, and gestures were included in the 

analysis. All the interview sessions were transcribed to capture verbal expressions. Written 

expressions and gestures that were made along with verbal expressions were documented in 

transcripts. Verbal and written expressions and gestures were coded as a chunk around a specific 

reasoning of the student. In the next phase of coding, specific information that the student 

extracted and inferences with which the student coordinated the information were analyzed.  

 

https://rambo429.itch.io/bridge-the-cloud
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Results 

Unrecognized shifts among inferences related to one whole and one-unit length 

When Jason shared his thinking about how the green numbers (numerator) and the blue 

numbers (denominator) work in the game, the concept of a whole emerged in his reasoning. 

However, what he referred to as a whole changes quickly and even unconsciously, and a concept 

of a unit is entangled in his projected concept of a whole. The excerpt in Table 1 shows his 

reasoning about a whole. 

  

Table 1: Interview excerpt from the 2nd interview session on Sep 15th, 2023 

 

J : Jason & R :Researcher 2nd interview 06:33- 11:28 on Sep 15th  

 

R: What do you think 3 green and 2 blue are doing here (Picture A)? 

J: Hmm…What do you mean? 

R: Now, in this box, there is 2 in the blue box and 3 in the green box and 

the cloud is here (3/2), what do you think this blue 2 and green 3 are 

doing here? 

J: hmm. I think ,, what they are supposed to do?  Like green makes it 

longer and blue makes it shorter? 

 

R: I mean blue makes it shorter and green makes it longer right? But why 

the cloud is here (3/2) not here (pointing at near 1 – left red circle in 

Picture B) or there (pointing at near 2 – right red circle in Picture B) ? 

J: Because I put 3, and then put 2 in the blue and then that subtracts half 

the line, I guess? Yeah, half of the line which makes it to going that  

B: Half of the line... what line? 

J: This is the whole line (pointing at the one green stick)  

 

 

B: Wait, you mean this line (one green stick – Picture C) or this whole 

line (the whole number line – Picture D)? 

 

 

J: This line (one green stick from 0 to 1- Picture E), that's the whole line, 

and then if you're subtracting 2 from that line 

Picture A 

 
 

 

Picture B 

 
 

Picture C             

Picture D  

   

 
 

Picture E 

 
 

This shows that the inferences Jason projects in each contextuality shift unrecognizably. 

When firstly asked what green number 3 and blue number 2 were doing in the given game 

context, Jason appeared to extract the information that the length of the stick changes with the 

input of green 3 and blue 2 and he concluded that the cloud was made at the current position 

because it is half of the line. However, when explicitly asked what the line he referred to right 

after he said half of the line, he suddenly pointed at the line from 0 to 1. At this moment, he 

appeared to be cued with another inference that a whole means 1 on the number line. 
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Fractions as both a whole quantity and a selected quantity present      

When Jason explained about one-third shown up in the game, he kept explaining a one-third 

as one selected part among three equal parts that are present at the same time in one whole. So, 

when he explained one-third of the stick in the game, he brought up that the two other parts were 

subtracted. This shows that when Jason projected a coordination class of fractions as a part-

whole, an inference got activated that a fraction, such as 1/3, represents cardinality contexts 

involving both a whole evenly divided into three parts and one selected part among the three 

parts. Wood et al. (2013) showed that students’ understanding of fractions includes an operation 

of removal in addition to equal dividing but did not address why students come to include the 

subtraction operation in their reasoning. This analysis suggests one possible explanation; if 

students utilize an inference that fractions represent cardinality contexts where both a whole 

partitioned into n parts and m selected parts of n parts are present, this inference would lead them 

to focus on explaining that the n-m parts are gone so that they can make sense of why only m 

parts are left.   

Discussion and Conclusion 

The analysis results highlight that when a student interprets fractions in the specific video 

game context, how momentarily the inferences one employs in each context shifts 

unrecognizably. By approaching fractions as a coordination class, small, but rich, inferences that 

students use or get cued by contextuality can be uncovered. Based on the inferences from 

students’ reasoning, we can figure out what instructional supports students need in order to 

expand their intuitive understanding of fractions into a more systematic understanding. 
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The research base remains unfinished when considering how students with specific learning 

differences develop an understanding of part-whole number knowledge, then leverage it for 

fraction knowledge. From a conceptual analysis of two students’ engagement with six task-based 

interviews, we provide insight into distinct nuances in each student’s partitioning and iterating 

with whole number and fraction development. Findings indicate students had very different 

strategies and approaches to their part-whole number strategies, allowing the teacher-

researchers very different conceptual resources to consider when leveraging their strengths 

throughout the study. Implications of these findings suggest an asset-based lens provides all 

students’ equitable opportunities for mathematics learning. 

Keywords: Students with Disabilities, Number Concepts and Operations, Rational Numbers. 

The research base remains unfinished for students with learning differences, specifically 

students with learning disabilities and other health impairments, develop an understanding of 

part-whole number knowledge. Moreover, it is not yet known how students with learning 

differences leverage their part-whole knowledge for fraction knowledge, and what features of 

their diverse experiential and cognitive backgrounds (e.g., working memory or processing 

differences) might interact with their development (e.g., Hunt et al., 2016; Hunt & Tzur, 2017). 

Current research efforts document elements of students’ diverse cognitive backgrounds thought 

to interplay with students’ mathematical learning from an early point in their lives (Compton et 

al., 2012). These factors are then used to explain learning differences as variations in certain 

norms that predict performance over time (Vukovic, 2012). This approach to designing 

intervention has gained much knowledge over the years, yet there is still a great deal of 

opportunity for improvement. Here we examine how two third grade students with learning 

differences construct their whole number understandings in relation to their fraction 

understandings. We expect to provide insight into the conceptual resources students with learning 

differences enact as they leverage their whole number knowledge for their fraction knowledge 

development. 

Theoretical Framework 

The authors of this study frame this work by examining learning patterns in children’s part-

whole number and fraction understandings, using theoretical account of units construction and 

coordination (e.g., Hackenberg & Sevinc, 2024; Steffe, 2024; Steffe & Cobb, 1988; Steffe & 

Olive, 2010). We define a unit as a perceptual chunk, sometimes conceptualized as a discrete 

“one” or a continuous length (Hackenberg & Sevinc, 2024). Steffe and Cobb (1988) described 
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children’s construction of pre-arithmetic units through their development of number sequences; 

they explain counting activity as a means of developing sequential schemes for additive 

operations with number. Once children internalize their number sequence, they are capable of 

partitioning number sequences and using counting-on instead of recounting all (e.g., three more 

than six is seven, eight, nine). This is also described as development of numerical composites, 

meaning students can solve tasks requiring one numerical unit grounded in their number 

sequence (Steffe, 1994). Once children construct and count with abstract units, they are 

described as having one-level of units interiorized. One-level of units interiorized allows students 

access to two-level units with one unit developed in activity because students can actively 

distribute the elements of one unit across the elements of a second unit (described as part-whole 

number understandings, see below for details). Part-whole number understandings would require 

students to have two-levels of units interiorized, freeing up their working memory to attend to 

pre-arithmetic units in activity. Once a student constructs two-levels of units interiorized they 

have an assimilatory structure of unitary items embedded in composite units (Steffe, 2024).  

Part-whole number understandings is a pervasive issue affecting many elementary 

mathematics students with learning differences (Landerl et al., 2004; Vukovic, 2012). We define 

part-whole number understandings as the development of students’ understanding of numbers as 

part of a sequence (i.e., 1, 2, 3, 4, 5) and part of a unit (i.e., 2 and 3 compose 5) in such a way 

where a number becomes a coordination of counting and grouping operations (Piaget, 

1968/1970). When a student solves the problem “How many threes in twelve?” one strategy may 

be to verbally count, “one, two, THREE (puts up one finger), four, five, SIX (puts up a second 

finger) …4 times” (Ulrich, 2016, p. 2). This “double counting” technique, involving counting 

each set of three as 1 group, is an application of internalized part-whole operations, as the parts 

(one, two, THREE and 4 sets of 3) are operated upon within the whole (12). If students require a 

sequential recounting of the 12 counters to find the total of 3 sets of 4, we describe that as a less 

sophisticated part-whole operation. 

Fraction understandings are also framed, in part, with units coordination theories providing 

insight into students’ earliest activity when constructing part-whole fraction and fractions as a 

form of measure understandings (e.g., Hunt et al., 2016; Steffe & Olive, 2010; Wilkins & 

Norton, 2017). Steffe and Olive delineate students’ fraction development as a process of units 

coordination to characterize varying degrees of sophistication in students’ scheme development. 

Steffe and Olive’s work provided insight into students’ operations when transitioning from 

fractions conceived in a part-whole manner versus measurement fractions. Hunt and colleagues 

provided insight about fraction development among students with learning differences and 

learning disabilities; they explained why early operations (e.g., partitioning) can range so widely 

between individual students. We focus next on the wide-ranging scheme development and look 

at implications for transitioning from whole number schemes to fraction schemes. 

     Students with learning differences often develop less sophisticated double counting 

strategies when understanding part-whole number operations (Landerl, Bevan, & Butterworth, 

2004; Vukovic, 2012). Nevertheless, these are meaningful and comprehensive counting 

strategies. In schooling experiences, students with learning differences often need additional 

support to elicit their conceptual knowledge of part-whole operations from earlier grades; such 

knowledge is critical as they work to establish part-whole number understandings for numerical 

computation in upper grades (Butterworth, 2011). The research literature has described the 
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development of number understanding and computational skills among students with learning 

differences in very different ways than for their more successful counterparts (Lambert & Tan, 

2017). In contrast to these patterns of deficit comparison in the literature, we adopt an asset-

based lens by identifying and elaborating upon the meaningful activity and scheme development 

that can allow for a productive bridge from whole number concepts and operations to fraction 

concepts and operations. 

Methodology 

Part of a larger pilot study, this paper describes qualitative data from two students, Dalton 

and Angela, each receiving specialized services for their mathematical learning needs. Dalton 

and Angela were enrolled in a small rural school in the midwestern portion of the United States. 

We engaged each student at their participating school in six task-based sessions: three whole 

number and three fraction task-based interviews. The first and second author worked with the 

students individually and, at one point, jointly with both students. Excerpts in this manuscript 

indicate the student by their pseudonym, “Dalton” or “Angela”, and the Researcher as “R”. We 

adapted Wright, Ellemor-Collins, and Tabor’s (2012) number tasks (interviews one, two, and 

three) and Hunt and colleagues (2016, 2017) fraction tasks (interviews four, five, and six). After 

each interview, we transcribed data, conceptually analyzed it, and adapted the subsequent tasks 

in response to what we understood about the students’ scheme development and their 

interpretation of each task. Conceptual analysis included reviewing the transcripts and 

identifying the conceptual resources we could attribute to each student based on their verbal 

interactions, their use of figural representations and their gestures as they engaged in tasks. 

Findings 

Whole Number Understandings 

Dalton.  Throughout interview one, Dalton heavily relied on physical activity, finger 

patterns, and self-created number lines. When asked "how many," he often recounted all items 

(starting with the number one). When the teacher-researcher covered objects, he sometimes 

needed to feel through the cloth to count them. Early on, in the first whole number task, Dalton 

relied on his fingers to stand in for the perceptual items. For instance, Dalton was given the task, 

I've covered thirteen counters here. If I took seven of those counters away, how many would I 

have left? Dalton responds with the solution “six” and says he first “counted by ones to see what 

the answer was on my fingers for ones. This is seven (flashing seven fingers), and I figured out 

that this is seven, and then I knew that was seven (showing how he counted to construct a 

figurative unit for seven), so I counted fourteen, thirteen, umm ... thirteen, twelve, eleven, ten, 

nine, eight, seven, six.” This explanation suggests that he creates the figurative unit for seven 

through his counting. By creating this figurative unit, he could focus on reversing his number 

sequence starting at 13 and counted down to six, exhausting the figurative unit for seven. 

We also gave Dalton the task, So, there's twenty-two counters here. Now if I took five of these 

counters away, how many would I have left?. After counting silently and looking at his fingers, 

he announces, “Seventeen!”. When the second author asks, how did you solve this task?, Dalton 

explains: 

Dalton:   I knew the finger thing for five.  

R:   Okay. 
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Dalton:  And then I just count ... I did this (shows two hands balled up with zero fingers 

showing). And I counted to five (flashes five fingers on his left hand) on this 

(referring to his five fingers on his left hand).  

R:  Okay. 

Dalton:Just to be sure, I counted on this. 

R: Can you show me what you were doing? 

Dalton:  So, I did… 

R:  Do it again, I guess… 

Dalton:  … twenty-one, twenty, nineteen, eighteen, seventeen (shows five fingers putting 

one finger down with each number word). 

 

In this excerpt, Dalton did not need to create a figurative unit for five, as he knew its  

pattern. We believe this freed up his ability to focus on his reversed number sequence in activity. 

We gave Dalton, in both strategies, tasks with a known number, a number he could create with 

his fingers, affording him access to known mathematics and/or created finger patterns.  

In the second interview, we gave Dalton tasks asking him to construct figurative material for 

the subtrahend or for the difference. The design of these tasks pressed him to depend on given 

perceptual manipulatives. For instance, when asked, without a number line, tell me how many 

ones on a number line would you need to jump back from thirty to reach twenty-two?, he counted 

backwards by ten and then forwards (e.g., thirty, twenty, twenty-one, twenty-two), answering by 

stating “twenty-two”.  To explain his solution to these tasks, he creates a number line, perturbing 

him to reflect on his counting activity with the number sequence represented on his number line. 

Strategies like this suggest that he could anticipate the starting number (the minuend) and keep 

track of the ending number (the difference), in activity. However, he was unable to coordinate 

this with the reversal of his number sequence. In response to the task, without using a number 

line, what is 12 less than 30?, Dalton stated: 

 

Dalton:  Twelve less than thirty. Thirty, twenty, twenty-one, twenty-two, twenty-three, 

twenty-four, twenty-five, twenty-six, twenty-seven, twenty-eight, twenty-nine, 

thirty, thirty-one (counts up with fingers to twelve – keeping track of ten fingers 

and two more). Thirty-one. 

R:   Thirty-one. So, if you're going on the number line from thirty … 

Dalton: Oh, that's up. 

R:   … and that's twelve ... Oh, okay. So, what can we do to solve this? 

Dalton:  Hmm ... (holds up one finger and uses his second finger to tap this finger 

repeatedly while he thinks). 

R: So, I'm gonna read it to you again. What is twelve less than thirty? What do you 

think? 

Dalton:  Thirty minus twelve. That's basically what it is.  

R:  Okay. 

Dalton:  Thirty, twenty, twenty-one, twenty-two, twenty-three, twenty-four, twenty-five, 

twenty-six, twenty-seven, twenty-eight, twenty-nine ... (counting up by fingers 

and pauses at twenty-nine). 

R:  What do you think? 
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Dalton:  How do... how do I keep going from minusing to plus? 

 

Again, Dalton struggles to coordinate the reversal of his number sequence with the two other 

units (minuend and subtrahend) in this excerpt relying on his known multiples for decades and 

his forward number sequence. Because he ends his count with a number higher than his starting 

number of 30, his counting scheme seems to be perturbed when he approaches this.  

From Dalton’s known finger pattern for five in interview one, we realize one of his 

conceptual resources may be his known unit for five. We do not yet know to what degree he  

is constructing and abstracting this known unit for five. For instance, it was unclear if he 

constructed a numerical composite of five from his numerical sequence (Steffe, 1994) or if he 

constructed a composite unit for five as a mental object with which to operate on.  

Given this, we include the number five in interview three’s task to more closely examine his 

activity and operations possibly associated with five. For instance, we first ask him, how many 

fives does it take to create 30?. Dalton first places counters a line of 30 and describes his 

grouping as “random,” where he segments groups of varying sets of items before adjusting them 

(adding or taking away one or two) to represent groups of five. Following this, we ask Dalton, 

how many counters are covered? (showing him a line of five with 25 covered). Dalton 

experiences a perturbation, by first stating “25” as a solution and then changing his solution to 

“29”, describing the group of five as "one." We infer Dalton conceptualizes five as a numerical 

composite, which we believe was numerical in relation to his numerical sequence (cf Steffe, 

1994). As such, we posit he could not use this five as a mental object, pressing him to 

conceptualize the unit as a unit of “one,” which allows him the capability to understand this unit 

as a component of his number sequence. These are characteristics of Dalton evidencing 

numerical composites.  

Angela. At the beginning of the study, we note that Angela seems to have an internalized 

number sequence to count on from and some effective strategies with visual representations when 

solving the aforementioned backwards counting tasks. Additionally, we observe Angela relying on 

learned procedures or stating known/double facts without fully understanding their relevance to 

the solution (e.g., using an equation and "borrowing" next door in subtraction). These “tricks” 

seem to help alleviate her working memory constraints but prevent her from experiencing 

meaningful perturbations.  

When asked how many groups of five did it take to make 30?, Angela forms rows of counters 

to make an array without simultaneously attending to the number of items in each row and the 

number of rows. Angela created groups of five and explain this was her strategy, “so, they are in a 

nice row, and they don’t get mixed up.” Angela then counts all counters and changes her groups 

by adding one counter to each group. She explains that she knew the groups were the same because 

“three and three make six,” drawing from units of three in coordination with six. At this point, 

Dalton partitions his groups and adjusts them to represent six groups of five. We observe the 

following exchange when we ask them where is the five?. 

 

Dalton: (Looks back at the first two groups and rearranges the counters and recounts) one, 

two, three, four, five. One, two, three, four, five. 

R:  Okay, so how many groups of five do you have [to Dalton]? 
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Dalton:  One, two, three, four, five, six … six. (Places his hands on each group and counts 

the groups.) 

R: Okay, six … six groups [to Dalton]? And then how many groups of five do you 

have [to Angela]? 

Angela: (Counting groups.) One, two, three, four, five. Five. 

Dalton: (Counting groups.) One, two, three, four, five, six. 

R: Are these groups of five [to Angela]?  

Angela: No. 

R: So, let's look at Dalton's and let's look at yours [to Angela]. What's different about 

the way you each solved it? 

Dalton: We didn’t … 

Angela: He did bigger groups. I did smaller groups. 

R: What do you mean by bigger groups?  

Angela: He got, … I don’t know if I have thirty (counts counters in a group). (Counts all 

counters) one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, 

thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-

one, twenty-two, twenty-three, twenty-four, twenty-five, twenty-six, twenty-

seven, twenty-eight, twenty-nine, thirty. I have thirty. 

 

Angela and Dalton continue this exchange to check and verify their total number of counters, 

the number of counters in each group, and the number of groups of counters before Angela realizes 

that they “switch swapped!”, meaning that she created five groups of six and Dalton created six 

groups of five. Throughout this third interview, she repeatedly generates items that need to align 

with one of the units (5 or 30, or 5 or 6) but cannot coordinate both. The characteristics of Angela’s 

activity evidence two-levels of units with one unit in activity.  

Fraction Understandings 

Dalton. In session 4, we gave Dalton a piece of paper with a yellow rectangle on it to represent 

a french fry and the task how do you think we could share a fry between the two of us?. This leads 

him draw a line to “split it in half,” suggesting that he anticipates using a partitioning strategy. 

Dalton justifies this by developing two shares stating, “Because that's umm ... the middle (used his 

finger to go up and down on the paper, over the line he drew – see Figure 1a). So, if, if you cut it 

right here (pointing to a different section of the fry), it wouldn't ... if I cut it right here, it wouldn't 

be equal.” When the second author asks Dalton how he could check if the shares were of equal 

size, Dalton states that he could “measure it” and creates a ruler with a piece of blue paper (shorter 

than the yellow fry) by drawing small lines and marking them with numbers 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12 … while counting “two, three, four, five, six, seven, eight, nine, ten, eleven, twelve”. 

As Dalton continues to justify his response, he draws lines at “the end” of the ruler (located by the 

12 – see Figure 1b) creating four shares (see Figure 1c).  
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Figure 1: Dalton's “Measurement” When Determining if Two Units are “Equal” in Length 

 

Dalton treats his “ruler” as a discrete object, laying his blue paper ruler on one end of the fry 

to determine where to mark a second line (see Figure 1b). Then Dalton flips over his “ruler” to 

align the “one” with the edge of the paper and the opposite end of the “ruler” marks a third line of 

the fry (see Figure 1c). We find it interesting that Dalton needs his “end” mark of this “ruler” to 

partition the fry, further evidencing that the entire length of the “ruler” might not have been used 

at all. We also wonder if Dalton is either iterating the end of his ruler or he is iterating the ruler as 

one pre-arithmetic unit. As such, by using an auxiliary item in this way, Dalton seemed to engage 

in some preliminary iteration and did not seem to coordinate the length of the fry or the length of 

his “ruler” in relation to the two shares.  

This relates to Dalton’s whole number activity, as he focused on either his iteration or 

partitioning operations when relying on perceptual or figurative material. When asked to iterate or 

partition a composite unit or a length unit in activity, his working memory disallows such 

coordination pressing him to develop early forms of operations (iteration or partitioning) in 

physical activity, which are separate from his unit development. This suggests Dalton unitizes 

physical material before focusing on his operations for this material, affording him meaningful 

whole number activity for his development of fraction knowledge.  

Angela. In sessions four and five, we asked Angela to share a fry equally among three people. 

First, she partitions the fry in half and then adapts this partitioned line to create a third section. In 

subsequent attempts, Angela guesses and checks until she achieves three shares, always with left-

over portions of the fry. She cuts off the end for the third piece to match the others and initially 

states that the leftover piece "was for the dogs." However, upon further probing on that attempt, 

she divides the fry piece into three additional shares, treating the remaining portion of the fry as 

an entire new fry.  

 

Angela:  Can I draw something on here (R shakes her head yes)?  So, I can show you?  

It's not going to be that good (Angela draws a large fry on the white paper). So, 

this is the French fry. FR for French Fry (Angela writes those words on top of her 

drawing). You have to split it into 3 pieces. So, this is two (Angela draws a line 

down the middle of the drawn white rectangle). 

R:   So what part is this then (R, is pointing to the partitioned line of the drawing)? 
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Angela: This is two. 

R:  That’s two fries? 

Angela: Yeah, but if you do this and do this (Angela draws a line trying to split the 1/2 

pieces down the middle). That would make 6. 

R:  Would it make six?   

Angela: It would make four. One, two, three, four (Angela counted and tapped on the 

segmented pieces). I wish it made three. I just noticed it makes four. 

 

At this point, Angela relies heavily upon halving partitioning but reorganizes this activity to 

intentionally develop a more sophisticated partitioning than a “guess and check.” Following this 

activity, Angela tries to “measure” her original yellow paper fry to determine if her pieces were of 

equal size.  

 

Angela:  Okay. This is the size. Okay, so here’s one. I'm going to do it this way (R helps 

Angela fold the paper). So, you can... Oh, wait, wait, wait, wait. So, this. 

R:  Hmmm, so what you're doing right now? 

Angela: I'm measuring.  

R:  Oh, you're measuring. 

Angela: Back like that. Okay (Refers to the fold she made with the blue 

paper). 

R:  I'll hold these down (R held the pens in place so they didn’t move while 

Angela takes and measures each segmented piece of the yellow fry with the blue 

piece, repeated measure). Okay? 

Angela: Stay like that (Refers to the pens and then measures each segmented piece of the 

fry). 

R: Oh, uh oh. 

Angela: But you know what you can do? Magic! Magical. 

R: Magical. Do you want to fold that again? 

Angela: Okay, it fits. 

R:  It fits? All of them? 

Angela: No. See if.... (Keeps trying to measure with the same blue piece to check the size 

of all the segmented fry pieces). Okay, we just need this to be put right there. 

 

This suggests to us that Angela “measures” her fry length by iterating to determine if her pieces 

were all the same length. By iterating she develops new means to coordinate her unit size with the 

length of the fry. Following this, Angela partitions the fry but does so by segmenting the fry into 

five shares with four partitioned lines. This activity is similar to the whole number task of five 

groups to create 30, whereby she could attend to the number of units and the total number but not 

to the group size. In the fraction task, she can attend to the length and to the size of the unit but not 

to the number of units. This also suggests that Angela is developing preliminary iterating of each 

unit but could only anticipate one length unit at a time and constructs the remaining units in 

activity. Given this, we believe Angela has two levels of units with one unit in activity for both her 

whole number and fraction development.  
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Discussion and Conclusion 

Dalton and Angela each had very different conceptual resources for their whole number and 

fraction development. Dalton drew from a reliance on physical material but also was capable of 

counting-on, counting down, and working with numerical units from his numerical sequence 

(Steffe, 1994). Dalton drew from meaningful whole number understandings when conceptualizing 

five as a unit, sequencing his unitizing and operations. Dalton also evidenced early forms of 

iteration, providing him potential access to measurement fraction development in future schooling 

experiences. These conceptual resources allowed Dalton development with meaningful whole 

number and fraction activities. Angela was capable of meaningful counting-on, partitioning, 

unitizing, and iterating with the opportunity to coordinate two levels of units in activity. Angela’s 

more advanced partitioning activity afforded her preliminary part-whole number reasoning and 

access to some successful fraction development. However, Dalton drew more often from iteration 

allowing him potentially more opportunities to develop measurement fractions than Angela might. 

We found that by leveraging both students’ conceptual resources over the course of a small set of 

interviews, they were better positioned to solve more complex part-whole number and fraction 

problems. Questions remain about how particular nuances in conceptual resources of students with 

learning differences and their actions forming operations can be leveraged over time to promote 

more sophisticated mathematical development. 
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Recent research has shown that the ways in which children use manipulatives impact their 

perceptions of the objects and their subsequent learning in mathematics. Osana et al. (2018) 

found that when children used manipulatives as representing quantities in a mathematics task, 

they perceived them as “math tools,” but when they played with manipulatives in a non-

mathematics environment, they perceived them as toys. Moreover, children’s interpretations of 

manipulatives, as either representing quantities or toys, were resistant to change, even when the 

same objects were used in a subsequent mathematics lesson. In another study, Donovan and 

Alibali (2021) found that children’s use of manipulatives as math tools was positively related to 

their subsequent learning about mathematical equivalence. From this research, it is tempting to 

conclude that children should be discouraged from playing with manipulatives, particularly when 

the same objects will be used to teach mathematics.  

In both studies, the objects’ use was experimentally manipulated by engaging the participants 

in either an instructional mathematics context or a play context, conflating context and the 

objects’ use (math tools vs. toys). Thus, these data do not allow one to conclude that playing with 

manipulatives will result in perceptions that will hinder children’s subsequent learning. Our 

objective in the current study was to conduct a conceptual replication of Osana et al. (2018) and 

Donovan and Alibali (2021) by comparing two ways of using manipulatives in teacher-directed 

play contexts. We hypothesized that children who used and perceived the manipulatives as math 

tools would outperform their peers who used and perceived them as toys. 

We randomly assigned 64 first-grade students to one of two teacher-directed play conditions 

(math-play and toy-play) or a control condition, where children were not exposed to any 

manipulatives. In both manipulative conditions, children played a shopping game with beige 

plastic tiles. In the math-play condition, the manipulatives represented quantity, whereas in the 

toy-play condition, they were used to play with. We then assessed their perceptions of the objects 

and their part-whole understanding on two tasks using the same manipulatives from the 

intervention. The decomposition task (Manches et al., 2010) involved finding all possible two-

way decompositions of six and nine. The evaluation task required children to evaluate a puppet’s 

use of part-whole concepts in the strategies it used to solve eight additive word problems. 

A significantly larger proportion of students in the math-play condition perceived the objects 

as math tools (96%) than in the toy-play (5%) and control conditions (0%), χ2 (4, N = 64) = 

48.89, p < .001. Contrary to our predictions, however, there were no condition or perception 

effects on the students’ performance on either part-whole measure. Thus, when children in both 

conditions played with the manipulatives, the effect of using them as math tools or as toys on 

learning as found in previous research was no longer present. Future research should compare 

the effects of using manipulatives as representing quantities to using them as toys in both play 
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and instructional contexts to gain a deeper understanding of the conditions under which 

children’s use of concrete objects impacts their learning in mathematics. 
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Developing conceptual understanding with integers is challenging for middle school students 

(Fuadiah et al., 2019; Khalid & Embong, 2020; Schindler & Hußmann, 2013). Existing curricula 

traditionally support integer number sense through plotting, comparing, and ordering activities 

during introductory lessons (e.g., Lappan et al., 2009). Counting activities are notably missing, 

suggesting that educators assume middle school students can transfer whole number counting 

skills to integers without intentionally aimed activities. This poster focuses on a preliminary 

finding from a Design-Based Research (DBR) dissertation project that used an intervention game 

and contextual model, Floats & Anchors (Pettis & Glancy, 2014), as the throughline in an integer 

unit. The research question investigated: What characteristics of a comprehensive curricular unit 

best support students’ understanding of integers and integer operations?  

The Floats & Anchors unit consisted of 12-16 lessons implemented in three design cycle 

iterations with small groups during math intervention or special education mathematics classes. 

Each design cycle included an initial unit design, critical expert panel discussion(s), classroom 

implementation(s), teacher interview(s), a student survey, initial analysis, and re-design 

decisions. The unit was co-taught by a researcher and the classroom teacher(s) to students who 

were identified by their school as needing additional math support, with many students also 

receiving special education services. Altogether, 49 middle school students in sixth-, seventh-, 

and eighth-grade participated in 82 lessons. Data was collected from audio/video recordings of 

lessons, student work artifacts, transcripts from teacher interviews and expert panel meetings, 

student survey responses, and reflexive memos. The data was grouped by curricular 

characteristics (e.g., vertical number lines) and analyzed for evidence of student understanding.   

One key preliminary finding emphasized counting as a distinct and essential component of 

integer understanding at the middle school level. Our study revealed that whole number counting 

skills did not transfer to integer counting without intentional activities. During the second 

iteration, students demonstrated a conceptual understanding of integer addition and subtraction 

by selecting appropriate count-on or count-back directional strategies. However, students were 

unable to count accurately in the desired direction despite demonstrating mastery with plotting, 

comparing, and ordering integers earlier in the unit. To address this, we routinely integrated a 

modified early childhood counting game where students take turns counting from 10 to -10. 

When the counting activity was first introduced, students consistently needed to reference the 

classroom number line, demonstrated sustained periods of thinking time (particularly between 

two and -2), and/or required support from a teacher before they were able to complete their turn. 

By the end of the third iteration, students demonstrated collective mastery of integer counting. 

Students could count up and down starting with values beyond 10 or -10, alternate directions 

with each new round, skip-count by sets of two, five, and ten in both directions, and demonstrate 

mastery individually with a teacher fluently and without the earlier supports. Moreover, 
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integrating an intentional counting routine positively correlated with students’ overall mastery of 

integers, as demonstrated on the summative assessment from the third iteration. 
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We provide an overview of a multi-stage project designed to generate a comprehensive 

understanding of the state of rural mathematics education and conditions impacting rural 

mathematics education in middle schools in the United States. We seek to explore: the 

curriculum resources and instructional practices that are prevalent in middle grades mathematics 

education in rural contexts; the factors that facilitate or impede efforts to develop local capacity 

to implement rigorous mathematics teaching and learning in rural contexts; and how state and 

federal education policies (e.g., assessment instruments, funding priorities, mandates) impact 

mathematics instruction in rural landscapes. The purpose of the poster is to describe the set-up 

for the study design and share intentions of the project, along with details related to data 

collection. 

We will present the plan for this four stage study that includes: (a) a survey of rural middle 

grades mathematics educators (n=1000) to develop a picture and comprehensive understanding 

of the forms of curriculum resources, instruction, and professional learning experiences reported 

to be in use in a variety of rural contexts; (b) interviews with teachers, instructional leaders, and 

administrators (n=80) in selected, diverse rural districts about their perceptions of their 

district’s/school’s current mathematics curriculum and instruction, their goals related to their 

mathematics programs, the resources and opportunities for improving mathematics curriculum 

and instruction, as well as the challenges they face; (c) case studies of the implementation of a 

professional development program in roughly 10 districts, the purpose of which is to investigate 

factors that facilitate or impede efforts to implement rigorous forms of mathematics curriculum 

and instruction, and to gauge the resources that would be necessary to develop local capacity for 

a sustained implementation; and (d) establishing a collective dialogue with a range of 

stakeholders in education policy to gain greater insights into the rural mathematics education 

landscape and to develop recommendations for enacting rigorous mathematics instruction at 

geographic scale.  

This study draws on research in mathematics education, including literature on curriculum 

characteristics, curriculum implementation (Jackson et al., 2017), and professional development 

in rural contexts (Irwin et al., 2010), as well as broader literature on rural education and rural 

economics (Schmitt-Wilson et al., 2018). 
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In the US, mathematics teacher licensure is governed at the state level. Each state may have 

different policies about mandatory elements of teacher preparation. Within each state, educator 

preparation providers determine how to provide such learning opportunities. In the current era of 

accountability, the policy conversation around teacher preparation has focused on preparing 

highly effective teachers (e.g., Aydarova, 2023; Bales, 2006; Cochran-Smith et al., 2018; Tatto, 

2021). However, little research has examined the specific laws or rules enacted at the state level. 

Professional organizations in mathematics education also strive to shape policy and practice 

around mathematics teacher preparation through reports (e.g., Conference Board of the 

Mathematical Sciences, 2012) and standards (e.g., Association of Mathematics Teacher 

Educators, 2017). Given the large number of stakeholders helping to shape mathematics teacher 

preparation and the potential for state-by-state variation in laws and rules, I ask the following 

research questions: (1) What laws and rules govern mathematics teacher preparation across the 

US? (2) How do those laws and rules differ by state or territory? 

To answer these questions, I analyzed the laws and rules shaping teacher preparation across 

the US. Within each state, teacher preparation is governed by laws (written and passed by the 

state legislature, then signed by the governor) and rules (written by an executive branch agency, 

such as a Department of Education, which was empowered by the legislature to produce rules 

that help interpret the laws). Informed by prior research as well as my own work as a teacher 

educator, I anticipated laws and rules focused on mathematics content requirements and general 

pedagogical practices. I also anticipated laws and rules directed toward teacher candidates 

themselves as well as policies directed toward teacher preparation providers. Building on this 

framing, I engaged in an open coding process (Vollstedt & Rezat, 2019), starting from the 

specific words in each law or rule, and then looking across codes to generate themes.  

Preliminary findings reveal different approaches to regulating mathematics teacher licensure 

across the US. Some states include detailed lists of content and pedagogical standards within 

state law or rule. Other states enshrine exams (Praxis or state-specific exams administered by 

Pearson) and accreditation (CAEP) into law and rule. Another variation across states was the 

extent to which laws and rules focused on teacher candidates or preparation providers. Indeed, in 

some states a requirement would be directed toward the candidate (e.g., a teacher must be able to 

elicit and interpret student thinking), while in other states the requirement would be directed 

toward the preparation provider (e.g., the program will ensure the teacher can elicit and interpret 

student thinking). Finally, states use different language to describe licensure and issue a wide 

range of license types. These variations contribute to a confusing licensure landscape. Despite 

these differences, there is also significant overlap in the focus of the laws and rules across states, 

particularly related to pedagogical practices.  

Identifying the similarities and differences in laws and rules across the US is critical to 

understanding the mathematics teacher preparation landscape. Engagement with the laws and 
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rules that shape teacher licensure will enable teacher educators to advocate for research-informed 

policy that supports preparing teachers to teach ambitious mathematics across the country. 
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In this paper, we use a systematic approach to explore trends in mathematics education research 

over the last ten years by sourcing articles from the two highest ranked mathematics education 

journals: Educational Studies in Mathematics (ESM) and Journal for Research in Mathematics 

Education (JRME). We examined the methods of research used in articles (quantitative, 

qualitative, mixed methods), the geographic region in which research was conducted, and the 

characteristics of research samples. The findings showed that methods of research were 

balanced in JRME, with a relatively strong tendency toward qualitative research in ESM. 

Furthermore, the findings revealed that there is little geographic diversity in published research 

in JRME, with more diversity in ESM. Finally, research sample sizes were larger in JRME than 

ESM, and both journals showed notable patterns in relation to sample characteristics. 

Keywords: Research Methods; Policy 

Over the past ten years, there have been technological advancements, ideological shifts, and 

critical events (e.g., COVID-19), all of which have the potential to change the nature of 

mathematics education research. It is critical to track changes in mathematics education research 

to discern how the field is evolving and discern the strengths and limitations of current research 

approaches. In this paper, we use a systematic approach to explore trends in mathematics 

education research by sourcing articles from the two highest ranked mathematics education 

journals: Educational Studies in Mathematics (ESM) and Journal for Research in Mathematics 

Education (JRME) (e.g., Niven & Otten, 2017; Williams & Leatham, 2017). These two journals 

are highly respected in the field and provide a reasonably reliable litmus test for trends in 

mathematics education research. Furthermore, looking at journals from both US and 

international organizations allows us to see a more complete picture of mathematics education 

research globally and compare trends between US based and international research. To that end, 

we ask the following research questions: (1) What methods of research are most prevalent in 

ESM and JRME over the past ten years and how have these methods changed? (2) Which 

geographic regions are most represented by research in ESM and JRME over the past ten years 

and how has geographic representation changed? (3) What are the characteristics of research 

samples in ESM and JRME over the past ten years and how have these characteristics changed? 

Notably, these research questions are significant from the perspectives of the editors of ESM 

and JRME. For example, ESM’s editors signified the importance of publishing research from 

underrepresented regions (Mesa & Wagner, 2019; Wagner & Prediger, 2023). Furthermore, 

JRME’s editor provided a brief account of the methodologies used by researchers during 

PMENA 2023 (Herbst, 2023). Examining trends across both journals identifies areas in research 

that need greater emphasis. For example, are certain populations underrepresented? Is there a 

need for more qualitative/quantitative research in a particular global region? The different 

methodologies have different strengths and weaknesses and both make valuable and necessary 

contributions to research (Choy, 2014). This analysis will make researchers aware of needs in 
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mathematics education that will guide future research and contribute to a more complete corpus 

of information. Thus, this study examines relevant trends of mathematics education research.  

Method 

To answer the research questions, we compiled all articles that were published in JRME and 

ESM from 2014-2023. Then, we coded the articles using a coding scheme that was relevant to 

the research questions. For Research Question 1, we coded all articles as: (1) empirical; (2) 

editorial; (3) book review; (4) other (e.g., systematic review, commentary, etc.). Then, we 

compiled all empirical articles and coded them as quantitative, qualitative, or mixed methods. 

While there are various methodological definitions, we relied on Gay et al. (2012) for the 

following delineations of research: 

(a) “Quantitative research is the collection and analysis of numerical data to 

describe, explain, predict, or control phenomena of interest” (Gay et al., 2012, 

p. 7). 

(b) “Qualitative research is the collection, analysis, and interpretation of 

comprehensive narrative and visual (i.e., nonnumerical) data to gain insights 

into a particular phenomenon of interest” (Gay et al., 2012, p. 7). 

(c) “Mixed methods research combines quantitative and qualitative approaches by 

including both quantitative and qualitative data in a single study” (Gay et al., 

2012, p. 481). 

Finally, we calculated frequencies for each methodology and explored differences in 

methodologies across time. 

To answer Research Question 2, we coded each article for the institutional affiliation of 

Author 1. The institutional affiliation of Author 1 acts a proxy for the geographic region in which 

the research was conducted. We coded the geographic region of each article according to 

Rosenburg’s (2023) eight official world regions: (1) Asia; (2) Middle East, North Africa, and 

Greater Arabia; (3) Europe; (4) North America; (5) Central America and the Caribbean; (6) South 

America; (7) Sub-Saharan Africa; (8) Australia and Oceania. For JRME articles, we coded each 

article according their geographic region within the U.S. using the U.S. census bureau’s regions: 

(1) Northeast; (2) Midwest; (3) South; (4) West. We calculated frequencies and percentages for 

geographic regions and explored differences over time. 

To answer Research Question 3, we compiled all empirical articles and coded the sample 

according to its target population: (1) Grades Pre-K-2; (2) Grades 3-5; (3) Grades 6-8; (4) Grades 

9-12; (5) Undergrad/Community college; (6) Graduate; (7) Preservice teachers; (8) Adult 

Learners; (9) Inservice Teachers; (10) Other. In studies where multiple populations were 

included, we coded each portion of the sample separately. In addition to sample population, we 

coded each study for sample size, and racial/gender characteristics. We calculated medians, 

frequencies, and proportions to compare sample characteristics in both journals independently 

and in conjunction with the other two research questions. 

In what follows, we provide quantitative summaries for each research question, providing 

separate analyses for ESM and JRME.  
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Findings 

Methods of Research 

JRME published a total of 250 papers over the past decade. Of those papers, 50% of them 

were empirical papers, 16% were editorial, 10% were book reviews, and 24% were other 

(theoretical, meta-systematic reviews, textbook, and content analysis, commentary). ESM 

published a total of 729 papers. Of those, 63.5% were empirical papers, 4.7% were editorial, 7% 

were book reviews, and 24.8% were other. 

For the empirical studies, we coded each article for the type of methodology used 

(quantitative, qualitative, mixed methods). Frequencies across time for each methodology are 

given in Table 1. Over the last decade, JRME maintained a balanced publication of both 

qualitative and quantitative studies, with the number of mixed studies being consistently 

comparable. In contrast, ESM published around three times as many qualitative studies as 

quantitative studies over the last ten years. Furthermore, ESM published considerably more 

mixed methods studies than quantitative studies.  

Looking across time, the number of quantitative studies published in ESM shows an upward 

trend since 2016, with a decline last year (2023). In JRME, the number of quantitative studies 

has been about the same for the past 5 years. In relation to qualitative research, there are no 

discernible patterns for articles published in JRME. For ESM, the number of qualitative studies 

appeared to increase over time. From the frequency column, we can observe that the total 

number of empirical studies published in JRME each year has been fluctuating but averaging 

about 12 articles per year. Overall, the number of empirical articles published in ESM shows an 

upward trend, averaging about 46 articles per year.   

 

Table 1: Methodology Across Time 

 

 JRME ESM 

Year Quant Qual Mixed Frequency Quant Qual Mixed Frequency 

2014  8  5  3  16  8  25  7  40  

2015  4  5  3  12  6  21  14  41  

2016  1  8  2  11  5  22  12  39  

2017  3  3  6  12  7  24  13  44  

2018  6  2  3  11  6  20  14  40  

2019  5  5  2  12  10  22  7  39  

2020  3  5  2  10  9  18  22  49  

2021  3  5  8  16  11  25  16  52  

2022  5  4  3  12  20  29  14  63  

2023  6  5  2  13  9  35  11  55  

Total 

  

44  47  34  125  91  241  130  462  

Geographic Representation 

Table 2 shows the geographic representation for articles in JRME over the last ten years 

(using the affiliation of Author 1). As illustrated in Table 2, most JRME articles were published 
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by authors in North America (89%), and most of the authors were from the U.S. The journal 

publishes very few articles from other regions, with Europe ranking second at just 4% of the 

overall sample. There are no noticeable trends over time in relation to international geographic 

regions. Table 3 shows that, of articles published in the U.S., more articles are published from 

Southern regions than any other region, and Northeastern regions account for the smallest 

number of articles within the sample. It is important to note that many states are counted in the 

Southern region within the U.S. census bureau that many people would not identify as the 

“South.” Therefore, these results should be interpreted with the U.S. census bureau boundaries in 

mind. There are no noticeable trends regarding changes in U.S. representation over time.  

Table 4 shows the geographic representation for articles in ESM over the last ten years. As 

illustrated, ESM’s geographic representation is somewhat more diverse, with Europe and North 

America accounting for the majority of articles (43% and 29% respectively). There are some 

noticeable trends over time in ESM’s geographic representation. Namely, articles published from 

Asia and the Middle East, North Africa, and Greater Arabia regions have trended up over the last 

ten years.  

Table 2: Geographic Representation in JRME over Time 

 

Year Asia Middle 

East, 

North 

Africa, 

Greater 

Arabia 

Europe North 

America 

Central 

America 

and the 

Caribbean 

South 

Americ

a 

Sub-

Saharan 

Africa 

Australia 

and 

Oceania 

2014 1 0 3 23 0 0 0 0 

2015 0 0 1 22 0 1 0 0 

2016 0 0 1 23 0 0 0 3 

2017 0 0 0 27 0 1 0 0 

2018 0 0 1 30 0 1 0 0 

2019 0 2 1 22 0 0 0 0 

2020 0 1 1 19 0 0 0 0 

2021 0 0 0 22 0 1 0 0 

2022 1 0 1 20 0 1 0 0 

2023 1 2 1 16 0 0 0 1 

Total 3 

(1%) 

5 

(2%) 

10 

(4%) 

224 

(89%) 

0 

(0%) 

5 

(2%) 

0 

(0%) 

4 

(2%) 
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Table 3: Geographic Representation in JRME over Time by USA Region 

 

Year Northeast Midwest South West 

2014 2 9 7 5 

2015 3 4 11 3 

2016 2 9 5 7 

2017 4 4 12 7 

2018 5 3 15 7 

2019 2 1 14 5 

2020 2 4 8 5 

2021 6 8 6 2 

2022 4 7 6 3 

2023 1 5 7 2 

Total 31 (14%) 54 (24%) 91 (41%) 46 (21%) 

 

Table 4: Geographic Representation in ESM over Time 

 

Year Asia Middle 

East, 

North 

Africa, 

Greater 

Arabia 

Europe North 

America 

Central 

America 

and the 

Caribbean 

South 

Americ

a 

Sub-

Saharan 

Africa 

Australia 

and 

Oceania 

2014 2 3 32 20 0 1 2 9 

2015 3 8 25 23 0 0 1 5 

2016 2 4 32 26 0 2 1 4 

2017 4 5 24 24 0 2 1 5 

2018 2 5 26 17 0 3 1 3 

2019 3 7 43 13 0 2 3 3 

2020 6 10 28 22 0 1 1 4 

2021 8 8 34 21 0 4 3 7 

2022 6 11 40 24 0 0 1 6 

2023 13 10 31 20 0 2 1 5 

Total 49 

(7%) 

71 

(10%) 

315 

(43%) 

210 

(29%) 

0 

(0%) 

17 

(2%) 

15 

(2%) 

51 

(7%) 

 

Characteristics of Research Samples 

The sample sizes for the research studies examined in this analysis varied greatly. 

Quantitative sample sizes ranged from 1 to 132,747 while qualitative samples were 

understandably smaller, with a maximum sample size of 1,813. Mixed method empirical studies 

fell in between with the largest sample having 6,218 participants. The data were positively 

skewed with a small number of very large samples. Because of the outliers in the data, we 

describe sample sizes in terms of median values instead of averages. The median sample size in 
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JRME was 42 participants while the median for ESM was 25. Figure 1 shows the median sample 

size for each journal separated by the population studied. The graph shows that JRME had larger 

sample sizes for students in the preK-2 and 6-8 grade groups, as well as for inservice teachers 

and the “Other” category. ESM, however, had larger sample sizes for research studying grade 3-

5 students, undergraduate students, and preservice teachers. ESM also included the only study 

focused on non-traditional adult learners. In addition to illustrating how the sample sizes vary 

according to population category, the figure also suggests that the largest samples in mathematics 

education were found in research conducted on K-12 students, with research on graduate 

students and adult learners having the smallest samples. 

 
Note. Grad= Graduate Students UG/CC= Undergraduates/Community College, PST= Preservice 

Teachers, AL = Adult Learners, IST= Inservice Teachers 

Figure 1: Median Sample Size by Population 

 

Because quantitative studies generally have larger sample sizes than qualitative studies, we 

looked at sample size according to study methodology. Table 5 shows the median sample sizes 

for each journal while considering the study population and methodology. With the exception of 

the 9-12 grade category, the quantitative studies in JRME had larger samples than those in ESM. 

The table also shows the higher sample medians for ESM were due to larger samples in 

qualitative and mixed methods studies. The sample sizes were also examined to look for changes 

over time but no discernible patterns were found (see Figure 2). Generally, the sample sizes in 

JRME fluctuated greatly over the past ten years with lows in 2015 (median = 13) and 2016 

(median = 6), and highs in 2014 (median = 96) and 2022 (median = 102). Median samples for 

ESM had much less variation but showed a slight increase over the past ten years from 18 in 

2014 to 29.5 in 2023. Interestingly, both journals had their lowest sample median in 2016.  
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Table 5: Sample Medians by Study Population and Methodology  

 

 Quantitative  Qualitative  Mixed 

 JRME ESM  JRME ESM  JRME ESM 

PK-2 647.15 136  28.5 10  232 129.5 

3-5 443.5 213  1.5 12  72 71 

6-8 961 350  18 7  129 102 

9-12 198 271  10 8  134.5 82 

UG 522 208  5 13  450.5 85 

Grad 0 0  2 5.5  11 24 

PSTs 1044 224  12 10  13 73.5 

AL 0 0  0 1  0 15 

IST 93 59.5  2 3  12 29.5 

Other 439.5 278.5  8 7.5  59 36.5 

Note. Grad= Graduate Students UG/CC= Undergraduates/Community College, PST= Preservice 

Teachers, AL = Adult Learners, IST= Inservice Teachers. Bold font indicates notably higher 

sample medians, but this was a subjective distinction made by the author. 

 

 

Figure 2: Median Sample Size Over Time 

As a final inquiry into the samples that were the focus of study in JRME and ESM over the 

past ten years, we looked to see how gender and race were represented in the samples. In ESM, 

only about 50% or fewer of the studies reported gender representation, and student race was 

reported in less than 20% of the articles. In the articles that did report on gender, there was equal 

or greater representation for female subjects in 30-50% of the studies, which may be partially 

due to the majority of PSTs and ISTs identifying as female. Looking at studies on PSTs or ISTs 

that reported gender demographics, over 60% of the samples identified as female. Similar 

patterns appeared when looking at the representation of gender and race in JRME articles with a 
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majority of articles not reporting the demographics of their sample. However, the proportion of 

articles failing to report has decreased since 2020, suggesting a shift in mathematics education 

research which indicates an awareness of the need to consider the needs of various student 

populations differently. This shift, however, only seems to be occurring in the United States, as 

the shift is not observed in the international articles of ESM. 

Discussion 

In this paper, we examined trends in mathematics education research by exploring 

methodologies, geographic representation, and sample characteristics for studies published in 

mathematics education’s highest ranked journals (ESM and JRME). The findings highlight 

several implications for future research.  

First, this study showed that methods of research (quantitative, qualitative, mixed methods) 

were balanced in JRME, with a relatively strong tendency toward qualitative research in ESM. 

There were few discernible trends over time except that ESM appeared to publish more 

quantitative studies from 2016 onward. Together, the data reveals methodological diversity in 

mathematics education research. From the perspective of potential authors, ESM may be more 

open to qualitative methods than JRME, though more detailed analysis is needed to certify this 

claim.  

Second, this study revealed that many geographic regions are not well-represented by top 

journals in mathematics education. Mathematics teaching and learning is heavily influenced by 

culture. Therefore, it is important that the field draw upon research from diverse regions to create 

new knowledge and global perspectives on mathematics education. Notably, ESM has published 

more research from some underrepresented regions over time. JRME, on the other hand, seems 

primarily concerned with national interests. This is, perhaps, unsurprising since JRME was 

founded by a U.S.-based council. Yet, given the influence of ESM and JRME, the journals might 

consider placing more emphasis on scholarship from underrepresented regions.  

Third, our analysis revealed a fairly consistent difference in sample sizes between studies in 

the two journals. The research reported in JRME tended to have larger median sample sizes than 

the research reported in ESM. Additionally, while the median sample sizes in JRME fluctuated 

significantly, the median sample size in ESM remained fairly consistent over time with a slight 

upward trend. Though sample size is not generally an important consideration in qualitative 

research, it is an important consideration in quantitative studies as it contributes to increased 

statistical power and generalizability. However, large samples can be difficult and costly to 

obtain, which may contribute to the lack of large quantitative studies from underrepresented 

regions.  

Our analysis also revealed that race and gender are rarely reported for research samples, with 

the exception of research conducted in North America. Increased reporting in North America 

could be due to the emphasis on increasing equitable education in the U.S., as well as the 

diversity of cultures and races within the U.S. Still, 64% of studies in JRME did not report the 

race of their samples, and gender demographics were only reported for about 50% of the 

samples. These data may indicate that North American authors have different perspectives and 

priorities than other geographic regions in relation to reporting the characteristics of samples.  

In conclusion, this study showed several important trends in mathematics education research 

published in ESM and JRME. These findings may support the mathematics education 
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community in identifying areas of strength and improvement moving forward. Furthermore, 

these findings may support potential authors in choosing appropriate outlets for publishing their 

mathematics education research.  
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Rurality matters in mathematics education because geographic diversity affects students and 

teachers in their home, community, school, and district. Researchers have documented a number 

of factors which differ across rural, suburban, and urban settings, including student 

achievement, recruitment and retention of teachers, access to resources, and cultural funds of 

knowledge. However, mathematics educators have mostly focused on urban and suburban 

settings, often adopting a legacy urban-centric system developed by the U.S. government for 

applying ‘city’, ‘suburb’, ‘town’, or ‘rural’ labels to schools. We compare this categorical system 

with a new method for estimating the extent to which school districts are ‘rural-serving’. Results 

suggest the new metrics offer more rural-centric information for mathematics educators.  

Keywords: Research Methods, Professional Development, Rural Education 

Introduction and Literature Review  

Many educators, researchers, and policy makers appreciate the importance of context in 

public schooling. The U.S. government maintains demographic and financial data on more than 

102,000 public schools (NCES, 2023), labeling 32% as located in a rural area. There is 

considerable variability in these data across rural areas (Showalter et al., 2023). Many rural 

schools are challenged by persistent inequities, such as higher levels of poverty and lower levels 

of educational achievement among historically excluded black and Hispanic students (Johnson et 

al., 2014; Lavellely, 2018; Lauzon et al., 2015; NCES, 2016). At the same time, students 

attending rural schools have higher graduation rates compared to their non-rural peers (NCES, 

2023a), and, overall, rural children who experience poverty demonstrate higher achievement than 

their non-rural peers (Showalter et al., 20203). Given the unique challenges and circumstances 

rural schools face (e.g., limited resources, geographic isolation, technological challenges), 

leading policymakers and researchers highlight the importance of developing and testing 

innovative approaches to educational improvement that are specifically tailored to meet the 

needs of rural schools, teachers, and students (Parks, 2021). 

How rural is defined greatly impacts who has access to these innovative approaches and the 

associated resources (Coburn et al., 2007). For example, our universities recently applied for and 

received funding for two mathematics education grants focused on supporting and researching 

outcomes in rural schools. How we define rural significantly impacts who is eligible to receive 

that support and who is included in rural mathematics education research outcomes. Though 

there are many ways geographers and others have defined “rural” (Woods, 2004), the historical 

focus has been on distinguishing rural areas from urbanized areas. Compared to cities, rural areas 
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tend to be more sparsely populated, with more open spaces, differing cultural norms, and greater 

focus on ‘primary economic activities’ such as farming, ranching, hunting, forestry, mining, and 

oil and gas extraction (Montoya, 2023). There are many subtleties as local economic, housing, 

and demographic trends have shifted over time. The most recent Why Rural Matters report 

acknowledged issues with the urban-centric definition of rural adopted by the U.S. Census 

Bureau more than 100 years ago, highlighting that “…many children attend rural schools in 

districts that are not designated ‘rural’ by the U.S. Census Bureau.” (Showalter et al., 2023, p.2). 

We explore: How might mathematics educators might benefit from shifting from a reliance on 

the urban-centric list of locale types currently used by the U.S. government to a more direct 

measurement of the extent to which a school district is ‘rural-serving’? 

 

Methods 

Our primary data source was a large database of 19,714 public school districts maintained by 

the EDGE program in the National Center for Education Statistics (2023b). Records for the 

school districts included geographic boundaries and 12 “locale type” categories derived from the 

urban-centric definition of locales developed by the U.S. Census Bureau. In this system, school 

districts can be located within a “City”, distinguished by the population size of the principal city 

(Large = 250,000 or more, Midsize = 100,000-249,999, Small = less than 100,000). “Suburban” 

districts are located just outside one of those cities (similarly labeled Small/Midsize/Large by the 

size of the city). “Town” districts are located within “urbanized clusters” (at least 500 residents 

per square mile), with labels for their distance from the nearest city (Fringe = less than 10 miles, 

Distant = 10 to 35 miles, Remote = more than 35 miles). The remaining districts are “Rural”, 

with similar Fringe/Distant/Remote labels based on distance to the nearest Town or City. We also 

used “tract” population values from the 2020 U.S. Census. Tracts are relatively small, 

geographically-stable boundaries in use since 1920, typically corresponding to neighborhoods or 

natural boundaries, split or merged every 10 years to maintain populations between 1000 and 

8000 people. 

To obtain our new ‘rural-serving’ estimates for school districts, we used the statistical 

software system R to calculate the geographic overlap of census tracts with each school district. 

This allowed for calculating a weighted mean population density of each overlap. For each 

district, we computed the “% Rural-Servings” as the fraction of tracts served by the school 

district which would be considered non-urbanized by the U.S. Census (< 500 people per sq mi). 

We optimized the algorithm for computing the geospatial estimates for each district, then 

summarized the results, comparing the new estimates to the pre-existing locale type labels. 

 

Results 

Table 1 and Figure 1 illustrate similarities and differences between the existing Locale Type 

labels and the new % Rural-Serving measure for school districts. U.S. school districts are highly 

variable in the numbers of residents they serve (Mean = 55,323 residents, SD = 129,846). 

Nonetheless, City districts tend to serve greater numbers of residents than Suburban districts. 

Town and Rural districts tend to serve similar numbers of residents. In the aggregate, Table 1 

suggests that Locale Types are broadly aligned to decreasing population density and increasing 

rural-serving distributions (with the only exception to the ordering being ‘Rural, Fringe’ school 
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districts). However, as indicated in Figure 1, there is large variability in % Rural-Serving in some 

Locale Types, especially in ‘City, Small’ and Suburban districts. 

 

Table 1. Summary of U.S. Public School Districts by Locale Type 

Code Locale Type # Districts 

Mean # 

Census 

Tracts 

Mean 

Population 

Mean Pop Density  

(people / sq mi) 

Mean % 

Rural-

Serving 

11 City, Large 186 119 458238 6478 9% 

12 City, Midsize 175 54 217581 4357 19% 

13 City, Small 392 28 109702 2753 29% 

21 Suburban, Large 2446 23 99160 3338 20% 

22 
Suburban, 

Midsize 
327 19 77073 1369 47% 

23 Suburban, Small 239 14 55625 1098 57% 

31 Town, Fringe 516 11 43709 502 80% 

32 Town, Distant 1109 11 38580 401 83% 

33 Town, Remote 736 9 30675 324 85% 

41 Rural, Fringe 1714 12 47412 426 81% 

42 Rural, Distant 3028 7 26414 92 97% 

43 Rural, Remote 2364 6 15734 19 100% 

— Not Applicable 150 12 44189 933 75% 

 

 
Figure 1. Distributions of % Rural-Serving by Locale Type among U.S. School Districts 
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Figure 2 compares U.S. maps of the existing Locale Type label and the new rural-centric 

measure or rurality. The maps highlight the increased precision afforded by % Rural-Serving. 

 

 
Figure 2. Maps comparing Locale Type (left) and % Rural-Serving (right). 

 

Conclusions 

We recommend math education researchers pay particular attention to the extent to which 

school districts serve rural populations. As indicated by our results, many school districts, 

especially those located near small cities or in suburban areas have relatively large proportions of 

rural areas within their districts. In particular, we recommend more mathematics education 

researchers, policymakers, and program developers adopt a rural-centric approach (using the % 

Rural-Serving or similar metrics) to reach more schools with rural student populations. 
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Professional Development  

Both the Conference Board of the Mathematical Sciences (CBMS) and the Association of 

Mathematics Teacher Educators (AMTE) provide standards and recommendations for the 

mathematical preparation of elementary teachers (AMTE, 2017; CBMS, 2012). Considering 

what professional organizations and state licensing requirements call for in the mathematical 

preparation of preservice elementary teachers (PSETs), teacher education programs aim to fulfill 

those requirements in a variety of ways, especially in the coverage, sequencing, rigor, and 

integration of content and pedagogy in mathematics content and methods courses (An et al., 

2021). Individual states tend to have explicit mathematical achievement requirements for PSETs 

working toward initial teacher certification, but less specific course requirements for their 

training. With standards that need to be met, but no required course structures in place, access to 

an interactive platform being created in this study is expected to facilitate PSET preparation 

programs’ decision making process on how to structure their programs, meet the needs of their 

PSETs and those PSETs’ future students, and learn from other PSET preparation programs. 

Research Questions and Method 

Our study is guided by the following research questions: (a) How do teacher education 

programs account for the mathematical education of PSETs in the design of their programs?; (b) 

How do their program structures align with current standards for the mathematical preparation of 

teachers?; and (c) In a central resource for program design, what features would assist teacher 

education programs?  There are two major components to our initiative: (a) survey 

administration to build knowledge about various structures of PSET preparation programs, and 

(b) platform development to foster communication and partnerships among PSET mathematics 

teacher preparation programs.  

Results and Discussion 

Our ultimate goals are to connect preservice mathematics teacher preparation programs of all 

grade levels (K-12) and to support cross-level communication and collaboration. For example, a 

secondary teacher preparation program and an elementary teacher preparation program could 

collaborate to build coherent mathematical knowledge for teaching curriculum so that future 
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graduates would deliver coherent mathematical knowledge to their K-12 students. Starting by 

focusing on the preparation of PSETs will allow us to show and pilot the feasibility and utility of 

the proposed online platform.  Although we will not have any results by the time of the 

presentation, we will present on our design and seek feedback on the initial phases of our project. 

References 
An, T., Clark, D., Lee, H. Y., Miller, E. K., & Weiland, T. (2021). A discussion of programmatic differences within 

mathematics content courses for prospective elementary teachers. The Mathematics Educator, 30(1), 52–70. 

https://openjournals.libs.uga.edu/tme/article/view/2166  

Association of Mathematics Teacher Educators. (2017). Standards for Preparing Teachers of Mathematics. 

https://amte.net/sites/default/files/SPTM.pdf  

Conference Board of the Mathematical Sciences. (2012). The mathematical education of teaches II. American 

Mathematical Society. https://www.cbmsweb.org/the-mathematical-education-of-teachers/ 

 

  

https://openjournals.libs.uga.edu/tme/article/view/2166
https://amte.net/sites/default/files/SPTM.pdf
https://www.cbmsweb.org/the-mathematical-education-of-teachers/
https://www.cbmsweb.org/the-mathematical-education-of-teachers/


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

789 
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The purpose of this study was to learn from university faculty with a doctorate in mathematics 

education from across the world about how programs in mathematics education should prepare 

doctoral students for research and teaching in mathematics education. Online survey responses 

indicated that 99 mathematics education university faculty from 33 different countries stressed 

the importance of providing doctoral students with opportunities to examine and compare 

fundamental theories of learning mathematics; examine current and historical research in the 

field of mathematics education; and develop broad and deep knowledge of the big ideas ages 2-

20 years (i.e., grades preK-14) mathematics. 

Keywords: Teacher educators, teacher knowledge. 

Over the past 20 years, there has been a significant increase in research into the development 

of and issues around mathematics teacher educators (MTEs). One subset of MTEs lacking a 

robust research base is the group of holders and pursuers of doctorates in mathematics education 

or didactics of mathematics, depending on your geography and background. Existing research on 

mathematics education doctorates, although limited, has highlighted the great variability in 

preparation and programs (e.g., mathematics knowledge preparation, research training) and 

focused on the potential to identify a common core of knowledge and experiences that would 

prepare graduates for diverse careers (Goos & Beswick, 2008; Kilpatrick & Spangler, 2015; 

Reys, 2002).  

The research presented here is part of a larger project designed to identify features of doctoral 

programs in mathematics education that remain essential across institutions and countries and 

have the potential to become part of a core set of experiences, practices, and expertise for any 

mathematics education doctoral program, regardless of where it is located (Grevholm et al., 

2008). In this paper, we report on ongoing international research to collect and examine data 

about the experiences, practices, and expertise of individuals with or working toward a doctorate 

in mathematics education. The following questions guide the research presented here: What 

features of doctoral programs, across countries, do individuals working as university faculty and 

possessing a doctorate in mathematics education identify as being essential? 

Methods 

A combination of purposive and convenience sampling was used to identify and contact (via 

email) potential participants for the larger study, which is composed of individuals with a 

doctoral degree in mathematics education (or didactics of mathematics) or currently working 

toward such a degree. Several proceedings from international and regional mathematics 

education conferences from the past five years (e.g., CERME 13, MERGA 45, NORMA 20, 

PME 46, PME-NA 45, The Mathematics Education for the Future Project, XVI CIAEM) were 

used to obtain the email addresses of potential study participants. Next, potential participants 

mailto:scourtn5@kent.edu
mailto:anita.alexander@bilkent.edu.tr
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were emailed a letter introducing the study and inviting them to click on a link to a consent form 

and survey (the survey link is still active and available at https://tinyurl.com/DocMathEd). The 

survey was designed to identify the experiences, practices, and expertise of individuals holding 

or pursuing a doctorate in mathematics education. It was hoped that respondents would forward 

the email and link to their colleagues and/or doctoral students, which occurred in several 

instances. 

Participation 

Survey participants for this report comprised 99 mathematics education university faculty 

from 33 countries (e.g., Australia, Canada, Indonesia, Japan, Netherlands, Sweden, U.S.). Each 

participant self-identified as someone working as a university faculty member and possessing a 

doctorate in mathematics education (or didactics of mathematics). Forty-one participants (41.4%) 

received their doctorate in mathematics education from a Department of Education, 23 

participants (23.2%) from a Department of Mathematics or Mathematical Sciences, 17 (17.2%) 

from a Department of Mathematics Education, and 18 participants (18.2%) received their degree 

in some other department (e.g., Department of STEM Education). 

Data Collection 

Participants were asked a series of survey questions regarding how important they believed 

specific features (see Table 1) were to a doctoral program in mathematics education. 

 

Table 1: Doctoral Program Features 

 

Doctoral Program Feature (F) Doctoral Program Feature (F) 

F1 - Analyze, design, and evaluate 

mathematics curricula 

F8 - Develop broad and deep knowledge of 

the big ideas in preK–14 (e.g., ages 2-20 

years) mathematics 

F2 - Study the history of mathematics 

education 

F9 - Examine how the big ideas in preK–14 

(e.g., ages 2-20 years) mathematics develop in 

students 

F3 - Examine historical, social, political, and 

economic factors that influence mathematics 

education 

F10 - Utilize technology as a tool of inquiry 

in mathematics teaching and learning 

F4 - Examine current and historical research 

in the field of mathematics education 

F11 - Design learning experiences for 

students and teachers that utilize technology 

F5- Examine and compare fundamental 

theories of learning mathematics 

F12 - Supervise field experiences for 

prospective (pre-service, student) 

mathematics teachers 

F6 - Examine the influence of curriculum 

frameworks, standards, and/or competencies 

on school mathematics programs 

F13 - Examine issues of diversity, equity, and 

inclusion in mathematics learning and 

teaching 

F7 - Examine and compare different forms 

and purposes of assessment 

 

 

https://tinyurl.com/DocMathEd
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Responses were limited to “Very Important,” “Moderately Important,” “Slightly Important,” 

“Not Important,” and “Not Necessary/Not Required.” All 99 participants responded to 13 of 

these Likert-type level of importance questions. 

Analysis 

The Likert-type level of importance questions was analyzed by weighing each possible 

anchor response as follows: “Very Important” = 4, “Moderately Important” = 3, “Slightly 

Important” = 2, “Not Important” = 1, and “Not Necessary/Not Required” = 0. For example, the 

question focused on the importance of the doctoral program feature “Analyze, design, and 

evaluate mathematics curricula” received the following responses: “Very Important” was 

selected by 31 participants; “Moderately Important” was selected by 34 participants; “Slightly 

Important” by 22 participants; “Not Important” by two participants; and “Not Necessary/Not 

Required” by nine participants. Next, a Friedman Test was performed to determine if statistically 

significant differences existed between participants’ responses (i.e., level of importance) and the 

13 program features. Furthermore, Dunn’s pairwise post hoc tests were used to determine which, 

if any, mean rank pairs of program features were significantly different. 

Results 

Results of the Friedman Test indicated a significant difference in the selected importance 

levels between the different program features, χ2(12) = 222.57, p < .001. The mean rank score of 

each program feature from largest to smallest is as follows: F5 (9.65), F4 (8.43), F8 (8.28), F9 

(8.03), F13 (7.24), F3 (7.12), F6 (7.11), F7 (6.59), F1 (6.58), F10 (6.04), F11 (5.55), F2 (5.51), 

F12 (4.87). 

The Dunn’s pairwise post hoc test adjusted by the Bonferroni correction for multiple tests 

indicated the mean ranks of the pairs indicated by * were significantly different (see Table 2). 

 

Table 2: Dunn’s Pairwise Post Hoc Test Results 

 

 F

1 

F

2 

F

3 

F

4 

F

5 

F

6 

F

7 

F

8 

F

9 

F

10 

F

11 

F

12 

F

13 

F

1 

— 1

.000 

1

.000 

* * 1

.000 

1

.000 

.

097 

.

449 

1

.000 

1

.000 

.

089 

1

.000 

F

2 

 — .

170 

* * 0

.180 

1

.000 

* * 1

.000 

1

.000 

1

.000 

.

076 

F

3 

  — .

964 

* 1

.000 

1

.000 

1

.000 

1

.000 

1

.000 

.

214 

* 1

.000 

F

4 

   — 1

.000 

.

918 

* 1

.000 

1

.000 

* * * 1

.000 

F

5 

    — * * .

680 

.

156 

* * * * 

F

6 

     — 1

.000 

1

.000 

1

.000 

1

.000 

.

227 

* 1

.000 
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.
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.000 

1

.000 

.
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       — 1

.000 

* * * 1

.000 
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        — * * * 1

.000 
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         — 1

.000 

1

.000 

1

.000 

F

11 

          — 1

.000 

.

097 

F

12 

           — * 

F

13 

            — 

 

Dunn’s pairwise post hoc test results indicated F5 was significantly different than nine other 

features, F12 was significantly different from seven other features, and F4 was significantly 

different from six other features. Therefore, F5, the feature with the largest mean rank score, 

significantly differed from 75% of the other features. Item F5 (Table 1) asked participants to 

indicate the importance (to a mathematics education doctoral student) of examining and 

comparing theories of learning mathematics. Similarly, F4, the feature with the second largest 

mean rank score, was significantly different than 50% of the other features, highlighting the 

importance (to mathematics education doctoral students) of examining current and historical 

mathematics education research during doctoral studies. Finally, F12, the feature with the 

smallest mean rank score, significantly differed from 58.3% of the other features, highlighting 

the relative lack of importance (to mathematics education doctoral students) of supervising field 

experiences for prospective (pre-service, student) mathematics teachers. 

Discussion 

As reported here, doctoral programs in mathematics education should, at a minimum, provide 

doctoral students with ample opportunities to examine and compare fundamental theories of 

learning mathematics; examine current and historical research in the field of mathematics 

education; develop broad and deep knowledge of the big ideas in ages 2-20 years mathematics 

(i.e., grades preK-14); and examine how the big ideas in ages 2-20 years mathematics develop in 

students. Less consequential are opportunities to supervise field experiences for prospective (pre-

service, student) mathematics teachers, study the history of mathematics education, and design 

learning experiences for students and teachers that utilize technology. This report is part of a 

larger, international study with the intent to continue the discussion and promote actions toward 

more cohesive expectations, practices, and expertise for doctoral programs in mathematics 

education. Such discussions and actions have the potential to develop guidelines for robust 

mathematics education doctoral programs regardless of the program’s location. 
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The purpose of this poster is to begin a conversation about why systemic change needs to be 

brought into the field of mathematics education. This is a direct response to the conference’s call 

to envision the future of mathematics education in uncertain times, and our reply is to open a 

dialogue by connecting systemic change-oriented literature from across fields to expand and 

adapt the conversations we are having as math educators in our present world of ever-increasing 

complexity. We additionally provide one possible argument for why mathematics education as a 

system is complex enough to warrant systemic approaches toward change. 

First, it is important to establish a common understanding of the word “system” and how 

mathematics education interfaces with this idea. There is no single definition of a system; 

instead, multiple definitions co-exist in a manner that “reflects the multidimensionality of the 

concept” (Hieronymi, 2013, p. 585). Systems change likewise has many different conceptions 

but aims to answer “what change is needed, why is it needed, and what might be the unintended 

consequences” (Abercrombie et al., 2015, p. 9). Systems change discourse has not always upheld 

deep equity in the way true systemic change requires across individual, interpersonal, 

institutional, and systemic/societal domains (Petty & Leach, 2020). Gutiérrez (2017) similarly 

discusses the way that surface-level tinkering around equity in mathematics education cannot 

yield results in a fundamentally flawed system. Bringing the language of systemic change to 

mathematics education represents one potential opportunity to begin this necessary process of 

change.  

How do we know that systems thinking is appropriate for the field of mathematics education? 

The Omidyar Group provides a guide that helps us to answer this question by considering four 

dimensions of challenge complexity: (1) the more unsure we are about the exact nature of the 

problem or solution; (2) the more there is a significant diversity of opinion or conflict between 

opinions and stakeholders; (3) the more “diverse and dynamic interconnections between the 

problem and the broader environment, which itself is unstable and dynamic (political, social, and 

economic)”; and (4) the more our goal is “to make sustained change at a broad scale,” the more 

important it is to use systems thinking and design (p. 10). The higher the level of alignment with 

the above statements, the more appropriate systems level thinking is, argues the Omidyar Group. 

The multiple iterations of the Math Wars (Schoenfeld, 2004) and politicized backlash to 

“challenging the status quo” (Gutiérrez, 2017, p. 8) prove that mathematics education is no 

stranger to conflict due to differing opinions about the nature and purpose of mathematics 

instruction (Dimensions 1 and 2). Mathematics in education is also tied to broader educational 

structures, including in many cases standardized testing and accountability structures (Dimension 

3). The poster presentation will center on linking research in mathematics education to these four 

elements of complex problems requiring systems thinking to advance our understanding of 

mathematics education’s place within this discourse. Through this poster, we aim to create open 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

795 

 

dialogue about how some of the challenges we face in the field of mathematics education 

interface with existing literature on systems change. 
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We report on a case study examining one district’s efforts to implement a district-wide system of 

support for mathematics coaches’ learning. Through interviews with school-based mathematics 

coaches and district personnel, we identified four activities that coaches saw as beneficial in 

supporting them to enact one-on-one coaching cycles effectively: (1) traditional pull-out 

professional development sessions, (2) partnerships between pairs of school-based mathematics 

coaches at different schools, (3) school-based coaching days in which all mathematics coaches 

worked collectively on issues relevant to coaching practice, and (4) individualized support from 

the district-based K-12 mathematics specialist. We describe the four activities and what the 

coaches and a district mathematics specialist perceived to be their function(s) in supporting 

coaches’ learning. 

Keywords: Professional Development, Teacher Educators, Instructional Leadership. 

One-on-one mathematics coaching can support improvements in mathematics teaching and 

learning when coaching is done well (Campbell & Malkus, 2011; Russell et al., 2020; Kraft & 

Hill, 2020). However, the work of mathematics coaching differs significantly from mathematics 

teaching (Kane & Saclarides, 2023; Kochmanski & Cobb, 2023a; Saclarides & Kane, 2023), and 

many mathematics coaches often transition to the role directly from the classroom with few 

opportunities to learn to coach effectively prior to working with teachers. Most novice 

mathematics coaches will therefore require support for their own learning if they are to coach in 

ways that can significantly enhance teachers’ and students’ learning (Kane & Saclarides, 2023; 

Saclarides & Kane, 2023). 

Just as teachers can benefit significantly from systems of support that link together different 

types of teacher learning activities (Cobb et al., 2018), mathematics coaches are likely to benefit 

from similar systems of support that link together different types of coach learning activities. 

However, few studies have examined types of professional learning activities that could support 

mathematics coaches’ development, beyond traditional pull-out professional development 

(Saclarides & Kane, 2023). Further, there is limited research examining how different types of 

coach professional learning experiences might cohere to form a system of support for coaches’ 

learning. Schools and districts therefore face the daunting prospect of implementing school- or 

district-wide coaching initiatives without a clear research base that can inform their efforts to 

support coaches in learning to coach effectively. 

In this paper, we address this gap in the coaching literature by reporting on one district’s 

efforts to implement a system of support for mathematics coaches’ learning. Specifically, we 

identify the types of coach learning activities in the coach learning system. We also define the 

function(s) those activities appeared to serve in supporting coaches’ learning. The following 

research questions informed our investigation of the coach learning system: (1) What types of 

coach learning activities do mathematics coaches perceive to be beneficial for their learning? (2) 
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What do mathematics coaches and the district mathematics specialist perceive to be the 

function(s) of the coach learning activities in supporting coaches’ learning? 

Conceptual Framework: Toward a Coach Learning System  

Teachers can benefit significantly from opportunities to engage in a coherent support system 

of supports that link together potentially productive teacher learning experiences (Cobb et al., 

2018). For example, teachers are likely to benefit greatly when traditional professional 

development includes and is linked to classroom-based coaching (Rock, 2019). Given these 

potential benefits to teachers, it stands to reason that coaches are also likely to benefit from a 

system of support focused on their learning. Several recent studies have examined efforts to 

support coaches’ learning in traditional, pull-out professional development settings (Stein et al., 

2021; Swars Auslander et al., 2023), finding that coach professional development (PD) can 

support coaches in developing effective coaching practices (Stein et al., 2021). Yet, there may be 

other types of professional learning activities that could support mathematics coaches’ 

development, beyond traditional pull-out PD. For example, coaches could benefit from engaging 

in collective coaching experiences, just as teachers benefit from collective teaching experiences 

like lesson study (Lewis et al., 2009) or mathematics labs (Kazemi et al., 2018). Understanding 

the nature and function of different types of coach learning activities beyond traditional pull-out 

PD is an important step in defining the elements of a productive coach learning system. 

Methods 

We employed a case study methodology (Yin, 2017) to answer our research questions. 

Focal Case: Apple Valley Schools 

We focused our case study on Apple Valley Schools (AVS; name is a pseudonym), which is a 

mid-sized school district located in the Southeastern United States. We selected AVS for this 

study because the district employs ten school-based mathematics coaches and a K-12 

mathematics specialist, whose primary job function is to support the school-based coaches. At 

the time of the study, the district was also implementing several distinct coach learning activities. 

Specifically, AVS was partnering with faculty at a nearby regional university to design and 

implement pull-out coach PD. University faculty worked with the AVS K-12 mathematics 

specialist to design coach PD sessions focused on different aspects of coaching practice central 

to enacting one-on-one coaching cycles effectively. One-on-one coaching cycles are a common 

coaching routine for which there is significant evidence that they can support teachers’ learning 

when facilitated effectively (Russell et al., 2020; Kochmanski & Cobb, 2023a). The K-12 

mathematics specialist also established formal coaching partnerships between pairs of school-

based coaches. Further, the specialists implemented school-based coaching days, which were 

opportunities for the school-based coaches to work together in a common school space. 

Data and Data Analysis 

We conducted semi-structured interviews with the ten school-based mathematics coaches and 

with the K-12 mathematics specialist. We used online video conference software to conduct the 

interviews. Each interview included questions focused specifically on the types of coach learning 

activities the district was implementing (e.g., pull-out PD, coaching partnerships). The interviews 

also included questions focused specifically on the purpose(s) of the activities in supporting 

coaches’ learning. Additionally, we asked open-ended questions intended to elicit coaches’ 
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perspectives on other types of coach learning activities or learning structures beyond the three 

primary activities the district was implementing. For example, we asked coaches to respond to 

the question, “Imagine a district leader was about to begin designing a system of support for 

coaches. What advice would you give them?” 

To answer our first research question, both authors consensus coded each of the ten coach 

interviews for the types of coach learning activities that the coaches saw as beneficial. We 

documented our codes in an excel spreadsheet. We also documented the coaches’ descriptions of 

each type of coach learning activity. To answer our second research question, we open coded the 

ten interviews with coaches and the interview with the mathematics specialist to characterize the 

coaches’ and the district mathematics specialist’s perspectives on the function(s) of the coach 

learning activities. We used open coding because the current coaching literature provides little to 

no guidance regarding the functions of such activities in supporting coaches’ learning. 

Findings 

The mathematics coaches in AVS identified four types of coach learning activities that they 

perceived to be beneficial for their learning: (1) traditional pull-out professional development led 

by an outside facilitator, (2) peer coaching partnerships, (3) the school-based coaching days, and 

(4) individualized, school-based support from the K-12 mathematics specialist. 

Traditional Pull-out PD 

All ten of the mathematics coaches perceived the pull-out coach PD to be beneficial to their 

learning. The ten coaches noted that it was beneficial for the PD to be led by a university faculty 

member, and thus a facilitator outside of their district. This meant that the participating coaches 

had the opportunity to engage with what one coach referred to as a “perspective that was 

different than the usual district” perspective. Eight of the ten coaches also found it beneficial 

when the PD sessions centered on case studies of one-on-one coaching. Coaches found the case 

studies to be especially beneficial when they originated from AVS coaches’ own work, as this 

meant they could spend more time discussing the nuances of coaching and less time trying to 

understand the context for the case. 

Regarding the function of the PD, all coaches and the district mathematics specialist 

explained that the purpose of the coach PD was to introduce coaches to new and effective 

coaching practices. That said, several coaches also noted that the PD enabled the coaches to 

develop a common framework for and language to describe one-on-one coaching in the district. 

The coaches explained that this language was often formalized in the resources the PD facilitator 

shared in the PD sessions. Finally, several coaches also explained that the PD provided them 

with opportunities to think more deeply about mathematics teaching and learning, especially as 

the case studies often involved an analysis of mathematics lessons and students’ work. 

Peer Coaching Partnerships 

Eight of the ten coaches saw the district-initiated peer coaching partnerships as beneficial for 

their learning. The other two coaches saw potential for this type of partnership to benefit their 

work but outside circumstances (e.g., scheduling difficulties) limited their ability to realize that 

potential. All eight coaches who perceived the benefit of the partnerships visited their partner 

coach’s school. On these visits, the partnering coaches observed lessons together and then met to 

discuss potential next steps for working with individual teachers. Several coaching partnerships 

also discussed strategies for facilitating coaching conversations with teachers in the building. For 
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example, one coach mentioned that her partner coach helped her rehearse for an upcoming 

coaching conversation that she thought might be particularly challenging. 

Most of the coaches thought it was helpful to see instruction at different schools, as this 

helped them see common instructional challenges across the district. Five coaches and the 

district mathematics specialist saw the partnerships as functioning like a coaching professional 

learning community (PLC). As one coach put it, while she had a PLC as a teacher, she was on 

her own as a coach. The district-initiated partnership gave her someone else in a similar role who 

could serve as a collaborator and a “go-to person.” Finally, three of the coaches noted that the 

coaching partnerships provided another set of eyes on the coaching process. This helped them 

identify their own coaching biases and look at teaching and coaching in new ways. 

School-Based Coaching Days 

All ten coaches saw the school-based coaching days as beneficial for their learning. 

According to the coaches, the school-based coaching days consisted of teams of 3-4 coaches 

visiting a classroom for a full lesson. The coaches then met afterward to discuss the data they 

collected during the observation and what they perceived to be next steps for supporting the 

teacher’s learning. Finally, the whole group of ten coaches met to discuss what they noticed in 

the lessons they observed. The coaches saw the coaching days as opportunities to put into 

practice many of the ideas discussed in the pull-out PD sessions. As one coach put it, the school-

based coaching days were a chance to “develop your craft as a coach.” Coaches noted they had 

opportunities to get better at documenting students’ thinking in the lesson and the teacher’s 

actions during the lesson. They also had the chance to work with fellow coaches to connect 

instruction and students’ thinking when identifying next steps for the teacher, which is an 

important coaching practice (Kochmanski & Cobb, 2023b).  

Individualized Support from K-12 Mathematics Specialist 

Three of the coaches described it as beneficial to receive individualized support from the 

district K-12 mathematics specialist. All three coaches were either new to the district or new to 

their school. The coaches described the individualized support as taking many different forms, 

from formal school visits in which the specialist helped the coach lead portions of a one-on-one 

coaching cycle to informal text exchanges where the coach asked the district mathematics 

specialist for advice. According to the coaches, the primary function of the individualized 

support was to provide the coaches with opportunities to bounce ideas off an experienced coach 

and to receive resources they may not have known about previously. The district mathematics 

specialist saw the individualized support as serving a different function. She noted that it 

provided her with an opportunity to help the coaches think about the culture of their individual 

schools, with the goal of making each school a productive place for improvement. 

Discussion and Conclusions 

This case study of a district-wide effort to support mathematics coaches’ learning resulted in 

the identification of four types of coach learning activities that appear to be beneficial for 

coaches’ learning. Describing these four types of coach learning activities and documenting their 

functions in supporting coaches’ learning is an important step toward a research-based 

understanding of a productive coach learning system. Future research can build from this study 

by investigating the learning opportunities these types of activities present to coaches, what it 
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takes to facilitate the coach learning activities effectively, and the conditions necessary for their 

effective implementation.  
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We address mathematics teacher educators’ (MTEs’) instructional activity design practice to 

inform preservice teachers’(PTs’) curricular reasoning. Findings from a self-study of three 

MTEs’ instructional activity design in methods courses focus on opportunities for PTs’ as 

curriculum reasoners. We argue MTEs’ instructional activity designs are informed by 

ontological goals for teaching about curricular reasoning, such as curricular agency, and 

assumptions about curricular contexts. 

Keywords: Preservice Teacher Education, Teacher Educators, Curriculum 

Mathematics teacher educators (MTEs) develop instructional sequences to inform preservice 

teacher (PT) curricular reasoning (Tyminski et al., 2013). Though research includes principles for 

instructional design (Drake et al., 2014) and courses (Saclarides et al, 2022), MTE instructional 

design practices to support PTs’ curricular reasoning are complex and require additional 

characterization (Ghousseini & Herbst, 2016). As relational (Kitchen, 2005) constructivist (Steffe 

& D’Ambrosio, 1995) MTEs, we use self-study to describe instructional design practice. 

Relationships with PTs (Kastberg et al, 2022) and evidence of their pedagogical concepts 

(Simon, 2008) inform our instructional decisions. We use evidence of PTs’ learning to create 

opportunities for PTs to learn to teach from experience. We have described “layering 

instructional activities” (Kastberg et al., under review), though instructional activity design 

remained opaque. Theories of curricular reasoning address how contexts may constrain teachers’ 

curricular decisions. MTE curricular decisions have few constraints (Tran & O’Connor, 2023) 

such that MTEs’ domain of potential action (Brown & Coles, 2020) is broad. This research seeks 

to address: What informs MTE design of curricular reasoning activities? 

Background and Literature 

MTEs’ instructional activity design process evolves as they internalize their ideas about PTs’ 

learning of pedagogy, theories of mathematics education, and lived experiences as MTEs. In this 

paper we describe factors MTEs use as they design and enact activity sequences. Examples of 

MTEs’ instructional activity design for PTs (e.g., Ghousseini & Herbst, 2016; Tyminski et al., 

2013) illustrate two dimensions: MTEs’ use of theories of teacher learning (e.g., Gutiérrez, 2018; 

Hammerness et al., 2005; Kazemi, 2018) and pedagogies of practice (Grossman et al., 2009). 

Using self-based methodologies (Borko et al., 2007) MTEs seek to make sense of and represent 

the intersectional nature of action and knowledge in practice (e.g., Kalinec-Craig et al., 2021). 

Thus, instructional design is guided by goals and histories of interactions with PTs (Coles, 2013). 

Jaworski (2021), Chapman (2021), and others address how MTEs’ practices emerge and how 

practice informs MTEs’ development. Such accounts characterize the particular (Hamilton & 

Pinnegar, 2014) providing exemplars of MTE learning and development producing knowledge as 

“a complex, integrated system and way of being/thinking and as knowing how to act in the 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

802 

 

teaching process” (Chapman, 2021, p. 415). Our interactions with PTs inform the design and 

modification of instructional activities in support of PTs as curriculum reasoners. We view MTE 

instructional activity design as situated and emerging through interactions with PTs. 

Curricular reasoning is “thinking processes” teachers use with curricular materials (Breyfogle 

et al., 2010, p. 308). Curricular materials include print textbooks and online resources (Dingman 

et al., 2021). PTs must learn to read, analyze, and discuss curriculum (AMTE, 2017) to set goals 

and select tasks (NCTM, 2014). PTs’ use of curriculum includes adhering, elaborating, creating 

(Nicol & Crespo, 2006), and adapting materials (Lloyd, 2008). This suggests MTEs must 

provide opportunities for PTs’ curricular reasoning.  

Mathematics methods includes opportunities for PTs to engage in curricular reasoning with 

attention to context, autonomy, and agency. Drake et al. (2014) showed reading curricular 

materials has subskills, with subskill development and recomposition (Sapkota & Max, 2023) 

during one methods course unlikely (Saclarides et al., 2022; Simon, 2008). Teacher curricular 

reasoning has variability even when agency is constrained. Tran and O’Conner (2023) identified 

constraints on teachers’ curricular agency including centralized curriculum. Though curricular 

contexts may appear fixed and curricular autonomy constrained, teachers use curricular agency 

as they reason with and enact curriculum with learners. We describe our process of designing 

instructional activity sequences informed by our goal of supporting PTs’ use of curricular agency 

in varied curricular contexts with conscious curricular reasoning and decision making.  

Methodology and Methods 

We are three white female MTEs, each with over 10 years’ experience teaching mathematics 

methods at different institutions. Our institutional missions range from teaching-focused to 

research-intensive and our program foci span elementary to secondary teacher certification. We 

use self-study methodology, defined as self-initiated, improvement-aimed, and interactive using 

qualitative methods (LaBoskey, 2007) as means to study and improve our practice. Dialogue is a 

central process used in coming to know (Pinnegar & Hamilton, 2009). Weekly dialogues focused 

on our practice used “constructivist listening” (Weissglass, 2004) to enable the talker to represent 

her thinking and dialogue with “critical friends” (Schuck & Russell, 2005) regarding alternative 

perspectives on shared events.  

We used four analytic methods: 1) 10 analytical dialogues (Guilfoyle et al., 2007) during fall 

2023 to unpack the “details of the experience of teaching” and theorize about principles of 

practice from our experience (Brown & Coles, 2020, p. 99), 2) evidentiary maps of the “structure 

of events” (Jordan & Henderson, 1995, p. 57) in our fall 2023 methods courses involving events 

and artifacts from our instructional activity design practice, 3) cases of PTs as curricular 

reasoners to interpret the cumulative impact of instructional activities on PTs’ curricular 

reasoning, and 4) descriptive coding (Saldana, 2016) of our recorded dialogues to search for 

confirming and disconfirming evidence. These four analytic methods created an evidentiary basis 

for findings common across three MTEs’ design of instructional activities and related contexts.  

Findings  

This section describes two components influencing our instructional activity design for PTs’ 

curricular reasoning: (1) goal of curricular agency, (2) imaginings of curricular contexts. Data 

from all three authors’ design of instructional activities were used to derive the findings. Here, 
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we represent findings addressing the question: What informs MTE design of curricular reasoning 

activities? using excerpts from transcripts of dialogic conversations focused on Alyson’s 

experience. The following narrative highlights coming to know how our support for PTs’ 

curricular reasoning was informed by our goal that PTs develop awareness of curricular agency. 

My (Alyson) methods course is the second of two required mathematics methods courses in 

our secondary and middle grades preparation programs focusing on grades 8 – 12 mathematics 

content. Secondary PTs take this course the semester prior to student teaching and middle grades 

teachers take it earlier. Enrollment was low in Fall 2023; with three PTs in the course (Claire and 

Ashley – secondary, Crissy – middle grades; pseudonyms), I had freedom to experiment as I 

supported development of their ideas about curriculum. I used Principles to Actions (NCTM, 

2014) as a text, with emphasis on the mathematics teaching practices, knowing the prerequisite 

course focused on student thinking. Two major tasks of this course are: 1) three teaching 

rehearsals and 2) two written multi-day lesson plans. No field experience is connected to this 

course, though PTs are in other field placements while taking this methods course.  

I began by wanting to make use of textbooks matching the scope and sequence for courses in 

the local school system where most of the PTs would find jobs. I wondered how to prepare them 

to use textbooks as the approved curriculum due to state policy. I acknowledged this contextual 

constraint in a critical friend conversation:  

I'm very conflicted with this because I want to support the school system and that they're 

making decisions in the best way they possibly can [with scope and sequence documents] . . . 

But I also think a teacher teaching Precalculus ought to be able to teach circles as the first of 

the conic sections if they want to. (Conversation, 11/13/23) 

I did not want to force PTs to use textbooks – though textbooks can be useful. My goal: PTs 

develop problem solving lessons with opportunities for learners to make sense of mathematics. 

Critical friend conversations focused on how I could learn about my PTs’ thinking. I started my 

instructional sequence with a standards interpretation activity. PTs created posters mapping 

mathematics content across four courses. After this introduction to high school content, I needed 

evidence of PTs’ ideas about curriculum. I was unsure of my goals for PTs’ curricular reasoning. 

I'm really wondering if I should give them each a poster paper and say, “think about your 

lesson plan. Think about what was influencing your decisions about what you included - and 

what you chose not to include? And see what I get. (Critical Conversation, 10/30/23) 

Knowing their thoughts about curriculum would help me clarify goals. I used reflective 

writing and a concept mapping activity to gather evidence of PTs’ curricular ideas to create 

instructional activities built from these ideas. PTs’ work was revealing. Claire focused on order 

of standards: what learners should know and connect to what is next. Claire questioned who 

decides the order for teaching concepts and if the sequence of concepts from the textbook could 

be changed. Crissy reasoned about concept order to simplify concepts for learners to understand. 

Ashley’s curricular reasoning considered what learners do know (rather than should know) and 

selected resources based on learners’ demonstrated knowledge. In a critical friend conversation 

Susan wondered about PT agency when Alyson brought up a PTs’ question on order of concepts. 
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Susan: Do you think the PT is asking “Is there one right way to approach it?” Or were they 

saying, “Do I have the agency to change it when the textbook says this?”  

Alyson: A little bit of both, and I think she wants to know why the authors of the textbook 

put it in that order - she wants to make an instructional decision with more information. 

(Conversation 11/13/23) 

I designed additional layers of activities (Lischka et al., 2023) including textbook analysis. 

Textbooks and teachers’ editions as curricular resources can be overwhelming. Research findings 

provide insights about what PTs attend to – but would PTs in my course attend to elements 

identified in research, or have other ideas? I observed the PTs’ choices during the textbook 

analysis which led to the rehearsal of launching a lesson using provided curriculum materials. 

PTs used textbook sections differently during rehearsals. Claire used a textbook activity but 

changed the context. Crissy used a textbook example but “simplified” the directions. Ashley used 

an activity not in the text but planned to use textbook examples later in the lesson. Each of the 

PTs reasoned about the textbook as a curricular resource, but I wondered about the impact of the 

rehearsal, or whether they brought curricular reasoning from other courses or experiences? 

PTs created two lesson plans on assigned topics to demonstrate learning concepts in this 

course. PTs considered how they incorporated strategies from class into plans, and selected 

materials to support instructional goals, within constraints I provided. I struggled with feedback 

to help PTs find balance between developing conceptual understanding and procedural fluency, 

torn between telling them to use particular curriculum resources and wanting them to make their 

own curricular decisions to reach their instructional goals.  

PTs final lesson plans had a better connection between conceptual development and 

procedural fluency. These PTs were provided with more textbook access, and they used the 

textbooks more than PTs from prior semesters. PTs seemed to be exploring their agency in 

curricular reasoning. PTs’ end of term reflections showed a desire to “make decisions, get them 

down and then evaluate after that” (Ashley, Final Self-Evaluation).   

Discussion: Agency, Context, and Instructional Design Practice   

Research provides evidence of how PTs read (Tyminski et al., 2013) and use curricular 

resources (Nicol & Crespo, 2006). The complexity of MTEs’ work using learning theories (e.g., 

Kazemi, 2018), core practices (Grossman & Dean, 2019) and pedagogies of practice (Grossman 

et al., 2009) to support PT development (Ghousseini & Herbst, 2016) suggests study of MTEs’ 

instructional activity design practice could provide findings connecting such practice to PTs’ 

development of curricular reasoning (Breyfogle et al., 2010). We used self-study methodology 

and qualitative methods to gather empirical evidence of MTEs’ ways of knowing in instructional 

activity design to impact PTs’ curricular reasoning. We found that MTEs’ instructional activity 

design was based on ontological goals for PTs’ curricular reasoning, namely supporting PTs’ 

awareness and use of curricular agency in curricular contexts with varied constraints.  

Our findings represented by Alyson’s narrative illustrate ways of knowing involved in 

instructional activity design for the development of PT’s curricular reasoning, beyond time 

related tensions in MTE design described by Saclarides et al. (2022). Aligned with findings from 

explorations of MTEs’ instructional activity design practice for teachers (Ratnayake & Taranto, 

2023), we found that MTEs use existing theories of learning and being in making instructional 

activity design decisions. Alyson’s commitment to working with PTs’ ideas as the basis for 
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curricular reasoning instructional activities was informed by principles of relational practice 

(Kitchen, 2005) and constructivist teaching (Kastberg, 2014; Steffe & D’Ambrosio, 1995). Yet 

beneath these decisions was an ontological goal supporting the layers of instructional activity 

designed to support PTs’ curricular reasoning; our goal was for PTs to become conscious of and 

use curricular agency in curricular contexts informed the series of instructional activities we 

developed. Assigning topics to the PTs constrained the curricular context as Alyson expected PTs 

to use curricular agency (Tran & O’Connor, 2023) to address the imposed constraints. Alyson’s 

discussions with PTs focused on gaining evidence of how they were reasoning about standards 

and textbooks and using those resources to demonstrate agency within constraints. This study 

builds on prior research (e.g., Tyminski et al., 2013) and points to the need for more research on 

how MTEs design instructional activities to support PTs’ curricular agency in increasingly 

constrained contexts. 
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Mathematics teacher educators (MTEs) play a significant role in supporting preservice teachers 

(PTs) to develop the mathematical content and pedagogical knowledge they need for teaching. 

We examined what four novice prospective MTEs learn about supporting PT learning when they 

are part of a Community of Practice (CoP) in a mathematics content course taught through 

problem solving. We collected data through weekly reflections written by the prospective MTEs, 

researcher memos, interviews with each participant at three points in the semester, and notes 

from the CoP twice weekly discussions. We found that the prospective MTEs learned by 

observing their students’ learning and by making sense of their roles in the course taught 

through problem solving. We also found that the CoP, weekly readings and having an intern role 

in the course were key to supporting the prospective MTEs’ learning. 

Keywords: Teacher Educators; Teacher Knowledge; Problem Solving; Mathematical Knowledge 

for Teaching 

Mathematics teacher educators (MTEs) play a significant role in supporting prospective 

teachers (PTs) to develop the mathematical content and pedagogical knowledge they need for 

teaching. Research has shown, however, that most of the MTEs in the United States have little 

experience teaching students at the level of mathematics that they are preparing PTs to teach 

(e.g., elementary school), and that they receive little to no training or support either in their 

graduate programs or in their jobs (Masingila & Olanoff, 2022; Masingila et al., 2012). 

Mathematics professional organizations (e.g., Conference Board of the Mathematics Sciences 

(CBMS) in the USA, Association of Mathematics Teacher Educators in the USA) have 

recommended that PTs develop deep and connected understandings of foundational 

mathematical ideas and be engaged in doing mathematics that “allows time to engage in 

reasoning, explaining, and making sense of the mathematics that prospective teachers will teach” 

(CBMS, 2012, p. 17) and “develop the habits of mind of a mathematical thinker and problem-

solving” (p. 19). Masingila et al. (2018) proposed that one way to “foster deep mathematical 

knowledge development in PTs is to engage them in learning mathematics via problem solving” 

(p. 431). Since prospective MTEs have typically experienced traditional mathematics teaching 

and learning in their academic and teaching experiences, we argue that for MTEs to be prepared 

to support PTs in learning via problem solving, they need to experience, reflect on, discuss with 

others, and learn from teaching and learning through problem solving. 

In this paper, our goal is to contribute to the mathematics education community’s 

understanding of how novice MTEs may be prepared to support PTs in learning via problem 

solving. Specifically, our contributions are to provide evidence from our four participants of how 

mailto:jomasing@syr.edu
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this learning occurred through this experience. We examined how four novice prospective MTEs 

learn about teaching and learning mathematics through problem solving when they are part of a 

CoP comprised of instructors and interns (novice prospective MTEs) working together to support 

PTs’ learning in developing mathematical understandings through problem solving.  

We engaged prospective MTEs in an internship with particular design features situated 

within a Community of Practice (CoP) and the context of a mathematics content course for PTs 

taught through problem solving. The mathematics content of the course included the concepts of 

numeration, operations, number theory, and probability and statistics. The course met for 80 

minutes twice a week with the 22-28 PTs working collaboratively on problem-solving tasks that 

the instructor introduced. The instructor and interns facilitated the small group problem solving 

and the instructor led the PTs in a wrap-up discussion bringing out the mathematical ideas from 

the tasks. For more information on this course and a second course with content including the 

concepts of geometry, measurement and rational numbers see Masingila et al. (2018). 

Theoretical Framing 

The bodies of literature that guided our work involve (a) Communities of Practice, (b) 

Mathematical Knowledge for Teaching and Mathematical Knowledge for Teaching Teachers, 

and (c) Learning through Problem Solving. Wenger, McDermott, and Snyder (2002) defined 

CoPs as “groups of people who share a concern, a set of problems, or a passion about a topic, 

and who deepen their knowledge and expertise in this area by interacting on an ongoing basis” 

(p. 7). Through a CoP, members develop and articulate new knowledge in response to questions 

and problems they have about their practice. A CoP offers a way for its members to engage in 

negotiating shared understandings, learning, meaning making, and identity. Wenger (1998) 

identified three dimensions of a CoP: (a) members interact with one another, and determine 

norms and relationships through mutual engagement, (b) members are held together by their 

understanding of a sense of joint enterprise, and (c) members seek to produce, over time, a 

shared repertoire of communal resources (e.g., language, routines, artifacts, stories). The 

members of our CoP were three instructors (one for each section of the mathematics content 

course), including a professor who was an experienced instructor of this course and served as the 

course supervisor, and six graduate students who served as interns. Two of the interns had 

previously been interns in the companion mathematics course with content of rational numbers, 

geometry, and measurement. The other four interns were new graduate students in mathematics 

education. Our CoP also included a graduate student who was part of the research team and had 

previously served as an intern. Our CoP provided us a space for working together to learn how to 

support PTs in their mathematical learning and grow as MTEs. 

Based on Shulman’s (1986) work, Ball and colleagues (Ball & Bass, 2002; Ball et al., 2008) 

introduced the term mathematical knowledge for teaching (MKT) and developed a framework 

for MKT that expanded on Shulman’s descriptions of content knowledge and pedagogical 

content knowledge to include sub-categories of the mathematical knowledge that teachers need 

to know. More recently, researchers have examined the mathematical knowledge needed by 

MTEs to support PTs in developing MKT (Castro Superfine & Li, 2014; Olanoff et al., 2018; 

Zopf, 2010) – mathematical knowledge for teaching teachers (MKTT). Zopf defined MKTT as, 

“the mathematical knowledge used by mathematics teacher educators in the work of teaching 

mathematics to teachers” (p. 11), and claimed that, “the major purpose of the work of 
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[mathematics] teacher education is beginning with people who already know some mathematics 

and developing that knowledge into mathematical knowledge for teaching” (p. 165). Our CoP 

supported us in developing our collective and individual MKTT and afforded us the opportunity 

to observe the growth of the novice interns’ MKTT. 

Problem solving as a concept and a practice has been around for as long as humans have tried 

to overcome challenges. Mathematics educators and professional associations have long 

advocated for engaging students in learning mathematics through problem solving. The 

Conference Board of the Mathematical Sciences (CBMS) (2001) argued that PTs can develop 

deep understandings of mathematical ideas “with classroom experiences in which their ideas for 

solving problems are elicited and taken seriously, their sound reasoning affirmed, and their 

missteps challenged in ways that help them make sense of their errors” (p. 17). The CBMS 

(2012) continued arguing for engaging PTs in problem solving with its recommendation that 

courses for mathematics teachers should “develop the habits of mind of a mathematical thinker 

and problem-solver, such as reasoning and explaining, modeling, seeing structure, and 

generalizing” (p. 19). Teaching through problem solving, however, is quite challenging with the 

need for the teacher to select and facilitate high-level tasks, scaffold student learning as 

appropriate, and orchestrate discussions about the mathematics arising from the students’ 

problem-solving work. Masingila et al. (2011) argued that the teacher’s responsibility is to 

“establish a mathematical community in the classroom where everyone’s thinking is respected 

and in which reasoning and discussing mathematical ideas and meanings is the norm” (p. 14). 

We were interested to see how novice prospective MTEs make sense of the teaching and 

learning in a mathematics course taught through problem solving. 

Research Methods 

Our aim in this study was to investigate what novice prospective MTEs learn when serving 

as interns in a mathematics content course for preservice elementary teachers taught through 

problem solving. Our research design was a descriptive case study.  

Context 

The course content focused on whole numbers and operations, number theory, probability, 

and statistics. The CoP instructional team met formally twice a week, on Mondays prior to the 

two lessons for the week and on Thursdays after the second lesson, as well as conversations 

among the CoP members occurred informally before and after lessons. 

This course was taught with an emphasis on PTs learning mathematics through collaborative 

problem solving. PTs worked together in small groups to solve problems with the goal of 

developing deeper understandings of the mathematics taught in elementary school and their own 

MKT. The role of the instructors of the course was to facilitate the PTs’ problem solving and 

knowledge development and the role of the interns was to support the instructor and the students 

in their problem solving. 

Data Collection 

The participants for this study were the four new graduate students serving as interns. The 

data collected were (a) weekly reflections written by each novice intern as part of their intern 

work, (b) weekly or bi-weekly memos from the researchers who were working with the interns in 

teaching, (c) interviews with each intern individually at the beginning, middle and end of the 

semester, and (d) notes from the CoP discussions.  
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For the weekly reflections, the interns were given a published article or book chapter related 

to teaching and learning through problem solving to read each week. They were asked to reflect 

on what insights they gained from the article and what insights they gained about both student 

learning and their own learning through their experience in the two lessons that week. Given the 

challenge of teaching through problem solving, instructors first serve as interns to experience 

teaching and learning through problem solving so the instructors had read and reflected on the 

readings when they were interns. The course supervisor and instructor of record for the 

internship course (the first author) read and responded to the interns’ reflections individually via 

email. Additionally, she would often mention points raised by the interns in their reflections and 

bring it to the CoP for discussion during the twice weekly meetings. In this way, the readings 

were shared texts for the CoP members and situated the discussions of teaching and learning 

problem solving within the mathematics education literature. 

The researcher memos were written individually by three of the authors, each of whom was 

working as an instructor or experienced intern in one of the course sections, with their 

observations of the novice interns in the course. The interviews were conducted by the second 

author who was not serving as an instructor or intern. The purpose of the interviews was to 

understand each participants’ experiences prior to, during, and after the internship. 

Data Analysis 

Our data analyses were both ongoing and retrospective. We used open coding to inductively 

develop codes from the data. Ongoing analysis occurred during the semester and was the basis 

for developing the questions for the midway and end-of-semester interview questions and the 

testing of emerging hypotheses. Retrospective analysis involved examining the larger corpus of 

data through a carefully structured review of all the data sources. We used qualitative data 

analysis methods as described by Creswell and Creswell (2018). Our approach involved 

preparing the data for analysis, reading through and coding the data, generating themes, and 

interpreting the meaning of those themes across the data set.  

Results 

Below we share our findings of prospective MTEs’ learning in two categories: (a) MTEs 

learning by observing their students’ learning, and (b) MTEs learning by making sense of their 

roles in a course taught through problem solving. Note that all names used are pseudonyms. 

Observing the Learning of Preservice Teachers 

We found that prospective MTEs learned through observing how the PTs in the course 

developed their mathematical understandings and confidence. We identified the themes related to 

these observations of preservice teacher learning: learning through collaboration, learning 

through problem solving, and connecting student learning with course readings.  

Learning through collaboration. One intern, Alex, seemed to especially value the way that 

PTs in the course learned through collaboration. They noted this growth and attributed it to the 

collaborative nature of the course:  

At the beginning of the course, many students expressed their frustration at the tasks and had 

less perseverance in struggling with the math. They are now more readily engaged in the 

learning tasks and, while individual questions might pose a challenge, they are as a group 

more resilient and likely to continue trying a problem even when it is challenging. Part of this 
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growth is owed to their development of good group dynamics, communication, and 

collaboration. (Reflection Week 6) 

Here we see that Alex learned that PTs developed understanding of mathematics through 

collaboration. 

Alex noted the importance of this collaboration early in the course experience. When asked 

what it would look like for PTs in the course to be successful, Alex said, “effective collaboration 

is huge, like the fact that [the PTs] work in groups is really important. Again, so that they carry 

that into their own teaching, sort of having this collaborative mindset” (Beginning Interview). 

Alex viewed success for these students as learning to be collaborative, not just among peers for 

their learning, but for developing a collaborative mindset in their future roles as teachers.   

Another intern, Cameron, learned to value the collaborative approach of the course. When 

reflecting on how PTs collaborated, Cameron said, “Almost every student gets involved in 

classroom activities in their groups and it becomes easier to monitor students by groups and 

provide help when necessary. Students feel comfortable trying new ideas and discussing their 

problem-solving strategies among their peers and asking relevant questions when necessary” 

(Reflection Week 6). Cameron found that collaborative learning made teaching logistically 

effective and encouraged PTs to share their ideas and ask questions. 

Learning through problem solving. Another way that prospective MTEs observed PTs’ 

growth is in the way that PTs developed as problem solvers, both in their mathematical skills and 

in attitudes toward doing mathematics. For example, Michael shared during a post-class 

discussion that he observed PTs’ developing knowledge as they connected new algorithmic ideas 

to prior concepts of the course (Researcher Memo Week 6). Similarly, Alex observed a notable 

change in students’ problem-solving abilities by the end of the semester. Alex said, “it's cool to 

say, you know, very concretely, I could, through my observations, say like, they didn't have these 

skills at the beginning of the course. And now I think if we put a problem in front of them that 

they had never seen before, they would apply these strategies of problem solving. It's very cool” 

(Post Interview). These examples show how MTEs observed PTs develop mathematical 

knowledge and skills on specific days in the classroom and throughout the semester.   

John observed PTs gain confidence in their problem-solving capabilities. In a team meeting 

near the end of the semester, John shared that at the beginning of the semester, most students 

would ask the instructor and interns, “Is this right?” when they are working on a task. But now, 

near the end of the semester, they were confident in their solutions. So much so that even when 

John said that he does not think they are correct, they replied that they know that their solution is 

correct (Researcher Memo Weeks 9-10). Cameron, too, observed a shift in students' attitude 

toward learning mathematics, which he attributed to their learning through problem solving. 

When asked what he thinks his students are learning, Cameron shared, 

I remember, during the first day of class, most of the students were asked how they think 

about mathematics. And most of the responses were, mathematics is difficult, boring, not 

interesting. But then now you could see students come to class, so eager to learn something 

new, to practice something different, to do problem solving and all that. And you will see the 

spirit of the class is very high. (Mid-Semester Interview)  

Both John and Cameron observed how learning mathematics through problem solving influenced 

the attitudes of PTs toward their learning. 
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Connecting student learning with course readings. We found that the course readings were 

effective in providing shared language in the CoP as prospective MTEs observed student 

learning. In his second week reflection, John explicitly drew on the course reading to connect 

with his observations of student learning. John shared, 

Procedural knowledge refers to the step-by-step procedures executed in a specific sequence, 

while conceptual knowledge refers to the relationships between pieces of information, which 

enhances flexibility in accessing and using information (Carpenter, 1986). In performing 

Activity 2.3 and Activity 2.3 (Masingila et al., 2011), students applied procedural knowledge 

by laying down steps to write big numbers such as 476 in the Babylonian system, and 

conceptual knowledge by analyzing the relationship between different number systems. 

(Reflection Week 2) 

The terms procedural knowledge and conceptual knowledge represent a common use of shared 

language within the CoP to make sense of student learning.  

In addition to drawing on shared language, participants connected to the course readings 

through the ideas the readings presented as they observed student learning. Alex, for example, 

noted that “learning opportunities occur when students must create or discover a method to solve 

a problem and then justify the validity of their methods to classmates (idea from this week’s 

reading), and I see both of these happening throughout the course so far” (Reflection Week 5). 

The language and ideas from course readings helped prospective MTEs to make sense of their 

observations of student learning and provided shared texts to draw on within the CoP. 

MTEs Making Sense of Their Roles 

In addition to learning through observations of their students’ learning, the prospective MTEs 

in this study learned as they made sense of their roles in this course. We found that the 

participants learned about teaching and learning through problem solving in general. In addition 

to this, some participants developed a strategy of prompting PTs to think about their future 

careers as teachers as the interns began to recognize their roles as prospective MTEs. 

Making sense of teaching and learning through problem solving. For three of the 

participants, their backgrounds in mathematics can generally be characterized as traditional or 

teacher-centered, and a course taught through problem solving was an opportunity to experience 

a new pedagogical style. For example, when debriefing with one of the researchers after class 

during the first week of the course, Michael shared that he had never seen a mathematics course 

taught through problem solving and that he was eager to learn more (Researcher Memo Week 1). 

By the end of course, Michael learned that teaching through problem solving involves centering 

student responses. Michael shared, 

And one of the few things that I discovered in a problem-solving class, we usually encourage 

students to give us their answers. Because one of the few things that we usually focus on, 

we're interested in seeing the way students think in different ways and obtaining different 

answers. And different answers, it is upon them to choose the method they're interested in. 

(Post Interview) 

Having never experienced teaching and learning through problem solving before, Michael 

explained how eliciting student thinking is a key feature of this approach that he learned.  
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Cameron described his mathematics experience during his primary school as being teacher 

centered. Cameron shared, “hardly will the students start with the example themselves. The 

teacher gives the example, gives the procedure to solve by example, then allows students to solve 

different examples, the same procedure that they have solved” (Beginning Interview). However, 

Cameron suggested that this changed slightly in secondary school when teachers began giving 

“hints” and “guidelines,” which he saw as being closer to a problem-solving approach 

(Beginning Interview). 

John described his prior mathematics experience as being one where teachers were “more 

focused on [students] passing the exams rather than understanding the concepts” (Beginning 

Interview). This evidences John’s traditional experience when he was a student of mathematics. 

Later in the semester, John reflected on his own growth in terms of a shift from a traditional 

approach to a problem-solving approach. John shared, “to highlight how much I've learned, it has 

helped me to redefine my role as a teacher of math by trying to center my teaching through 

problem solving, rather than the lecture method, where I'm the sole person giving up the 

knowledge” (Mid-Semester Interview). Together, these examples evidence how three of the 

participants who had not previously experienced teaching and learning through problem solving 

learned about this pedagogical style when making sense of their roles as MTEs. 

Making sense of supporting PTs. Enacting a role as a MTE, for some, meant prompting PTs 

to begin to think about their future roles as educators. Alex elaborated on this prompting in the 

mid-semester interview when asked how they see themselves as supporting their students as 

future teachers. Alex said, 

I try to explain to them, like, the idea is, eventually you'll be engaging students in this type of 

thinking. So, you know, you need to be going through this yourselves. And experiencing this 

type of learning, so that hopefully, you'll see the value in, and you'll be able to teach this way 

someday. And I think more informally, like, during office hours, I've talked with some of the 

students about their goals. You know, like, by the end of their degree program, or, you know, 

what their sort of purpose in doing this program is. So, I guess more informally talking with 

them about, you know, where they want to be in education, what kind of roles they see 

themselves in schools. (Mid-Semester Interview)  

In making sense of their role as an MTE, Alex supported PTs to consider their future roles as 

educators as they were learning in the course. 

John also shared this idea in the way that he made sense of his role as an MTE. John said, “I 

think the purpose of encouraging my students to just see themselves as teachers in the classroom 

… they came as students taking math …” and now “they say I’m learning … as a teacher … I’ve 

really benefitted” (Post Interview). While the interns were not in a position to directly teach 

pedagogical methods to their students, Alex and John began prompting PTs to consider their 

future identities as educators. In this way, they made sense of their roles as MTEs as supporting 

PTs to maintain a long-term vision of their learning. 

Discussion 

Researchers have argued that one way to support PTs to deep mathematical knowledge is to 

engage them in learning mathematics through problem solving (Masingila et al., 2011; Schroeder 

& Lester, 1989). We propose that engaging prospective MTEs in supporting PTs to develop this 
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mathematical knowledge through problem solving is also a problem-solving activity for the 

MTEs. The prospective MTEs are engaged in problem solving as they learn to support PTs’ 

mathematical development in learning what type of questions to ask, how to support PTs in 

productive struggle, how to facilitate a class discussion to bring out mathematical ideas that arise 

through the PTs’ problem solving, etc. Thus, the MTEs are also learning through problem solving 

and their learning is about supporting PTs’ mathematical and MKT development while the MTEs 

themselves develop MKTT. 

Van Zoest and colleagues (2006) in their study with prospective MTEs in mentored clinical 

experiences found that the novice MTEs learned the most through “observing, analyzing, and 

discussing classroom interactions” (p. 143). Our analysis aligned with this claim as we found that 

our code that occurred the most frequently in our coding of our data was what we called 

“observing student learning”, in which our participants mentioned notable instances of individual 

PT or group learning that provided new insights for the intern about what the PTs were learning, 

their process of learning, their dispositions toward the problem solving work, and/or connections 

that the PTs were making among mathematical ideas. Our participants wrote about their 

observations of the PTs’ learning in their weekly reflections, they talked with other members of 

the CoP about their observations and mentioned these in the interviews. Their observations were 

often brought up, analyzed and discussed during the CoP’s twice weekly meetings. We found 

that observing and reflecting on the PTs’ learning in the context of a mathematics course taught 

through problem solving was a key way that the prospective MTEs learned. 

Van Zoest and colleagues (2006) recommended having key readings for the prospective 

MTEs to support their learning. We found that the weekly readings connected the interns to 

literature on developing mathematical understandings and teaching and learning through problem 

solving. The readings provided a grounding from which the interns could situate their 

observations of student learning as well as the pedagogical strategies that they observed and were 

trying to enact themselves. Since the readings were shared texts in the CoP, ideas from the 

readings became part of the shared language used by members of the CoP to discuss challenges 

and developments in students’ understandings and in instructional strategies. 

In the same way that “prospective teachers need mathematics courses that develop a deep 

understanding of the mathematics they will teach” (CBMS, 2001, p. 7), MTEs need opportunities 

that will enable them to develop a deep understanding of the mathematics that they will teach to 

PTs and support them in understanding mathematical ideas deeply. As we envision the future for 

mathematics education in uncertain times, we argue that one site for prospective MTEs to gain 

this knowledge and pedagogical skills is through a CoP with experienced and novice MTEs 

working with PTs in which the novice MTEs have an active role in supporting the PTs. The 

prospective MTEs develop their MKTT in collaboration with the CoP as the PTs develop their 

MKT. The prospective MTEs learn how to facilitate (a) student thinking with prompting 

questions, (b) collaboration as a means of active engagement, (c) PTs’ problem solving efforts, 

and to value multiple approaches to solving problems. While it is possible for prospective MTEs 

to reflect on their teaching alone by observing student learning and examining their own practice, 

without a CoP and being an active member in the mathematics content course taught through 

problem solving, there would have been no opportunity to reflect on the actions of others, to 

receive feedback on their observations and reflections and teaching, or to see other ways of 

approaching a teaching or learning challenge. 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

816 

 

References  
Ball, D. L., & Bass, H. (2002). Toward a practice-based theory of mathematical knowledge for teaching. In B. 

Davis, & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of Canadian mathematics education study 

group (Edmonton, AB ed., pp. 3–14) CMESG/GCEDM.  
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it so special? 

Journal of Teacher Education, 59, 389–407.  
Carpenter, T. P. (1986). Conceptual knowledge as a foundation for procedural knowledge. In J. Hiebert (Ed.), 

Conceptual and procedural knowledge: The case of mathematics (pp. 113–132). Lawrence Erlbaum. 

Castro Superfine, A., & Li, W. (2014). Exploring the mathematical knowledge needed for teaching teachers. Journal 

of Teacher Education, 65(4), 303–314. https://doi.org/10.1177/0022487114534265 
Conference Board of the Mathematical Sciences (2001). The mathematical education of teachers. American 

Mathematical Society.  
Conference Board of the Mathematical Sciences (2012). The mathematical education of teachers II. American 

Mathematical Society.  
Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods 

approaches (5th ed.). SAGE. 

Masingila, J. O., Lester, F. K., & Raymond, A. M. (2011). Mathematics for elementary teachers via problem 

solving: Instructor resource manual (3rd ed.). Copley Custom Textbooks.  
Masingila, J. O., & Olanoff, D. (2022). Who teaches mathematics content courses for prospective elementary 

teachers in the United States? Results of a second national survey. Journal of Mathematics Teacher Education, 

25, 385–401. https://doi.org/10.1007/s10857-021-09496-2  
Masingila, J.O., Olanoff, D., & Kimani, P. M. (2018). Mathematical knowledge for teaching teachers: Knowledge 

used and developed by mathematics teacher educators in learning to teach via problem solving. Journal of 

Mathematics Teacher Education, 21(5), 429–450. https://link.springer.com/article/10.1007/s10857-017-9389-8  

Masingila, J. O., Olanoff, D. E., & Kwaka, D. K. (2012). Who teaches mathematics content courses for prospective 

elementary teachers in the United States? Results of a national survey. Journal of Mathematics Teacher 

Education, 15(5), 347–358. https://doi.org/10.1007/s10857-012-9215-2 
Olanoff, D., Welder, R. M., Prasad, P. V., & Castro Superfine, A. (2018). Fractilization as a metaphor for 

mathematical knowledge for teaching teachers: Synthesizing research and exploring consequences. In T.E. 

Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th annual meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education (pp. 500–503). Greenville, 

SC: University of South Carolina & Clemson University. 
Schroder, T. L., & Lester, F. K. (1989). Developing understanding in mathematics via problem solving. In P. R. 

Trafton & A. P. Shulte (Eds.), New directions for elementary school mathematics (pp. 31–42). National Council 

of Teachers of Mathematics. 

Shulman, L. S. (1986). Those who understand: A conception of teacher knowledge. American Educator, 10(1), 9–

15, 43-44.  
Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge University Press. 
Wenger, E., McDermott, R. A., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing 

knowledge. Harvard Business School Press.  
Van Zoest, L. R., Moore, D. L., & Stockero, S. L. (2006). Transition to teacher educator: A collaborative effort. In 

K. Lynch-Davis & R. L. Rider (Eds.), The work of mathematics teacher educators, Monograph 3 (pp. 133–

148). Association of Mathematics Teacher Educators. 

Zopf, D. A. (2010). Mathematical knowledge for teaching teachers: The mathematical work of and knowledge 

entailed by teacher education. Unpublished doctoral dissertation. Retrieved from 

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/77702/dzopf_1.pdf 
  

 
  

https://doi.org/10.1177/0022487114534265
https://doi.org/10.1007/s10857-021-09496-2
https://link.springer.com/article/10.1007/s10857-017-9389-8
https://doi.org/10.1007/s10857-012-9215-2
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/77702/dzopf_1.pdf


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

817 

 

 

EXPLORING HOW SCHOOL LEADERS CARE FOR TEACHERS OF 

MATHEMATICS AMID THE PANDEMIC 

Evthokia Stephanie Saclarides  

University of Cincinnati 

saclares@ucmail.uc.edu 

Meghan Kessler  

Illinois State University 

makessl@ilstu.edu 

Alexis Jones  

Eastern Illinois University 

aljones16@eiu.edu 

Keywords: Instructional Leadership, Policy 

Teachers' emotions and identities are intertwined (Zembylas, 2003), and have been disrupted 

by the isolation and stress of the COVID-19 pandemic (Jones & Kessler, 2020). Although some 

teachers have exhibited resilience during the pandemic, a majority have felt their well-being 

decreased (Gearhart et al., 2023). Workload stressors including school climate increased stress 

(Herman et al., 2021; Johnson & Coleman, 2023). Self-care strategies have done little to reduce 

these impacts (Walter & Fox, 2021). However, relationships with colleagues can be buffers 

(Blair et al., 2023; Johnson & Coleman, 2023; Stang-Rabrig et al., 2022), highlighting the 

potential positive impact of a caring coach or leader. 

“Nel Noddings is closely identified with the promotion of the ethics of care, – the argument 

that caring should be a foundation for ethical decision-making” (Smith, 2020, para. 4). Ethical 

caring ala Noddings is relational at its core; the “carer” turns their attention and energy toward 

the “cared for.” Noddings’ (1984, 2013) ethical concept of care informed our analysis. 

For this longitudinal study, we conducted 24 interviews with principals, instructional 

coaches, and teachers in a Title I, urban school district to explore how school leaders cared for 

math teachers amid the pandemic. Transcriptions were analyzed using Noddings’ (1984, 2013) 

theory of care ethics. Intercoder reliability was maintained during coding (Cofie et al., 2022).  

We identified three kinds of care that principals and coaches leveraged to show support for 

math teachers. Specifically, principals and coaches: (a) implemented new and recycled 

structures, (b) employed discursive practices, and (c) acted as buffers between district-level 

mandates and teachers. We also identified challenges that the principals and coaches faced while 

striving to enact care for teachers, which chiefly consisted of structural constraints, including a 

lack of time to physically be present with and support teachers. To illustrate, leadership teams at 

one elementary school implemented a “check in, check out” structure to respond to teachers’ 

needs, as described by Principal Francisco: “We created a check in, check out. Like, if a teacher 

needed a restroom break, or they just needed a break, there was someone that would go and 

relieve them.” To provide one further illustration, coaches and principals also exercised 

discursive moves akin to cheerleading. For example, Coach Theresa found opportunities to “give 

feedback and build that confidence that they were so in desperate need of.” Last, coaches also 

served as buffers between teachers and district-level mandates to preserve teachers’ sanity in the 

face of new initiatives or assessments. Coach Kristin shared: “I felt like I was a naggy voice for 

teachers…[school leaders had] expectations that I just knew weren’t realistic.” 

The coaching and leadership practices here to support math teachers elucidate how leaders 

and teacher educators can serve as buffers and advocates for teachers. Further research is needed 

to elucidate how teachers’ social and emotional well-being can be supported by school leaders. 
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The prevalent belief in education is that individuals possess a distinct "learning style," 

whether visual, kinesthetic, or auditory, with a significant percentage of educators, up to 80-95%, 

subscribing to this notion (Nanceckivell et al., 2020). Despite its widespread acceptance, decades 

of research have failed to provide substantial evidence supporting the idea that tailoring 

instruction to match an individual's purported learning style enhances their learning outcomes 

(Pashler et al., 2008). The myth of learning styles has been “busted,” but remains prevalent in 

educational research (Authors, 2022). However, little is known about how widespread the 

discussion of learning styles has been within mathematics education. As the world’s largest 

mathematics education organization with publications since 1907, the National Council of 

Teachers of Mathematics (NCTM) is very influential in mathematics education (NTCM, n.d.). As 

Dickey (2020) states, “the legacy of the Council is found in its journals” (p. 82). Given the 

importance and impact of NCTM’s publications throughout the decades, they are an ideal place 

to understand how both mathematics education and learning styles have been discussed.  

In this study using content analysis, we asked, what are the characteristics of articles 

published by NCTM that mentioned “learning styles?” We conducted searches for “learning 

style*” in all NCTM journal publications, specifically, The Mathematics Teacher (TMT, 1908-

2018), The Arithmetic Teacher (TAT, 1954-1994), Teaching Children Mathematics (TCM, 1994-

2019), Mathematics Teaching in the Middle School (MTMS, 1994-2019), Journal for Research 

in Mathematics Education (JRME, 1970-present), Mathematics Teacher Educator (MTE, 2012-

present), and Mathematics Teacher: Learning and Teaching PK-12 (MTLT, 2020-present). We 

identified a total of 331 articles that met our criteria, with 92 articles in TAT (28.7%), 64 articles 

in TMT (19.3%), 69 articles in TCM (20.8%), 71 articles in MTMS (21.5%), 29 articles in JRME 

(8.8%), 1article in MTE (0.3%), and 2 articles in and MTLT (0.6%). Identified articles were 

published between 1962 and 2023, with 111 of the 331 (33.5%) articles published in the 1990’s. 

Two hundred and two (61%) articles were full articles about lessons, teaching practices, and 

related topics, 62 (18%) were book reviews, seven (2%) were reader letters, 29 (9%) were 

advertisements for professional development, 10 (3%) were author biographies, 14 (4%) were 

calls for manuscripts, and 7 (2%) were other types of articles. Findings highlight how the 

prevalence of mentions of learning styles spans decades in NCTMs’ journals, across various 

grades, populations, and positions of mathematics education leadership. As NCTM publications 

serve as the leading place for mathematics teachers and mathematics teacher leaders to learn and 

share ideas, the impact of these references may have been significant in endorsing the 

consideration of learning styles in mathematics teaching for decades.  
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Coaching is increasingly seen as a critical component of teacher professional learning 

programs. However, questions persist about approaches to coaching in mathematics that might 

better foster teacher buy-in and support scalability. Our study adapted the instructional triangle 

(Cohen et al., 2003) to the context of math coaching to investigate teacher-coach interactions 

across nine different school groupings in the context of a school-mandated curriculum-

embedded professional learning program. Our findings showed that coaches often described 

teacher mindsets as a barrier to their work, while teachers focused on their need for content 

expertise. We also addressed differences between school-based versus district-based coaching 

approaches, and generalist versus math-specific coaching approaches, suggesting implications 

for the design and use of math coaching as a lever for instructional reform. 

Keywords: Professional Development, Mathematical Knowledge for Teaching, Curriculum, 

Research Methods 

While coaching is broadly defined as a critical component of effective teacher professional 

learning (PL; Desimone & Pak, 2017; Darling-Hammond et al., 2017), mathematics coaching 

has not received the same attention in the research compared to coaching in other domains such 

as literacy (Kraft & Blazar, 2017). Indeed, the impact of mathematics coaches in supporting PL 

programs within schools is often hidden in research on teacher PL (Hjalmarson and Baker, 

2020). This is in part because coaching is highly interactional and adaptive depending on the 

coach training, school context, and willingness of the teacher participants (Coburn & Russell, 

2008; Russell et al., 2020).  

This study adapted the instructional triangle (Cohen et al., 2003) to the context of 

mathematics coaching to unpack these interactions between teachers and coaches, and to indicate 

how the structure and approach to coaching relates to the perceived benefit of mathematics 

coaching, according to both teacher and coach participants. The ability of math teachers and 

coaches to mutually and productively adapt their shared work is a critical component in the 

scalability of coaching models (Russell et al., 2020). As such, this study used teacher and coach 

interviews in the context of a curriculum-embedded PL program to describe the shared – or 

divergent – perspectives of teacher-coach groupings. Given that participants’ interpretations of 

policy ultimately inform their behavior in such systems (Desimone, 2002), our findings can be 

informative for those interested in using math coaching to help support instructional reform. 

With this context in mind, we consider the following research questions: 

mailto:ethan.p.smith@wsu.edu
mailto:latricem@udel.edu
mailto:lauramd@udel.edu
mailto:kirsten@kirstenleehill.com
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1. In what ways do mathematics teacher and coach descriptions of their shared coaching 

work align or diverge? 

2. What aspects of the coaching environment do teachers and/or coaches describe as 

beneficial or detrimental to improving teachers’ instructional practices? 

Theoretical Framework 

We leveraged the instructional triangle (Cohen et al., 2003), especially iterations of the 

instructional triangle as it relates to the work of mathematics teacher educators or coaches 

(Nipper & Sztajn, 2008; Shaughnessy et al., 2016), to investigate the interactional nature of the 

teacher-coach experience. The instructional triangle describes teaching (and in our context, 

mathematics coaching) as “a collection of practices, including pedagogy, learning, instructional 

design, and managing organization” (Cohen et al., 2003, p. 124) that is inherently influenced by 

external environmental factors. Importantly, Cohen and colleagues stress that improving teacher 

learning outcomes depends not on the mere inclusion of educational resources, but rather the 

ways that individuals (e.g., teachers and coaches) are able to work with one another and use 

these resources. Our adaptation of this framework is shown below in Figure 1, and described in 

our review of the literature that follows. 

 

 
 

Figure 1: The mathematics coaching triangle 

 

Mutual Adaptation: Alignment Between the Teacher and the Coach 

Before examining the various interactions that are mapped onto our mathematics coaching 

triangle, it is important to note that this framework recognizes the importance of both teachers 

and coaches as actors within a system aiming for instructional reform. Successful educational 

reform projects have long been characterized as adhering to mutual adaptation (McLaughlin, 
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1976), a process “in which project goals and methods [are] modified to suit the needs and 

interests of participants and in which participants [change] to meet the requirements of the 

project” (p. 172). More recently, Russell et al. (2020) identified that such adaptations may 

support the scalability of mathematics coaching programs in particular, so long as coaches are 

able to adapt to teachers’ perceived buy-in to the coaching without violating the integrity of the 

coaching model. By considering how both teachers and coaches perceive of their shared work, 

our approach can indicate conditions where productive mutual adaptation has occurred, or 

conditions under which teacher and coach interactions have led to “lethal mutations” (Russell et 

al., 2020, p. 176) of the coaching model. 

Teacher and Coach Interactions with Coaching Activities 

Coaching activities in mathematics can vary considerably, from emphasizing an 

understanding of mathematics content itself to strengthening teachers’ understanding of their 

classroom interactions with students (Nipper & Sztajn, 2008). Activities that attend to both 

teachers’ mathematics subject matter and pedagogical content knowledge – which together is 

referred to as mathematical knowledge for teaching (MKT; Ball et al., 2008) – are of particular 

interest to our work. Teacher PL programs that explicitly focus on MKT have been found to 

improve teachers’ MKT for both pre-service teachers (Morris & Hiebert, 2017) and in-service 

teachers (Jacob et al., 2017), although findings connecting such programs to student achievement 

have been mixed. Importantly, Jacob and colleagues (2017) described decreasing district 

leadership support for the MKT-focused professional learning program over time as a probable 

reason for the program’s limited effects on student achievement. Such findings bolster the idea 

that the effectiveness of teachers’ interactions with their coaching activities are influenced (or 

constrained) by environmental factors of school and district policy and institutional support, 

discussed further below. 

The nature and quality of a coaches’ own training also influences how they interact with 

teachers. When the training coaches receive around supporting teacher implementation of new 

curriculum materials includes active learning, this can enable the coaches to interact more deeply 

with teachers by attending to MKT (Coburn & Russell, 2008); however, if coaches’ training is of 

lower quality, their coaching may in turn be incongruent with the goals of district curriculum, 

and they may pass on this incongruence to teachers. Similarly, teachers whose coaches hold more 

expertise in attending to MKT are more likely to develop their own MKT expertise (Sun et al., 

2014). Such research shows the importance of both the coaches’ own MKT and their congruence 

with the goals of instructional reform. 

Teacher and Coach Interpersonal Interactions 

In addition to activities related to MKT and curriculum, aspects of the teacher-coach 

interpersonal relationship can also influence teachers’ perceptions of their professional learning 

(Smith & Desimone, 2023) and influence the depth of their engagement with their learning 

(Coburn & Russell, 2008). Hence, it is perhaps no surprise that the relational aspect has long 

been considered an important element of effective coaching practices across multiple disciplines 

(Blazar, 2020; Desimone & Pak, 2017; Ippolito, 2010). Teachers’ social networks with one 

another (shown in Figure 1 above) also influence engagement in their learning (Coburn & 

Russell, 2008), though this is outside the scope of our study. 

The Coaching Environment 
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As indicated in Figure 1, the above interactions between teachers and coaches do not occur in 

isolation; rather, in line with the original instructional triangle (Cohen et al., 2003), our 

framework presumes that external, environmental factors are impacting the interactions between 

teachers, coaches, and their shared activities. Two salient factors within the coaching 

environment that our present study considered were (1) whether the coach is placed full time at a 

school (i.e., “school-based”), which has been shown to correlate more highly with student 

achievement compared to when a coach is only part-time and/or has to spread their time across 

multiple schools (i.e., “district-based”; Harbour & Saclarides, 2020), and (2) whether the 

coaching role is designed as a generalist or math-specific position. Given the importance of 

attending to MKT noted above, the expertise and focus of the coach regarding the teaching of 

mathematics was conjectured to influence the nature of the coaching interactions. 

Methods and Methodology 

Our data are drawn from the Research on Curricular Alignment Partnerships (R-CAP) 

project. R-CAP was a multi-year study supported by the Bill & Melinda Gates Foundation, with 

the overarching aim of understanding how professional learning partnerships (PLPs) – or 

collaborative partnerships between school districts, PL providers, and curriculum developers – 

could foster ambitious instruction and culturally responsive (CR) instruction through curriculum-

embedded PL (i.e., specific curriculum materials are integrated throughout the ongoing PL 

activities; Taylor et al., 2015), particularly for minoritized students. 

Participants and Protocols 

Our teachers (n = 18) and coaches (n = 9) were recruited from participants (n = 479) across 

six different school districts participating with a PLP as part of the R-CAP project, drawn to 

reflect teachers with a variety of perceptions about their coaching and school-mandated PL. 

Because of the participating PLP’s focus on ambitious instruction and culturally responsive 

instruction, we selected teachers based either on their reported normative authority (or buy-in) to 

their professional learning (Desimone, 2002) or their reported frequency of CR instruction. This 

allowed for a sample of teacher participants with a variety of experiences with this school-

mandated professional learning. This sampling approach is further addressed in Comstock et al., 

2022. 

Through this approach, we were able to draw from a diverse sampling of teachers from 

participating PLPs, including those with low normative authority (n = 4; pseudonyms Mrs. 

Menton, Mr. Brannon, Mrs. Cicero, and Mrs. Wendell), high normative authority (n = 3; 

pseudonyms Mrs. Leak, Mrs. Dratch, and Mrs. Seale), low frequency of CR instruction (n = 3; 

pseudonyms Mr. Mendes, Mr. Carrigan, and Mrs. Hembrow), medium frequency of CR 

instruction (n = 5; pseudonyms Mrs. Klein, Mrs. Muhr, Mr. Biscay, Mrs. Eccles, and Mrs. 

Gibbon), and high frequency of CR instruction (n = 3; pseudonyms Mrs. Giddings, Mrs. 

Sturman, and Mr. Hickson). With these teachers selected, we then recruited coaches from the 

same participating PLPs who had indicated working at these teachers’ schools.  

Our interviews were designed to elicit responses from both teachers and coaches about the 

nature of the coaching work, the relationship between teachers and coaches, and facilitators and 

barriers to implementation. For instance, teachers were asked “How would you describe the 

quality of your professional relationship with your coach?” while coaches were asked “How 

would you describe the quality of your professional relationship with your teachers?” 
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Analysis 

We used an embedded case study design (Yin, 2018) to analyze the interview responses from 

our nine teacher-coach grouping (i.e., for each coach, we interviewed 1-3 teachers that they 

worked with). In alignment with the mathematics coaching triangle, we coded interview 

responses to identify descriptions of (1) interactions with different coaching activities identified 

by the teachers or coaches (2) interactions related to teacher-coach interpersonal trust, (3) 

references to coach expertise/congruence or the coaching focus on MKT, and (4) environmental 

factors outside of direct teacher-coach interactions that participants indicated had impacted the 

coaching work. We then also coded whether these descriptions were described as (1) beneficial 

or detrimental to teachers’ learning and instruction, (2) as a mixture of beneficial and 

detrimental, or (3) neutral or unclear in relation to the benefit of the activity or aspect. To 

determine these categories, we looked for references to whether the benefit of an action 

interaction was described directly (e.g., “that was helpful” or “That doesn’t work for my 

students”), or indirectly (e.g., “I think that my strength is just my emotional intelligence, being 

able to relate to my teachers and being able to be a trusted advisor for them” or “We just can’t get 

through it all - it’s just too much”). 

Each interview was double coded by members of the research team, identifying coaching 

activities, teacher-coach interactions, and environmental factors from the participant 

descriptions. After each teacher-coach grouping was coded by one member, another member 

would code the same grouping and note any discrepancies in the initial codings. The researcher 

members would then meet to resolve any disagreements. After this initial round of coding, 

research members wrote analytic memos (Saldaña, 2013) for each school-based teacher-coach 

grouping, describing the ways that the teacher(s) and coach aligned or diverged in their 

descriptions, and the relevant themes across the different participants in each school grouping. 

Results 

RQ1: Alignment and Divergence of Teacher and Coach Descriptions of Coaching Work 

Our first research question focused on how teachers and coaches aligned or diverged in their 

descriptions of their shared coaching work. We found that teachers and coaches largely agreed 

about the focus of their coaching work. However, teachers held reservations about the perceived 

MKT of their coaches, while coaches held concerns about their teachers’ mindsets around their 

learning and instruction. Table 1 and Table 2 show each activity, interaction, and environmental 

factor described by both teachers and coaches in each teacher-coach grouping, and their 

perceived benefit (or detriment). 
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Table 1: Coach-Teacher Groupings with Similar Perceptions 

Teacher-Coach Grouping 

Similar coaching 

activity (teacher and 

coach description) 

Similar interactions & 

environmental factors 

(teacher & coach description) 

Coach: Mrs. Line 

Teacher: Mrs. Cicero 

Assessment (+) Interpersonal Trust (+) 

Coach: Mrs. Koenig 

Teacher: Mrs. Gibbon 

Observe/Debrief (+) Interpersonal trust (+) 

MKT focus (+) 

Coach expertise (+) 

Coach: Mrs. Mattingly 

Teachers: Mr. Biscay, Mrs. Seale, 

Mrs. Hembrow, Mrs. Sturman 

Observe/Debrief (+) 

Lesson design (+) 

Co-teaching (+) 

Interpersonal trust (+) 

MKT focus (+) 

School Policy (#) 

Coach: Mrs. Eccles 

Teachers: Mr. Hickson, Mrs. 

Tabor 

Observe/Debrief (+) +Interpersonal trust 

+Coach flexibility 

Note. + = Described as beneficial. - = Described as detrimental. # = Described as both beneficial and 

detrimental. ? = Not described as beneficial or detrimental. 
 

Table 2: Coach-Teacher Groupings with Differing Perceptions 

Coach-Teacher Grouping 

Similar coaching activity 

(description by coach, by 

teachers) 

Similar interactions & 

environmental factors 

(description by coach, by 

teachers) 

Coach: Mrs. Mallinson* 

Teachers: Mrs. Giddings, Mrs. 

Muhr, Mr. Carrigan 

Assessment (+, ?) Coach expertise (–, –)  

Mrs. Lees (Coach)** 

Teachers: Mr. Mendes, Mrs. Klein 

Observe/Debrief (+, #) Interpersonal trust (#, #) 

 

Mrs. Nowak (Coach)** 

Teacher: Mr. Brannon 

Lesson design (+, #) Interpersonal trust (+, +) 

MKT focus (+, -) 

Mrs. Lyndon (Coach)* 

Teacher: Mrs. Wendell 

Lesson design (+, #) MKT focus (+, -) 

School policy (+, -) 

Mr. Aras (Coach)** 

Teacher: Mrs. Fieser, Mrs. 

Menten, Mrs. Leak, Mrs. Dratch 

No similar coaching 

activities described by 

both coach and teachers 

Interpersonal trust (+, +) 

 

Note. + = Described as beneficial. - = Described as detrimental. # = Described as both beneficial and 

detrimental. ? = Not described as beneficial or detrimental. * = Generalist (cross-content) coach. ** = 

District-based coach. 
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Broadly, we found that teachers and coaches described similar sorts of activities. However, 

while coaches in each grouping described their activities as supporting the goals of the 

curriculum-embedded coaching work, there was a split in how teachers perceived these 

activities. Just under half of the teacher-coach groupings were in agreement about the benefit of 

these activities, while in the rest of the groupings teachers described both beneficial and 

detrimental aspects of the activities. 

For groupings that aligned regarding the benefit of the coaching activities, teachers and 

coaches also frequently aligned in describing positive aspects of interpersonal trust and (in two 

of the cases) the MKT focus of the activities. For groupings that diverged in their descriptions of 

the coaching work, some trends arose regarding how teachers and coaches described their 

interactions with one another and with the activities themselves. For instance, when discussing 

lesson design and planning, Coach Lyndon stated, “I can get in there and give you ideas based on 

what I'm seeing, based on how the curriculum should be presented” and that “being able to give 

them my first-hand experience, I think has helped them.” Yet, Mrs. Wendell, a teacher working 

with Coach Lyndon, described how Coach Lyndon “doesn't have a specialty in one particular 

area. She's a coach for the whole school.” Despite Coach Lyndon’s belief that she was facilitating 

lesson planning activities that were beneficial to teachers, Teacher Wendell’s perceptions of the 

usefulness of those activities appeared to be influenced by Coach Lyndon’s lack of teaching 

experience or specialization with mathematics teaching (i.e., a lack of MKT). Notably, every 

teacher-coach grouping where there was disagreement about the benefit of the coaching activities 

were also school sites with district-based or generalist coaches. 

While concerns with coach expertise or the ways that coaching activities supported their 

MKT were chief among teachers, another trend arose distinctly among coaches. All but one 

coach (Mr. Aras) described the issue of teacher mindsets as an important aspect of their work. 

For instance, Coach Koenig described shifting teachers’ mindsets as part of the “biggest barrier” 

in her coaching and discussed how the teachers she worked with were “not really believing that 

we can do certain things.” Similarly, Coach Mallinson described how “some of our veteran 

teachers are just kind of reluctant to try new ways and new things.” The issue of teacher mindsets 

was mentioned by only one teacher, Mrs. Cicero, who also happened to have a stated goal of 

becoming a math coach herself. In sum, coaches described teacher mindsets about math 

instruction to be a major barrier to instructional change, while teachers described a need for 

specific content and teaching expertise as being the major barrier to their success. 

RQ2: Perceived Beneficial or Detrimental Aspects of the Coaching Environment 

As noted above, perceptions about the MKT focus or coaching expertise appeared to be a 

major divergence between the teacher and coach experience. For our second research question 

about what might be driving alignment or divergence of such experiences, we found that the 

design of the coaching role – specifically whether the coach was school-based and whether the 

role was math-specific – related to teachers’ perceived benefit of their coaching. 

A common theme that emerged from both coaches and teachers was the importance of the 

coach in fostering teachers’ MKT which, in turn, was related to the coach’s own MKT. Teacher 

comments about the MKT focus of their coaching activities often also extended into descriptions 

of their coach’s perceived expertise in supporting MKT. Teachers with generalist coaches 

repeatedly described this aspect of the coaching to be inadequate and stifling to their desire to 

strengthen their own MKT. Indeed, of the four instances where participants discussed the 
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perceived content expertise of their coaches in negative terms, three of these came from teachers 

with a generalist coach (Mr. Carrigan, Mrs. Muhr, and Mrs. Wendell), while the fourth came 

from a generalist coach themselves (Mrs. Mallison). 

There were markedly different interviews given by teachers with school-based coaches 

compared to those with district-based coaches who supported multiple schools. Teachers 

working with district-based coaches expressed frustration at the lack of connection between their 

teaching context and their coaching interactions. For example, Mrs. Menten described how her 

coach (Mr. Aras) was “knowledgeable on the curriculum, but he's not knowledgeable on students 

with special needs.” Similarly, Teacher Brannon described how his coaching activities (run by 

Coach Nowak) “[weren’t] what I needed...I would have rather spent time with other seventh and 

eighth grade math teachers who were specifically [focusing on] the special ed population.” These 

teachers specifically did not see the work with their district-based coach as aligned to the 

challenges that they felt around working with their students with special needs. On the other 

hand, teachers who worked with school-based coaches generally described the interactions with 

their coach as beneficial. Indeed, every school grouping that had teachers and coaches describe 

similar activities and in similar (positive) terms involved school-based coaches.  

Limitations 

This analysis should be interpreted in the context of several limitations. First, it was 

conducted in the context of a district-mandated curriculum-embedded PL program. While we 

believe that our findings likely extend beyond this particular context, future studies should 

consider the role of particular policies and reforms. Second, this study occurred in large, urban 

districts serving predominantly students from minoritized groups. The resources, visions, and 

challenges of these particular districts may influence our findings about coaches and teachers. 

Discussion 

Grounded in our adaptation of the instructional triangle to mathematics coaching, we 

explored teacher-coach alignment in descriptions of their interactions, and how key aspects of 

the coaching environment were perceived as beneficial or detrimental to teachers in improving 

their instruction. Our findings showed that teachers and coaches generally described engaging in 

similar types of activities. However, coaches tended to consider their activities to be beneficial – 

even when their teachers did not. Because productive mutual adaptation through content-focused 

inquiry is a promising feature of scalable coaching models (Russell et al., 2020), the teacher-

coach groupings that varied in alignment offer clues about how teacher-coach interactions can 

support such opportunities for mutual adaptation. 

A disconnect between focusing the coaching work on teaching versus focusing it on teachers 

seemed to be a driving cause of discontent between coaches and their teachers in certain school 

grouping. This sort of disconnect is not new (see Hiebert & Morris, 2012), but the lens of the 

mathematics coaching triangle may help to highlight the delicate balance of work required to 

achieve coaching that is well-received by coaches and teachers alike, and is thus positioned to 

support productive, mutual adaptation between coaches and their teachers. While almost all 

coaches described the challenge of shifting teacher mindsets as part of their work, coaches with 

teachers who found the coaching work beneficial were also those that seemed to foster positive 

interactions around interpersonal trust with their teachers and around MKT in their activities. 
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Given that teachers who found the coaching work detrimental rooted such problems in the lack 

of MKT focus with their coaching, this could indicate an opportunity for more aligned and 

beneficial coaching. Regardless of whether coaches feel that teachers hold mindset barriers 

toward instructional change, if they foster strong relationships with their teachers and focus on 

strengthening teachers’ MKT, they may be able to achieve better buy-in from their teachers. 

Finally, our findings indicated concerns with more generalist of district-based coaching 

approaches. Coaches who were hired to support multiple contents were not perceived by their 

teachers as knowledgeable enough to successfully support teachers’ MKT. This indicated how 

district supported professional learning that carefully attends to aspects of MKT is not only a 

compelling model for impacting teacher practices and student learning outcomes (Jacob et al., 

2017; Morris & Hiebert, 2017), but may also be a model that teachers themselves desire. School-

based coaches were also perceived as more beneficial than district-based coaches. Previous 

studies have indicated that school-based coaches may be better positioned to foster stronger 

relationships with teacher may also be burdened with more administrative tasks by school 

leaders that take away time for coaching (Kane & Rosenquist, 2019). Our findings indicate that, 

at least from the perspective of teachers, school-based coaches were able to foster strong 

interpersonal relationships and facilitate beneficial learning activities. Therefore, while 

administrative tasks may have still arisen in these cases, they did not appear to prevent buy-in 

from the teachers regarding the benefit of the coaching work. 

Because of the importance of these teacher-coach interactions and environmental factors in 

our findings, the coaching triangle may be a helpful lens for investigating the complexity of math 

coaching.  By attending to interactions between teachers, coaches, and their shared activities, our 

hope is that future investigations on PL programs can give further voice to the experiences of 

both teachers and coaches in defining the effectiveness of such interventions. 
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Objectives and Purpose 

Beswick (2021) describes the importance of mathematics teacher educator (MTE) voice 

generated from reflection on their learning and development as MTEs. Such a voice provides 

opportunities for colleagues to “enter the experience” (p. 422) of other MTEs. Drawing from 

matricentric feminism (O’Reilly, 2019; 2021) to frame our epistemological beliefs as mothers 

and motherscholars (Matias & Nishi, 2018), we understand that we bring our lived experiences 

as academic mothers into our work as MTEs. Further, a community of practice consisting of 

MTEs who are mothers can provide emotional and intellectual support that academic mothers 

desperately need to survive and thrive in academia (e.g., O’ Brien Hallstein & O’Reilly, 2012). 

Our identification as academic mothers in mathematics education (AM-ME) positions us to 

identify a set of tacit knowledge that comes from the interconnectedness of these two roles. In 

this poster, we present findings from our research on the knowledge we gain from our 

experiences as mothers (who are also MTEs and former teachers) and how we use this 

knowledge as MTEs to leverage pathways for Pre-service Teachers (PSTs) to disrupt the status 

quo when working with parents, caregivers, and the community in mathematics education. 

 

Methods 

Using collaborative autoethnography (CAE) (Chang et al., 2012), we documented our lived 

experiences and the ways in which we leveraged our mother experiences in our MTE work. Our 

team engaged in narrative interviews (Jovchelovitch & Bauer, 2000) in which each member 

shared their experiences leading up to becoming both an MTE and mother, as well as the 

experiences when these two identities intersected. Following these interviews, we generated 

individual reflections around the ways that our mother roles had informed our MTE work in the 

areas of teaching, research, and service. These data points were used to construct narratives 

naming the challenges in our mother experiences that produced knowledge used to inform our 

practices as MTEs working with teacher candidates in methods coursework. 

 

Findings and Discussion 

Our experiences as mothers of school-aged children have heightened our awareness of the 

power and participation dynamics that exist between families and schools. These dynamics are 

largely rooted in home-school communication structures, such as conferences and 

communication home to families in relation to student progress, standards, assessments, or 

instructional practices; however, we note that they also connect to the use of family experience 

and expertise as a tool to support curricular design. Through our CAE, we unearthed a wealth of 

knowledge we developed over the years through parenting and interacting with our school-aged 

children and their teachers and utilized this knowledge to improve our instructional practice to 
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better prepare mathematics teachers to build bridges with families. We hope to share these 

ongoing reflections and how they impact our work in preparing learning experiences for teacher 

candidates in methods coursework that center on cultivating reciprocal family relationships. 
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Chapter 9:  

Precalculus, Calculus, and Higher Mathematics 
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Learning Assistants (LAs) are undergraduate students who, having successfully completed a 

certain course, return to classrooms in a different role – as near-peer tutors who help facilitate 

their peers’ learning in that course. While students in courses with LAs have repeatedly 

evidenced more positive content-related learning outcomes compared to students in courses 

without LAs, little is known about how LAs facilitate these positive outcomes. This study explores 

LA-student interactions around the topic of implicit differentiation, in a university Calculus I 

course. Findings suggest that LAs help to demystify this topic for students by connecting to 

previous course material and focusing on computational correctness. These findings help to 

advance our understanding of the mechanisms of how LAs support student learning of implicit 

differentiation. 

Keywords: Learning Assistants, Calculus, Classroom Discourse, Undergraduate Education 

Introductory-level university courses, such as Calculus, aim to equip students with a robust 

foundation for future careers in science, technology, engineering, and mathematics (STEM) 

fields. However, Calculus courses were shown to have a high drop, withdrawal, failure rates, and 

student dissatisfaction with their learning experiences (Bryk & Treisman, 2010). Research 

suggests that the transformation of these courses (i.e., lowering failure rates and increasing 

student satisfaction) can be attained through active learning strategies such as studio course 

designs and group problem-solving (Freeman et al., 2014).  

One means of facilitating these active learning approaches is through the incorporation of 

near-peer tutors (i.e., undergraduate students who have previously been successful in the course) 

into course instruction. While near-peer tutors can be incorporated into courses in several ways 

(Adreanoff, 2016; Otero et al., 2010), the Learning Assistant (LA) model of near-peer tutoring 

has been shown to be particularly effective in supporting active learning pedagogies (Knight et 

al., 2015). Under this model, near-peer tutors, called learning assistants (LAs) synchronously aid 

course instruction, typically by facilitating small group interaction around course content. LAs 

also practice in weekly meetings with course instructors to review the content they will be 

teaching and in a pedagogy course to learn about and reflect on teaching practice.  

There is a growing body of research showing a variety of positive outcomes for students in 

LA-supported STEM courses, specifically, in Calculus. These include affective outcomes such as 

more positive attitudes toward mathematics (Castillo et al., 2022), and content-related outcomes 

such as lower drop, withdrawal, and failure rates (Alzen et al., 2018) and improved course grades 

(Bullock et al., 2015).  

While these positive learning outcomes have been documented, there is little understanding 

of how LAs help facilitate them. Some attribute this to LAs’ temporal proximity to the course 

content due to their recent completion of the course, and/or to their social proximity to student 

experiences (Alzen et al., 2018; Hernandez et al., 2021). These assumptions are based on 
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research on LAs’ classroom actions, such as providing students with feedback and increasing 

discussion time. However, these action descriptions are not subject-specific, leaving open a 

question of how LAs facilitate students’ leaning of a particular course content.  

This study seeks to examine how LAs facilitate student learning of specific mathematical 

content—implicit differentiation—by analyzing LA-Student interactions within a collegiate 

Calculus I course. Implicit differentiation, detailed in the following sections, was chosen as the 

content area since it has been identified as an under researched topic with which calculus 

students commonly struggle (Martin, 2000). The mathematical challenges characteristic of this 

topic offer opportunities for LAs to authentically aid student learning, which constitutes a rich 

research environment. This study explores the following research questions:  

1. What mathematical aspects of implicit differentiation do students and LAs discuss during 

their interactions in Calculus I recitations?  

2. What discursive moves accompany the mathematical aspects of implicit differentiation 

discussed by LAs and students during their interactions in Calculus I recitations? 

Literature on Implicit Differentiation 

Implicit differentiation is a technique for finding derivatives of equations where 𝑦 cannot be 

explicitly expressed as a function of 𝑥 (e.g., 𝑥𝑦 + 𝑦2 = 3𝑦𝑥2; graphs of such equations do not 

pass the vertical line test). Despite the importance of implicit differentiation in differential 

Calculus and its connections to other key topics such as chain rule and related rates, it received 

little research attention (Speer & Kung, 2016). Only recently have researchers begun exploring 

this topic, uncovering many challenges students have with applying implicit differentiation and 

understating its meaning. Mirin and Zazkis (2019) point to the inherent difficulty of recognizing 

implicit equations and making sense of applying differentiation to both sides of such an equation. 

Even when students recognize the need for implicit differentiation, they may struggle to apply 

prerequisite skills from algebra (e.g., simplifying exponential or radical expressions) and 

calculus (e.g. differentiation rules) to solve such problems (Borji & Martínez-Planell, 2020; 

Kandeel, 2021).  

Researchers have also begun exploring ways to support student learning of this topic. Borji 

and Martínez-Planell (2020) studied how students’ understanding of implicit curves and implicit 

differentiation changed following a series of interventions designed within the Action-Process-

Object (APOS) theory. Another intervention, which combined the concepts of the chain rule, 

implicit differentiation, and related rates was designed and tested by Jeppson (2019). Both 

intervention studies developed highly detailed conjectures about of the learning stages students 

progress through when learning about implicit differentiation (called genetic decompositions in 

APOS theory, or hypothetical learning trajectories (Simon, 1995)). Buchbinder and Allen (in 

press) further adapted the elements of both learning stages trajectories— by Jeppson (2019) and 

Borji and Martínez-Planell (2020)—into a framework used in this study (as described below).  

The literature points to the growing interest in the mathematics education community in 

describing and supporting student learning of implicit differentiation. This study aims to extend 

the description of students’ difficulties with this topic by considering how students address and 

resolve these difficulties in an authentic classroom environment - to the best of our knowledge, 

to date, there have been no studies that examined this topic in the authentic classroom context. 
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Also, since LAs have a unique near-peer status with students, the conversations between LAs 

and students around implicit differentiation may shed new light on student learning of this topic. 

Theoretical Framing 

We utilize Vygotsky’s (1978) sociocultural theory to study LAs and students’ interactions 

around implicit differentiation. Under this theory, learning is a social process, mediated through 

language, and through interactions with individuals who have more knowledge than the learner. 

These More Knowledgeable Others (MKOs) facilitate the individual’s learning by guiding them 

through the Zone of Proximal Development (ZPD) – a set of concepts, ideas, and skills outside 

of the individual’s reach, which can only be attained with the help of others. This study frames 

LAs as MKOs who facilitate students’ movement through the ZPD. 

In addition to the general emphasis on language as mediating the learning process, we rely on 

the tools of Critical Discourse Analysis (CDA) to tie together deep linguistic analyses of LAs 

and students’ discourse with the unique sociocultural features of collegiate mathematics 

classrooms in which the language is used. CDA has been successfully used in mathematics 

education research (McNeill et al., 2022) as well as in studies on near-peer tutoring (Butler & 

Buchbinder, 2023; DiMaio, 2020).  

We rely on Gee’s (2014) formulation of CDA, according to which language fundamentally 

reflects the lived experiences of the speakers within particular contexts. Linguistic structures of 

the spoken language, like grammar and words used, reveal individuals’ ways of “saying 

(informing), doing (action), and being (identity)” (p. 2) in the world. We operationalized Gee’s 

first two components of language through a two-fold qualitative coding scheme (detailed below). 

One part of the coding scheme captures the specific mathematics students and LAs discuss 

(saying), and the other part describes the actions of these speakers (doing). Gee’s notion of 

“being” is also essential to this study as the information and actions only make sense in the 

context of the participants’ identities as LAs and students in a Calculus I course. 

Methods 

Setting 

This study is a part of a larger NSF-funded project to transform introductory STEM courses 

at a large, research-intensive university in the northeast of the United States. In mathematics 

department, these transformation efforts focus on Calculus I recitations. This Calculus I course 

follows a lecture-recitation model, with students attending a large lecture (~160 students) taught 

by a faculty member three times a week and a smaller recitation session (~20 students) led by a 

graduate teaching assistant (GTA) twice a week. Transforming the recitations involved (a) the 

incorporation of researcher-designed, conceptually oriented activities focused on fostering 

metacognitive practices and representational fluency and (b) introducing LAs to facilitate small 

groups’ discussions of problems in these activities. 

Data Collection 

This study focuses on the Implicit Differentiation activity (Figure 1), adapted from Boelkins 

et al. (2018). The activity aims to support recognition of the need for implicit differentiation and 

making connections between symbolic and graphical representations of implicit equations. 

The data were collected over two semesters, in nine recitations taught by multiple GTAs, 

during the implementation of the Implicit Differentiation activity. The activity was enacted 
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toward the end of the semester, so students were well familiar with LAs who had been working 

with them in recitations since the beginning of the course. In each recitation, one small group of 

three to four students (volunteers), was recorded using 360-degree table-top video cameras 

(Buchbinder, in press). Students in these small groups were mostly first- and second-year STEM 

majors, mostly white, and there was an approximately even split between male and female 

presenting students. LAs were mostly second- and third-year STEM majors, mostly female, and 

ranged in LA experience from one to three semesters. 

From the total of approximately 7.5 hours of footage, we first identified video clips where the 

LA interacted with the recorded small group or one of its members. Some clips had to be 

excluded from the analysis due to low audio quality or if the content of the interaction was not 

mathematical (e.g., grades, office hours). From this process, a total of 25 minutes and 5 seconds 

of usable video data were identified for five LAs. semesters. The footage involved 22 separate 

LAs-student conversations containing 250 utterances. Each utterance was coded using the 

analytic framework described below.  

 

 
 

Figure 1: Implicit Differentiation Activity 

Analytic Framework 

Transcripts of the selected clips were coded at the utterance level for mathematical content 

and actions of the speaker. The specific elements of implicit differentiation discussed were coded 

using the Implicit Differentiation Knowledge Components (ImDKC) framework developed by 

Buchbinder and Allen (in press). This framework classifies knowledge components of implicit 

differentiation according to three types of learning goals: recognition of implicit differentiation, 

symbolic manipulation of implicit formulas, and graphic representation of implicit curves. These 

categories are further broken into specific competencies and skills students must be able to 
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perform to meet the broader goals. Further, algebra and calculus categories were added to 

capture LAs’ and students’ talk related prior knowledge (Kandeel, 2021).  

To understand how LAs and students interact around the various goals of the ImDKC 

framework each LA and student utterance was coded for the type of discursive action (e.g., 

asking question, elaborating, explaining). Specifying the discursive actions is important for 

understanding how the interlocutors frame the implicit differentiation topics and how this 

framing evolves throughout the discussion (Gee, 2014). LAs’ discursive actions were coded at 

the turn of talk level using the Action Taxonomy for Learning Assistants (ATLA) (Thompson et 

al., 2020) which catalogs 25 types of LAs’ classroom actions (e.g., explain, check knowledge, 

clarify the goal of activity) across six broad categories: directed facilitation, guided facilitation, 

feedback, advice, course-related talk, and non-course related talk.  

Students’ discursive actions are also coded at the turn of talk level; however, due to the 

absence of a suitable coding scheme for college students’ discursive actions, we developed one 

for this study. Taking ATLA categories as a starting point we used open coding and constant 

comparative method (Strauss & Corbin, 1998) to develop 11 categories of students' discursive 

actions such as “explaining work” or “asking for directions.” The codes were grouped into three 

broader categories: asking questions, explaining work or thinking, and following LA directions. 

Overall, each utterance or dialog turn was coded in two ways: with an element of the ImDKC 

framework to capture the mathematical theme, and with a discursive action of the speaker: LA or 

a student. Following this micro-analysis, we aggregated across all LAs and students for various 

coding categories to identify trends in the data and respond to the research questions: what 

aspects of implicit differentiation do students and LAs discuss, and how do they talk about them? 

Results 

In this paper, we report on the preliminary results of data analysis to provide an overview of 

the trends in LA-student discourse across all interactions about implicit differentiation. Table 1 

shows the distribution of the ImDKC topics across interactions; Table 2 shows the distribution of 

discursive actions by LAs and students across interactions.   

 

Table 1: Distribution of ID Topics Across Interactions (N =250 utterances; 22 interactions) 

 
ImDKC Topic Number and 

Percent of 

Utterances(a) 

Number of 

interactions(b) 

Symbolic NS=65 (26% of all utterances)   

Implicit Equation (S_Eq): View y as an implicit function of x 5 (8%) 2  

Chain Rule (S_Ch): Use of chain rule in implicit differentiation 3 (4%) 1  

Differentiation (S_Diff): Compute 𝑑𝑦 𝑑𝑥⁄  14 (22%) 4  

Evaluation (S_Eval): Compute 𝑑𝑦 𝑑𝑥⁄  at a point 16 (25%) 5  

Tangent Line (S_Tan): Compute equation of a tangent line at a point 3 (4%) 1  

Procedure (S_Pro) Relate implicit diff.  to other differentiation rules 24 (37%) 3  

Graphic NG=91 (36% of all utterances)   
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Recognition (G_Rec): Implicit curves don’t pass the vertical line test 9 (10%) 2  

Tangent Slope (G_TS): Relate 𝑑𝑦 𝑑𝑥⁄  at point as the slope of the 

tangent line at that point 

32 (36%) 5  

Vertical Tangent (G_VT): Implicit curves with vertical tangent lines  14 (15%) 2  

Constant Rate (G_CR): Graphical meaning of constant rate of change  16 (18%) 2  

Coordination (G_Cor): Coordination between graphic and symbolic 

representations. 

20 (21%) 5  

Background Concepts NB=94 (38% of all utterances)   

Calculus (C) Topics previously learned in the calculus course 33 (35%) 5  

Algebra (A) Algebraic operations when performing computations 61 (65%) 9  

Notes: (a) The percentages of each code in the first data column are calculated out of the total 

number of codes in the related ImDKC category: Symbolic, Graphic or Background Concepts.  

(b) The total number of interactions exceeds 22, since there were multiple codes per interaction.  

 

Table 2: Distribution of Student and LA Discursive Actions (N=250) 

  
Student Actions LA Actions 

ImDKC 

Category 

Asking 

questions 

Explaining 

work or 

thinking 

Following 

LA direction 
Directing Guiding 

Providing 

feedback 

or advice 

Symbolic 12 5 9 21 3 15 

Graphic 15 7 13 28 12 16 

Background  18 12 20 23 4 17 

 

Symbolic Goals 

Symbolic goals were mentioned in 65 (26%) of utterances across 22 interactions. Of modal 

categories of codes were Symbolic Differentiation (22%), Symbolic Evaluation (25%), and 

Symbolic Procedures (37%). Symbolic Differentiation (S_Diff) captures talk about finding dy/dx 

in implicit equations and Symbolic Evaluation (S_Eval) captures talk about evaluating this 

derivative at a specific point. Each of these topics was of particular concern for students since 

about half of the utterances for each of these codes were spoken by a student. Furthermore, in 

three out of four interactions involving symbolic differentiation, it was students who initiated the 

discussion. Similarly, students initiated three out of five interactions around symbolic evaluation.   

LA-student conversations also focused on Symbolic Procedures (S_Pro) - 24 utterances (37% 

of symbolic codes). This topic was introduced by an LA in all three of the interactions in which it 

appeared, with the LA typically explaining procedures of implicit differentiation in connection to 

previously seen differentiation rules and with students following along the explanations. For 

example, one LA directed a student to “just take the normal derivative of it and then multiply by 

dy/dx” to complete a problem. The prevalence of this topic reflects the pragmatic role of the LA 

as a near-peer in classroom discourse with students; LAs explained how to do the computations 

involved in implicit differentiation in the context of these students’ prior knowledge.  
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The pragmatic nature of these LA-student interactions is also evidenced in their discursive 

actions around symbolic codes (Table 2). The associated student action codes reveal that students 

were particularly concerned with correctly performing the algebraic steps of the procedures and 

arriving at the correct answers. Students primarily asked questions (12 of 26 student symbolic 

utterances), to check with the LA their computations (e.g., “Is this right? Like am I on the right 

track?”) or to ask for guidance about the next steps (e.g., “How would you do, would that just be 

y?”). In response to these questions, LAs typically directed student work (21 of 38 LA symbolic 

utterances); they explained procedural steps that students should take (e.g. “So then you could 

just factor out the y prime and solve for it.”) While one may hope that LAs would not default to 

explaining steps, LAs’ direct address of students’ concern for correctness reflects their effort at 

aiding students in correctly performing computations on which they will likely be assessed. 

Graphic Goals 

Graphic aspects of implicit differentiation appeared in 36% of utterances across all 22 LA-

students’ interactions. Of the graphic goals, Graphic Tangent Slope (G_TS) and Graphic 

Coordination (G_Cor) were the most prevalent, 36% and 21%, respectively. That is, when 

discussing graphical components of implicit differentiation, LAs and students mostly focused on 

lines tangent to implicit curves and relating graphical features of implicit curves to symbolic 

representations of these curves and their derivatives.  

The category Graphic Tangent Slope (G_TS) appeared in five interactions; initiated by LA in 

four of them. LAs typically either explained how to interpret slopes of tangent lines (e.g., 

“remember that the derivative is the equation for the slope”) or prompted students to use their 

prior knowledge of tangent lines in this new context (e.g., “So what is the meaning of dy /dx?”). 

In response to LAs’ explanations and prompts, students occasionally explained their thinking 

(e.g., “You plug in the point and then see if it's equal”), but primarily provided simple factual 

answers (e.g., LA: “So if I take the derivative of a function, what is that?”, Student: “Slope”). 

Overall, the talk on this topic was characterized by LAs prompting students to recall prior 

knowledge about tangent lines, and then explaining to students how to apply the facts they know 

within the new context of implicit differentiation. Since students did not often bring this topic up, 

it was LAs who supported students’ making connections between previous course content and 

implicit differentiation, helping make these connections explicit. 

Another topic initiated mostly by LAs was Graphic Coordination (G_Cor), with LAs 

introducing the topic in four of the five interactions in which it appeared. Typically, LA pushed 

students to connect their symbolic work to graphical properties. For example, one student asked 

an LA what value to plug in to find the derivative at a point. In response, the LA directed the 

student by pointing to the graph and asking “so what point were you looking at originally? 

(0,1)?” Instead of telling the student how to proceed, the LA probed the student’s thinking about 

the problem by connecting the graph of the implicit curve with symbolic calculation of slope at a 

point. This shows the LAs aiding student’s reasoning across representations and making sense of 

computations using graphical properties.  

In relation to graphical topics, students primarily asked questions (15 of 35 graphic student 

actions) and followed LA instructions (13 of 35 graphic student actions). Questions revolved 

around interpreting graphs (e.g., How are you supposed to explain that they're [vertical tangent 

lines] vertical?”). In response to student questions, LAs directed work (28 of 57 LA graphical 

actions) and provided feedback (16 of 57 LA graphical actions), explaining concepts and 
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correcting or confirming student work, similar to symbolic topics. LAs’ discursive actions for 

graphical topics had a high number of guiding utterances (13) compared to the very low counts 

for symbolic topics (3) and background concepts (4). 

Background Concepts: Algebra and Calculus Skills 

LAs and students also discussed prior knowledge of calculus (e.g., calculus notation, tangent 

lines) and algebra skills (e.g., steps in solving an equation, exponent rules). These topics are 

needed to both understand implicit differentiation and do such computations. These Background 

Concepts were mentioned in 94 utterances (38%), of those, almost twice as many were related to 

algebra than calculus (61 and 33 utterances respectively) (Table 1). Algebra topics appeared in 

more interactions (nine out of 22) than calculus topics (five of the 22 interactions).  

In relation to background skills, students explained their thinking and work on computations 

(e.g., “Okay I did the (0,-1), but didn't get the same”, “5 minus 15, negative 6.”) in only 12 out of 

50 utterances in the background concepts category. Yet it was the highest compared to five and 

seven student explaining codes in symbolic and graphic categories. This suggests students may 

be more comfortable or confidant sharing their thoughts about topics with which they are already 

familiar.  Students also asked LAs to check the validity of their work on background concepts 

(18 of 50 codes) saying things like “So this would be 15?” and “Am I doing this right?”.  

In response to student thoughts and questions on these topics, LAs typically directed student 

work (23 of 44 LA background concepts utterances), meaning that they explained procedures to 

students (e.g., “You can use the quadratic equation to solve for y squared”). LAs also provided 

students feedback (17 of 44 LA background concepts utterances) on their work (e.g., “Um, you're 

on the right track, but something's going wrong in these terms here”). Students appeared 

receptive to this explanation and feedback with 20 of the 50 student background concepts codes 

being following LA direction. Like with the symbolic goals, LAs were pragmatic in supporting 

students; their diligent oversight and confirmation (or correction) of students’ basic calculus and 

algebra skills reassured students that they were successfully performing procedures on which 

they will be assessed. 

Discussion 

Our analysis reveals that classroom interactions between LAs and students are primarily 

pragmatic in nature. The topics of LA-Student conversations often revolve around computation, 

with symbolic and background topics together discussed in the majority of utterances. While this 

kind of talk could be dismissed as superficial, we interpret the focus on procedural correctness as 

a shared value between LAs and students as university student peers who know that success in 

Calculus 1 course hinges on displaying procedural fluency on exams. LAs also helped students 

consider graphical features of implicit equations by interpreting graphs in the context of 

computations, connecting to prior knowledge, and prompting students to explain their thinking. 

Though some detail is lost by reporting this micro-analysis of classroom discourse in 

aggregate, this initial report allows us to make sense of the trends seen across various LAs’ 

interactions with small groups as they discussed implicit differentiation. We are currently in the 

process of analyzing the sequencing of moves within each interaction to provide a sense of how 

conversations are reciprocally constructed by LAs and students in this setting.  

The current study provides a novel insight into LA-student classroom interactions. We extend 

Thompson et al.’s (2020) taxonomy of LA’s actions (ATLA) to student actions as well, and 
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contextualize both types of actions within specific mathematical content. This study also 

exemplifies several ways in which LAs act as MKOs in a Calculus setting, including through 

pragmatic focus on computation and by explicitly connecting new ideas to prior knowledge. This 

emphasis on procedural knowledge could be one aspect of the mechanism contributing to 

success of students in LAs’ supported classrooms, since procedural knowledge of mathematics 

has been shown to support development of conceptual knowledge (Rittle-Johnson et al., 2015).  

Further, this study contributes to our understanding of how students learn implicit 

differentiation in an authentic classroom environment, compared to prior studies that used local 

interventions and teaching experiments (Borji & Martínez-Planell, 2020; Jeppson, 2019). LAs’ 

emphasis on prior knowledge reframed implicit differentiation not as a new and potentially 

intimidating course topic, but as a familiar procedure with some modifications, thus potentially 

supporting students’ emotional and cognitive processing of this topic. Continued analysis of 

these LA-student conversations at this detailed level will generate much needed insight into both 

students’ real-time learning of implicit differentiation and the content-specific aspects of LA-

supported learning. 
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Mathematical literacy is a critical component of teaching mathematics as its own language. 

In this study, I will use writing to learn mathematics (WTLM) activities to help students 

communicate their mathematical thinking and understanding. I will conduct an embedded single-

case study with 43 undergraduate students enrolled in a hybrid calculus course, which focuses on 

integral and multivariable calculus topics. WTLM activities will provide students with an 

opportunity to explain their understanding either symbolically, procedurally, and/or conceptually. 

The students’ understanding of partial derivatives will be analyzed using my posit framework, 

which is an integration of the frameworks Concept Definition and Concept Image, and 

Covariational Reasoning. In my study, I investigated students' initial and developing 

understanding of partial derivatives within the calculus curriculum. Using WTLM activities, I 

address my research question: What are students’ concept definitions and evoked concept images 

when learning about partial derivatives in calculus? In this paper, I focus on the WTLM activities 

I implemented as my data collection sources.  

One of my goals was to give students a larger voice in their thinking and understanding and a 

larger ownership in the learning process by teaching mathematics literacy as part of the learning 

process. Using writing to learn mathematics (WTLM) activities, students can communicate their 

mathematical thinking and understanding. The two WTLM activities I propose using are (1) 

“The Important Thing About…” Prompt [based on Brown’s (1949)] Important Book, and (2) My 

Aspects of Mathematical Phenomena (AMP) – Chart [based on Frayer and colleagues (1969) 

with contributions of online blogger Musingsofamathteacher (2011)]. It is with these activities, 

that I can begin to unpack students' understanding of topics such as partial derivatives and 

address my research question: What are students’ concept definitions and evoked concept images 

when learning about partial derivatives in calculus? 

Summary 

As I continue to analyze my data, I expect to learn about my students' concept definitions and 

concept images of partial derivatives. Afterward, I expect to see how these concept definitions 

and concept images of partial derivatives reflect their understanding. My work on this study will 

contribute to giving students (1) a larger voice in their thinking and understanding to their 

teachers through the usage of WTLM activities, (2) the skills to communicate their 

understanding inside and outside of the mathematics classroom, and (3) a tool to combat the 

difficulty that comes with abstract mathematical ideas.  
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Presentamos una secuencia didáctica mediada por la tecnología digital para significar y 

calcular las raíces reales de una función real en un curso de cálculo diferencial para estudiantes 

de ingeniería. Para introducir las raíces diseñamos un Escenario Didáctico Virtual Interactivo, 

que simula un problema real, y usamos el sistema tutorial CalcVisual para apoyar el cálculo 

aproximado de las raíces. Implementamos la secuencia con una población de 45 estudiantes 

universitarios en México. Los datos se analizaron mediante los modelos emergentes de la 

Educación Matemática Realista. Mostramos el progreso en la actividad matemática de los 

estudiantes a través de cada uno de los niveles de actividad de los modelos emergentes quienes 

mostraron un avance significativo en la comprensión conceptual y cálculo de las raíces reales. 

Precálculo, Cálculo, Tecnología, Experimentos de diseño. 

Los polinomios son funciones fundamentales en la matemática, en particular en el cálculo, 

análisis matemático y álgebra lineal. Una de las propiedades más importantes de una función 

polinómica, son sus raíces reales y complejas, pero determinarlas no es tarea sencilla e incluso en 

algunos casos se llega a confundir la función polinómica con la ecuación que se deriva de ella 

(Dede y Soybas, 2011). Significar el concepto de raíz real de una función resulta determinante 

por tratarse de un concepto fundamental para la matemática e imprescindible para aplicaciones 

en procesos de optimización, cálculo diferencial e integral, álgebra lineal, cálculo multivariable y 

método Simplex de programación lineal, por mencionar algunos. La determinación de las raíces 

simples o múltiples es un problema complejo y vigente que tiene su origen desde los primeros 

vestigios de la humanidad, y que siempre ha estado asociado a problemas de variación, 

acumulación y optimización. Hasta nuestros días se mantienen problemas abiertos sobre el 

cálculo de raíces, sobre todo cuando son múltiples (Cuevas y Madrid, 2013), y cobra relevancia 

en el problema de cómo introducir desde el plano cognitivo este concepto en la enseñanza a nivel 

de precálculo y cálculo (Veuillez-Mainard, 2023). Al realizar una búsqueda sistemática de la 

literatura podemos constatar que existen pocos artículos que reporten las dificultades de 

enseñanza de raíces reales, minimizando la importancia y dificultad del concepto. Es conveniente 

recordar que la resolución de ecuaciones polinomiales generó el álgebra (Puig y Rojano, 2004). 
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Tradicionalmente el cálculo aproximado de raíces reales era un tema importante que tratar en 

cursos de análisis numérico donde se practicaban diversos métodos como: bisección, regula falsi 

y Newton-Raphson para aproximarse al valor de una raíz real. Sin embargo, al popularizarse el 

uso de herramientas digitales con la avalancha de diversos manipuladores simbólicos virtuales, el 

significado y proceso bajo el cual se desarrolló permanece oculto, dejando la incertidumbre de 

qué es una raíz real de una función real. Esto debido a que softwares como: Mathematica, 

Wolfram Alpha, Matlab, GeoGebra y Photomath, resuelven ecuaciones y encuentran sus raíces 

en cuestión de segundos. Este reto que la tecnología digital ha puesto en la enseñanza y 

aprendizaje de las matemáticas permanece sin respuesta, y ha creado el paradigma de ¿qué se 

debe de enseñar? Cuando los estudiantes utilizan cualquier dispositivo o software para calcular el 

valor de una raíz real ¿sabrán que la mayoría de las veces encuentran un valor aproximado? ¿qué 

cuando las raíces son múltiples y cercanas pueden confundirse por errores de aproximación? 

¿qué significa gráfica y numéricamente una raíz? ¿en qué se puede utilizar el concepto de raíz 

real, más allá de calcular su valor? Estos significados, se extraviaron al perderse los métodos de 

aproximación de una raíz y difícilmente se recuperarán algún día. Nos preguntamos ¿cómo 

recuperar los significados del concepto raíz de una función real mediante actividades mediadas 

por la tecnología digital? Nuestra propuesta consiste en el desarrollo y creación de actividades 

didácticas que permitan recuperar los significados de las raíces reales aprovechando los recursos 

que la tecnología digital ofrece el día de hoy como la capacidad numérica, gráfica y simbólica.  

Marco teórico 

Cuando un profesor frente a un grupo de estudiantes explica y anota definiciones, fórmulas y 

ejercicios en el pizarrón, mientras los estudiantes lo observan, escuchan y anotan en sus libretas 

lo expuesto por él, a esta enseñanza se le denomina enseñanza tradicional, la cual se ha 

desarrollado durante varios años. Para evitar este tipo de enseñanza y promover una enseñanza 

participativa con el objetivo de dotar de un significado a los conceptos matemáticos, Cuevas y 

Pluvinage (2003) proponen una serie de principios – intranet conceptual, partir de un problema 

en un contexto real, un plan de acción, implementación de operaciones inversas, la articulación 

de diversos registros de representación, la validación de resultados y la aplicación del concepto 

en un contexto diferente al enseñado– para la enseñanza de un concepto matemático. Usamos 

estos principios para el diseño de las actividades. 

Los modelos emergentes son una de las tres heurísticas de diseño instruccional de la 

Educación Matemática Realista (RME por sus siglas en inglés). Esta heurística describe como 

una serie de modelos puede apoyar el avance matemático de los estudiantes (Gravemeijer, 2020). 

La heurística de los modelos emergentes destaca la importancia de comenzar con problemas 

contextuales que ofrezcan oportunidades para desarrollar un razonamiento específico de la 

situación y con el potencial de crear problemas cuya solución hace necesario el uso de conceptos 

matemáticos más sofisticados (Gravemeijer y Doorman, 1999). La actividad matemática inicia 

con el uso o desarrollo de un modelo derivado del contexto y, con el tiempo, este modelo apoya 

la aparición de formas de conocimiento matemático formal (Doorman et al., 2012). Los 

estudiantes transitan por distintos niveles de actividad que van desde el uso de estrategias 

informales hasta el razonamiento matemático formal (Gravemeijer, 1999). Los cuatro niveles 

propuestos por la RME son: 

1. Nivel situacional (actividad en el entorno de la tarea). En este nivel las interpretaciones y 
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las soluciones dependen de la comprensión de cómo actuar en el entorno (fuera del entorno 

escolar).  

2. Nivel referencial. En este nivel los modelos-de se refieren a la actividad en el entorno 

descrito en las tareas. En consecuencia, los modelos que surgen se basan en la comprensión de 

los estudiantes del entorno real y forman parte de las explicaciones en las que los estudiantes 

describen cómo interpretaron y resolvieron las tareas centradas en los escenarios de partida.  

3. Nivel general. Este nivel comienza a surgir cuando los estudiantes empiezan a razonar 

sobre las relaciones matemáticas implicadas. Por lo tanto, surge cuando el razonamiento de los 

estudiantes pierde dependencia de las imágenes específicas de la situación. En este sentido, los 

modelos-para sirven más como medio de razonamiento matemático que como forma de 

simbolizar la actividad matemática basada en entornos particulares. 

4. Nivel formal. En este nivel se trabaja con los procedimientos y notaciones 

convencionales. Se alcanza cuando los estudiantes ya no necesitan el apoyo de modelos para la 

actividad matemática. 

Usamos estos niveles para mostrar el progreso en el razonamiento de los estudiantes, sobre el 

concepto de raíz, al trabajar con las actividades propuestas. 

Metodología 

Este estudio se desarrolló con base en la Investigación Basada en el Diseño (IBD) por lo que 

esta investigación implica iteraciones de diseño, implementación y análisis mediante las 

siguientes fases: preparación y diseño, experimentos de enseñanza y análisis retrospectivo 

(Bakker, 2018).  

Fase de preparación y diseño 

Se diseñó una secuencia de cinco actividades para introducir de forma gradual el concepto de 

raíz real (ver figura 1). 

 

Figura 1: Secuencia didáctica 

 

Como parte de la secuencia, se diseñó un Escenario Didáctico Virtual Interactivo (EDVI), al 

que denominamos EDVI “Globo” porque simula un recipiente cilíndrico de 10 cm de diámetro 

con un globo esférico atado al fondo. Este EDVI cuenta con botones para llenar y vaciar de agua 

el recipiente y botones para inflar y desinflar el globo a partir de los cuales, pueden observar 

cambios de forma dinámica en parámetros como: la altura inicial del agua con el globo 

desinflado, la altura del agua al inflar o desinflar el globo y el radio y diámetro del globo (ver 

figura 2a). En este artículo nos referimos a un EDVI como un manipulativo virtual que permite 

simular y visualizar diferentes representaciones semióticas de un problema real (Cuevas et al., 

2023).  
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Figura 2. a) EDVI Globo; b) Sistema Tutorial Inteligente CalcVisual 

 

Adicionalmente, se utilizó un Sistema Tutorial Inteligente denominado CalcVisual que 

apoyará a los estudiantes en el cálculo de las raíces (ver figura 2b). El CalcVisual es un software 

que no calcula las raíces como cualquier manipulador simbólico. Permite introducir el polinomio 

y mediante herramientas visualizar diferentes representaciones del concepto de raíz. Por ejemplo, 

su representación tabular y su gráfica sobre un plano cartesiano. Es importante señalar que, 

CalcVisual no trabaja con funciones racionales y radicales. Asimismo, se diseñaron Hojas de 

Exploración y Aprendizaje Guiado (HEAG) para cada actividad, las cuales guían al estudiante en 

la manipulación de las herramientas digitales y en la construcción del concepto matemático.  

Fase de experimento de enseñanza 

La intervención didáctica se desarrolló en una universidad pública mexicana con 45 

estudiantes inscritos en un curso de “Matemáticas aplicadas a la informática”. Las HEAG se 

enviaron de manera digital a cada estudiante y las actividades se desarrollaron en equipos de 6 

integrantes. Después de resolver cada actividad, el profesor seleccionó unas HEAG al azar y 

realizó una discusión en clase para llegar a las respuestas correctas de forma consensuada. Las 

actividades fomentan tanto el aprendizaje individual como el colaborativo. Los datos se 

obtuvieron mediante las respuestas en las HEAG que los estudiantes enviaron al correo 

electrónico del profesor. Uno de los autores fue el encargado de impartir dicho curso. Los datos 

se analizaron de manera independiente por los investigadores. Se identificaron estrategias de 

solución y las respuestas de los equipos se clasificaron en los niveles de actividad (situacional, 

referencial, general y formal).  
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Resultados y análisis retrospectivo 

En esta sección describimos como progresa el razonamiento de los estudiantes a través de 

cada uno de los niveles de actividad de los modelos emergentes al trabajar con las actividades 

propuestas. Debido a la limitación del documento, mostramos las respuestas de dos equipos (T1 

y T2) seleccionados al azar. 

Actividad Situacional  

Como se ha mencionado anteriormente, la actividad situacional implica que los estudiantes 

trabajen en un entorno real para alcanzar objetivos matemáticos particulares. La actividad en el 

aula comenzó con la exploración del EDVI “Globo”. Clasificamos esta actividad en el nivel 

situacional porque los estudiantes usaron las herramientas disponibles en el escenario para 

identificar variables, constantes y características cómo: una altura inicial del agua (ℎ0) con la que 

el diámetro del globo puede ser igual a la altura del agua (ℎ𝑎). La tabla 1 muestra las respuestas 

de los equipos T1 y T2 a las preguntas de exploración.  

Tabla 1. Preguntas y respuestas a las actividades de exploración 
Pregunta Respuesta T1 Respuesta T2 

¿Qué elementos son variables al 

inflar el globo? 

Radio del globo, volumen del 

contenido en el recipiente, 

volumen del globo. 

Radio del globo, volumen del 

contenido en el recipiente, volumen 

del globo y altura inicial del agua. 

¿Qué elementos son constantes al 

inflar el globo? 

Radio del recipiente, volumen 

inicial de agua y altura inicial 

del agua. 

Radio del recipiente, volumen 

inicial de agua. 

¿Hasta qué valor puede crecer y 

disminuir el radio del globo (𝑥)? 

El radio puede crecer hasta 5cm 

y disminuir hasta 0cm 

El radio puede crecer hasta 5cm y 

disminuir hasta 0cm. 

¿Hasta que altura inicial (ℎ0) se 

puede llenar el recipiente de agua? 

La altura inicial máxima es de 

12 cm 

La altura inicial máxima es de 

5.47. 

Escribe una altura inicial del agua 

ℎ0 con la que el diámetro del globo 

sea igual a la altura del agua ℎ𝑎. 

Si el recipiente se llena hasta 

una altura de 10cm, el diámetro 

se expandirá hasta los 10cm. 

A una altura de 5.45 

 

En general, los elementos constantes del EDVI son el radio del recipiente, el volumen inicial 

de agua y la altura inicial del agua. Sin embargo, nótese que el T2 indicó como variable la altura 

inicial del agua. Inferimos que dieron esta respuesta porque se trata de un parámetro que se 

puede modificar en el EDVI. Aunque, una vez establecido, al inflar y desinflar el globo este 

permanece constante. Observe también que, las respuestas a la pregunta 4 son diferentes. Ambas 

respuestas son correctas, ya que el T1 se enfocó en la ℎ0 con el globo desinflado, mientras que el 

T2 primero infló el globo hasta su valor máximo y posteriormente llenó el recipiente con agua. 

Finalmente, las respuestas a la pregunta 5 nos hacen inferir que los estudiantes confundieron la 

altura inicial del agua (ℎ0) con la altura del agua (ℎ𝑎) aunque se puede observar que sí 

identificaron valores en los que el diámetro del globo es igual a la altura del agua. 

Actividad Referencial 

Tras la exploración del EDVI “Globo”, la actividad en el aula continuó con el problema de 

identificar la ecuación polinómica que modela el volumen total del contenido del recipiente, 

cuando el radio del globo es tangente a la superficie del agua para identificar como solución la 

raíz de un polinomio. Clasificamos esta actividad como referencial porque los estudiantes 

comenzaron a establecer relaciones matemáticas en el contexto. Esta actividad se dosificó de 

modo que los estudiantes propusieran ecuaciones para determinar la altura del agua (ℎ𝑎) en 
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relación con el radio del globo (𝑥), el volumen del globo (𝑉𝐺), el volumen inicial del agua (𝑉𝐴) y 

el volumen total del contenido en el recipiente (𝑉𝑇). La tabla 2 muestra las ecuaciones propuestas 

por los equipos T1 y T2.  

Tabla 2. Ecuaciones propuestas por los equipos T1 y T2 para modelar el problema del 

radio del globo tangente a la superficie del agua 

T1 T2 

𝑉𝐺 = (
4

3
)𝜋𝑥3  𝑉𝐺 = (

4

3
)𝜋𝑥3  

𝑉𝐴 = 𝜋(𝑅2) ℎ0 𝑉𝐴 = 𝜋(𝑅2) ℎ0 

ℎ𝑎=2𝑥 ℎ𝑎=ℎ0 − 𝑥 

𝑉𝑇 = 𝜋(𝑅2) ℎ𝑎 𝑉𝑇 = 𝜋𝑅2ℎ𝑎 + 𝑉𝐺 = 𝜋𝑅2(ℎ0 − 𝑥) +
4

3
𝜋𝑥3 

𝑉𝑇(𝑥) − 𝑉𝐴 − 𝑉𝐺 = 0   
Donde 𝑉𝑇(𝑥) es el volumen del cilindro con 

radio 𝑥 y altura del agua ℎ𝑎, 𝑉𝐴 es el 

volumen inicial de agua y 𝑉𝐺 es el volumen 

del globo. 

𝜋𝑅2(ℎ0 − 𝑥) + (
4

3
 ) 𝜋𝑥3 − 𝑉𝑇 = 0  

 

 

De las respuestas observamos que ambos equipos identificaron la relación entre el volumen 

total del contenido en el recipiente (𝑉𝑇), el volumen sumergido del globo (𝑉𝐺) y el volumen 

inicial del agua (𝑉𝐴). Por ejemplo, los estudiantes del T1 mencionaron que “el volumen total del 

contenido en el recipiente es igual a la suma del volumen inicial del agua y el volumen 

sumergido del globo”. Además, señalaron que esta relación se podía expresar mediante la 

siguiente ecuación “𝑉𝑇 = 𝑉𝑖 + 𝑉𝑔”. De forma similar, los estudiantes del T2 indicaron que “el 

volumen total del contenido del recipiente es igual a la suma del volumen inicial del agua con el 

volumen sumergido del globo”. Sin embargo, ningún equipo llegó a la ecuación polinómica 

esperada 
4

3
𝑥3 − 2𝑅2𝑥 + 𝑅2ℎ0 = 0 donde, 𝑥 es el radio del globo, R es el radio del recipiente y 

ℎ0 es la altura inicial del agua. Esta ecuación se desarrolló y explicó en la discusión grupal. 

Actividad General 

Después de identificar la ecuación polinómica 𝑓(𝑥) =
4

3
𝑥3 − 2𝑅2𝑥 + 𝑅2ℎ0 que modela el 

problema del radio del globo tangente a la superficie del agua, se propuso a los estudiantes que 

usaran CalcVisual para encontrar las raíces del polinomio, con 𝑅 = 5 y ℎ0 = 4, 𝑓(𝑥) =
4

3
𝑥3 −

50𝑥 + 100. Clasificamos esta actividad en el nivel general porque los estudiantes se enfocaron 

en representaciones gráficas y tabulares para encontrar las raíces, sin hacer referencia al contexto 

del globo. Por ejemplo, el T1 respondió “Nuestra función cuenta con 3 raíces, −6.9493, 2.3430 

y 4.6063. Esto lo conocemos gracias a que al meter la función dentro de nuestro programa 

graficador, este genera 3 puntos exactos”. Por su parte, el T2 mencionó “Este polinomio tiene 3 

raíces, 𝑥1 = −6.94, 𝑥2 = 2.34 𝑦 𝑥3 = 4.60. En la gráfica podemos ver tres puntos, lo cual 

significa que cada uno de ellos es parte de una raíz”. Nótese cómo en ambos casos mencionan la 

existencia de puntos en la gráfica del polinomio, los cuales asociaron con sus raíces. Al finalizar 

esta actividad, pedimos a los estudiantes que validaran sus resultados respondiendo la pregunta 

“¿Qué raíces tiene sentido para el problema del globo?”. El T1 respondió que “las raíces 

positivas debido a que se no se puede tener un volumen negativo. Los valores de la segunda y 
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tercera raíz el radio del globo es tangente a la superficie del agua”. En cambio, el T2 señaló que 

“todas las raíces son correctas. Sin embargo, para la raíz 𝑥3 = 4.6 el radio del globo es tangente 

a la superficie del agua”. Las respuestas a esta pregunta se pueden clasificar en el nivel 

referencial porque los estudiantes interpretaron las raíces encontradas en el problema del globo. 

El cambio de nivel de actividad va en acuerdo con la afirmación de Rasmussen y Blumenfeld 

(2007) acerca de que los niveles de actividad no imponen una jerarquía estricta. Sin embargo, es 

importante aclarar que esta pregunta se hizo con la intención de identificar el significado que los 

estudiantes estaban dando a las raíces reales en el contexto del EDVI Globo. 

Actividad Formal 

Después de que los estudiantes realizaron actividades con el uso de CalcVisual para encontrar 

las raíces de un polinomio, trabajaron con actividades de operación inversa como: “Escribe un 

polinomio que tenga al menos las siguientes raíces reales: 𝑟1 = 2 y 𝑟2 = −5 ¿será ese el único 

polinomio que tenga al menos esas raíces reales?”. Las respuestas de los equipos T1 y T2 se 

resumen en la tabla 3.  

Tabla 3. Respuestas de los equipos T1 y T2 a actividad de operación inversa 

Escribe un polinomio que tenga al menos las siguientes raíces reales: 𝑟1 = 2 y 𝑟2 = −5  

Equipo T1 Equipo T2 

Respuesta: 𝑥2+3𝑥−10  

1) Se coloca el signo opuesto de las raíces dadas.  

2) Multiplicamos los factores que obtuvimos. 

(𝑥−2)(𝑥+5)= 𝑥2+5𝑥−2𝑥−10  

3) Expandimos el producto.  

𝑥2 + 3𝑥 − 10 

Respuesta: (𝑥−2) 𝑦 (𝑥+5)  

(𝑥−2)(𝑥+5)= 𝑥2+5𝑥−2𝑥−10  

𝑥2 + 3𝑥 − 10 

¿Será ese el único polinomio que tenga al menos esas raíces reales? 

No es el único polinomio que tiene al menos esas 

raíces porque podemos multiplicar el polinomio 

por cualquier otro factor lineal y obtendremos un 

polinomio que tenga las mismas raíces.  

 

No, también puede ser 

𝑓(𝑥)(𝑥 − 2) = (𝑥3 +3𝑥−10)(𝑥−2)= 

𝑥3−5𝑥2−4𝑥+20 

 

 

Como se puede observar en la tabla 3, los estudiantes escribieron primero los polinomios de 

forma factorizada y posteriormente realizaron la multiplicación de los factores para proponer un 

polinomio desarrollado. Clasificamos estas respuestas en el nivel formal porque los estudiantes 

trabajaron con procedimientos algebraicos desligados del EDVI Globo y el uso de CalcVisual.  

La actividad formal también se observó en la actividad 5 que no involucraba el uso de 

herramientas digitales sino la visualización de gráficas estáticas como la de la figura 3. Esta 

actividad se diseñó como tarea final para identificar el aprendizaje que los estudiantes 

adquirieron sobre el concepto de raíz en un contexto distinto al del Globo. 
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Figura 3. Actividad de visualización de gráficas estáticas para identificar raíces 

 

Los estudiantes iniciaron la actividad 5 en el nivel general porque para responder las 

preguntas de la figura 3, los estudiantes se enfocaron en identificar los puntos en los que la 

gráfica corta al eje 𝑥 como muestran las respuestas de los equipos T1 y T2. Por ejemplo, en T1 

mencionaron que “la gráfica está atravesando el cero en el eje de las 𝑥 tres veces. Por lo tanto, la 

función de esta gráfica contiene 3 raíces: −2, 0 y 3”. De forma similar, el T2 contestó “debes 

contar el número de veces que la gráfica del polinomio cruza el eje 𝑥. Esta gráfica lo cruza 

exactamente tres veces. Entonces, el polinomio tiene al menos tres raíces: −2, 0 y +3”. 

Posteriormente trabajaron en el nivel formal porque representaron el polinomio mediante una 

factorización para llegar a su representación desarrollada.  

 

Discusión y Conclusiones 

Presentamos una secuencia de actividades que ayuda a los estudiantes a transitar de un 

razonamiento basado en un problema contextual a uno formal sobre el concepto de raíz. Si bien, 

Gravemeijer (2020) menciona que los niveles de actividad no necesariamente se observan de 

manera jerárquica, en nuestra investigación observamos que las actividades guiaron el 

razonamiento de los estudiantes sobre el concepto de raíz de forma secuencial. Es decir, la 

actividad 1 se trabajó en el nivel situacional y referencial, las actividades 2 y 3 en el nivel 

general y las actividades 4 y 5 en el nivel formal. Con lo anterior no queremos decir que los 

estudiantes no pueden regresar al contexto cuando trabajan en el nivel general y formal. 

Elegimos el contexto del Globo como un contexto con el que los estudiantes pueden significar el 

concepto de raíz, por ello, inferimos que se trata de una situación que perdura en la mente del 

estudiante. 

Destacamos que, la actividad 1 con el uso del EDVI Globo fomentó el desarrollo del nivel 

situacional al identificar variables, parámetros y relaciones funcionales. Posteriormente, fomentó 

el tránsito al nivel referencial en la actividad de determinar la ecuación polinómica que modelaba 

el problema del radio del globo tangente a la superficie del agua. Este polinomio se usa en la 

actividad 2 para que los estudiantes identifiquen sus raíces, mediante el uso de CalcVisual, y les 

den un significado en el contexto del Globo. La actividad 3 fomentó el desarrollo del nivel 

general al trabajar con el CalcVisual mediante el tratamiento de funciones polinómicas fuera de 
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cualquier contexto. Las actividades 4 y 5 fomentaron el tránsito al nivel formal al desarrollar un 

polinomio expresado mediante una factorización y localizar raíces en una gráfica. Los 

estudiantes ya no usan el EDVI Globo pero pueden usar el CalcVisual para ingresar el polinomio 

factorizado o desarrollado y visualizar representaciones gráficas, algebraicas y tabulares.  

Una de las limitaciones de este documento es que se han presentado los resultados 

únicamente de dos equipos de estudiantes, aunque el análisis del nivel de actividad se ha 

realizado con los datos de los 45 participantes. De este análisis observamos que 30 estudiantes 

alcanzaron el nivel formal al trabajar con las actividades 4 y 5. Aquellos que no alcanzaron el 

nivel formal se debe a dificultades operativas y el uso incorrecto de procedimientos algebraicos. 

Otra limitación del estudio tiene que ver con los problemas asociados a la instalación y uso 

de las herramientas digitales. A pesar de que se proporcionó a los estudiantes el CalcVisual para 

que lo instalaran en su computadora, algunos tuvieron problemas para instalarlo y no pudieron 

realizar las tareas en casa que necesitaban el uso de dicho software. Como solución, acudieron a 

otra herramienta como Wolfram, GeoGebra, etc para resolver las actividades. Aquí, el problema 

radica en que al usar herramientas como Wolfram los estudiantes obtienen las raíces sin saber 

cómo. Prueba de lo anterior es que en la retroalimentación con los estudiantes que trabajaron 

todas las actividades con el CalcVisual, manifestaron seguridad al resolver el examen del curso. 

En cambio, aquellos que utilizaron otros softwares, no sabían de dónde provenían los datos. En 

este sentido, el rol del profesor es importante porque debe intervenir para guiar a los estudiantes 

en el cumplimiento de los objetivos. En este estudio, durante la discusión en grupo, el profesor 

mostró a los estudiantes cómo usar el CalcVisual y discutió las desventajas de usar otro software.  

Retomando nuestra pregunta de investigación ¿cómo recuperar los significados del concepto 

raíz de una función real mediante actividades mediadas por la tecnología digital? Sugerimos que 

el uso indiscriminado de la tecnología digital en la enseñanza de las matemáticas puede 

contribuir a la perdida de los significados y aplicaciones de los conceptos matemáticos. Por lo 

que recomendamos que su aplicación requiere de un cuidadoso diseño didáctico previo a su 

aplicación. Sugerimos iniciar la actividad en el aula con la simulación de un problema en 

contexto que permita a los estudiantes dar sentido al concepto matemático de interés. La 

simulación del problema del globo sumergido en un recipiente permitió al estudiante dotar de 

significado al concepto de raíz que por su propia naturaleza es abstracto. Usar un software no 

resolutivo como CalcVisual permite manipular diferentes representaciones de forma simultánea 

para establecer relaciones entre ellas, lo cual lleva a que los estudiantes adquieran significado del 

concepto de raíz en su representación tabular, gráfica y algebraica. 

Destacamos la importancia de incluir actividades sin el uso de herramientas digitales para 

corroborar el aprendizaje del concepto de raíz. En este caso las herramientas digitales sirven 

como herramienta de verificación de resultados. Los estudiantes pueden identificar raíces de 

gráficas estáticas, obtener su polinomio y, posteriormente, ingresarlo en el software para 

comprobar los valores numéricos de las raíces. La aplicación de las HEAG es fundamental ya 

que guían la secuencia de actividades, contribuyendo a la comprensión del concepto de raíz de 

una función real.  
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In this study, I present four calculating instructional situations identified within 56 instructional 

tasks for introducing derivatives proposed by eight experienced college calculus instructors. 

During four 1–2-hour long interviews, the instructors proposed up to eight tasks for introducing 

derivatives physically, graphically, verbally, and symbolically, both at a point and as a function. 

The tasks were analyzed to identify calculus-specific instructional situations framing them. Here, 

I describe the four identified calculating situations, how they were realized in the tasks through 

calculus-task units (CTUs), and what mathematical works they expect of students. 

Keywords: Undergraduate Education, Calculus, Instructional Activities and Practices, 

Curriculum 

As basic units of instruction and “objects of students’ activity” in mathematics classrooms 

(Ni et al., 2018; Sullivan et al., 2009, p. 859), instructional tasks are often seen as the conceptual 

bridge between teaching and learning (Christiansen & Walther, 1986; Stein & Lane, 1996). 

Empirical studies have revealed that the nature of tasks often changes during instruction, and that 

teachers’ decisions about how students worked on the tasks has a significant influence on their 

learning outcomes. Nonetheless, the research on instructional tasks in first-semester college 

calculus is lacking. Given that much is at stake for students in these courses (e.g., progression to 

graduation or majoring in math-required fields), a better understanding of how the content is 

presented and what learning opportunities are created is imperative for improving students’ 

learning outcomes. In this study, I aim to enhance our understanding of calculus teaching and 

uncovering how one specific content area—derivatives—is presented to students through  

instructional tasks. More specifically, I focus on the work of calculating in instructional tasks 

aimed at introducing derivatives. 

Theoretical Framework 

Using the Brousseau’s (1997) notion of didactical contracts to delineate what is normative 

and what is not, Herbst (2006) introduced instructional situations as customary ways by which 

the teacher’s and students’ actions and interactions are framed into appropriate units of work 

regarding the knowledge at stake. Instructional situations regulate the “work on particular kind of 

tasks for particular objects of knowledge” (Herbst & Chazan, 2012, p. 605) as both distinct 

problem types used in a course of studies, as well as “the specific norms that regulate the 

teacher’s and students’ work on them” (Herbst et al., 2023, p. 402). Herbst et al. (2020) defined 

task framing from the perspective of the teacher in mathematics instruction as choosing a way of 

handling a problem, or choosing an instructional situation, about the knowledge at stake; once 

recognized by students, the task framing, that is the instructional situation, allows students to 

know what kind of mathematical work and interactions they should prototype. For instance, 

graphing is an example of an instructional situation in Algebra I. When students are asked to 
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graph a line in the form of 𝑦 = 𝑚𝑥 + 𝑏, by realizing that the instructional situation is graphing in 

Algebra I, they access the didactical contract of graphing. Teachers can select from the available 

set of instructional situations to frame their instructional tasks, consequently launching and 

organizing students’ work (Herbst et al., 2018; 2020). Researchers have identified various 

customary instructional situations mainly in high school geometry and algebra, such as doing 

proofs; installing (defining) a new definition or a new concept; installing (introducing) a new 

theorem, property, or formula; solving equations with known methods; and solving word 

problems (Chazan & Lueke, 2009; Herbst et al., 2010).  

Methods 

The data for this study comes from a larger interview study with eight experienced U.S. 

calculus instructors. During four semi-structured 1–2-hour long interviews with each instructor, I 

prompted the instructors to propose up to eight tasks for introducing derivatives. Organized by 

Zandieh’s (2000) framework, each interview was dedicated to one representation of the 

derivative (graphical, verbal, physical, symbolic) and its process-object layers (ratio, limit, 

function). The process-object layers are hierarchical, as each layer is found by taking the process 

of that layer over the previous layer as an object. For example, the limit layer is found by the 

process of finding the limit of the ratio as an object. The limit layer corresponds to when the 

denominator approaches zero; the function layer is presented as an array of numbers or set of 

ordered pairs of differences. The instructors were asked to propose tasks within each 

representation that would help transition students’ conception from one layer to the next within 

that representation: from ratio to limit, and from limit to function.  

The instructors collectively proposed 56 tasks, or what could be better described as ‘a set of 

tasks.’ Despite this, I refer to what they proposed in its entirety and to the unit of analysis as an 

instructional task. To pursue analysis, I first broke down the instructional tasks into their smallest 

calculus-specific problems, which I call calculus-specific task units or CTUs. By this, I mean that 

if I further divided a CTU into smaller tasks, the results would not be recognizable as calculus 

tasks; instead, they would be recognized as tasks from other content areas preceding calculus in a 

standard mathematics curriculum sequence. I then used thematic analysis (Saldaña, 2021) to 

reduce the 37 identified CTUs to 11 instructional situations categorized as four calculating, two 

exploring/conjecturing, two graphing, two installing, one proving, and one solving equation (see 

Gerami, 2024). In this study, I focus on calculating situations for introducing derivatives. 

Findings 

I identified 12 distinct calculating CTUs across all the tasks, which I then reduced to four 

instructional situations, as shown in Table 1:  

 

Table 1. Calculating instructional situations and along with their CTUs 

Instructional Situations Calculus-Specific Task Units (CTUs) 

1) Calculating/ 

Estimating a value 

using known formulas 

or definitions  

C1. Calculating the average rate of change or average velocity or 

slope of secant lines or difference quotient given 𝑓(𝑥) and/or a table 

of values for various 𝑥𝑖 and 𝑓(𝑥𝑖), or the equation of the curve of 

best fit based on various 𝑥𝑖 and 𝑓(𝑥𝑖) 

C6. Calculating instantaneous velocity at 𝑥0, using equation of 
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continuity 

C7.1. Calculating instantaneous velocity or instantaneous growth or 

the slope of tangent or derivative values or 𝑓’(𝑥0) or 𝑓’(𝑎) given 

𝑓(𝑥), using a limit definition  

C7.2. Calculating 𝑓’(𝑥0 +/−) using the limit definition  

C8. Calculating 𝑓’(𝑥0) or slope of a tangent line at 𝑥0 or 𝑎 using the 

formula for 𝑓’(𝑎) or 𝑓’(𝑥) 

C11. Calculating instantaneous velocity or instantaneous growth or 

𝑓’(𝑥) using a limit definition 

2) Calculating/ 

Estimating a value by 

collecting information 

from graphical 

representations to use 

in known formulas or 

definitions 

C2. Calculating slope of secant lines to the left and right side of 𝑥0 

using the graph of 𝑓(𝑡) 

C5.1. Calculating the slope of tangent line at 𝑥0 using the graph of 

𝑓(𝑥) on plain or grid background 

C5.2. Calculating slope of tangent line at a point 𝑥0 by zooming in 

3) Writing an 

algebraic statement 

using known formulas 

or definitions  

C3. Finding the equation of a secant line  

C9. Finding the equation of a tangent line at 𝑥0 or 𝑎 

C12. Finding instantaneous velocity 𝑓’(𝑥) using average velocities 

on consecutive equidistant intervals for a quadratic function 

4) Estimating a value 

using number sense 

C4. Estimating instantaneous velocity or slope of a tangent line or 

rate of change or 𝑓’(𝑥0) or 𝑓’(𝑎) 
using a pattern of average velocities or slope of secant lines or 

average rates of change  

C10. Estimating 𝑦-values of 𝑓’ as slopes of tangents of 𝑓 

 

The first instructional situation—calculating/estimating a value using known formulas or 

definitions—can be seen in calculating CTUs in which information is provided to students, 

expecting them to put forward known formulas/definitions to calculate the unknown value in the 

problem. In C1, C6, C7, C8, and C11 students should use various definitions to calculate 

derivatives at different layers. At stake in these situations is students’ knowledge and proficiency 

to use the formulas to find a numeric value. Given that students derive the final answer by 

reasoning, their work here is deductive. The second instructional situation—

calculating/estimating a value by collecting information from graphical representations to use in 

known formulas or definitions—requires students to first interact with the graphs of 

mathematical objects (such as lines and functions) to collect related information about the 

variables in their known formulas/definitions and then use the information in a known formula to 

compute the value of a variable. In C2 and C5, students are expected to use the graph of secants, 

tangents, and functions to find/calculate slope values using 
Δ𝑦

Δ𝑥
. As well as students’ knowledge 

and ability to use the formulas, these situations make room for students’ ability to interact with 

and use graphs of lines and functions to find information and values needed in their slope 

formulas. Therefore, students need to know how to extract x- and y-values of various points on 

given lines or curves. Similar to the first instructional situation, the work is deductive. I use 
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‘estimating’ in the first two instructional situations when the inputs are non-exact values (e.g., 

finding rough values for x- and y-intercepts of a function based on a graph) or the output is 

irrational and students round these values up or down for simplification. This is different than 

how I use estimating in the fourth instructional situation. 

The third instructional situation—writing an algebraic statement using known formulas or 

definitions—requires students to utilize information (given or collected from graphical 

representations) and known formulas or definitions to write algebraic expressions/statements or 

algebraic representations of mathematical objects. Other than knowing the formulas, these 

situations also make room for the recognition of properties of lines in general, as well as 

properties of secant and tangent lines in relation to values of rate of change for a function in 

particular. Because the final solution is not a numeric value in these situations, students must 

recognize which variables they should substitute numbers for, which ones they should leave as 

variables, and what the desired algebraic expression looks like (e.g., in the form of 𝑦 = 𝑚𝑥 + 𝑏). 

This work is also deductive. 

The fourth instructional situation—estimating a value using number sense—engages students 

in a distinct form of calculating in which students use their number sense to estimate a value 

given a set of related values that were given or were calculated by students. I use estimating here 

in a distinct manner compared to the first and second instructional situations. Here, instructors 

expect students to use known procedures and/or formulas to collect/calculate multiple values 

close to the exact solution and decide, or conjecture, whether to stop collecting/calculating or 

keep going to get closer to the solution. Because conjecturing leads to proving or disproving, I 

did not consider this as a conjecturing situation but rather a special kind of calculating. In C4, 

after finding slope values of nearby secants around a tangent line, students must generate a ‘good 

enough’ value as an estimate for slope of the tangent based on the data about nearby secants. In 

C10, students can demonstrate their knowledge of the graph of a derivative function and 

recognize the relationship between the points on a derivative function’s graph and the points on 

the original function’s graph. Because the graphs include information about other points in the 

domain than what is necessary to solve the problem, students are supposed to choose their points 

wisely (local max/min, reflection points, x- and y-intercepts) and use their knowledge of the 

points and their derivative values. Because students can choose which sets of values to use to 

make their best prediction or educated guess, the reasoning work here is abductive. The 

expectations placed on students’ deductive and abductive reasoning in these calculating 

situations can be high, as the ultimate solutions remain unknown to them (Herbst et al., 2010) 

I also observed two patterns across instructional tasks. First, calculating CTUs were 

employed as standalone situations, especially using the limit definition of the derivative at a 

point (C7) and as a function (C11). This suggests that by using only one CTU in their 

instructional tasks, instructors aimed to make these two calculating CTUs the primary focus of 

the instructional tasks rather than a means to achieve other CTUs or learning objectives. Second, 

I observed that when calculating situations were not the central focus of the instructional task, 

they functioned as ‘glue’ (or link) between CTUs to connect them in the instructional task. This 

highlights the integral role calculating situations play in linking other generic types of situations. 
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Conclusion 

Here, I described four calculating instructional situations, how they were typically 

summoned and incorporated into tasks via CTUs, and the kinds of mathematical work they 

would engage students with. Although these calculating situations targeted introducing 

derivatives, they offer insights into the types of calculating situations that are used for teaching 

college calculus and the kinds of mathematical reasoning students are often expected to engage 

with, which are vital for improving its teaching via curating tasks that meet the needs of its 

diverse learners. 
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The literature around proof comprehension focuses on the instructor perspective, we delineate 

from this by considering the student perspective. In this paper, we characterized how 5 

undergraduate students consider what it means to understand a particular proof. With these 

characterizations, we compared the student participants to mathematicians (from the literature) 

and found close alignment with most ways a mathematician may identify what it means to 

understand a proof. Additionally, we found two distinct ways a particular participant identified 

what it means to understand a proof that may not be considered by mathematicians. 

Keywords: Reasoning and Proof, Undergraduate Education, Proof Comprehension 

In the realm of undergraduate proof comprehension research, scholars have initially focused 

on assessing or improving students’ comprehension of proof through the development of 

comprehension tests (e.g., Mejia-Ramos et al., 2017), interventions (e.g., Hodds et al., 2014), or 

alternative written proof representations (e.g., Roy et al., 2017). Few have focused their studies 

on students (e.g., Dawkins & Zazkis, 2021; Weber, 2015). Considering the student perspective is 

important for researchers and instructors in developing productive interventions and activities.  

One way to consider the student perspective is to consider how it may align with the perspective 

of experts. In this paper, we set out to answer the following research question: In what ways do 

students’ perceptions of what it means to understand a proof align (or misalign) with the 

literature’s findings on mathematicians’ perceptions of what it means to understand a proof?  

Relevant Literature 

Scholars have compared students with mathematicians and their beliefs about proofs in 

various ways – through comparing reading of mathematical text (Shepherd & van de Sande, 

2014), eye tracking on proof reading tasks (Panse et al., 2018), or beliefs about the purpose of 

reading proofs (Weber & Mejia-Ramos, 2014). While others have investigated student 

perceptions on proof reading tasks (e.g., Krupnick et al., 2018; Lew & Mejia-Ramos, 2019; 

Weber, 2010), few have investigated student perceptions in proof comprehension (Weber, 2015). 

Studies show students’ reading habits do not differ from mathematicians when considering a 

particular validation or comprehension task (Panse et al., 2018), yet their actions may differ 

greatly as they are reading (Shepherd & van de Sande, 2014). In considering the student 

perspective, Weber (2015) found the students used various strategies such as, using examples to 

understand confusing claims and justifications, attempting to prove the theorem before reading 

the proof, and ensuring they understood all the terminology used within the theorem statement.  
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Theoretical Framing 

Mejia-Ramos et al. (2012) developed a model that can be used to develop assessments of 

student proof comprehension. This model has seven types of questions one could ask students, 

three of which can be categorized as local questions of proof (L1: meaning of terms and 

statements, L2: logical status of statements and proof framework, L3: justification of claims) and 

the remaining four can be categorized as holistic questions of proof (H1: summarizing via high 

level ideas, H2: identifying the modular structure, H3: transferring the general ideas or methods 

to another context, H4: illustrating with examples). We consider these seven question types as a 

synthesis of the literature’s findings on what it means to mathematicians to understand a proof. 

We do note that not all of these may be applicable to any given proof.  

When researching the beliefs students can have on proof, it is important to acknowledge the 

possible ways in which students’ argumentations are affected by the institutional meaning in 

which students are exposed (Recio and Godino, 2001). We argue students’ beliefs about proof 

can be impacted by their schooling. In the context of understanding a proof, we believe students 

define what it means to understand a proof through their experiences in proof-based classes.  

Methodology 

The data presented is part of a larger dissertation study investigating the strategies 

mathematics majors employ as they read proofs with the task of understanding the given proof. 

Five students were recruited during the Fall 2023 semester after having passed an introduction to 

proof course (ITP) the prior Spring or Summer semester. Table 1 presents the demographic 

information of the students using their chosen pseudonyms. 

Table 1: Participant information 
Name Race/Ethnicity Gender Grade Received in ITP 

Adrian White Non-binary B 

Claire White Female B 

Marie Latin/Hispanic Female A 

Tifanni Latin/Hispanic Female A 

Zeus Latin/Hispanic Male B 

 

Each student met individually with the first author for a series of interviews. For this paper, 

we focus on the data from one task-based interview in which students were given a theorem 

statement and its proof and told to think-aloud as they tried to understand the proof to the best of 

their ability. The proof presented to students was taken from Chartrand et al. (2013) and showed 

𝑓 is bijective if and only if 𝑓−1 is a function. Once the students felt they understood the proof to 

the best of their ability, they were asked a series of questions. The focus of this analysis will be 

on the students’ responses to the question, What does it mean to you to understand this proof? 

Analysis 

Student responses were transcribed and characterized into the different ways they discussed a 

meaning of understanding the proof (MUP) provided. MUPs were coded using Mejia-Ramos et 

al.’s (2012) assessment framework. When student responses did not align with any of the 

question types from the assessment framework, we coded a new instance of a MUP (N1 or N2).  
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Results 

Table 2 shows the types of understanding discussed by the participants which did and did not 

align with the proof comprehension assessment model (Mejia-Ramos et al., 2012). 

Each student had identified L1 (meaning of terms and statements) as a MUP. The participants 

noted this through indicating they had to know the concepts used in the proof. When asked what 

it means to understand a proof, Marie stated “one is to understand the concepts.” All but Zeus 

had identified L2 (logical status of statements and proof framework) as a MUP. Students 

typically focused on how specific statements of the proof were proving or working towards 

proving the theorem statement. For example, Claire states “they're using 𝑓 and then they talk 

about things in the inverse and that's how it and that kind of helps wrap it all together that 𝑓 is 

one-to-one.” Here, Claire is discussing how statements within the proof work together to show 

the function is one-to-one, a subgoal of the proof identified by Claire earlier in the interview. 

Table 2: MUPs Identified by Participants in Relation to Mejia-Ramos et al., 2012 

 Local Holistic New 

Student L1 L2 L3 H1 H2 H3 H4 N1 N2 

Adrian X X  X X     

Claire X X X X X  X   

Marie X X X X      

Tifanni X X X  X   X X 

Zeus X         

 

For three question types of the assessment model – L3 (justifications of claims), H1 

(summarizing via high-level ideas), and H2 (identifying the modular structure) – three 

participants discussed these as being a MUP. In identifying that L3 is needed to understand this 

proof, participants typically focused their explanations as understanding each line or each step. 

For example, Claire explains “Well, I mean you do need to understand every line.” H1 was 

identified by students either through the indication of needing to know the key ideas of the proof 

or in being able to explain the proof to someone else in simpler terms. Marie states that you 

would have to be able to “explain that from point A to B.” Finally, for H2, participants usually 

noted the need to know the different parts or sections of the proof. Adrian explained “understand 

how this stuff, like lines 1 through 4 mean that 𝑓 is one-to-one, that's one step.” 

Meanwhile, it was not always the case that the participants discussed a MUP that aligned 

with mathematicians. No participants had identified H3 (transferring the general ideas or 

methods to another context). Only one participant, Claire, identified H4 (illustrating with 

examples) as a MUP. Claire stated that understanding the proof would mean “if someone's like, 

well what about this function and then you could say ‘OK well this is how you would show it's 

one-to-one or onto’ […] you can apply it to a different situation and understand how it works.”  

One participant (Tifanni) also identified two MUPs that do not correspond directly to 

question types in the assessment model (N1 and N2). We classified N1 as theorem 

comprehension. In response to being asked what it means to understand the proof, Tifanni 

initially stated, “understanding what the theorem is saying first.” We believe this statement 

counts as evidence towards L1, as the theorem statement uses key concepts such as inverse and 

bijection; however, we believe Tifanni is also considering the theorem statement itself as an 
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object worthy of comprehension.  We note that Mejia-Ramos et al. (2012) focused their 

assessment on the proofs and not necessarily on the theorem statements. As such, L1 focuses on 

key concepts and statements within the proof. Because of this distinction, we believe Tifanni’s 

comment reveals a new MUP. We classify this dimension to be theorem comprehension, 

understanding what the theorem is saying – whether through the meanings of the key terms in the 

statement or in understanding what the theorem is saying more holistically. 

Tifanni also identified N2, which we classified as disciplinary writing norms. We show two 

instances of Tifanni discussing disciplinary writing norms in different ways. First, in multiple 

arguments in the proof, the author uses subscripts to distinguish multiple elements (𝑎1 and 𝑎2 in 

the domain or codomain) paired to one element (in the codomain or domain). Yet, for one 

argument, the author decides to use a prime (𝑎 and 𝑎′) instead of subscripts. To an expert, this 

may just be chalked up as a notational choice that does not change the substance of the proof, for 

Tifanni, she questioned why the author made that decision (as if it could affect the substance of 

the proof). Tifanni showed concern with being able to explain to a class on why the author chose 

this notation. She worries that this impacts how well she understands the proof, as she would feel 

unable to explain why. For Tifanni, she believes the notation used for variables in the proof is 

important and the reasoning for this notation impacts how well someone understands the proof. 

The second instance where Tifanni discusses disciplinary writing norms is related to the structure 

and order of arguments. Tifanni notes that someone who understands the proof would know why 

the proof was structured, in terms of order. “Like for example they could have put this part first, 

but it well maybe it wouldn't make sense to say this thing first before proving that it was 

bijective which is one-to-one and onto. Like understanding why.” In this quote, Tifanni is 

discussing the importance of the order in which the arguments are made within the proof. We 

interpreted both instances to be in reference to disciplinary writing norms, an aspect not 

discussed by Mejia-Ramos et al. (2012).  

Discussion 

The study presented extends Weber’s (2015) findings by comparing student perspectives to 

mathematician perspectives. The findings report that student and mathematician meanings for 

understanding a given proof do seem to align in multiple ways. All students identified L1 and all 

but one student identified L2. At least three students identified L3, H1, and H2. Only one student 

identified H4 and no students identified H3. Additionally, Tifanni identified two MUPs that were 

not in the proof comprehension assessment model. The theorem comprehension MUP may be 

absent from the assessment model due to the model’s focus on the proof and not necessarily on 

the theorem statement itself, but we suspect mathematicians would agree with the need to 

understand the theorem statement. Tifanni’s second new MUP (disciplinary writing norms) could 

be due to the differing experience mathematicians have with proof writing in contrast to 

undergraduate students. Tifanni’s ITP course was her first exposure to proof – suggesting Tifanni 

was still learning the proof writing norms at the time of the study. Questioning the notation 

indicated her need to increase her understanding of mathematical proof writing norms. 

We note the sample size is a limitation of the study and that this report focuses only on the 

MUPs identified by students with regards to a single proof. Indeed, the participants identified H3 

and H4 for other proofs in the larger dissertation study, which is outside the scope of this paper.  
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These misalignments amongst the student participants and mathematicians do indicate two 

things. First, students may benefit from being given more tasks that focus them on H3 and H4.  

Second, students are attending to normative styles of writing that mathematicians have become 

accustomed to. Scholars have identified norms and values the research mathematics community 

holds in proof and in writing proof (Lew & Mejía Ramos, 2020; Dawkins & Weber, 2017). 

Instructors hope to have students adopt these norms and values while taking proof-based courses.  

Further research is needed in both mathematician perspectives and student perspectives.  The 

larger dissertation study aims to expand on the knowledge of student perspectives in what it 

means to them to understand proof and the ways they attempt to understand given proofs.  
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Este estudio investigó el impacto que las actividades de laboratorio del proyecto Cálculo Para 

Todos tuvo en la comprensión de conceptos de cálculo en estudiantes de segundo año de 

bachillerato en México. Empleamos una metodología cualitativa para examinar las 

coordinaciones entre la modelización corporizada de los estudiantes y sus representaciones 

gráficas. Los datos incluyen un pre y un post test, con ítems de opción múltiple y preguntas 

abiertas. Los resultados revelaron un cambio positivo en el rendimiento de los estudiantes 

después de la intervención. Se identificaron múltiples transiciones de aprendizaje influenciadas 

por la fluidez representacional entre lo concreto y las representaciones gráficas. Este estudio 

contribuye al entendimiento de cómo los laboratorios pueden promover la comprensión 

profunda de conceptos de cálculo. 

Palabras clave: Modelado, Tecnología, Cálculo, Representaciones Matemáticas, Pensamiento 

Estudiantil 

En muchos países, incluido México, el cálculo se establece como una herramienta clave de la 

educación matemática en las etapas superiores de la escuela secundaria (grados 11 y 12) y en 

cursos a nivel universitario (Greefrath et al., 2021). Por un lado, el cálculo sirve como piedra 

angular para acceder a carreras STEM (ciencia, tecnología, ingeniería y matemáticas) y por otro, 

como una barrera que propicia el abandono de una trayectoria académica en estas áreas 

(Burdman et al., 2021) y muchas veces obstaculiza el avance de estudiantes con orientaciones 

hacia otras áreas como ciencias sociales o humanidades. En respuesta a este escenario, se han 

generado iniciativas que proponen cambios en la instrucción del cálculo; por ejemplo, la 

iniciativa Macalester (Burdman et al., 2021) utiliza una aproximación al cálculo desde la 

modelación—este curso reduce el foco en las técnicas de integración y derivación, y en su lugar 

enfatiza la programación con el software R. Además de destacar la modelación de sistemas 

dinámicos utilizando ecuaciones diferenciales. 

El proyecto Cálculo Para Todos (CPT), en el que se basa la presente investigación, se 

propone como una alternativa factible en la que se entrelaza el trabajo colaborativo con las 

tecnologías digitales y con los contextos socioculturales de los estudiantes. CPT fue desarrollado 
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a nivel bachillerato por una docente (segunda autora) en el Centro de Bachillerato Tecnológico 

Industrial y de Servicios (CBTIS) #164 en Ciudad Madero, Tamaulipas, México. El proyecto 

CPT se encuentra alineado con el nuevo plan nacional de estudios, de la Nueva Escuela 

Mexicana (NEM). El plan de estudios de la NEM se basa en el compromiso de aprovechar los 

recursos sociocognitivos de los estudiantes, prestar atención a sus formas de pensamiento 

emergentes y organizar secuencias de actividades de manera informada por la literatura 

internacional sobre progresiones de aprendizaje (Subsecretaría de Educación Media Superior 

[SEMS], s.f.). 

El objetivo de esta investigación es indagar el impacto que las actividades de laboratorio de 

CPT tuvieron en los estudiantes, en lo referente a la apropiación de conceptos de cálculo al 

usarlos para modelar fenómenos de cambio desde sus experiencias compartidas. En particular 

nos preguntamos: ¿cómo los estudiantes coordinan la modelización corporizada y socialmente 

distribuida de fenómenos de cambio con la representación gráfica de funciones y sus derivadas? 

 

Antecedentes 

Investigadores concuerdan (Lehrer y Lesh, 2003; Moore et al., 2018), que la fluidez 

representacional puede promover una comprensión más profunda de los conceptos matemáticos 

al conectar ideas abstractas con situaciones concretas y visualizar relaciones entre variables. 

Moore y colegas (2013), mencionan que un aspecto importante de la fluidez representacional es 

la habilidad de trasladar entre y dentro de modos de representación (y cf. Duval, 2017). Estos 

modos de representación incluyen el uso de modelos concretos refiriéndose a manipulativos 

físicos o virtuales. Estas investigaciones enfatizan que el uso de modelos concretos y 

representaciones ayudan a los estudiantes a dar significado a ideas matemáticas y sus 

aplicaciones. Brady et al. (2022) sugieren que los modelos concretos son parte de un proceso de 

modelización corporizada, en la que el cuerpo se sintoniza con el objeto físico o virtual (p. ej., un 

sensor ultrasónico) para generar diferentes tipos de representaciones. Por otro lado, la visión de 

Kaput y Roschelle (2002), se centra en una visión histórica sobre la evolución cultural de las 

representaciones, el potencial de los medios tecnológicos y los desafíos de satisfacer las 

necesidades sociales. Estos autores enfatizan el poder de las representaciones gráficas, dinámicas 

y ejecutables en el proceso de modelización, como objetos inclusivos y democratizantes, que 

permiten comprender el cambio y la variación de contextos dinámicos. Además, abogan por el 

uso de simulaciones computacionales para comprender conceptos del cálculo en contextos 

concretos. En resumen, desde la fluidez representacional hasta la modelización, el uso de 

laboratorios para el estudio del cálculo ofrece un entorno dinámico donde estudiantes encuentran 

oportunidades de construir conceptos abstractos con aplicaciones concretas, explorar 

representaciones gráficas, y experimentar con simulaciones computacionales.  

 

Metodología 

El laboratorio de cálculo consta de un estuche de prácticas basado en tecnología Arduino que, 

conectado a una computadora, brinda la posibilidad de realizar diferentes experimentos. A su 

vez, este estuche se divide en tres módulos, el primero orientado al estudio del movimiento 

unidimensional y la caída libre utilizando un sensor ultrasónico que permite estudiar funciones 

polinomiales y sus derivadas; las variables a operar son distancia, tiempo y velocidad. El 

segundo módulo permite analizar el voltaje generado por un mini panel solar con el que se puede 
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analizar el comportamiento de una función senoidal y su derivada; en este caso las variables a 

operar son voltaje y tiempo. El tercer módulo permite analizar el voltaje producido por un mini 

aerogenerador (rehilete), cuyos datos tienen un comportamiento exponencial. El prototipo 

incluye todas las prácticas de laboratorio listas para ser utilizadas en clase con un enfoque 

transversal (más información en http://calculoparatodos.com/). 

Estructura del test 

Antes de iniciar con el curso se aplicó un pretest que constó de ocho preguntas de opción 

múltiple y dos preguntas abiertas en las que se debían elaborar la gráfica de posición y velocidad 

para un problema en contexto. Al finalizar el curso se aplicó un post test que incluía las mismas 

preguntas que el pretest. Las dos preguntas abiertas del test se enfocaron en el siguiente 

problema en contexto: 

“9. Lee cuidadosamente el siguiente enunciado y construye la gráfica de posición vs. tiempo 

correspondiente: Un robot inicia la toma de datos tocando el sensor (a una distancia 0). 

Empieza a moverse rápidamente alejándose del sensor, durante un intervalo de 1 

segundo. Durante el siguiente intervalo de 2 segundos, disminuye su velocidad hasta que 

deja de moverse. Mantiene la pausa durante el siguiente segundo. Entonces, se empieza a 

mover hacia el sensor, durante el siguiente intervalo de 2 segundos, pero, no llega al 

sensor.” 

La pregunta 10 solicitó que se construyera la gráfica velocidad vs. tiempo para el mismo 

enunciado. 

El curso en el que se aplicaron las prácticas de laboratorio y los test se llevó a cabo a lo largo 

del ciclo escolar 2022-2023 en el CBTIS #164 al norte de México con estudiantes de segundo 

año. En total se trabajó con 194 estudiantes, pero al final solo consideramos una muestra de 163 

estudiantes ya que fueron los que resolvieron los dos test (pre y post). 

Resultados 

El análisis de las preguntas abiertas en los test se realizó mediante una codificación abierta 

por el método de comparación constante en el pre y post test (Charmaz, 2014; Strauss y Corbin, 

1990). En esta etapa codificamos cada ítem en términos de cómo se relacionaba la representación 

gráfica y la representación verbal/lingüística. Es importante mencionar que nos encontramos en 

el proceso de analizar que su utilidad va más allá de simplemente identificar los estados 

individuales de los alumnos, ya que nos ha permitido reconocer la importancia de las 

transiciones observadas entre el pretest y el post test. Confiamos en que estas transiciones 

revelarán el progreso de las formas de pensar y de apropiación del lenguaje del cálculo de los 

estudiantes cuando describen fenómenos del mundo. 

Posterior a la codificación abierta pudimos identificar treinta y cinco estudiantes que 

respondieron a las preguntas abiertas tanto en el pre como en el post test. Utilizando estos datos 

pudimos codificar transiciones entre el pre y post test de acuerdo con las modificaciones en la 

representación gráfica. Elaboramos un libro de catorce códigos que nos permitió catalogar estas 

transiciones. Éstas nos están ayudando a distinguir transiciones estables en el aprendizaje  

vivenciadas por los estudiantes antes y después del curso. Para este escrito, elegimos ejemplificar 

una de las transiciones que ilustran uno de los tipos de pensamiento que encontramos en nuestro 

análisis. 

http://calculoparatodos.com/
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Transición de “disminuye su velocidad” como ir hacia abajo a la representación 

correcta. En la Figura 1, se muestran las gráficas de posición del pre y post test que el mismo 

estudiante elaboró siguiendo el texto del problema 9 (ver sección Estructura del test para el 

enunciado). En la gráfica del pretest el estudiante puso etiquetas que delimitan las frases en la 

representación lingüística (AB, BC, CD). Esto indica una estrategia de descomposición del 

problema que lo ayuda a su comprensión. Si seguimos las etiquetas en la gráfica el segmento de 

recta que va del origen a A es la interpretación del enunciado “Empieza a moverse rápidamente 

alejándose del sensor, durante un intervalo de un segundo.” El intervalo de tiempo también 

concuerda con el segmento dibujado. En esta lógica, el segmento AB corresponde al enunciado 

“Durante el siguiente intervalo de dos segundos, disminuye su velocidad hasta que deja de 

moverse.” En este momento la dificultad de representar “disminuye su velocidad” se hace 

evidente. El resto de los segmentos coinciden correctamente con la representación lingüística. 

La gráfica elaborada en el post test muestra puntos sobre la gráfica que corresponden a la 

descomposición del enunciado, esta vez sin etiquetas. Si seguimos la gráfica en el segundo 

intervalo [1, 3], se ve una curva que indica que hay una disminución de la velocidad paulatina. 

Entonces tenemos evidencias de que este estudiante ha avanzado en dos sentidos. Primero, su 

representación del cambio de velocidad desde alto (positivo) a más bajo (todavía positivo) ahora 

concuerda bien con la gráfica esperada. Además, el uso de una curva suave refleja un 

entendimiento profundo del movimiento de los cuerpos reales en el mundo físico. Conjeturamos 

que las experiencias de capturar movimientos corporales con el sensor ultrasónico han 

favorecido la sensibilidad a estos matices. Dentro de la muestra de 163, 48 (aproximadamente el 

35% del total) representaron “disminuye su velocidad” como en el ejemplo mostrado. 

Consideramos que estos estudiantes se encuentran en una etapa de transición como la que vivió 

el estudiante en el ejemplo. 

 

 
Figura 1. Pretest y post test mostrando Transición de ir más lento como ir hacia abajo a la 

representación correcta de la posición. 

 

Discusión y conclusiones 

Nuestro análisis cualitativo reveló la presencia de patrones de formas de pensamiento 

recurrentes en el grupo de estudiantes y que, en un estudiante fueron influenciadas por las 

actividades del laboratorio (p. ej., la actividad sobre el movimiento de un cuerpo). Este hallazgo 
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sugiere la existencia de múltiples transiciones de aprendizaje que pueden aparecer en este 

terreno conceptual. Los resultados mostrados vislumbran que estas transiciones están orientadas 

por la fluidez representacional (Moore et al., 2013) que se da en la coordinación entre la 

modelización corporizada y la representación gráfica de funciones y sus derivadas (Kaput y 

Roschelle, 2002). Para fortalecer estos hallazgos, estamos en proceso de análisis de datos 

adicionales, incluyendo la revisión de grabaciones de video tomadas durante la aplicación de los 

laboratorios por la profesora, y los trabajos de un subconjunto de los mismos estudiantes, durante 

una siguiente clase de cálculo integral. Finalmente, consideramos que el proyecto Cálculo Para 

Todos es una propuesta innovadora que revierte la práctica tradicional de pasar de la enseñanza 

de los conceptos a su aplicación a una práctica en la que, partiendo de las acciones concretas, se 

significan y resignifican los conceptos matemáticos. 
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Due to the shortages of secondary mathematics teachers across the United States, many of 

them receive little or no preparation for teaching mathematics (Sutcher et al., 2016). More 

specifically, they are encouraged to seek an alternative pathway to be a certified secondary 

mathematics teacher to meet their school district’s hiring needs (Sutcher et al., 2016). With such 

hiring needs, undergraduate students with a minor in middle school mathematics are more likely 

to teach middle school students after graduation. Similarly, undergraduate mathematics students 

(UMs) will have opportunities to teach middle or high school mathematics after receiving their 

degree. Taken together, it is important to examine and compare pre-service secondary 

mathematics teachers’ and undergraduate mathematics students’ proof perceptions.  

Three groups of PSMTs1 and UMs2 minor, from a Midwestern university in the United States 

volunteered to participate in this study. The first group consisted of 15 undergraduate students 

from the “College Geometry” course in Spring 2020. The second and the third group of 

participants were from the transition-to-proof course titled “Discrete Mathematics” in Fall 2020 

and Fall 2021, respectively. We used each participant’s description of what a mathematical proof 

is from the beginning of the semester to identify roles and characteristics of proof they perceived. 

More specifically, the undergraduate students were all asked to complete a written class activity 

titled “Getting to Know You” on the first day of a class that included a question of what a 

mathematical proof is. Thus, each participants’ written work was the primary source of data for 

categorizing PSMTs’ and UMs’ descriptions of a mathematical proof.  

Regardless the participants’ mathematics backgrounds, the two most common roles of proof 

cited by them were verification and explanation. More mathematics teaching majors and 

mathematics majors mentioned the roles of systemization and communication than other 

participants did. Also, the majority of participants focused on the two characteristics of proof—

set of accepted statements and modes of argumentation. If PSMTs could be provided with rich 

opportunities to engage in a variety of proof-related tasks at the undergraduate level, then they 

are more likely to view proof as a meaningful tool to teach and learn mathematics (Knuth, 2002). 

 
1 PSMTs in this paper refer to a middle school teaching minor, a middle school teaching major, and a mathematics 

teaching major. 
2 UMs in this paper refer to an undergraduate student with a major or minor in mathematics. 
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Thus, it would be interesting to study how PSMTs’ and UMs’ roles of proof affect the ways in 

which they construct and evaluate proofs.  
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This study explored a correlation between the quality of students’ written justifications and 

explanations on AP Calculus assessments and their achievement on related computational 

problems. The aim is to provide research that supports AP Calculus teacher’s use of written 

justification and explanation as a teaching and learning tool. The study employs a convergent 

mixed-methods correlational design. Comparisons are made between the ratings students are 

given on their written justifications and explanations on the written portions of classroom 

assessments and their raw scores on computational problems. The two sets of data do not 

overlap. Written samples were examined using discourse analysis – a well-established qualitative 

method for analyzing student writing in mathematics (Austin & Howsen, 1979; O’Halloran, 

2005; Pimm, 2004). Qualitative data was transformed into ordinal data using a rubric based on 

Toulmin’s model for argumentation (Brockriede, 1960) which diagrams the basic components of 

an argument. The ordinal data was compared to quantitative data (on a ratio scale) using 

regression analysis to explore the possibility of a positive correlation. The study used a 

worldview of pragmatism, which, according to Creswell and Plano Clark (2018), focuses on the 

“importance of the question asked rather than the methods, and on the use of multiple methods of 

data collection to inform the problems under study” (p. 37). 

Two research questions were explored: 1) How is mathematics conveyed by students in high 

school Calculus when justifying or explaining their responses? and 2) What is the relationship 

between the quality of AP Calculus students’ written justifications and explanations and their 

conceptual understanding as demonstrated on computational parts of classroom assessments? 

Participants include 28 AP Calculus AB students from the same suburban high school in 

Ohio. AP Calculus AB is a high school course that covers the content of a first-semester college 

calculus course. At the course's end, students take an exam for which colleges could award them 

credit. The assessment instrument for this study was a unit test given during the third quarter of 

the AP Calculus course. 

Initial results of Spearman’s rank correlation (2024) indicated a moderate positive association 

between justification scores and computational scores (Rs[28] = 0.576, p = 0.005). After looking 

at a scatter plot of the data, two data pairs that diverged from the line of best fit were removed. 

One of these pairs had a written justification score of 1 and a computational score of 3, indicating 

that this student was much more proficient at computing the answer than explaining its meaning. 

The other pair had a written justification score of 3 and a computational score of 1, indicating 

that this student could explain the answer without being able to perform a correct computation. 

These were the only two students of the original 28 who had these scores. When the Spearman 

correlation was performed with the remaining 26 data pairs, the results indicated a strong 

positive correlation (Rs [26] = 0.707, p = 0.001).  

In a small number of cases, the data diverged from the general trend; because of this, I 

recommend a follow-up study in which interviews are performed with a subset of students from 

mailto:ckyler1@kent.edu
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the original population representing varying score ranges using an explanatory sequential mixed-

methods design. 
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This study investigated the effectiveness of integrating history-infused lessons on students' 

understanding and attitudes towards logarithms. The theoretical framework drew from 

sociocultural perspectives and embodied cognition, emphasizing the social and emotional 

dimensions of learning. Design-based research principles guided the iterative development of 

history-infused logarithm lessons. Data was collected through pre- and post-assessment tests, 

interviews, and classroom observations. The findings indicated a significant improvement in 

students' post-test scores, suggesting a reduction in their fear of logarithms. Additionally, 

interviews revealed a positive shift in students' perceptions of logarithms, from abstract and 

intimidating to practical and relatable. 

Keywords: History-infused mathematics, logarithms, secondary mathematics education, student 

attitudes 

The research literature emphasizes the importance of logarithms in both advanced 

mathematics and real-world contexts, including sound measurements (decibels), earthquake 

magnitudes (Richter scale), star brightness, and chemical properties (pH balance). However, 

many students struggle to grasp the conceptual underpinnings of logarithms and often resort to 

rote memorization of rules, as noted by various authors (Berezovski, T., 2008; Kuper & Carlson, 

2020; Weber, 2016). The challenges faced by students include interpreting logarithms as the 

"inverse of exponents" and developing a coherent understanding of logarithmic notation, 

logarithm properties, and the application of logarithmic functions (Kuper & Carlson, 2020; 

Berezovski, T., 2008; Chua & Wood, 2005; Gol Tabaghi, 2007; Strom, 2006).  

To address these issues, researchers and educators have suggested a variety of strategies. 

These include using concrete materials (Thompson, 1994), implementing authentic assessments 

such as project-based learning and computational thinking (Shin et al., 2021), engaging students 

with game-based learning (Barab et al., 2010), problem-based learning (Hmelo-Silver, 2004), 

and effective teaching methods (Larmer, 2018). The use of gestures alongside diagrams (Walsh 

& Hord, 2019), gestures combined with manipulatives (Beilstein, 2019), and incorporating the 

history of mathematics (Liu, 2003; Poh & Dindyal, 2016; Sampaio & Batista, 2018) have also 

been recommended. This study aims to bridge the gap in research regarding the teaching of 

logarithms by utilizing the history of mathematics in combination with gestures. The research 

questions guiding this study are as follows: (1) How do history-infused logarithm lessons aid in 

reducing students' fear of logarithms? (2) How do students’ perceptions of logarithms change 

over the duration of the history-infused logarithm program? 
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Theoretical Framework 

This study was grounded in sociocultural perspectives for student learning, a history-infused 

program, and embodied cognition for evaluating understanding. It focused on social 

constructivism, which emphasized the role of social interaction in cognitive development and 

suggested that learning occurred best in a social context. The study also incorporated the 

dynamic nature of assessment, including formative, diagnostic, prognostic, or summative 

assessment. Vygotsky’s sociocultural perspective underscored the extensive impact of social 

learning, suggesting that learners did not engage with new knowledge in isolation. Key 

instructional aspects in Vygotsky’s perspective were mediation, scaffolding, and creating a zone 

of proximal development (ZPD). Building on this, the instructional technique in the history-

infused math lessons involved exploratory activities and mediational strategies, including 

scaffolding based on prior knowledge. This study also emphasized embodied cognition, focusing 

on how humans used their bodies to express thought processes, like gestures. Students’ 

multimodal approaches, such as gestures, were coded and compiled based on McNeill’s 

typological categories (1992), allowing for a holistic approach to teaching and learning 

logarithms 

Methods 

Participants, Settings, and Programs 

The study took a holistic approach, incorporating both quantitative and qualitative data 

collection methods to assess the effectiveness of integrating historical insights into logarithm 

teaching. This approach was underpinned by design-based research (DBR) principles, enabling 

iterative refinement of teaching strategies based on observed student interactions and outcomes. 

The study took place at a private high school in Western New York, United States, with a 

student-teacher ratio of 12:1. The focus was on 14 students (10 girls and four boys) in Grades 11 

and 12, all of whom had prior exposure to logarithms in their mathematics courses. 

The curriculum, based on the Precalculus with Limits: A Graphing Approach by Ron Larson 

(High School Edition, 6th Edition), was adapted to incorporate historical insights into the 

discovery of logarithms. The goal of the first phase was to develop an initial design of the 

program, which consisted of three history-infused math lessons. These lessons were developed 

by integrating the history of logarithms, allowing students to explore historical perspectives on 

the discovery of logarithms by John Napier, and other mathematicians (e.g., Pythagoras), 

tailoring students’ participation in peer collaboration through the lens of history of mathematics, 

and improving learner engagement in the instructional process in the form of mini projects on 

history-infused mathematics. Students were asked to use log tables and watch a video of the 

process. Students also explored the history of mathematics related to logarithms and did a 

presentation. In the second phase, the program underwent iterative design to test and refine it. 

This second iteration, to be conducted in the spring of 2023, involved designing three history-

infused modules, each consisting of three lessons with scenario-based problems (e.g., Scenario-

based Log) and historical approaches (e.g., Using Log Tables). The historical accounts of the 

discovery of logarithms will be introduced from existing sources, highlighting how logarithm 

computations were performed before calculators.  
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Data Collection and Analysis 

Data collection involved pre- and post-assessment tests, interviews, observations, and 

analysis of classroom artifacts. Pretests assessed students' baseline knowledge, while post-tests 

measured their understanding after the history-infused lessons. Interviews and observations 

offered qualitative insights into student engagement, attitudes, and understanding. The study was 

conducted over two weeks, covering initial assessment, implementation of the history-infused 

program, and subsequent assessment and interviews. Data analysis was conducted using a 

mixed-method approach, combining quantitative and qualitative methods. For quantitative 

analysis, descriptive statistics were computed to compare pretest and posttest scores, and the 

Wilcoxon Signed-Rank Test was used for inferential analysis to assess the effectiveness of the 

history-infused lessons. Error analysis of participants' written responses was also conducted. For 

qualitative analysis, interviews were transcribed using the ELAN annotation tool, and thematic 

analysis was conducted. Open-coding was done using ATLAS.ti software to categorize data from 

surveys and interviews. Additionally, gestural analysis was conducted, categorizing gestures 

based on McNeill's framework, and disagreements between coders were resolved through 

consensus. The general inductive approach was employed to analyze qualitative data, 

systematically organizing and summarizing textual data. 

 

Summary of Findings 

Analysis of pre- and post-test showed that students’ average scores in the posttest (M = 76.2, 

SD = 17.4) were significantly higher than their average scores in the pretest (M = 50.2, SD = 

21.1).  

How History-Infused Logarithm Lessons Alleviate Students' Fear of Logarithms: 

The analysis of pre- and post-test scores shows that the history-infused logarithm program 

led to a statistically significant improvement in students' understanding of logarithms. This 

finding is particularly noteworthy considering the pre-existing fear and apprehension that many 

students typically harbor towards this complex mathematical concept. Interviews with students 

provided deeper insights into the impact of history-infused lessons on students' emotional 

engagement and attitudes towards logarithms. A majority of students expressed that the historical 

context provided in the lessons made logarithms seem more accessible, relatable, and less 

intimidating. Many students indicated that understanding the origins and evolution of logarithms 

gave them a sense of connection to the subject, and a better appreciation for its practical 

significance. Student L7 articulated this sentiment, saying, "It helped me understand it better 

because I can be more appreciative of the mathematicians back in the day and it gets me more 

interested in math, so I will be motivated to learn more about the concepts knowing the 

philosophers that contributed to it." Incorporating historical narratives and activities into the 

logarithm curriculum served as a cognitive scaffold for students, allowing them to contextualize 

complex mathematical concepts within a narrative framework. Students appreciated the 

opportunity to engage with mathematical ideas in a more holistic and multidimensional manner. 

Furthermore, the interactive and collaborative nature of the history-infused lessons encouraged 

students to approach learning logarithms with a sense of curiosity and adventure, rather than fear 

and reluctance. 
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Shifts in Students' Perceptions of Logarithms Through History-Infused Logarithm 

Program: 

Through the history-infused logarithm program, students' perceptions of logarithms 

underwent a noticeable shift. Before the intervention, students primarily viewed logarithms as 

abstract and disconnected from real-world contexts. They often perceived logarithms as 

challenging, even forbidding, due to the complex nature of mathematical manipulations 

involved. The pretest data showed that students had a limited understanding of logarithmic 

properties and frequently made errors in their application. Common mistakes included 

misinterpreted language errors and logically invalid inference errors, suggesting that students' 

conceptual grasp of logarithms was limited. However, post-test data revealed a marked 

improvement in students' perception of logarithms. Students began to view logarithms as a 

valuable tool with practical applications, particularly in the context of historical problem-solving. 

They expressed newfound confidence in their ability to tackle logarithmic calculations and 

demonstrated a clearer understanding of logarithmic properties and their applications. This shift 

in perception can be attributed to the rich historical narratives that were integrated into the 

program, which allowed students to see logarithms as a dynamic and evolving mathematical 

concept with a rich cultural and historical significance. Students began to appreciate the 

versatility of logarithms and how they are rooted in the history of human endeavor. 

Discussion 

The findings of this study echo the conclusions of previous research and contribute to our 

understanding of the potential benefits of incorporating history into mathematics education. 

Previous studies have demonstrated that history-infused mathematics lessons can lead to 

improvements in students' conceptual understanding and engagement (Alibali & Nathan, 2012; 

Berezovski, 2008; Howell et al., 2017). The findings of the current study extend this research by 

focusing on students' emotional responses to history-infused lessons and their impact on attitudes 

towards mathematics. The theoretical implications of this study align with cognitive theories 

such as Vygotsky's sociocultural theory of learning and Hmelo-Silver's Problem-based Learning 

(PBL) theory (Kozulin et al., 2003; Hmelo-Silver, 2004). Vygotsky's theory emphasizes the role 

of social interaction and cultural context in shaping learning, suggesting that the historical 

narratives embedded in history-infused lessons can provide students with meaningful cultural 

tools that facilitate learning. Hmelo-Silver's PBL theory focuses on the importance of problem-

solving and authentic, real-world tasks in promoting deep understanding. The historical context 

provided in history-infused lessons can serve as a rich source of problems and tasks that are 

relevant and engaging for students. From a practical perspective, the findings of this study 

suggest that incorporating historical contexts into mathematics instruction can have a positive 

impact on students' attitudes and engagement. By presenting mathematical concepts in a 

historical context, educators can make abstract concepts more concrete and meaningful for 

students, leading to increased motivation and interest. Additionally, the emotional engagement 

fostered by history-infused lessons can help to alleviate students' fear and anxiety about 

mathematics, creating a more positive and supportive learning environment.  

The limitations of this study should be acknowledged. The study was conducted at a single 

high school, limiting the generalizability of the findings. Additionally, the study focused on a 

specific topic within mathematics (logarithms), and the findings may not apply to other 
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mathematical concepts. Future research could explore the impact of history-infused lessons on a 

wider range of mathematical topics and in different educational contexts. Moreover, future 

studies could investigate the long-term effects of history-infused lessons on students' attitudes 

and engagement, as well as the role of technology in enhancing the effectiveness of these 

lessons. 
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In this study, we examined preservice secondary mathematics teachers’ reasoning as they 

developed directed-length definitions for the secant and tangent functions. We describe their 

process of developing the new concept definitions and we identify the trigonometric contexts in 

which their reasoning was embedded. We then describe how those concept images and 

definitions were used in the preservice teachers’ reasoning. The preservice teachers primarily 

drew from two trigonometric contexts (unit circle and right triangle) as they developed new 

concept definitions. 

Keywords: Cognition, Precalculus, Preservice Teacher Education, Reasoning and Proof 

Trigonometry is important for both practical applications and as a basis for higher-level 

mathematics. The Common Core State Standards for Mathematics and National Governors’ 

Association Center for Best Practices & Council of Chief State School Officers (2010) 

recommended that high school students learn trigonometric functions. Despite the importance 

and variety of purposes of trigonometry (Hertel, 2013), there is consensus from the field that the 

topic is not learned well (e.g., Brown, 2005; Moore, 2014). Thus, teachers need a deep 

understanding of trigonometric functions.  

Trigonometric Stances 

Instructors may have a stance toward trigonometry that “establishes boundaries indicating 

which mathematical ideas” (Hertel, 2013, p. 105) they consider trigonometry. When discussing 

different trigonometric definitions, Hertel (2013) described three hierarchical stances: (a) right-

triangle trigonometry, (b) circle trigonometry, and (c) analytic trigonometry. A circle stance, for 

example, includes both right-triangle trigonometry and circle trigonometry contexts. In right-

triangle contexts, functions are defined as ratios of sides of triangles (e.g., sin 𝜃 = 
length of side opposite 𝜃

length of hypotenuse
 ), whereas in circle contexts they are defined in relation to the unit circle (e.g., 

tan 𝜃 =
𝑦

𝑥
 ) such that (x, y) is a point on the unit circle. Using a variety of contexts when 

introducing trigonometric concepts may lead to a more robust understanding.  

In addition to using and connecting different trigonometry definitions, researchers have 

found that students who used quantitative reasoning (Thompson, 1990) and covariational 

reasoning (Carlson et. al., 2002, p. 354) were able to reason about trigonometric functions more 

fluently (Moore 2010, 2013, 2014). Given the promise of quantitative and covariational 

reasoning and the benefits of strengthening connections between different trigonometry 
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definitions and contexts, we expand on Moore’s (2014) work of examining the effects of using 

directed-length trigonometry definitions to improve the teaching and learning of trigonometry.  

Toward a New (Old) Context 

In the directed-length context, the six trigonometric functions used in modern-day 

trigonometry (i.e., sine, secant, tangent, cosine, cosecant, cotangent) are all defined as directed 

lengths of segments along chords, secants, or tangents in a circle (see Figure 1) that depend on 

the length of the associated arc. We labeled the sine and cosine functions as the chord and 

cochord, respectively, to highlight the connection to the historical chord and half-chord functions 

as well as the mistranslation of the word chord into the word sine (Kennedy, 1969). This choice 

was also made in the classroom lessons for this study. Thus, there are times when the participants 

refer to the sine or cosine functions as chord or cochord in our results.  

 

  

 

Figure 1: Directed-Length Context of Trigonometry 

 

Hertel and Cullen (2011) found the use of a directed-length approach within a dynamic 

geometry environment led to a more robust understanding of trigonometric functions. Using a 

directed-length approach, Cullen and Martin (2018) “focused on the first in a sequence of 

learning activities in which PSTs reasoned quantitatively about two dynamically changing 

objects in a circle, and whether those objects could be considered inputs and outputs of a 

function” (p. 259). In their work, the PSTs engaged in an activity without knowing the task was 

related to trigonometry. Instead, the PSTs were directed to focus on the concept of function, 

which they eventually connected to the sine function. Tall and Vinner’s (1981) framework of 

concept image and concept definition was a helpful lens through which to describe how PSTs 

were making sense of the functions in that study. However, that study’s focus was limited to the 

sine function and the PSTs were not aware that the exploration was related to trigonometry.  

In the current study, we tasked PSTs with identifying the needed objects in a dynamic 

geometric construction (e.g., arcs, lengths of various segments) to define the tangent and secant 

functions. As the PSTs worked through the activity, they reasoned by determining consistency 

between their circle stance definitions and a directed-length context. Specifically, we addressed 

the research questions: Which concept images and concept definitions do PSTs evoke while 

defining tangent and secant in a novel trigonometric context? How do PSTs reason with their 

evoked concept images and definitions? 
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Theoretical Perspective 

In this study, PSTs explored a directed-length stance toward trigonometry, specifically 

seeking to establish consistency between a circle stance and directed-length definitions for 

tangent and secant functions. Given the focus on the definitions, we relied on concept image and 

definition (Tall & Vinner, 1981) to guide our analysis. Following Moore (1994) we considered 

concept image to be “the set of all mental pictures that one associates with the concept, together 

with all the properties characterizing them” (p. 252). Concept definition “refers to a formal 

verbal definition that accurately explains the concept in a non-circular way, as might be found in 

a mathematics textbook” (Moore, 1994, p. 252). In our study, we describe how PSTs leveraged 

their existing concept images for the tangent and secant functions to support their developing 

intuitions about a directed-length stance toward trigonometry. Based on Cullen and Martin’s 

(2018) report that PSTs referred to the unit circle when identifying the sine function and Hertel’s 

(2013) findings about the prevalence of right-triangle and circle stances, we anticipated that 

PSTs’ concept images would be primarily anchored in the circle stance. By focusing our analysis 

on concept images, we hoped to link those concept images to the trigonometry definitions and 

contexts from which PSTs reasoned during their classroom investigations of the tangent and the 

secant functions. We identified their concept images as being anchored within two definitions 

(i.e., right triangle and circle), both from the circle stance provided by Hertel (2013).  

Methods 

The participants in this study were 23 PSTs, who had completed at least 60 hours toward a 

degree in mathematics with a focus on secondary education. The setting for the study was a 

semester-long course—taught by the second author—focused on problem solving connected to 

the secondary mathematics curriculum and the affordances of technology in those contexts. Full 

class and small-group discussions were videorecorded. Here, we discuss data from the first and 

second week of a 6-week instructional sequence on trigonometry. During the sequence, the 

instructor focused on promoting PSTs’ use of quantitative reasoning, encouraging them to focus 

on objects rather than numeric values.  

Prior to this lesson, PSTs determined that a vertical half-chord stemming from a dynamically 

changing terminus of the arc could be considered an object-centered geometric definition of the 

sine function. In the lesson examined in this paper, the instructor displayed the same dynamically 

accumulating red arc (with terminal point C; see Figure 2) in GeoGebra. While gesturing to the 

dynamically changing arc, the instructor asked the PSTs to identify distinct segments associated 

with the circle’s arc that would represent the tangent function’s output and the secant function’s 

output. In this representation, the circle’s arc serves as the function’s input and the tangent and 

secant segments, respectively, serve as the function outputs. Although the instructor mentioned 

this implicit connection between the circle arc and related segments during his lesson, the 

relationship between two quantities was not repeatedly emphasized. Here, we use the instructor’s 

language that typically refers to the directed-length concept definition of the tangent and secant 

function as simply the length of the segments along the tangent and secant, respectively. 
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Figure 2: Initial Diagram as Point C Varies 

 

To initiate the exploration into the directed-length approach of trigonometric functions, the 

instructor asked PSTs to think about the tangent function. To support small-group discussion, the 

instructor suggested that PSTs consider the following questions.  

1. What is “the” definition of the tangent function?  

2. When is the tangent equal to zero, undefined, positive, and negative? How do you know? 

A similar set of questions helped promote discussion of the secant function after the class 

negotiated a geometric definition for the tangent function. Our analysis focused on identifying 

the evoked concept images and definitions during PSTs' reasoning about tangent and secant 

functions as well as from which context the images and definitions were being drawn. When 

PSTs referred to sine, cosine, or tangent as ratios of sides of right triangles (e.g., opposite, 

adjacent, hypotenuse) we classified their concept definitions or images as aligned with a right-

triangle context. When PSTs referred to any of the six trigonometric functions defined as ratios 

of 𝑥- and 𝑦-coordinates from the unit circle (e.g., tan 𝜃 =
𝑦

𝑥
), we classified their evoked concept 

definitions as aligned with a unit-circle context. When PSTs referred to any of the six 

trigonometric functions defined as ratios involving another function (e.g., tan 𝜃 =
sin 𝜃

cos 𝜃
), we 

examined the way they used these definitions to determine a likely context. When other concept 

images were evoked, we identified and described likely sources of those concept images. Any 

disagreements were resolved through team meetings until consensus was reached. 

PSTs primarily worked in small groups. The pseudonyms we used for each PST identified 

their group membership. That is, PST-A1 was a member of Group A. In our analysis we 

identified the concept definitions and images that PSTs evoked as they worked. We linked those 

concepts to the trigonometric contexts. Finally, we compared the reasoning used as the PSTs 

identified definitions for both the tangent and secant functions. 

Results 

PSTs worked to identify segments that, when paired with the arc, would represent a viable 

definition for tangent or secant in their emerging understanding of the directed-length context. 

Their reasoning followed a pattern of exploring in GeoGebra, identifying a segment that might 

represent one of the trigonometric functions in the directed-length context, then crafting an 

argument to either justify that their proposed segment was consistent with concept images they 

held about the tangent or secant, respectively, or discard it because it contradicted their prior 

knowledge. The definitions PSTs evoked during this process were those native to the right-

triangle and circle contexts. However, they also evoked concept images related to benchmark 

values of each function. Next, we share some of the PSTs’ reasoning in chronological order 

because the collective argumentation was cumulative. Even so, we observed that when one 
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segment candidate was discarded, the reasoning cycle, starting from identifying a new segment 

candidate and comparing it to their concept definitions or concept images, was consistent. 

Development of a Directed-Length Definition for Tangent 

Conversations among members of Group A illustrate the cycle of generating candidates for 

the tangent function then constructing arguments for or against the candidate segment based on 

concept definitions and images. An excerpt from a full-class discussion will illustrate their cycle 

of reasoning. We noted that PSTs drew primarily on the circle stance, encompassing all 

trigonometry contexts. However, other mathematical concept images were evoked, as well.  

PST-A2 proposed that the tangent function ought to be defined as the slope of 𝐴𝐶, rather than 

by the segment itself. PST-A2 argued “tangent equals sine divided by cosine and so, sine is your 

y-value, cosine is your x-value.” Here we see the PST reasoning about the tangent moving 

quickly between and among definitions. When the PST stated “tangent equals sine divided by 

cosine” we considered 
sin 𝜃

cos 𝜃
 to be evidence that a right-triangle concept definition was evoked 

with sin 𝜃 representing the opposite side of the triangle and cos 𝜃 representing the adjacent side 

of the triangle. However, it is possible that PST-A2 was simply recalling a memorized definition 

native to a circle context. Likewise, because the class had previously established that half-chord 

𝐶𝐹 (shown in Figure 3) was a representation for sin 𝜃 in the directed-length context they were 

exploring, PST-A2 may have been drawing on a component of the newly developing directed-

length context as well. When the PST stated “sine is your y-value, cosine is your x-value,” we 

considered that an indication that he evoked a concept image of slope as “rise over run.” Thus, 

although teasing apart PST-A2’s concept images in any given moment could be argued from a 

variety of perspectives, it does appear that the PST was drawing from several circle-stance ideas 

and liberally making connections among several mathematical and trigonometric ideas. The 

PSTs were building their argument by connecting to other concepts images or definitions that 

they seemed to assume were taken as shared by the group. 

The small-group discussion was revisited in a full-class discussion. The instructor asked 

PSTs to consider when the tangent would be 0. PST-A2 offered “Tangent is zero when sine is 

zero because tangent is defined as sine over cosine.” The instructor recorded the definition at the 

whiteboard (i.e., tan 𝜃 =
sin 𝜃

cos𝜃
). The instructor then asked the class when the tangent would be 

undefined. Many PSTs gave a choral response: “when cosine is zero.” PST-A3 added “when the 

denominator is zero something is undefined.” This discussion illustrates how PSTs used 

benchmark values in conjunction with the definition tan 𝜃 =
sin 𝜃

cos𝜃
 to support their arguments 

about whether certain segment candidates might be viable for the tangent function for a directed-

length definition.  
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Figure 3: PSTs’ Tangent Conjectures 

 

In a subsequent full-class discussion, PSTs from various groups shared the tangent-segment 

candidates they had considered in their groups. These tangent candidates are shown in green in 

Figure 3. PST-C2 created line 𝐶𝐷 ⃡    , perpendicular to line 𝐴𝐶 ⃡     at point 𝐶. PST-F1 suggested that 

segment 𝐴𝐷̅̅ ̅̅  (green horizontal segment in Figure 3A), extending from the center of the circle to 

the point at which it intersected the tangent line 𝐶𝐷 ⃡    , might represent the tangent function. PST-

C1 argued that segment 𝐴𝐷̅̅ ̅̅  could not represent the tangent function because when the arc has 

measure zero “the sine is zero, which means the tangent should be zero, but the green segment 

(𝐴𝐷̅̅ ̅̅ ) has [nonzero] length at zero.” Thus, he used his evoked concept definition, “tangent is sine 

over cosine,” along with a benchmark value for the tangent function to test and reject the first 

conjecture. 

PST-C1 continued his thought process and conjectured that the tangent function could be 

represented by the green segment 𝐵𝐷̅̅ ̅̅  shown in Figure 3B. (We note this segment comprises the 

exsecant, however, this was not discussed in the class.) This conjecture was abandoned without 

discussion because PST-F1 conjectured that the green segment 𝐶𝐷̅̅ ̅̅  along the tangent line 𝐶𝐷 ⃡     in 

Figure 3C represented the tangent function. One small group of PSTs, checking benchmark 

values, determined that this choice satisfied the requirement that the tangent was undefined at 
𝜋

2
 

because the tangent segment and the horizontal secant are parallel when point C is at the 
𝜋

2
 

position (i.e., the arc was one-quarter of the way around the circle). PST-D1 concurred and added 

“the length of that green line, as it [point C] gets closer to the point at the top of the circle [
𝜋

2
], it’s 

going to be increasing to infinity, which is what the tangent line does.” In this argument, PST-D1 

appeared to be reasoning in a circle context as they spoke about the position of C on the circle in 

measured terms (i.e., the 
𝜋

2
 position). We classified this a circle context because they described 

the position of terminal point C, rather than the measure of the arc, as the independent variable 

leading to the tangent function output. 

After generating a promising candidate for the tangent function using benchmark values, the 

PSTs attempted to justify that  𝐶𝐷̅̅ ̅̅  constituted the tangent in the directed-length context by 

showing that it satisfied definitions and concept images from the right-triangle and circle 

contexts. PST-D2 argued that 𝐴𝐶̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  form a right angle, creating right △ 𝐴𝐶𝐷 with non-

right angle ∡𝐶𝐴𝐷 (or 𝜃) and reported that 𝐴𝐶̅̅ ̅̅  as the radius of the circle could be labeled as one 

unit in length. Drawing from a right-triangle context, she argued “tangent is opposite over 

adjacent,” the ratio of 
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
 (

𝐶𝐷

𝐴𝐶
) must be equal to tan 𝜃.  

In this way, the PSTs’ reasoning fluidly incorporated concept images from right-triangle and 

circle contexts. This pattern repeated in the PSTs subsequent search for an appropriate definition 

for the secant function. 

Development of a Directed-Length Definition for Secant  

To help PSTs construct a definition for the secant function, the instructor asked PSTs to 

consider key features of the secant function, (e.g., when is it zero and when is it undefined?). 

During small-group discussion, PST evoked two main concept definitions of secant, sec 𝜃 =
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1

cos𝜃
 and sec 𝜃 =

ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑛𝑢𝑠𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
. These two definitions were central to much of PSTs’ reasoning 

about which objects (segments) might define the secant function in a directed-length context.  

 

 
 

Figure 4: PSTs’ Secant Conjectures 

 

PST-D2 proposed the first candidate, the interior portions of the parallel red segments in 

Figure 4A. She argued that the top segment is an undefined secant as it becomes a tangent line to 

the circle. This candidate was ultimately rejected. However, unlike the first candidates for the 

tangent function, the red parallel lines were consistent with a concept definition of a geometric 

object for which it was named, a secant (i.e., a line that cuts a circle at two points). Prompted by 

the instructor, the class argued that the parallel red segments could not define the secant function 

because these red segments are bounded by the diameter. The secant function, they argued, 

grows without bound. Because this candidate was not viable, another PST suggested a different 

candidate for consideration.  

PST-B1 suggested segment 𝐴𝐸̅̅ ̅̅  in Figure 4B might define the secant. His argument was 

based on reasoning from a circle context. PST-B1 argued that when point 𝐶 moves to point 𝐵, 

segment 𝐴𝐸̅̅ ̅̅  will “be one and it will never be lower than one.” He explained that as point C 

reaches 𝜋
2
 (circle concept),  𝐴𝐸̅̅ ̅̅  will be undefined. PST-B1 compared the length of 𝐴𝐸̅̅ ̅̅  to 

benchmark values of one and undefined to create and support 𝐴𝐸̅̅ ̅̅  as a candidate for the secant. 

With the conjecture surviving the benchmark-checking phase of scrutiny, PSTs worked toward 

proving that defining 𝐴𝐸̅̅ ̅̅  as the secant was consistent with a previously known definition.  

PST-B1’s argument appears to follow this logic: 𝐴𝐸̅̅ ̅̅  could be the secant because sec 𝜃 =
ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
=

𝐴𝐸̅̅ ̅̅

𝐴𝐵̅̅ ̅̅
=

𝐴𝐸̅̅ ̅̅

1(𝑟𝑎𝑑𝑖𝑢𝑠)
= 𝐴𝐸̅̅ ̅̅ . In Table 2, we parsed PST-B1’s logic to identify key elements 

(in bold) and show their connection to the context from which it was drawn. Even though the 

reasoning was incorrect, the way he drew on multiple stances was evident.  

 

Table 2: Contexts PST-B1 Used When Reasoning About Secant  

Claim Context Possible Explanation 

 “the idea is the opposite 

over the hypotenuse” 

Right 

triangle 

This is a description of the sine 

function based on triangle side lengths.  

“that is whatever the length 

of the chord (i.e., sine) over 

one” 

Circle and  

directed length 

Because the PST substituted one for 

the hypotenuse, the PST seemed to be 

envisioning a triangle embedded in a 

unit circle. And “chord” is a directed 
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length term for sine. 

“So, we want it to be the 

other way, we want one over 

whatever the length of our 

secant is gonna be.” 

Right 

triangle  

The PST may have misspoken and 

meant to say 
𝟏

𝐬𝐢𝐧 𝜽
 , perhaps because they 

misremembered the inverse relationship 

with cosine and secant. 

“one right here (referring to 

𝑨𝑩̅̅ ̅̅ ); and you have the 

hypotenuse right there (referring 

to 𝑨𝑬̅̅ ̅̅ )” 

Right 

triangle 

(embedded in a 

circle) 

If 𝑨𝑩̅̅ ̅̅  has value 1, then the circle is a 

unit circle. If 𝑨𝑬̅̅ ̅̅  is the hypotenuse, then 

△ 𝑨𝑩𝑬 is a right triangle. 

 

 

Other PSTs contributed to the collective argumentation to complete the argument. 

PST-D3: Can’t we say its hypotenuse over adjacent? Like 1 over cosine is hypotenuse over 

adjacent. 

PST-B1: That’s like kinda like where I am trying to go. We got one (referring to 𝐴𝐵̅̅ ̅̅ ) over 

the hypotenuse (referring to 𝐴𝐸̅̅ ̅̅ ) and that’s why I am thinking that…that’s gonna be the 

length… 

PST-A1: So if we are gonna go with PST-B1’s idea, then 𝑡𝑎𝑛2𝜃 + 12 = 𝑠𝑒𝑐2𝜃. 

PST-A1 completed the argument for PST-B1’s conjecture (i.e., 𝐴𝐸̅̅ ̅̅  is the secant function) by 

referring to a trigonometric identity, a concept image associated with his circle stance toward 

trigonometry. Although these identities are not definitions drawn directly from a trigonometry 

context, they are usually proved using algebraic techniques that draw on equivalent ratio 

representations of trigonometric functions. From a bird’s eye view, one can see that even arguing 

collectively, the PSTs built the argument while fluctuating between right-triangle and circle 

concepts to support their reasoning.  

Discussion 

In this study, we identified PSTs’ evoked concept images and definitions as they establish 

directed-length definitions. PST reasoned from the circle stance (Hertel, 2013), making 

connections among concepts and definitions from circle, right-triangle, and directed-length 

contexts as established the new definitions for the tangent and secant functions. Our findings 

show that having access to the most prevalent trigonometry stance, as well as the sine definition 

from directed-length context, was sufficient for the PSTs to establish the consistency between the 

new directed-length definitions and their existing trigonometry stance.  

We also described some common ways in which the PSTs used the concept images and 

definitions. For both the tangent and secant, PSTs used benchmarking with existing concept 

definitions (i.e., tan 𝜃 =
sin 𝜃

cos𝜃
 and sec 𝜃 =

1

cos𝜃
) to generate conjectures about which segments 

were viable candidates for representing the outputs for the tangent and secant functions. To prove 

(for tangent) and attempt to prove (for secant) their conjectures, PSTs used concept definitions 

from right-triangle trigonometry to connect an existing concept definition (e.g., tan 𝜃 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
) 

to the directed-length context. For the secant proof, PST-A1 leveraged a Pythagorean identity, 

part of his concept image from a circle trigonometry context. Although these specific uses may 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

895 

 

be interesting, we found the flexibility with which the PSTs moved between and among different 

concept images and definitions coming from right-triangle trigonometry and circle trigonometry 

contexts to be more important. The flexible use of these concept images supported PSTs’ 

reasoning about the tangent and secant functions embedded in the novel directed-length context. 

This task gave the PSTs an opportunity to establish or continue to build a connected 

understanding of trigonometry. These connections may help avoid the isolated trigonometry 

knowledge about which Brown (2005) has warned.  

Finally, the reasoning documented in these activities was somewhat consistent with 

quantitative reasoning. PSTs reasoned about the different quantities (i.e., arcs and segments), but 

they also referred to numerical relationships when checking benchmark values. As Ellis (2007) 

suggested, a focus on quantitative reasoning promoted relating actions. This relating action was 

demonstrated by the PSTs as they worked to develop new concept definitions for tangent and 

secant. In this process they engaged in relating a variety of concept images and definitions from 

their existing trigonometry stance. The PSTs in this study evoked concept definitions from both 

circle and right-triangle trigonometry contexts to develop their directed-length concept definition 

of tangent and secant. This opportunity to relate between and among the different images and 

definitions from different contexts should help them better apply their understanding when they 

encounter new topics (Tall & Vinner, 1981).  

Even though PSTs developed a directed-length definition for the tangent and secant 

functions, future research should investigate: (1) In what ways can a directed-length stance and 

accompanying concept definition of trigonometric functions be leveraged to help students reason 

about additional topics (e.g., graphs of trigonometric functions, trigonometric identities, 

derivatives of trigonometric functions)? (2) How might secondary students develop a directed-

length stance of trigonometric functions as their initial trigonometry stance? 
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This study reports on students’ reasoning about a univariate optimization that involves finding 

the production level at which the cost per yard is minimized when given the graph of a function 

that represents the relationship between the cost per yard and the number of yards produced by 

a factory. Determining the production level at which the cost per yard is minimized was 

straightforward for all the four students who participated in the study. However, explaining how 

this production level is related to the first derivative of the given function was problematic for 

most of the students. Implications for instruction are discussed.  

Keywords: Optimization problems, graphical optimization, problem solving, calculus education.  

 Graphical optimization “…is a simple method for solving optimization problems involving 

one or two variables” (Bhatti, 2000, p. 47). Bhatti added, “for problems involving only one 

optimization variable, the minimum (or maximum) can be read simply from a graph of the 

objective function” (p. 47). Unlike algebraic optimization that uses algebraic methods (that may 

sometimes be sophisticated e.g., when working with complex objective functions) or numerical 

optimization (that requires some level of technical skills e.g., proficiency in MATLAB 

programing), graphical optimization is the simplest method for solving univariate optimization 

problems (UOPs) as it only requires making sense of graphs of objective functions. A UOP is an 

optimization problem where the objective function is a real-valued function of a single variable. 

UOPs are particularly challenging for first-semester calculus (hereafter, calculus) students 

(cf. LaRue & Infante, 2015). Furthermore, there is a paucity of research on students’ thinking 

about UOPs (cf. Speer & Kung, 2016). A few studies that have examined students’ reasoning 

about UOPs have found that formulating the objective function is often challenging for many 

students (cf. Borgen & Manu, 2002; Dominguez, 2010; LaRue & Infante, 2015; Mkhatshwa, 

2019). Additionally, all these studies have examined students’ ability to solve UOPs using 

algebraic methods. There is still much to be explored about how students might reason about 

UOPs when given the objective function in graphical form. The research question investigated in 

this study is: How do difficulties exhibited by students when engaged in graphical optimization 

compare with difficulties exhibited by students when engaged in algebraic optimization? 

 

Related Literature 

There are three themes that emerge from research that has looked at students’ understanding 

of algebraic optimization when working with UOPs, namely students’ difficulties with setting up 

the objective function, students’ difficulties with determining and interpreting critical values 

and/or extrema, and students’ difficulties with justifying/verifying extrema using formal calculus 

methods (cf. Borgen & Manu, 2002; Dominguez, 201; LaRue & Infante, 2015; Mkhatshwa, 

2019; Swanagan, 2012). Findings from a related body of research suggest that difficulties 

exhibited by students when working with UOPs are directly related to quantitative reasoning 
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(Thompson, 1993, 1994, 2011). Specifically, these studies have found that students tend to 

confuse different quantities such as amount quantities [e.g. distance] with rate quantities [e.g. 

speed] when working with UOPs (cf. Flynn et al., 2018; Mkhatshwa, 2019,2020, 2021; 

Mkhatshwa & Doerr, 2018; Prince et al., 2012; Rasmussen & Marrongelle, 2006). 

 

Methods of Data Collection and Analysis 

Task-based interviews (Goldin, 2000) were conducted with four freshman students 

(Pseudonyms Adam, Ava, Caleb, and Emily) at a research university in the United States. The 

interviews lasted for about 14 minutes, on average, and contained two tasks (Task 1 and Task 2). 

In this paper, we report on how the students reasoned about Task 1: 

 
The students worked through the task while the interviewer asked clarifying questions about 

their work. The students were chosen based on their willingness to participate in the study. The 

students in this study had limited exposure, via course lectures and the course textbook 

(Haeussler, 2011), to work with UOPs where the objective function is given as a graph such as in 

Task 1. We further note that the context of cost is commonly used in business calculus courses in 

the United States. Three students were business majors, and one student was an economics 

major. Business calculus is a required course for most business or economics majors. Data for 

the study consists of transcriptions of audio-recordings of the task-based interviews and work 

written by the four students during each task-based interview session. Data analysis was done in 

three stages. In the first stage, we used three a priori codes that consisted of the themes on 

students’ difficulties when solving UOPs or difficulties related to quantitative reasoning 

discussed earlier. In the second stage of the analysis, we used emergent codes that included 

instances where students reasoned about what they found to be easy or difficult in their attempt 

to answer the questions posed in the task. In the third stage of the analysis, we looked for 

patterns in each of the codes identified in the first and second stage of the analysis, respectively.  

 

Results 

Determining Critical Values and/or Extrema  

Three of the four students correctly determined the critical value of the objective function 

i.e., the production level at which the cost per yard is minimized. Although not asked, some of 

these students went on to determine the extreme value of the objective function i.e., the 

minimum cost per yard. Figure 1 illustrates how one of these students (Emily) responded to 
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prompt (a) of the task whose goal was to assess students’ ability to determine the critical value 

from the graph of the objective function. 

 

Figure 1. Emily's Solution to Prompt (a) 

In her response to prompt (a) of the task, Emily correctly identified both the critical value 

and extreme value of the objective function. In light of the fact that the objective function is not 

presented on a grid axis, something that could limit one’s accuracy when estimating critical or 

extreme values of the objective function, critical values ranging from 40 yards to 45 yards and 

extreme values ranging from $20 to $25 dollars are considered to be correct. Only one student, 

Ava, incorrectly determined the critical value of the objective function as can be seen in Figure 2. 

 

Figure 2. Ava’s Solution to Prompt (a) 

Specifically, in her attempt to determine the critical value of the objective function, Ava 

confused two amount quantities namely, the minimum cost per yard and the production level at 

which the minimum cost per yard is achieved. Another student, Adam, confused a rate quantity 

with an amount quantity when he confused the derivative of the objective function at the 

production level at which cost is minimized with the quantity of cost at this level in his response 

to prompt (c). None of the other students (i.e., Caleb and Emily) confused quantities in their 

reasoning about Task 1. 

Verifying Extrema 

All the students provided plausible explanations in response to prompt (b) that asked students 

to explain how they could convince someone that the cost per yard is minimized at the 

production level they identified in part (a). The following is a reproduction of one of the 

students’ responses to prompts (b) and (c) on the task. To reiterate, prompt (c) asked students to 

comment on 𝑓’(𝑥) at the production level where the cost per yard is minimized. 

 

Figure 3. Caleb's Responses to Prompts (b) and (c) 
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Caleb’s claim that “looking at the graph [of the objective function] we can see that the slope 

of the tangent line at this point [which he identified as 𝑥 = 42] is zero, meaning that it is a 

critical number and can be a relative extrema” in response to prompt (b) demonstrates an 

understanding that extrema can be expected to occur where the tangent line to the objective 

function is zero. This is consistent with his claim that “the derivative [𝑓’(𝑥)] is zero…” in 

response to prompt (c). In response to prompt (c) on the task, the other three students either 

stated that 𝑓’(𝑥) would be positive or that it would be negative, thus exhibiting a poor 

understanding of concept of the derivative in connection with the critical value of the objective 

function. Interestingly, only one student (Emily) noted that commenting about 𝑓’(𝑥) [i.e., prompt 

(c) on the task] was particularly challenging when asked about the difficult part in her attempt to 

respond to the prompts included in the task. It should be noted that Caleb is the only student who 

used a calculus approach to verify extrema i.e., to explain how he could convince someone that 

minimum cost per yard occurs at the production level he identified in his response to prompt (a). 

The rest of the students, and using Ava as an example argued, in response to prompt (b) on the 

task that “you can look at the minimum point on the graph to find where the cost per yard is 

minimized.” 

Understanding the Graph of the Objective Function 

When asked about the easiest part when responding to the prompts included in Task 1, all the 

students made remarks that suggested that making sense of the graph of the objective function 

was easy for all the students. For example, Adam remarked “…analyzing the graph” while Ava 

remarked “…finding where the cost is minimized because I looked at the lowest point on the 

graph.” It should be noted that the students’ remarks are consistent with their success in 

identifying critical values and/or extrema and verifying extrema as reported in the preceding 

subsections. 

Explaining why production Cost Might Increase with Small- or Large-scale Production 

Only Ava provided a plausible explanation in response to prompts (d) and (e) that asked for 

possible explanations why the cost per yard of fabric might increase when the firm produces very 

small or large amounts fabric. This student argued that a very small-scale production could lead 

to an increase in the cost per yard of fabric “…if there is not enough demand”, suggesting that 

the factory may have to charge more money per yard to make profit. Ava explained that the cost 

per yard of fabric could still increase even with a large-scale production if the factory “…is not 

making enough revenue,” which is a plausible explanation especially if making or increasing 

profit is the ultimate goal for the factory. Emily is one student who provided an explanation that 

we considered to be not plausible. She remarked, “I am not really sure…,” in response to prompt 

(e) on the task that asked about why the cost per yard of fabric could increase when the factory 

produces large amounts of fabric. 

 

Discussion and Conclusions 

A number of studies have reported on students’ difficulties with finding critical values or 

extrema as well as justifying extrema when tasked with solving UOPs using algebraic methods 

(cf. Borgen & Manu, 2002; Swanagan, 2012). Because of these difficulties, calculus students are 

often not successful in solving UOPs algebraically. Contrary to these findings, nearly all the 

students in the present study were successful in finding the critical value or extrema as well as 

justifying extrema while working with a UOP where the graph of the objective function was 
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provided. To some extent, this may suggest that while students may struggle with solving UOPs 

algebraically, partly due to lack of facility with some algebraic techniques such as calculating 

derivatives of complex objective functions, students have better success with solving UOPs 

graphically not only because they can visualize the objective function, but also because having 

access to the graph of the objective function supports their quantitative reasoning such as the 

ease of identifying critical values and extrema. Consistent with findings from previous research 

on students’ thinking about UOPs, two students confused quantities (cf. Mkhatshwa, 2019; 

2020). Additionally, three students made remarks that suggested that they had difficulty 

understanding that the derivative of the objective function ought to be zero at the critical value 

(i.e., the cost minimizing quantity), something that generally comes easy for students when 

solving UOPs algebraically. It might be helpful for calculus instructors to expose students to 

multiple methods of solving UOPs, namely algebraically, graphically, and numerically. 
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Vague or imprecise language has been shown to hinder students’ mathematical understanding. 

To investigate how imprecise language contributes to student errors, researchers analyzed the 

work of college freshmen on a trigonometry problem. Findings showed that students struggled 

with conceptualizing radians and moving from understanding trigonometric functions in the 

context of triangles to the context of the unit circle. Imprecise diagrams and formulas evidenced 

students’ lack of full understanding. Researchers recommend the use of precise language that 

prioritizes coherence, consistency, and conceptual clarity. 

Keywords: Mathematical Representations, Precalculus, Undergraduate Education. 

Students’ understanding of mathematical concepts is hindered by vague or imprecise 

language. The lack of a shared coherent language in mathematics topics causes confusion and 

impedes students’ ability to build on existing knowledge (Popovic et al., 2023). Intentional, 

consistent, precise language is essential for students to incorporate complex mathematical ideas 

into their existing understandings (Karp et al., 2015). 

 

Background and Conceptual Framework 

In the realm of mathematics education, researchers have undertaken extensive investigations 

into various facets of teaching and learning trigonometric concepts. Central to these inquiries is 

an exploration of the challenges students encounter in understanding trigonometry and the 

origins of these difficulties. Fundamental to this discourse is the observation that students often 

fail to recognize the radian as a unit of angle measure, instead favoring a dominant reliance on 

the degree measure (Koyunkaya, 2016; Moore, 2013). Consequently, students have difficulty in 

interpreting trigonometric functions' outputs when presented with real numbers as inputs (Akkoc, 

2008, Cekmez, 2020). This deficiency is compounded by a lack of foundational knowledge 

regarding the concept of angles (Koyunkaya, 2016).  

Another issue identified in students' understanding lies in their inability to establish 

connections between the contexts of right triangles and unit circles and their application in 

defining trigonometric functions (Moore, 2009). This deficit underscores the complex nature of 

comprehending trigonometric functions, which can be caused by various factors. Weber (2008) 

explains two primary reasons contributing to students' struggles: the challenge of linking 

triangles to numerical relationships and grappling with functions devoid of explicit formulas to 

determine their outputs. 

Researchers assert that traditional approaches to teaching trigonometry often fall short in 

fostering conceptual understanding among students, thereby perpetuating learning difficulties 

(e.g., Moore, 2009; Orhun, 2010; Weber, 2005). Therefore, researchers have conducted studies 

aimed at devising alternative instructional approaches, including the design and implementation 
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of novel teaching units or the integration of tools such as Geometer's Sketchpad (Moore, 2009; 

Weber, 2005).  

Departing from previous research, in our study, we investigated the underlying imprecise 

language contributing to misconceptions and errors. We contend that imprecise mathematical 

language fosters ambiguity, hindering students' comprehension and concept development 

(Popovic et al., 2022). Adopting the concepts of concept image and conceptual change, we 

recognize that students' cognitive structures are shaped by their experiences and exposure to 

mathematical language. The development of concepts encompasses mental pictures, attributes, 

properties, and associated processes, as well as the linguistic representation of concepts, and 

inconsistencies within and between concept images and definitions can lead to cognitive 

conflicts, impeding the formation of an appropriate conceptual understanding (Jaffar & Dindyal, 

2011; Lager, 2006; Siemon et al., 2017; Tall & Vinner, 1981). Thus, we advocate for an approach 

that emphasizes coherent and shared mathematical language to facilitate conceptual development 

and mitigate learning difficulties across mathematics education levels. Therefore, in this study, 

we analyze students’ mathematical work and reasoning in their solutions to trigonometry 

problems and infer what type of underlying imprecise language might have potentially led to 

such misconceptions and errors.  

 

Data Analysis 

The sample consisted of 55 students, who were freshmen enrolled in a Precalculus course at a 

university in the Midwest portion of the United States. Researchers analyzed student work for 

one problem on a final exam. The problem, created by one of the researchers, stated: 

Given that the sin(𝜃) = −
5

6
, where 𝜋 < 𝜃 <

3𝜋

2
, calculate the values of sec(𝜃) and cot(𝜃). 

Your work must clearly show how you achieved your answer. 

One researcher analyzed student work to determine how the imprecise language might have 

influenced the appropriateness of the solution approach. Two other researchers then analyzed 

portions of student work for agreement. Researchers discussed discrepancies in coding until 

100% agreement was reached.  

 

Findings 

Memorized procedures and mnemonics impeded students in moving beyond their 

conceptions of trigonometric functions as solely the ratios of the sides of a right triangle. This 

was seen in various ways in student work. Specifically, in the US, the mnemonic SOHCAHTOA 

is ingrained in students as a way to remember that, given a right triangle with angle A between 0֠ 

and 90֠, sin(A) is equal to the ratio of the side opposite angle A divided by the hypotenuse of the 

triangle (see Figure 1). Teachers accept this written in shorthand as 𝑠𝑖𝑛 =   
𝑜𝑝𝑝

ℎ𝑦𝑝
. This mnemonic 

was shown in the work of two students. The use of this mnemonic (i.e., the imprecise language) 

reflects a common oversimplification in trigonometric instruction, where trigonometric functions 

are often taught in the context of right triangles only, leading to a limited understanding of their 

broader applications and concepts. 
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Figure 1: Mnemonic for Trigonometric Ratios 

 

When told sin(𝜃) =  −
5

6
 , ten students used a right triangle with one side length of 5 and 

hypotenuse of 6, found the third side length, and used that to determine cos(θ). Students placed a 

triangle in the plane without relating the hypotenuse to the radius of a circle, even though the 

angle measurement was provided in radians. Rather than seeing the triangle as having a side 

length of  
5

6
  and hypotenuse of 1, which would have facilitated their understanding of the 

triangle hypotenuse as the radius of the unit circle, students relied on their understanding of 

sin(𝜃) as the ratio of the opposite side and the hypotenuse. Given sin(𝜃) = −
5

6
 , students 

automatically drew a triangle with that ratio for one side and the hypotenuse (see Figure 2). This 

reliance on information from Geometry shows that students were unable to build on their 

geometric knowledge of triangles in the plane to incorporate trigonometric functions represented 

in the unit circle. The abrupt transition from using trigonometric functions to describe triangle 

ratios in Geometry to using the same functions as circular functions in Algebra II caused an 

inconsistency in the students’ concept image (sides of a right triangle) and definitions (unit circle, 

cos(𝜃) = 𝑥, sin(𝜃) = 𝑦), thus blocking the formation of new understandings about 

trigonometric functions. This reliance on triangle-based approaches instead of integrating the 

concept of the unit circle demonstrates a perpetuation of imprecise ratio language used in 

teaching trigonometry. 

 
Figure 2: Incorrect Triangle Diagrams 

 

However, the bigger problem here is that there is no triangle with side length of −
5

6
. Rather, 

an understanding that this is the x-coordinate of the point on the unit circle is essential in guiding 

students to use the equation of the circle. The first triangle shown in Figure 2 also shows 

evidence that students are taught to see radians as markers on the plane, rather than as angle 

measures. An acute angle in quadrant three was drawn by 12 students, even though it was given 

in the problem that 𝜋 < 𝜃 <
3𝜋

2
 .  

Eleven students showed evidence of having memorized formulas for the relationship between 

trigonometric functions but drew incorrect diagrams. It appears that these students have 

memorized the formulas but are unable to make a connection to representations of the unit circle 

(see Figure 2). These students were able to incorporate some definitions into their existing 
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schema (𝑐𝑜𝑠 (𝜃)  = 𝑥, 𝑠𝑖𝑛(𝜃) = 𝑦), but an incomplete mental picture of the unit circle impeded 

their understanding of the hypotenuse as the radius of the unit circle. 

Students wrote imprecise equations, such as 𝑠𝑒𝑐 =
1

𝑠𝑖𝑛
. This was seen in the work of 11 

students (see Figure 3). This is believed to be an acceptable equation in high school, without 

regard for the imprecision evident in the equation. Acceptance of these imprecise representations 

encourages the interpretation of trigonometric functions as variables, leading to ambiguity and 

impeding concept development. This understanding of trigonometric functions as variables leads 

to difficulties when solving trigonometric equations, such as sin(𝑥 + 𝜋)  = sin(2𝑥) + sin(𝜋)  , 
where students divide the whole equation by sin (i.e., cross out sin) to get 𝑥 + 𝜋 = 2𝑥 +  𝜋. 

 

 
Figure 3: Imprecise Equations 

 

The work and explanations of three students showed that they were logically thinking 

through their work and understood the connections between the functions. For example, when 

told 𝜋 < 𝜃 <
3𝜋

2
 , students explained that the angle would be in Quadrant III, giving a negative 

value for 𝑠𝑒𝑐(𝜃). However, without a diagram, it is unclear whether these students fully 

understood the connections to the unit circle. Logically thinking through their work was also 

evident for four other students, but explanations were not provided to the same extent as for the 

three students mentioned above. However, these students also drew a diagram to support their 

thinking, showing evidence of understanding the connection between the unit circle and the 

trigonometric functions (see Figure 4). 

 

 
Figure 4: Diagram Supporting Understanding 

Conclusions 

Our findings underscore the impact of imprecise language on students' ability to navigate the 

complexities of trigonometry. Examination of student work on the introduction and subsequent 

study of trigonometric ratios revealed a pervasive reliance on mnemonic shortcuts and 

memorized formulas, obscuring the conceptual understanding. For example, the use of shortcut 

formulas such as 𝑠𝑒𝑐 =
1

𝑠𝑖𝑛
 , without the argument of θ, can lead to insufficient concept 

development and impede understanding of the concept in a broader or different context. This is 

evidenced in student representations of a triangle on the plane without relating the hypotenuse to 

the radius of a circle centered at the origin. The move from the study of triangle side ratios to the 

study of the unit circle resulted in the use of the same terms in a different context, with new 
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vocabulary. Triangles are replaced with angles that may be equal to or greater than 180֠, requiring 

a restructuring of existing understandings of  sin(𝜃) , cos(𝜃), and tan(𝜃). Merely substituting 

triangles with circular contexts without fostering a nuanced understanding of radians and circular 

functions inhibits conceptual growth. Students’ struggles to move to envisioning trigonometric 

functions in the context of the unit circle was also seen in Moore (2009). It is imperative to 

champion the use of precise language, one that prioritizes coherence, consistency, and conceptual 

clarity. By cultivating a shared coherent mathematical language grounded in precision and 

intentionality, educators can empower students to transcend rote memorization and embrace the 

rich connections in mathematical concepts. 
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Calculus students often struggle to understand the derivative conceptually, even when they can 

differentiate fluently. Operating from the premise that underdeveloped covariational reasoning 

skills may be key in understanding the derivative, this study explores how two calculus textbooks 

vary in promoting derivatives as dynamic and static. The results of analysis suggest that each 

textbook provides opportunities for both forms of reasoning, but they vary in their emphasis.  

Keywords: Calculus, Curriculum, High School Education, Undergraduate Education 

Research over the past few decades demonstrates that calculus students have difficulties 

making sense of the derivative conceptually, even if they can calculate derivatives fluently (e.g., 

Orton, 1983; Carlson et al., 2002; Thompson & Carlson, 2017; Epstein, 2013). Thompson and 

Harel (2021) argue that the underdevelopment of covariational reasoning may be the missing link 

in students’ ability to engage deeply with major calculus concepts including the derivative. 

Covariational reasoning, or reasoning about how quantities vary simultaneously and in relation 

to one another, is evident in the Mathematical Association of America’s (MAA’s) recommended 

conception of the derivative as dynamic. The MAA emphasizes the need to promote an idea of 

the “derivative as instantaneous rate of change or as a measure of sensitivity of one variable to 

change in another,” rather than the traditional, “very static interpretation” which does not make 

explicit a covarying relationship between quantities (Bressoud et al., 2015, p. 18).  

This study is motivated by the need for students to experience a dynamic conception when 

learning about the derivative, and the role that textbooks play in the nature of students’ calculus 

learning (e.g., Liakos et al, 2021; Gerami et al., 2023, Porogrelova, 2022). Recent work suggests 

that textbooks provide different, and often limited, promotion of covariational reasoning related 

to the derivative (Mkhatshwa, 2022; Chen, 2023), and this has implications for the opportunities 

students may have to reason about the derivative in a dynamic way. This study adds to this 

literature by applying Tasova et al.’s (2018) covariation framework to operationalize a distinction 

between static and dynamic conceptions of the derivative. Ultimately, the purpose of this study is 

to uncover how static and dynamic conceptions of the derivative are introduced to students by 

highlighting the ways two calculus textbooks promote reasoning about quantities related to the 

derivative as static or dynamic. These distinctions have implications for how students continue to 

engage and apply concepts as they progress through calculus and beyond. 

Methods 

I compare the introductory material on derivatives from two widely used Calculus textbooks 

(according to Open Syllabus Project): Calculus of a Single Variable (Larson & Edwards, 2018; 

hereafter Larson, for brevity) and Calculus: Single and Multivariable (Hughes Hallett et al., 

2013; hereafter Hughes Hallett). I address the question: How do two calculus textbooks promote 

reasoning about the derivative as static and dynamic? 

I applied Tasova et al.’s (2018) framework (Table 1) to Larson’s and Hughes Hallett’s 
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introductory chapters on the derivative. This framework combines Moore and Thompson’s 

(2015) framework for static and emergent shape thinking with Thompson and Carlson’s (2017) 

framework for (co)variational reasoning. The framework is intended to be used “for coding the 

extent and nature of (co)variation provided in the narrative” of a textbook (i.e., expository 

sections, figures, and worked examples; p. 1529).  I note I have adjusted the wording of the 

framework to be ‘dynamic’ instead of ‘emergent,’ as ‘dynamic’ characterizes covariation in non-

graphical situations, and more clearly aligns with the MAA’s conceptions of the derivative.  

This framework outlines how textbooks promote the relationships between quantities and the 

quantities themselves as varying (dynamic) or not varying (static). A textbook narrative element 

promotes a static conception when it represents a quantity or function as a single object that is 

interpreted through associated facts or properties (i.e., Perceptual Associations) or as an 

input/output correspondence between its quantities (i.e., Correspondence). It promotes a dynamic 

conception when it emphasizes a quantity as changing (i.e., Variation) or the interprets the 

relationship between quantities through their coordinated change (i.e., Covariation). For brevity, 

I share examples of the most relevant codes in the results (for a thorough explanation of each 

code, see Tasova et al. (2018)). 

 

Table 1: Analytic Framework (adapted from Tasova et al., 2018, p. 1529) 

Static Dynamic 

• Perceptual Associations Variation Covariation 

• Variable as Unknown • Continuous • Continuous 

• Correspondence • Gross • Gross Coordination of Values 

 • Discrete • Coordination of Values 

 

I identified and coded instances in which the textbooks promoted static or dynamic reasoning 

about quantity/quantities using the elements of Tasova et al.’s (2018) framework (Table 1). I 

defined multiple units of analysis based on the component of the textbook being reviewed (i.e., 

expository sections, figures, tables, worked examples). For example, expository texts were coded 

sentence-by-sentence, but worked examples were coded as a single unit with the most prominent 

code. Instances of each opportunity were also tagged with the component type through which it 

was presented to investigate patterns in the ways conceptions were promoted.  

Results 

Each textbook provides opportunities for both static and dynamic conceptions of the 

derivative. However, the textbooks differ in their relative emphasis. Table 2 summarizes the 

frequencies of opportunities identified as static and dynamic across both textbooks. While 

Larson provides more opportunities overall for thinking about quantities related to the derivative, 

over 75% of these are static. This suggests Larson promotes a more static conception of the 

derivative. Hughes Hallett offers slightly more instances of dynamic than static (38 vs 33, 

respectively), which suggests there is more balance between its promotion of reasoning about the 

derivative from both a dynamic and static perspective. For brevity, the remaining results explore 

only the most notable code for each conception of the derivative. 
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Table 2: Opportunities for static and dynamic conceptions of the derivative  

Frequency Static  Dynamic  Total 

Larson 76.4% (n = 84) 23.6% (n = 26)  110 

Hughes Hallett 46.5% (n = 33) 53.5% (n = 38) 71 

 

Instances Promoting a Static Conception of the Derivative 

I identified the majority of static instances in Larson as Correspondence (70.2% of static 

opportunities). Only 9% of Hughes Hallett’s static instances were Correspondence. Further, most 

examples of Correspondence from Larson were associated with worked examples. In general, 

Larson’s worked example solutions were more perfunctory than Hughes Hallett’s, and included 

less explanation and interpretation of the steps and answers.  

Most of Larson’s Correspondence worked examples followed a similar format. Generally, 

they indicated students should use an established rule to procedurally generate a derivative 

function, and then use this derivative function as a new rule to address follow up questions. For 

example, students are asked to “Find the slopes of the tangent lines to the graph of f(x) = x2 + 1 at 

the points (0,1) and (-1,2)” (Larson, p. 102). The given solution applies the limit definition of the 

derivative, and though it shows intermediate steps for determining the derivative function, there 

is no attention to what the limit as ∆x → 0 means. Once the derivative function is established, it 

is simply used as an ‘input/output’ generator to calculate slopes: “So, the slope at any point (c, 

f(c)) on the graph of f is m = 2c” (Larson, p. 102 emphasis in original). This explanation is a 

clear example of Correspondence, which “simply provide[s] a rule for students to calculate a 

unique value of a variable or quantity by using any given value of another variable or quantity,” 

(Tasova et al., 2018, p. 1529); in this case, students are given the opportunity to use the rule m = 

2c to calculate “any” slope at “any” point, with no attention to how the values of this slope are 

related to the original graph’s values, to x, or to each other. 

Instances Promoting a Dynamic Conception of the Derivative 

Though both textbooks promote reasoning about the derivative dynamically, Hughes Hallett 

provided more opportunities to reason at the highest levels of covariation. In Hughes Hallett, 

Coordination of Values and Continuous Coordination were 42.1% and 18.4% of dynamic 

opportunities, respectively. Larson emphasized lower levels of covariation, with Gross 

Coordination characterizing 53.8% of dynamic opportunities.  

A notable difference between Larson and Hughes Hallett related to promoting a dynamic 

conception is that Hughes Hallett utilized tables of values within its narrative structure and 

Larson did not include any. Further, each table of values present in Hughes Hallett coincided 

with instances of Coordination of Values or Continuous Covariational reasoning opportunities. 

Though generating a table from a given or derived rule would be considered an example of 

Correspondence, the use of tables of values in Hughes Hallett focuses on interpreting a complete 

table. This approach promotes reasoning covariationally as Coordination of Values, as it 

emphasizes the coordination the values of one variable with values of another across discrete 

pairs (Tasova et al., 2018). With some additional context or explanation, this reasoning can be 
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elevated to Continuous Covariation by highlighting “simultaneous and continuous change” 

(Tasova et al., 2018, p. 1530). For example, consider the Continuous Covariational worked 

example from Hughes Hallett shown in Figure 3, which asks students to construct a table of 

values of an estimated rate based on a given table of values. 

 

 
Figure 3: Worked example prompt coded Continuous Covariation (Hughes Hallett, p. 92) 

 

A preconstructed table of values is used in both the problem statement and the solution (not 

pictured) and instructs students to reason about how both the concentration and the derivative of 

the concentration change as time passes (i.e., covariationally). The solution explanation draws 

attention to both the concentration’s direction and rate of change through specific values, initially 

promoting Coordination of Values. However, the solution further states, “we have to assume that 

the data points are close enough together that the concentration does not change wildly between 

them” (p. 93). This description uses the small size of the intervals to draw attention to the 

simultaneous and continuous nature of the coordinated change, thus promoting Continuous 

Covariational reasoning. Similar language that draws on small or successively smaller intervals 

is present in many instances of Continuous Covariational reasoning across both textbooks.  

Discussion 

Addressing the research question, both textbooks promote static and dynamic conceptions 

throughout their introductory chapters on the derivative. Therefore, they both provide at least 

some opportunities for students to come to understand the derivative from both static and 

dynamic perspectives, though their emphasis differs. Larson provides more instances of static 

conceptions and emphasizes a Correspondence approach to understanding and using the 

derivative to solve problems. Hughes Hallett provides more instances of dynamic conceptions, 

and this is afforded in part by its use of tabular representation interpretation. 

It is important to mention that Larson is considered a ‘traditional’ textbook, and Hughes 

Hallett was written during the reform movement of Calculus education (Hughes Hallett, 2006). 

Though I found differences between the books, these results should not be used to characterize 

traditional and reform calculus textbooks more broadly. Future research could analyze additional 

textbooks with Tasova et al.’s (2018) framework to determine whether there are any major 

differences between traditional and reform textbooks’ promotion of derivative conceptions in 

general. 

Given the influence calculus textbooks can have on teachers’ planning and practice (Liakos et 

al., 2022; Gerami et al., 2023), these results suggest the choice of textbook may influence how 

students ultimately learn to conceptualize the derivative. This has implications on their ability to 

apply their knowledge of the derivative to other contexts, such as in science and engineering 

fields in which a dynamic conception is more productive (Bressoud et al., 2015). Teachers should 

consider supplementing their textbook with materials that emphasize a more dynamic conception 
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of the derivative as well as materials that demonstrate why static ideas about the derivative hold 

true.  

Similarly, curriculum developers should consider alternative methods of fostering the 

dynamic conception of the derivative; the complexity of representing continuous covariation, an 

inherently dynamic concept, in static mediums like printed textbooks calls for work that makes 

the dynamic nature of the derivative more explicit and accessible to students. Recent work (e.g., 

Weinberg & Martin, 2020; Kertil & Dede, 2020) has begun that explore the dynamic capabilities 

of software, such as Desmos, for investigating and promoting the covariational reasoning of 

students of different ages. More work is needed to understand how these dynamic activities can 

be used to supplement the opportunities presented in textbooks to improve students’ 

understanding of the derivative as dynamic. 
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Mathematics self-efficacy (MSE) is a person’s belief in their ability to do mathematics, 

including beliefs such as “I am bad at math.” MSE can impact a students’ college major choice, 

perseverance through struggles, and their success or failure in mathematics, with research 

generally linking high MSE to beneficial outcomes (Gill, 2019; Hackett, 1985; Multon et al., 

1991; Pintrich & de Groot, 1990). MSE exists at both a global and local level (Bandura, 1997). 

Global MSE includes beliefs about broad topics in mathematics, such as “I am good at 

Calculus.” Local MSE is a narrower belief about specific tasks or single problems, such as “I am 

bad at proof by induction.” Past research on MSE has often not been clear about the level of self-

efficacy (global or local) and frequently measured only global MSE (Multon et al., 1991). This is 

an important limitation because students may have mismatched global and local MSE (e.g., 

holding high global and low local MSE). In addition, MSE has often been explored in the K – 12 

population. These results may not apply to the collegiate population and particularly to discrete 

mathematics students, a course where researchers argue students’ beliefs may change (Sandefur 

et al., 2022). Discrete mathematics is also often students’ first introduction to the “axiomatic 

formal” mode of mathematics, including proof (Tall, 2008). Given the importance of self-

efficacy on students’ perseverance and success, more research is needed exploring both global 

and local MSE of discrete mathematics students.  

Research Design and Analysis 

This study examined the global and local MSE of collegiate discrete mathematics students, 

with the goal of identifying and qualitatively describing cases where global and local MSE did 

not align (e.g., high global but low local MSE) and the causes for that misalignment. Participants 

were 14 students who participated in a semi-structured interview designed to explore their 

beliefs. Interviews were transcribed verbatim and coded following Campbell and colleagues 

(2013). The two authors worked together to ensure reliability, achieving 88% coding reliability.  

Findings and Implications 

We identified cases of misaligned MSE in discrete mathematics; that is, students with high 

global MSE sometimes had lower MSE for discrete topics or problems (and vice versa). This 

suggests potential changes to students’ beliefs may have occurred because of discrete 

mathematics, a result backed up by students themselves who sometimes identified the discrete 

course as changing either their global or local MSE. Sara for example said, “[Discrete 

mathematics] definitely affected me… it made me realize … there's gonna be stuff that I'm not 

always 100% good at going into it.” Overall, these results, and other data we will share in the 

poster, suggest that students in discrete mathematics may have mismatched global and local 

MSE, and some of this mismatch may stem from the nature of the course itself. This work has 

implications for our understanding and measurement of students’ beliefs as well as for how we, 
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as instructors, can support students through belief changes caused by classes that introduce 

formal mathematical language and proof. As we envision the future of mathematics education, it 

is vital that we build on work like this that takes students’ perspectives and beliefs into account.  
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Presentamos una secuencia didáctica mediada por la tecnología digital para significar y 

calcular las raíces reales de una función real en un curso de cálculo diferencial para estudiantes 

de ingeniería. Para introducir las raíces diseñamos un Escenario Didáctico Virtual Interactivo, 

que simula un problema real, y usamos el sistema tutorial CalcVisual para apoyar el cálculo 

aproximado de las raíces. Implementamos la secuencia con una población de 45 estudiantes 

universitarios en México. Los datos se analizaron mediante los modelos emergentes de la 

Educación Matemática Realista. Mostramos el progreso en la actividad matemática de los 

estudiantes a través de cada uno de los niveles de actividad de los modelos emergentes quienes 

mostraron un avance significativo en la comprensión conceptual y cálculo de las raíces reales. 

Precálculo, Cálculo, Tecnología, Experimentos de diseño. 

Los polinomios son funciones fundamentales en la matemática, en particular en el cálculo, 

análisis matemático y álgebra lineal. Una de las propiedades más importantes de una función 

polinómica, son sus raíces reales y complejas, pero determinarlas no es tarea sencilla e incluso en 

algunos casos se llega a confundir la función polinómica con la ecuación que se deriva de ella 

(Dede y Soybas, 2011). Significar el concepto de raíz real de una función resulta determinante 

por tratarse de un concepto fundamental para la matemática e imprescindible para aplicaciones 

en procesos de optimización, cálculo diferencial e integral, álgebra lineal, cálculo multivariable y 

método Simplex de programación lineal, por mencionar algunos. La determinación de las raíces 

simples o múltiples es un problema complejo y vigente que tiene su origen desde los primeros 

vestigios de la humanidad, y que siempre ha estado asociado a problemas de variación, 

acumulación y optimización. Hasta nuestros días se mantienen problemas abiertos sobre el 

cálculo de raíces, sobre todo cuando son múltiples (Cuevas y Madrid, 2013), y cobra relevancia 

en el problema de cómo introducir desde el plano cognitivo este concepto en la enseñanza a nivel 

de precálculo y cálculo (Veuillez-Mainard, 2023). Al realizar una búsqueda sistemática de la 

literatura podemos constatar que existen pocos artículos que reporten las dificultades de 

enseñanza de raíces reales, minimizando la importancia y dificultad del concepto. Es conveniente 

recordar que la resolución de ecuaciones polinomiales generó el álgebra (Puig y Rojano, 2004). 
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Tradicionalmente el cálculo aproximado de raíces reales era un tema importante que tratar en 

cursos de análisis numérico donde se practicaban diversos métodos como: bisección, regula falsi 

y Newton-Raphson para aproximarse al valor de una raíz real. Sin embargo, al popularizarse el 

uso de herramientas digitales con la avalancha de diversos manipuladores simbólicos virtuales, el 

significado y proceso bajo el cual se desarrolló permanece oculto, dejando la incertidumbre de 

qué es una raíz real de una función real. Esto debido a que softwares como: Mathematica, 

Wolfram Alpha, Matlab, GeoGebra y Photomath, resuelven ecuaciones y encuentran sus raíces 

en cuestión de segundos. Este reto que la tecnología digital ha puesto en la enseñanza y 

aprendizaje de las matemáticas permanece sin respuesta, y ha creado el paradigma de ¿qué se 

debe de enseñar? Cuando los estudiantes utilizan cualquier dispositivo o software para calcular el 

valor de una raíz real ¿sabrán que la mayoría de las veces encuentran un valor aproximado? ¿qué 

cuando las raíces son múltiples y cercanas pueden confundirse por errores de aproximación? 

¿qué significa gráfica y numéricamente una raíz? ¿en qué se puede utilizar el concepto de raíz 

real, más allá de calcular su valor? Estos significados, se extraviaron al perderse los métodos de 

aproximación de una raíz y difícilmente se recuperarán algún día. Nos preguntamos ¿cómo 

recuperar los significados del concepto raíz de una función real mediante actividades mediadas 

por la tecnología digital? Nuestra propuesta consiste en el desarrollo y creación de actividades 

didácticas que permitan recuperar los significados de las raíces reales aprovechando los recursos 

que la tecnología digital ofrece el día de hoy como la capacidad numérica, gráfica y simbólica.  

Marco teórico 

Cuando un profesor frente a un grupo de estudiantes explica y anota definiciones, fórmulas y 

ejercicios en el pizarrón, mientras los estudiantes lo observan, escuchan y anotan en sus libretas 

lo expuesto por él, a esta enseñanza se le denomina enseñanza tradicional, la cual se ha 

desarrollado durante varios años. Para evitar este tipo de enseñanza y promover una enseñanza 

participativa con el objetivo de dotar de un significado a los conceptos matemáticos, Cuevas y 

Pluvinage (2003) proponen una serie de principios – intranet conceptual, partir de un problema 

en un contexto real, un plan de acción, implementación de operaciones inversas, la articulación 

de diversos registros de representación, la validación de resultados y la aplicación del concepto 

en un contexto diferente al enseñado– para la enseñanza de un concepto matemático. Usamos 

estos principios para el diseño de las actividades. 

Los modelos emergentes son una de las tres heurísticas de diseño instruccional de la 

Educación Matemática Realista (RME por sus siglas en inglés). Esta heurística describe como 

una serie de modelos puede apoyar el avance matemático de los estudiantes (Gravemeijer, 2020). 

La heurística de los modelos emergentes destaca la importancia de comenzar con problemas 

contextuales que ofrezcan oportunidades para desarrollar un razonamiento específico de la 

situación y con el potencial de crear problemas cuya solución hace necesario el uso de conceptos 

matemáticos más sofisticados (Gravemeijer y Doorman, 1999). La actividad matemática inicia 

con el uso o desarrollo de un modelo derivado del contexto y, con el tiempo, este modelo apoya 

la aparición de formas de conocimiento matemático formal (Doorman et al., 2012). Los 

estudiantes transitan por distintos niveles de actividad que van desde el uso de estrategias 

informales hasta el razonamiento matemático formal (Gravemeijer, 1999). Los cuatro niveles 

propuestos por la RME son: 

1. Nivel situacional (actividad en el entorno de la tarea). En este nivel las interpretaciones y 
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las soluciones dependen de la comprensión de cómo actuar en el entorno (fuera del entorno 

escolar).  

2. Nivel referencial. En este nivel los modelos-de se refieren a la actividad en el entorno 

descrito en las tareas. En consecuencia, los modelos que surgen se basan en la comprensión de 

los estudiantes del entorno real y forman parte de las explicaciones en las que los estudiantes 

describen cómo interpretaron y resolvieron las tareas centradas en los escenarios de partida.  

3. Nivel general. Este nivel comienza a surgir cuando los estudiantes empiezan a razonar 

sobre las relaciones matemáticas implicadas. Por lo tanto, surge cuando el razonamiento de los 

estudiantes pierde dependencia de las imágenes específicas de la situación. En este sentido, los 

modelos-para sirven más como medio de razonamiento matemático que como forma de 

simbolizar la actividad matemática basada en entornos particulares. 

4. Nivel formal. En este nivel se trabaja con los procedimientos y notaciones 

convencionales. Se alcanza cuando los estudiantes ya no necesitan el apoyo de modelos para la 

actividad matemática. 

Usamos estos niveles para mostrar el progreso en el razonamiento de los estudiantes, sobre el 

concepto de raíz, al trabajar con las actividades propuestas. 

Metodología 

Este estudio se desarrolló con base en la Investigación Basada en el Diseño (IBD) por lo que 

esta investigación implica iteraciones de diseño, implementación y análisis mediante las 

siguientes fases: preparación y diseño, experimentos de enseñanza y análisis retrospectivo 

(Bakker, 2018).  

Fase de preparación y diseño 

Se diseñó una secuencia de cinco actividades para introducir de forma gradual el concepto de 

raíz real (ver figura 1). 

 

Figura 1: Secuencia didáctica 

 

Como parte de la secuencia, se diseñó un Escenario Didáctico Virtual Interactivo (EDVI), al 

que denominamos EDVI “Globo” porque simula un recipiente cilíndrico de 10 cm de diámetro 

con un globo esférico atado al fondo. Este EDVI cuenta con botones para llenar y vaciar de agua 

el recipiente y botones para inflar y desinflar el globo a partir de los cuales, pueden observar 

cambios de forma dinámica en parámetros como: la altura inicial del agua con el globo 

desinflado, la altura del agua al inflar o desinflar el globo y el radio y diámetro del globo (ver 

figura 2a). En este artículo nos referimos a un EDVI como un manipulativo virtual que permite 

simular y visualizar diferentes representaciones semióticas de un problema real (Cuevas et al., 

2023).  
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Figura 2. a) EDVI Globo; b) Sistema Tutorial Inteligente CalcVisual 

 

Adicionalmente, se utilizó un Sistema Tutorial Inteligente denominado CalcVisual que 

apoyará a los estudiantes en el cálculo de las raíces (ver figura 2b). El CalcVisual es un software 

que no calcula las raíces como cualquier manipulador simbólico. Permite introducir el polinomio 

y mediante herramientas visualizar diferentes representaciones del concepto de raíz. Por ejemplo, 

su representación tabular y su gráfica sobre un plano cartesiano. Es importante señalar que, 

CalcVisual no trabaja con funciones racionales y radicales. Asimismo, se diseñaron Hojas de 

Exploración y Aprendizaje Guiado (HEAG) para cada actividad, las cuales guían al estudiante en 

la manipulación de las herramientas digitales y en la construcción del concepto matemático.  

Fase de experimento de enseñanza 

La intervención didáctica se desarrolló en una universidad pública mexicana con 45 

estudiantes inscritos en un curso de “Matemáticas aplicadas a la informática”. Las HEAG se 

enviaron de manera digital a cada estudiante y las actividades se desarrollaron en equipos de 6 

integrantes. Después de resolver cada actividad, el profesor seleccionó unas HEAG al azar y 

realizó una discusión en clase para llegar a las respuestas correctas de forma consensuada. Las 

actividades fomentan tanto el aprendizaje individual como el colaborativo. Los datos se 

obtuvieron mediante las respuestas en las HEAG que los estudiantes enviaron al correo 

electrónico del profesor. Uno de los autores fue el encargado de impartir dicho curso. Los datos 

se analizaron de manera independiente por los investigadores. Se identificaron estrategias de 

solución y las respuestas de los equipos se clasificaron en los niveles de actividad (situacional, 

referencial, general y formal).  
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Resultados y análisis retrospectivo 

En esta sección describimos como progresa el razonamiento de los estudiantes a través de 

cada uno de los niveles de actividad de los modelos emergentes al trabajar con las actividades 

propuestas. Debido a la limitación del documento, mostramos las respuestas de dos equipos (T1 

y T2) seleccionados al azar. 

Actividad Situacional  

Como se ha mencionado anteriormente, la actividad situacional implica que los estudiantes 

trabajen en un entorno real para alcanzar objetivos matemáticos particulares. La actividad en el 

aula comenzó con la exploración del EDVI “Globo”. Clasificamos esta actividad en el nivel 

situacional porque los estudiantes usaron las herramientas disponibles en el escenario para 

identificar variables, constantes y características cómo: una altura inicial del agua (ℎ0) con la que 

el diámetro del globo puede ser igual a la altura del agua (ℎ𝑎). La tabla 1 muestra las respuestas 

de los equipos T1 y T2 a las preguntas de exploración.  

Tabla 4. Preguntas y respuestas a las actividades de exploración 
Pregunta Respuesta T1 Respuesta T2 

¿Qué elementos son variables al 

inflar el globo? 

Radio del globo, volumen del 

contenido en el recipiente, 

volumen del globo. 

Radio del globo, volumen del 

contenido en el recipiente, volumen 

del globo y altura inicial del agua. 

¿Qué elementos son constantes al 

inflar el globo? 

Radio del recipiente, volumen 

inicial de agua y altura inicial 

del agua. 

Radio del recipiente, volumen 

inicial de agua. 

¿Hasta qué valor puede crecer y 

disminuir el radio del globo (𝑥)? 

El radio puede crecer hasta 5cm 

y disminuir hasta 0cm 

El radio puede crecer hasta 5cm y 

disminuir hasta 0cm. 

¿Hasta que altura inicial (ℎ0) se 

puede llenar el recipiente de agua? 

La altura inicial máxima es de 

12 cm 

La altura inicial máxima es de 

5.47. 

Escribe una altura inicial del agua 

ℎ0 con la que el diámetro del globo 

sea igual a la altura del agua ℎ𝑎. 

Si el recipiente se llena hasta 

una altura de 10cm, el diámetro 

se expandirá hasta los 10cm. 

A una altura de 5.45 

 

En general, los elementos constantes del EDVI son el radio del recipiente, el volumen inicial 

de agua y la altura inicial del agua. Sin embargo, nótese que el T2 indicó como variable la altura 

inicial del agua. Inferimos que dieron esta respuesta porque se trata de un parámetro que se 

puede modificar en el EDVI. Aunque, una vez establecido, al inflar y desinflar el globo este 

permanece constante. Observe también que, las respuestas a la pregunta 4 son diferentes. Ambas 

respuestas son correctas, ya que el T1 se enfocó en la ℎ0 con el globo desinflado, mientras que el 

T2 primero infló el globo hasta su valor máximo y posteriormente llenó el recipiente con agua. 

Finalmente, las respuestas a la pregunta 5 nos hacen inferir que los estudiantes confundieron la 

altura inicial del agua (ℎ0) con la altura del agua (ℎ𝑎) aunque se puede observar que sí 

identificaron valores en los que el diámetro del globo es igual a la altura del agua. 

Actividad Referencial 

Tras la exploración del EDVI “Globo”, la actividad en el aula continuó con el problema de 

identificar la ecuación polinómica que modela el volumen total del contenido del recipiente, 

cuando el radio del globo es tangente a la superficie del agua para identificar como solución la 

raíz de un polinomio. Clasificamos esta actividad como referencial porque los estudiantes 

comenzaron a establecer relaciones matemáticas en el contexto. Esta actividad se dosificó de 
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modo que los estudiantes propusieran ecuaciones para determinar la altura del agua (ℎ𝑎) en 

relación con el radio del globo (𝑥), el volumen del globo (𝑉𝐺), el volumen inicial del agua (𝑉𝐴) y 

el volumen total del contenido en el recipiente (𝑉𝑇). La tabla 2 muestra las ecuaciones propuestas 

por los equipos T1 y T2.  

Tabla 5. Ecuaciones propuestas por los equipos T1 y T2 para modelar el problema del 

radio del globo tangente a la superficie del agua 

T1 T2 

𝑉𝐺 = (
4

3
)𝜋𝑥3  𝑉𝐺 = (

4

3
)𝜋𝑥3  

𝑉𝐴 = 𝜋(𝑅2) ℎ0 𝑉𝐴 = 𝜋(𝑅2) ℎ0 

ℎ𝑎=2𝑥 ℎ𝑎=ℎ0 − 𝑥 

𝑉𝑇 = 𝜋(𝑅2) ℎ𝑎 𝑉𝑇 = 𝜋𝑅2ℎ𝑎 + 𝑉𝐺 = 𝜋𝑅2(ℎ0 − 𝑥) +
4

3
𝜋𝑥3 

𝑉𝑇(𝑥) − 𝑉𝐴 − 𝑉𝐺 = 0   
Donde 𝑉𝑇(𝑥) es el volumen del cilindro con 

radio 𝑥 y altura del agua ℎ𝑎, 𝑉𝐴 es el 

volumen inicial de agua y 𝑉𝐺 es el volumen 

del globo. 

𝜋𝑅2(ℎ0 − 𝑥) + (
4

3
 ) 𝜋𝑥3 − 𝑉𝑇 = 0  

 

 

De las respuestas observamos que ambos equipos identificaron la relación entre el volumen 

total del contenido en el recipiente (𝑉𝑇), el volumen sumergido del globo (𝑉𝐺) y el volumen 

inicial del agua (𝑉𝐴). Por ejemplo, los estudiantes del T1 mencionaron que “el volumen total del 

contenido en el recipiente es igual a la suma del volumen inicial del agua y el volumen 

sumergido del globo”. Además, señalaron que esta relación se podía expresar mediante la 

siguiente ecuación “𝑉𝑇 = 𝑉𝑖 + 𝑉𝑔”. De forma similar, los estudiantes del T2 indicaron que “el 

volumen total del contenido del recipiente es igual a la suma del volumen inicial del agua con el 

volumen sumergido del globo”. Sin embargo, ningún equipo llegó a la ecuación polinómica 

esperada 
4

3
𝑥3 − 2𝑅2𝑥 + 𝑅2ℎ0 = 0 donde, 𝑥 es el radio del globo, R es el radio del recipiente y 

ℎ0 es la altura inicial del agua. Esta ecuación se desarrolló y explicó en la discusión grupal. 

Actividad General 

Después de identificar la ecuación polinómica 𝑓(𝑥) =
4

3
𝑥3 − 2𝑅2𝑥 + 𝑅2ℎ0 que modela el 

problema del radio del globo tangente a la superficie del agua, se propuso a los estudiantes que 

usaran CalcVisual para encontrar las raíces del polinomio, con 𝑅 = 5 y ℎ0 = 4, 𝑓(𝑥) =
4

3
𝑥3 −

50𝑥 + 100. Clasificamos esta actividad en el nivel general porque los estudiantes se enfocaron 

en representaciones gráficas y tabulares para encontrar las raíces, sin hacer referencia al contexto 

del globo. Por ejemplo, el T1 respondió “Nuestra función cuenta con 3 raíces, −6.9493, 2.3430 

y 4.6063. Esto lo conocemos gracias a que al meter la función dentro de nuestro programa 

graficador, este genera 3 puntos exactos”. Por su parte, el T2 mencionó “Este polinomio tiene 3 

raíces, 𝑥1 = −6.94, 𝑥2 = 2.34 𝑦 𝑥3 = 4.60. En la gráfica podemos ver tres puntos, lo cual 

significa que cada uno de ellos es parte de una raíz”. Nótese cómo en ambos casos mencionan la 

existencia de puntos en la gráfica del polinomio, los cuales asociaron con sus raíces. Al finalizar 

esta actividad, pedimos a los estudiantes que validaran sus resultados respondiendo la pregunta 

“¿Qué raíces tiene sentido para el problema del globo?”. El T1 respondió que “las raíces 
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positivas debido a que se no se puede tener un volumen negativo. Los valores de la segunda y 

tercera raíz el radio del globo es tangente a la superficie del agua”. En cambio, el T2 señaló que 

“todas las raíces son correctas. Sin embargo, para la raíz 𝑥3 = 4.6 el radio del globo es tangente 

a la superficie del agua”. Las respuestas a esta pregunta se pueden clasificar en el nivel 

referencial porque los estudiantes interpretaron las raíces encontradas en el problema del globo. 

El cambio de nivel de actividad va en acuerdo con la afirmación de Rasmussen y Blumenfeld 

(2007) acerca de que los niveles de actividad no imponen una jerarquía estricta. Sin embargo, es 

importante aclarar que esta pregunta se hizo con la intención de identificar el significado que los 

estudiantes estaban dando a las raíces reales en el contexto del EDVI Globo. 

Actividad Formal 

Después de que los estudiantes realizaron actividades con el uso de CalcVisual para encontrar 

las raíces de un polinomio, trabajaron con actividades de operación inversa como: “Escribe un 

polinomio que tenga al menos las siguientes raíces reales: 𝑟1 = 2 y 𝑟2 = −5 ¿será ese el único 

polinomio que tenga al menos esas raíces reales?”. Las respuestas de los equipos T1 y T2 se 

resumen en la tabla 3.  

Tabla 6. Respuestas de los equipos T1 y T2 a actividad de operación inversa 

Escribe un polinomio que tenga al menos las siguientes raíces reales: 𝑟1 = 2 y 𝑟2 = −5  

Equipo T1 Equipo T2 

Respuesta: 𝑥2+3𝑥−10  

1) Se coloca el signo opuesto de las raíces dadas.  

2) Multiplicamos los factores que obtuvimos. 

(𝑥−2)(𝑥+5)= 𝑥2+5𝑥−2𝑥−10  

3) Expandimos el producto.  

𝑥2 + 3𝑥 − 10 

Respuesta: (𝑥−2) 𝑦 (𝑥+5)  

(𝑥−2)(𝑥+5)= 𝑥2+5𝑥−2𝑥−10  

𝑥2 + 3𝑥 − 10 

¿Será ese el único polinomio que tenga al menos esas raíces reales? 

No es el único polinomio que tiene al menos esas 

raíces porque podemos multiplicar el polinomio 

por cualquier otro factor lineal y obtendremos un 

polinomio que tenga las mismas raíces.  

 

No, también puede ser 

𝑓(𝑥)(𝑥 − 2) = (𝑥3 +3𝑥−10)(𝑥−2)= 

𝑥3−5𝑥2−4𝑥+20 

 

 

Como se puede observar en la tabla 3, los estudiantes escribieron primero los polinomios de 

forma factorizada y posteriormente realizaron la multiplicación de los factores para proponer un 

polinomio desarrollado. Clasificamos estas respuestas en el nivel formal porque los estudiantes 

trabajaron con procedimientos algebraicos desligados del EDVI Globo y el uso de CalcVisual.  

La actividad formal también se observó en la actividad 5 que no involucraba el uso de 

herramientas digitales sino la visualización de gráficas estáticas como la de la figura 3. Esta 

actividad se diseñó como tarea final para identificar el aprendizaje que los estudiantes 

adquirieron sobre el concepto de raíz en un contexto distinto al del Globo. 
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Figura 3. Actividad de visualización de gráficas estáticas para identificar raíces 

 

Los estudiantes iniciaron la actividad 5 en el nivel general porque para responder las 

preguntas de la figura 3, los estudiantes se enfocaron en identificar los puntos en los que la 

gráfica corta al eje 𝑥 como muestran las respuestas de los equipos T1 y T2. Por ejemplo, en T1 

mencionaron que “la gráfica está atravesando el cero en el eje de las 𝑥 tres veces. Por lo tanto, la 

función de esta gráfica contiene 3 raíces: −2, 0 y 3”. De forma similar, el T2 contestó “debes 

contar el número de veces que la gráfica del polinomio cruza el eje 𝑥. Esta gráfica lo cruza 

exactamente tres veces. Entonces, el polinomio tiene al menos tres raíces: −2, 0 y +3”. 

Posteriormente trabajaron en el nivel formal porque representaron el polinomio mediante una 

factorización para llegar a su representación desarrollada.  
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Discusión y Conclusiones 

Presentamos una secuencia de actividades que ayuda a los estudiantes a transitar de un 

razonamiento basado en un problema contextual a uno formal sobre el concepto de raíz. Si bien, 

Gravemeijer (2020) menciona que los niveles de actividad no necesariamente se observan de 

manera jerárquica, en nuestra investigación observamos que las actividades guiaron el 

razonamiento de los estudiantes sobre el concepto de raíz de forma secuencial. Es decir, la 

actividad 1 se trabajó en el nivel situacional y referencial, las actividades 2 y 3 en el nivel 

general y las actividades 4 y 5 en el nivel formal. Con lo anterior no queremos decir que los 

estudiantes no pueden regresar al contexto cuando trabajan en el nivel general y formal. 

Elegimos el contexto del Globo como un contexto con el que los estudiantes pueden significar el 

concepto de raíz, por ello, inferimos que se trata de una situación que perdura en la mente del 

estudiante. 

Destacamos que, la actividad 1 con el uso del EDVI Globo fomentó el desarrollo del nivel 

situacional al identificar variables, parámetros y relaciones funcionales. Posteriormente, fomentó 

el tránsito al nivel referencial en la actividad de determinar la ecuación polinómica que modelaba 

el problema del radio del globo tangente a la superficie del agua. Este polinomio se usa en la 

actividad 2 para que los estudiantes identifiquen sus raíces, mediante el uso de CalcVisual, y les 

den un significado en el contexto del Globo. La actividad 3 fomentó el desarrollo del nivel 

general al trabajar con el CalcVisual mediante el tratamiento de funciones polinómicas fuera de 

cualquier contexto. Las actividades 4 y 5 fomentaron el tránsito al nivel formal al desarrollar un 

polinomio expresado mediante una factorización y localizar raíces en una gráfica. Los 

estudiantes ya no usan el EDVI Globo pero pueden usar el CalcVisual para ingresar el polinomio 

factorizado o desarrollado y visualizar representaciones gráficas, algebraicas y tabulares.  

Una de las limitaciones de este documento es que se han presentado los resultados 

únicamente de dos equipos de estudiantes, aunque el análisis del nivel de actividad se ha 

realizado con los datos de los 45 participantes. De este análisis observamos que 30 estudiantes 

alcanzaron el nivel formal al trabajar con las actividades 4 y 5. Aquellos que no alcanzaron el 

nivel formal se debe a dificultades operativas y el uso incorrecto de procedimientos algebraicos. 

Otra limitación del estudio tiene que ver con los problemas asociados a la instalación y uso 

de las herramientas digitales. A pesar de que se proporcionó a los estudiantes el CalcVisual para 

que lo instalaran en su computadora, algunos tuvieron problemas para instalarlo y no pudieron 

realizar las tareas en casa que necesitaban el uso de dicho software. Como solución, acudieron a 

otra herramienta como Wolfram, GeoGebra, etc para resolver las actividades. Aquí, el problema 

radica en que al usar herramientas como Wolfram los estudiantes obtienen las raíces sin saber 

cómo. Prueba de lo anterior es que en la retroalimentación con los estudiantes que trabajaron 

todas las actividades con el CalcVisual, manifestaron seguridad al resolver el examen del curso. 

En cambio, aquellos que utilizaron otros softwares, no sabían de dónde provenían los datos. En 

este sentido, el rol del profesor es importante porque debe intervenir para guiar a los estudiantes 

en el cumplimiento de los objetivos. En este estudio, durante la discusión en grupo, el profesor 

mostró a los estudiantes cómo usar el CalcVisual y discutió las desventajas de usar otro software.  
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Retomando nuestra pregunta de investigación ¿cómo recuperar los significados del concepto 

raíz de una función real mediante actividades mediadas por la tecnología digital? Sugerimos que 

el uso indiscriminado de la tecnología digital en la enseñanza de las matemáticas puede 

contribuir a la perdida de los significados y aplicaciones de los conceptos matemáticos. Por lo 

que recomendamos que su aplicación requiere de un cuidadoso diseño didáctico previo a su 

aplicación. Sugerimos iniciar la actividad en el aula con la simulación de un problema en 

contexto que permita a los estudiantes dar sentido al concepto matemático de interés. La 

simulación del problema del globo sumergido en un recipiente permitió al estudiante dotar de 

significado al concepto de raíz que por su propia naturaleza es abstracto. Usar un software no 

resolutivo como CalcVisual permite manipular diferentes representaciones de forma simultánea 

para establecer relaciones entre ellas, lo cual lleva a que los estudiantes adquieran significado del 

concepto de raíz en su representación tabular, gráfica y algebraica. 

Destacamos la importancia de incluir actividades sin el uso de herramientas digitales para 

corroborar el aprendizaje del concepto de raíz. En este caso las herramientas digitales sirven 

como herramienta de verificación de resultados. Los estudiantes pueden identificar raíces de 

gráficas estáticas, obtener su polinomio y, posteriormente, ingresarlo en el software para 

comprobar los valores numéricos de las raíces. La aplicación de las HEAG es fundamental ya 

que guían la secuencia de actividades, contribuyendo a la comprensión del concepto de raíz de 

una función real.  
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This research explores how undergraduate students interpret mathematical symbols in new 

contexts when reading diverse mathematical texts across various subareas. Collaborating with 

experts in mathematical sciences, we collected proof-texts aligned with their specialized areas. 

These proof-texts were presented to undergraduate transition-to-proof students who had studied 

logic for mathematical proof while their experience of proofs in advanced mathematics topics 

was limited. Task-based interviews were conducted outside their regular classroom. This paper 

examined student encounters with curly bracket symbols in a graph theory context. Our findings 

suggest the nuanced relationship students have with symbols in proof- texts. While possessing 

familiarity with certain symbols, this pre-existing student knowledge could influence their 

accessibility to symbols introduced in unfamiliar contexts. 

Keywords: Reasoning and proof, Mathematical Representations, Undergraduate Education 

Introduction 

Mathematical symbols serve as a fundamental language for mathematical representations, 

abstraction, argumentation, and communication (Cobb et al., 2000; Eckman, 2023; Harel & 

Kaput, 1991; Pape & Tchoshanov, 2001). Conventional symbols particularly play a crucial role 

in communication among individuals by representing normative meanings of mathematical 

ideas, formulas, and relationships (Pimm, 1995). Teachers and students can use conventional 

symbols to engage in a shared discourse in the mathematics classroom (Goos, 2004).  

Despite the importance of symbolic representations in mathematics, numerous studies 

indicate that undergraduate students encounter challenges when confronted with reading 

mathematical expositions and proofs that include mathematical symbols (Dawkins & Zazkis, 

2021; Inglis & Alcock, 2012; Shepherd & van de Sande, 2014; Weber & Mejia-Ramos, 2014). 

Mathematical texts often employ conventional symbols, especially those presenting theorem 

statements and their proofs. Moreover, advanced mathematics courses at the undergraduate level 

introduce new symbols for novel concepts or extend known ones in a different or broader 

context. Students may find these symbols challenging either because they represent newly 

introduced concepts or because their meanings are expanded to cover new areas. These 

challenges, arising from potentially unfamiliar or expanded-meaning symbols, may impact 

students' comprehension of the theorem statements and their proof-texts. This perspective 

resonates with the broader concept of 'symbol sense' discussed by Arcavi (1994, 2005), involving 
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an individual's understanding, familiarity, and flexible use of (conventional) mathematical 

symbols.   

In line with this standpoint, we address the following research question: To what extent do 

undergraduate transition-to-proof students perceive and respond to mathematical symbols when 

encountering the familiar symbols in unfamiliar subareas of mathematics while reading proof-

texts? This question reflects earlier concerns about students' potential struggles in interpreting 

conventional symbols in proof-oriented mathematics courses. By investigating the awareness and 

responsiveness of undergraduate students to conventional symbols across different mathematical 

subareas, we aim to provide insights into the challenges students face. This study could also offer 

valuable implications for instructional practices and curriculum development for transition-to-

proof mathematics courses. 

Theoretical Framework 

Our perspective on students' interpretation of conventional symbols aligns with radical 

constructivism, positing that symbols gain significance only when individuals attribute meanings 

shaped by their previous experiences (Glasersfeld, 1995). When facing a familiar symbol in an 

unfamiliar context, students assimilate, incorporating new information into their existing 

cognitive structures based on their past experiences. If assimilation proves insufficient, students 

engage in accommodation, adjusting their cognitive structure to integrate subtle distinctions in 

the meaning of the familiar symbol in the unfamiliar context. This perspective suggests that 

students who are not the creators of mathematical symbols may not bring the same meaning to 

symbols as the creator, especially when those symbols are introduced by authoritative creators, 

such as mathematicians, their classroom instructors, or textbook authors. In this situation, 

students may face challenges with what Hiebert (1988) suggested as the procedure of connecting 

symbols with mathematical objects or operations. Specifically, when students encounter a new 

conventional symbol for the first time, they may not have a connection with the mathematical 

objects or operations the symbol represents. Students face the challenge of deciphering the 

intended meaning behind conventional symbols, often without the opportunity to negotiate their 

meanings (Eckman & Roh, 2024). Far from indicating deficits, the interplay of assimilation and 

accommodation in response to these cognitive challenges serve as opportunities for deeper 

comprehension as students actively construct and expand the meaning of the symbols. 

To comprehend students' cognitive processes of interpreting conventional mathematical 

symbols in proof-texts, we introduce the construct of Symbol Sensitivity. Symbol sensitivity 

involves being aware of and responding to mathematical symbols, requiring a nuanced 

understanding of the semantic subtleties within mathematical contexts. There are empirical 

studies illustrating student challenges of symbol sensitivity, where students may not be sensitive 

to distinguishing various mathematical symbols and, therefore, not perceive the resulting 

semantic differences the authors of the given mathematical expositions intend to convey through 

the symbols (Eckman, 2023; Roh & Lee, 2011; Sellers et al., 2017).  

In contrast, this paper focuses on another critical aspect of symbol sensitivity that we will call 

symbol contextual interpretation (SCI), which is an individual's ability to perceive and interpret 

distinct meanings of a symbol in different contexts. In certain instances, the same mathematical 

symbol is employed to convey different semantic nuances across various sub-areas of 

mathematics. It becomes crucial for individuals to recognize and interpret these distinct 
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meanings based on the specific context in which the symbol is used. For instance, a student may 

encounter the equal symbol (=) in a mathematical expression involving two functions, f and g. 

While the equal symbol itself is not new to the student as they have been using it between two 

numerical values, its usage in the symbolic expression 𝑓 = 𝑔 may introduce a new context. In 

this situation, students need to be aware that the equal sign in the function context conveys a 

different meaning than the equality between two numerical values. However, students may not 

always be sensitive to these variations when encountering a familiar symbol (=) in an unfamiliar 

mathematical context (functions). In some ways, this parallels McGowen and Tall's (2010) 

notion of met-before. That is, meanings often change in mathematics as new contexts are 

encountered, and a student's met-befores can serve to support or hinder. McGown and Tall (2010) 

illustrate this with the subtraction symbol (-), which is initially associated with a "take away" 

meaning; however, that meaning is not conveyed in other contexts, such as when dealing with 

negative numbers. 

This paper centers explicitly on exploring students' symbol contextual interpretation (SCI) 

across various areas of mathematics. By closely examining students' SCI, we aim to gain 

valuable insights into student challenges in reading comprehension of mathematical texts 

involving mathematical symbols. 

Methodology 

Data Collection 

As part of a more extensive project (NSF DUE #2141925) focused on curriculum 

development for transition-to-proof courses at the undergraduate level, we created twenty-eight 

(28) proof-texts by collaborating with nine researchers across various mathematical sciences sub-

areas. In preparation for implementing these proof-texts in a classroom, we first tested them 

through task-based clinical interviews (Hunting, 1997) with undergraduate students at two large 

public universities in the United States during the Spring of 2023. Participants were students 

chosen from transition-to-proof courses or proof-oriented courses to ensure students' 

understanding of logic for mathematical proof while maintaining limited exposure to proofs 

across diverse subareas in mathematics. The students are encountering diverse subareas in 

mathematics for the first time, with proof-texts authored by experts from these new subareas. 

This presents a dual challenge, as students not only face unfamiliar subareas but also grapple 

with challenging and novel proof-texts for the first time. We paired students whenever possible 

to foster meaningful interaction between students and promote dynamic discourse. Each 

interview extended over 90 minutes, maintaining independence from the participants' course 

instructors. 

Interview Tasks 

In each interview, we provided students with one or two proof-texts, each spanning 2-3 

pages, encompassing three main components: background information (e.g., definitions, 

notations, and examples), the theorem statement to be proven, and a proof of the theorem. The 

interviews were divided into dedicated sections: background information discussion, theorem 

statement exploration, proof analysis, and a collective reflection post-reading.  

The interviewer initiated each component by inviting students to read independently and 

collaboratively discuss the proof-text with their peers. Students were encouraged to pose 

questions and use tablets as scratch paper whenever they wanted. Subsequently, the interviewer 
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posed targeted questions that drew inspiration from the proof comprehension assessment model 

developed by Mejia-Ramos et al. (2012). These questions encompassed both local and holistic 

comprehension questions. The former involved inquiries about the meaning of terms and 

statements, identification of the proof framework, and the explicit explanation of implicit 

warrants in the proof. The latter focused on summarizing the proof, identifying the modular 

structure of the proof, transferring general ideas or methods to different contexts, and providing 

illustrations with examples. The primary goal of the interviews was to investigate ways to 

support students in making sense of these new and challenging proof-texts. 

Data Analysis and Results 

Our analysis commenced with a thorough review of video recordings of the interview data. 

The primary objective of the analysis was to identify instances where students encountered 

challenges while engaging with reading the proof-texts. Through an exhaustive examination of 

the entire video dataset, we discerned persistent instances where students observed notational 

usage within proof-texts, akin to recognizing misuses or typographical errors in the proof-texts.  

In this data analysis process, a recurrent theme emerged – several students faced similar 

challenges with understanding, interpreting, and using symbolic expressions in the given proof-

texts. These challenges with symbols introduced in the proof-texts occurred multiple times, as 

exhibited in one of the universities part of the project (24 students with 14 interviews conducted), 

especially as students read to understand the background information such as definitions, 

theorems, and examples preceding a theorem to be proven and its proof. The symbols we focused 

on were those not unfamiliar to the students, but their appearance in unfamiliar contexts created 

student challenges.  

In this paper, we suggest our construct, symbol contextual interpretation (SCI), as a type of 

symbol sensitivity. We use it to analyze an individual student's perception and responsiveness to 

distinct meanings of such symbols in varying proof-texts. We further delineated contextual 

awareness and contextual adaptation as characteristics of SCI. We refer to contextual awareness 

as an individual's awareness that a symbol can have multiple meanings in different contexts; and 

contextual adaptation as an individual's fluency in adapting a relevant meaning of a symbol in 

varying contexts. These characteristics laid the foundation for establishing three categories of 

student symbol sensitivity in recognizing and interpreting the same symbol's distinct meanings in 

different mathematics subareas. Table 1 summarizes the characteristics of each category with the 

number of instances where students exhibited the SCI category.  

 

Table 1. Three Categories of Symbol Contextual Interpretation (SCI) 

 
SCI  Contextual 

Awareness 

Contextual 

Adaptation 

Description  

#(Instances)  

SCI.0 X X An individual adapts only one meaning 

for a symbol, regardless of the various 

contexts in which the symbol is used, without 

indicating potentially different meanings. 

9 

SCI.1 O X An individual is aware that a symbol can 

convey different meanings in different 

6 
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contexts but has not developed the normative 

meaning in the relevant specific context. 

SCI.2 O O An individual is aware a symbol can 

convey different meanings in different 

contexts and exhibits fluency in adapting its 

normative meanings in varying contexts.   

9 

 

Results 

In the rest of this section, we present an illustrative episode from an interview with Ernie and 

Sally. These students worked together to comprehend a theorem in graph theory, describing the 

condition for the degrees of the vertices of a graph that can determine the connectedness of a simple 

graph. As background information before the theorem statement, the proof-text introduced 

definitions pertinent to the theorem, such as graphs, vertices, edges, loops, parallel edges, degrees 

of vertices, etc. The curly brackets, {}, were also presented as symbols for the set of vertices, an 

edge, and the set of edges of a graph. A diagram of graph was provided as another representation, 

along with the symbolic expression of an example graph G, its vertex set 𝑉(𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 

edge set 𝐸(𝐺) = {{𝑎, 𝑏}, {𝑎, 𝑑}, {𝑐, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑐}, {𝑏}} (see Figure 1). The diagram illustrated 

five dots, labeled as 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒, representing five distinct vertices and 5 segments, 

representing 5 distinct edges of the example graph. Two of the edges connected the same vertices 

c and d, corresponding to the duplicates of two identical curly bracket symbols, {𝑐, 𝑑}, in the edge 

set 𝐸(𝐺). The example graph 𝐺 also included a loop, as an edge having one endpoint b, 

corresponding to the singleton set notation {𝑏}, and a vertex, 𝑒, not connected to any of the other 

vertices of the graph.   
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Figure 4 The Excerpt from the Background Information in a Graph Theory Proof-text 

The curly brackets, { }, were not new to Ernie and Sally because they had already been 

acquainted with the symbol when the concept of a set was introduced in transition-to-proof 

courses that they had taken. However, the proof-text in graph theory introduced the curly 

brackets in an unfamiliar context to the students, i.e., graph theory. We selected this episode from 

an earlier moment of the interview to illustrate how Ernie and Sally perceived and responded 

when encountering the symbol in an unfamiliar context.  

Ernie and Sally grappled with the concept of parallel edges represented in the edge set 

(which uses curly brackets) with repeated pairs. Specifically, unfamiliar with using this symbol 

to denote "parallel edges" in graph theory, these students found it challenging to interpret 

instances of the symbol occurring twice in the edge set 𝐸(𝐺). Ernie expressed concern about the 

repetition, while Sally imputed the repetition to two distinct curved segments in the diagram of 

the graph 𝐺, as representing distinct edges, which shared the endpoints 𝑐 and 𝑑. See the 

transcript below for the students' utterances at the moment. 

[1] Ernie: What I don't get, though, is how parallel edges work. If E [𝐸(𝐺)] is a set, right, 

then we can't have duplicate items [{𝑐, 𝑑}] in a [the] set [𝐸(𝐺)]. 

[2] Sally: (Grabs tablet and begins writing and speaking) Cause maybe one of them is like 

pointing from c to d (motions writing instrument counterclockwise from the top half of 

their imaginary circle) and the other is d to c (traces the lower half of the circle in the 

same counterclockwise direction). 
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[3] Ernie: But that's not ordered pairs though (points to notation of edges on the proof-text). I 

guess it isn't a relation like that, so we don't have a vector, right? 

Ernie's SCI regarding Contextual Awareness. Ernie interpreted the letter '𝐸' in the symbol 

𝐸(𝐺) for 'the edge set' as the name of a set and extended his understanding of the curly brackets 

symbol to the definitions and the given example set 𝐺 (see Figure 1). Ernie was also familiar 

with conventional rules for using curly brackets in mathematics to denote a set, including the 

avoidance of repeated elements within the same set or the consideration of repeated elements as 

representing the same elements (e.g., {𝑐, 𝑑}  =  {𝑐, 𝑑, 𝑐}). This suggests that Ernie associated the 

curly brackets with a mathematical meaning, viewing them as a conventional symbol for 

denoting a set. Despite grasping the mathematical symbol, Ernie encountered difficulties when 

transferring his principles with the curly brackets symbol to the graph theory context. 

Specifically, Ernie exhibited a limited awareness regarding specific conceptual nuances within 

the context. This limited contextual awareness is evident through three distinct instances. 

Firstly, from the video recording, we noticed that Ernie directed his attention solely toward 

the curly brackets symbol in the provided example graph 𝐺, while overlooking the 

accompanying diagram (Figure 1). He did not exhibit any utterances or gestures to establish a 

representational connection between the two distinct edges in the diagram of the example graph 

𝐺 to the edges in the duplicated symbols {𝑐, 𝑑} in the edge set 𝐸(𝐺). Ernie's exclusive focus on 

the curly brackets did not position him to leverage the diagram, which may have provided more 

contextual information about the meaning of the edge set. In this instance, the presence of 

duplicates of the same symbol in the (edge) set was a barrier to supporting Ernie's 

comprehension of the concept of edges, rather than aiding his understanding of parallel edges.  

Secondly, in the transcript, line 1, Ernie demonstrated a non-conventional principle to the 

curly brackets when denoting a set. Ernie noticed that in the example graph G, the symbol 

"{𝑐, 𝑑}" was repeated twice in the symbol for the edge set of G, 𝐸(𝐺), and he asserted, "we can't 

have duplicate items [{𝑐, 𝑑}] in a set." Ernie's utterance indicates that the edge set notation in the 

proof-text did not adhere to the conventional curly bracket rules for sets in set theory that he was 

familiar with. He was interpreting the curly brackets in the example not within the graph theory 

context but rather in the context of the transition-to-proof course where the students at his 

university initially learned about sets. Ernie is reasonable, bringing in his prior knowledge about 

avoiding duplicates within set notation. It is unlikely that he had experienced this requirement as 

a flexible conventional practice aimed at representing unique elements in a set.  

Finally, in the transcript, line 3, Ernie responded to Sally's explanation of directional 

notations involving vertices c and d, by noting that {𝑐, 𝑑} is not an ordered pair or a vector from 

point 𝑐 to point 𝑑. This suggests that Ernie expected Sally's directional interpretation to adhere to 

vector notation conventions rather than the use of curly brackets symbol {𝑐, 𝑑}. Ernie would not 

allow duplicating an ordered pair, vector symbol, or any symbol within a set notation.    

Sally's SCI regarding Contextual Awareness. In contrast to Ernie, Sally exhibited 

contextual awareness when encountering the duplicates of the same symbol {𝑐, 𝑑} in the edge set 

notation. Sally's awareness of the graph theory context was evident in her consideration of both 

the curly brackets symbol and the diagram depicting the example graph 𝐺 in Figure 1. By using 

both representations as resources to understand the parallel edges, she exhibited her nuanced 

understanding of the symbol in the graph theory context. Her remark in the transcript, line 2, 
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accompanied by hand motions tracing each path in the diagram of the example graph 𝐺, 

illustrated awareness of the context by attending to the curly brackets and bracketed elements in 

relation to graph theory (and the diagram). Sally recognized that although both edges in the 

diagram share the same endpoints, they are distinct, the top edge "from 𝑐 to 𝑑," and the other 

edge "from 𝑑 to 𝑐." That is, they have directionality. Therefore, duplicating the symbol {𝑐, 𝑑} 

within the edge set 𝐸(𝐺) aligns with Ernie's rule, as each curly brackets symbol represents a 

distinct edge within the graph 𝐺. 

Sally's SCI regarding Contextual Adaptation. While Sally demonstrated contextual 

awareness when encountering duplicates of the curly brackets symbol {𝑐, 𝑑} in the graph theory 

context, she exhibited potential interpretative challenges in adapting her interpretation of the 

symbol to a different graph theory context. Although Sally did not explicitly recognize this 

potential challenge, evidence of it emerged through her gestures and word choices in this 

episode. During her examination of the example graph 𝐺, Sally's hand motion traced two edges 

parallel to one another on the diagram for the graph 𝐺, attributing a distinct direction to each of 

them with the same pair of vertices (endpoints). In addition, she correlated these movements with 

the curly brackets symbols {𝑐, 𝑑} found in the edge set notation accompanying the diagram of 

graph 𝐺. Thus, Sally interpreted each instance of the symbol {𝑐, 𝑑} in the edge set symbol as 

representing a separate edge: one for the top edge and another for the bottom edge in the 

diagram. Sally's use of the phrase "from [c] to [d] … and from [d] to [c]" indicates that she may 

conceptualize edges as directed, with each edge having a specific associated direction. Sally 

appeared to be drawing on the same notions of set as Ernie, but perhaps adding this additional 

feature made the distinction between the same symbolically represented edge clear. As this is a 

non-normative distinction, Sally would likely need to continue to expand her contextual meaning 

if encountering a graph with more than two parallel edges.    

A Couple More Examples While a detailed examination was conducted with two students to 

illustrate contrasting aspects of SCI, Table 2 provides a broader perspective by presenting 

concise examples across various subareas of mathematics. The table showcases instances of 

students with different SCI categories, each accompanied by a brief description explaining why 

their specific case corresponds to the identified SCI. This compilation not only enriches our 

understanding of SCI but also offers a valuable resource for educators and researchers seeking 

insights into the diverse manifestations of students' potential challenges with interpreting familiar 

symbols in unfamiliar mathematical contexts for the first time. 

 

Table 2. More Examples of Students' SCI  

 
Stu

dent 

Context Symbo

l  

Contextual Interpretation SCI  

Patt

y 

Combinat

orics 

{ } Perceived the notation within the context of the 

combinatorics proof-text and described the symbol's 

meaning using the objects from the combinatorial context, 

showing adaptivity from her previous transition to proof 

context to the new combinatorics context. 

SCI

.2 

Nat

han 

Combinat

orics 

{ } Described the use and meaning of the symbol within 

the contexts of a transition-to-proof course as opposed to 

the new combinatorics context. 

SCI

.1 
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Spe

ncer 

Topology one-to-

one 

Perceived this term, a symbol, as it was used to 

describe functions in the context of Topology.  

SCI

.2 

Ca

de 

Topology one-to-

one 

Described this term, a symbol, within the context of a 

ratio using the symbol colon (:).  

SCI

.0 

Ro

nnie 

Combinat

orics 

power 

set symbol 

P 

Described the symbol script P as a power set as it has 

been denoted in transition-to-proof contexts.  

SCI

.0 

Conclusion and Discussion 

In the results section, we delve into the challenges experienced by Ernie and Sally as they 

grappled with a familiar symbol encountered in an unfamiliar context for the first time. 

Navigating novel situations beyond their prior experiences, the students faced challenges that 

demanded a nuanced understanding of symbols. We analyzed the students' Symbol Contextual 

Interpretation (SCI) to understand their sensitivity toward symbols in these contexts. Noteworthy 

is the collaborative effort exhibited by Ernie and Sally in making sense of these new symbols. 

This collaborative success suggests the viability of incorporating such challenging proof-texts 

into a transition-to-proof course. For mathematics education researchers, understanding students' 

comprehension of notation is crucial for informing the effective implementation of proof-texts in 

these courses. A key insight from our study emphasizes that introducing students to new symbols 

extends beyond providing them with texts and definitions; it requires careful consideration of 

their prior experiences and explicit elucidation of how symbols may take on different meanings. 

This study highlights the misconception that assumes students in mathematics courses can 

seamlessly discard prior meanings of symbols, emphasizing the need for a thoughtful approach 

to incorporating notations when used in new mathematical contexts.  

To emphasize this point further, we reference a quote by Kershner and Wilcox (1950): 

Whenever nonbasic mathematical words are introduced, they will, of course, be explicitly 

defined. Whenever technical use is made of these words, the reader must carefully eliminate 

any preconceptions concerning their meaning and think only of their definitions. This will be 

difficult, but it is absolutely necessary. Unless all suggestions conveyed by these words from 

past associations are persistently ignored, a multiplicity of meanings may arise. Our 

mathematical definitions will be unambiguous and complete (p. 17).  

This statement, though seemingly psychologically absurd, reflects expectations placed on 

students in mathematics courses. It highlights student challenges with isolating definitions from 

their past associations. Ernie's case exemplifies this challenge as he drew upon his prior 

understanding of the symbol "{ }" to interpret a new proof-text intending a different meaning. 

This situation underscores the importance of acknowledging the subtlety and complexity of 

interpreting symbols across various mathematical subareas in mathematics education literature. 
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ARGUMENT-MIRRORING PROOFS: A METHODOLOGICAL APPROACH FOR 

HELPING STUDENTS RECOGNIZE INCOHERENCE IN THEIR THINKING 

 

Steven Ruiz 

Arizona State University 

slruiz3@asu.edu 

This report discusses argument-mirroring proofs – proof-like texts which utilize students’ own 

thinking to provoke perturbations to their schemes. The aim of the study was to characterize the 

subject’s native understanding of continuity, differentiability, and the derivative, use that 

subjective understanding to generate argument-mirroring proofs, and examine how her thinking 

evolved in response to these argument-mirroring proofs. The results suggest that presenting the 

subject with the conflicts in their thinking directly contributed to changes in their conceptions of 

relationships among continuity, differentiability, and the derivative. This suggests that argument-

mirroring proofs might achieve similarly profound results if applied in other contexts.  

 

Keywords: calculus, research methods, cognition, metacognition 

 

This paper details the way in which I developed and used argument-mirroring proofs, texts 

which formalize the subject’s previously exhibited thinking about a topic to formulate and justify 

a claim. In a case study, argument-mirroring proofs were used on numerous occasions to 

encourage a student to confront and resolve potential sources of incoherence in their thinking.  

 

Theoretical Perspective 

The argument-mirroring proof method is broadly informed by constructivism (Glasersfeld, 

1988), and in particular, students’ schemes. Furthermore, I am interested in perturbations, 

instances where the expected result does not occur, and accommodations, adjustment(s) made by 

the subject to their schemes. 

Coherence (Thompson, 2008) is the extent to which s student’s schemes are compatible with 

one another. I specifically investigate the schemes which, in my conjectures, had the potential to 

give rise to incoherence in the subject’s cognition. I used argument-mirroring proofs to evoke 

discordant schemes and provoke perturbation in order to encourage the participate to engage in 

accommodation. I henceforth refer to these schemes as schemes targeted for conflict because I 

constructed argument-mirroring proofs and other tasks in effort to cause the participant to 

recognize the conflict. If the participant indicates that one or more of their schemes has been 

perturbed, a perceived conflict has been triggered.  

 

Research Methodology 

Overview 

The study employed a specific implementation of a constructivist teaching experiment 

methodology (Steffe & Thompson, 2000). In this implementation sessions alternated between 

clinical interviews (Clement, 2000), to glean student thinking about the mathematical ideas, and 
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exploratory teaching interviews (Sellers, 2020), to attempt to perturb the subject using argument-

mirroring proofs.  

Participant and Interview Tasks 

Rachel (pseudonym), the lone participant in the study, was an undergraduate mathematics 

education student at a large public university in the American southwest. In total, Rachel 

participated in six interviews, each of which lasted between 60 and 90 minutes.  

The purpose of the clinical interviews was to build a baseline for Rachel’s understanding of 

continuity, differentiability, and the derivative. I asked Rachel to consider the function 𝑓: [0,4] →

𝑅 defined by 𝑓(𝑥) = √𝑘 − 1 − 𝑥2 given a variety of values of the constant 𝑘. For each set of 

parameters, she was asked to describe where the function was continuous and differentiable. She 

was also asked to find and interpret the value of the derivative where it was appropriate to do so. 

Her responses indicated her schemes at the time of the session. From these schemes, I selected 

those which to target for conflict during the exploratory teaching interviews. 

The exploratory teaching interviews consisted of three types of tasks. First, I presented 

Rachel with the schemes I targeted for conflict to confirm that my model of her understanding 

was accurate. Next, I asked her to consider a function and discuss it in terms of continuity and 

differentiability. Finally, I presented her with relevant argument-mirroring proofs and asked her 

to determine whether the proofs were a) valid and b) representative of her thinking. 

Data Analysis 

Field notes and transcripts were generated from the recordings of each session. Transcripts 

from clinical interviews were open coded (Strauss & Corbin, 1998) to capture Rachel’s schemes 

pertaining to the concepts. Axial coding was used to compare the schemes which were identified 

in open coding. In particular, I identified groups of two or more schemes which I would target 

for conflict in the subject’s thinking if they were presented in an appropriate fashion. 

 

Results 

I focus on Rachel’s schemes I subsequently targeted for conflict with argument-mirroring 

proofs. In so doing, I highlight moments when she perceived conflicts, adjusted her schemes, and 

brought greater coherence to her understanding. This discussion is limited to the first two 

sessions, since they best illustrate argument-mirroring proofs.  

Phase 1: Initial Conceptions of Continuity and Differentiability  

The first clinical interview yielded an initial state of Rachel’s conceptions of continuity and 

differentiability as well as a set of ideas to target for conflict in the subsequent session. 

Transcript 1 

 Interviewer: Why is the function continuous on the interval [0, 4]? 

 Rachel: Because it is defined on the interval. 

Rachel (later): A function is continuous if the limit from the left is the same as the limit from 

the right. 

 

Transcript 2 

Rachel: If you had a hole in the function, you can still differentiate there. 

Interviewer: If you have a hole, is the function still continuous and differentiable? 

Rachel: Yes. 
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In the first transcript, Rachel gives two different descriptions of continuity of a function, one 

requiring the function to be defined and another only requiring its one-sided limits to agree. Her 

description of a hole in the second transcript suggests that a function may be continuous at points 

where it is not defined. From this session, I identified three of Rachel’s schemes, shown below, 

which could potentially result in a perceived conflict.  

 

a) If 𝑓 is defined at 𝑎, 𝑓 is continuous at 𝑎. 

b) If lim
𝑥→𝑎+

𝑓(𝑥) = lim
𝑥→𝑎−

𝑓(𝑥), then 𝑓 is continuous at 𝑎. 

c) Although 𝑓 is not defined where 𝑥 = 𝑎, if lim
𝑥→𝑎

𝑓(𝑥) exists, 𝑓 is continuous at 𝑎. 

 

Items (a) and (b) are indicated by Rachel’s responses in transcripts 1 and 2, respectively. Her 

assertion in transcript 2 that a hole may not preclude differentiability suggests item (c). Since (a) 

and (b) offer non-equivalent definitions of continuity, I conjectured that targeting these schemes 

simultaneously would result in a perceived conflict.  

Phase 2: Provoking Conflicts among Initial Conceptions of Continuity and Differentiability 

When I presented Rachel with items (a)-(c), she agreed that they were representative of the 

ways she understood continuity and differentiability but indicated no conflict between them. 

Next, I presented her with the following graph of a function (Figure 1) and asked her to 

determine where it was continuous, in hopes of triggering a conflict between items (a), (b), and 

(c) from phase 1.  

 

 
Figure 1: Graph from Task in Phase 2 

 

 
Figure 2: Argument-Mirroring Proofs from Phase 2 
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The excerpt below illustrates her perception of the conflict when evaluating the left argument-

mirroring proof from Figure 2. 

 

 Interviewer: Is the claim [that 𝑓 is continuous at 𝑥 = 0] correct? 

 Rachel: I would be inconsistent to deny this. 

 Interviewer: Is it a problem that the proof doesn’t talk about [the point] (0, 5)? 

Rachel: It seems like it might be pertinent since the claim centers around 𝑥 = 0…But I can’t 

decide why I think that matters. 

 

Considering the argument-mirroring proof was when Rachel first perceived a conflict. Her 

certainty that 𝑓 was continuous at 𝑥 = 0 began to waver during the above excerpt. By the end of 

the session, Rachel stated that a function is continuous at a point if the value of the function at 

the point is equal to the limit of the function at the point. As such, I represent the transformation 

in her schemes below (Figure 3). She accommodated her schemes by striking scheme (c) from 

her conception and combining the hypotheses from the schemes (a) and (b) to yield a new, 

unified scheme. After perceiving and resolving the conflict, her conception of continuity became 

more coherent because it was less susceptible to conflicts. 

 

 
Figure 3: Argument-Mirroring Proofs from Phase 2 

 

Discussion and Conclusion 

Rachel’s responses to the tasks indicated that her understanding regarding continuity was 

deeply incoherent. The clinical interviews provided baselines of her understanding. Recall that 

she affirmed the schemes I presented to her as an accurate initial portrayal of her thinking. The 

review of the identified schemes, directed tasks, and argument-mirroring proofs in these sessions 

were designed to trigger perceived conflicts. The argument-mirroring proofs were effective in 

making the conflicts evident to Rachel. In every occurrence, when Rachel perceived a conflict 

between her schemes, she immediately worked to resolve it. In the language of Glasersfeld 

(1988), she responded to the perturbation of a scheme (its inconsistency with some other 

scheme) by accommodating it (adjusting one or more schemes). Worth noting is that Rachel was 

never explicitly instructed to resolve any perceived conflicts. When she reconciled her schemes 

for continuity, her thinking became more coherent (Thompson, 2008). Considering the 

argument-mirroring proofs was instrumental in illuminating the conflicts in Rachel’s thinking. 

The method of argument-mirroring proofs warrants further investigation with additional 

participants in different mathematical contexts. 

Methodologically speaking, the effectiveness of argument-mirroring proofs as the 

cornerstone of a teaching experiment (Steffe & Thompson, 200) to trigger Rachel’s perception of 

a conflict was profound. While teaching experiments are common, my protracted execution 
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allows for the argument-mirroring proofs and other activities to be carefully tailored to the 

participant. This method represents a novel contribution to the field. As such, whether this 

method yields similar effectiveness with different participants in future studies warrants further 

investigation.  
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This study investigated the effectiveness of integrating history-infused lessons on students' 

understanding and attitudes towards logarithms. The theoretical framework drew from 

sociocultural perspectives and embodied cognition, emphasizing the social and emotional 

dimensions of learning. Design-based research principles guided the iterative development of 

history-infused logarithm lessons. Data was collected through pre- and post-assessment tests, 

interviews, and classroom observations. The findings indicated a significant improvement in 

students' post-test scores, suggesting a reduction in their fear of logarithms. Additionally, 

interviews revealed a positive shift in students' perceptions of logarithms, from abstract and 

intimidating to practical and relatable. 

Keywords: History-infused mathematics, logarithms, secondary mathematics education, student 

attitudes 

The research literature emphasizes the importance of logarithms in both advanced 

mathematics and real-world contexts, including sound measurements (decibels), earthquake 

magnitudes (Richter scale), star brightness, and chemical properties (pH balance). However, 

many students struggle to grasp the conceptual underpinnings of logarithms and often resort to 

rote memorization of rules, as noted by various authors (Berezovski, T., 2008; Kuper & Carlson, 

2020; Weber, 2016). The challenges faced by students include interpreting logarithms as the 

"inverse of exponents" and developing a coherent understanding of logarithmic notation, 

logarithm properties, and the application of logarithmic functions (Kuper & Carlson, 2020; 

Berezovski, T., 2008; Chua & Wood, 2005; Gol Tabaghi, 2007; Strom, 2006).  

To address these issues, researchers and educators have suggested a variety of strategies. 

These include using concrete materials (Thompson, 1994), implementing authentic assessments 

such as project-based learning and computational thinking (Shin et al., 2021), engaging students 

with game-based learning (Barab et al., 2010), problem-based learning (Hmelo-Silver, 2004), 

and effective teaching methods (Larmer, 2018). The use of gestures alongside diagrams (Walsh 

& Hord, 2019), gestures combined with manipulatives (Beilstein, 2019), and incorporating the 

history of mathematics (Liu, 2003; Poh & Dindyal, 2016; Sampaio & Batista, 2018) have also 

been recommended. This study aims to bridge the gap in research regarding the teaching of 

logarithms by utilizing the history of mathematics in combination with gestures. The research 

questions guiding this study are as follows: (1) How do history-infused logarithm lessons aid in 

reducing students' fear of logarithms? (2) How do students’ perceptions of logarithms change 

over the duration of the history-infused logarithm program? 

 

Theoretical Framework 

mailto:wnmartey@buffalo.edu
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This study was grounded in sociocultural perspectives for student learning, a history-infused 

program, and embodied cognition for evaluating understanding. It focused on social 

constructivism, which emphasized the role of social interaction in cognitive development and 

suggested that learning occurred best in a social context. The study also incorporated the 

dynamic nature of assessment, including formative, diagnostic, prognostic, or summative 

assessment. Vygotsky’s sociocultural perspective underscored the extensive impact of social 

learning, suggesting that learners did not engage with new knowledge in isolation. Key 

instructional aspects in Vygotsky’s perspective were mediation, scaffolding, and creating a zone 

of proximal development (ZPD). Building on this, the instructional technique in the history-

infused math lessons involved exploratory activities and mediational strategies, including 

scaffolding based on prior knowledge. This study also emphasized embodied cognition, focusing 

on how humans used their bodies to express thought processes, like gestures. Students’ 

multimodal approaches, such as gestures, were coded and compiled based on McNeill’s 

typological categories (1992), allowing for a holistic approach to teaching and learning 

logarithms 

Methods 

Participants, Settings, and Programs 

The study took a holistic approach, incorporating both quantitative and qualitative data 

collection methods to assess the effectiveness of integrating historical insights into logarithm 

teaching. This approach was underpinned by design-based research (DBR) principles, enabling 

iterative refinement of teaching strategies based on observed student interactions and outcomes. 

The study took place at a private high school in Western New York, United States, with a 

student-teacher ratio of 12:1. The focus was on 14 students (10 girls and four boys) in Grades 11 

and 12, all of whom had prior exposure to logarithms in their mathematics courses. 

The curriculum, based on the Precalculus with Limits: A Graphing Approach by Ron Larson 

(High School Edition, 6th Edition), was adapted to incorporate historical insights into the 

discovery of logarithms. The goal of the first phase was to develop an initial design of the 

program, which consisted of three history-infused math lessons. These lessons were developed 

by integrating the history of logarithms, allowing students to explore historical perspectives on 

the discovery of logarithms by John Napier, and other mathematicians (e.g., Pythagoras), 

tailoring students’ participation in peer collaboration through the lens of history of mathematics, 

and improving learner engagement in the instructional process in the form of mini projects on 

history-infused mathematics. Students were asked to use log tables and watch a video of the 

process. Students also explored the history of mathematics related to logarithms and did a 

presentation. In the second phase, the program underwent iterative design to test and refine it. 

This second iteration, to be conducted in the spring of 2023, involved designing three history-

infused modules, each consisting of three lessons with scenario-based problems (e.g., Scenario-

based Log) and historical approaches (e.g., Using Log Tables). The historical accounts of the 

discovery of logarithms will be introduced from existing sources, highlighting how logarithm 

computations were performed before calculators.  
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Data Collection and Analysis 

Data collection involved pre- and post-assessment tests, interviews, observations, and 

analysis of classroom artifacts. Pretests assessed students' baseline knowledge, while post-tests 

measured their understanding after the history-infused lessons. Interviews and observations 

offered qualitative insights into student engagement, attitudes, and understanding. The study was 

conducted over two weeks, covering initial assessment, implementation of the history-infused 

program, and subsequent assessment and interviews. Data analysis was conducted using a 

mixed-method approach, combining quantitative and qualitative methods. For quantitative 

analysis, descriptive statistics were computed to compare pretest and posttest scores, and the 

Wilcoxon Signed-Rank Test was used for inferential analysis to assess the effectiveness of the 

history-infused lessons. Error analysis of participants' written responses was also conducted. For 

qualitative analysis, interviews were transcribed using the ELAN annotation tool, and thematic 

analysis was conducted. Open-coding was done using ATLAS.ti software to categorize data from 

surveys and interviews. Additionally, gestural analysis was conducted, categorizing gestures 

based on McNeill's framework, and disagreements between coders were resolved through 

consensus. The general inductive approach was employed to analyze qualitative data, 

systematically organizing and summarizing textual data. 

 

Summary of Findings 

Analysis of pre- and post-test showed that students’ average scores in the posttest (M = 76.2, 

SD = 17.4) were significantly higher than their average scores in the pretest (M = 50.2, SD = 

21.1).  

How History-Infused Logarithm Lessons Alleviate Students' Fear of Logarithms: 

The analysis of pre- and post-test scores shows that the history-infused logarithm program 

led to a statistically significant improvement in students' understanding of logarithms. This 

finding is particularly noteworthy considering the pre-existing fear and apprehension that many 

students typically harbor towards this complex mathematical concept. Interviews with students 

provided deeper insights into the impact of history-infused lessons on students' emotional 

engagement and attitudes towards logarithms. A majority of students expressed that the historical 

context provided in the lessons made logarithms seem more accessible, relatable, and less 

intimidating. Many students indicated that understanding the origins and evolution of logarithms 

gave them a sense of connection to the subject, and a better appreciation for its practical 

significance. Student L7 articulated this sentiment, saying, "It helped me understand it better 

because I can be more appreciative of the mathematicians back in the day and it gets me more 

interested in math, so I will be motivated to learn more about the concepts knowing the 

philosophers that contributed to it." Incorporating historical narratives and activities into the 

logarithm curriculum served as a cognitive scaffold for students, allowing them to contextualize 

complex mathematical concepts within a narrative framework. Students appreciated the 

opportunity to engage with mathematical ideas in a more holistic and multidimensional manner. 

Furthermore, the interactive and collaborative nature of the history-infused lessons encouraged 

students to approach learning logarithms with a sense of curiosity and adventure, rather than fear 

and reluctance. 
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Shifts in Students' Perceptions of Logarithms Through History-Infused Logarithm 

Program: 

Through the history-infused logarithm program, students' perceptions of logarithms 

underwent a noticeable shift. Before the intervention, students primarily viewed logarithms as 

abstract and disconnected from real-world contexts. They often perceived logarithms as 

challenging, even forbidding, due to the complex nature of mathematical manipulations 

involved. The pretest data showed that students had a limited understanding of logarithmic 

properties and frequently made errors in their application. Common mistakes included 

misinterpreted language errors and logically invalid inference errors, suggesting that students' 

conceptual grasp of logarithms was limited. However, post-test data revealed a marked 

improvement in students' perception of logarithms. Students began to view logarithms as a 

valuable tool with practical applications, particularly in the context of historical problem-solving. 

They expressed newfound confidence in their ability to tackle logarithmic calculations and 

demonstrated a clearer understanding of logarithmic properties and their applications. This shift 

in perception can be attributed to the rich historical narratives that were integrated into the 

program, which allowed students to see logarithms as a dynamic and evolving mathematical 

concept with a rich cultural and historical significance. Students began to appreciate the 

versatility of logarithms and how they are rooted in the history of human endeavor. 

Discussion 

The findings of this study echo the conclusions of previous research and contribute to our 

understanding of the potential benefits of incorporating history into mathematics education. 

Previous studies have demonstrated that history-infused mathematics lessons can lead to 

improvements in students' conceptual understanding and engagement (Alibali & Nathan, 2012; 

Berezovski, 2008; Howell et al., 2017). The findings of the current study extend this research by 

focusing on students' emotional responses to history-infused lessons and their impact on attitudes 

towards mathematics. The theoretical implications of this study align with cognitive theories 

such as Vygotsky's sociocultural theory of learning and Hmelo-Silver's Problem-based Learning 

(PBL) theory (Kozulin et al., 2003; Hmelo-Silver, 2004). Vygotsky's theory emphasizes the role 

of social interaction and cultural context in shaping learning, suggesting that the historical 

narratives embedded in history-infused lessons can provide students with meaningful cultural 

tools that facilitate learning. Hmelo-Silver's PBL theory focuses on the importance of problem-

solving and authentic, real-world tasks in promoting deep understanding. The historical context 

provided in history-infused lessons can serve as a rich source of problems and tasks that are 

relevant and engaging for students. From a practical perspective, the findings of this study 

suggest that incorporating historical contexts into mathematics instruction can have a positive 

impact on students' attitudes and engagement. By presenting mathematical concepts in a 

historical context, educators can make abstract concepts more concrete and meaningful for 

students, leading to increased motivation and interest. Additionally, the emotional engagement 

fostered by history-infused lessons can help to alleviate students' fear and anxiety about 

mathematics, creating a more positive and supportive learning environment.  

The limitations of this study should be acknowledged. The study was conducted at a single 

high school, limiting the generalizability of the findings. Additionally, the study focused on a 

specific topic within mathematics (logarithms), and the findings may not apply to other 
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mathematical concepts. Future research could explore the impact of history-infused lessons on a 

wider range of mathematical topics and in different educational contexts. Moreover, future 

studies could investigate the long-term effects of history-infused lessons on students' attitudes 

and engagement, as well as the role of technology in enhancing the effectiveness of these 

lessons. 
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Series are a key part of the calculus curriculum and warrant more research on how students can 

be supported in using their informal intuitions to conjecture about series convergence. We 

conducted a teaching experiment with a pair of post-Calculus I students, during which they 

reinvented claims related to the divergence test using a context problem that we call the Partial 

Sum Sequence Game. We investigated how the students’ collective argumentation for these 

claims emerged and evolved throughout the sessions.  

Keywords: Undergraduate Education, Calculus, Reasoning and Proof  

Series convergence is a key part of the calculus curriculum and has applications in computer 

science, physics, and other disciplines (Earls, 2022). Martínez-Planell et al. (2012) suggest that it 

is constructive to view series as sequences of partial sums, but this view is challenging for 

students, and they find it difficult to recognize the connection between sequences and series. This 

disconnect might explain how students can use informal intuitions to make sense of sequence 

convergence (Oehrtman, 2009) but might have “mechanical views” of when series converge 

(Kung & Speer, 2013, p. 428). Rather than viewing series as sequences of partial sums, students 

sometimes view series as a list of values (Martínez-Planell et al., 2012, Przenioslo, 2006) or as a 

running total that sums various numbers of summands without coordinating the sum with index 

values (Eckman & Roh, 2022). These interpretations can support the idea that summands tending 

towards zero implies the running total will eventually stabilize (Eckman & Roh, 2022).  

Textbooks and instruction often introduce series in an algorithmic, decontextualized, and 

formal way (González-Martín, 2010). We join other scholars who advocate for more innovative 

approaches (González-Martín, 2010; Morrel, 1992). Scholars have started to take some important 

first steps in this direction including investigating how students can construct a formal 𝜀 − 𝑁 

definition of series convergence (Martin et al., 2011), create algebraic representations for 

arbitrary partial sums and infinite series (Eckman & Roh, 2024), and conjecture the comparison 

test for convergence (Davis & Vroom, 2024). We add to this work by investigating: How did two 

undergraduate students reinvent claims related to the divergence test? Specifically, we 

investigated how two undergraduates’ collective argumentation for two claims emerged and 

evolved throughout a teaching experiment. These two claims are equivalent to the divergence 

test and the converse of the divergence test is false. 

Theoretical Support 

Realistic Mathematics Education’s guided reinvention heuristic (Freudenthal, 2005; 

Gravemeijer, 1999; Gravemeijer & Doorman, 1999) framed the instruction during the 

experiment (similar to Lockwood & Purdy, 2019). This instruction aimed to support “a process 

by which students formalize their informal understandings and intuitions” (Gravemeijer et al., 

2000, p. 237). A key component to guided reinvention is a context problem in which the problem 
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situation is experientially real to students and evokes students’ informal understandings and 

intuitions about the concepts they reinvent (Gravemeijer & Doorman, 1999).  

To investigate how the students’ informal intuitions related to the divergence test developed, 

we studied how their collective argumentation for their related conjectures emerged and evolved 

throughout the sessions. By collective argumentation, we mean instances when students and/or 

the teacher-researcher made mathematical claims with evidence that supported them (Conner et 

al., 2014). Like other scholars investigating collective argumentation (Alzaga Elizondo, 2022; 

Andrews-Larson et al., 2019; Conner et al., 2014), we adapted Toulmin’s (2003) model of 

argumentation. Toulmin’s model dissects arguments with (at least) a combination of claims 

(conjectures being justified), data (evidence that supports the claims), and warrants (connections 

between the data and claims). Our adaptation of Toulmin’s model included attention to student 

and teacher-researcher contributions and the possibility of more inter-connected argument 

arrangements such as sub-arguments. Students’ collective argumentation includes but is not 

limited to valid mathematical proofs (Krummheuer, 1995), and we do not view other forms of 

argumentation as subordinate to valid proofs.   

Methods 

Our data comes from a teaching experiment (Steffe & Thompson, 2000) with two first-year 

undergraduate students Lara and Stella (pseudonyms), a teacher-researcher (the first author), and 

an observer. We recruited the students from their Calculus I course where Lara earned a 2.5 (on a 

4.0 scale) scale and Stella earned a 4.0. Lara was majoring in biological chemistry and Stella 

double-majoring in psychology and neurosciences. The experiment was eleven 1.5-hour sessions, 

with the last four focusing on exploring series. We audio and video recorded the sessions, 

including a synced recording of the students’ collaborative digital work and gestures.  

The students’ exploration of series began with a context problem (Gravemeijer & Doorman, 

1999) after students had classified various sequences based on their properties like convergent 

and increasing (Vroom et al., 2024). The context problem was posed as a game featured in Figure 

1. Playing the game involves considering sequences of partial sums (what Lara and Stella called 

“total distance sequences”). A player wins the game if and only if the sequence of partial sums 

converges. For instance, {𝑛2} loses the game because it generates a divergent sequence of partial 

sums. The game paired with the instruction supported a “running total” meaning like Eckman 

and Roh’s (2022) participants with one key difference being that Lara and Stella coordinated the 

running total with the index (days). The students played the game with several sequences of their 

choice. As they did so, they voiced predictions about sequences and their properties winning or 

losing the game. Afterward, the students were tasked to write a “cheat sheet” for the game in 

which they gave future game players advice about sequences that won or lost the game, as well 

as wrote some insightful warnings.  
Game:  

We are conducting an experiment in which we 

move an object a certain number of feet north per 

day. A sequence {𝑥𝑛} will tell us how many feet 𝑥𝑛 

to move the object north on any given day 𝑛. To 

win the game, accurately predict the object’s 

location if the experiment continues indefinitely! 

Playing the game with {𝒏𝟐}: 

𝒏 1 2 3 4 5 … 

𝒏𝟐 1 4 9 16 25 … 

Total distance from 

starting point 
1 5 14 30 55 

… 

{𝑛2} loses the game since we cannot accurately predict the 

object’s location 

 Figure 1. Partial Sum Sequence Game 
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Some of the statements on the cheat sheet resembled the divergence test in the game context 

(“if the original [sequence] converges to any number except 0, the total distance [sequence] will 

diverge”) and the falsehood of its converse (“not all sequences that converge to 0 will win”). We 

investigated how the students’ collective argumentation for these claims emerged and evolved 

throughout the sessions. We began the retrospective data analysis by re-watching video and re-

reading the corresponding transcripts, identifying key episodes that featured the students 

discussing ideas seemingly relevant to their statements on their “cheat sheet.” With these key 

episodes, we then applied Toulmin’s model of argumentation, first identifying claims (C), then 

data (D) and warrants (W), as well as any other contextual comments that seemed relevant and 

not captured by the codes. As we did so, we compared new C-D-W to previous ones, noting any 

connections. Like Conner (2008), we noted who contributed (students, the teacher-researcher, or 

a combination), and if the warrant was our interpretation of what was implicit in the data. We 

created Figure 2 through this process, where the symbols , , , and , respectively 

denote that student(s) primarily contributed, both student(s) and teacher-researcher contributed, 

implicit warrant, and a revised claim. 

Results  

We next present part of the students’ conjecturing activity for claims related to the divergence 

test, focusing on a few key episodes throughout several teaching sessions. Prior to what we will 

share, Lara and Stella played the game with {
1

2𝑛
}, which they argued won because “the values 

[we] are adding on, keep getting smaller, and our total is approaching one.” They also claimed 

that sequences with the “same kind of shape” such as {
1

𝑛
} and {

1

𝑛2
} would also win. Figure 2 

summarizes the students’ collective argumentation that we will share next. 

 

Figure 2. Summary of students’ collective argumentation. 

After the teacher-researcher asked if they had predictions about types of sequences that 

would win the game, Lara responded, “anything that’s converging to a number it’s gonna…win 

the game” (C1) using the previous claims about sequences that won the game as their evidence 
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(D1) since this pattern held for them in these cases (W1). The teacher-researcher then asked if 

they had a converging sequence that would lose the game. Stella pointed to the sequence 

{1,2,3,4,5,15,15,15, . . . } recalling that they previously “didn’t think this one would win” (D2) 

and the teacher-researcher added, “so we can say that’s not always the case” (C2). 

Later the students used Desmos to view the first thousand terms of {
1

𝑛
}’s total distance 

sequence. They started questioning their previous claim that the sequence would win the game 

(C0). After Stella expressed desire to understand the total distance sequence “pattern,” the 

teacher-researcher supported the students to find a logarithmic function that fit the first thousand 

terms. The students observed the logarithmic graph, noticing “it’s increasing by less” and 

questioned whether the logarithmic function converged. The teacher-researcher then asked if 

they would be convinced that it diverged if the function surpassed a certain number. In response, 

the students set the equation equal to 100 and solved, finding a solution (D3). Lara then 

responded, “it diverges” (C3). The teacher-researcher questioned, “Do you think no matter what 

number, 𝑦-value, we picked we could always find an 𝑥 that [maps to something] bigger than that 

𝑦-value?” The students both responded “yes” (W3) referencing the generality of their algebraic 

work, and Lara added, “I wish we couldn’t… it would make more sense if {
1

𝑛
} matched {

1

𝑛2
}.” 

The students later returned to writing their cheat sheet, discussing a previous claim they 

revised (C1). Then, they considered sequences to see if a winning sequence converged to a non-

zero value. After their unsuccessful search (D4), Stella proposed, “maybe they only win if they 

converge to 0.” She later explained, “if the object is continuously moving every day, we will 

never be able to predict its final location.” After the teacher-researcher highlighted that {
1

𝑛2
} 

required them to move the object every day, Stella clarified that it needed to move “a non-

negligible amount” (W4). This resulted in the students writing: “if the original [sequence] 

converges to any number except 0, the total distance [sequence] will diverge” (C4).  

The students continued to discuss how {
1

𝑛
} converging to 0 meant that “we are moving the 

object a negligible amount” each day; however, the total distance sequence diverged (D5). Stella 

explained this was, “not a problem with what we have written [C4]… though it makes it less 

helpful and more confusing” and elaborated: “if we had written the statement as ‘if the original 

function converges to 0, the total distance function will converge,’ it would be disproven by the 

{
1

𝑛
} example. [C4] says nothing about functions that do converge to 0, which means {

1

𝑛
} is not 

applicable here” (W5). The teacher-researcher suggested that they use this information to write a 

warning, which the students wrote as: “not all sequences that converge to 0 will win” (C5). 

Discussion 

Lara and Stella’s reinvention of claims related to the divergence test was rooted in their 

experience with the Partial Sum Sequence Game. Their experiences playing the game with 

various sequences supported them to revise C1 (“anything that’s converging to a number it’s 

gonna…win the game”) to C4 (equivalent to the divergent test) and C5 (equivalent to claiming 

the converse of the divergence test is false). The game with {1,2,3,4,5,15,15,15,15 … } was 

important for the students to recognize that convergent sequences could lose (C2). The game 

with {
1

𝑛2
} and {

1

𝑛
} was also important as they provided evidence that converging to 0 was 
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necessary (C4) but insufficient (C5) for winning the game. We note that although the students 

claimed that {
1

𝑛
} lost the game (C3), they were still grappling with why beyond relying on a 

graph (in a similar way that Eckman and Roh’s (2022) participants believed that decreasing 

summands converge). In our future work, we hope to further support students in this way.  

As we continue to analyze our data, we aim to understand a fuller story of how all the 

students’ claims on their cheat sheet emerged and evolved together. For instance, the data we 

presented here also gives some insight into how the students reinvented claims related to p-series 

convergence/divergence as well as the comparison test (Davis & Vroom, 2024). We plan to 

expand our analysis to explore further how the students’ collective argumentation for their claims 

related to series tests for convergence emerged and evolved throughout the sessions. 
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Individuals’ quantitative and covariational reasoning form a critical foundation for their 

construction of STEM concepts and their ability to make critical, data-informed decisions 

(Karagöz Akar et al., 2022; Yoon et al., 2021). Graphs form a linchpin representation for 

quantitative and covariational reasoning (Moore et al., 2022). Moore and Thompson (Moore, 

2021; Moore & Thompson, 2015) introduced static and emergent (graphical) shape thinking to 

distinguish between students’ ways of reasoning for graphs. They described emergent shape 

thinking to involve understanding a graph as both the process by which it is made (coordinating 

quantities’ covariation) and the product that is made (a trace of that covariation). A student who 

reasons about a graph emergently can imagine the reconstruction of a graph as a trace in 

progress, where the trace records the values of the two covarying quantities at different moments. 

Static shape thinking involves conceiving a graph as an object in and of itself, imagining the 

graph to be a piece of wire with particular perceptual characteristics (Moore & Thompson, 

2015). Static shape thinking involves indexical associations between particular shapes of graphs 

and learned facts, and thus can imply properties about relationships that those graphs represent. 

Those relationship properties are not organic to the graph’s emergence (Moore, 2021). 

Eye-tracking technology is a tool whose use has grown in the past decade, and it has recently 

shown promise as a tool to gain insights into the phenomenon of the teaching and learning of 

mathematics (e.g., Brunner et al., 2024; Seidel et al., 2021; Haataja et al., 2021; Roy et al., 

2017). Providing inspiration for the presently proposed approach, both Thomaneck et al. (2022) 

and Waters (2019) used eye-tracking to investigate participants’ covariational reasoning in the 

context of graphing, with Waters and colleagues drawing on the constructs of static and emergent 

shape thinking as well. Extending this work, we pair eye-tracking technology with the 

generalized models of static and emergent shape thinking to address the following research 

questions: (a) In what ways are eye movement patterns related to students’ graphing meanings? 

(b) In what ways can the use of eye-tracking technology complement current methodologies (e.g., 

teaching experiments) for exploring and supporting students’ graphing meanings? We are 

currently designing and conducting interviews to compare eye movement patterns between 

instances when participants are reasoning statically versus emergently. If the eye movement 

patterns associated with particular ways of reasoning are understood to some confidence, then 

eye-tracking data could be used as evidence for (or as a contraindication of) hypothesized 

meanings. We also envision eye-tracking technologies as contributing to innovative interventions 

during a teaching experiment. For example, a researcher might show participants videos from 

their own teaching sessions. Rather than asking them to solely recall their previous thinking as in 

stimulated recall interviews, researchers could prompt them to discuss how they might have been 

thinking during the task and how that relates to any observations they make regarding their 

attentional focus. We envision such an intervention could prompt rounds of focused reflection, 

which is critical to mathematical development (Ellis et al., 2024). In our poster, we focus on our 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

955 

 

methodological design and our preliminary findings, and provide examples of eye movement 

patterns consistent with both static and emergent shape thinking.  
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This study investigates the interrelationship between emotion and learning in a college 

precalculus lesson that examined lead poisoning in participants’ local community. Through a 

thematic analysis of students' responses to lead poisoning lessons, the study reveals a range of 

emotional responses, including empathy, concern, and heightened awareness of social issues. 

The findings underscore the critical role of emotions in deepening student engagement and 

commitment to social change, emphasizing the importance of incorporating social justice themes 

into the precalculus curriculum to foster a more engaged and empathetic student body.   

Keywords: Affect, Emotion, Beliefs, and Attitudes, Precalculus, Social Justice, Undergraduate 

Education 

The call to change mathematics instruction in high school and college classrooms has been 

ongoing (see Bartell, 2013; Gutierrez, 2002; Gutstein, 2003, 2006; Guzmán & Craig, 2019) with 

arguments from mathematics education researchers for a need to change mathematics instruction 

from conventional procedural practice to focus more on understanding the world and social 

issues (Gonzalez, 2009; Wright, 2016). Recent research in the field suggests that students are 

increasingly engaged in mathematics lessons contextualizing issues of injustices in society 

(Gutstein & Peterson, 2013; Voss & Rickards, 2016). We imagine the future of mathematics 

education to lean toward contextualizing students’ local environments to make mathematics more 

relatable to students. In addition to the theoretical arguments and empirical claims in favor of 

teaching mathematics by contextualizing social injustices, students experience various emotions 

when they learn about societal inequities (Kokka 2019; 2020). The empirical evidence from 

Kokka's research necessitates the inclusion of emotions in students' mathematical learning. Our 

study aims to explore the variable of emotions in students' mathematical learning. Our study is 

set to explore and inform the mathematics education field about emotions students experience in 

situ of social justice mathematics lessons. 

Mathematics education research has for a long time been focused on reasoning (Roth & 

Walshaw, 2019), knowledge, and other cognitive factors, with little attention to emotions 

(Schukajlow et al., 2017), the exception being mathematics anxiety (Zan et al., 2006). A few 

decades ago, however, there was a shift in focus toward incorporating “affect” into this research. 

Specific definitions and perceptions of affect vary. McLeod (1992) viewed affect as being 

connected to cognition and performance. Lewis (2013) perceived affect as a student’s attitude 

toward or enjoyment of mathematics. These slightly earlier perceptions of affect regard students’ 

relationships to mathematics, with less emphasis on other factors that may influence students’ 
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emotions in the mathematics classroom. In recent years, mathematics education researchers have 

also more directly incorporated emotion into their study of affect. For example, students bring 

emotions with them into the classroom (Kokka, 2019; Valoyes-Chavez & Darragh, 2022). 

Students experience emotions in a mathematics classroom when learning about injustices 

(Kokka, 2019, 2022; Valoyes-Chavez & Darragh, 2022). Therefore, it is important to consider 

students’ emotions as a factor that affects their learning in mathematics classrooms. Our study is 

guided by the research question: How did learning about a local social justice issue affect 

students' expression of emotions in a college precalculus classroom? 

Theoretical Framework 

We leveraged a combination of two theoretical frameworks for this study: affective 

pedagogical goals (APG) for social justice mathematics (SJM) by Kokka (2022) and historically 

responsive literacy (HRL) by Muhammad (2020; 2023). The APG aims to support instructors' 

preparation of SJM lessons by anticipating students' emotions related to injustices. The idea is to 

provide a space for students to express their emotions about mathematics and the oppressive 

systems they interact with; this, in turn, may help students process their emotions to understand 

and use mathematics to address inequities., For this study, we focused on the affective 

pedagogical goal (Kokka, 2022) of supporting students' expression of emotions related to the 

local social injustice issue and ongoing efforts to address the issue. Kokka named this goal 

“identifying and processing emotions to take action.” We consider this the first step in helping 

students process their emotions to act in SJM lessons.  

Muhammad (2020; 2023) defined the historically responsive literacy (HRL) framework as a 

literacy model with five learning pursuits: identity, skill, intellect, criticality, and joy. Muhammad 

(2020) defined identity as learning about yourself, and the people around you. Skill refers to the 

concepts and procedures as outlined in school standards. Intellect is the ability to apply skills to 

understand social interactions. Criticality is the ability to understand injustices in society and use 

knowledge to challenge the status quo. Finally, Muhammad (2023) defines joy as experiencing 

happiness, related to celebration, wellness, and justice. We broadened Muhammad's (2023) 

framing of joy to include other emotions as students engage in a SJM lesson. For this study, we 

conceptualize meaningful mathematics learning based on the integration of the five learning 

pursuits of Muhammad’s HRL framework, and Kokka’s APG. 

Methods 

Research Context 

The participants were forty-three first-year precalculus students enrolled at a predominantly 

white university in the Northeastern United States. Students completed a SJM lesson designed 

from an HRL and SJM framework, that mathematized the lead poisoning issue in Metroville, the 

city where participants attended university. It was created on Desmos, an online tool for creating 

and teaching lessons. After the lesson, instructors downloaded and saved the anonymized student 

responses in a shared OneDrive folder accessible only to the research team. 

The SJM lesson had three components: pre-lesson survey, Desmos lesson, and post-lesson 

reflections and surveys. This paper focuses on analyses of students’ responses to the Desmos 

lesson. The Desmos lesson introduced the students to the lead poisoning issue through a video, 

showed how lead decay can be modeled using exponential functions, asked students to solve 
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exponential decay problems, and informed students about the ongoing efforts to address lead 

poisoning in Metroville. We asked students to express and explain their emotions at two 

instances in the lesson: first after learning about the lead poisoning issue, and second after 

learning about the ongoing efforts. Students were asked to “Name up to three emotions, if any, 

you experienced after watching the video and writing about lead poisoning in your hometown. 

Explain what made you feel these emotions.” Our analyses focused on students’ responses to the 

two questions that asked students to name emotional responses related to injustices and action. 

Thematic Analysis 

We employed Braun and Clarke’s (2006) six-phase thematic analysis approach to analyze 

students’ responses to “Explain what made you feel these emotions” questions from the Desmos 

lesson. We reviewed students’ responses and the research question, wrote notes/memos about 

initial impressions, and shared them during weekly research meetings. In the second phase, we 

coded the data and reconciled coding weekly, using a data-driven approach. The third phase 

involved developing themes by identifying patterns and grouping similar codes. We created a 

coding frame document to ensure intercoder reliability, including themes, code definitions, and 

example data segments. In the fourth phase, we checked theme coherence across the dataset. The 

fifth phase involved aligning the coded responses of the students with themes to address the 

research question. In the final phase, we selected compelling data excerpts to support our results 

and developed solid arguments based on these examples. 

Results 

Our analyses informed us that students expressed emotions because of lack of awareness 

about lead poisoning, empathy for children/tenants, knowledge about lead poisoning, and views 

on existing efforts to address lead poisoning. There were other themes in addition to the four 

mentioned, but in this paper, we focus on these four themes (see Table 1). Students expressed 

emotions because of a lack of awareness or experience with lead poisoning, and empathy for 

families living in lead-poisoned houses. Students also expressed emotions based on their 

knowledge of the lead poisoning issue, willingness to play a role in helping affected families, and 

their views on the current efforts to address lead poisoning. 

 

Table 1: Theme Findings and Examples 
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Theme 1: Lack of Awareness about Lead Poisoning 

The first theme captures students’ emotions about a lack of awareness regarding lead 

poisoning. One student expressed their shock at learning about lead poisoning by stating, “I was 

unaware that lead poisoning was still a thing and lead poisoning itself is a very dangerous thing 

to still have around. I can’t believe that lead poisoning is still a thing, especially in this day in 

age.” We interpreted this student’s response as evidence of shock and lack of awareness about 

lead poisoning. Some students expressed surprise at how easily one can get lead poisoning. 

Theme 2: Empathy for Children/Tenants 

The second theme explores the emotions that arise from empathy for the people dealing with 

lead poisoning. After learning about the lead poisoning issue and how it affects people who live 

in homes with lead, students expressed empathy for the tenants, families, and children who had 

to choose between having a roof over their heads or being safe from lead poisoning. Learning 

that people living so close to them are dealing with these issues brought on a wide range of 

emotions in the students, such as sadness, compassion, pity, guilt, concern, anger, and sympathy. 

Notably, students were concerned that children were subject to lead poisoning in their home. 

Theme 3: Knowledge about Lead Poisoning and/or Determination to Help 

The third theme explores students’ knowledge about lead poisoning and their determination 

to help. This theme includes student responses where they share their knowledge about lead 

poisoning and a desire to help solve the cause of lead poisoning issues. Furthermore, this theme 

also includes student responses expressing awareness about lead poisoning health risks and the 

population that is more vulnerable to being impacted. The theme also includes answers 

expressing students’ willingness to help solve or raise awareness about this issue. As students 

learned about lead poisoning in Metroville, they demonstrated an understanding of the issue and 

a willingness to help the cause. 

Theme 4: Views on Existing Solutions to Mitigate Lead Poisoning 

The theme centers on students’ positive emotions when learning about efforts to combat lead 

poisoning. Characterized by optimism and hope, students feel happy and relieved to know that 
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governments and organizations are actively addressing the issue through specific initiatives, 

fostering confidence in future solutions. It reassures them that change is possible and that there 

are viable solutions to the challenges they are studying. Students know that their learning has an 

impact on the real world, which fosters a sense of self-empowerment, encourages them to take a 

forward-looking perspective, and allows them to look to the future where their newfound 

mathematical skills and social awareness contribute to social progress and justice. 

Discussion 

In summary, this study emphasizes the critical role of emotion in social justice mathematics. 

By addressing social justice issues, mathematics educators could deepen students’ understanding 

of mathematical concepts and develop empathy, critical thinking, and social responsibility. We 

argue that a careful study of students’ emotional responses to SJM lessons is needed to 

understand and support their learning. Further research could explore how instructors can attend 

to students’ emotions to support their learning. Making mathematics relatable to students by 

contextualizing their social environments is the future of mathematics education. 
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In postsecondary education, Calculus has been historically recognized as a “gateway course” 

for students to pursuit STEM fields. Responding to this issue, researchers at Montclair State 

University designed a model of complementary instruction to engage Calculus I students in 

collaborative problem solving on groupworthy tasks. This multiple-case study seeks to address 

the question, “How do undergraduate students experience their calculus learning in the parallel 

spaces of coursework and inquiry-oriented complementary instruction?” The findings of Neil’s 

case study are presented here and include characterizations of the different forms of agentive 

participation afforded to students in the two spaces, as well as their complementary nature 

relative to learning calculus with understanding. Implications for dismantling the persistent 

barriers imposed by calculus on access to postsecondary STEM fields are also discussed.  

Keywords: Calculus, Undergraduate Education, Problem Solving, Calculus Thinking 

Calculus has the track record of serving as a “gateway course” that contributes to 

postsecondary students abandoning their pursuit of a STEM career (Hagman et al., 2017). The 

calculus reform effort in the 1990s emphasized to include fewer topics and incorporate an active 

learning and teaching approach aiming to transform calculus education to be “lean and lively” 

(Johnson et al., 2014). Twenty years later, the President’s Council of Advisors on Science and 

Technology (2012) made a similar recommendation in order to provide students the time they 

need to develop robust understandings of mathematical concepts in order to succeed. Despite the 

continuing reform effort, the gate-keeping function of Calculus has hardly changed. 

Drawing on the Mathematical Association of America’s seven recommendations from the 

Insights and Recommendations (Bressoud et al., 2015), researchers at Montclair State University 

designed an inquiry-based complementary workshop, called Inquiry-Based Instructional Support 

(IBIS), facilitated by a peer leader (Roth et al., 2001) to run parallel to students’ in class learning. 

During IBIS, students work collaboratively in small groups on groupworthy tasks (Buell et al., 

2016) that are non-routine problems to promote conceptual understanding of calculus concepts. 

The literature on peer-led cooperative learning models in postsecondary education confirms 

their effectiveness on students’ academic achievement across different undergraduate 

mathematics courses (Altomare & Moreno-Gongora, 2018; Trenshaw et al., 2019). However, as 

the literature mainly focuses on evaluating the effectiveness using quantitative methods, there is 

a lack of insight into why, how, and what about peer-led cooperative learning models that 

contributes to these successful outcomes. Hence, this study seeks to address the question, How 

do undergraduate students experience their calculus learning in the parallel spaces of 

coursework and inquiry-oriented complementary instruction? 
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Perspectives and Methods 

This exploratory (Yin, 2003) multiple-case study (Merriam, 1998) is grounded in a situated 

perspective (Lave & Wenger, 1991) leveraging the “learning as participation” aspect and utilized 

the concept of figured world (Holland et al., 1998) to examine the change in students’ agentive 

participation and their identity formation (Vågan, 2011). To answer the research question, all of 

the observation video recordings were transcribed and analyzed using the grounded theory 

analytical approach (Corbin & Strauss, 2014). To depict a summary overview of each case study 

participant’s enacted agentive participation in class and IBIS, a word cloud with agentive 

participation codes as clusters was created for each instructional space.  

The participants of this study consist of two cohorts of Calculus I undergraduate students 

whose IBIS attendance is a part of their course requirement. Each cohort has four participants 

from the same class and attended the same IBIS sessions. Video recordings and field notes were 

taken for all 24 classes, six workshops, and three focus group interviews (Creswell, 2012).  

Findings 

The table in Figure 1 shows the various forms of participation enacted in class and IBIS by 

both cohorts’ participants. These participation actions were organized into high, moderate, and 

nominal interactivity categories to describe students’ participatory interactions with others, 

material resources, or tasks. Next, Neil’s case (pseudonym) will illustrate how the participation 

codes and interactivity categories are used to characterize his participation in both spaces.  

 

Figure 1: A table of participation actions in class and IBIS for Cohorts A and B. 
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Neil’s Participation Profile 

Neil was a private student both in class and IBIS. He spent most of his time in class taking 

notes and, in both spaces, working independently on the task at hand. Regarding the 

opportunities that the instructor provided for students to participate, Neil refrained from 

participating 323 times across 23 in-person class observations, for an average of about 14 times 

per class observation. The class and IBIS word clouds, in Figures 2A and 2B, provide a summary 

overview of Neil’s participation in both spaces. A comparison of his class and IBIS word clouds 

shows that his independent participation characteristics tended to be magnified in class. 

 

 

Figure 2: Neil’s class (A) and IBIS (B) participation word clouds 

Early in the course, Neil’s participation consisted almost exclusively of taking notes and 

working independently on problems posed by the instructor, and then waiting for the instructor or 

another student to provide a solution. Every so often, as Neil worked on problems independently 

in both spaces, he would reference a variety of resources, such as his notes and online resources. 

The size of the independent work cluster in Neil’s IBIS word cloud suggests that though he 

also tended to work independently in IBIS, groupwork in IBIS offered opportunities and space 

for him to be a more active and interactive participant. The biggest clusters in his class word 

cloud are participation actions with moderate interactions with tasks and material resources (e.g., 

note taking, independent work, accessing resources, and checking and revising). In contrast, 

some of the biggest clusters in his IBIS word cloud are participation actions that have moderate 

interactions with his peers (e.g., responding and seeking clarification, confirmation, and help). 

This suggests that more of his interactions in IBIS were with peers than with tasks and material 

resources. Moreover, as his IBIS word cloud also reveals, Neil was more likely to respond to his 

peers than to initiate interactions with them. He was also more likely to seek confirmation, 

clarification, and help from his peers than to enact the explainer role. The following excerpt 

illustrates some of these forms of participation from Neil during IBIS. In this excerpt, his group 

was discussing a composition function/chain rule problem, given the rates of change of profit per 

book sale, 𝑝′(𝑠), and book sales per month, 𝑠′(𝑡). 
 

Table 1: An excerpt of a Chain rule discussion in the third IBIS session. 
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In this excerpt, Neil responds to Amelia’s (pseudonym) invitation by sharing his ideas about 

what to do for this problem (lines 2 and 6). Upon Rachel’s (pseudonym) further request for him 

to share his work with her (line 11), Neil explains the procedures he took to determine 𝑝’(𝑡) (line 

12). Even though Neil spent a lot of time in IBIS working independently, in contrast to his class 

participation, he was also a more active and interactive learner in that space by sharing with, 

explaining to, and seeking from his peers. As the semester progressed, there was some evolution 

in how Neil shared, explained, and what he sought from his peers in IBIS. 

Overall, even though note taking continued to be the dominant form of Neil’s participation 

throughout the semester, as the semester progressed, his participation in both spaces expanded 

from the predominantly nominal interactions of note taking and working independently to 

include both moderate and high interactions (e.g., seeking, explaining, and sharing). The next 

excerpt illustrates his participatory expansion trajectory in class from mid-semester. In this 

excerpt, the class was working on finding the derivative of 𝑓(𝑥) = √2𝑥3 + sin2(5𝑥)
3

 posed by 

the instructor. Neil overheard Amelia expressing her confusion and took the initiative to check on 

her. 

Table 2: An excerpt of Neil checking in on Amelia in class. 

 
 

In this excerpt, Neil seeks clarification on what confused Amelia (line 2). Even when the 

instructor calls for the class’s attention to go over the problem (line 3), Neil and Amelia continue 

to carry on with their conversation. After Amelia clarifies her confusion (lines 4 and 8), he offers 

his explanation to help her resolve it (lines 5, 6, and 9). This excerpt is one of the examples that 
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illustrates the evolution in the interactivity of Neil’s participation. As the semester progressed, 

Neil also enacted new kinds of responding, sharing, and seeking actions in both spaces. 

Discussion and Conclusion 

To summarize, this study found a range of agentive participation actions that were further 

categorized into high, moderate, and nominal interactivity categories based on the quality of 

their interactions with others, tasks, or material resources. These findings can inform and guide 

the design and implementation of parallel spaces of coursework and complementary instruction, 

particularly when the realities of coursework alone impose constraints that do not allow for 

adequate opportunities for high and moderately interactive participation. Specifically, these 

findings would be of value to postsecondary calculus educators and program directors who are 

committed to offering students the kinds of participatory experiences that are productive for their 

learning of calculus. That way, they can be more mindful in planning, structuring, and designing 

their calculus programs so as to dismantle the persistent barriers imposed by calculus on access 

to postsecondary STEM fields. 

References 
Altomare, T. K., & Moreno-Gongora, A. N. (2018). The role and impact of supplemental instruction in accelerated 

developmental math courses. Journal of College Academic Support Programs, 1(1), 19–24.  

Bressoud, D., Mesa, V., & Rasmussen, C. (Eds.). (2015). Insights and recommendations from the MAA national 

study of college calculus. The Mathematics Association of America.  

Buell, C. A., Greenstein, S., & Wilstein, Z. (2016). Constructing an inquiry orientation from a learning theory 

perspective: Democratizing access through task design. PRIMUS: Problems, Resources, and Issues in 

Mathematics Undergraduate Studies, 27(1), 75–95.  

Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing 

grounded theory (4th ed.). Sage.  

Creswell, J. W. (2012). Educational research: Planning conducting and evaluating quantitative and qualitative 

research (4th ed.). Pearson.  

Hagman, J. E., Estrella, J., & Fosdick, B. K. (2017). Factors contributing to students and instructors experiencing a 

lack of time in college calculus. International Journal of STEM Education, 4(1), 15.  

Holland, D., Lachicotte Jr., W., Skinner, D., & Cain, C. (1998). Identity and agency in cultural worlds. Harvard 

University Press.  

Johnson, E., Ellis, J., & Rasmussen, C. (2014). It’s about time: How instructors and students experience time 

constraints in calculus I. the 38th Conference of the International Group for the Psychology of Mathematics 

Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics 

Education, Vancouver, British Columbia: PME. 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.  

Merriam, S. B. (1998). Qualitative research and case study applications in education: Revised and expanded from 

case study research in education. Jossey-Bass Publishers.  

President’s Council of Advisors on Science and Technology (PCAST). (2012). Report to the president—Engage to 

excel: Producing one million additional college graduates with degrees in science, technology, engineering, 

and mathematics. Office of the President.  

Roth, V., Goldstein, E., & Marcus, G. (2001). Peer-led team learning: A handbook for team leaders. Prentice Hall.  

Trenshaw, K. F., Aish, N., Miskioglu, E. E., & Asare, P. (2019). Leaders like me The Collaborative Network for 

Engineering and Computing Diversity (CoNECD) Conference, Crystal City, VA.  

Vågan, A. (2011). Towards a sociocultural perspective on identity formation in education. Mind, Culture, and 

Activity, 18(1), 43–57.  

Yin, R. K. (2003). Case study research design and methods (3rd ed.). Sage.  

 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

967 

 

 

 

 

 

 

 

 

 

 

Chapter 10:  

Pre-Service Teacher Education 

  



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

968 

 

EXAMINING AN INSTRUCTOR’S ENACTMENT OF CURRICULUM IN A MATHEMATICS CONTENT 

COURSE FOR PRESERVICE TEACHERS 

Srujana Vinaykumar Acharya 

University of Delaware 

srujana@udel.edu 

Rebecca Memmolo 

University of Delaware 

rmemmolo@gmail.com 

This pilot case study examined how one teacher educator (TE) enacted written lesson plans from 

a shared knowledge base to support preservice teachers’ (PSTs) mathematical content knowledge 

(MKT) in a mathematics content course. Using classroom observations, reflective interviews and 

the TE’s reflective journal, we explored the modifications made by the TE during the classroom 

instruction of a unit on percentages. We report that these modifications did not alter the content 

of the course and additionally created opportunities for PSTs to learn more than the subject 

matter knowledge (SMK). These reported modifications were prompted by responding to 

students’ responses during classroom instruction and the influences of former instructors’ 

modifications.    

Keywords: Instructional Activities and Practices, Mathematical Knowledge for Teaching, 

Preservice Teacher Education 

Much attention has been given to developing the mathematical content knowledge necessary 

for teaching among preservice teachers (PSTs). The importance of mathematical knowledge for 

teaching (MKT) is evident in studies examining its relationship with student outcomes. For 

instance, teachers’ MKT was significantly related to student achievement gains even in 

elementary grades (Hill et al., 2005), and teachers’ MKT was significantly related to students’ 

participation in quality mathematics discourse (Wilhelm et al., 2017).  

Given its importance, MKT is a primary concern for teacher preparation programs. As a way 

to improve the quality of teacher preparation, a shared knowledge base for teacher educators has 

been proposed to document and collect knowledge about effective teaching in university teacher 

preparation courses (Hiebert, 2013; Hiebert & Morris, 2009; Morris & Hiebert, 2009). In one 

case, a program using such a knowledge base reported that graduates from multiple cohorts 

scored higher several years after graduation on measures of MKT on mathematics topics that 

were covered in the program compared to topics that were not covered (Morris & Hiebert, 2017; 

Suppa et al., 2018). Although not causal, the results of these studies suggest the possibility of a 

positive and sustaining impact on teachers’ knowledge of mathematics content. 

Adding to this work, we report on preliminary findings from a pilot case study in which we 

consider the ways a TE enacted written lesson plans from a shared knowledge base in the context 

of a mathematics content course for K-8 PSTs. We wanted to understand the role of the teacher 

educator (TE) in creating opportunities for PSTs to learn MKT as the TE implemented these 

lessons. We were curious about how a TE might balance competing interests to follow the lesson 

plans and to modify the lesson in the moment to be responsive to student thinking. In particular, 

we examined what modifications emerged in the TE’s implementation of the lessons to consider 

what changes were made, what opportunities to learn MKT were provided by those changes, and 

why those changes occurred. The research questions that framed this study were: (1) in what 
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ways does a TE modify written lesson plans when enacted to provide PSTs with opportunities to 

learn MKT ? and (2) what prompted the TE to make these changes? 

Mathematical Knowledge for Teaching 

Ball and colleagues (2008) specify the kinds of mathematical knowledge needed for 

teaching. In their framework, they name domains of mathematical knowledge for teaching 

(MKT) as subject matter knowledge (SMK) and pedagogical content knowledge (PCK). SMK 

includes common content knowledge which is the mathematical knowledge not unique to 

teaching and used in various contexts, horizon content knowledge which refers to understanding 

connections among mathematical topics, and specialized content knowledge which encompasses 

mathematical knowledge specific only to teaching. In defining these distinct ways that 

mathematical knowledge for teaching operates, Ball et al. (2008) propose that these domains can 

inform teacher education and help course designers refine curricula for mathematics content 

courses in teacher preparation programs. 

Methods 

In this pilot case study, we examined a TE’s enacted changes to written lesson plans to 

consider how and why these changes occurred and what opportunities the changes provided for 

undergraduate PSTs to learn MKT. In this research report, we present preliminary results from 

this case study based on data collected from one unit of teaching during which the second author 

was observing the first author’s teaching. 

Context 

The semester-long course on rational numbers is the second in a series of three required 

mathematics content courses for K-8 PSTs. The lesson plans for this course have been developed 

over several years within a shared knowledge base. They include information about the goals and 

rationale for each lesson and insight into PST thinking, such as common questions and 

misconceptions or expected responses. The first author, a doctoral student and new to teacher 

education, was the instructor of one course section in the Fall 2023 semester. All course 

instructors met once a week to debrief each week’s lessons, get feedback on teaching, and plan 

for the next week’s lessons by discussing the lesson plans. 

Data Collection 

We used instructional materials, observations of classroom instruction, and reflections from 

the TE during a unit on the meaning of percentages to explore our research questions. This unit 

contained three lessons taught over three 80-minute class sessions mid-semester. For each lesson, 

we reviewed the shared lesson plans, a student course packet containing practice problems, and a 

slide deck prepared by the TE. The TE kept a reflective journal about the in-the-moment changes 

she made during instruction and her rationales for those changes. Additionally, we met after each 

class for a 10-20 minute audio-recorded debrief interview in which the first author reflected on 

the lesson. The data was prepared for analysis by transcribing all audio recordings and de-

identifying all data of student names. Finally, all lesson data was organized by lesson activity 

such that comparative analyses could be made across the written and enacted lessons. 

Data Analysis 

The data analysis took place in three phases. In the first phase, modifications of the written 

lesson plans were identified within the observation data from the enacted lessons. These were 
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coded for each domain of subject matter knowledge within the framework for mathematical 

knowledge for teaching (MKT) (Ball et al., 2008). Then, these modifications were coded again to 

identify the source of change (i.e., how it happened) as initiated by the TE or by students and 

coded to identify the content of the change (i.e., what was changed) using open coding (Saldaña, 

2021). In the third phase, we reviewed the recordings from the lesson observations and created 

event maps (Green and Bridges, 2018). We defined an event as the tasks and subsequent 

discussions happening in the classroom when a slide was displayed to the students and made 

notes about the event. These event maps and the other data were coded using the constant 

comparative method (Charmaz, 2014) to find common themes of how modifications emerged. 

Then, the data was re-coded according to the themes established and we coded to find what 

prompted these modifications.  

Results 

From our preliminary analysis, we found that the TEs enacted modifications of the written 

lesson plans, providing opportunities for PSTs to develop mathematical knowledge for teaching 

(MKT) that responded to their engagement in the class by modifying the setup or sequencing of 

activities. These modifications also created circumstances for new opportunities to learn 

additional types of knowledge for teaching. The TE was prompted by student questions and 

informal exchanges of knowledge with previous course instructors to modify the written lesson 

plans to suit her and her students’ needs. 

Opportunities to Learn within Enacted Modifications to Lessons  

Modifications to the lessons occurred mostly within the setup of the tasks or the sequencing 

of the tasks but did not change the content of the tasks. In addition, they created opportunities to 

engage with mathematical content in deeper ways, promoting opportunities to develop the kinds 

of rich mathematical knowledge specific to teaching.  

The following example illustrates a typical way the TE made modifications while teaching. 

In the second lesson plan, the instructor was directed to give groups of PSTs time to work on 

tasks and encourage them to represent their solutions in a variety of ways. In the enacted lesson, 

the TE prompted PSTs to work on each problem one at a time, chunking the setup of the task to 

support students in unpacking one problem at a time so they could more deeply consider the 

efficiency of various strategies. These modifications create opportunities for PSTs to engage in 

more practice problems with a potentially deeper mathematical understanding of the tasks. 

Opportunities to Learn More than SMK. Another significant finding was that the TE’s 

modifications to the lessons created opportunities for additional kinds of learning. In the written 

lessons, opportunities to learn were almost exclusively directed toward mathematical content 

knowledge, SMK. Within the enacted lesson, modifications created opportunities for PSTs to 

also learn norms for mathematical activity and practice thinking like an elementary teacher or 

student. 

One way that this occurred was in a reframing of the homework review, which began each 

lesson. The TE selected a PST in each class to act as a teacher discussing her solution and asked 

the class to ask questions as if they were fourth graders. In this routine, the class engaged with 

their peer’s ideas to think about ways to improve their representation of mathematical ideas 

prompted by the TE asking, “This is about ways to improve this solution, what would make it 

easier for a 4th grader to understand, what would make it more clear?” This modification to the 

written lesson creates an opportunity for PSTs to learn about connections between mathematical 
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content and teaching and learning. 

What Prompted Changes to Lesson Plans 

Based on our data analyses, we found that changes occurring in the enacted lessons were 

prompted by students’ unanticipated questions and responses and by communicating with former 

course instructors to resolve instructional challenges. As a result, instructional modifications 

included providing additional verbal and written resources, asking probing questions to the 

students to guide them to a correct answer, skipping planned tasks, and shuffling the sequence of 

tasks. We highlight two instances to illustrate these findings below. 

Responding to students in the moment. The lesson plans included examples of students’ 

responses and possible instructor’s responses. However, on many occasions, students responded 

in ways that were not predicted in the lesson plans. In one such response, the students asked 

questions about setting expectations for writing answers in the exams multiple times. In one 

instance, when Reese [pseudonym] asked about the correct way to write the answer for an 

upcoming exam. Instead of providing one correct way of answering the problem, the TE 

explained four different options for answering the question. This moment was captured in the 

field notes of a lesson: 

The TE said, “I was going to talk about this a little later but since you want me to 

talk about it now, let's talk about it". She explained the 4 ways of writing number 

sentences and then told the students that she expected the students to use one of 

these ways to write in the exam.  

Often, these instances created opportunities for the TE to work towards establishing norms 

with the students for mathematical practices. As in the example above, Reese’s question 

prompted the TE to communicate expectations for demonstrating learning in the class. 

Influences from modifications made by former instructors. The TE made an effort 

to reach out to the former course instructors, including doctoral students and department 

faculty. In these conversations, the TE shared her experiences instructing the course and 

discussed challenges that she was facing, seeking to understand if they faced similar 

challenges and how they navigated those challenges. As a result, she learned from former 

instructors’ multiple approaches to addressing the challenges and implemented those 

approaches in her instruction. In one of the debriefing meetings, the TE gave reference to 

such modifications.  

“Yeah, I was talking to Carmen [psuedonym] about this- that the students want me 

to tell them the norms for drawing and writing. Carmen told me that she had success 

when she asked the students to consider themselves to be fourth graders; this way 

they set up their own norms.” 

The TE implemented this strategy of asking students to imagine that they were fourth 

graders or asking them to imagine that they were teaching fourth graders when answering 

her questions.  

Discussion 

We view this work as an extension of others who report on the implementation of a shared 

knowledge base for teacher educators (Hiebert, 2013; Hiebert & Morris, 2009; Morris & Hiebert, 

2009) by considering how a TE implements shared lesson plans to create opportunities for PSTs 

to learn MKT. Understanding the use and modification of these materials highlights the role of 

the TE in interpreting and enacting the curriculum. In this case, we saw that the TE modified the 
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lessons to respond to the needs of PSTs, which created opportunities to learn more than SMK. 

These changes are potential sources for the TE to contribute to the shared knowledge base as a 

newcomer to teacher education.  

In the next phase of this case study, we intend to examine opportunities for learning that 

attend to additional types of knowledge, skills and dispositions that may emerge from the in-the-

moment changes that TE makes during the enactment of lessons. Also, in addition to the units on 

percentages, we will collect data from the units that have been informally reported to be 

particularly difficult by the students during the instruction. Such inquiries will help researchers to 

understand how TEs interpret and make use of the shared knowledge base.   
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Field experience personnel, such as cooperating teachers (CTs) and university supervisors 

(USPs), play an important role in supporting mathematics pre-service teachers (PSTs) to learn 

about equitable teaching practices. We employed case study methodology to explore the 

perceptions of CTs and USPs about mathematics identity. A group of CTs and USPs participated 

in professional development during the Fall 2023 semester to learn about ways to develop 

students’ mathematics identity. In this brief research report we share these CTs’ and USPs’ 

ideas about their own mathematics identity, their students’ mathematics identity, and how these 

ideas influence their teaching practice. Our findings have implications for redesigning field 

experience in teacher education programs.   

Keywords: Pre-service Teacher Education, Professional Development. 

Objectives of the study 

Field experience is an important component of teacher education (Butler & Cuenca, 2012). 

The various personnel involved in the field experience component of teacher education influence 

what student teachers learn when placed in actual K-12 classrooms. According to Anderson 

(2007), cooperating teachers (CTs) have a significant impact on pre-service teachers (PSTs). 

Moreover, Rozelle and Wilson (2012) reveal that PSTs’ teaching practices and beliefs are 

strongly affected by cooperating teachers. University supervisors (USPs) also have a major 

impact on PSTs’ thinking and their practice as they bridge theoretical learning with practical field 

experience (Cuenca et al., 2011). Thus, it is important to learn about the perceptions, practices, 

and beliefs of these field experience personnel to support PSTs’ learning (Borko & Mayfield, 

1995). In particular, when it comes to teaching mathematics PSTs about equitable teaching 

practices, it is important to develop a cohesive system of supports where PSTs get the same 

message from their courses and their field experience. Hence, collaborative work between 

university and school personnel is needed to prepare PSTs to teach diverse populations (Lee et 

al., 2010; Maher et al., 2022). Given the important role that field experience personnel play in 

supporting mathematics PSTs to incorporate these practices we wanted to learn about their own 

ideas about mathematics identity. In particular, our research question was: What are field 

experience cooperating teachers’ and university supervisors’ perceptions about mathematics 

identity? 

Theoretical framework 

Mathematics identity refers to “the dispositions and deeply held beliefs that students develop 

about their ability to participate and perform effectively in mathematical contexts and to use 

mathematics in powerful ways across the contexts of their lives.” (Aguirre et al., 2013, p. 14). 

This identity can influence the beliefs of a student as a, “competent performer who is able to do 

mathematics or as the kind of person who is unable to do mathematics.” (Aguirre et al., 2013, p. 
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14). Students’ mathematical identities are deeply connected to their other identities making it 

important to welcome all of their selves into the classroom (Ruef, 2020). The five practices of 

equity-based teaching can guide the development of classroom environments that allow students 

to feel welcomed and help build their mathematical identities (Aguirre et al., 2013). These 

practices are: Going deep with mathematics; Leveraging multiple mathematical competencies; 

Affirming mathematics learners’ identities; Challenging spaces of marginality; and Drawing on 

multiple resources of knowledge. Various researchers have cited the importance of mathematics 

PSTs’ learning about equitable teaching practices (Gutiérrez, 2002; Mintos et al., 2019). If we are 

to teach PSTs about these practices it is important to help them experience these practices in 

action during their field experience (Moldavan & Gonzalez, 2023; Sandoval et al., 2020). 

Methods 

We used case study methodology to highlight the ways in which CTs and USPs conceptualize 

mathematics identity (Yin, 2009). Our unit of analysis in this exploratory case study is a member 

of our field experience team: CT or USP. We aim to share their own perceptions about 

mathematics identity in order to expand existing understanding about how field experience 

personnel may influence PSTs’ teaching practice. 

Setting 

The study took place at a university in the Mid-Atlantic region of the United States. The 

university is situated in a rural community. As part of an extended professional development 

(PD) program, the first author invited high school mathematics field experience personnel to 

meet virtually. The group met four times during the Fall 2023 semester and engaged in 

discussions about equitable teaching practices in mathematics classrooms, reading vignettes of 

classroom scenarios, sharing classroom activities, and providing feedback on each other’s 

teaching practices. 

Participants 

The participants were three cooperating teachers (high school mathematics) hosting PSTs 

from the university’s teacher education program, and one university supervisor teaching the field 

experience course for future high school mathematics teachers. The university supervisor was a 

former high school mathematics teacher. All participants had more than 10 years of teaching 

experience. Karla was teaching Geometry, Computer mathematics, and AP Calculus; Ranita was 

teaching Algebra I & II; and Jake was teaching Algebra 1, Precalculus, and Data Science at the 

time of the study. Jake had also taught Geometry and Algebra II in past years. Lisa – the 

university supervisor – had taught Geometry, Computer math, and Algebra I when she was a 

high school teacher. 

Data 

All participants were interviewed at the beginning and end of the Fall 2023 semester. Semi-

structured interviews were conducted, transcribed, and analyzed. In addition, the participants 

were asked to select at least one equity-based teaching practice to develop students’ mathematics 

identity. They were also asked to share actionable steps that can be taken in their classrooms to 

support equitable mathematics teaching and develop their students’ mathematics identity. 

Analysis 

Data were analyzed using open coding (Strauss & Corbin, 1998) to look for emergent themes 

about participants’ perceptions of mathematics identity. 
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Results 

In this section we provide accounts of each participant’s perceptions about mathematics 

identity. Data analyses revealed that teachers’ mathematics identity may influence their teaching 

practice and their teaching goals for their students. Teachers’ mathematics identity may also 

influence their opportunities for learning when engaging in PD. 

Karla 

Karla is a cooperating teacher hosting our PSTs in her classrooms. Thinking about her own 

mathematics identity, Karla shared that she always identified as being good at mathematics. She 

liked seeing mathematics as a language and loved the precision mathematics provided to 

communicate ideas and concepts. Mathematics always made sense to her and was 

“straightforward to understand.” In addition, she enjoyed teaching mathematics to peers. She 

described her students’ mathematics identity as procedure followers who want to memorize 

algorithms and follow them rather than think through mathematics problems. Karla’s goal is to 

provide students with mathematics problems that foster their problem-solving mindset as she 

wants them to become “problem solvers and critical thinkers.” She mentioned that “giving them 

(students) a lot of examples of problems that do not have a straightforward algorithm” is needed 

to help students develop their mathematics identity. She selected going deep with mathematics as 

her preferred equity-based teaching practice. We see an alignment between Karla’s own 

mathematics identity, her teaching practice and how she resolves challenges in her practice to 

help students become successful at doing mathematics. 

Jake 

Jake, a cooperating teacher, always liked to solve real word problems using mathematics and 

found numbers comforting. When talking about his own mathematics identity he said, “Well, my 

mathematics identity goes back to when I was in elementary school, I think about third grade 

when I was required to learn how to add, subtract, multiply and divide fractions. And so I found 

success in that, I found comfort in that!” In addition to finding numbers comforting, Jake also 

saw himself as a problem solver. He liked to play problem solving games and explained, “One of 

my more recent musings about mathematics is that all mathematicians are Gamesman. And I 

love games. And I love creating parameters and saying, Now, what can I do with that?” His goal 

is to help students change the narrative about mathematics, and to help them be successful. Jake 

did not select an equity-based mathematics practice but based on his conversations he seems to 

be leaning towards affirming mathematics learners identities and challenging spaces of 

marginality. We see an alignment between Jake’s own mathematics identity, and his teaching 

practice. Jake wishes for his students to see the world through a lens of mathematics and wants 

them to have discussions about real world problems. 

Lisa 

Lisa is a university supervisor in the teacher education program. Up until last year she was a 

high school mathematics teacher and recently took on the role of a university supervisor. She 

described herself as a problem solver because she likes to think mathematically when 

encountering challenges. Lisa said that mathematics is “part of who I am, my identity.” She 

always enjoyed teaching mathematics even when in school and liked to help her friends learn 

math. In contrast she feels that her students (high school) hate math, they don’t have any interest 

in doing mathematics and don’t understand why they have to do it. Her teaching focuses on 

motivating students and helping them reach aha moments. Her goals to develop students’ 
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mathematics identity include having students feel good about themselves when doing math. She 

selected, affirming mathematics learners’ identities as her favored equity-based teaching practice. 

In her current role as a university supervisor, Lisa encourages her PSTs to work with students 

who struggle with mathematics. She uses her own experience to guide her PSTs in supporting 

their students. 

Ranita 

Ranita a cooperating teacher, recalled that she found mathematics to be challenging and did 

not feel like she was good at math. She shared, “I do math every day but I still really feel like 

deep down, I was never good at math.” Her challenges learning mathematics earlier on in life 

allow her to empathize with her students when they say they don’t like math. She shared that her 

students lack prerequisite mathematics knowledge and her goal is to develop students’ 

mathematics identity by helping students feel confident and to help them experience success. 

Based on her own experiences learning mathematics, Ranita believes that helping students feel 

confident in mathematics is crucial. This motivates her to focus on supporting students to 

experience success in mathematics exams. She gives them chances to redo their assignments and 

provides scaffolded practice exercises because she believes that passing mathematics exams will 

allow students to experience success and develop a positive mathematics identity. Ranita’s 

teaching practice is based on empathy for her students. She believes in building relationships 

with her students and learning about them. She selected leveraging multiple mathematical 

competencies as her preferred equity-based teaching practice. 

Discussion and conclusions 

There were similarities and differences between the four cases. In terms of similarities, all 

participants except for Karla shared that their students had a strong dislike for mathematics, that 

it was important to develop relationships with students and to help them experience success. For 

all the cases, the participants’ interest, perception, and background influenced what they learned 

from the PD meetings. All the participants were able to learn from each other about strategies, 

tasks, and norms that worked for their students. They were all similar in their goal to help their 

students be successful, but their teaching practice, understanding of student success, and 

perception of their role as a teacher differed from each other. 

Our findings have implications for PSTs’ field experience. CTs and USPs guide PSTs as they 

try to connect their coursework-related learning to the teaching practice experienced in actual 

field experience classrooms. PSTs may learn new pedagogical ideas in their methods courses but 

it is important that these ideas are reinforced and modeled during their field experience (Matsko 

et al., 2020). For instance, if we want our PSTs to develop equitable teaching practices that 

support the development of students’ mathematics identity, we must learn about pedagogical 

beliefs held by CTs and USPs. We noticed that all participants were deeply interested in 

supporting their students’ learning; however, they had different ideas about what it meant to 

develop their students’ mathematics identity. Some believed that experiencing success on state 

tests would do the trick, while others believed that being able to solve real life problems using 

mathematics might help their students develop a positive mathematics identity. Work is needed to 

support field experience personnel in their development of equity-based practices. In addition, 

continued collaboration is needed between MTEs, CTs, USPs, as well as PSTs. 
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It is through a cohesive network of support that our PSTs can be successful in developing 

equitable teaching practices. Field experience personnel can influence PSTs’ sense of 

preparedness as teachers (Ambrosetti & Dekkers, 2010; Hamman et al., 2006). MTEs, CTs and 

USPs must collaborate, to develop tools and procedures in order to become effective mentors for 

PSTs. This collaboration can help align PSTs coursework and field related experiences. In 

particular, such an alignment is needed to support PSTs’ development of equitable teaching 

practices that can support the development of students’ mathematics identities.  
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Productive struggle arises when students persevere in problem-solving, applying their 

mathematical knowledge in new ways (Hiebert & Grouws, 2007). While teacher educators 

recognize the importance of productive struggle for mathematics teaching and learning (NCTM, 

2014), pre-service teachers (PSTs) may initially have negative perceptions of productive struggle 

(Warshauer et al., 2021) or try to alleviate struggle for their students (Anhalt et al., 2006; de 

Araujo et al., 2021; Nicol & Crespo, 2006), rather than seek to create opportunities for 

productive struggle. PSTs’ desire to prevent students from struggling may be rooted in their own 

negative experiences as mathematics learners (Gellert, 2000). 

In this ongoing study, I investigate how direct instruction of the concept of productive 

struggle, the promotion of productive struggle through rigorous mathematical tasks, and 

reflections focused on productive struggle, impacts elementary PSTs’ understanding of 

productive struggle and their perceptions of themselves as doers and teachers of mathematics.  

Participants were 66 elementary education undergraduate PSTs enrolled in a 14-week course 

on Algebraic Thinking at a Hispanic-serving four-year liberal arts college in the Southeastern 

United States in Spring 2022 (21 PSTs) and Spring 2023 (45 PSTs). PSTs regularly engaged in 

high cognitive demand math tasks. I documented students’ problem-solving strategies and 

behaviors associated with struggle (SanGiovanni et al., 2020; Warshauer, 2015). After 

completing each task, PSTs wrote reflections on their experiences of productive struggle, using 

sentence stems (SanGiovanni et al., 2020, p. 151). 

This poster reports on PSTs’ experiences with a specific math task, the In-N-Out Burger task 

(Kaplinsky, 2013). End of course reflections asked PSTs to identify: which of the tasks was their 

favorite, and why; and which task did they find most challenging, and why. 26 PSTs (39%) said 

the In-N-Out Burger task was their favorite, while 17 PSTs (26%) said it was the most 

challenging. Compared to the other tasks, this task stands out because of the high percentage of 

PSTs who both favored the task and found it challenging. For the other tasks, there was an 

overwhelming majority for either favorite or challenging. 

Preliminary findings suggest that some PSTs valued the freedom of the open-ended nature of 

the In-N-Out Burger task, while others were frustrated by the ambiguity. PSTs enjoyed the In-N-

Out Burger task because it was an interesting, real world context; was enjoyable to solve; was 

challenging; had multiple solution paths; and fostered collaboration and discussion. PSTs who 

found the task most challenging expressed frustration, confusion, and difficulty getting started. 

One concern for classroom practice is that PSTs who are uncomfortable with ambiguity may 

avoid providing similar experiences for their future students. Additional analysis will explore 

how PSTs’ end of course reflections connect to their initial reflection on the task. I will also 

present the solution paths students pursued, and types of struggle documented in my field notes, 

mailto:Manthony5@ggc.edu
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seeking connections between observed behaviors and PSTs’ perceptions of the task, and their 

self-expressed experiences with productive struggle. 
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Transitioning from a teacher education program to autonomous teaching is a complex process, 

fraught with challenges. This transition involves developing identities and teaching practices 

that allow novice teachers to reconcile the reformed teaching world of their teacher preparation 

program with the more traditional world of school teaching. In this paper, we follow the identity 

formation of one beginning teacher, Olive, by examining her narratives about her pedagogical 

actions as she transitions from being a pre-service teacher (PST) to being an intern (INT) to 

becoming a new teacher (NT). As PST, Olive’s narratives about her current and desired actions 

aligned with reform actions; as INT, a gap opened between her current traditional actions and 

desired reform actions; and as NT, the gap narrowed as she modified her desired narratives to 

more traditional ones. We discuss our findings and their scientific significance. 

Keywords: Novice Teachers, Teacher Learning, Identity, Reform Teaching 

Introduction 

University teacher preparation programs aim to prepare future mathematics teachers to enact 

ambitious pedagogical practices that align with the NCTM’s vision of effective teaching and the 

Common Core Standards for Mathematical Practices (AMTE, 2017). As beginning teachers 

transition from university to school teaching, they need to reconcile between the world of 

ambitious (hereafter, reform) teaching of their teacher preparation program and the world of 

school teaching characterized mostly by traditional teaching practices (Jacobs, et al., 2006). The 

reconciliation between the two worlds can be accomplished by integrating reform practices, to 

varied extents, into the more traditional school world (Thompson et al., 2013). Indeed, some 

beginning teachers tend to lean toward traditional practices (Gainsburg, 2012), while others hold 

on to their reform teaching practices (Conner & Marchant, 2022; Smagorinsky et al., 2004).  

The extent to which beginning teachers adopt and integrate reform practices has been linked 

to their emerging teacher identities and more specifically, to “the kind of teachers selves they 

have developed and seek to create”(Horn et al., 2008, p. 63). We can learn about identity by 

considering teachers’ narratives about their general current pedagogical actions and their desired 

ones (Heyd-Metzuyanim, 2019). Moreover, it is important to examine the beginning teachers’ 

identity formation over time and across settings. However, such longitudinal studies are rare, and 

not enough is known about how the processes of the reconciliation of the two worlds unfold.  

In this paper, we analyze the case of one beginning teacher Olive (pseudonym), whom we 

followed for four years: as a pre-service secondary teacher (PST), as an intern (INT), and as a 

novice teacher (NT). Olive was chosen because she represents a case of a highly successful 

beginning teacher, in terms of her mathematical knowledge, pedagogical creativity, and 

productive dispositions, aligned with reform teaching (as evidenced by her undergraduate 

coursework). This meant that, relative to other PSTs, Olive had a good starting point in terms of 

integrating reform practices into the school world. We explore Olive’s trajectory of teacher 
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identity formation, building on the theoretical notions of “figured worlds” and pedagogical 

narratives, which we describe below. 

Theoretical Framework 

Drawing on Holland et al. (1998) and other scholars (Horn et al., 2008; Ma & Singer-

Gabella, 2011), we view the traditional mathematics instruction and the reform teaching, not 

only as two pedagogical approaches but as two “figured worlds”. A figured world is a “socially 

and culturally constructed realm of interpretation in which particular characters and actors are 

recognized, significance is assigned to certain acts, and particular outcomes are valued over 

others” (Holland et al., 1998, p. 52). To conceptualize the reform and traditional figured worlds, 

and specifically, their valued actions and outcomes, we drew on the National Council of Teachers 

of Mathematics’ Principles to Actions (2014), a central document in the discourse on reform 

mathematics instruction. Table 1 shows our resulted conceptualization of the two worlds.   

 

Table 1: Conceptualization of the Reform and Traditional Figured Worlds 

 

 Figured World of Reform Teaching Figured World of Traditional Teaching 

Valued 

pedagogical 

actions 

Examples: providing students with 

opportunities to explore and 

problem-solve; supporting students 

without eliminating their challenge; 

encouraging them to use reasoning 

and proving when justifying 

mathematical claims. 

Examples: posing tasks which students 

are expected to solve using a specific 

memorized procedure; guiding students 

step by step through problem-solving; 

encouraging students to give short 

answers and respond to teacher only. 

Valued 

pedagogical 

outcomes 

Examples: collaborative 

explorations, open and reasoned 

discussions, productive struggle, 

and student authority. 

Examples: memorization, correctness 

of answers, procedural knowledge, and 

teacher authority. 

 

To be able to investigate processes of identity formation during the reconciliation of the 

reform and traditional figured worlds, we examined Olive’s narratives about her pedagogical 

actions. Hence, our claims concern teacher’s narratives about pedagogical actions, rather than 

the actual classroom practice We conceptualized four types of narratives a teacher produces 

about their actions, as shown in Table 2. 

 

Table 2: Conceptualization of Narratives about a Person’s Actions 

 

 Narratives about Specific actions Narratives about General actions 

Desired 

actions 

Example: In this specific lesson, I wish I 

had encouraged more peer discussions. 

Example: I wish to have more peer 

discussions in my class. 

Current 

actions 

Example: In this specific lesson, I 

encouraged students to talk to their peers. 

Example: I always encourage peer 

discussions in my class. 
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By distinguishing between narratives about Specific actions (first column) versus ones about 

General actions (second column), we drew on a distinction made by Heyd-Metzuyanim and 

Sfard (2012) between a person’s communication about their specific performance versus their 

routine or general performance. We see these two types of communication as essential to 

exploring the formation of identity, defined as “narratives about individuals that are reifying, 

endorsable and significant” (Sfard & Prusak, 2005, p. 16). By distinguishing between narratives 

about Desired actions (first row) versus ones about Current actions (second row), we drew on 

Sfard and Prusak’s (2005) distinctions between various types of identity narratives (i.e., actual 

and designated). Building on their conceptualizations, we distinguish between narratives teachers 

author about their current pedagogical actions, and those authored about their desired 

pedagogical actions. This focus on personal narratives allows us to adopt the teacher’s 

perspective on her pedagogical practice while we tell the story of her identity formation. Based 

on our four-fold conceptualization, we ask the following research question: What was the 

trajectory of Olive’s (specific and general) narratives about her current and desired pedagogical 

actions in relation to their alignment with traditional and reform pedagogical actions?  

Methods 

The data on Olive’s trajectory as a beginning teacher came from multiple sources, collated 

over four years. The PST-period data comprised lesson plans, video recordings and written 

reflections for the four lessons Olive taught to small groups of high-school students, as part of 

the capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder 

& McCrone, 2023). The internship data were collected for two lessons Olive taught in her 

cooperating teacher’s (CT’s) classroom. Data sources included video recordings of the observed 

lessons and debriefing interviews of each lesson. As an NT, Olive was three times observed and 

interviewed after each lesson; and once, in lieu of an observation, we conducted an extended 

interview in which Olive shared an activity she enacted in her class and a sample of student 

work. Supplementary data included Olive’s contributions to bi-monthly meetings of the 

professional learning community (PLC) of all new teachers participating in this study. The video 

recordings of all interviews and PLC meetings were transcribed for analysis.  

To analyze the data, we first identified in the transcripts instances of Olive’s narratives about 

her pedagogical actions. Each narrative was coded as either specific to that lesson or describing 

Olive’s teaching in general. Further, the narratives were coded as either describing her current 

teaching or what she considered her desired way of teaching. This created the four categories 

conceptualized in Table 2: current specific, current general, desired specific and desired general. 

Next, the narratives were coded as aligned with either reform or traditional teaching practices. 

The coding scheme was based on content analysis of NCTM’s (2014) Principles to Action, in 

which we generated a list of teaching valued actions consistent with reform or with traditional 

pedagogy (as exemplified in Table 1). Finally, we created a profile of Olive’s narratives about her 

pedagogical actions in each lesson. Figure 1 shows one such profile extracted from the debrief 

interview of Olive’s first lesson as NT. The actions aligned with reform practices are shaded in 

blue and the traditional ones are shaded in yellow.  
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Figure 1: Profile of Olive’s Narratives about her Actions in her First Lesson as NT 

 

Examining these lesson profiles, we tracked changes in Olive’s narratives about her 

pedagogical actions across time points and settings: university (PST), internship (INT), and 

autonomous teaching (NT). We describe them below. 

Findings 

PST: Current and Desired Actions Align with Reform Teaching  

As a PST, all of Olive’s narratives about her current pedagogical actions were specific to the 

four lessons she taught during the capstone course, and there were no narratives about her current 

general actions (as she was not yet teaching her own classroom). She did, however, author 

narratives about her general desired pedagogical actions. All her narratives were coherent with 

each other and aligned with the reform teaching practices, specifically those related to reasoning-

and-proving (Stylianides, 2008). This alignment was evident in all the reflections Olive wrote 

after her four lessons. For example, in her second lesson, Olive incorporated reasoning-and-

proving actions with the mathematical topic of congruent triangles and special segments in a 

triangle, while introducing students to conditional statements. In her reflection, she wrote: 

Together [with the students] we defined a conditional statement and discussed how they 

occur in a variety of settings. I also asked for students to provide their own examples of both 

if/then conditional statements and non-if/then conditional statements, identify hypothesis “P” 

and conclusions “Q” and determine their truth value, this includes some proofs and some 

counterexamples. 

Olive’s narratives about her pedagogical actions in this lesson (current-specific) included 

reform reasoning-and-proving actions such as providing students with opportunities to author 

their “own examples”; validate mathematical claims (“determine their truth value”); construct 

proofs and use counterexamples to refute arguments.  

Similarly, Olive’s narratives about her general desired pedagogical actions were aligned with 

reform teaching practices. For example, in her forth reflection, she wrote:  

Indirect reasoning and proving was so much fun to integrate into a lesson, I had never 

realized before that putting indirect reasoning into any math concept could be relatively easy 

for a teacher and absolutely accessible for students [emphasis in the original]. [...] I should 

certainly be able to find ways to incorporate it into different types of lessons.  

Here, Olive shared her excitement (“so much fun”) about the relative ease of integrating 

indirect reasoning into this specific lesson as well as future lessons (“I should certainly be able to 

find ways to incorporate it”). She talked about the joy of engaging students with indirect 
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reasoning “in any math concept” and “into different types of lessons.” Thus, her desired actions 

in this specific lesson, and general desired ones (in future lessons) were coherent and aligned 

with reform actions. A similar pattern was observed in all of Olive’s four reflections as a PST. 

INT- First Debrief: Traditional Current Actions vs. Reform Desired Actions 

As an INT, Olive taught in the classroom of Julia (pseudonym), her cooperating teacher (CT). 

In her debrief interview, following her first lesson, there were still no narratives about her current 

general way of teaching, only ones specific to the lesson. These narratives, in contrast to her 

narratives as a PST, were completely aligned with traditional teaching practices, prevalent in her 

CT’s classroom. This was apparent in Olive’s debrief interview when she described her goals for 

the lesson as follows: 

I would feel accomplished if they [the students] understood how to combine like terms on 

two sides of the equation, moving chunks with the variable […] I knew that having the 

variable on both sides would freak them out because they'd only done it with a variable on 

one side. So that was probably the biggest hurdle to get over today, combining the variable 

terms. 

Olive’s narratives in this excerpt (current-specific) were aligned with traditional practices such 

as making sure that students know how to carry out mathematical procedures (“the biggest hurdle 

to get over today, combining the variable terms”); and ensuring that students are not too frustrated 

or confused (“I knew that having the variable on both sides would freak them out”). However, as 

the debrief progressed, Olive authored narratives about wishing she had taken pedagogical actions 

that allow students to be more explorative in their learning, saying: 

I'd love to have sometimes an equation up and they'll [the students] suggest something [like] 

“add 24 to both sides,” and it won't make sense, but I wanna just go along with what they're 

saying […]. [As if saying] “let's just play with the rules for the day” […] and show them why 

it doesn't make sense. […] They are stuck to doing only moving these [terms], but if you can 

conceptually understand that we have a scale, and as long as you're doing both things to both 

sides [of the equation], the answer is going to be the same at the end of the day.  

In this quote, Olive contrasted her traditional pedagogical actions in this lesson, with desired 

(“I'd love to …”) actions aligned with reform pedagogical practices of encouraging students to 

explore mathematical rules and use their own methods for solving problems (“let's just play their 

rules”), and of proving them with opportunities to establish a strong conceptual foundation (“if 

you can conceptually understand…”). Thus, as Olive transitioned from PST to INT, a gap opened 

between her narratives about her current traditional actions and desired reform ones. 

INT- Second Debrief: Reform/Traditional Current Actions vs. Reform Desired Actions 

In the debrief following Olive’s second observed lesson, the gap between her narratives about 

current and desired pedagogical actions narrowed as Olive’s narratives about her current actions 

became more aligned with reform practices, as the next excerpt shows: 

I had decided to do that little, what I called an exploration in the beginning [of the lesson]. 

[…] I kind of pushed to do that just because in the original lesson plan that Julia had written 

years prior, the idea of flipping the inequality side is not really explored at all […] I wanted 

them to see it for themselves and to understand, using numbers, why that was the case. 
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Olive described in this quote how she took the liberty to modify her CT’s lesson plan by 

introducing in it a short “exploration” activity that would help students make sense of the rule for 

changing the sign of inequality when multiplied or divided by a negative number. This activity 

aligned with reform practices such as providing students with opportunities to explore rules and 

to make sense of and justify mathematical claims (“I wanted them to see it for themselves and to 

understand, using numbers, why that was the case”). Although Olive’s narratives about her 

current pedagogical actions in this excerpt aligned with reform practices, in the rest of the lesson, 

she followed her CT’s lesson plan that was rooted in traditional practices. Olive shared that she 

would have preferred to continue the exploration activity for the entire lesson, saying: “I wish I 

could have given a whole 40 minutes to that, you know, but I'm so glad that it got worked in at 

all”. She added: “I would've liked to take some of the conjectures that they said that I didn't agree 

with and show them why I didn't agree with them.” Thus, Olive’s narratives about her current 

specific actions were aligned with both reform and traditional teaching practices, while her 

desired ones remained purely aligned with reform practices. 

NT: Reform/Traditional Current and Desired Actions 

As NT Olive was faced with the responsibility of day-to-day teaching, but also was free to 

experiment with reform teaching on her own. The first lesson we observed was a group activity 

where students explored parabolas as projectiles in the Angry Birds ® game. In the debrief 

interview Olive shared her excitement about this activity by saying:  

I'm really enjoying doing this project because I have been doing a lot of boring, I feel like, 

lecture-style things. And so, this is like an opportunity for me to stop talking, which is really 

wonderful. […] It is incredible how they [students] can focus, […] and kind of crank stuff 

out pretty quickly, and without a ton of wrestling from me, which is really nice. 

Here Olive described her current general pedagogical actions (“I have been doing”) as 

traditional (“boring lecture-style”) contrasting them with reform-aligned current actions specific 

to this lesson, including giving students a rich mathematical task and supporting them in taking 

responsibility for their learning (“without a ton of wrestling from me”). However, when the 

interviewer inquired about incorporating more conceptually rich prompts, Olive replied: 

I guess my hesitation […] I'm playing devil's advocate in the situation, if I went and tried to 

go off on a conceptual tangent with each kid, I think that they would tune out immediately 

[…] with so many kids […] to try to circulate that room and have a deep conceptual 

conversation with each of those 28, I don’t even think I’d have time in the block to do that. 

In this quote, Olive questioned whether it is realistic to pursue “deep conceptual conversations” 

“with so many kids.” While not rejecting the idea, she implicitly positioned this kind of reform 

action as generally non-desirable. Thus, in her first debrief as NT, Olive’s narratives about her 

desired actions began to move away from being purely aligned with reform practices.  

In the following interviews, Olive’s narratives about her current pedagogical actions presented 

a mixture of reform and traditional actions. For example, in her second NT interview, Olive 

described a lesson on operations with radicals in the following way:  
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I liked that some of it [the lesson] felt exploratory, but then some of it definitely felt like a 

very telling way of teaching, like just kind of giving them the information as opposed to 

letting them figure it out”.  

Here, Olive communicated narratives about her current specific actions as being both reform-

oriented (“I liked that some of it felt exploratory”) and traditional (“telling way of teaching”, 

“giving them the information”).  

As time went by, Olive’s narratives about her current pedagogical actions, both specific to a 

certain lesson and general, continued to present a mixture of reform and traditional actions. Olive 

explained: “I try to start each unit with like a nice little discovery activity of some kind.” She talked 

excitedly about one activity where students discovered the value of Pi, saying: “I didn't want to 

give too much away. I was trying to teeter a line of ‘figure it out yourself.” She shared her joy 

when students “have the best conversations, and they argue, and they don't want my input.” These 

narratives were all aligned with reform practices. However, Olive admitted that these types of 

reform activities are infrequent among more traditional ones. She said: “I feel like as the unit goes 

on, it becomes less exploration and more like, here's the content, get it in your head.” Thus, Olive’s 

narratives about her current general pedagogical actions aligned also with traditional practice.  

As captured already in her first debrief as NT, Olive’s narratives about desired pedagogical 

actions changed as well toward more traditional practices. Notably, there was still some gap 

between current and desired narratives. On the one hand, Olive still strived to enact reform 

practices, saying “In an ideal world, I would've absolutely loved to do that activity [Pi-exploration] 

with every section.” But on the other hand, reform teaching seemed to be more of a hypothetical 

ideal for Olive. The next quote illustrates this duality:  

I definitely don't wanna be a person that's lecturing every day, but I also don't necessarily 

have some super fun exploration planned every day either. There's gotta be like a healthy 

balance of those two things. 

Olive did not want to revert to traditional teaching practices; however, her questioning of the 

feasibility of enacting reform actions day in and day out became more explicit and upfront. In one 

of the later interviews, Olive reflected on her trajectory from the university to classroom teaching:  

[In] undergrad and even as an intern [I] made some lesson plans that were just absolutely 

ridiculous in terms of what I expected the students to understand at a rate or pace that was 

absolutely unrealistic for the children […] I've definitely become more, I like to consider it, 

realistic […] sometimes I feel bad about it and sometimes I feel guilty about it. […] I try to 

maintain high expectations, but I think I, I'm a little bit more realistic. 

In this excerpt, Olive framed some of her ambitious, reform-aligned lessons she developed as 

PST and INT as “ridiculous” and “unrealistic.” She positioned her current mixture of reform and 

traditional actions as “realistic,” although admitting she felt “sometimes bad” and “guilty” about 

this change. Thus, Olive in her second year as a new teacher identified herself as a realistic 

teacher who strives for a “healthy balance” between the traditional school world and the teacher-

education world of reform pedagogy.  
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Summary and Discussion 

Figure 2 summarizes the trajectory of Olive’s narratives about her specific/general, current 

and desired pedagogical actions as aligned with traditional or reform pedagogical practices.  

 

 

Figure 2: Trajectory of Olive’s Narratives about her Pedagogical Actions 

 

We present specific and general narratives separately, side by side. The vertical axes 

represent a non-quantified continuum between reform and traditional actions. The position on the 

continuum is not absolute, but represents general discursive tendencies observed in the data (cf., 

Truxaw and DeFranco’ (2008) Sequence Maps). The narratives about general pedagogical 

actions (on the right) are represented by a single instance per period (PST, INT, NT) based on 

aggregated data. Also, narratives about specific pedagogical actions for the PST stage are 

collapsed across four lessons. However, each observed lesson as INT or NT is represented 

separately, to provide greater detail about Olive’s narratives during this critical period of her 

teaching career. The icons “C” and “D” stand for current and desired actions; close placement 

represents coherence of narratives, while distanced placement represents a gap between current 

and desired narratives.     

As a PST, Olive’s narratives about desired actions, both specific and general, were aligned 

with reform practices. The same was true for narratives about her current actions in the four 

specific lessons she taught as PST. This reinforces our choice of Olive as a case of a beginning 

mathematics teacher, who was both well-prepared and eager to enact reform teaching practices. 

Two critical processes followed Olive’s promising starting point as a PST. The first one 

occurred during Olive’s internship, when her narratives showed a gap between desired reform 

actions and current traditional ones (both specific, as seen in lesson 1 as INT, and general). This 

gap is consistent with previous studies suggesting that novice teachers tend to adopt the 

traditional teaching practices of their mentors (Bieda et al., 2014; Gainsburg, 2012). In her 

second lesson as well as the following lessons during her NT period, Olive tried to close the gap 

by aligning her current traditional pedagogical actions with her desired reform ones (captured in 

the Figure by the rise of “C” toward “D”). This finding aligns with Horn and colleagues (2008) 
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who foregrounded the link between interns’ reform desired images of good teaching and the 

modification of their traditional teacher identities. 

The second process occurred during Olive’s NT period. We did not identify a particular 

turning point in Olive’s narratives, but rather a gradual process characterized by two trends. The 

first one is the fluctuation of narratives about current specific practices somewhere in the middle 

along traditional-reform continuum (captured by changes in the location of “C”). This trend 

points to Olive’s multiple attempts to integrate reform practices in specific lessons revealing the 

dynamic changes in her narratives about specific actions. These changes are important as they 

underly the formation of Olive’s more stabilized narratives about current general actions aligning 

with both traditional and reform actions. The second trend in Olive’s narratives is the gradual 

shift in the desired actions toward more traditional practices (captured by the lowered position of 

“D” both in relation to specific and general actions). This shift points to Olive’s attempts to close 

the gap between narratives about her current and desired actions by “lowering the bar” and 

modifying the desired actions to be more “realistic,” traditional ones. This finding suggests that 

even an enthusiastic beginning teacher, like Olive, who is committed to reform practices, may 

need support in keeping the view of reform practices as desired (Ingersoll & Strong, 2011).  

We believe that Olive’s longitudinal case of a promising new teacher entering the world of 

traditional schooling, contributes to a better understanding of the underlying processes of identity 

formation during the reconciliation of the two worlds. As we continue to investigate trajectories 

of Olive and other beginning teachers in the larger study, we intend to include further lenses to 

gain a better understanding of identity formation as interwoven with social and cultural contexts.  
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As mathematics teacher educators, we strive to motivate and inspire our students to engage in 

ambitious teaching as described in Principles to Action (NCTM, 2014) and the Taking Action 

(NCTM, 2027) series published by the National Council of Teachers of Mathematics. We also 

address and stress the need for strong “foundations of pedagogical knowledge, effective and 

equitable mathematics teaching practices, and positive and productive dispositions toward 

teaching mathematics to support students’ sense-making understanding, and reasoning.” (AMTE, 

2017, C 2, P 3)   

Ambitious teaching contrasts sharply with the instruction models that most students have 

found in their mathematics classrooms. As middle and high school learners, they encountered, 

for the most part, a routine that included homework review, teacher lecture and demonstration 

followed by individual practice. This routine was further articulated in the I do, we do, you do, 

model of instruction.  This disconnect continues in their college courses. (Nguyen & Munter, 

2023)  

It then becomes our challenge as teacher educators to overcome that model and help our 

students see themselves as facilitators of learning rather than engaging solely in the practice of 

direct instruction that they have been exposed to as students throughout much of their learning of 

mathematics.  In their methods courses and in their practicums, our goal then becomes one to 

ensure that our pre-service teachers have the opportunity to fully engage with the Effective 

Teaching Practices in all ways. This has become our most important goal, and our students 

demonstrate their progress in comprehensive unit plan design and implementation of these 

practices in field experiences and student teaching assignments during their final year of their 

college program. 

What then, do they take with them into their own classrooms from their methods courses and 

internships? What do they remember, and what do they put into practice in their own teaching? 

What support and mentoring have they experienced in their first years of teaching? What do they 

need and how can we help? What can we learn about re-designing our programs when we answer 

these questions? 

This poster session will answer some of those questions and will include the design and 

results of an interview study with 15 early career middle and high school teachers. Each of these 

teacher-participants had completed a few months to 5 years of teaching experience at the time of 

their interview. All were former students in a methods class with the authors and were supervised 

by them the following semester in their student teaching. The poster will also highlight important 

aspects of the participants undergraduate preparation for teaching. 
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This study explores preservice teachers (PSTs) autobiographical reflections on their experiences 

with math. Findings reveal distinct trajectories, including positive journeys characterized by 

enthusiasm and satisfaction, discouraged and disheartened paths marked by negative emotions, 

empowering shifts triggered by positive encounters, and disruptive shifts leading to negative 

perceptions due to challenging experiences. We discuss the factors that contribute to these 

trajectories including relationship with teachers and families and PSTs’ perceptions of their own 

aptitude. The narratives point to a need for supporting positive early experiences for children 

and tailoring instruction for PSTs to attend to their personal math experiences.  

Keywords: Preservice Teacher Education, Affect, Emotion, Beliefs, and Attitudes, Elementary 

School Education.  

Early experiences with math play a crucial role in laying the groundwork for teachers’ 

perceptions and connections with the subject. Autobiographies serve as a valuable tool for 

gauging someone’s inclinations toward subjects and tracking changes in their attitudes over time 

(Ellsworth & Buss, 2000). Autobiographical storytelling, the practice of recounting personal 

experiences, holds a significant place in social sciences research (Miller, 2000). Studies 

exploring storytelling in math education have demonstrated that narratives offer insights into 

individuals' attitudes, beliefs, and identities regarding math that traditional survey instruments 

fail to capture (Ellsworth & Buss, 2000). 

Perspective(s) 

Autobiographies serve as a reflective tool, offering teachers a means to understand 

themselves both personally and professionally (Connelly & Clandinin, 1999). Crafting 

autobiographies helps students develop a conscious awareness of the connections between their 

present beliefs, identities, and emotions and their past experiences with math (Drake, 2006; 

Hauk, 2005; Machalow et al., 2022). Autobiographical narratives can also unveil teachers’ 

orientations toward math (Machalow et al., 2022), as well as their preference for specific 

teaching methodologies (Ellsworth & Buss, 2000; Hauk, 2005). In this study, an autobiography 

denotes an individual's written account of their experiences learning math. We asked preservice 

teachers (PSTs) enrolled in an elementary math methods course to recall events that had positive, 

negative, or neutral effects on their interest in, attitudes toward, and emotional responses about 

math, along with their overall sense of competence. Our analysis focused on examining changes 

in their experiences throughout their multi-year engagement in math. We focused on answering 
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the following research question, how do PSTs’ past experiences influence their interest, attitudes, 

emotional responses, and sense of competency related to mathematics? 

Methods  

Fifteen PSTs enrolled in an elementary math methods course participated in this study. The 

course's main objective is to equip future educators with the necessary skills to effectively teach 

in student-centered ways. The activities were specifically designed to encourage PSTs to actively 

reflect on their own mathematical thinking, facilitating the development of instructional 

approaches and strategies with students. PSTs were tasked with writing autobiographical 

accounts of their experiences with math. Prompts were provided to guide the PSTs to explore 

their perceptions (e.g., How do you feel about math? Why do you think you feel this way? What 

factors contributed to this feeling? Describe how that person or event influenced your feelings); 

however, they were free to construct the narratives that best reflected their experiences. 

Data Sources and Analysis 

PSTs’ autobiographies served as the data source. Employing an inductive analytical 

approach, we engaged in multiple readings of the narratives to identify the core ideas PSTs 

conveyed about their experiences. Then we looked across the narratives for common themes 

(trajectories, as explained in the next section) within their stories (Polkinghorne, 1995). We 

categorized the experiences PSTs described (label of each column) and the nature of the 

experience (label of the rows; Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Categorizing PSTs’ experiences across distinct areas and associated emotions 

 

Then, we examined each PST's case individually to explore their trajectory more 

comprehensively. During this phase, our aim was to gain deeper insights into the main influences 

on the teachers' mathematical journeys over time. To achieve this, we devised a mapping 

framework that outlined the phases of each teacher’s mathematical life and identified perceived 

influences. This mapping allowed us to track the transitions within mathematical narratives, 

including positive, neutral, and negative influences/experiences that prompted shifts in their 

ideas about math. Four distinct trajectories emerged from this analysis (Table 1). 
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Findings 

Table 1 presents the categorization of the PSTs’ trajectories accompanied by a description. 

Next, we describe the distinctive characteristics of each trajectory type. 

Positive Journey 

Four PSTs – Kristin, Lexie, Melissa, and Katherine - discussed their positive math journeys. 

Their positive perceptions of their mathematical abilities were based on consistently 

experiencing success and having empowering experiences in math. Lexie, for instance, described 

how she effortlessly grasped math concepts and excelled without much difficulty. She attributed 

this to her innate understanding and confidence in her abilities, stating, “Since I can remember, 

I've always felt naturally adept at math”. Others recounted having exceptionally positive 

experiences with math during their K-12 schooling. Kristin, for example, expressed her fondness 

for math, labeling it as her “favorite subject” throughout middle and high school due to her 

consistent success and appreciation for its logical problem-solving nature. Additionally, they 

acknowledged the presence of consistent support from parents or teachers. Katherine credited her 

father for nurturing her curiosity and skills in math, while Kristin highlighted the influence of her 

9th-grade algebra teacher, who encouraged diverse problem-solving methods. 

Table 1: Types of Trajectories 

Trajectory Description 

Positive 

Journey 

Had no adversities in their mathematical journey. 

Discouraged 

and Disheartened 

Had predominantly negative early math experiences, interpreting 

them as indicative of innate mathematical incompetencies. 

Empowering 

Shift 

Had predominantly negative early math experiences; then, 

experienced a critical positive event engendering a positive attitude, 

belief in mathematical competence, and enjoyment in mathematical 

endeavors. 

Disruptive Shift Had predominantly positive early math experiences; then, 

experienced a critical negative event engendering a negative attitude, 

lack of belief in mathematical ability, and negative emotions about math.  

 

Discouraged and Disheartened 

Some PSTs including Jasmine, Leah, Danielle, and Ellie, perceived failure and/or 

consistently felt discouraged from math experiences, resulting in negative perceptions of math. 

For instance, despite Ellie achieving high grades in K-12 math, she felt inadequate relative to 

peers who excelled in mental math which she struggled with. Additionally, this group referenced 

negative experiences with their math teachers. Leah attributed part of her struggle to male 

teachers explaining the material in an unhelpful manner, shaping her negative perception of 

math. A particularly hurtful experience occurred when her high school teacher questioned her 

work ethic, which made her feel misunderstood and incapable. Consequently, her frustration for 

math was largely shaped by the teacher's attitude towards her struggles rather than the difficulty 

of the content itself. Similarly, Jasmine described a decline in her confidence during middle 

school, feeling overwhelmed as her peers seemingly effortlessly solved algebra equations while 

receiving little support from teachers. She felt frustrated and abandoned by teachers – “teachers 
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certainly knew I was struggling, but they didn’t do anything to help”. They all expressed 

negative emotions, such as anxiety or frustration with no interest in doing any math. 

Empowering Shift  

Some PSTs - Julia, Sadie, Harrison, Meredith, and Nathan – described negative or neutral 

experiences until a critical event. A positive experience engendered optimism toward math. Julia, 

for instance, recounted struggling with math for many years resulting in feelings of shame and 

anxiety. However, encouragement and support from her middle school math teacher, Mr. S, 

helped develop confidence in her math abilities by appreciating her unique problem-solving 

approaches. Nathan described his experiences with math as neutral. A high school friend played a 

significant role in altering his perception, initially making math intimidating but also broadening 

his understanding of its potential, ultimately leading to a more positive outlook. These 

transformative moments instilled a belief in their potential for success and enjoyment in math. 

This group described a range of emotions related to math including Julia expressing nervousness, 

Sadie feeling pride, and Nathan and Meredith expressing feelings of intrigue. 

Disruptive Shift  

Two PSTs, Beth and Eva, described positive perceptions of math, followed by negative 

experiences that changed their perspective. Before taking pre-calculus in college, Beth 

considered herself skilled in math, however, struggles in the pre-calculus class altered her 

perspective, leaving her frustrated and repelled by math, contrasting her previous sense of 

contentment and competence in math classes. Similarly, Eva recalls being adept at math and 

enjoying it because it made sense to her. However, her negative feelings toward math arose 

during college because she felt less capable when it came to abstract concepts.  This change in 

attitude coincided with an experience with a particular math professor who taught at a rapid pace 

without ensuring understanding before progressing. This encounter induced feelings of anxiety 

and nervousness towards math. At the time of data collection, both Beth and Eva shared 

predominantly negative feelings towards math – experiencing nervousness and anxiety. 

Discussion 

Across the narratives, PSTs described grappling with both challenges and successes in math. 

We noted that the main influential factors including supportive teachers, familial encouragement, 

and individual aptitude could have a positive or negative effect depending on the nature of the 

experience and the PST’s interpretation of it. The influence of teachers across K-12 schooling 

emerges as a significant factor shaping participants' attitudes towards math (Kaur Bharaj et al., 

2023), with positive experiences often leading to increased engagement and confidence, while 

negative experiences served to exacerbate feelings of self-doubt and disinterest. Similarly, as the 

subject became more complex, depending on the interpretation, PSTs expressed confidence and 

enjoyment if they made sense of the ideas, while others had feelings of frustration and anxiety as 

they encountered abstract concepts that they felt inadequate to understand. These feelings 

lingered and directly influenced PSTs’ ideas about math as they were entering the math methods 

course. The data highlights the complex interplay among PSTs’ interpretations of teacher-student 

math-related interactions, the nature of math and their math-related emotions and attitudes. It 

underscores the importance of fostering a supportive and inclusive learning environment that 

empowers all students to engage with and appreciate the beauty of math. 
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Significance of Study 

The findings are significant in two distinct ways. First, they shed light on the experiences 

underlying attitudes and emotions PSTs have toward math. This deeper understanding of 

teachers' personal journeys with math underscores the importance of consistent positive learning 

experiences throughout formal schooling. Second, exploring PSTs' perceptions of math derived 

from their own math experiences informs our understanding of how these experiences shape how 

they enter math and math education spaces. With this understanding, teacher educators can better 

tailor PSTs’ experiences in ways that engender a disposition toward math and teaching math that 

includes student-centered teaching and positive attitudes towards the subject. Ultimately, by 

acknowledging and valuing teachers' personal experiences with math, education stakeholders can 

work toward creating effective math instruction that meets the diverse needs of all learners. 

References  
Connelly, F. M., & Clandinin, D. J. (1999). Shaping a professional identity: Stories of educational practice. New 

York: Teachers College Press. 

Drake, C. (2006). Turning points: Using teachers’ mathematics life stories to understand the implementation of 

mathematics education reform. Journal of Mathematics Teacher Education, 9, 579–608. 

Ellsworth, J. Z., & Buss, A. (2000). Autobiographical stories from preservice elementary mathematics and science 

students: Implications for K‐16 teaching. School Science and Mathematics, 100(7), 355–364. 

Kaur Bharaj, P., Simpson, A., Linder, S., & Jacobson, E. (2023). Exploring the Association of Prospective Teachers’ 

Beliefs with Their Prior Experiences as Mathematics Learners. Investigations in Mathematics Learning, 

15(4), 279–294. http://dx.doi.org/10.1080/19477503.2023.2224653 

Machalow, R., Goldsmith-Markey, L. T., & Remillard, J. T. (2022). Critical moments: Pre-service mathematics 

teachers’ narrative arcs and mathematical orientations over 20 years. Journal of Mathematics Teacher 

Education, 25(1), 35–61.  

Miller, R. L. (2000). Researching life stories and family histories. London: Sage. 

Polkinghorne, D. E. (1995). Narrative configuration in qualitative analysis. International Journal of Qualitative 

Studies in Education, 8(1), 5–23. 

 

 

  

http://dx.doi.org/10.1080/19477503.2023.2224653


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

997 

 

EXAMINING THE IMPACT OF INVOLVING UNDERGRADUATE PRE-SERVICE 

TEACHERS IN RESEARCH  

 

Brian Bowen 

West Chester University 

bbowen@wcupa.edu 

Keywords: Pre-Service Teacher Education 

The primary role of a teacher education program is to provide experience for pre-service 

teachers (PSTs) that will support their professional practice in creating supportive and effective 

learning environments. Achieving this goal comes with challenges including, allocating 

sufficient time and resources to support PST’s pedagogical and content knowledge (Ball, 1990) 

and addressing pre-service teachers’ prior experiences as a student, a phenomenon aptly and 

often described as an apprenticeship of observation (Lortie, 1975). Mathematics methods classes 

have developed approaches to address these concerns using approaches such as lesson study (e.g. 

Leavy& Hourigan, 2016) and mediated field experience (e.g. Horn & Campbell, 2015). 

Strategies such as these intentionally engage students in the application of theoretical ideas and 

provide opportunities for PSTs to reflect on themselves as practitioners.  

There is a need to be cautious in assuming that field experiences alone will support PSTs in 

fully integrating theory into practice. “Field experiences may expose student teachers to a limited 

repertoire of strategies and to a narrow and unrepresentative sample of students. Preservice 

teachers may easily come to believe that only the strategies they observe are appropriate, 

regardless of the students they may eventually teach” (Santagata, Zannoni, & Stigler, 2007, p.4). 

One approach that may aid PSTs in not adopting a myopic view of instructional practice is to 

involve PSTs in research. This approach has been utilized in teacher preparation programs for 

over 30 years in Finland. From their perspective “the aim is not to produce researchers, but rather 

to provide students with skills and knowledge to complete their own studies, observe their pupils, 

and analyze their thanking (Toom et. al., 2010, p. 333). To be most impactful the research 

conducted should be purposeful and meaningful to the PSTs (Zeivots, Buchanan, & Pressick-

Kilborn, 2023). Providing opportunities for PSTs to engage in research may be one effective way 

to address concerns related to teacher knowledge of both content and pedagogy and may also 

help address pre-established beliefs of teaching that are rooted in past experiences. 

The study presented here investigates the ways in which conducting research may be utilized 

as a means impacting teacher knowledge and beliefs. This study examined two groups (n1=8; 

n2=8) of PSTs in their senior year conducting research on the practicing teachers’ perceptions on 

the role of homework. Homework was chosen as a topic as it was an area of interest and concern 

to this group of PSTs as they transition to in-service teachers. The PSTs in this study identified a 

research question, reviewed relevant literature, designed a study, gathered data, analyzed data, 

and constructed a poster presentation of their results. After completion of their study, PSTs were 

asked to reflect upon the way in which conducting the research study impacted their own views 

of homework and on their own views of themselves as teachers. Results from the two PSTs’ 

studies as well as the study of the PSTs will be presented. Notable results from the PSTs’ studies 

suggest a pattern where teachers surveyed believed “homework to be ineffective and did not 

contribute to student success.” Results from study of PSTs indicated conducting research on 
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homework reinforced their previously held beliefs. Results related to impacting PSTs’ own self-

image as teachers were less clear. 
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Teacher noticing of students’ mathematical thinking plays a pivotal role in reform-oriented 

instruction. Hence, it is crucial to support preservice teachers, who do not generally possess 

well-developed noticing skills, in learning to notice student thinking. However, this line of 

research is scarce in the domain of measurement, an important topic in mathematics curricula. 

In this paper, I report the learning path to notice student thinking about length measurement of a 

preservice teacher when given various learning opportunities to develop her noticing. Findings 

suggest that with the support of a framework on student measurement thinking, the preservice 

teacher’s attention and interpretation become broader, deeper, and better aligned with research-

based knowledge. However, her learning path does not consistently follow an upward trend. 

Keywords: Preservice Teacher Education, Teacher Noticing, Measurement.  

Teacher noticing of students’ mathematical thinking is at the heart of high-quality 

mathematics instruction, which promotes adaptive and responsive teaching (Jacobs & Spangler, 

2017). Previous research (e.g., Jacobs et al., 2010) has indicated an expert-novice difference in 

teacher noticing, with preservice teachers typically lacking well-developed noticing skills due to 

limited teaching experience (Sherin & van Es, 2005; Star & Strickland, 2008). Across the 

literature, there have been many efforts to support preservice teachers in learning to notice. 

However, this line of research is limited in measurement (Ergene & Bostan 2022), an important 

topic in mathematics curricula, especially at the elementary school level. To address this gap, I 

have conducted a research project to explore how preservice teachers learn to notice student 

measurement thinking over time when given learning opportunities specifically designed to 

support their noticing. This paper presents a finding from the project, focusing on the learning 

path to notice student thinking about length measurement of a preservice teacher, Alina. 

Theoretical Framework 

Across the literature, there have been various conceptualizations of teacher noticing. This 

paper adopts Jacobs et al.’s (2010) concept of professional noticing of student thinking, defined 

as a set of three interconnected skills: attending to students’ strategies details, interpreting 

students’ understanding, and deciding how to respond on the basis of students’ understanding. 

For the scope of this paper, I focus on the first two skills, attending and interpreting, as they are 

the foundation for deciding skill. Attending refers to the extent to which teachers identify 

mathematically significant details in students’ solutions. Interpreting refers to the extent to which 

teachers use the specific details in students’ strategies to reason about their understanding in a 

way that is consistent with research on students’ mathematical development. 

In the definitions of these two skills, the phrases, “mathematically significant details in 

students’ solutions” and “research on students’ mathematical development”, appear. What do 

they mean in the context of measurement? To answer this question, I synthesize relevant 
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literature and present a framework on student measurement thinking called Big Ideas of 

Measurement (BIM)3. The framework comprises 16 big ideas that researchers identified as 

foundational for students to develop a deep and robust understanding of measurement across 

different attributes. Therefore, I believe that these big ideas are “mathematically significant 

details” that teachers should attend to and interpret so that they can better support their students’ 

understanding of measurement. This framework was presented in detail in Bui (2023). In this 

paper, I focus on six big ideas that show up most often when students measure an attribute with 

non-standard units and measurement tools such as rulers (see Table 1). 

 

Table 1: Some important big ideas of measurement 

 
Big ideas Description 

Identifying the 

attribute 
Knowing/understanding what is being measured. 

Identical units Same-sized units should be used to measure an attribute of an object. 

Exhaustive 

measure 

All of the object has been measured without gaps between units or overlapping 

units 

Unit iteration 
This includes making copies of units and arranging them, accumulating those units 

to obtain a measure, and eventually being able to reuse/copy a single unit 

Partitioning unit Units can be partitioned into fractional amounts smaller than one unit 

Zero-point 

Each instrument has conventional zero-point(s), but any point can serve as an 

unconventional zero-point on the instrument. To use an instrument with 

understanding and flexibility, students should understand what is counted and 

what the numbers on the instrument represent. 

Methods 

The study context is set within a content course for preservice teachers with a focus on 

measurement and geometry at a large public research university in Southern United States. The 

case study participant, Alina, is a Hispanic preservice teacher, majoring in Pre-K–6 bilingual 

education. Data about Alina’s noticing was collected over 17 weeks of Fall 2023 when she had 

various learning opportunities to develop her noticing (see Table 2). To measure Alina’s noticing, 

she was asked to engage with various artifacts of practice and share her noticing in written form. 

These artifacts include short videos or work samples of elementary students measuring the length 

of different objects with non-standard units and with a ruler. 

 

Table 2: Data related to Alina’s noticing of student thinking about length measurement 

 
Time Relevant learning opportunities Data 

Week 1 N/A Pre-noticing assessment 

Week 2 Class 03: BIM framework given and discussed Exit ticket after class 

 
3 I borrowed the phrase Big Ideas of Measurement from Empson et al. (2006) who used it in course materials 

and interviews. 
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Class 04: Watch 4 videos and discuss student 

thinking 

Handout “Analyzing student 

thinking about length” 

Week 3 
Class 05: Watch 3 videos and discuss student 

thinking 
Homework 1 

Week 4 
Class 08: Discuss preservice teachers’ responses to 

HW1: What counts as good explanation? 
N/A 

Week 5 N/A Homework 2 

Week 6 N/A Exam 1 

Week 7 
Preservice teachers paired up and conducted the 

measurement interview with a fourth-grader 
N/A 

Week 16 N/A Final exam 

Week 17 N/A Post-noticing assessment 

 

Jacobs et al. (2010)’s scoring scheme and the BIM framework in Table 1 was used to analyze 

Alina’s attention and interpretation of the big ideas of measurement. I first considered if Alina 

paid attention to a big idea of measurement or not, and if yes, what the level of detail was. The 

level of detail can receive a score of 0, 1, or 2 where 0 means attending to very little or almost no 

relevant details, 1 means attending to some relevant details but may miss some important details, 

and 2 means attending to almost all important and relevant details to the big idea. Next, I 

considered if Alina interpreted a big idea or not, and if yes, what the level of evidence and level 

of alignment to research-based knowledge on big ideas of measurement were. Similarly, the level 

of evidence and level of alignment can receive a score of 0, 1, or 2 in the same manner as to level 

of details. For example, if Identical unit receives the scores 1 for Interpret or not, 2 for Level of 

evidence, and 1 for Level of alignment, it indicates that Alina interpreted students’ understanding 

of measurement (e.g., understand or not), she gave almost all important and relevant evidence for 

her claim; however, her interpretation of students’ understanding of that big idea was not 

completely align to research-based knowledge. In addition, I noted if Alina explicitly used the 

technical terms (for example, Identical unit) in her noticing or not. For example, if she wrote 

“The student understands the big idea of identical unit”, a score of 1 will be assigned; if she 

wrote “The student knew that we have to use same-sized units when measuring”, a score of 0 

will be assigned. Finally, I calculated the sums for each of the six columns in Table 3 (Attend or 

not, Level of detail, Interpret or not, Level of evidence, Level of alignment, and Use of technical 

terms). These sums will be referred to as scores for Breadth of attention, Depth of attention, 

Breadth of interpretation, Depth of interpretation, Alignment of interpretation, and Use of 

technical terms from BIM. 

 

Table 3: Coding Alina’s attention and interpretation of big ideas of measurement 

 
Big ideas Attend or 

not 

Level of 

details 

Interpret or 

not  

Level of 

evidence 

Level of 

alignment 

Use of technical 

terms 

… 0=No, 1=Yes 0, 1, 2 0=No, 1=Yes 0, 1, 2 0, 1, 2 0=No, 1=Yes 

…       

Sum       
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Findings 

Table 4 summarizes the scores for Alina’s attention, interpretation, and use of technical terms 

from the BIM framework over time. Overall, with access to the BIM framework and more 

learning opportunities to unpack the meaning of the big ideas in the framework, Alina’s noticing 

of students’ understanding of the big ideas of measurement became broader, deeper, and better 

aligned with research-based knowledge on students’ measurement thinking. She also used more 

technical terms from the BIM framework. However, the development of her noticing did not 

always follow an upward trend. For example, in homework 1 (week 3), Alina’s noticing 

significantly improved compared to her performance on the class’s handout and exit ticket in 

week 2. Two weeks later, when Alina worked on homework 2, the depth and alignment of her 

interpretation slightly decreased before continuing to develop in week 6. 

 

Table 4: Alina’s attention and interpretation of big ideas of measurement over time 

 

Time Data 
Attention of BIM Interpretation of BIM Use of technical 

terms Breadth Depth Breadth Depth Alignment 

Week 1 Pre-noticing4  2.5 2 1 1 1.5 0 

Week 2 Exit ticket 3 5 3 4 5 1 

Handout5 4.25 7.25 3.75 5.75 6 4 

Week 3 Homework 1 6 9 6 9 10 6 

Week 5 Homework 2 6 8 6 5 6 6 

Week 6 Exam 1 7 12 6 8 8 6 

Week 16 Final exam 6 9 6 9 9 6 

Week 17 Post-noticing2 5.5 6 4.5 5 5 5 

 

Let us look at two excerpts from Alina’s analyses of student measurement thinking in the pre- 

and post-noticing assessments to see how her noticing changed over time. 

Helena was able to take two different objects or mediums and compare them in order to find 

Speedy’s length… Helena has a general understanding of how to compare two different 

units. (Alina, pre-noticing assessment) 

Reid was able to identify the attribute... His question of “Can I line them up like this” helped 

me see that he attends to orientation and knows what he is measuring...He was able to 

produce a measurement with identical units for the most part, up until the end. Based on the 

video, I was able to see that his reasoning behind this was the fact that Reid wanted Speedy 

to fit exactly into all of the paperclips lined up… (Alina, Post-noticing assessment) 

At the beginning of the semester, Alina’s noticing was very general: her description of 

Helena’s strategy was vague, and her interpretation did not point out any specific ideas of 

measurement that Helena understood. In contrast, in the post-noticing assessment, Alina 

provided many important details about Reid’s strategy through verbal quotes and subtle actions, 

 
4 The average across 2 types of artifacts: video and work samples 
5 Average across 4 videos 
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and she interpreted these details to make sense of his understanding of the big ideas of 

measurement (e.g., identifying the attribute and identical units). 

Closing Thoughts 

This report shows that access to the BIM framework and opportunities to unpack the 

meaning of the big ideas from the framework supported Alina in noticing student measurement 

thinking more broadly and deeply. This finding suggests that BIM could be a potential tool to 

assist preservice teachers’ professional noticing. Future research may explore how preservice 

teachers with diverse backgrounds learn to notice students’ measurement thinking over time and 

what challenges they face during that journey. Findings from this line of research will provide 

mathematics educators with more insights into how to design courses in teacher education 

programs to support preservice teachers’ professional noticing of student measurement thinking. 
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Questioning is one core practice mathematics teacher educators (MTEs) create instructional 

activities to develop. An instructional activity creates visibility around questioning is that of 

scripting dialog that takes place within a mathematics classroom.  Through a qualitative 

research study, the researcher examined PSTs’ mathematics questioning types through two 

iterations of script writing from one problem situation. Findings illustrated that PSTs commonly 

used two questioning types: gathering information and probing student thinking style questions. 

Implications for MTE’s instructional activities are summarized and discussed. 

Keywords: Preservice Teacher Education, Instructional Activities & Practices, Classroom 

Discourse 

Introduction 

Questioning has long been considered a core practice in mathematics education literature 

(e.g. Vacc, 1993). Preservice elementary teacher (PSTs) approaches to questioning during 

interviews and discussions have included categorization schemes for types of questions posed 

(Parks, 2010). Such studies identify how PSTs question in various contexts, yet how PSTs 

develop questioning through methods instruction is still an open question. One way mathematics 

teacher educators (MTEs) support questioning development is through approximations of 

practice  (Ball & Forzani, 2009, Grossman & MacDonald 2008; Grossman et al., 2009; Reid, 

2011) such as scripting. Herbst (2018) describes scripting as the creation of a dialogue as if for a 

play. Scripting is a form of rehearsal that requires PST to consider and compose dialogue 

between themselves and their students. The variety of questions that PSTs elicit during a 

mathematics lesson is low (Weiland et al., 2014). Engaging PSTs in script writing allows for an 

opportunity to imagine dialogue between a teacher and students in such a way that MTEs can 

provide guidance around different questioning types. 

Different types of questions such as implicit and explicit questions (Parks, 2010) can be 

challenging to create while engaging with learners and even in planning lessons. Moreover, when 

PSTs are developing in their questioning techniques, often times they miss opportunities to foster 

thinking of their students and their questions are more leading in nature (Weiland et al., 2014).  

PSTs, with little teaching experience, draw from their interactions as students with their teachers 

as they plan mathematics lessons. In this paper, I characterize PSTs’ questions in a scripting 

context that provided PSTs with opportunities to draw from their lived interactions while also 

developing their understandings around pedagogical practices during their methods coursework 

(Liston, Whitcomb, & Borko, 2006). While there is literature around analyzing questioning of 

PSTs during interactions in lessons that that they have scripted (Zazkis, Liljedahl, & Sinclair, 

2009;) and studies of those who seek to utilize scripting to analyze dialogic teacher moves 

centered on mathematical tasks (Crespo, Oslund, & Parks, 2011; Campbell & Baldinger, 2022), 

there are limited findings on utilizing scripting by MTEs to analyze and develop questioning 
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practices of PSTs. To investigate questioning types utilized by PSTs, collaborative scripts of a 

mathematic lesson were written followed by individual script revisions. I use the following 

research question to guide my inquiry: How do PSTs’ plan questioning in a script of a 

mathematics lesson? 

Literature Review 

Campbell and Baldinger (2022) suggest to prepare PSTs for teaching, teacher preparation 

programs must create opportunities for PSTs to participate in activities that mimic strategies in-

service teachers utilize upon entering the field. One such way to aid in the development of PSTs’ 

variation of questioning, is to utilize scripting as an instructional activity. In this paper, I first 

summarize literature on PSTs questioning drawing a distinction between questioning with 

children and theoretical questioning produced in instructional activities such as lesson planning. I 

then build upon questioning by utilizing the context of scripting as an approximation of practice 

MTEs use to create opportunities for PSTs to develop their questioning practice.  

Questioning  

Lim et al. (2018) described the ability to facilitate classroom discussion and discourse as the 

“teacher-students’ dialogic interactions where students talk about mathematics and develop new 

understanding of concepts, through teachers’ effective use of questioning” (p. 293). Without 

teacher questions, students struggle to identify the content or practice focus of a learning 

opportunity. For example, Parks (2020) examined the affects teachers’ pedagogical moves had on 

students access to the mathematics being taught noticing how the teachers’ questioned the 

students correlated to whether the students were probed for correctness or conceptual 

understanding. Effective questioning supports different phases of a discussion including 

initiating, orchestrating, and closing (Shaunessy et al., 2019). 

Moyer and Milewicz (2002) described questioning approaches PSTs used in interactions with 

mathematics learners: checklisting, instructing rather than assessing, and probing/follow-up 

questions (p. 300 – 301). Checklisting occurs when an individual asks planned questions in 

order, regardless of the response a student provides. Instructing rather than assessing questions, 

are sequences of questions the teacher uses to lead the students’ thinking. This category also 

includes teacher approaches that abandon questioning in favor of telling students how to 

approach a situation. Probing/follow-up questions are questions that ask the student to expand 

upon their ideas. These approaches to questions in the moment of interacting with learners 

suggest that PSTs need opportunities to build their questioning practice prior to or alongside their 

interactions with students.  In this paper, I focus on questions that PSTs use during their 

preparation for interaction with students. This work illustrates the importance of MTE awareness 

of how PSTs typically pose questions and, in turn, create instructional activities to allow PSTs to 

practice planning and delivering a larger variety of question types.  

In contrast to Moyer and Milewicz (2002), Purdum et al. (2015) analyzed PSTs’ planned 

questions in their lesson plans prior to interactions with students. Without interaction with 

learners, Purdum focused on sorting questions into categories.  PSTs planned both closed and 

open questions. Closed questions are those such that when posed to multiple students, they 

would all arrive at relatively the same set of responses. An example of this would be if a teacher 

asked a student to explain what another student had done when presented with a worked out 

solution to a problem. In contrast, open questions allowed for multiple solutions such as if a 

teacher asked students to show other ways of modeling their mathematical reasoning for the 
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same problem. Findings aligned with those of Moyer and Milewicz (2002) in that PSTs were 

limited in the number and type of questions planned as most of the PSTs planned questions that 

were closed style questions.  

Scripting 

MTEs use scripting for a variety of purposes. Spangler and Hallman-Thrasher (2014) used 

scripting to examine PSTs ability to lead mathematical discussion. Zazkis (2017) examined 

scripts for creativity in mathematics teaching. Campbell and Baldinger (2021) further identified 

their use of scripting in addition to other instructional activities to prepare PTs for error handling. 

Such instructional sequences were identified as ways for MTEs to gain insight into PSTs 

knowledge of students, mathematics, and pedagogy. Lee and Lim (2021) use of scripts to 

examine PSTs approaches for moving lessons from launch, to exploration, to conclusion. 

Findings showed PSTs’ struggles conceptualizing launches and conclusions of lessons were 

represented in the scripts Spangler and Hallman-Thrasher (2014) created in an activity sequence 

using scripts to prepare PSTs for teaching a mathematics lesson to students. PSTs who engaged 

in thoughtful consideration of the lesson progression, saw sustained improvement in the 

discussions they led with students (Spangler & Hallman-Thrasher, 2014). Crespo (2018) utilized 

scripting so PSTs could self-assess hypothesized teacher moves and student responses for 

revision. 

PSTs need opportunities to plan questions if they are to develop utilizing a variety of 

questions throughout their lessons. Scripting is one opportunity MTEs can use to scaffold PSTs’ 

question variety. MTEs use scripting to support PSTs’ learning to plan and facilitate mathematics 

lessons. In this paper, scripting is used as a context for describing changes in PSTs’ questioning 

during a mathematics lesson. Based on the existing literature focused on PSTs questioning and 

scripting as a context for development of PSTs practices, scripting might be one way to gain 

further evidence of PSTs development of questioning practice prior to interactions with learners.  

Methods 

Participants in the study were enrolled at a small Midwestern liberal arts institution, enrolled 

in mathematics methods during the spring of their junior year. The context for questioning is 

situated with the utilization of the five question types within the course text Taking Action: 

Implementing Effective Mathematics Teaching Practices K – grade 5 (Huinker & Bill, 2017). 

During one instructional activity,  the participants were divided into four groups of three or four, 

given a 3rd grade Illustrative Mathematics (Illustrative Mathematics, 2016) task, and asked to 

write a script of a mathematics lesson at the beginning of the semester. The MTE then provided 

readings and instructional activities to help the PSTs gain understanding of teaching practices as 

described in the course text. PSTs then independently revised the collaborative script of one of 

the four groups and provided a rationale for their changes. The collaborative script used for 

revision and each of the 16 revisions were analyzed and compared as it related to question types 

posed. 

Questions in each script were coded using categories from the course reading: (1) gathering 

information, (2) probing thinking, (3) making the mathematics visible, (4) encourage reflection 

and justification, and (5) engage with the reasoning of others (Huinker & Bill, 2017). Examples 

of these types of questions can be found within the findings and discussion section. Given that 

only one collaborative group was chosen to be revised, in the analysis, only the revised scripts of 

those PSTs were highlighted in the findings (scripts 5, 9, and 10). 
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Findings and Discussion 

PSTs’ primarily used two question types: (1) gathering information and (2) probing thinking. 

The third most used question type was (3) engaging in reasoning with others. Two of the 16 PSTs 

revised the script using all five question types. One PST did not provide any additional dialogue, 

however, reasoned “the teacher is asking students about their thought process and why they 

chose the equation they did” or “after students work individually, they will partner up and 

compare the processes and their answer to a and b”. Another PST added the question “Why 

would that be important?” after each student response. Lastly, when the teachers posed questions 

to their students, all student responses provided in the scripts were correct.  

In examination of the group who provided the initial script for revision, only one of the three 

PSTs added significant number of additional questions. Script 9 had commentary for all five 

questioning types and posed a variety of questions. While script 5 targeted four out of five of the 

questioning types, the PST no dialogue between the student and teacher or student and student. 

Script 10 also had lacked dialogue of any sort in the revision in that she posed several teacher 

questions, but no student responses. Both scripts 5 and 10 were similar to their peers in that there 

was not much diversity in types of questions and the dialogue lacked substance.  

Findings illustrate significant differences in questioning activity across PSTs with five 

students demonstrating four questioning types. PST focused on gathering information such as 

“What is important from this problem?” (script 16) from students. The second most common 

question type was probing student thinking which could be seen in script 13 when the teacher 

asks, “Is there only one way to set up this problem?” In addition, nine of the 16 PSTs included 

questions engaging in the reasoning of others and how it might support the discussion. One way 

this was shown was in script three when the teacher asks “Did anyone approach this problem 

differently and if so how did you approach it?” Only two of the 16 PSTs used a variety of 

questioning as aligned with findings of Moyer and Milewicz (2002). In script 4, the PST 

utilized all five question types and posed 11 questions throughout her revised script. In script 

9, all five question types were utilized and 17 questions were posed. Both script 4 and script 9 

had gathering information as the most used question type which shows similarity to all 

revised scripts. To build PSTs‘ questioning MTEs can provide opportunities to pose questions 

in various circumstances. These opportunities can be designed as approximations of practice 

(Grossman et al., 2009) in the form of scripting with revisions can support PST questioning 

development. Future studies could examine the impact of such activities on scripts and the 

variety of questions posed.  

Teacher need to be able to facilitate these mathematical discussions through questioning 

(Parks, 2010). Findings from this pilot study suggest that PSTs use one or two question types 

most often. Due to the limited question types, MTEs should consider modeling alternative types 

of questions so PSTs can increase their own repertoire of questions. The PSTs were idealistic 

regarding how students respond to teacher questions (i.e. – student responses were always 

correct). One way to encourage additional questions is to include student errors in the scenario 

provided to the PSTs as Campbell and Baldinger (2022) did.  

Future studies can be more deliberate in choosing to complete this scripting task after having 

the PSTs engage in discussion around posing purposeful questions (mathematical teaching 

practice 5) to address the question: Can scripting tasks help MTEs identify where PSTs need 

more exposure to different types of questions? In conclusion, writing a script for a fictional lesson 
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and posing questions is one thing, but examining the questions posed during interactions with 

learners as Zazkis and colleagues (2009) showed is quite different. Further research can examine 

questions planned in scripts included in lesson plans and questions posed during the 

implementation of the lesson. Sequencing activities (Ghousseini & Herbst, 2016) has the 

potential to impact PSTs questioning. 
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WHO’S YOUR FAVORITE MATH TEACHER AND WHY?: INSIGHTS INTO WHO 

PRESERVICE TEACHERS ASPIRE TO BECOME 
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In many ways, preservice teachers embody the future of mathematics education. Guided by a 

conceptual framework of identity in figured worlds, the purpose of this study was to understand 

preservice teachers’ designated mathematics teacher identities by prompting reflections about 

their favorite mathematics teachers. Data were collected from fifty-three preservice elementary 

and early childhood teachers who responded to an open-ended prompt about their favorite 

mathematics teacher. Thematic analysis of these responses resulted in three themes that 

preservice teachers described about their favorite mathematics teachers: their character, their 

pedagogy, and their classroom environments. Understanding how preservice teachers envision 

their futures may help mathematics teacher educators to support preservice teachers in realizing 

these aspirations or to reshape these aspirations to reflect best teaching practices. 

Keywords: Preservice Teacher Education; Teacher Beliefs; Affect, Emotion, Beliefs, and 

Attitudes 

Undergraduate preservice teachers enroll in teacher preparation programs with previously 

formulated conceptions of what it means to teach well (Lortie, 1975). These preconceived ideas 

influence preservice teachers’ developing teacher identities as they “create future images of their 

teacher self and draw on remembered strategies they plan to replicate or avoid” (Miller & 

Shifflet, 2016, p. 27). These future images may be considered designated identities (Sfard & 

Prusak, 2005), and in the context of mathematics education designated mathematics teacher 

identities. In this study, I define designated mathematics teacher identity as the ways of being 

that one envisions of a future role as a mathematics educator (Graven & Lerman, 2020). In not so 

many words, this is a preservice teacher’s answer to the question, who will I be when I’m a 

teacher? Attending to preservice teachers’ designated mathematics teacher identities is especially 

important for mathematics teacher educators, as these identities may support or hinder preservice 

teachers’ learning during their teacher-preparation programs (Caviness & Masingila, 2023). 

Furthermore, such designated mathematics teacher identities may become actualized when 

preservice teachers do transition into the field, especially with appropriate supports (Andersson, 

2011; Jong, 2016).  

In an overview of mathematics teacher identity research, Hannula et al. (2016) asserted that 

overall findings from the literature base “suggest that teachers’ personal histories, such as those 

of being a learner, undoubtedly shape and become a part of their teacher identities” (p. 17). 

Therefore, the purpose of this study was to better understand the personal histories of preservice 

teachers that influence their designated mathematics teacher identities. Specifically, I sought to 

understand preservice elementary and early childhood teachers’ personal histories related to their 

favorite previous mathematics teacher. I did so by examining the qualities of those mathematics 

teachers that were described as reasons why they were considered favorites. With this purpose in 

mailto:scavines@syr.edu
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mind, the research question that guided this study was: how do preservice elementary and early 

childhood teachers describe their favorite mathematics teachers? 

Conceptual Framework 

I draw on Holland et al.’s (1998) theorizing of identity in figured worlds to understand 

preservice teachers’ developing identities. Holland et al. (1998) described an individual’s identity 

as constantly forming and reforming throughout their lifetime, shaped by their actions, personal 

histories, and social influences of the worlds they navigate. Drawing on Vygotsky, Bakhtin, and 

Bourdieu’s work, Holland et al. (1998) outlined three contexts wherein identity is practiced or 

“authored” in figured words (p. 271). The first context is the figured world itself, which they 

defined as “a socially and culturally constructed realm of interpretation in which particular 

characters and actors are recognized, significance is assigned to certain acts, and particular 

outcomes are valued over others” (Holland et al., 1998, p. 52). Figured worlds are the spaces 

wherein identities are formed and reformed. In this study, I conceptualized preservice teachers 

navigating the figured worlds of their previous schooling at the PK-12 level, and the teacher 

preparation program based at their university.  

The second context that Holland et al. (1998) described is one’s positionality, with an 

emphasis on social positions such as gender, race, and cultural backgrounds. Holland et al. made 

explicit that individuals always exist in multiple figured worlds simultaneously based on their 

multiple positionalities. Lastly, the third context Holland et al. described was the “space of 

authoring” (p. 272), which emphasizes that individuals always exert agency when authoring 

identity. Individuals are shaped by the worlds they inhabit, yet they simultaneously shape their 

surroundings and do so continuously. 

Methods 

Fifty-three undergraduate preservice elementary and early childhood teachers at a 

northeastern university in the United States participated in this study. Participants were recruited 

from two different contexts:  

• A mathematics content course in the fall 2022 semester consisting primarily of first-year 

undergraduates (n=25) 

• A mathematics methods course in the fall 2022 semester (n=11) and spring 2023 

semester (n=17) consisting of second-year and third-year undergraduates 

Participants were asked to respond to a questionnaire that was designed to better understand their 

mathematics identities. While all participants voluntarily agreed to have their responses be 

collected and analyzed as data in a research study, the administration of the questionnaire 

differed based on the contexts above. In the mathematics content course, my relationship with 

participants was as a researcher and completing the questionnaire was not a course assignment. 

In the mathematics methods courses, my relationship with participants was as the course 

instructor and completing the questionnaire was a course assignment. The questionnaire included 

several prompts, however, the dataset for this study consists only of responses to the open-ended 

prompt: Think about your favorite mathematics teacher (this includes elementary). What about 

them makes you say they are your favorite mathematics teacher?  
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All 53 responses were analyzed in this study following Braun and Clarke’s (2021) approach 

to reflexive thematic analysis. This approach includes six phases beginning with immersion in 

the data, followed by coding, generating themes, reviewing themes, refining themes, and 

culminating in writing about the themes developed. Braun and Clarke (2021) described their 

process as one of getting lost in the data and going back and forth between phases, ultimately, to 

identify patterns of meaning across the dataset. I report on these themes in the findings section 

below. 

Findings 

In my analysis of the dataset, I generated three themes for how participants in this study 

described their favorite mathematics teachers. These themes are: my favorite math teacher’s 

character, my favorite math teacher’s pedagogy, and my favorite math teacher’s classroom 

environment. Each of these themes are elaborated in greater detail below with examples that I 

selected to best represent the dataset. In addition, each data excerpt presented below represents a 

different participant, with the goal of presenting a comprehensive look across the dataset. 

Character 

I found that preservice teachers commonly identified relational characteristics when 

describing their favorite math teachers. The theme “my favorite math teacher’s character” 

encompasses the personality traits of favorite math teachers and the personable actions these 

teachers made toward their students. As exemplified in Table 1, the character traits of favorite 

mathematics teachers included being understanding, supportive, and patient. 

 

Table 1: My Favorite Math Teacher’s Character 

 

 Data Excerpts 

Understanding “She was extremely compassionate and understanding…” 

 

Supportive “She was always available for extra help after and before school and 

well as [sic] during class hours.” 

 

“She also acted as a person I knew I could count on for math and not 

math related issues.” 

 

Patient “He… was super patient, and he was very personable.” 

 

Pedagogy 

Many preservice teachers cited the teaching practices of their favorite mathematics teachers 

as reasons for them being their favorite math teacher. See Table 2 for examples that include 

differentiating by process to meet the needs of all students (Tomlinson, 2001), and explaining 

concepts well.  

 

Table 2: My Favorite Math Teacher’s Pedagogy 
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 Data Excerpts 

Differentiates by 

Process 

“Some of us could not understand certain methods, so he would teach 

the one he meant to teach and the ones we would understand. 

Comparing and contrasting different ways of solving math problems, 

Mr. [Teacher] was never the type of teacher to get upset with students 

for doing it their own way.” 

 

“Despite having roughly 100 students, she provided us the opportunity 

to divulge new material in whichever learning style we preferred.” 

 

Explains Concepts 

Well 

“He did a great job of explaining and showing material…” 

 

“They were really good at explaining things we were confused about.” 

 

Classroom Environment 

In the prior two themes, participants’ responses focused directly on the mathematics teacher. 

Here the thematic focus zooms out slightly as participants described the classroom environments 

that their favorite mathematics teachers created. This included how these environments made 

preservice teachers feel. As displayed in Table 3, the classroom environments of favorite 

mathematics teachers were safe, fun, and for some, these environments fostered a sense of 

belonging to mathematics.  

 

Table 3: My Favorite Math Teacher’s Classroom Environment 

 

 Data Excerpts 

Safe “I say that he was my favorite math teacher because he didn’t make 

anyone feel dumb for not knowing the answers.”  

 

Fun “They made the class fun and engaging and tried to make us laugh 

whenever.” 

 

Fostered a Sense of 

Belonging to 

Mathematics 

“I actually felt pretty confident in that class and like I understood the 

content.” 

 

“My sixth grade teacher was the first person who got me to like math.” 

 

Discussion 

In this study I sought to better understand the designated mathematics teacher identities of 

preservice elementary and early childhood teachers by analyzing how they described their 

favorite mathematics teachers. I based this analysis on the premise that preservice teachers carry 

their prior experiences as learners of mathematics into their developing roles as teachers of 

mathematics (Caviness & Masingila, 2023; Lortie, 1975; Ma & Singer-Gabella, 2011; Miller & 
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Shifflet, 2016). I found that preservice teachers especially valued their favorite math teachers’ 

character, pedagogy, and the classroom environments they created. 

In many ways, preservice teachers are the future of education. This work takes up the call to 

envision the future of mathematics education in uncertain times by seeking to understand what 

preservice teachers envision about their future roles as educators. I have shown one way that 

researchers might learn about preservice teachers’ designated mathematics teacher identities by 

prompting reflection specifically about their favorite mathematics teachers. Mathematics teacher 

educators may similarly learn about their students in this way, and it is possible that such 

learning could be used to foster preservice teachers’ developing mathematics teacher identities.  
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ENGAGING PROSPECTIVE TEACHERS’ IMAGINATION IN LEARNING INQUIRY-

BASED MATHEMATICS PEDAGOGY 
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Inquiry-based teaching represents a contemporary perspective of mathematics education that is 

important for prospective teachers (PTs) to learn about to meaningfully engage their future 

students in learning mathematics with understanding. This paper reports on a study of the use of 

narrative and imagination in PTs’ learning of inquiry-based mathematics pedagogy. Partici-

pants were prospective secondary mathematics education majors who were exposed to theory 

about inquiry-based teaching but had limited experience with it as learners of mathematics. Data 

consisted of their narratives of imagined inquiry-based lessons for mathematics concepts of their 

choice. Findings indicated that the narratives have the potential of helping them to imagine and 

understand key aspects of an inquiry-based lesson that they could apply to their future practice.  

Keywords: Narrative; imagination; secondary preservice teachers; inquiry-based teaching 

Inquiry-based teaching of mathematics continues to be a challenge for teachers to implement 

particularly if their experience with learning mathematics did not align with this approach to 

teaching and learning (Artigue & Blomhoj, 2013; Maaß & Doorman, 2013). Prospective 

mathematics teachers (PTs) also continue to enter teacher education programs with limitations in 

their mathematical content and pedagogical knowledge needed to support it (Author, 2023). 

Thus, ongoing research is important for us to understand meaningful ways to support their 

learning to improve mathematics education. This paper reports on one aspect of a study to 

explore the use of narrative and imagination in PTs’ learning and use of inquiry-based 

mathematics pedagogy. The focus is on the question: What understanding of inquiry-based 

teaching secondary PTs are able to develop through creating a narrative of an imagined 

mathematics lesson that unfolds in real time? 

Theoretical Perspectives and Related Literature 

A narrative/story (Egan, 1986; Polkinghorne, 1988) is a way of representing experience for 

oneself or for others. It involves people, settings, and events that take place in a given time 

frame. It is established in the broad field of education as an important tool in supporting 

meaningful teaching and learning. It helps people to remember things by making knowledge 

more engaging, helps us think and do things more effectively, and enlarges our powers to think 

and understand (Egan, 2008). It aids in the process of meaning making (Clark & Rossiter, 2008) 

and teaching mathematics (Zazkis & Liljedahl, 2009). Some ways in which narrative has been 

used in mathematics teacher education include researching mathematics teachers’ trajectories as 

they enter the profession (Frost, 2010), how focusing on healthier narratives can help teachers 

work toward liberatory futures (Gutiérrez et al., 2023), teachers’ reflection on their practice or 

learning (Author, 2008),  PTs’ construction of educational meaning through narratives (Dolk & 

Hertog, 2008), and use of “scripts” in mathematics teacher education (Zazkis & Herbst, 2018). In 

general, narrative has been used in teacher education mainly as a research method to obtain and 
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analyze data with a focus on researcher constructed and elicited stories. In this study, narrative is 

used as a cognitive tool to support imagination in PTs’ learning. 

Regarding imagination, Egan (2008) explained: 

When we speak of imagination, we are referring to the ability to think about what might be 

possible. It is the “reaching out” feature of students’ minds that picks up new ideas, tries 

them out, weighs their qualities and possibilities, and finds a place for them amidst the things 

they have already learned. (p. 5) 

Vygotsky (2004) also considered imagination to be a process directly connected with meaning 

making. He explained that everything that relates to interpretation and construction of something 

new requires the indispensable participation of imagination. Everything we create, “is the 

product of human imagination and of creation based on this imagination” (Vygotsky, 2004, p. 7). 

These perspectives of imagination suggest that engaging PTs to use their imagination to learn 

ideas about inquiry-based teaching that are new to, or different for, them could help them to 

create meaning of it for themselves in a way that they could live it in their teaching. Narratives 

serve as tools for engaging imagination (Egan, 1992). In this study, PTs created narratives based 

on their imagination of an inquiry-based lesson. The assumption is that if they could imagine a 

complete inquiry-based lesson, they are more likely to be able to adopt it in their practice.  

While there are multiple perspectives of inquiry-based learning (Artigue & Blomhøj 2013), 

there are commonalities, particularly regarding placing emphasis on learners with their autonomy 

and understanding as the central focus (Jaworski, 2015). Inquiry-based teaching, then, refers to 

teaching approaches that support students’ individual and collaborative engagement in inquiry-

based tasks to “foster students’ construction of their knowledge through inquiry, exploring, and 

finding their own path to solution” (Maaß & Artigue, 2013, p. 782). The teacher’s role includes: 

orienting students towards questions and problems …; making constructive use of students’ 

prior knowledge; supporting and guiding when necessary their autonomous work; managing 

small group and whole class discussions; encouraging the discussion of alternative 

viewpoints; and helping students to make connections between their ideas and relate these to 

important mathematical … concepts and methods. (Maaß & Artigue, 2013, p.782) 

Features of this perspective of the teachers’ role formed a basis for analyzing the PTs’ narrative 

regarding their understanding of inquiry-based teaching based on their imagined lesson.  

Research Methods 

This qualitative study explored the understanding of inquiry-based teaching secondary PTs 

were able to develop through creating a narrative of an imagined mathematics lesson that unfolds 

in real time. Participants were 16 secondary mathematics education majors in a mathematics 

education course in the third semester of a 4-semester, 2-year Bachelor of Education program. 

They had either a 3-year or 4-year undergraduate degree in mathematics. Their experience in 

learning school mathematics was not inquiry based. In the course, they were exposed to theories 

of inquiry-based teaching/leaning, inquiry-based tasks, and questioning/discourse. They explored 

examples of inquiry-based tasks but not examples of complete inquiry lessons.  

The narrative task was intended for the PTs to draw on the theory and experience in the 

course to imagine their teaching of an inquiry-based lesson. They worked in groups of four to 
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create the narrative to allow them to pool their imagination of how they would live the lesson. 

They were required to imagine themselves engaged in inquiry-based teaching of a mathematics 

concept of their choice from the G7-9 provincial curriculum. The guideline included that the 

lesson should be from a lived perspective and the narrative should include a preamble of the 

learning objectives for the lesson, class size and classroom organization. The lesson must include 

a task and intervention in at least three groups (e.g., one stuck; one with no issues; one thinks no 

issues but has issues). The narrative must have a temporal flow as lived and include dialogues.  

Data sources were the four narratives. Analysis included categorizing and coding the 

narratives to identify the PTs’ understanding of inquiry-based teaching. Each narrative was 

categorized based on the structure of the lesson including the mathematic concept, learning 

objectives, main task, lesson introduction, intervention in student groups, whole-class discussion, 

and conclusion. Each category was then coded to form themes based on aspects related to 

inquiry-based teaching including learner-centeredness (based on type of teacher’s questions/ 

prompts/guidance and students’ questions and responses), the inquiry nature of the main task, 

and framing of the learning objectives. Themes for each category were compared across the four 

narratives. The designs of the narratives were also analyzed and compared for the temporal flow 

of the events in the lesson, the characters, use of dialogues and commentaries, and focus on the 

central themes. Mainly findings regarding key components of the narratives are presented here. 

Findings 

All four groups of PTs (PT-GA, PT-GB, PT-GC, and PT-GD) were able to imagine key 

aspects of inquiry-based teaching. The following are summaries of key components of their 

narratives. Their class sizes ranged from 24 to 32 with students in groups of mainly four. 

PT-GA: Concept - Grade 7 divisibility. Learning objectives – develop conceptual 

understanding of divisibility, represent divisibility using multiple approaches, understand how to 

test divisibility of numbers 2 to10. Main task – explore the concept using a pile of cubes. Lesson 

introduction – students asked to think about and share whatever they knew about “divisibility”. 

Intervention in student groups – three groups considered: could not start, had an incorrect model, 

had a correct model. The teacher used open questioning and prompts, e.g., “Explain what you 

mean?” “How are you connecting them?” “Why did you decide to use a rectangle to represent 

the number six?” “Think about if there are other useful alternatives.” Whole-class discussion - 

groups presented and justified their processes with teacher questions, e.g., “How can you be sure 

that this “splitting things up” model works correctly?” “What does this model indicate about the 

concept of divisibility?” Conclusion – students asked to write a sentence to describe divisibility. 

PT-GB: Concept - Grade 8 perfect square/square root. Learning objectives - develop 

conceptual understanding of a perfect square/square root, illustrate/classify perfect square/square 

roots through multiple representations. Main task - explore example versus nonexamples with 

multiple representations. Lesson introduction – individually think about then share “What does 

the word ‘perfect’ mean to you?” “Do you think the real-life application of ‘perfect’ applies to 

mathematical applications?” Intervention in student groups – four groups considered: stuck and 

asked for help, believed they understood but had misconceptions, did well, could not begin. The 

teacher used open questioning and prompts, e.g., “What are you noticing?” “Try to focus on the 

other given numbers.” “Do you think it’s important what shape they make?” “Test your 

conjectures and ideas by adding new examples and non-examples.” Whole-class discussion - 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1018 

 

groups presented and justified their processes with teacher’s questions, e.g., “How did you 

resolve this conflict?” “Why do you think the shape of the examples matters?” “What does the 

shape tell us here?” “Did your group come up with any other insights …?” Conclusion – students 

defined a perfect square and square root and worked on worksheets to complete missing items in 

two tables of multiple representations of perfect squares and square roots respectively.  

PT-GC: Concept – grade 8 rates. Learning objectives - identify and describe rates, convert 

rates to unit rates, express rates using words and symbols, understand rates in everyday life.  

Main task - explore rate by racing on two racetracks set up in the school yard. Lesson 

introduction – students given one minute to figure out who in their group got to school the fastest 

then share and respond to “how did you get to school today?” “How long did it take you and how 

do you know that you were the fastest?” Intervention in students’ groups – Three groups were 

considered: thought they were doing okay but were not, stuck and needed help, doing okay. The 

teacher used questions/prompts that were at times closed or directed to the answer or involved 

telling, e.g., “think about what the number 0.14 means. 0.14 What? Or 0.125 what?” “That 

means that speed isn’t just about how much time you take but it needs something else. Any ideas 

what that is?” “Start by figuring out how many meters each person ran.” “Another way of saying 

that is 8.3 meters per second. It’s a rate … a unit rate.” Whole-class discussion - no sharing or 

discussion. Conclusion – teacher summarized what they should know about the concept. 

PT-GD: Concept – grade 9 multiplying exponents. Learning objectives - demonstrate under-

standing of multiplying powers with integral bases and whole number exponents. Main task – 

explore the concept by sorting 32 cards (3 blank, 8 different representations). Lesson introduce-

tion – teacher asked what an exponent is and what they think happens with something like 

10000001000000 x 10000001000000 then used 52 * 53 to take them through a process with questions 

leading to predicting the rule to be validated through the main task. Intervention in students’ 

groups – three groups considered: confused and asked for help, believed they could do the task 

but needed help, understood the task well. The teacher used open questions and prompts, e.g., 

“Why did you put those (2 cards) together?” “Maybe think about writing out and expanding each 

of the exponents.” “Try to see if you can notice what they have in common.” “Do you notice any 

patterns”? “Try to see if you can figure out a way to check whether your answers make sense.” 

“What can you do to justify matching 52 x 51 to 52 and 32 x 33 to 36? Try it out.” Whole-class 

discussion - two groups shared but no questioning by teacher. Conclusion – summarized what 

they should know about the concept and they answered 10000001000000 x 10000001000000.  

Conclusions 

Each group of PTs was able to create an appropriate narrative of an imagined lesson that 

unfolded in real time. They were able to imagine a lesson with key features of inquiry-based 

teaching. They had introductions to motivate students with connection to prior knowledge/ 

experience. PT-GA and PT-GB were able to maintain a learner-centered focus throughout and 

PT-GC was mostly student centered with limitations during whole-class sharing. These groups 

had objectives focused on students’ understanding and tasks that involved inquiry through 

noticing patterns and relationships that seemed to help their learner-centered group interventions 

and whole-class discussion. They used open questioning and prompts appropriately to expose 

and engage students’ thinking. PT-GA and PT-GB also asked questions to stimulate discussion 

and thinking. PT-GD used an applied task that was more challenging for students to see the 
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concept for themselves and so had to provide more direct guidance at times to get them there 

during group interventions, which resulted in no whole-class sharing/discussion since the groups 

had similar process. All groups were able to imagine appropriate student thinking and responses 

to their questions or prompts and consider alternative processes to explore the concept.  

Since the PTs’ narratives are approximations of inquiry-based lessons as they unfold in real 

time, there are obviously gaps regarding details of the lesson (e.g., whole class discussion), but 

the focus here is on key features of the lesson that they could build on. The narrative imagination 

offered opportunity for them to make sense of inquiry-based teaching and to begin to develop an 

image of it in a way that they could apply and build on in their teaching. Future work on the 

project will include PTs sharing their narratives to learn from each other and observation of 

sample of the PTs in their practicum and as beginning teachers to gain further insights of the 

potential of the approach and how to modify it to be more effective as a tool for PTs’ learning.  
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Research on preservice elementary teachers’ experience of math anxiety has historically utilized 

narrative, interview, and survey data. Our searches revealed no studies that used observational 

data, which has the potential to reveal insights that are less reliant on self-perception. Thus, this 

case study aimed to understand how a highly math-anxious preservice elementary teacher made 

sense of their math anxiety and how it may have changed in the context of a mathematics content 

course, and to explore whether or not it was possible to collect observational data that aligned 

with these understandings and perceptions. Findings reveal that math anxiety was meaningfully 

observed for this preservice teacher and that these observations provided valuable insight into 

how her math anxiety changed over the course of the semester. 

Keywords: math anxiety, preservice teacher education, interpretation account. 

Mitigating the detrimental effects of preservice elementary teachers’ (PSETs) math anxiety 

(MA) has been a persistent concern in teacher preparation programs for decades. Defined as “a 

feeling of tension, worry, and/or fear in situations involving math-related activities,” 

(Bjälkebring, 2019, p. 1), MA has a well-established link to lower achievement in mathematics 

(Barroso et al., 2021; Ma, 1999), and is particularly prevalent among PSETs (Hembree, 1990). 

For these future educators, the negative impacts of their MA may extend to their students. PSETs 

reporting high levels of MA tend to hold lower expectations for their students (Mizala et al., 

2015) and have lower self-efficacy for teaching mathematics (Gresham, 2008). As noted long 

ago by Dutton (1951), it is vital for math teacher educators to find ways of “breaking this 

‘vicious cycle’” (p. 89) by supporting PSETs in learning to manage their negative emotions 

towards mathematics before they become practicing teachers. 

To best support PSETs in this way, mathematics teacher educators should understand how 

PSETs experience MA and how this experience might change through experiences in teacher 

preparation courses. Researchers have employed interview, narrative, and survey data to both 

characterize PSETs’ experiences with MA and to document shifts in these experiences (e.g., 

Finlayson, 2014; Hollingsworth & Knight-McKenna, 2018; Olson & Stoehr, 2019). While these 

data sources are indispensable in studying MA, we were unable to identify studies of PSET MA 

that further triangulated these data sources with observational data. The purposes of this study 

are therefore to: (1) understand how a highly math-anxious PSET perceives and makes sense of 

their MA and how it may change in the context of a mathematics content course, and (2) explore 

whether it is possible to collect observational data that aligns with these perceptions and 

understandings. 

Review of Literature 

Researchers have used survey, narrative, and interview data to characterize and better 

understand the individualized nature of PSETs’ MA. For example, although several studies have 
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found that being in evaluative settings is commonly cited by PSETs as eliciting MA (e.g., 

Finlayson, 2014; Harper & Daane, 1998; Olson & Stoehr, 2019; Wilson, 2015), Olson and 

Stoehr’s (2019) study suggested that the way PSETs interpret these evaluative experiences may 

vary greatly. In written narratives, two of the three highly math-anxious PSETs in this study 

reported experiencing MA in evaluative settings because they had interpreted poor performance 

on past exams as evidence of their inability to learn mathematics. The third participant, however, 

experienced MA in relation to being evaluated because of the uncertainty she felt while waiting 

for the teacher’s feedback. Finlayson’s (2014) work also illustrated the variability of PSETs’ MA 

experiences. Finlayson analyzed responses to open-ended survey questions from 70 pre-service 

teachers (many of whom were PSETs) to identify common causes, symptoms, and coping 

strategies that study participants associated with their MA. Several common themes emerged in 

each category, but no theme applied to more than half of the participants, and Finlayson’s 

analysis revealed that study participants gave different explanations for similar responses. For 

example, 23 participants identified a lack of self-confidence as a cause of their MA. Among 

these, some attributed this lack of self-confidence to a history of inadequate support from 

teachers, while others described it as a family trait, citing parents who had also struggled with 

mathematics. These studies suggest that, although many PSETs may report similar MA 

experiences, the ways they make sense of these experiences can be highly individualized. 

Because PSETs experience MA differently, it is likely that they also respond to MA-eliciting 

situations differently, positioning observational data as an underutilized research tool. 

Analyzing survey, narrative, and interview data has also allowed mathematics education 

researchers to develop strategies for reducing PSETs’ MA. Some studies suggest that certain 

kinds of learning activities implemented in teacher preparation courses can positively impact 

PSETs’ reported levels of MA. For example, researchers have reported successfully lowering 

PSETs’ MA by emphasizing the use of manipulatives (Barrett, 2013), implementing inquiry-

based learning (Van der Sandt & O’Brien, 2017), and by including a field work course 

component (Hollingsworth & Knight-McKenna, 2018). Although all of these studies concluded 

that PSETs’ MA was reduced as a result of engaging in these learning activities, none included 

observational data of how individual PSETs had participated in these activities. Hollingsworth 

and Knight-McKenna noted this as a limitation of their study, stating that “Much of our analysis 

relied on self-report. Students may have provided responses they felt the instructor wanted to 

hear” (p. 324), and then suggested that future research should include observational data to guard 

against this possibility. However, in our literature search, we were unable to identify any studies 

of PSETs’ MA that utilized observational data. 

Analyzing narrative, interview, and survey data has provided researchers with important 

insights into how PSETs make sense of their MA experiences and helped them to identify 

effective MA interventions that can be used in teacher preparation courses. Observational data 

has the potential to serve as a unique research lens, adding depth to current understandings of 

PSETs’ MA experiences. Further, observational data may also uncover aspects of PSETs’ 

experiences that are unattainable when using self-reported data sources alone. 

Theoretical Perspective 

For this study, we rely on Ramirez et al.’s (2018) interpretation account of MA, which argues 

that “students’ development of MA is largely determined by how they interpret … previous math 
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experiences and outcomes (rather than the outcomes themselves)” (p. 151). For example, 

consider how receiving a failing grade on an exam provokes MA in some students but not in 

others. One student may interpret the failing grade as evidence of an innate inability to perform 

mathematically and may become anxious in future mathematical settings. Another student may 

instead interpret the failing grade as the result of the teacher’s harsh grading policies and become 

angry instead of anxious. As a theoretical perspective, interpretation account centers student 

experiences of MA, the ways in which they make sense of these experiences, and how these 

experiences influence the way they participate in mathematical settings. 

Interpretation account suggests that different situations will trigger MA in some PSETs but 

not in others (e.g., answering questions in front of the class or being stuck on a problem). This 

means that individual PSETs will have a unique set of MA triggers. These triggers, along with 

the individualized ways in which PSETs respond to encountering these triggers (e.g., 

disengaging from a task or making jokes) comprise what we refer to as their MA baseline. 

Establishing PSETs’ MA baselines is informed, in part, by their use of MA aligned language. 

Although the language that PSETs use to describe experiences of MA is not uniform, researchers 

have identified some language that math-anxious individuals commonly use. Stoehr and Olson 

(2021) compiled a list of MA-aligned language that PSETs used when speaking of mathematical 

experiences, such as “embarrassed,” “math is not my thing,” and “dreaded math class.” Other 

researchers have also identified common responses to experiences of MA (e.g, Dowker, 2019), 

such as rushing to complete a task at the expense of accuracy, avoiding mathematical situations, 

and disengaging from a mathematical task. Thus, for this study we will adopt interpretation 

account in tandem with research on MA-aligned language and responses to answer our research 

questions: How does a highly math-anxious PSET perceive and make sense of their MA and how 

it may change in the context of their experiences in a mathematics content course? Are these 

perceived understandings of MA and changes (if any) observable in the PSET’s mathematical 

interactions? 

Methodology 

This study followed a single-case study design (Yin, 2009). Because our goal was to explore 

an unstudied phenomenon (i.e., if MA can be observed and if these observations further 

triangulate a PSET’s perceived MA), a single revelatory case (Yin, 2009) was most appropriate 

for our goal. The case was a single PSET, Rose (a pseudonym), and was bounded by time and 

context; data was collected in a single semester and within a mathematics content course. 

Context 

This study took place within the context of a terminal mathematics content course for PSETs 

at a large public university in the northeast United States in Fall 2023. The course content 

focused heavily on operations with fractions, which has been identified in the literature as a 

difficult concept for PSETs (e.g., Rosli et al., 2020), particularly those that are math-anxious 

(e.g., Rayner et al., 2009). The course was student centered and relied heavily on in-class group 

work and discussion. During whole-class discussions, PSETs compared the different solution 

strategies that groups had used. The course also used Revision-Reflection Grading (a non-

traditional grading system adapted from Ungrading by Blum, 2020). 

Case Selection 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1024 

 

Since our goal was to gain insight into a PSET’s MA baseline, their perception of any 

changes, and how these perceptions may align with observational data, open communication and 

willingness to discuss MA and related experiences was essential. Thus, of the many highly math-

anxious PSETs (as identified by written narratives and validated MA scale), we selected Rose. 

Rose’s candid communication and outgoing personality afforded us a window to explore how her 

perceived MA aligned with classroom observations of her engaging with mathematics and/or 

with others while doing mathematics. 

Data Collection 

The brief version of the Mathematics Anxiety Rating Scale (MARS-B; Suinn & Winston, 

2003) was used to select the case as stated above and was also used to determine the baseline 

MA score for Rose and her group members (for comparison). Rose was identified as highly math 

anxious (109 out of 150; highly math anxious in this study was defined as having a MARS-B 

score greater than 90, cutoffs adapted from Sanders et al., 2019), and her group members 

reported moderate to high levels of MA (48, 85, 85, and 101). Rose and her group members also 

took the MARS-B at the end of the semester to track any changes in MA level. In addition to the 

validated scale, we sought to describe their perceived MA. Thus, we asked Rose and her group 

members to write a short narrative to describe their relationship with mathematics at the start of 

the semester to serve as a baseline for perceived MA. Similar to the scale, we also requested an 

end of the semester narrative to track any changes in perceived MA. The prompt read: “Tell the 

story of your mathematical journey. Describe your relationship with mathematics.” 

Rose took part in one semi-structured interview. The original goal of this interview was to 

explore Rose’s perceived changes in MA. We thought that the validated scale and narrative 

would provide sufficient information to describe Rose’s baseline MA. However, given the 

exploratory nature of this case study, her narrative only revealed insight into her triggers but not 

her typical responses to them. Thus, we altered the design of the semi-structured interview into 

two parts: the baseline interview and the post interview. In the baseline interview, we sought to 

corroborate the MA triggers from Rose’s narrative (e.g., “Is there a particular kind of classroom 

situation that you associate with feeling anxious about math?”) and identify typical responses to 

those triggers (e.g., “How has feeling anxious about math impacted your experiences in math 

classes?”). In the post interview, we sought to elicit Rose’s perceived changes in MA across the 

course of the semester and how she made sense of such changes.  

The final data source consisted of two classroom observations (one after the baseline MARS-

B and narrative and one mid semester). The goal of the observations was to determine if MA-

aligned responses to Rose’s baseline MA triggers could be observed. Rose’s group was audio-

recorded during these observations and field notes were taken with respect to Rose’s identified 

baseline MA triggers. 

Analysis 

Analysis occurred in two phases: (1) analysis of the baseline data and (2) analysis of the post 

narrative and interview data. In phase one, the baseline narrative and interview were coded using 

a priori theoretical coding based on the MA-aligned language from the literature (e.g., Stoehr & 

Olson, 2021). We then open coded across those codes to extract any potential MA triggers and 

responses to these triggers. The first observation was used to see if we could observe any of the 

identified baseline MA triggers and responses during class. We coded the transcript for the 
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presence of any of Rose’s identified triggers, and then open coded Rose’s responses to those 

triggers to identify any common themes in her responses to each trigger. 

In phase two of analysis, we sought to examine any perceived changes in MA. First, we open 

coded the post narrative to identify any changes in Rose’s responses to her baseline MA triggers. 

The response themes were open coded for alignment (or not) to her baseline responses. To 

analyze the post interview, we applied interpretation account (Ramirez et al., 2018) to describe 

how Rose made sense of any changes in her experience of MA. We used the second observation 

to corroborate any changes identified in Rose’s post narrative and interview regarding her MA 

triggers and responses. In other words, we aimed to determine if Rose’s MA triggers elicited a 

different response later in the semester compared to earlier in the semester. All code 

discrepancies were discussed until consensus was reached. 

Findings 

Rose’s MA transformation in the context of a mathematics content course provided an 

opportunity for us to understand how she made sense of her MA and how it changed, and to see 

whether or not these changes were observable in her engagement in mathematical tasks and 

classroom interactions. Rose’s MARS-B pre and post-semester scores (109 and 39, respectively) 

indicated that she began the semester as the most math-anxious member of her group (her group 

mates scored 48, 85, 85, and 101), and had experienced a drastic decrease in MA by the end of 

the semester. 

In this section, we will discuss how we were able to use Rose’s baseline narrative and 

interview to characterize her baseline MA triggers and responses and will present data from our 

first classroom observation that was consistent with this characterization. We will then describe 

how Rose made sense of the reduction in MA that she experienced over the semester, and how 

these changes manifested in observable differences in the way that she engaged in classroom 

activity in our second observation. Through these findings we will demonstrate that, at least in 

the case of Rose, MA was meaningfully observed and that these observations provided valuable 

insight into how her MA changed over the course of the semester. 

Rose’s Baseline Math Anxiety Triggers and Responses 

When Rose spoke or wrote using MA-aligned language, it often centered on the MA trigger 

of being confused by mathematical content. For example, she wrote in her baseline narrative that 

she “was always incapable of understanding certain math concepts, which created a lot of 

anxiety around math class.” In her interview, Rose clarified why this was a MA trigger for her, 

indicating that she interpreted this confusion as a threat to her self-concept as a good student:  

I just never could get it. I would go to extra help. I would stay after. I would study. I would 

do all the right things… I tried very, very hard. And I just, my grade didn't reflect that… And 

that was just something that I hated. And I resented math because of that. 

Again in her interview, Rose provided insight into how she responded to this MA trigger as 

she described her experience of confusion with high school precalculus content: “It wasn't going 

to make sense to me. Like, I didn't want to bother trying because it just, I couldn't wrap my head 

around it. Like, I felt like it just was a waste of time.” Rose’s assertion that she “didn’t want to 

bother trying” suggested that one of her baseline responses to feeling confused by mathematical 

content was disengagement. 
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Although being confused by mathematical content appeared to be Rose’s most prominent 

MA trigger, her use of MA-aligned language also indicated that classroom interactions with 

teachers were also MA triggers for her. The interactions she described were uniformly negative, 

and were recounted with an emphasis on the strong emotions that these experiences elicited. For 

example, Rose wrote in her baseline narrative about a particular occasion when a teacher “called 

me out in front of the class and not in a positive way.” Rose elaborated on this experience in her 

interview, saying that the teacher “was like, ‘I just don't understand why you don't understand it.’ 

Like it, and it was embarrassing for me, like, embarrassing. … all those kids heard” (italics 

added to show the emphasis Rose used when speaking). Rose explained that she had interpreted 

this interaction as an indictment on her ability to understand mathematics: “If she is confused 

why I don't understand it, like, clearly I should be, I should be understanding this.” She then 

described her response to this MA trigger, again in terms of disengagement: “The rest of the year, 

I just was like … why am I even going to bother trying to understand this?” 

During our first classroom observation, we saw evidence of Rose’s experience of MA that 

was consistent with her baseline narrative and interview, both at moments when she expressed 

confusion and when there was a possibility of interacting with the professor. At one point, when 

her group had reached an impasse with a mathematical task on fraction addition, Rose expressed 

her intent to disengage by saying, “I could figure this out. But it’s a lot of energy for me that I 

don’t have right now. I’m gonna save my energy.” Later, while working on a problem about 

installing a playground on a fraction of a park’s area, Rose used a cooking metaphor her group 

developed for mathematical thinking to announce her intent to quit working with the group, 

saying “You cook over there. I'm lost. The kitchen's burning.” Then, Rose rubbed her face and, 

even though the group had not yet completed their problem set, said, “We’re done. I’ve been 

done.” Although she almost always re-engaged and continued to work with her group, Rose’s 

pattern of responding to confusion with disengagement was a consistent and clearly observable 

phenomenon. 

The possibility of interacting with the professor was also an observable MA trigger for Rose. 

However, rather than responding with disengagement as she had indicated in her interview, we 

observed Rose responding to this trigger by expressing a desire to keep her work private. For 

example, at one point, the professor asked the entire class, “One-fourth is how many twelfths?” 

Rose whispered to a groupmate, “One-fourth is three, three twelfths. I don't want to answer 

because then she's gonna ask me another question.” Towards the end of class, the professor 

stopped by Rose’s group. Although the group was having a productive discussion, Rose 

responded to the professor’s arrival by saying, “you came at the worst time.” This desire to hide 

her thinking from the professor was an MA response that Rose had not identified in either her 

baseline narrative or interview, but was prominent in the observational data. 

Changes in Rose’s Math Anxiety 

Rose’s post narrative and interview were both well aligned with the remarkable drop she 

reported on her post-semester MARS-B (39 compared to 109 at the start of the semester). In her 

post narrative, she wrote, “To put simply, my relationship with math has completely changed… 

[for the] first time (I believe ever) I was made to believe that I am capable of understanding 

math.” In both her post narrative and interview, she specifically addressed her baseline MA 

triggers. Although she did not directly address changes in the way she responded to these 
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triggers, we were able to observe Rose responding to these triggers in markedly different ways in 

the second in-class observation. 

In her post interview, Rose no longer used MA-aligned language when talking about 

mathematical content or about being confused by mathematical content. She said: “I was always 

the person who needed help…And now I'm helping people learn how to solve, like people are 

asking me, which is something that's never happened before.” Rose also explained that she had 

begun to interpret experiences of confusion differently:  

People who are good at math were always like, yeah, it's fun. It's like a puzzle. Like, I'm like, 

what puzzle? Like whatever. And now I kind of understand…because I'm given the 

opportunity to look at it a different way and look at it in a way that makes sense to me. And I 

can solve the puzzle all on my own, and I don't need help. And sometimes you need help. 

And that's okay, like, everyone needs help with math every once in a while. 

In contrast to her earlier declaration that mathematics “wasn’t going to make sense,” this 

statement implied that Rose now viewed being confused as a normal part of the mathematical 

process, rather than a source of anxiety. Rose credited this transformation to the professor’s 

practice of highlighting multiple solution strategies, saying, “I always can find a [solution 

strategy] that's on the board that I know, I understand the way I know how to do it.” This new 

awareness also seemed to prompt Rose to reinterpret some of her past mathematical experiences: 

Now I know, like, learning from this class, there's a million ways you can explain things like, 

… me not understanding how to do something in freshman year algebra was not because I 

was stupid. It's not because I couldn't understand it. It's because I didn't understand it in the 

way that it was explained to me. 

In our second classroom observation, we saw a sharp contrast in the way Rose responded to 

being confused during group work compared to our first observation. At one point, a groupmate, 

Ellen (pseudonym), was watching Rose attempt to use fraction strips to evaluate 
3

10
÷

4

5
31045. 

Ellen said, “I am genuinely so lost.” Rose replied, “I am too. I’m just gonna model it and see 

what I come up with here. And kind of just hope for the best here.” After working on the problem 

for several minutes, Ellen expressed doubt that Rose’s strategy would solve the problem, saying, 

“I feel like four-fifths isn’t going to go into three.” Rose replied, “Well, here, we’re gonna figure 

it out. Ready? Let’s figure it out.” This observation was evidence that being confused was no 

longer the MA trigger for Rose that it had been, as she was now responding to confusion with 

persistence and encouragement rather than disengagement. 

In her post narrative and interview, Rose indicated that her professor had played an important 

role in her MA transformation. She wrote in her post narrative that the professor had been “a 

positive light for me this semester.” In her post interview, Rose indicated that the professor had 

created a classroom environment where she felt valued: 

[The professor] understands, like, a lot of us struggle with math… She makes everybody in 

that class feel like they’re seen, and feel like they're understood… even if you have times 

where you don't understand it… [if] you're doing your, she does revisions… So as long as 

you're putting the effort in, you're getting the grade back, which is what I've always wanted 

in math…I actually feel like I'm getting the results in this class. 
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Although this implied that perhaps interacting with the professor may no longer have been a MA 

trigger for Rose, she did not write or talk about any changes in the way she responded to the 

possibility of interacting with the professor in class. However, our second in-class observation 

provided evidence that Rose had indeed experienced a shift with respect to this MA trigger. 

During a whole-class discussion of the problem 
1

3
÷

1

9
 1319, the professor asked students to share 

their answers and their reasoning. Rose volunteered to explain to the class how she had used 

fraction strips and said, “So, I took one third … and then I saw how many, or, how many one-

ninths fit into the one third, and it’s three, so the answer would be 1/3?” Rose ended her 

statement in a questioning tone, implying that she was unsure of whether her answer was correct. 

Her answer wasn’t correct, but that is immaterial in this interaction; her willingness to share her 

thinking represented an enormous shift in participation for Rose. In contrast to our first 

observation, when Rose had been reluctant to share an answer that she knew was correct, she 

now volunteered to share her thinking even when she was not completely sure of her answer. 

Discussion and Conclusion 

In this exploratory study, we sought to understand (1) how one highly math-anxious PSET 

made sense of changes in her MA throughout a mathematics content course, and (2) whether 

these changes were observable in her in-class participation. With respect to our first research 

question, we found that Rose reported a substantial reduction in her level of MA, a change that 

was reflected in all of her self-reported data. With respect to experiences of confusion, Rose’s 

language shifted from reflecting anxiety, resentment, and futility to an assertion that “everyone 

needs help with math every once in a while.” When speaking of interactions with 

teachers/professors, Rose described feeling “understood” and “seen” instead of feeling 

embarrassed. Rose’s new awareness of the existence of multiple solution strategies was pivotal in 

her MA transformation. Not only did she view this as a source of her newfound mathematical 

confidence, it provided her a lens through which she could reappraise her past mathematical 

experiences. She now interpreted her struggles in high school mathematics as a deficit in “the 

way it was explained,” rather than a deficit in her cognitive abilities. 

With respect to our second research question, we found that we were able to observe Rose 

responding to her MA triggers in ways that both corroborated her self-reported data and provided 

additional insight into her changing experience of MA. This responded to Hollingsworth & 

Knight-McKenna’s (2018) call to reduce reliance solely on PSETs’ self-reported MA data. For 

example, we were able to verify Rose’s self-reported description of disengaging in response to 

moments of confusion when we observed her saying, “I’m gonna save my energy” and “you 

cook over there, I’m lost.” In our second observation, we found evidence of Rose’s new 

interpretation of being confused as a natural part of “solv[ing] the puzzle” when she told Ellen 

that, even though she was confused, “I’m just gonna model it and see what I come up with here.” 

Our observational data also revealed aspects of Rose’s experience of MA that were not 

present in her MARS-B responses, narratives, or interviews. Although Rose’s interactions with 

her past teachers and the professor were prominent topics in these data sources, her observed 

responses to this trigger were not represented in her narratives or interviews. In the first 

observation, when there was a possibility of interacting with the professor, we saw a desire to 

keep her answer private when she said, “I don't want to answer because then she's gonna ask me 

another question,” and “you came at the worst time.” Attempting to keep one’s work private is a 
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MA response identified by Sanders et al. (2019) and could be viewed as evidence that Rose 

interpreted such interactions as threatening. During the second observation, when we observed 

Rose volunteer to share an answer that she was unsure of, it was clear that this was no longer the 

case. Interestingly, Rose never mentioned how she might respond to interacting with the teacher 

in her post narrative or interview, which may suggest that she was unaware of how her response 

to this trigger had changed. If this is the case, it means that, in the absence of observational data, 

this aspect of Rose’s experience of MA was inaccessible, both to herself and to us as researchers. 

This implies that observational data can not only triangulate more traditional MA data sources, 

but can also provide unique and otherwise unattainable insights in studies of PSETs’ MA. 

Our exploratory case study was inevitably limited by the case size. While we gathered robust 

evidence of Rose’s experience of MA that was both corroborated and extended by our 

observational data, more research is needed to determine if similar insights could be achieved 

with more reticent PSETs. Also, Rose mentioned that the professor’s grading system (Revision-

Reflection Grading), unlike traditional grading, enabled her effort to be reflected in her grade. 

Future research could investigate whether alternative grading systems can reduce PSETs’ MA. 

The use of survey, narrative, and interview data is well-established as a means to better 

understand PSETs’ experiences with MA (e.g., Barrett, 2013; Finlayson, 2014). We found that 

there was a symbiotic relationship between these data sources and the observational data we 

collected. Survey, narrative, and interview data enabled us to establish the baseline necessary to 

collect meaningful observations of Rose’s responses to MA triggers; in turn, the observational 

data enriched our understanding of Rose’s MA transformation. Most notably, the observational 

data provided insights that were unattainable with survey, narrative, and interview data alone. 
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Acknowledging competence through the intentional identification and affirmation of students' 

mathematical strengths and contributions can foster positive math identities and advance 

equitable math instruction. Using an interpretive qualitative approach, we examine 68 

elementary preservice teachers' (PSTs') attempts to acknowledge competence for four focal 

students in a scaffolded assignment in math methods courses. To characterize PSTs’ efforts, we 

generated descriptive initial codes, and then refined and grouped codes into categories. Our 

findings can inform teacher educators’ pedagogical approaches to cultivating PSTs’ proficiency 

in equity-oriented teaching strategies like acknowledging competence. 

Keywords: Preservice Teacher Education, Equity, Inclusion, and Diversity, Instructional 

Activities and Practices, Elementary School Education 

There is a growing body of work focused on recognizing students’ mathematical strengths 

and positioning students as competent to pursue equity in mathematics education (e.g., Iacono, 

2018; Jilk, 2016; Johnson et al., 2022; Kalinec-Craig et al., 2021; Skinner et al., 2019). Within 

this body of work, scholars have identified equity-oriented teaching practices like assigning or 

acknowledging competence (Imm, 2022) in which teachers deliberately name students’ 

mathematical strengths and contributions. Such practices aim to support students’ development 

of positive mathematics identities, broaden their participation in math discourse, and deepen their 

mathematics learning (Aguirre et al., 2013; Featherstone et al., 2011). These practices also reflect 

visions of equitable math instruction emphasized by professional organizations (Association of 

Mathematics Teacher Educators, 2017; Huinker, 2020; Huinker & Bill, 2017; National Council 

of Teachers of Mathematics, 2014). To make tangible progress towards these visions of equitable 

math instruction, we must learn more about how preservice teachers (PSTs) take on and attempt 

equity-oriented practices. In this paper, we explore elementary PSTs’ early efforts with the 

practice of acknowledging competence in a structured course assignment. 

Research Focus 

Building on previous work of our own (DeFino, 2022) and of others in the field (e.g., Jilk, 

2016; Kalinec-Craig et al., 2021), we adapted a mathematics methods course assignment 

originally developed at the University of Michigan to scaffold PSTs’ naming of students’ 

mathematical strengths and contributions. For this assignment, PSTs watch a video clip of a math 

discussion, and then respond to a series of questions and prompts about four specific students’ 

contributions. We were motivated by a shared concern that PSTs often interpret and respond to 

students’ mathematical thinking as either right or wrong, dismissing answers and strategies that 

are not “correct,” and reinforcing narrow and exclusionary notions of mathematical ability 

(Louie, 2017). Thus, through the assignment, we purposefully push PSTs to identify students’ 

mathematical strengths and contributions beyond the right vs. wrong binary. 
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In this study, we examine PSTs’ responses to this assignment, exploring what sorts of 

mathematical strengths and contributions PSTs’ focus on and what statements they use to 

acknowledge students’ competence. We investigate the following research questions: 

1. What mathematical strengths or contributions do PSTs highlight in their draft statements 

to acknowledge each student’s competence? 

2. What strategies do PSTs use to acknowledge competence? (i.e., How do PSTs structure 

their acknowledging competence statements?) 

Our aim is to better understand tendencies in how PSTs attempt to acknowledge competence 

for specific students and scenarios. This study will inform our own instructional designs and 

offer implications for other mathematics teacher educators working to develop PSTs’ skills with 

equity-oriented instructional practices like acknowledging competence. 

Theoretical Framing 

This research focuses on the practice of acknowledging competence. Drawing on Cohen and 

Lotan’s (1995) conceptualization of assigning competence, we define acknowledging 

competence as a deliberate act of naming and validating students' mathematical strengths and 

contributions. Following Imm (2022), we use the language of “acknowledging” rather than 

“assigning” to convey the stance that students already demonstrate mathematical competence in 

a multitude of ways, and it is teachers’ responsibility to look for and recognize that competence. 

Acknowledging competence involves conscious attention to how students are positioned 

through classroom interactions and the use of teacher moves and statements to intervene on 

patterns of exclusion (Chval et al., 2021; Davies & Harré, 1990; Featherstone et al., 2011; Louie, 

2017). A key purpose is to position students as capable contributors to the learning process, 

supporting and encouraging students’ participation (Johnson, 2017). For instance, a teacher 

might verbally emphasize a student’s question in a class discussion, highlighting how that 

question is bringing the class’s attention to an important mathematical idea (Johnson et al., 

2022). Another key purpose of acknowledging competence is to broaden what students recognize 

as “smart” or important in mathematics (Featherstone et al., 2011; Jilk, 2016; Kalinec-Craig et 

al., 2021). This requires teachers to take a more inclusive and holistic approach to assessing and 

responding to students’ mathematical contributions, rather than reinforcing the conventional 

emphasis on correctness or speed (Horn, 2007; Louie, 2017; Skinner et al., 2019). 

Salient in recent research is the connection between acknowledging student competence and 

advancing equity in mathematics classrooms (e.g., Boaler & Staples, 2008; Johnson et al., 2022). 

Specifically, Hand (2012) argues that “it is only when teachers become disposed to attend 

differently to classroom mathematical activity that the field of mathematics education will 

provide a more even playing field for nondominant learners” (p. 235, emphasis in original). In 

other words, teachers must learn to actively look for and attend to students’ competence to create 

more equitable and inclusive mathematics classrooms. To support PSTs in developing this 

disposition and skill, we pursued an instructional approach that allows PSTs to approximate 

(Grossman et al., 2009) the practice of acknowledging competence while initially stripping away 

some of the complexities of classroom teaching (e.g., drafting statements to acknowledge 

students’ competence without the time pressure of responding in the moment). We envision that 
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PSTs will gradually incorporate acknowledging competence into their math teaching with 

additional practice opportunities, such as leading math discussions in field experiences. 

Methods 

This study utilizes an interpretive qualitative approach (Hesse-Biber & Leavy, 2011) to 

examine PSTs’ draft statements to acknowledge specific students’ competence in a structured 

course assignment. 

Data Collection 

Context. Data was collected from undergraduate math methods courses at two regional 

public universities in different parts of the United States, one in the upper Midwest and the other 

in the Southeast. Both institutions are predominately white, enroll many students from rural 

areas, and have elementary education classes largely composed of women. The first author 

teaches a math methods course designed to prepare PSTs to teach kindergarten through ninth 

grade. The second author teaches a math methods course designed to prepare PSTs to teach 

kindergarten through fifth grade. All three authors collaborated to design learning experiences 

focused on acknowledging competence. While course instruction and details varied by 

institution, both courses emphasized the importance of math identity for equity (Aguirre et al., 

2013), worked on asset-based interpretations of student thinking, then introduced acknowledging 

competence as a strategy to affirm student’s math identities and position students as capable. 

Participants. The 68 participants in this study are PSTs who were enrolled in elementary 

math methods courses in a recent semester and consented to have their work analyzed for 

research. The majority, 55 participants, come from three course sections at the first author’s 

university and the remaining nine PSTs are from one section at the second author’s university. 

Data sources. The PSTs’ written responses on a focal course assignment were collected. This 

assignment is built around a video clip titled “Mamadou-Half-Rectangle” (Mathematics 

Teaching and Learning to Teach, University of Michigan, 2010). In this video, a class of rising 

fifth graders discuss what fraction of a larger rectangle a shaded area represents. The assignment 

identifies four students in the video (one of whom is Mamadou) and poses questions that guide 

PSTs to consider each student’s verbal contributions from an asset-based perspective. Our 

analysis centers on PSTs’ responses to the following prompt: If you were the teacher, what could 

you say to acknowledge this student’s mathematical competence? 

Data Analysis 

A thematic analysis approach (Braun & Clarke, 2006) was used to identify categories and 

themes within the data. The PSTs’ drafted acknowledging competence statements were coded 

along two dimensions: the focus [what] of the statement and the approach [how]. All three 

authors conducted initial coding (Saldaña, 2016) of ten participants’ responses, then compiled 

and sorted codes into categories to generate a codebook. These codes were applied to a second 

set of ten responses to refine code definitions and categories. Each PST response could receive 

multiple codes. Using the revised codebook, the researchers are individually coding sets of ten 

responses and then meeting to discuss and come to a consensus. This process is still underway. 

Once complete, descriptive statistics will be tabulated, and overarching themes will be identified. 
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Preliminary Findings 

Our collaborative coding process has resulted in a codebook that begins to answer our 

research questions, characterizing what PSTs focused on in their draft acknowledging 

competence statements and how PSTs went about attempting to acknowledge each student’s 

competence. We have found that PSTs focused on a range of student strengths and contributions, 

some of which were more distinctly mathematical than others. Coding categories describing 

PSTs’ foci consisted of the following: (a) a specific mathematical idea (e.g., recognizing the 

whole in the problem), (b) a specific process (e.g., explaining another student’s thinking), (c) 

language (e.g., using the term “equal parts”), (d) a community contribution (e.g., “helping us 

understand”), (e) compliance with classroom norms or behaviors (e.g., listening, sharing), (f) 

correctness, (g) affect (e.g., eagerness to explain), or (h) being smart (e.g., “You’re smart at 

math.”). Some PST responses did not meet our definition of acknowledging competence. In 

those cases, we coded the focus of PST responses as “not applicable” because they included 

questions or solely consisted of general praise (e.g., “Great job”). Notably, some of PSTs’ foci 

seem more likely to support broadened notions of mathematical competence than others. For 

instance, statements highlighting contributions students made to the community could help to 

portray mathematics as a collective undertaking rather than as an individual effort to arrive at 

correct answers (Featherstone et al., 2011). In contrast, statements highlighting more 

compliance-oriented behaviors like listening or paying attention seem likely to reinforce 

conventional notions of “doing school” (Goldin, 2010). 

In characterizing how PSTs attempted to acknowledge each student’s competence, we first 

categorized PST responses as being statements or questions. We then further categorized 

statements according to the “strategy” being used to acknowledge competence: thanking the 

student, specific praise, describing what the student did to the class, making a teacher-centric 

statement (e.g., “I like how you…”), framing the student’s contribution as helpful to the 

community, affirming correctness (either explicitly or implicitly), or directly stating that the 

student is smart. Statements that did not meet our definition for acknowledging competence were 

categorized as orchestrating moves (e.g., “Let’s pause to hear more about Mamadou’s thinking”) 

or hypothetical statements (i.e., describing the type of thing the PST would say without providing 

specifics). We did not consider questions as instances of acknowledging competence but still 

tracked the types of questions PSTs listed as eliciting moves (e.g., “Could you say more about 

what you’re seeing as the whole?”) or orienting moves (e.g., “Who can repeat Mamadou’s 

thinking?”). Our thinking was that, though not acknowledging competence on their own, such 

questions could be used in ways that elevate and value student contributions. Additionally, we 

noted instances in which PSTs explicitly used student names in their responses with the rationale 

that accurately pronouncing and using students’ names is one way to convey that students are 

seen and valued (Kohli & Solórzano, 2012). These coding categories and subcategories illustrate 

the variety of strategies that PSTs used in their efforts to acknowledge students’ competence. 

Interpretation and Implications 

 In our interpretation of these findings, we do not view any given focus or strategy as 

inherently good or bad; we maintain that much depends on the details of how acknowledging 

competence statements are delivered. For example, we recognize instances where explicitly 

affirming a student’s correctness seems productive for highlighting student contributions that 
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might otherwise be overlooked. At the same time, there are other instances where explicitly 

affirming a student’s correctness could reinforce narrow and exclusionary notions of 

mathematical competence (e.g., emphasizing one “correct” way to solve). We do not think there 

is just one right or best way to acknowledge competence. Instead, we see these descriptive codes 

as offering a picture of what PSTs tend to do in their early efforts at acknowledging competence, 

which can inform our efforts to build on PSTs’ productive inclinations and redirect PSTs away 

from counterproductive foci and strategies. Additionally, our codes offer a conceptual lens for 

other mathematics teacher educators to analyze and interpret their own PSTs’ attempts to 

acknowledge competence. We envision a future of mathematics education in which learning to 

actively see and name students’ strengths in ways that disrupt and challenge exclusionary notions 

of mathematical ability is an essential component of teacher preparation — a future in which 

acknowledging competence is as salient a practice as selecting cognitively demanding tasks or 

using and connecting mathematical representations. This study offers some preliminary 

conceptual tools for mathematics teacher educators to engage in serious and ongoing work on 

acknowledging competence. 

References 
Aguirre, J. M., Mayfield-Ingram, K., & Martin, D. B. (2013). The impact of identity in K-8 mathematics: Rethinking 

equity-based practices. The National Council of Teachers of Mathematics, Inc. 

Association of Mathematics Teacher Educators. (2017). Standards for preparing teachers of mathematics. Available 

online at amte.net/standards 

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of 

Railside School. Teachers College Record, 110(3), Article 3. 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 

Article 2. https://doi.org/10.1191/1478088706qp063oa 

Kalinec-Craig, C. A., Bannister, N., Bowen, D., Jacques, L. A., & Crespo, S. (2021). “It was smart when:” 

Supporting prospective teachers’ noticing of students’ mathematical strengths. Journal of Mathematics Teacher 

Education, 24, 375–398. 

Chval, K. B., Smith, E., Trigos-Carillo, L., & Pinnow, R. J. (2021). Teaching math to multilingual students: 

Positioning English learners for success. The National Council of Teachers of Mathematics. 

Cohen, E. G., & Lotan, R. A. (1995). Producing equal-status interaction in the heterogeneous classroom. American 

Educational Research Journal, 32(1), Article 1. 

Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. Journal for the Theory of Social 

Behaviour, 20(1), Article 1. https://doi.org/10.1111/j.1468-5914.1990.tb00174.x 

DeFino, R. (2022). Race evasion and race cognizance in elementary math teaching: A study of white teacher 

candidates’ learning, discourse, and early practice [Dissertation, University of Michigan]. 

https://dx.doi.org/10.7302/4672 

Featherstone, H., Crespo, S., Jilk, L., Oslund, J., Parks, A., & Wood, M. (2011). Smarter together! Collaboration 

and equity in the elementary math classroom. National Council of Teachers of Mathematics. 

Goldin, S. (2010). Studenting: An historical and sociological study [Dissertation]. University of Michigan. 

Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: A 

cross-professional perspective. Teachers College Record, 111(9), Article 9. 

Hand, V. (2012). Seeing culture and power in mathematical learning: Toward a model of equitable instruction. 

Educational Studies in Mathematics, 80(1–2), Article 1–2. https://doi.org/10.1007/s10649-012-9387-9 

Hesse-Biber, S. N., & Leavy, P. (2011). The practice of qualitative research (2nd ed.). SAGE Publications, Inc. 

Horn, I. S. (2007). Fast kids, slow kids, lazy kids: Framing the mismatch problem in mathematics teachers’ 

conversations. Journal of the Learning Sciences, 16(1), Article 1. https://doi.org/10.1080/10508400709336942 

Huinker, D. (Ed.). (2020). Catalyzing change in early childhood and elementary mathematics: Initiating critical 

conversations. National Council of Teachers of Mathematics. 

https://doi.org/10.1191/1478088706qp063oa
https://dx.doi.org/10.7302/4672
https://doi.org/10.1080/10508400709336942


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1036 

 

Huinker, D., & Bill, V. (2017). Taking action: Implementing effective mathematics teaching practices in K-grade 5. 

National Council of Teachers of Mathematics. 

Iacono, H. A. (2018). Supporting pre-service mathematics teachers to notice and understand the practice of 

positioning students competently [Thesis]. McGill University. 

Imm, K. L. (2022). “Student Representations at the Center: Promoting Classroom Equity.” Mathematics Teacher: 

Learning and Teaching PK-12, 115(10), 755–763. https://doi.org/10.5951/MTLT.2022.0212 

Jilk, L. M. (2016). Supporting teacher noticing of students’ mathematical strengths. Mathematics Teacher Educator, 

4(2), Article 2. https://doi.org/10.5951/mathteaceduc.4.2.0188 

Johnson, N. C. (2017). Expanding competence: Supporting students to engage with each other’s mathematical ideas 

[Dissertation]. University of California, Los Angeles. 

Johnson, N. C., Franke, M. L., & Turrou, A. C. (2022). Making competence explicit: Helping students take up 

opportunities to engage in math together. Teachers College Record, 124(11), 117–152. 

https://doi.org/10.1177/01614681221139532 

Kalinec-Craig, C. A., Bannister, N., Bowen, D., Jacques, L. A., & Crespo, S. (2021). “It was smart when:” 

Supporting prospective teachers’ noticing of students’ mathematical strengths. Journal of Mathematics Teacher 

Education, 24(4), Article 4. https://doi.org/10.1007/s10857-020-09464-2 

Kohli, R., & Solórzano, D. G. (2012). Teachers, please learn our names! Racial microaggressions and the K-12 

classroom. Race Ethnicity and Education, 15(4), 441–462. https://doi.org/10.1080/13613324.2012.674026 

Louie, N. (2017). The culture of exclusion in mathematics education and its persistence in equity-oriented teaching. 

Journal for Research in Mathematics Education, 48(5), Article 5. 

https://doi.org/10.5951/jresematheduc.48.5.0488 

Mathematics Teaching and Learning to Teach, University of Michigan. (2010). Mamadou-Half-Rectangle video. In 

Mamadou-Half-Rectangle [Online]. Available: http://hdl.handle.net/2027.42/78024 

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. 

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). SAGE. 

Skinner, Louie, & Baldinger. (2019). Learning to see students’ mathematical strengths. Teaching Children 

Mathematics, 25(6), Article 6. https://doi.org/10.5951/teacchilmath.25.6.0338 

 

 

  

https://doi.org/10.5951/MTLT.2022.0212
https://doi.org/10.5951/mathteaceduc.4.2.0188
https://doi.org/10.1177/01614681221139532
https://doi.org/10.1007/s10857-020-09464-2
https://doi.org/10.5951/jresematheduc.48.5.0488
http://hdl.handle.net/2027.42/78024
https://doi.org/10.5951/teacchilmath.25.6.0338


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1037 

 

AN EXPLORATION OF THE RELATIONSHIP BETWEEN INSTRUCTIONAL TIME 

AND PERSEVERANCE GROWTH FOR ELEMENTARY PRE-SERVICE TEACHERS 

Joseph DiNapoli 

Montclair State University 

dinapolij@montclair.edu 

This in-progress study investigated how time elementary preservice teachers (PSTs) spent 

studying certain mathematics topics during a content course was related to growth in their 

perseverance in problem-solving. Using a quasi-experimental design, PSTs from two classes 

taught by the same instructor engaged in 12 problem-solving sessions each to measure their 

willingness to initiate and sustain, and re-initiate and re-sustain upon impasse, productive 

struggle during engagement. There were two conditions: over one semester, the treatment class 

studied 5 mathematical topics and the control class studied 10 mathematical topics. Preliminary 

results suggest that PSTs in the treatment class show greater perseverance growth over time 

compared to PSTs in the control class. This suggests that PSTs’ perseverance development may 

be supported by spending more time studying fewer topics during mathematics content courses. 

Keywords: Preservice Teacher Education, Problem Solving, Elementary School Education 

Rationale, Background, and Theoretical Perspectives 

Mathematics education researchers continue to look for best practices by which to structure 

elementary teacher education programs, yet consensus continues to elude the field (Garner et al., 

2023; Masingila & Olanoff, 2022). Professional organizations like the Association of 

Mathematics Teacher Educators have published standards for preparing teachers of mathematics 

(AMTE, 2017), which include coursework recommendations and emphasis on developing future 

teachers’ knowledge of mathematics concepts and dispositional practices. Teachers’ 

mathematical knowledge for teaching directly impacts the quality of instruction their students 

experience (Hill et al., 2008), thus careful coordination over what elementary pre-service 

teachers (PSTs) have opportunities to learn in their preparatory mathematics coursework is of 

critical importance to their development as effective teachers. Yet still, without consensus, PSTs 

across North America have experienced great variance in the mathematics content and practices 

they study and for how long they study it (e.g., Hrusa et al., 2020; Malzahn, 2020; NCEE, 2016), 

which jeopardizes the effectiveness of teacher preparation. In fact, a PME-NA working group, 

Mathematics Curriculum Recommendations for Elementary Teacher Preparation, is devoted to 

such issues. Aligned to the theme of PME-NA 46, the future of elementary mathematics teacher 

preparation depends on new research efforts amidst such uncertainty across PST education. 

At many institutions, PSTs engage in survey courses aiming to cover the complete spectrum 

of elementary mathematics content topics (An et al., 2021). These courses are often developed 

from a knowledge-oriented theoretical perspective, with an emphasis on teaching all the 

mathematical topics PSTs need to know to teach effectively (Li & Howe, 2021). At other 

institutions, certain elementary mathematics content topics are purposely omitted to focus more 

time on high-leverage topics and practices, such as number concepts and problem-solving 

(Chapin et al., 2021). These courses are often developed from a thinking-oriented theoretical 

perspective, with an emphasis PSTs learning to reason about, explain, and make sense of the 
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mathematics they will teach (Li & Howe, 2021). Although such variance in coursework still 

exists, recent research has shown the long-term benefits of spending more instructional time on a 

smaller set of mathematical topics during teacher preparation (Beckmann & Izsak, 2021; Corven 

et al., 2022; Gibbons et al., 2018). For instance, Corven and colleagues (2022) examined the 

relationship between the number of instructional minutes dedicated to mathematics topics in 

teacher preparation and the specialized content knowledge (SCK, Ball et al., 2008) demonstrated 

by program graduates. Analyses showed that over 400 minutes of high-quality instruction on one 

mathematics topic were needed to develop the SCK to teach it well years later. This finding 

suggests that survey courses may not be effective in fostering lasting knowledge and application.  

Although such research is promising, more research is necessary to investigate the 

affordances and constraints related to the instructional time spent (or not spent) on specific 

mathematics topics included in content courses for PSTs. Existing research has shown how PSTs 

develop and retain mathematical understandings by devoting more time studying less topics, but 

we know very little about other outcome measures of PSTs, including outcomes related to the 

development of mathematical practices like perseverance in problem-solving. Perseverance, or 

initiating and sustaining productive struggle in the face of obstacles (DiNapoli, 2023), promotes 

making sense of mathematics (Middleton et al., 2015; Warshauer, 2014). Students make meaning 

through productive struggle, or as they grapple with mathematical ideas that are within reach, but 

not yet well formed; it is imperative for teachers to create learning environments for their 

students that promote such productive struggles (Hiebert & Grouws, 2007). Recent studies have 

shown that perseverance in problem-solving can be malleable in students and nurtured, 

depending on the learning environment, to grow and improve over time (DiNapoli & Miller, 

2022; Paurowksi et al., 2024). Learning environments that provided consistent opportunities to 

productively struggle with mathematics content, and thus, opportunities for students to 

deliberately practice their perseverance have shown promise. In PST education, PSTs must have 

consistent opportunities to persevere and develop a disposition and willingness to engage in 

productive struggle during their mathematics content coursework to be able to empathize with 

and support their future students to productively struggle to learn mathematics (AMTE, 2017). 

As such, the research question that guides this in-progress study is: What is the relationship 

between mathematics instructional time and perseverance growth for elementary PSTs in a 

content course? 

Context and Methodology 

This in-progress, mixed-methods study used a quasi-experimental design (Patten, 2016) to 

help describe a relationship between instructional time and perseverance growth for elementary 

PSTs in a content course. I collected and analyzed data from two distinct groups of participants 

at a public university in the northeast United States: one Fall 2023 section (complete) and one 

Spring 2024 section (in-progress) of a terminal Mathematics Content for Elementary Teachers II 

course. There were two class conditions: a treatment condition (the Fall 2023 section) and a 

control condition (the Spring 2024 section). There were 30 PSTs in each section, resulting in 60 

total participants. I was the sole instructor for each class. 

Treatment and Control Conditions 

In the treatment condition, PSTs engaged with 5 mathematics topics during one semester, 

averaging about 400 minutes of classroom time devoted to each topic. The treatment topics were 
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Conceptions of Fractions, Addition of Fractions, Subtraction of Fractions, Multiplication of 

Fractions, and Division of Fractions. In the control condition, PSTs engaged with 10 

mathematics topics during one semester, averaging about 200 minutes of classroom time devoted 

to each topic. The control topics were the 5 treatment topics, plus Percentages, Ratios and 

Proportions, Polygons, Angles, and Area. In both conditions, I taught each lesson following the 

same style lesson plans which emphasized conceptual learning opportunities.  

Data Collection 

Each PST in each condition engaged in 12 virtual problem-solving sessions, approximately 

one per week. In these non-graded sessions, I presented PSTs with a challenging task as part of 

their individual homework related to that week’s lesson (e.g., If 100 stars represent 
6

2

3

5
, how many 

stars represent 1 whole?). PSTs video-recorded themselves thinking aloud as they worked 

toward a solution. The tasks were designed to evoke productive struggle, and if they did not, 

PSTs were given a different task that did. If PSTs ever reached a perceived impasse (i.e., they 

were substantially stuck (VanLehn et al., 2003)), they were instructed to say so. PSTs could stop 

working on a task at any time. Also, each PST engaged with written stimulated recall prompts 

(Ericsson & Simon, 1993) about specific moments during each of their problem-solving sessions. 

Responses to these prompts helped reveal and explain any in-the-moment cognitive and 

emotional activity that PSTs experienced while working on a task, especially around moments of 

perceived impasse. In some cases, I followed up with participants even further to gain 

clarifications about specific moments during problem-solving sessions. 

Data Analysis 

To analyze each PST’s problem-solving session, I used the Three-Phase Perseverance 

Framework (3PP) (see Figure 1) (see DiNapoli & Miller, 2022). The 3PP has been used in 

several empirical studies (e.g., DiNapoli, 2019; DiNapoli et al., 2021; DiNapoli & Miller, 2022; 

DiNapoli & Morales, Jr., 2021) to measure perseverance in problem-solving, or the extent to 

which students initiated and sustained, and re-initiated and re-sustained upon impasse, 

productive struggle on a challenging task. The 3PP operationalizes perseverance by considering 

the ways in which a student makes an initial attempt at solving a problem for which they do not 

already know a solution pathway, and makes an additional attempt at solving the problem if their 

initial attempt was unsuccessful and led to a perceived impasse. Theoretically, a student could 

engage in multiple additional attempts as they encounter multiple impasses. In my analysis, I 

only considered students’ experiences around one perceived impasse during the problem-solving.  
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Figure 1: The Three-Phase Perseverance Framework 

I used the 3PP to capture if and how a PST initiated (0-1 point) and sustained (0-1 point) 

efforts toward a solution before an impasse, and if and how those efforts were mathematically 

productive (0-1 point). After an impasse, I also captured if and how a PST re-initiated (0-1 point) 

and re-sustained (0-1 point) their efforts toward a solution, and if and how those new efforts were 

mathematically productive (0-1 point). I relied on PSTs’ think-alouds, their written work, and 

their stimulated recall responses to make scoring decisions. Thus, PSTs could earn 0-6 3PP 

points per problem-solving session, with 0 indicating no evidence of perseverance and 6 

indicating ample evidence of perseverance (i.e., a PST could demonstrate ample perseverance 

while working with a task through building incremental understanding via effort, yet not 

completely solve the task). When considering PSTs’ improvement, a gain of just one 3PP point is 

substantial since it could represent perseverance growth in several ways, such as: the difference 

between not engaging at all vs. initiating some effort (0 points vs. 1 point); initiating some effort 

but then giving up vs. sustaining that effort (1 point vs. 2 points); sustaining an effort but not 

making mathematical progress vs. actually making mathematical progress based on that 

sustained effort (2 points vs. 3 points); engaging in a successful first attempt but giving up upon 

impasse vs. re-initiating a second attempt after impasse (3 points vs. 4 points); and so on.  

Each PST engaged in 12 problem-solving sessions, so each PST earned 12 3PP scores. To 

help control for pre-existing differences amongst PSTs, my analysis focused on each PST’s 

personal perseverance growth. I used linear regression to model each PST’s perseverance growth 

across their 12 problem-solving sessions. I also used linear models to represent PSTs’ 

perseverance growth per class condition, that is, for PSTs in the treatment and control conditions. 

My findings focus most on the slopes of these linear models, which represent the average 

increase of PSTs’ 3PP scores per problem-solving session, per class condition. Qualitative 

analyses are still ongoing. 

Preliminary Results and Discussion 

PSTs in the treatment condition increased their perseverance by an average of 0.329 3PP 

points per problem-solving session. This suggests that it took, on average, approximately 3.0 

problem-solving sessions for PSTs in the treatment condition to improve their perseverance in 

problem-solving by one 3PP point. In contrast, PSTs in the control condition increased their 

perseverance by an average of 0.163 3PP points per problem-solving session. At this rate, this 

suggests that it will take, on average, approximately 6.1 problem-solving sessions for PSTs in the 

control condition to improve their perseverance in problem-solving by one 3PP point. Thus, 

PSTs who spent more instructional time on less topics improved their perseverance growth by 

more than double the rate of their PST peers who spent less instructional time on more topics. 

At this time, it is inappropriate to make any formal claims about the relationship between 

instructional time and PSTs’ perseverance growth since qualitative analyses are still ongoing. 

These analyses will help reveal some reasons behind why perseverance growth was so different 

between class conditions. However, these preliminary results might suggest that more time spent 

on less mathematics topics during PST content coursework can influence the development of 

PSTs’ perseverance in problem-solving, compared to spending less time on more topics. These 

preliminary findings about developing such mathematical practices in PSTs, alongside existent 
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research about PSTs’ development and retention of mathematical understandings under similar 

conditions (Beckmann & Izsak, 2021; Corven et al., 2022; Gibbons et al., 2018), would 

strengthen the practical argument for devoting more time on less topics in content courses, and 

present more comprehensive evidence against the efficacy of survey courses. Furthermore, these 

findings would emphasize the need for thinking-oriented theoretical perspectives (Li & Howe, 

2021) in elementary mathematics teacher preparation. Addressing the theme of PME-NA 46, this 

could help the field of mathematics education work toward a more certain future of elementary 

mathematics teacher preparation.  
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This brief research report advocates integrating social justice into mathematics education for 

elementary pre-service teachers (EPSTs). It highlights the importance of this integration in 

addressing mathematics anxiety and improving attitudes toward mathematics. The report also 

discusses how negative attitudes and mathematics anxiety can hinder PSTs’ ability to teach 

mathematics effectively, stressing the necessity to incorporate mathematics applications into 

education method courses. Furthermore, it underscores the relevance of integrating social 

justice topics into the pre-service teacher mathematics curricula to promote critical thinking and 

humanization, thereby aiding in addressing educational disparities and promoting confidence in 

teaching numerical skills. This approach can potentially transform PSTs’ attitudes toward 

mathematics, alleviate mathematics anxiety, and enhance their teaching practices in elementary 

classrooms. 

Keywords: Preservice Teacher Education; Social Justice; Instructional Activities and Practices; 

Instructional Vision 

Negative attitudes toward mathematics and mathematics anxiety can significantly impact 

mathematics learning by elementary pre-service teachers (EPSTs) (Gonzalez-DeHass et al., 

2017). Mathematics anxiety, an adverse physiological reaction to working with mathematics 

(Luttenberger et al., 2018), is particularly prevalent among EPSTs, who also have the lowest 

mathematics proficiencies (Novak & Tassell, 2017). However, mathematics methods courses that 

teach PSTs about mathematics applications have been shown to help reduce mathematics anxiety 

(Tooke & Lindstrom, 1998). These courses can also integrate other subjects, such as science, 

social studies, and reading, into mathematics methods courses to positively influence PSTs’ 

attitudes toward mathematics (Bursal & Paznokas, 2006). By challenging PSTs to engage in 

tasks involving cooperation, problem-solving, personal mastery of mathematical skills, and 

communication of mathematical facts and relevance (Gonzalez-DeHass et al., 2017), these 

courses can significantly improve PSTs' teaching abilities and confidence in teaching numerical 

skills. 

Integrating social justice topics into all curricula is relevant since social justice teacher 

education aims to prepare PSTs to “recognize, name, and combat inequity in schools and 

society” (Spalding, 2013, p. 284). Social justice education involves critical thinking, humanizing 

space (Freire, 2003), and creating a space where potentially controversial issues can be discussed 

and analyzed (Kumashiro, 2000). Mathematics can and should be the tool used to analyze social 

injustices in a complex world (Greenstein & Russo, 2019). As Gutstein (2006) states:  

[T]he idea of liberation from oppression as the fundamental purpose of teaching mathematics 

[…] Teaching mathematics for social justice flows from the broader notion of liberatory 

education and has two sets of pedagogical goals; one focused on social justice and the other 

on mathematics. (pp. 22-23) 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1044 

 

While mathematics is thought of as either divorced from the real world (Gutstein & Peterson, 

2006), masculine (Rubel, 2016), a disingenuous cognitive domain (Rands, 2013), isolated 

(Hernandez-Martinez & Vos, 2017) or as a set of rote memorizations (Peterson, 2006), EPSTs 

should see mathematics as a method to increase student interest in social justice advocacy 

(Stocker, 2005). In doing so, there could be an increase in PST engagement in mathematical 

content and methods, thus aiding their understanding of mathematics and possibly lowering their 

mathematics anxiety. 

Incorporating social justice topics into mathematics methods courses for EPSTs not only 

addresses educational disparities (Fasheh, 1982) but can also aid in reducing mathematics 

anxiety in EPSTs due to its integrative nature (Bursal & Paznokas, 2006). These courses can 

offer a more relatable and inclusive approach by emphasizing real-world applications and diverse 

perspectives on mathematical concepts (Yeh & Otis, 2019), helping future educators build 

confidence and effectively support students with varied backgrounds (Clark & Brown, 2016). 

Our research question was: How could learning about social justice mathematics transform 

PSTs’ attitudes and knowledge in teaching mathematics? 

Theoretical Framework 

The theoretical framework for this study centers around teaching social justice mathematics 

(Bartell, 2013; Gutstein, 2006) to pre-service teachers in an elementary mathematics methods 

course. As research has shown (Bursal & Paznokas, 2006; Gonzalez-DeHass et al., 2017; Novak 

& Tassell, 2017; Tooke & Lindstrom, 1998), EPSTs experience high levels of mathematics 

anxiety and low enthusiasm for the subject. This, in turn, impacts their students’ mathematics 

learning (Stoehr et al., 2017). Social justice mathematics education allows students of all ages to 

engage in social justice advocacy while using patterns and relationships taught in their courses 

instead of a more traditional manner, which mostly focuses on “memorization, regurgitation, 

standardized testing and reams upon reams of mathematics problems whose content is 

immaterial” (Stocker, 2005, p. 48). Social justice in mathematics could be particularly relevant in 

the context of EPSTs who may have their own experiences of mathematics anxiety and may be 

more likely to pass these anxieties on to their students if they do not see the relevance of 

mathematics in their lives. 

This theoretical framework might also draw on research on reducing mathematics anxiety in 

learning by promoting a supportive and encouraging educational environment, incorporating 

real-world examples and applications of mathematics concepts, and addressing the root causes of 

mathematics anxiety through self-reflection and mindfulness techniques. We also draw on the 

humanizing framework to “move beyond individual components of mathematical belief (e.g. 

self-efficacy, confidence, mindset, views of what it means to do mathematics, and others) and 

challenges us to consider each EPST as a collection of all of these complex views and beliefs” 

(Skultety et al., 2023, p. 2). Overall, social justice education in mathematics, in the context of 

this paper, focuses on promoting social justice and equity in mathematics methods courses for 

EPSTs to equip them with a method that can confront their mathematics anxiety and ultimately 

improve their attitudes, knowledge, and effective mathematics teaching practices. 
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Nixing Mathematical Nerves 

Mathematics appears to be a subject that elicits either a strong affinity or a strong aversion 

among individuals (Çetinkaya et al., 2018). This often stems from mathematics being a 

classroom subject heavily focused on achievement assessment, and the fear of failure often traps 

individuals in a negative attitude toward mathematics (Çetinkaya et al., 2018). Alkan, Coşguner 

and Fidan’s (2019) study examines how negative attitudes and perceptions of mathematics can 

impact individuals who go on to teach mathematics. The study indicates that there has been 

research on how PSTs feel about mathematics and its influence on how PSTs approach teaching 

the subject. Stoehr, Carter and Sugimoto (2017) also found that PSTs with mathematics anxiety 

need a mathematics course that connects mathematical content knowledge with teaching 

knowledge. Therefore, a mathematics methods course which focuses on relieving PSTs’ 

mathematics anxiety should focus on raising confidence in their mathematics content knowledge 

by focusing on the application (Tooke & Lindstrom, 1998) of mathematical concepts; we 

contend that social justice mathematics is a way to do so.  

Many mathematics educators face the infamous question: “Why do I have to learn this?” 

(Hernandez‐Martinez & Vos, 2017). When mathematics teachers encounter this problem and do 

not know the reason for teaching mathematical concepts, they may unintentionally perpetuate a 

negative perception of mathematics. As a result, PSTs should know how to integrate 

mathematics into various other disciplines, such as social studies or history (Peterson, 2006), 

emphasizing its relevance to our social world and social justice issues. Changing the views on 

mathematics for PSTs could lower their mathematics anxiety and directly influence how they 

teach mathematics to other generations of students. Additionally, this could demonstrate to PSTs 

and their future students how practical mathematics is in everyday life, making it more 

approachable, relevant, and engaging (Hernandez‐Martinez & Vos, 2017). 

Integrating social justice into mathematics methods courses should be more commonly 

practiced in teacher education programs. Despite common misconceptions, mathematics and 

social justice education can exist in a harmonized pedagogy (Bond & Chernoff, 2015). If 

educators of EPSTs deliver this integration of social justice into mathematics to these PSTs, it 

could impact future generations of teachers and students alike. A shift in the attitude towards 

mathematics courses for EPSTs has the potential to bring about substantial improvements in the 

delivery of mathematics education within our system. Teachers and students could realize that 

mathematics can be used to examine social issues more profoundly and further contextualize 

their mathematics lessons. This can potentially lead to the alleviation of anxiety experienced by 

PSTs within mathematics and the likelihood of increased confidence in the teaching of the 

subject.  

Calculating a Confidence Boost 

Integrating social justice into mathematics, as proposed by Gutstein (2006), has the potential 

to alleviate mathematics anxiety and enhance confidence among PSTs, fostering meaningful 

connections through mathematics. When EPSTs learn to incorporate current social injustices into 

their mathematics curricula, they may become better equipped to create a more relevant and 

engaging educational experience for themselves and their students. Establishing connections in 

mathematics can strengthen the mathematical identity of PSTs and promote a sense of belonging 

among their students within the mathematical community (Skultety et al., 2023). This approach 
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may facilitate a deeper understanding of mathematical concepts while addressing societal issues 

pertinent to the students’ realities. 

The contemporary world presents numerous opportunities for instructing PSTs on analyzing 

and comprehending social justice issues through mathematics, thereby equipping them to better 

facilitate their students' mathematical education. Despite the pervasive presence of numerical 

data in daily life, its relevance may not always be immediately evident (Gutstein, 2006). By 

teaching PSTs to apply critical thinking skills in mathematics to navigate our society, they may 

gain greater confidence in addressing complex societal issues and making more informed 

decisions (Yeh & Otis, 2019). This can be exemplified using news articles on current social 

issues, such as the increase in the number of gender-based hate crimes in the United States of 

America (Pollard, 2024), violence rates against Indigenous Peoples in Canada (Lee, 2023), the 

cost of childbirth in the United States (Rivelli, 2024), environmental racism (DeLaire, 2023), and 

more. Employing real-world events to establish meaningful connections to mathematics 

highlights how PSTs can integrate cross-curricular subjects to create impactful experiences for 

future students. 

Equipping EPSTs with the knowledge to integrate relevant global events into their 

mathematics classes could enhance PSTs’ engagement in the subject. By providing a medium for 

delivering mathematics instruction with greater impact, PSTs may feel more prepared to teach 

future mathematics lessons, thereby increasing student involvement. This approach ultimately 

empowers EPSTs, instilling confidence and competence as they enter classrooms where they will 

be responsible for mathematics education. Consequently, PSTs may be more inclined to embrace 

the challenges of teaching mathematics in ever-evolving and uncertain global contexts and 

moments. 

 

Considerations for Social Justice Integration in Mathematics Education for PSTs 

Amalgamating social justice into mathematics education for PSTs holds significant potential 

for reducing mathematics anxiety and improving attitudes toward the subject. Research indicates 

that PSTs often struggle with mathematics anxiety and negative attitudes toward mathematics, 

which can impair their teaching efficacy. By incorporating social justice topics into mathematics 

methods courses, PSTs can appreciate the relevance of mathematics in real-world contexts and 

engage in critical thinking about social injustices. This approach may address educational 

disparities and enhance PSTs’ understanding of mathematical concepts and their societal 

significance.  

PSTs need to recognize that changes in mathematics teaching pedagogy do not occur 

instantaneously. For instance, PSTs can begin by integrating activities such as analyzing the 

number of books authored by People of Colour versus those by White authors. Depending on the 

students' grade levels, PSTs could analyze the data they discover using various mathematical 

methods. Integrating social justice into mathematics education could be an important 

pedagogical strategy, empowering PSTs to become more confident and effective mathematics 

educators. By equipping PSTs with the tools to analyze social issues through mathematics, they 

can create more meaningful and engaging experiences for themselves and their future students. 

Overall, integrating social justice into mathematics education can transform attitudes toward 

mathematics, reduce mathematics anxiety, and enhance the teaching practices of PSTs in 

elementary classrooms. 
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Potential Pushbacks and Limitations 

Acknowledging the potential pushbacks and limitations to integrating social justice education 

into EPST mathematics methods courses is essential. While this incorporation can offer 

significant benefits, some educators and stakeholders may resist due to differing views on the 

role of social issues in mathematics instruction and varying values regarding specific social 

justice topics addressed in the course. Additionally, the differing levels of preparedness and 

comfort among PSTs in handling sensitive topics can present challenges. Furthermore, limited 

resources and support from the administration and other educators may hinder the effectiveness 

and sustainability of this curriculum in PST education programs. 
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There are numerous assessments of preservice teachers (PSTs) content knowledge of 

fractions (Erdem, 2016; Huang et al., 2009; Izsàk et al., 2019). Yet, most do not adequately 

distinguish between common content knowledge and the specialized content knowledge (SCK) 

needed to interpret children’s work with fractions (Copur-Gencturk et al., 2019). One way to 

examine SCK for fractions is to study teachers’ engagement with common fraction errors. These 

common errors are well-documented, with students are numerous such errors documented over 

the past 100 years (Behr et al., 1984; Brueckner, 1928; Schumacker & Malone, 2017), but there 

are few examinations of how teachers’ interpretations of them. We selected four well-

documented common errors in fraction arithmetic and assigned each randomly to 95 PSTs 

enrolled in their first mathematics content for a teaching course. This paper reports on a 

preliminary analysis of one of these common errors completed by 24 PSTs: using proportional 

addition instead of multiplication to convert fractions for addition/subtraction. When children 

demonstrate this error, they add the same number to the numerator and denominator 

(proportional addition) in an attempt to reach a common denominator between fractions (see 

center example in Figure 1). PSTs were provided two illustrative examples of the common error 

and then completed a 10-item with the option to use a calculator.  

 

  
 

Figure 1: Some PSTs’ Efforts in Replicating the Common Error 

 

Independently, the authors coded for the use of addition or multiplication and whether it was 

implemented proportionally (K=.50) before reconciling codes (see Table 1). PSTs replicated 

proportional addition about half the time (50.43%), while the ‘correct’ approach with 

proportional multiplication was used at 9.57%.  PSTs used both addition and multiplication in 

other ways that deviated from the common error. These attempted replications suggest that PSTs 

may have wrestled with how a child demonstrating the common error uses addition and does so 

proportionally (for numerator & denominator). Although PSTs successfully replicated the error 

half the time, they tended to be quite inconsistent in doing so. Relatively few PSTs actually 

replicated the common error correctly across all 10 tasks. These PSTs were observed to be able 

to solve fraction addition/subtraction tasks without difficulty. Thus, results suggest SCK is not a 

given even if PSTs have the requisite content knowledge. SCK tasks such as this may provide a 

useful means for assessing and facilitating PSTs’ professional knowledge for teaching fractions. 

 

Table 1: Descriptive Statistics for PSTs’ Attempts to Replicate the Common Error 

mailto:tegbedey@kent.edu
mailto:kkosko1@kent.edu
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Unproportional Proportional Mixed 

Add for CD Mult for CD Add for non-CD Add for CD Mult for CD  

10.00% 2.61% 9.13% 50.43% 9.57% 3.91% 

Note: CD stands for Common Denominator. Addition & Multiplication are also abbreviated. 
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To support prospective teachers (PTs) in developing knowledge of varied ways that students 

generalize from sequences of figures, we designed three theory-driven sets of protocols and 

training materials for orchestrating cycles of live, clinical simulations of student thinking about 

linear and quadratic generalizing tasks. We designed the cycles according to principles derived 

from Variation Theory (Marton, 2014): create opportunities for PTs to experience contrasting 

approaches within each cycle, and opportunities to construct general understandings of each 

approach by repeated experience across cycles. We present several case studies documenting 

how PTs’ knowledge, as represented by the approaches they anticipated prior to each set of 

simulations, evolved across simulation cycles in way that were consistent with the predictions of 

Variation Theory. 

Keywords: Mathematical Knowledge for Teaching; Pre-Service Teacher Education; Early 

Algebra, Algebraic Thinking, and Function 

The Problem: Preservice Teachers’ Knowledge Base for Enacting Core Practices 

The National Council of Teachers of Mathematics (2014) recommends eight teaching 

practices as core to effective mathematics teaching. Among those are the practices of 

implementing tasks that promote reasoning and problem solving, posing purposeful questions, 

supporting productive struggle, and eliciting and using evidence of student thinking. According 

to the Association of Mathematics Teacher Educators (2017), the capacity to enact those 

practices is an essential component of being a well-prepared novice teacher.  

However, the capacity to enact such practices requires Mathematical Knowledge for 

Teaching (Hill et al., 2004), including knowledge about how students might approach a particular 

type of mathematical task and errors or misconceptions that might crop up as students engage in 

problem solving. According to the tenets of Situated Cognition (Brown et al., 1989), the 

knowledge that a teacher invokes when supporting students’ productive struggle during problem 

solving is the knowledge that the teacher has developed from prior experience in similar kinds of 

situations. The problem is that traditional models of teacher education relegate the experiential 

component of teacher learning to field placements. Grossman et al. (2009) suggested  that 

separating clinical experience from coursework is problematic and called for teacher educators to 

make concerted efforts to create better links between the experiences of prospective teachers in 

field placement and the knowledge gained in their education courses. However, field placements 

are unreliable as sites in which prospective teachers can implement task that promote reasoning 

or problem solving – there are multiple types of influences that act to discourage teachers from 

creating space for reasoning or problem solving in their classrooms (Serrano Corkin et al., 2019). 

Therefore, in addition to creating stronger connections between field placements and experiential 

learning opportunities, there is a need for teacher educators to supplement field placements by 
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orchestrating experiences for PTs through which they have opportunities to develop the kinds of 

knowledge needed to enact the core practices identified by NCTM and others.  

We have developed an intervention, theoretically grounded by Situated Cognition (Brown et 

al., 1989) and Variation Theory (Marton, 2014), for engaging PTs in clinical simulations that we 

designed to support the development of their Knowledge of Content and Students (KCS) (Ball et 

al., 2008) for anticipating multiple ways that students might engage in figural generalizing tasks. 

In this report, we extend from our previous brief report of a single case study (Graysay & 

Bermudez, 2023) to multiple case studies examining the following research question: 

What do PTs learn, by participating in theoretically grounded clinical simulations of student-

teacher conversations about student work, about students’ approaches to generalizing from 

figural data? 

Theoretical Framing and Simulation Design 

Our designs are grounded in a theory of preservice teacher learning that intersects Situated 

Cognition with Variation Theory. From the perspective of Situated Cognition, to develop 

knowledge of content and students that will be used in teaching PTs need experiences of 

engaging in interactions with students in situations similar to those of the interactive work of 

teaching. From that guiding principle we modeled our intervention after the clinical simulations 

of Dotger and colleagues (e.g., Dotger, 2010) in which participants converse in a live, interactive 

setting with an actor trained to present specific statements or actions so that the conversation 

simulates a particular problem of practice. Because our goal is to support the development of 

KCS for supporting student reasoning, we chose to simulate students’ approaches to generalizing 

from figural data for two reasons. First, generalizing is an essential mathematical process 

(Mason, 1996). Second, within the body of research on generalizing, Rivera and Rossi Becker 

(2008) analyzed students’ approaches to generalizing from figural data and described three 

qualitatively distinct approaches. Numerical approaches are those in which the learner, after 

quantifying an aspect of each figure, proceeds to work with the numerical values without 

revisiting, drawing, or envisioning additional figures, and without attending to the structure of 

the figures. In constructive figural approaches the learner attends to the structure of each figure 

as constituted by disjoint components. In deconstructive figural approaches the learner attends to 

the structure of each figure as composed of intersecting components or as the result of the 

removal of elements from an imagined figure. The latter approach poses a particular challenge 

for teachers: El Mouhayar and Jurdak (2013) found that preservice and inservice middle grades 

teachers have difficulty explaining the reasoning behind deconstructive figural approaches. 

According to Variation Theory (Marton, 2014) learning requires an experience of contrast, 

across examples, of the defining features of an intended object of learning while aspects of the 

examples that are unrelated to the defining features should be held constant. Once the learner has 

experienced contrast, they should then experience variation in non-defining aspects of examples 

with the defining features of the intended object held constant, to support generalizing across 

examples toward a context-independent concept. Based on Variation Theory we designed 

protocols to train actors with statements and gestures to simulate the three contrasting student 

approaches documented by Rivera and Rossi Becker (see Table 1) in three cycles, each focused 

on a distinct task (see Figure 1), leading to nine protocols in total (see Figure 2). 
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Table 1: Dimension of Approach 

Numerical Approach (Nell) Constructive figural (Suzy) Deconstructive figural (Michelle) 

General Approach: Makes a table 

of values and looks for patterns in 

numerical values 

General Approach Perceives 

patterns as constructed from 

disjoint components 

General Approach: Deconstructs 

patterns into intersecting 

components 

Example: In the Tiling Task (see 

Figure 1), Nell counts the number 

of tiles in each Pattern, records the 

values in a table, notes a pattern of 

increase in numerals in the table, 

and extends the table iteratively to 

find totals for Pattern 4, Pattern 5, 

and Pattern 20. 

Example: In the Tables and Chairs 

Task (see Figure 1), Suzy perceives 

each Pattern as two rows of chairs 

across the top and bottom of the set 

of Tables, with one chair at each 

end of the row of Tables. 

Example: In the Theater Seats Task 

(see Figure 1), Michelle perceives 

the figure as a large rectangular 

array of seats with two triangular 

arrays removed from each side. 

 

Figure 1. Figural Generalizing Tasks 

Tiling Task 

 
 

Tables and Chairs Task 

 

Theater Seats Task 

 

Adapted from Rivera (2007) Adapted from DeMonty et al. (2018) Adapted from Alajmi (2015) 

 

Table 2. Intersections of Approach and Task. 

 Approaches 

 Numerical Constructive Figural Deconstructive Figural 

Tiling Cycle Nell, Tiling Suzy, Tiling Michelle, Tiling 

Chairs Cycle Nell, Tables and Chairs Suzy, Tables and Chairs Michelle, Tables and Chairs 

Seats Cycle Nell, Theater Seats Suzy, Theater Seats Michelle, Theater Seats 

Data Collection and Analysis 

We recruited seven prospective secondary mathematics teachers (PTs) for this research and 

assigned pseudonyms. Blake, Denise, and Taylor were each in the seventh semester of their 

undergraduate teacher education program. Ezra, Kristy, Max, and Sam were graduate students in 

a parallel teacher education program. All seven were enrolled in a joint math methods course that 

met once weekly over fourteen weeks. We implemented our simulations within three cycles of 
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activity. The first cycle (the Tiling cycle) began with a case analysis phase in which participants 

analyzed a narrative case of a teacher working with students on a figural generalizing task 

similar to -- but distinct from -- the Tiling task. In the anticipating phase PTs solved the Tiling 

task and anticipated how students might solve the task. In the simulation phase PTs each engaged 

in three interactive clinical simulations. In each simulation a single PT met one-on-one with an 

actor who was each trained to simulate exactly one of the three designated approaches to solving 

the Tiling task. The cycle ended with a reflection phase in which PTs reflected on the simulation 

experience, focusing on contrasting the simulated student approaches. We then iterated those 

phases for the Chairs cycle and the Seats cycle. 

We hypothesized, per Variation Theory, that PTs would notice differences in student 

approaches within each set of simulations and begin to develop more general, abstract 

understandings of each approach across sets of simulations. To test our hypothesis we reviewed 

transcripts of PTs’ statements during the anticipating and reflecting phases of our cycles. We 

posited that PTs’ knowledge of the range of student approaches to generalizing from figural data 

is evidenced by how each PT approaches generalizing and by the approaches that they anticipate 

others might use. Therefore, we classified each PT’s approach to solving each task and the 

approaches that PTs anticipated they would encounter in the simulation phase of each cycle, 

using the categories from Rivera and Rossi Becker (2008). We noted when and how PTs 

referenced Nell, Suzy, or Michelle when describing an anticipated approach. We compared 

across cycles to examine whether and how their anticipations of student approaches and their 

associations of those approaches to specific simulated students evolved across their experiences. 

Findings 

Graysay and Bermudez (2023) reported tentative findings suggesting that Kristy’s 

understanding of students’ approaches evolved from anticipating constructive figural and 

numerical approaches; to anticipating that the Tables and Chairs simulations would involve three 

approaches (numerical, constructive figural, and a third unspecified approach); to explicitly 

anticipating each approach for the Theater Seats simulations based on the names of the simulated 

students. Though Kristy recognized that Michelle’s approach would be different from the other 

two, Kristy explicitly expressed difficulty anticipating what Michelle’s approach would be. In 

this report we present additional cases to suggest that other PTs in the cohort demonstrated a 

similar trajectory, including difficulties anticipating Michelle’s approach. 

The Case of Max 

In the anticipating phase of the Tiling Cycle, Max worked with Ezra to share their individual 

solutions to the Tiling task. Ezra described a numerical approach, and Max described a 

constructive figural approach: 

Ezra: For pattern four, I did five plus four times four minus one, which got me 17. Pattern 

five, five plus four times five minus 1. Got 21. 

Max: That's an interesting way of looking at it, because I just was looking at like, “Okay, so 

there's four branches, and then the one in the middle.” 

In the anticipating phase of the Tables and Chairs cycle, Max asked whether the characters 

would shift approaches or take similar approaches in the second set of simulations compared to 
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the first set. We take this as evidence that Max had experienced the intended contrast across the 

three simulations in the Tiling cycle: 

Max: And we should expect them to be like similar like, like, we should expect Suzy to work 

out the problem in a similar way . . . in, like, a Suzy way? . . . She’s not going to all of a 

sudden do it the Nell way, right? 

DG: She's not going to do it in a way that anybody other than Suzy would. The Suzy 

character has a way of doing things. . . . There is a consistent through line. 

Max and Kristy anticipated two ways of solving the Tables and Chairs task. Max and Kristy 

described a constructive figural approach (adding front, back, and then adding sides), though 

Max had used a more numerical method: 

Kristy: What are all the ways this task can be solved? I would say I would say call our 

method the -- Call this method, I would call it the -- 

Max: Maybe adding front back and then adding sides. 

Kristy: Yeah. Adding front, back and sides. Only looking at the numbers. Looking at the 

ends as three and the middle as groups of two. And how did you think of it, like? 

Max: I looked at–– I just was looking at the number of tables. 

Kristy: You were just looking at the number. 

Max: I just counted first. I guess that's a way -- counting.  

Kristy: Yeah. Honestly. Which of these methods students would use? I could see them using 

any of these methods. Honestly, I think none of them are that weird. I do think that 

counting and the front back ends are going to be the most common. 

In anticipating the Theater Seats simulations, Max identified Michelle’s approach from the 

preceding cycles as the most challenging. Max had listened in on a conversation between Ezra 

and Sam about which character they found most difficult that began with a comment from Ezra: 

Ezra: I'm going to be honest, every single time, like, I'll think about what I can expect. And . . 

.  it usually is Michelle, where I have the most difficulties. And that's the one where I 

always have to slow down and like try doing a problem with them at the same time. 

This initiated a discussion between Ezra and Sam about which character was most difficult (see 

the subsequent case of Sam). The first author invited Max, who was listening in, to comment: 

DG: [Max], I know that you were listening, and it looked like you were agreeing with part of 

[the conversation]. 

Max: I, well, I was agreeing mostly [that] Michelle, Michelle usually comes out of left field 

for me. 

Though Max did not give evidence of anticipating Michelle’s way of approaching the Theater 

Seats task for the third set of simulations, we identified evidence that Max and Sam were able to 

clearly describe a deconstructive figural approach that they assigned to Michelle in response to a 

final, post-simulation activity. We provided PTs with the Polygon Problem (see Figure 2) and 

asked them to respond in pairs or triads, in writing, to the question, “How would each simulated 

student approach this task?”. 
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Figure 2. The Polygon Problem (Seago et al., 2004) 

 
In response, Sam and Max wrote: 

Nell – make a table comparing number of triangles to perimeter. Notice the difference is 

always 2. Perimeter = number of triangles + 2  

Suzy – Notice that adding one triangle adds two sides. Perimeter = n + 2  

Michelle – use that each triangle has three sides and subtract inner sides. Perimeter = 3n – 

2(n-1). 

We note that Max, in collaboration with peers, gradually developed understandings of how 

each of Nell, Suzy, and Michelle would approach figural generalizing tasks. After experiencing 

the three sets of simulations, Max and Sam anticipated and described numerical, constructive 

figural, and deconstructive figural approaches similar to those that they had experienced in their 

simulations with each character. 

The Case of Sam 

Sam worked with Taylor and Blake to compare approaches to the Tiling Task. The three PTs 

agreed on a constructive figural approach: 

Taylor: So I went by the, you know, there's going to be one in the middle each time. And 

then for pattern one, there was one on each of four sides. In Pattern Two, there are two on 

each of four sides . . . one plus four [times] n being the generalization. 

Blake: Me too, but I did it, I guess a little -- no, I guess I did it in the same way, nevermind.  

Sam: I did the exact same way, 1+4n. 

Sam worked with Ezra to anticipate student approaches to the Tables and Chairs task. The 

pair of PTs gave evidence that they anticipated numerical and constructive figural approaches: 

Sam: Alright what's another way? Can we think of another way.? Let's think of students like 

just counting, so I bet your way of just focusing on chairs is going to be something that 

they do. 

Ezra: [Yes] . . .  I can't figure it out! I thought I had it . . . and then you're right, it's asking for 

the tables and each pattern itself is on a table. It's four tables straight to four tables and 

that increases by one. 

Ezra: I wonder if there's a way we can do it where there's gonna be subtraction. Cause last 

time they threw me. . . . and there's gonna be three of them. So that means three different 

ways. 

Sam: Yeah, I don't know what else you're gonna get other than . . . two n plus two. 

Ezra: 2n + 2. And then I doubt they're gonna recognize the n plus three, where n is the 

number of tables, is two n plus three. 

Sam: Yeah, I feel like I'm just coming up with more complicated ways rather than more 

logical ways. 
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Sam and Ezra did not appear to associate each approach any specific simulated student. 

Though they understood that three different approaches would be simulated in the second round 

of simulations, they did not anticipate a deconstructive figural approach. 

Anticipating the Theater Seats simulations, Sam indicated that they found the constructive 

figural approach the more difficult to follow. In response to Ezra’s statement that Michelle is the 

most difficult, Sam responded with a different perspective: 

Sam: Suzy's always the hardest. 

Ezra: Really? You think Suzy is the hardest? 

Sam: Because she does everything in her head. 

Ezra: True. 

Sam: I literally tell Suzy like, write that down. Write that down. . . Sometimes it's more like 

me figuring out what Suzy is doing, because I'm trying to understand and Suzy's like, 

“well, this” and I'm like, “okay, like, I guess?” 

As we noted in the case of Max, Sam and Max collaborated to anticipate how each simulated 

student would respond to the Polygon Task. As a team, Sam and Max gave evidence that they 

were able to describe how each character would respond to that task with a numerical approach 

(Nell), constructive figural approach (Suzy), or deconstructive figural approach (Michelle). 

The Case of Ezra 

We have shared data related to Ezra’s anticipations of student thinking in the preceding cases. 

We note that in anticipating the Tiling Task, Ezra and Max expected two different constructive 

figural approaches. In anticipating approaches to the Tables and Chairs task, Ezra anticipated that 

the simulations would present three distinct approaches, but did not express what each of those 

approaches would be. Finally, in anticipating the Theater Seats simulations, Ezra noted that 

Michelle’s approach was the most difficult for them to understand. 

The Case of Taylor 

Taylor and Blake collaborated in the anticipating phase of the Tiling cycle. Taylor initially 

perceived the Tiling task constructively as one middle tile in each pattern, with a set of four tiles 

appended to each end of the “sides” of the pattern. Each subsequent pattern would have another 

set of four tiles appended to each end: 

Taylor: There's going to be one in the middle each time. And then for pattern one, there was 

one on each of four sides. In Pattern Two, there are two on each of four sides . . . . One 

plus four [times] n being the generalization. 

After Blake responded with their approach to the task, Taylor acknowledged the existence of 

multiple approaches: 

Blake: I guess I thought about it a little bit differently. Or probably the same, as I was like, 

“Yeah, of course, one in the center, and then you add a tile to each side of the squares.” . . 

. . 

Taylor: There are multiple ways of looking at it. . . . When you're looking at it individually, 

you're like, “This is the only one.” But . . . I'm sure there's a different one that we're all 

missing, or something. 

Moments later, Taylor anticipated the possibility of a numerical approach: 
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Taylor: I could see more like the plus four each time thing, like the numerical one. 

After the Tiling simulations, Taylor, Blake, and Denise worked together in the anticipating 

phase of the Tables and Chairs cycle. Taylor approached the Tables and Chairs task using a 

constructive figural approach, describing the pattern as “six plus two three [times for Pattern 2], 

four times [for Pattern 3]”. However, Taylor generalized using the pattern number. They then 

said, “I could also say it's the number of tables minus two that stick out front here.” Taylor then 

showed evidence that they attributed tabular approaches to Suzy’s or Nell’s characters: 

Taylor: I could also generalize this by saying it's the number of tables minus the two on the 

ends, times two. And then I get the [unclear]. I also said, you know, you're predicting 

[Suzy] or Nell will come at it with the table again. Try to just go with it. 

We cannot state with confidence whether Taylor’s mention of Suzy, then Nell represents a 

self-correction regarding the character name or an uncertainty about which character might 

simulate a numerical approach. However, Taylor provided evidence that they discerned a 

difference in Michelle’s approach -- specifically that Michelle’s approach was hard to anticipate:  

Taylor: With errors or misconceptions, we have, like, [using] pattern number instead of table 

number. Is there another misconception? Because [Michelle] came at us with a whole 

new way of looking at the problem. 

At this stage, Taylor approached both tasks using a constructive figural approach. Taylor 

attributed the use of tabular representation of mathematical insights to Nell or Suzy, without any 

further distinctions about how each simulated students might approach the task. 

The Case of Blake 

We have shared some of Blake’s contributions in each cycle in Taylor’s case. We note that in 

anticipating the Tiling Task, Blake anticipates two different approaches: numerical and 

constructive figural approaches. Blake also asserted that most students will approach the task 

numerically when she said: “I feel like most of them actually count though. Once we have that, 

because that's what I have most experienced seeing students do.” In anticipating approaches to 

the Tables and Chairs task, it was not clear whether Blake’s approach aligned with a constructive 

figural approach, though they claimed to have used a similar approach to Taylor’s. Blake also 

anticipated that Michelle would approach the task in a ”visual” way. Finally, in anticipating the 

Theater Seats simulations, Blake approached the task with a constructive figural approach and 

did not verbalize any clear distinctions between all three approaches. 

Interpretation and Implications 

Variation Theory predicts that the experience of contrast across our simulated approaches 

will support learners in the first stage of recognizing critical differences among approaches, and 

that experiencing consistency in approaches across multiple simulations will support PTs in 

developing general, context-independent understandings of multiple potential student approaches 

to figural generalizing. Our tentative findings in the case of Kristy (Graysay & Bermudez, 2023) 

were consistent with that prediction. The additional cases presented in this report provide 

empirical support for hypothesizing that each case may represent a generalized learning 

progression related to the experience of variation within and across each set of simulations. 

However, PTs found a deconstructive figural approach difficult to anticipate until after 
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completing the third set of three simulations. Those difficulties corroborate El Mouhayar and 

Jurdak’s (2013) findings and suggest that PTs need additional experiences to fully conceptualize 

the deconstructive figural approach. 

We propose two directions for future research. First, there is a need for further research to 

explore conditions under which our findings are generalizable to other PTs, other institutions, 

and other mathematical topics. Second, the goal of this design is to impact teachers’ practices by 

supporting their knowledge of different student approaches to generalizing. Our data and analysis 

do not offer insight into whether or how PTs’ experience impacted their ways of engaging with 

authentic students. There is a need for further research to examine whether and how experiencing 

systematic variation across simulations impacts the ways that PTs interact with authentic students 

during authentic generalizing. 
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In this ongoing study, we continue to look for opportunities to document mathematical empathy 

in the discourse of Preservice Elementary Mathematics Teachers. Using a framework for 

mathematical empathy, we asked: How is empathetic comprehension visible in discourse about 

mathematical definitions? and How do PSETs respond to public displays of mathematical 

empathy? Preliminary results indicate that empathetic practice is robust, but difficult to inspire 

in others. We position mathematical empathy at the intersection of teacher beliefs and 

mathematical knowledge for teaching with implications for teacher preparation programs. 

Keywords: Preservice Teacher Education, Affect, Emotion, Beliefs, and Attitudes  

Background 

Although definitions serve as foundational elements in mathematics, there exists a scarcity of 

agreed-upon practices regarding their construction (Torkildsen et al., 2023). Understanding that 

multiple definitions may exist for the same mathematical concept poses challenges for preservice 

teachers (Linchevski et al., 1992). When we view of mathematics as a humanistic discipline 

where mathematics is socially constructed and personal values influence our evaluation of 

results, it is important for instruction to be participatory. Definitions, in this light, transcend mere 

mathematical tools; they become teaching instruments facilitating the conveyance of perceived 

meaning to others. Recognizing meaning as a negotiated construct grants authority to the 

knower, even as external sources are critically evaluated (Langer-Osuna, 2017). 

Teachers acknowledge that the selection of definitions in mathematics classrooms hinges 

upon pedagogical context (Winicki-Landman & Leikin, 2000). These authors also posit that 

factors such as curricular approaches, classroom demographics, or the pursuit of clarity and 

elegance may influence this choice. In order to cultivate a classroom environment conducive to 

making informed contextual decisions, teachers must be aware of and able to comprehend the 

perspectives and mathematical thinking of their students; teachers need to see the work of 

teaching as an empathetic practice. This perspective serves as the focal point of our discussion. 

Mathematical Empathy 

In a recent study (Cox et al., 2021), we employed a definition of mathematical empathy as 

"the ability to comprehend another person's ideas and the true meaning or purpose behind them, 

seeking to utilize the other person’s frame of reference” (Araki, 2015, p. 122). Upon reflection, 

we question the use of “true meaning” in this definition. We would like to make the learner’s 

identity and intention more explicit in the interaction, retaining their expertise as primary. Rather 

than centering the expertise of the listener or the transference of expertise or knowledge, we 

focus instead on the willingness of the listener to be transparent and cede mathematical expertise 

to the learner. This is akin to how showing empathy does not grant us the right to claim the 

emotional experiences and perspectives of those we seek to understand. Therefore, we now 
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define mathematical empathy as the willingness to cede mathematical expertise to others and see 

them as someone from whom to learn.  

Teachers engaging in empathetic practice require both an awareness and acceptance that 

multiple mathematical truths coexist, alongside possessing the pedagogical content knowledge 

necessary to comprehend these truths. This paper aims to provide a succinct overview of a study 

exploring the capacity for mathematical empathy among preservice elementary mathematics 

teachers (PSETs). Through initial analysis, we identified two key empathetic practices: 

empathetic awareness and empathetic comprehension (Cox et al., 2021, 2024). Empathetic 

awareness indicates that the speaker believes that there is multiplicity in mathematical 

perspectives. Awareness can emerge as a belief that others see things differently than we do, or 

that students will have different mathematical backgrounds or experiences that are worthy of 

attention. Empathetic comprehension indicates the speaker can comprehend from someone else’s 

mathematical perspective. 

While instances of empathetic awareness were abundant in the data, observations of 

empathetic comprehension were comparatively rare. This prompted us to consider whether an 

expanded dataset could afford more opportunities to investigate this practice. We also pondered 

how participants might respond to their peers' public demonstrations of empathy. This led us to 

the following research questions: (1) How is empathetic comprehension visible in discourse 

about mathematical definitions? and (2) How do PSETs respond to public displays of 

mathematical empathy? 

Methodology 

To answer these questions, we expanded our initial data set. We included initial reflections 

where PSETs were asked to reflect on an instructional sequence and their responses to their 

classmates’ writing.  

Instructional Sequence: Defining in a Collaborative Space  

Seventy-one participants were recruited from two sections of a geometry course for PSETs 

(grades PK-3). PSETs explored dynamic quadrilaterals constructed with interactive geometry 

software (IGS) in a face-to-face environment. The PSETs actively participated in tasks aimed at 

measuring, describing, and comparing quadrilaterals to support the task of formulating 

definitions. Initially, the PSETs collaborated in small groups during the class session, then 

reconvened as a whole class to collectively create definitions for quadrilaterals, kites, 

parallelograms, rectangles, rhombuses, squares, and trapezoids. 

We wanted to capture the firsthand experiences of PSETs creating geometric definitions, 

while also exploring how this experience might shape their perceptions of the definition's role in 

a primary education classroom. In order to help PSETs frame their comments as both learners of 

mathematics and future teachers of mathematics, we first asked them to individually read 

Keiser’s (2000) The Role of Definition. The article was chosen as a catalyst for reflection on this 

experience because it suggested that early presentation of formal definitions can curtail thinking 

in middle grades classrooms and argued for student-generated, fluid definitions based on concept 

imagery (Tall & Vinner, 1981) relevant to classroom learning. 

Data Collection 

Following the in-class IGS activity, the defining discussion and the assigned reading, we 

asked our PSETs to respond to the following prompt in an online discussion board: “After 
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reading the article, The Role of Definition, what new thoughts do you have about the 

conversations we had in class about defining quadrilaterals? How about using definitions with 

children?” PSETs understood that both their peers and instructor would review their reflections, 

with the instructor actively engaged in the discussion. The assignment carried a grade based 

solely on completion. PSETs were unable to view their classmates' reflections until after 

submitting their own. Upon completing their reflections, PSETs gained access to classmates' 

submissions and were encouraged to engage in an online discussion regarding the shared 

reflections. The data comes from the initial posted reflections (n=71) and responses (n=145). 

Framework: Practicing Mathematical Empathy  

The initial posted reflections (n=71) were analyzed using grounded theory (Vollstedt & 

Rezat, 2019) to build and then apply a framework by which to give nuance to what we learned 

about PSETs’ beliefs about the purpose, nature, and origin of mathematical definitions. As we 

read, we began identifying instances where PSETs expressed something similar to empathy in a 

mathematical context and coded these practices empathetic awareness and empathetic 

comprehension (Cox et al., 2021, 2024). 

Results 

There were twenty-four initial reflections that were coded for evidence of either empathetic 

awareness (EA) (n=22) or empathetic comprehension (EC) (n=3). One of these initial reflections 

was coded for both EA and EC, so the total number of initial reflections showing empathy was 

24. We gathered all of the responses (n=25) that these initial reflections garnered from classmates 

and applied the framework (see Table 1). 

 

Table 1: Analysis of Responses to Initial Reflections coded for Empathetic Reflection 

 

Responding to expressions of: 

Total 

Responses 

(n=25) 

Responses 

showing EA 

(freq.) 

Responses 

showing EC 

(freq.) 

Empathetic Comprehension 2 0 (0%) 0 (0%) 

Empathetic Awareness 23 8 (34.8%) 0 (0%) 

 

Of the 25 responses, few showed evidence of empathetic practice and these were exclusively 

empathetic awareness. There was no evidence of empathetic comprehension in the responses. 

Further, initial reflections that showed empathetic comprehension only inspired two responses, 

and neither showed evidence of empathetic practice at all. 

Eight responses, or roughly one-third, showed evidence of empathetic awareness. This is 

approximately the same frequency of empathy as in the set of initial reflections (24/71 = 31.0%). 

Consider the following exchange sparked by Lily’s public display of empathetic awareness. Note 

that Natashia showed an empathetic stance in her initial reflection, but this was new for Beckett.  

Lily:  I enjoyed doing this in class because it gave a broader perspective of how this 

could be set up in a classroom setting. It is also important to hear what student’s 

peer’s ideas are about a definition to think about them in a different way and gain 

a broader understanding.  
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Beckett:  I agree with what you are saying, especially the last sentence. I concur that it is 

important understand your peers perspective 

Natashia:  I agree with that as well. Allowing children to come up with their own definition 

makes way for their peers to learn how others think as well. For example, at the 

beginning of the semester when we had to draw the [quick draws] from memory, I 

found it helpful when our peers discussed how they memorized the [quick draws] 

versus how I may have. I really enjoyed that activity. 

Natashia’s response also referenced a Quick Draw activity from the first days of class. The 

learning objective from this assignment was to “see mathematics through someone else’s’ eyes.” 

That this activity is referenced in a response where Natashia is honoring her peers’ perspectives 

is an important piece of context.   

Inspired by Beckett, we went back to compare the empathetic stances taken by responders on 

their initial reflection. We found that authors who showed empathy in their responses were three 

times more likely than not to have also shown empathy on their initial reflection, and those who 

did not show empathy in their responses were three times more likely not to have shown it in 

their initial reflection (see Table 2).  

 

Table 2: Empathy across Initial Reflection and Responses 

 

 Initial Reflection 

 Empathetic Non-Empathetic 

Empathetic Response 6 2 

Non-Empathetic Response 4 13 

Implications and Conclusion 

In this follow-up study, we asked how is empathetic comprehension visible in discourse 

about mathematical definitions. While analysis is ongoing, we have not found any additional 

instances of empathetic comprehension.  

We also asked how PSETs respond to public displays of mathematical empathy. Summarized 

in Table 2, we are able to say that PSETs do not necessarily adopt an empathetic stance in 

response to a public display of empathy. Overall, 32% of all responses to empathetic displays 

showed evidence of empathy themselves. This mirrors the frequency of empathy in the initial 

reflections. Even though empathy does not seem to inspire more empathy, we do believe that an 

empathetic stance is robust; PSETs who demonstrated an empathetic stance in their initial 

reflection maintained that stance when responding to the thoughts of others. 

The findings of this study, preliminary though they may be, are important. We are interested 

in identifying pivotal experiences for PSETs that position them as authors and mathematical 

authorities and believe that there are many ways to go about that work. As we reflect (as 

instructors) on the episodes from which our data came, we posit that there is a hurdle to 

overcome before teachers are able to adopt empathetic stances and thus, teaching practices. A 

teacher (or PSET) who believes in the sanctity and external completeness of school mathematics, 

(“someone already knows this, I’m just learning it”) may struggle to cede mathematical expertise 

to children, even as they cheer achievements and mark progress toward learning outcomes.  
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This study indicates that we can overcome that hurdle with careful attention to creating 

mathematical opportunities for teachers to claim personal expertise. We support opportunities for 

PSETs to encounter or experience episodes of teaching that position teachers as learning 

alongside students. This might include open-ended problem solving with multi-age groups. It 

might also include exposure to situations where children know more than the adults in the room. 

The research on math circles might be leveraged to further imagine how we come to learn how to 

learn from others. We see great potential in using these types of experiences within teacher 

preparation programs to document and support emergent empathetic practices. 
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In elementary teacher education, there has been increasing interest in making connections 

across disciplines (e.g., Muhammad et al., 2021; Prough et al, 2022); however, there does not 

seem to be clarity on what we mean by connections. This poster will share a conceptual 

framework of types of connections. 

The Case Study: Developing the Framework 

This framework was developed as part of a case study of the connections between 

mathematics and literacy by elementary teacher candidates (TCs) who were taking concurrent 

mathematics methods and literacy methods courses as a cohort. Of the 18 TCs in the cohort, 13 

participated in the case study, which included observations and video recordings of class 

meetings, collection of coursework, and one-hour focus group interviews with 6 of the 

participating TCs. 

The framework was developed by working iteratively with the data from the case study and 

the scholarly literature. After initial open coding of the data and the literature, I used the most 

significant or most frequent codes to construct larger categories that synthesized the themes in 

the data and literature, using the constant comparison method (Charmaz 2014).  

The Framework: Types of Connections 

I identified three main types of connections made by the TCs in the case study and by 

scholars in the literature: (a) curriculum integration, (b) language as a basis for learning 

mathematics, and (c) similarities in teaching and learning literacy and mathematics. 

Curriculum integration includes any learning models or lesson structures that draw on the 

unique ways of knowing from more than one discipline. Interdisciplinary learning, thematic 

teaching, and project-based learning are examples of this type of connection (e.g., Parker et al, 

2012; Zhou & Kim, 2010). 

Language as a basis for learning mathematics includes engaging with mathematical texts 

(e.g., Beaudine, 2022), using mathematical language to communicate ideas (e.g., Armstrong et 

al., 2018), using writing to make sense of mathematical ideas (e.g., Caputo, 2015), and 

mathematizing read-alouds of children’s books (e.g., Hintz & Smith, 2022). 

Similarities in teaching and learning can include learning goals (e.g., constructing arguments 

with evidence; Cheuk 2012), thinking skills (e.g., monitoring for sense; Halladay & Neumann, 

2012), or instructional practices used in both disciplines (e.g., rough-draft thinking; Jansen, 

2020). 

Understanding the types of connections that can be made between literacy and 

mathematics can help elementary teachers, and teacher-educators with elementary backgrounds, 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1067 

 

to leverage the unique strength of multidisciplinary knowledge to teach mathematics in engaging 

and conceptually-oriented ways. 
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SimulaTE is studying teaching simulations as formative assessments of pre-service teachers’ 

(PST) practice of eliciting and interpreting students’ mathematical thinking. Preparation and 

protocols that promote reliability and validity of the simulations as formative assessments will 

enhance their effectiveness and generalizability. Teacher educators who use the simulations 

document each PST’s performance to generate feedback for the PST in nine categories, arising 

from a decomposition of the teaching practice into specific component skills or actions. A series 

of coordinated validation studies include research to determine if the nine categories are 

distinguishable through the use of the simulation assessments, and can benefit from attention 

beyond other experiences PSTs have in their teacher preparation programs. 

Keywords: Assessment, Mathematical Knowledge for Teaching, Preservice Teacher Education, 

Teacher Educators 

Framing and Purpose of the Study 

Ideally, teacher preparation develops candidate’s skills and abilities for ambitious instruction 

that promotes student learning and counters inequities in outcomes. We ground our work in the 

understanding that frequent opportunities to engage in core practices of teaching, with formative 

feedback, can develop the knowledge, skills, and dispositions necessary for nurturing young 

learners of mathematics. Formative assessment provides pre-service teachers (PSTs) with 

feedback to improve their practice (Grossman, 2010), which is considered crucial for teacher 

preparation (Darling-Hammond et al., 2005; AMTE, 2017). It requires teacher educators to see 

teaching practices in action, yet traditional field settings afford neither frequent accessibility nor 

opportunities for deliberate work on specified facets of teaching. Simulations of mathematics 

teaching practices are an approximation that can provide early, frequent, and substantive 

formative assessment opportunities while engaging PSTs in particular facets of teaching. 

PSTs begin preparation with views on teaching that need to be surfaced and, in some cases, 

challenged (Boerst et al., 2020; Shaughnessy & Boerst, 2018; Shaughnessy et al., 2020). Work 

initiated at the University of Michigan has produced multiple simulations to engage and refine 

PSTs’ practice of eliciting and interpreting students’ mathematical thinking. By revealing PSTs’ 

knowledge, skills, and dispositions and providing immediate feedback, the simulations are 

designed to facilitate growth (Shute, 2008; Hattie & Timperley, 2007). This study’s dual 

purposes are to investigate the decomposition of the teaching practice into measurable 

components for providing feedback, and to consider whether these skills or actions can benefit 

from concerted attention beyond other experiences typical to teacher preparation programs. 
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This study is one of a series of studies generating evidence regarding validity arguments 

(AERA et al., 2014; Kane, 2001; 2013) for using the simulations as formative assessments. It 

focuses on two sources of validity evidence (AERA et al.): internal structure (specifically test 

component interrelationships) and relations to other variables. Initial evidence for two specific 

claims of the validity argument are addressed here: (1) the nine component skills/actions of the 

teaching practice can be measured distinctly through simulation performances so that feedback 

can be specifically targeted, and (2) PSTs’ other experiences in teacher preparation do not fully 

develop the component skills/actions of the teaching practice.   

Teaching Simulations as Formative Assessments 

Using the teaching simulations as formative assessments involves three interacting roles: 

• The PST prepares for, engages in, and debriefs what they learn via the teaching practice 

of eliciting and interpreting student thinking with a Simulated Student. 

• The Simulated Student is an adult prepared to follow a provided profile and to respond in 

specific ways to anticipated questions and prompts. (Student role) 

• The Teacher Educator (TE) documents the PST’s performance and provides formative 

feedback based on the performance. (Proctor role) 

Figure 1 illustrates the full formative assessment process. The underlined components in the 

figure indicate the parts of the process investigated in this part of the validity studies. 

 

 
 

Figure 1: Structure of Teaching Simulations as Formative Assessments 

 

The tasks in the simulations represent core content of elementary mathematics. The student 

work and specifications of the student role are evidence-based recreations of student thinking 

about that content (Shaughnessy et al., 2012). Figure 2 illustrates key elements of an assessment. 

 

PST prepares 
to talk with  the 

student by 
analyzing their 
written work

PST poses questions to the student to 
learn about their process and 

understanding

The student is an adult who is trained 
to take on the role of the student

The TE documents the performance, 
generating formative feedback

The TE interviews the 
PST about their 

interpretation of the 
student thinking

TE documents the 
performance, 

generating formative 
feedback

TE provides 
formative 

feedback to the 
PST on their 
eliciting and 
intepreting 

practice
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Figure 2: Excerpts from a Sample Teaching Simulation Protocol 

 

The content of the student work in the assessments was purposefully selected to cover 

mathematics concepts that PSTs are expected to have a strong understanding of and to provide 

insight into their capabilities. The simulation protocols were designed to reflect non-traditional 

approaches to solving mathematical problems or student thinking that results in an “incorrect” 

answer. The four simulation assessments used in this study included: 

• Column Addition (CA): As shown in Figure 2 

• Common Denominator: Comparing fractions, with an error in creating an equivalent 

fraction to compare using common denominators 

• Common Numerator Correct: Comparing fractions, creating an equivalent fraction to 

compare using common numerators 

• Expand and Trade: Multi-digit subtraction by writing quantities in expanded form and 

making trades among values before subtracting by place value, with an error in recording 

the value of a traded quantity 

In teaching, “teachers pose questions or tasks that provoke or allow students to share their 

thinking about specific academic content in order to evaluate student understanding, guide 

instructional decisions, and surface ideas that will benefit other students” (TeachingWorks, 

2024). The work of eliciting student thinking is conceived as: (a) formulating and posing 

questions to elicit and probe student thinking; (b) listening to and interpreting how students 

respond; (c) developing additional questions or tasks to pose; and (d) making sense of what 

students know and can do. Interpreting students’ thinking is integral to eliciting, but is a distinct, 

overarching practice relying on broader information. It is conceived as: (a) sampling from 

evidence of student thinking and (b) using insight to articulate inferences grounded in the 

evidence. These practices take place within and across lessons, and in longer cycles of teaching 

that depends on learning about students to drive instruction (TeachingWorks, 2024).  

Drawing on these conceptualizations, the simulation assessment situation and its 

documentation are based on a the following decomposition of the teaching practice into nine 

component skills or actions. 

Mathematics topic: Multi-digit addition  

• The student’s process: The student is using the column addition method for 
solving multi-digit addition problems, the student is working from left to right. 

• The student’s understanding of the ideas involved in the 
problem/process: The student has conceptual understanding of the procedure 
including why combining is necessary (and when and how to combine).  

• Other information about the student’s thinking, language, and orientation 
in this scenario: The student talks about digits in columns in terms of the place 
value of the column. The student uses the term “combining” to refer to trading/carrying/regrouping. 

Sample PST prompts Sample Responses 

What did you do first?” “I added the tens: 2 + 3 + 1 and I got 6.” 

“How did you get from 623 to 83?”  “I had to combine the 6 and the 2.” 

“Why did you need to combine those numbers?” “Because they’re both tens.” 
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• Eliciting Process (EP): Uses questions or prompts to the student regarding their 

process for solving the task 

• Interpreting Process (IP): Describes the student’s process for solving the task 

• Probing Understanding (PU): Uses questions or prompts to the student regarding their 

understanding of the mathematics of their process 

• PST-Generated Interpretations of Student Understanding (PGSU): Spontaneous 

description of the student’s understanding of the mathematics of their process 

• Prompted Core Interpretations of Student Understanding (PCSU): Prompted 

description of core elements of the student’s understanding of the mathematics of 

their process 

• Attending to Student Thinking (ST): Asking questions about the written work and 

attending to what the student says in response to questions 

• Applying Mathematics Knowledge for Teaching (MKT): Generating a task that can 

be used to confirm PST’s understanding of the student’s process 

• Using Mathematics Knowledge and Skill (MKS): Applying the student's process to a 

new example, Generalizing about the mathematics/reasoning of the student’s process  

• Respecting the Student and Their Thinking (RS): Interacting with the student, and 

describing their work in ways that respect them as learners/knowers/doers of 

mathematics 

 

To ensure assessment evidence about these specific components arises, the simulated student 

will disclose aspects of their process and understanding only when the PST deliberately prompts 

for it. Similarly, the PST is asked during the debriefing interview to recount very specifically 

what they learned about the student’s process and understanding, supporting their claims with 

evidence they gathered. To further assess their application of mathematical knowledge for 

teaching and use of mathematics knowledge and skill regarding the targeted content, the PST is 

also asked to generate a problem to confirm what they learned about the student’s process, and to 

explain the mathematics ideas undergirding the student’s process and understanding. An online 

tool with protocols specific to each assessment (about 75 items) supports the teacher educator in 

documenting this fine-grained information. This documentation generates a level of performance 

(1-4) and formative feedback for each of the nine components. The TE can then use the 

performance levels and feedback to guide a discussion with the PST about areas of strength and 

potential improvement. The nine components are: 

Study Methods and Participants 

Data Collection 

Data to address the two claims of the validation argument were collected between April 2023 

and March 2024. Assessments were administered to 200 PSTs at 14 higher education institutions. 

Demographic data on participants are shown in Table 1.  

 

Table 1: Characteristics of the Participants  
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Characteristic (N) Percent of Respondents 

Educational Attainment (199)  

     Undergraduate student 96 

     Undergraduate degree in education or STEM discipline 4 

Student Teaching or Internship (199)  

     Had not yet begun student teaching or internship 80 

     Was currently doing student teaching or internship 20 

Sex (199)  

     Female 93 

     Male 5 

     Non-binary/non-conforming 1 

     Prefer not to answer 1 

Hispanic or Latino (199)  

     Yes 13 

     No 87 

 

Race† (199) 

 

     White 87 

     Asian or Asian American 4 

     Black or African American 3 

     American Indian, Native American, or Alaskan Native 1 

     Native Hawaiian or Pacific Islander 1 

     Prefer to self-describe 1 

     Prefer not to answer 1 

Age (184)  

     Traditional undergraduate-aged student (born 1998 to 2005) 96 

     Non-traditional undergraduate-aged student (born 1980 to 1997) 4 

† Respondents were allowed to select more than one option; therefore, percent of 

respondents may add to more than 100. 

 

Seven researchers, including authors 1, 2, and 4, prepared to administer the four assessments 

by learning the student and proctor roles and documenting performances in sample videos. The 

research team established reliability in both administration and documentation (Boerst et al., 

2023; Heck et al., 2023). Researchers were assigned in multiple pairings to conduct site visits for 

data collection. A pair administered two assessments to each PST, alternating to distribute who 

served in the student and proctor roles. Each PST completed two of the four assessments, 

purposefully assigned to ensure equal distribution of assessments. Column Addition was 

administered to 90 PSTs, Common Denominator to 106, and Common Numerator Correct and 

Expand and Trade to 102 each.  

Researchers’ documentation generated a level of performance (1-4) for each component, 

along with potential feedback for discussion. Descriptive results for performance level scores on 

the nine component skills/actions are presented in Table 2. For these studies, feedback was not 

shared or discussed with participants to ensure it did not influence their performance on the 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1073 

 

second assessment they completed.  

 

Table 2: Component Performance Level Scores 

 

Skill/Action Min Max Mean SD 

EP 1 4 2.95 1.03 

IP 1 4 3.12 0.82 

PU 1 4 1.85 0.99 

PGSU 1 3 1.88 0.79 

PCSU 1 4 2.58 1.12 

ST 1 4 3.01 0.22 

MKT 1 4 3.49 0.89 

MKS 1 4 2.89 1.19 

RS 1 4 3.79 0.55 

  

Data Analysis, Results, and Findings 

The first claim of the validity argument: the nine component skills/actions of the teaching 

practice can be measured distinctly, was examined in this study using the levels of performance 

that the documentation tool generates. A lack of correlation among the nine scores would offer 

evidence supporting this claim. Table 3 summarizes, for the 36 possible combinations of 

components, the correlations that were statistically significant. All were positive. 

 

Table 3: Significant Correlations Between Components by Simulation Assessment 

 

Comp. EP IP PU PGSU PCSU ST MKT MKS 

IP CA CD        

PU         

PGSU CD CN CD CN CA CN ET      

PCSU CN CD CN CA CN ET CA CD CN ET     

ST CA CN        

MKT  CD CN  CA CA    

MKS CA CN CA CD CN ET CD CD CN CA CD CN  CA CD  

RS   CD      

 

No significant correlations were found for 17 combinations of components on any of the 

assessments, and 5 other combinations produced a significant correlation on only one 

assessment.  

Significant correlations (ranging from 0.20 to 0.55) were found for at least one combination 

involving each component. However, the most common significant correlations involved one of 

four components: IP (5 combinations of components, 12 instances across assessments), PGSU (6 

combinations, 14 instances), PCSU (6 combinations, 14 instances), or MKS (6 combinations, 14 

instances). In fact, only two other combinations—EP with ST in two instances and PU with RS 
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in one instance—produced significant correlations. 

Overall, these results provide mixed evidence regarding the claim that the nine components 

can be measured distinctly via the assessments. The extent to which these components are related 

has implications for targeting feedback to inform improvement on each component. Four 

components appear to be related to multiple others, suggesting that providing feedback on these 

components may be especially important for developing capabilities with the overall practice. 

Moreover, feedback on these four components might become especially useful by discussing 

their relevance to other components or the overall practice. 

The second claim of the validity argument:  PSTs’ other experiences in teacher preparation do 

not fully develop the component skills/actions, was examined by predicting performance levels 

for each component using information PSTs reported about their progress in their programs. 

Specifically, the analysis considered their concurrent enrollment (N=96) or completion (N=98) of 

a mathematics for teaching (MfT) course, as well as their completion of other mathematics 

courses that are foundational (e.g., college algebra; N=89) or advanced (e.g., calculus; N=108). It 

also examined their concurrent or completed engagement in a student teaching placement 

(N=40).  

Table 4 summarizes the results of a set of HLM analyses (scores nested within PSTs) 

predicting the performance level score for each component using data on PSTs’ experiences in 

their preparation programs. Since PSTs were assigned to different pairs of assessments, dummy 

codes were also included to control for which assessment produced each performance level 

score. A lack of predictive association between PSTs’ experiences and the performance levels on 

the simulation assessments offers initial supporting evidence for this claim.  

 

Table 4: Positive and Negative Effects of PST Experiences on Components  

 

Experiences EP IP PU PGSU PCSU ST MKT MKS RS 

Foundational Math        Neg. Neg. 

Advanced Math          

          

No MfT   Neg.  Neg.     

Enrolled in MfT    Neg.   Neg.   

Completed MfT          

          

Student Teaching       Neg.   

 

For three of the nine component skills/actions, PSTs’ experiences in teacher preparation 

programs did not predict performance level scores. Variations in performance level scores for 

five of the other components were each predicted by only one type of experience. The remaining 

component was predicted by two experiences. PSTs who were neither concurrently enrolled in 

nor had completed a Mathematics for Teaching course with PU (respectively, -0.86 points, 

p=.008; -1.04 points, p=.002) and PCSU (respectively, -1.27 points, p<.001; -1.39 points, 

p<.001) suggests that participation in such courses contributes to development of these 

components of the practice the simulation assessments address. However, very few students who 
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participated in this study (N=5) fell into this category. It is likely that such courses are an early 

requirement in most elementary education programs, so when participants were considered 

eligible for this study, they were already enrolled in an MfT course. Two other components 

showed predicted differences in performance levels between students concurrently enrolled and 

those who had completed MfT courses: PGSU (-0.18 points, p=0.048) and MKT (-0.24 points, 

p=0.013). To the extent that this smaller distinction represents differences in progress through 

teacher preparation programs, the lack of prediction of performance level scores on most 

components between these two conditions lends support to the validity claim. Further research 

involving PSTs who have not yet enrolled in MfT classes would be worthwhile. 

PSTs’ completion of a Foundational mathematics course predicted lower performance level 

scores on MKS (-0.45 points, p=.010) and RS (-0.13, p=0.036). Rather than calling the validity 

claim into question, this negative association may suggest that students whose mathematics 

coursework in college includes foundational content are likely to need more help in using 

mathematics knowledge and respecting student thinking in their teaching practice. Further 

research to pinpoint why some PSTs complete these courses and whether it signals something 

about their general mathematics knowledge would be informative. 

PSTs’ concurrent engagement in student teaching predicted a lower performance score on 

MKT (-0.27 points, p=.025). Again, this negative association does not challenge the validity 

claim. Rather, it might suggest a need to further support PSTs in making use of mathematics 

knowledge for teaching when they are student teaching. Additional longitudinal research would 

be informative to understand if entry into student teaching somehow affects PSTs’ ability or 

propensity to apply MKT in the practice of eliciting and interpreting student thinking.  

On the whole, these results provide initial evidence that experiences in teacher preparation 

are not likely to fully develop PSTs’ abilities in the teaching practice of eliciting and interpreting 

student thinking. By extension, the simulation experience and associated feedback on the 

component skills/actions appears to offer a unique opportunity to support PSTs in more fully 

developing their capabilities with this practice. 

Conclusions and Next Steps 

The mathematics preparation of elementary teachers should develop their capabilities to 

enact teaching practices that support young learners’ growth in mathematical knowledge, 

fluency, and disposition. Coursework and field placements that traditionally make up the bulk of 

PSTs’ experiences in teacher preparation provide opportunities for PSTs to develop foundational 

knowledge of mathematics and pedagogy and to learn about and engage in these practices to an 

extent. They do not offer early, frequent, and structured experiences for PSTs to apply what they 

are learning in low-risk, high-feedback settings to support improvement in their capabilities. 

Simulations designed for engagement in teaching practices not only offer early, frequent, and 

structured experiences, but provide a measure of authenticity of PSTs’ performance of the 

practices and opportunities for teacher educators to give immediate feedback to inform learning 

and improvement (Boerst et al., 2020; Darling-Hammond et al., 2005; Grossman, 2010). 

Teaching simulations are resource intensive to develop and time intensive to use for 

formative assessment in teacher education. Strong validity must undergird their use to justify 

these investments. Kane’s (2001; 2013) recommendations for developing and testing a validation 

argument require that the specific claims underlying the processes for administering assessments, 
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generating results, and using results be stated and studied. Validation, in this view, is an ongoing 

process of amassing evidence to support or refute and, if necessary, refine these claims. 

Prior work has demonstrated that preparation and support provided in the assessment 

materials result in consistent enactment of the simulations (Boerst et al., 2023) and reliable 

documentation of performances (Heck et al., 2023). In this study, the generated results were 

examined to test two additional validity claims, that (1) the component skills/actions of the 

teaching practice can be measured distinctly, and (2) PSTs’ other experiences in teacher 

preparation do not fully develop these skills/actions. Analyses of data collected from PSTs in 

multiple teacher education programs on four different simulation assessments provided evidence 

supporting both claims, along with some discrepant evidence to be further studied. 

Next steps in this validation work include further study of the first claim through an 

exploratory factor analysis of the items used to generate the component performance level 

scores. These data will also support analyses to test two additional claims addressing the 

response process as a source of validity evidence (AERA et al., 2014), within the full validation 

argument. First, the distribution of the four assessments across PSTs in various programs and 

their planned administration by multiple researchers serving in the student and proctor role will 

support a variance components analysis to examine the claim that the performance levels scores 

are mainly due to variations in the performance and not due to the effects of the specific 

assessment or the individuals playing the student and proctor roles. Second, data from this 

process were gathered from back-to-back performances on simulation assessments without 

sharing or discussing the generated feedback in between. Other data gathered within the larger 

project offer cases of the same pairs of assessments being administered with sharing and 

discussion of the generated feedback. These two situations will be contrasted to study the claim 

that engaging with the generated feedback promotes learning and improvement in performance. 
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We report partial analysis of a survey of instructors of undergraduate geometry courses for 

teachers, attending to how they described the nature of the mathematical work they engage 

students in and the opportunities to learn that students had. Analysis of latent construct 

correlations showed that engagement of students in inquiry into geometry was significantly 

associated with opportunity to learn about mathematical definitions and conjecturing and 

engagement of students in the study of geometry was significantly associated with opportunity to 

learn about axioms and about history of geometry. Latent variable means comparisons showed 

group differences in claimed opportunity to learn between instructors whose highest degree was 

in mathematics and those whose highest degree was in mathematics education.  

Keywords: geometry, teacher knowledge, undergraduate instruction, inquiry, opportunity to 

learn, survey 

Objectives 

We report on an analysis of survey responses from instructors of geometry courses for 

teachers (GeT) focusing on the curricular choices of instructors. Herbst et al. (2024a) reported on 

two distinct sets of characteristics of the mathematical work undergraduate geometry students 

may be engaged in: inquiring into geometry and studying geometry. Here, we investigated 

whether the type of mathematical work promoted could predict the topics stressed in different 

classes by looking into correlations between the former and the latter sets of variables and 

whether the field of highest degree attained by instructors could predict those curricular choices.  

Literature Review 

The mathematical preparation of teachers is an important component of secondary 

mathematics teacher preparation. This is so not only because teachers need to know the subject 

matter they will teach but also because the work of teaching, particularly when teaching for 

understanding, includes organizing the mathematical environments in which their students will 

learn and making sense of how students demonstrate their understanding (Manouchehri, 1998). 

Among the mathematical knowledge teachers need is the capacity to organize and manage 

mathematical work (Kuzniak & Nechache, 2021).  

What knowledge to aim for and what mathematical work to engage prospective teachers in 

mathematics courses for teachers are important decisions instructors need to make. Though 

classically secondary mathematics teachers took courses equivalent to the mathematics major, 

the value of this choice has been questioned (e.g., Proulx & Bednarz, 2008). For a while, 

mathematics education researchers, mathematicians, and mathematics teacher educators have 

taken an interest in improving the mathematical preparation of teachers (Bass, 1997; Martin et 
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al., 2020; Wasserman et al., 2023). This interest has been demonstrated in several ways. The 

promotion of inquiry-based learning in undergraduate mathematics courses has included 

mathematics courses for teachers demonstrating some learning of mathematical knowledge for 

teaching (see Laursen et al., 2016; Yoshinobu & Jones, 2013). Also, design research approaches 

to the teaching of mathematics courses for teachers have endeavored to connect the content of 

advanced mathematics courses with occasions of use in school mathematics teaching 

(Buchbinder & McCrone, 2023; Wasserman, et al, 2022). And communities of mathematics 

teacher educators and mathematicians have worked together to develop shared ownership of the 

problem of mathematical preparation of teachers as well as create curricular resources (e.g., 

CBMS, 2001, 2012; Martin et al., 2020; Senk et al., 2004; Usiskin et al., 2003).  

Of particular interest to our study is the work of GeT: A Pencil, a community of instructors of 

geometry courses for secondary teachers (including mathematicians and mathematics educators) 

who have been working together since 2018 to improve those courses (see getapencil.org; An et 

al., 2023, 2024). An outcome of the work this group has been a consensual set of 10 essential 

student learning objectives (SLOs) that are meant to be a common core that diverse curriculum 

materials and pedagogical strategies could aim to align with. These 10 student learning outcomes 

are presented in Figure 1.  

 

SLO Description SLO Description 

1 Derive and explain geometric arguments 

and proofs. 

2 Evaluate geometric arguments and approaches to 

solving problems. 

3 Understand the ideas underlying current 

secondary geometry content standards. 

4 Understand the relationships between axioms, theorems, 

and different geometric models in which they hold. 

5 Understand the role of definitions in 

mathematical discourse. 

6 Effectively use technologies to explore geometry and 

geometric relationships. 

7 Demonstrate knowledge of Euclidean 

geometry, including its history. 

8 Be able to carry out and justify basic Euclidean 

constructions. 

9 Compare Euclidean geometry to other 

geometries such as hyperbolic or spherical. 

10 Use transformations to explore definitions and theorems 

about congruence, similarity, and symmetry. 

Figure 1. Student Learning Objectives (SLOs) 

The pursuit of all of those kinds of improvements can be facilitated by the existence of 

background information that describes the specific courses which are to be improved. 

Descriptive studies, such as TEDS-M, have contributed information about the qualities of teacher 

preparation in mathematics (e.g., Tatto & Senk, 2011) based on surveys and knowledge 

assessments, aiming to characterize how different nations prepare mathematics teachers. Tatto 

and Bankov (2018) provided an account of the opportunity to learn mathematics for secondary 

teachers in the United States based on an analysis of syllabi, noting that a large majority of 

prospective secondary teacher education programs provided opportunities to learn Euclidean or 

axiomatic geometry. However, information about what those geometry courses include both 

topically and in terms of mathematical work was beyond the scope of that study.  

As regards geometry courses for secondary mathematics teachers, only two surveys have 

been conducted in the past. Wong (1970) surveyed leaders of mathematics departments and 
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teacher education programs asking for their level of satisfaction with the geometry preparation of 

teachers. Grover and Connor (2000) reported on a survey of 108 instructors and were able to 

describe broad strokes of curriculum choices (e.g., that more than half of the courses emphasized 

Euclidean geometry from a synthetic perspective and that more than half included lectures with 

some discussion, but all group work was done outside of class). Herbst et al. (in press) interview 

study of 32 instructors showed they recognize a tension between sourcing the GeT curriculum 

from synthetic geometry and from geometry knowledge needed for teaching. It seemed 

important to develop a new instructor survey not only to update the description from Grover and 

Connor (2000) after broader emphases on mathematical knowledge for teaching and inquiry- 

based learning, but also to make more fine-grained claims.  Though the survey targets questions 

about a range of issues on instruction and curriculum, the present report is focused on describing 

the geometry topics and geometric work students have opportunities to learn and do (for reports 

on other aspects of the survey see Herbst et al., 2024a, 2024b).  

Theoretical Framework 

We frame this inquiry using Cohen et al.’s (2003) instructional triangle which considers 

instruction as a transaction of content among instructor and students. We elaborate the content 

vertex of the triangle (see Figure 2, lower right) by noting that content is manifest in instruction 

in two different ways. Content is, on the one hand, a set of instructional goals or knowledge 

items which are at stake; and content is, on the other hand, the mathematical work that students 

are asked to do, in the form of problems and other tasks. In particular, different types of 

mathematical work with the content may be present for the same content. Geometry courses 

include many theorems about geometric concepts and students may all be expected to know the 

definitions and be able to prove the theorems. Yet the manner in which they get to attain such 

learning (the work in which they engage) may vary: In some classes they might participate in 

constructing the definitions or be given a chance to conjecture the theorems, while in other 

classrooms the definitions and the statements of such theorems may be given to them. That 

difference in the kind of mathematical work is an important one to track in geometry. 

Brousseau’s (1997) notion of didactical contract can help distinguish between those classrooms. 

In particular, the survey as a whole pursues characterizing a contract that we name geometric 

inquiry (inquiry, hereafter) and one that we name the study of geometry (study, hereafter).  

 

Figure 2. The instructional triangle adapted to include two manifestations of content 



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1081 

 

Our survey improved upon Grover and Connor’s (2000) by taking into consideration the 

findings from Shultz (2022) about inquiry-oriented instruction (IOI). Shultz (2022) found that 

instructors’ IOI practices were not homogeneous: Whereas some instructors who affirmed using 

inquiry involved students in conjecturing and defining, others who also affirmed teaching 

through inquiry interpreted it mostly in terms of student-teacher interaction (e.g., discussions, 

group work). Our survey built on Shultz’s and also included questions that helped gauge the 

incidence of non-inquiry practices in teacher-student interaction and in the nature of the 

mathematical work. Our items were designed to answer separately questions about the incidence 

of different hypothesized factors associated with inquiry and study. Specifically, our survey 

included items that indicated constructs associated with inquiry and study regarding how 

instructors interact with students and how students interact with each other, and constructs 

associated with inquiry and with study concerning the nature of the mathematical work students 

do, including whether they participate in defining new concepts or rather receive the definitions 

from instructors. Herbst et al. (2024b) examined the distinctions among study and inquiry 

contracts in regard to the instructor-student interactions depicted on the left arrow in Figure 2. In 

this paper, we focus on the horizontal arrow shown in Figure 2 (how students interacted with 

content, which we call students’ mathematical work) and some aspects denoted by the right 

arrow in Figure 2 (specifically the content that instructors recognized to be at stake).  

Methods 

To investigate the relationship between the mathematical work students were engaged in (i.e., 

study or inquiry) and the geometric ideas instructors recognized students had the opportunity to 

learn about, a survey was designed and distributed among instructors of geometry courses for 

secondary teachers in the United States. We targeted mathematics departments in all US 

universities where an undergraduate geometry course is regularly taught and required for 

students seeking certification to teach secondary mathematics. The survey was sent to all 

mathematics departments whose website included mention of such a geometry course (n=670). 

Emails were sent to department heads asking them to forward a link to the survey to the 

instructor who had taught the course last. We recognize that surveys provide only an 

approximation of teaching practice (Kennedy, 1999), and that more robust conclusions often 

need richer data collection. At the same time, a survey affords to see general trends in practice at 

low cost. 

Figure 3 provides a list of the items used to describe students’ mathematical work in relation 

to the constructs study and inquiry. We also used the SLOs (Figure 1) to operationalize what 

instructors might recognize among the opportunities to learn provided to their students in their 

courses, creating items that indicated each of the SLOs (see Appendix for some SLO-related 

items). Items shown in Figures 3 and items associated with the SLOs (see Appendix) were 

included in a larger survey administered through Qualtrics, which also asked questions about 

instructor demographics, prior preparation, and experience. The analysis focuses on a portion of 

the survey about mathematical work assigned to students and students’ opportunity to learn the 
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SLOs, particularly looking at associations between the kind of students’ mathematical work and 

the mathematical content recognized by the instructor to be at stake.  

 

List of items that indicate Study (6-point Likert, from strongly disagree to strongly agree) 

821104 

For the theorems whose proofs they had to learn, the proof was fully provided to 

them. 

821105 

The corollaries (i.e., consequences) of theorems students were supposed to use were 

explicitly stated for them. 

821106 

The constructions students were expected to learn were presented step by step to 

them. 

List of items that indicate Inquiry (same scale as above) 

821204 Students were assigned to write (or improve) definitions. 

821205 

Students were asked to critique definitions given by either you [the instructor] or the 

textbook. 

821219 Students were asked to critique construction procedures. 

Figure 3. Items that indicate study and inquiry 

Sample 

About a third of the targeted departments had instructors return surveys. Our effective sample 

consisted of 140 GeT instructors who completed all survey items, including the GeT Instructor 

survey and a background questionnaire. Our sample participants confirmed they had taught a 

geometry course required for secondary mathematics teachers in the previous ten years. 

Approximately 69% had their highest degree in mathematics, while 28% had their highest degree 

in mathematics education (in both cases, highest degree is a Ph.D. or a Masters); also 35% had 

prior teaching experience in high school geometry. A sizeable 83% of participants held either 

tenured or tenure-track faculty positions, while 15% occupied non-tenure roles including 

lecturers and graduate students. 

Results 

The consistency of the inquiry and study scales for forms of mathematical work was reported 

elsewhere (Herbst et al., 2024a). To estimate a measurement model for opportunity to learn, we 

performed confirmatory factor analysis (CFA) on the items associated with the 10 hypothesized 

SLO constructs (see Figure 1). Given the limitations of that measurement model, we conducted 

exploratory factor analysis (EFA) on those same items to construct a new model. We felt the 

need to go beyond confirming our hypothesized model because some constructs had only two 

items; inter-item correlations within items indicating some constructs, namely SLO 1 and SLO 3, 

were too low suggesting poor internal consistency (Furr, 2017), and the item loadings under 

some of the constructs were low or cross-loaded to other constructs (Worthington et al., 2006). 

We initially conducted an Exploratory Factor Analysis (EFA) with a smaller sample (n=118) 

and subsequently validated our model with additional samples (n=140). Following the 

identification and removal of items with low loadings, cross-loadings, or loading onto a two-item 
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or one-item construct, we used eigenvalues and Kaiser's criterion to analyze and determine the 

number of constructs. This process resulted in a new model comprising five constructs with 

improved inter-item correlations. 

 

Table 1: Correlation between constructs (in each model) and the mathematical work 

students were engaged in (student and inquiry) 

 Study Inquiry   Study Inquiry 

SLO 1 0.045 0.081*  Axiom 0.263* 0.085 

SLO 2 0.039 0.165  Definition -0.120 0.765*** 

SLO 3 -0.023 0.083  DGS -0.252 0.412* 

SLO 4 0.266* 0.094  History 0.644** 0.151 

SLO 5 -0.105 0.906**  Conjecturing -0.026 0.284* 

SLO 6 -0.245 0.450*  *p<0.05, **p<0.01, ***p<0.001 

SLO 7 0.372** 0.124     

SLO 8 -0.196 0.241*     

SLO 9 0.270 0.155     

SLO 10 0.019 0.432*     

*p<0.05, **p<0.01, ***p<0.001 

 

In comparison to the fit indices of the hypothesized model (CFI = 0.842, TLI = 0.814, 

RMSEA = 0.079, SRMR = 0.096), the new model demonstrated significant improvement  

(CFI = 0.947, TLI = 0.935, RMSEA = 0.062, SRMR = 0.072) (Hu & Bentler, 1999). 

Examination of individual items under constructs in the new model compared to those in the 

hypothesized model revealed that SLO 4 (referred to as Axiom in the new model) and SLO 5 

(referred to as Definition in the new model) remained unchanged. SLO 6, SLO 7, and SLO 10 

differed by only one item from the constructs DGS, History, and Conjecturing, respectively, in 

the new model. This similarity between the models supports the confirmation that some 

constructs in the hypothesized model were robust, while others were not. 

Given the robustness of these constructs concerning student opportunity to learn, we focused 

on exploring the relationships between these constructs (in each model) and the mathematical 

work students were engaged in (i.e., study or inquiry). An item covariance between an item in the 

Inquiry construct and an item in the SLO 5 construct (or Definition construct in the new model) 

was added to the model, as suggested by the highest modification index. Adjusting these 

parameters not only improved the overall model fit but also brought the correlations to 

standardized estimates (see Table 1). We found a significant association between engaging 

students in geometric inquiry and giving students opportunity to learn about geometric 
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transformations, digital geometry environments, and the role of definitions in mathematics 

(SLOs 5, 6, and 10). We also found a significant association between engaging students in the 

study of geometry and giving students opportunity to learn about Euclid’s Elements, and the role 

of axiomatic systems (SLOs 4, and 7). Conversely, the distinction between study and inquiry did 

not significantly impact the extent to which instructors claimed their students learned about 

proof, evaluating arguments, the content of high school geometry, non-Euclidean geometry, or 

constructions. 

Table 2: Latent Variable Mean difference between demographic groups (ME or M) 

Received Highest Degree in Field of  

Mathematics Education (ME) (N=39) or Mathematics (M) (N=96)  

Constructs in 

hypothesized model 

LVM in ME  

after setting M to 0 
 

Constructs in 

new model 

LVM in ME  

after setting M to 0 

SLO_1 -0.166*    

SLO_2 -0.406*  Argument -0.284* 

SLO_3 0.064    

SLO_4 -0.372*  Axiom -0.368* 

SLO_5 0.336  Definition 0.330 

SLO_6 0.418  DGS 0.405 

SLO_7 -0.188  History -0.229 

SLO_8 0.116    

SLO_9 -0.535*    

SLO_10 -0.075  Conjecturing -0.023 

* p-value < 0.05 

 

We also conducted a comparative analysis of latent variable means among instructors holding 

the highest degree in either mathematics (M) or mathematics education (ME) to explore whether 

their preparation could serve as a predictor for the likelihood of offering opportunities for 

students to learn content associated with various SLOs. To assess the size of between-group 

differences per construct, we set the latent variable means in the group with the highest degree in 

mathematics to zero and estimated the means in the group with the highest degree in 

mathematics education. Across both models, it became apparent that instructors with highest 

degrees in mathematics were more likely to engage students in learning axioms (SLO 4), and in 

learning geometric arguments, such as understanding proofs (SLO 1) and evaluating arguments 

(SLO 2). Notably, the SLO construct related to non-Euclidean geometry (SLO 9)—whose items 

indicated the construct named History in the second model—appeared to be associated with 

instructors holding the highest degree in mathematics.  
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Conclusion 

The results shared provide a glimpse of how instructor claims about the opportunity to learn 

geometry they provide to their students relates to the kind of mathematical work they organize 

for them. In turn these results help see a baseline of implementation of the SLOs. Some 

differences in this implementation are associated with the field in which instructors were 

prepared. We notice that extending the consensus over the 10 SLOs may require more 

conversations across the differences among instructors, one of which seems to be their academic 

preparation. We also notice the need to better measure opportunity to learn; notably, engagement 

of students in proof (SLO 1), which Ion et al. (2023) showed to be something most instructors 

agree should be an objective in geometry courses for teachers could not be measured robustly. 
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Appendix: Sample items indicating opportunity to learn 

SLO Item Item statement: Students had the opportunity to … 

1 4101 … learn to write geometric arguments (e.g., proofs) 

2     

4105  … check whether proofs were valid 

3 4118 …analyze properties of different two-dimensional geometric shapes 

4 4106 …work with different axiomatic systems 

5 4132 …write definitions 

6 4108 …use dynamic geometry software to explore figures. 

7 4110 …learn about Euclid’s Elements 

8 4114 … perform basic Euclidean straightedge and compass constructions 

9 4117 … learn differences between Euclidean geometry and other geometries 

10 4126 … apply transformations to analyze mathematical situations 
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This study explored elementary pre-service teachers’ (PSTs) content knowledge in area and 

volume measurements. Written pre-assessments and follow-up interviews were conducted with 

26 PSTs to explore how PSTs approached and tackled area and volume tasks using a variety of 

strategies, including conceptual and procedural strategies. Recommendations for supporting 

elementary mathematics teacher education classes design are discussed. 

Keywords: pre-service teachers, area, volume, problem-solving strategy 

Introduction 

The National Council of Teachers of Mathematics’ (NCTM) "Principles to Action" (2014) 

outlines highly effective teaching practices. Two recommended teaching practices are 

implementing tasks that promote reasoning and problem-solving and building procedural fluency 

from conceptual understanding. Among the many topics in mathematics, area and volume 

provide foundational knowledge and applications that extend to understanding concepts such as 

multiplication, fractions, as well as advanced topics like calculus and the sciences (Vasilyeva et 

al., 2013). To enhance students' performance in higher-level mathematics, teachers need a robust 

content knowledge that enables them to plan and implement effective teaching practices. 

Previous studies have highlighted curricular limitations in widely-used U.S. textbooks 

concerning measurement  (Smith et al., 2016) and teachers' limited content knowledge in area 

and volume measurements (Baturo & Nason, 1996; Gutiérrez & Jaime, 1999; Murphy, 2012). 

These results make it challenging for educators to plan area and volume measurements lessons 

that promote reasoning and problem solving and developing procedural fluency from conceptual 

understanding. 

Literature Review 

How Students Learn Area Measurement and Common Challenges 

Several studies have delved into students' understanding and their pathways to grasping area 

measurement conceptually (Barrett et al., 2017; Sarama & Clements, 2009). Previous research 

has indicated that there are foundational ideas in area measurement including covering a region 

without gaps or overlaps with equal-sized units, equally partitioning a region, counting unit 

measures, iterating combined units, comprehending row and column structures, linking the 

number of squares to length and width to make sense of the formula, and understanding that the 

subdivided whole is equal to the sum of its parts (Barrett et al., 2017; Sarama & Clements, 

2009). These foundational concepts align well with an area learning trajectory, and students who 

grasp area measurement conceptually can apply these ideas effectively (Barrett et al., 2017). 

Additionally, understanding that a subdivided whole is equal to the sum of its parts and that 

manipulation and transformations of subdivided pieces can conserve areas is crucial 

(Kospentaris, Spyrou, & Lappas, 2011; Lehmann, 2022).  
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How Students Learn Volume Measurement and Common Challenges 

Students employ several strategies to solve volume measurement tasks, including visualizing 

a set of unit cubes as (a) rectangular arrays organized into layers, (b) space-filling structures 

without organizing them into layers (e.g., column iteration), (c) entities in terms of their faces, 

and (d) employing the volume formula (Vasilyeva et al., 2013). The development of knowledge 

in volume measurement aligns with area measurement; being able to fill three-dimensional 

space, comprehend partial layer structures, and iteratively construct partial structures can lead to 

deriving the volume formula as similar process in two – dimensional space can lead to 

verification of the area formula (Van Dine et al., 2017). These conceptual ideas are essential 

components of students' volume learning trajectory, as students who grasp volume measurement 

conceptually can effectively apply these conceptual ideas (Van Dine et al., 2017; Vasilyeva et al., 

2013). 

Teachers' Knowledge in Area and Volume Measurements 

Despite the importance of teachers' content knowledge, several studies underscore the 

challenges that pre-service teachers (PSTs) face in developing the knowledge necessary to plan 

lessons that promote effective teaching practices in area and volume measurements. PSTs lesson 

plans often have a procedural focus, and they frequently depend on prototypical images of 

specific shapes to make sense of formulas (Gutiérrez & Jaime, 1999; Hong & Runnalls, 2020; 

Murphy, 2012). Additionally, PSTs often equate the ability to use formulas correctly in response 

to area and volume tasks with understanding area and volume measurements (Hong & Runnalls, 

2022; Runnalls & Hong, 2019). These studies indicate that PSTs often encounter challenges 

similar to those faced by elementary students (Kospentaris et al., 2011; Lehmann, 2023). The 

purpose of this study is to explore the current problem-solving strategies employed by 

elementary PSTs regarding area and volume measurement content knowledge. Two research 

questions guide the study: 

 

(1) What multiple conceptual/procedural strategies do elementary PSTs employ to solve 

area and volume tasks? 

(2) How do elementary PSTs struggle when confronted with problem-solving processes 

while attempting to employ conceptual and procedural strategies? 

Methodology 

Setting, data collection and analysis 

This study took place in an elementary teacher education program at a large Midwestern 

public university in the United States. The Geometry and Measurement course, taught by the first 

author, is a 16-week mandatory course for upper-class students in the program. The research 

design consisted of two phases: 1) a pre-assessment of content knowledge, and 2) semi-

structured interviews. The first phase involved 26 PSTs (25 females and one male), and the 

second phase included eight of them (seven females and one male). All participants volunteered 

for this study. The pre-assessment consisted of a total of 18 items, which were completed by the 

26 PSTs. These 18 items were adapted from the Trends in Mathematics and Science Study 

(TIMSS) studies due to the poor performance of U.S. students on these selected items. It was 

essential for PSTs to have strong content knowledge related to the fundamental conceptual ideas 
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addressed by these items. From the initial set of 18 items, we pinpointed three items—4, 9, and 

11 (as shown in Figure 1)—on which PSTs displayed a wide range of problem-solving strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Three items with the greatest response variability (adopted from Foy, Arora, & 

Stanco, 2013) 

Following the pre-assessment, a semi-structured interview lasting approximately one hour 

was conducted with each of the eight participants who consented to participate in the second 

phase. Compared to the pre-assessment, the interview questions were significantly more open-

ended as interviewees were encouraged to think about additional possible problem-solving 

strategies for each item. After all interviews were completed, the PSTs’ responses to the three 

items were analyzed to distinguish among multiple strategies as per previous studies on how 

students learn area and volume measurements (Table 1) (Barrett et al., 2017; Van Dine et al., 

2017; Vasilyeva et al., 2013).  

Table 1: Conceptual and procedural responses for area and volume tasks 

Problem-solving strategies 

Conceptual Procedural/non - conceptual 
Covering/tiling/filling two and three – 

dimensions with same sized units (squares or 

cubes) and linking it to the formula (Item 4) 

Understanding that the subdivided whole is 

equal to the sum of its parts (area conservation) 

(Items 9 and 11).  

Using array and layer structures (Item 4). 

Using partial structure of array (squares) or 

layer (cubes) to iterate or skip counting (Item 4).  

Recognizing that a triangle covers half the 

space compared to a square (Item 11). 

Being able to identify the base and the height 

of non – prototypical shapes (Items 9 and 11). 

Using the formula without conceptual 

strategies (all three items). 

Looking for the lengths of the sides of shapes 

without considering conceptual strategies. 

Using formulas incorrectly. 
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We already know a triangle's area is 1/2 times base times height. Because the base of the shaded 

triangle is equal to the square's side length, which is 6 cm, and the height is also the 6 cm, the 

area of the shaded triangle is half of a square without doing any calculations. (Conceptual 

strategy) 

  

(Procedural strategy) 

Book volume is 6×15×20=1800 cubic cm, and box volume is 30×36×20 = 21600 cubic cm. Then 

21600/1800 = 12 books. I noticed the height of the book is the same as the height of the box, and 

the width of the book is exactly half of the width of the box 36/6 = 6, then 2 rows of 6 books is 

12 books. (Conceptual and Procedural strategy) 

 

 

 

Figure 2: Coding Examples 

Figure 2 shows examples of coding. The first response pertaining to Item 11 was coded as 

conceptual. This response shows that this PST was able to indicate why the area formula for 

rectangle is multiplied by a half and how much space a triangle covers compared to a square. The 

second written response, from Item 9, was coded as procedural, without considering that the 

subdivided whole is equal to the sum of its parts, this PST attempted to identify the relevant 

lengths of sides but struggled to apply the correct formula or use the numbers appropriately. 

Lastly, the third interview response was about Item 4 and it shows that this PST was able to use 

the formula to find the volume and at the same time, the idea of filling the box with the book. 

This can be both procedural and conceptual at the same time. 

The two authors independently coded pre-assessment responses and interview responses to 

ensure the reliability of coding in this study. After the completion of the coding process, 

consensus between the authors was reached by discussing the responses on which they had had 

initial disagreements. The final result was 100% agreement for each response. 

 

Findings 

Pre-assessment responses to area and volume tasks   

Figure 3 illustrates the distribution of PSTs’ pre-assessment responses on three items 

categorized by the type of strategy and correctness. The data indicates over 60 % of PSTs 

struggle with solving geometry problems using either procedural or conceptual strategies. While 

it's not surprising to see that more PSTs employed procedural strategies, it is interesting to note 

that a significant proportion of them were unable to execute procedural strategies correctly (50% 

on item 4; 43% on item 9; 53% on item 11; and 48% across all three items). When examining 

conceptual and procedural strategies separately, a similar situation occurred with PSTs who 

incorrectly used procedural strategies nearly three times as high than those who incorrectly used 

conceptual strategies (48% vs. 17%). On the contrary, the PSTs were more likely to provide 

correct answers using conceptual strategies (22% vs. 13%) in overall correctness.  
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Figure 3: Pre-assessment responses on three items by type of strategy and correctness 

For Item 4, we observed that four PSTs employed approaches involving filling, stacking, or 

using rows with one PST correctly applied these methods, while four PSTs utilized a formula, 

with two of them applying it correctly. Here are some of the written responses that we were able 

to find. 

15 × 2 = 30 𝑐𝑚. 6 goes into 20 three times. Two rows of books stacked three high = six 

books.  

𝑏 × ℎ  15 × 6 = 90 𝑏𝑜𝑜𝑘𝑠.  30 × 20 = 600. 600 ÷ 90 = 6.66 

 

In the first response above, it's evident that this PSTs attempted to apply conceptual ideas 

related to filling or stacking three-dimensional space with a reference unit, but struggled to place 

the books to fill the space without gaps – fundamental conceptual idea of finding a volume. The 

second response indicates that this PST failed to recognize that the task pertained to the volume 

concept and instead seemed to apply an area concept. For Item 9 we observed that nine PSTs 

divided the shape into a triangle and a rectangle (using the idea the subdivided whole is equal to 

the sum of its parts), with six of them correctly applying this approach. Eight PSTs subtracted the 

area of the non-shaded triangle from that of the whole rectangle to find the area of the shaded 

region, and four of them solved it correctly. Three PSTs employed incorrect formulas, such as the 

Pythagorean Theorem or volume formula, and six made computational errors like 6 × 16 = 72 or 

6 × 8 = 24.  Four PSTs identified some relevant lengths in attempts to use the formula but were 

not successful. Figure 4 displays these responses. 

 

 

 

 

 

 

 

Figure 4: Examples of PSTs’ written responses 

These responses in Figure 4, including one in Figure 2, demonstrate that these PSTs 

recognized the need for lengths of sides but were unable to use them correctly. The first response 

shows that this PST did divide the shape into a square and a right triangle (using conceptual 

strategy) but was not able to identify correct length. The second response shows that the PST was 

correctly identify lengths but did not subtract the area of the unshaded part or simply used length 

× width without considering that the shape is not a rectangle (using procedure without 
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considering conceptual strategy of dividing the shape or subtracting the unshaded triangle). The 

second response highlights that without a conceptual understanding that the subdivided whole is 

equal to the sum of its parts, PSTs may find it challenging to identify correct procedure to 

fluently use it, even when they correctly identify the lengths. For Item 11, two PSTs divided 36 

by 2, indicating an understanding that a triangle covers half of a rectangle (or square). Other 

strategies included dividing the square into two right triangles to obtain 18 or simply using the 

base (6 cm) and height (6 cm) of the shaded triangle to calculate 18 cm² (done by two PSTs – 

again using the subdivided whole is equal to the sum of its parts). Six PSTs correctly applied the 

method of subtracting the area of the two corner triangles (6 cm² and 12 cm²) from the area of 

the square (36 cm²). Two PSTs used the Pythagorean Theorem to find the lengths of the 

hypotenuse to calculate the area of triangles. Similar to Items 4 and 9, several PSTs provided 

answers like 24, 36, or 98 without showing their work. The following responses in Figure 5 

suggest that some PSTs were unsure about the amount of space covered by an inscribed triangle, 

uncertain to know why 
1

2
 is multiplied for the area of triangle (incorrect use of conceptual 

strategy of covering) or which formula to apply, unsure about the difference between area of 

square and triangle (simply using procedure without considering conceptual strategy). Like Item 

9, these PSTs attempted to identify lengths but struggled to choose the correct formula. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Examples of written response 

Finally, another interesting finding is that all PSTs who were unable to provide correct 

responses to Items 9 (7 PSTs in total) and Items 11 (13 PSTs in total) also couldn't provide 

correct responses to Item 4. This result may indicate a strong relationship between understanding 

area and understanding volume, as described in area and volume learning trajectories (Van Dine 

et al., 2017).  

Interview responses to area and volume tasks  

With our results from written responses, we were interested in interviewing them to explore 

their thinking further. The findings revealed their initial struggle and when they were probed 

further by the interviewer, some of them were able to provide either conceptual or procedural 

strategies correctly. Consider the following descriptions of their responses on Items 4 and 9: 

 

I found the volume of the box first, then the volume of the book, then divided 

the volume of the box by the book to see how many books can be contained 

by the box. What I only remember is that I needed to multiply these three 
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numbers to obtain the volume, but I found out why it works actually. Maybe 

because the length and width can be used to determine the perimeter of the 

outside of the shape measured, and the height indicates the depth of it. So if 

you multiply all those together, the full shape can be obtained. (Item 4) 

 

I calculated the area of right-angled triangle as 8 times 6, which equals 48 but I 

don’t know what should be done next. (Item 9) 

 

The first response shows that PSTs were able to articulate the procedure (finding volumes of 

the box and the book and length × width × height) but was not able to clearly state why 

(mentioning perimeter). Among the 8 PSTs interviewed, four of them eventually used the 

formula to correctly answer Item 4. The second PST, on Item 9, struggled to explain why and 

how the formula worked, the formula she mentioned was not correct. For all three items, we 

were also able to see that more PSTs were eventually able to suggest alternate methods as they 

were probed by the interviewer. The responses below were not used by the PSTs in the pre-

assessment, but they were able to suggest them as the PSTs were asked to think about additional 

strategies during the interview. 

 

If you stack the books like you would on a bookshelf, it will six across the top because 6 

times 6 equal 36. And then 15 is half of 30. It will be two rows of 6 times 2 is 12 (Item 4). 

 

Dividing the shaded region into three smaller congruent triangles, then finding that the 

area of each small triangle was 24 cm2 and multiplying by 3 (Item 9). 

 

The area of the shaded region is equal to 75% of the area of the large rectangle (Item 9). 

 

PSTs described additional strategies they used in the interview, such as considering how to 

fill the box with same-sized unit books for Item 4, counting three unit triangles in the trapezium 

shape, and the area of the shaded region is 75% of the large rectangle (Item 9), and identifying 

the base and height of the triangle while considering conceptual strategies for Item 11. Notably, 

when asked whether the area of the shaded triangle in Item 11 was always equal to half the area 

of the square without performing calculations, half of the PSTs realized that the triangular area 

would indeed be equal to half the square's area when they share the same base and equal height. 

Ultimately, two PSTs on Item 4, five on Item 9, and six on Item 11 proposed correct solutions 

through multiple conceptual or procedural strategies. In addition to outlining alternative 

strategies, PSTs were questioned about the rationale behind fundamental formulas, such as 

volume (volume = length × width × height) and area (area = length × width). Initially, they found 

it challenging to explain why and how these volume and area formulas worked. For instance, two 

responses regarding volume for Item 4 included: “If you multiply the three numbers, you can 

count the spaces” and “Length and width can help to get the perimeter of outside of the shape, 

and height represents the depth.” Related to area in Items 9 and 11, one PST remarked, “Area is 

two-dimensional, so you need to multiply two numbers.” These responses indicated a lack of 

clear conceptual understanding. Only a few PSTs provided partial, reasonable explanations when 

prompted by the interviewer, such as “Area represents the number of squares, and volume 
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represents the number of cubes”. Similarly, when asked by the interviewer which geometry 

measurement topic was related to each item, fewer than half of them were able to make the 

correct alignment. 

When we asked PSTs to provide definitions of area or volume during the interviews, the 

majority responded with uncertainty, saying something like, “I’m not sure what an area/volume 

formula is, or how the formula can be described.” Others offered definitions such as, “Area is 

how many rows of length.” These ambiguous definitions likely contributed to their uncertainty 

about identifying relevant lengths, and which formulas to use for each task. In summary, Table 2 

illustrates the types of incorrect strategies in PSTs' content knowledge related to area and 

volume, as revealed through pre-assessment and interview findings.  

Table 2: PST’s incorrect strategies in area and volume measurement 

 Pre-assessment Interview 

 

Incorrect 

Conceptual 

Filling (or stacking) space but 

with gaps. 

Not being able to identify area or 

volume concept. 

Using a formula that did not 

identify base and the height 

Struggling to understand area or 

volume conceptually. 

Struggling to explain why and 

how a formula worked. 

Unable to provide appropriate 

definitions for area and volume 

measurements 

 

Incorrect 

Procedural 

Using a wrong formula 

Identifying lengths but not being 

able to use the appropriate formulas. 

Making calculation mistakes 

when using the correct formula 

Not being able to identify 

relevant lengths.  

 

Confusing formulas for different 

shapes 

 

 

Summary and Discussion 

As prior studies have indicated, our PSTs initially preferred procedural-based problem 

solving strategies (Chamberlin & Candelaria, 2018). PSTs provided unclear definitions of area 

and volume, unable to identify relevant lengths, and were uncertain about the correct formulas to 

be used for each task. One implication of this finding is that more PSTs were able to find the 

correct way to use conceptual or procedural strategies when they were probed, which indicates 

the importance of providing purposeful questions and scaffolding when implementing lessons, as 

suggested by NCTM and other study (NCTM, 2014; Wickstrom, 2022). Another interesting 

finding was that when conceptual strategies were used, it was more likely for PSTs to answer 

area and volume items correctly. Some of them could not articulate appropriate formulas and 

even when they were able to articulate them, they were uncertain to use them. Identifying 

relevant lengths and stating correct formulas for each task is challenging for some PSTs and 

being able to use them correctly is another challenge that PSTs had. In previous studies, PSTs 

often equated using formulas for area and volume to understanding these measurements (Hong & 

Runnalls, 2022). Our results showed that it is not synonymous to think that using formulas can 

be interpreted as understanding because using formulas is challenging without conceptual 
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understanding. This finding supports finding from previous study that formula might be used 

without knowing why and for wrong shapes (Vasilyeva et al., 2013; Zacharos, 2006). It 

demonstrated an interesting relationship between conceptual strategies and procedural strategies; 

if a PST was unable to use the conceptual strategy correctly, it was more unlikely for them to use 

procedural strategies correctly. Furthermore, when PSTs were not able to provide correct 

responses to area tasks (Items 9 and 11), they were not able to provide correct responses to 

volume task either (Item 4). The conceptual link between area and volume can help them 

understand that volume can be viewed as an extension of area from 2-dimensional objects to 3-

dimensional objects as learning trajectories for length, area and volume are closely related (Van 

Dine et al., 2017). As shown by the PSTs’ responses in both pre-assessment and interview, 

inadequate understanding of area measurement will very likely lead to challenges in learning 

volume measurement as described in learning trajectories (Van Dine et al., 2017).  

It's not surprising to discover that elementary PSTs often lack content knowledge in area and 

volume measurement, and their preference for procedural strategies in solving such tasks is 

expected. However, these findings highlight important implications for mathematics teacher 

education programs. Considering the well-known limitations in widely used curriculum materials 

(Smith et al., 2013; Smith et al., 2016), these results become even more concerning. PSTs' 

limited content knowledge suggests that they face similar learning challenges as their future 

students (Lehmann, 2023), which can lead to mathematics lessons that may focus mainly on 

procedural tasks. Even though teachers might prepare procedurally focused tasks, it is also 

possible that they might not be able to use the procedures correctly by simply memorizing them. 

This underscores the importance of mathematics teacher education programs enhancing PSTs' 

conceptual understanding alongside procedural fluency by providing precise definitions of area 

and volume, and establishing the connections between these definitions and the formulas to 

explain why each formula works. Also, it will be beneficial to develop lessons to show how area 

and volume measurements are conceptually related in order for students to be able to link two 

important measurement concepts.  
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Introduction 

Teachers need various types of knowledge to plan and implement effective teaching practices 

that promote reasoning and problem solving. Different types of knowledge can pertain to content 

or pedagogy. In this poster, one area that we are particularly interested in is area and volume 

measurements. Area and volume are two important topics that have wide range of applications in 

mathematics and provide foundational knowledge for multiplication, fractions, and the advanced 

topics of calculus and the sciences (Vasilyeva et al., 2013). Despite the importance of area and 

volume measurements, US students have not performed well in area and volume measurements 

(Lehrer, 2003; Mullis et al., 2012; Muillis et al., 2016).  Here are research questions that guided 

us.  

(1) What is the discrepancy in problem-solving strategies of PSTs’ responses to area and 

volume measurement tasks? 

(2) How does conceptual understanding are utilized to support PST’s problem-solving 

strategies? 

 

We used items from Trends in Mathematics and Science Study (TIMSS) studies to examine 

PSTs’ content knowledge. Our results show that it is challenging for PSTs to use procedures if 

they are not able to use conceptual strategies. This finding shows the importance of building 

procedural fluency from conceptual understanding. It is unlikely that PSTs can simply memorize 

and use procedures correctly because being able to correctly identify relevant lengths and 

formulas is challenging for PSTs. They need to first identify that area and volume measurements 

are relevant concepts for the given tasks and also know foundational ideas of covering and space 

filling to interpret and solve area and volume tasks correctly. Also, solving volume tasks 

correctly may enable them to solve area tasks correctly as well. This may indicate that 

foundational ideas in area and volume measurements are conceptually related as demonstrated in 

learning trajectories (Barrett et al., 2017; Van Dine et al., 2017) and importance of including 

tasks that show how area and volume measurements are conceptually related to each other. 

Challenges that we found in this study are very similar to challenges demonstrated by elementary 

students (Lehmann, 2023), which is concerning. 

With our findings, we can recommend that in teacher education program, PSTs need to have 

opportunities to be exposed to area and volume tasks that promote reasoning and problem 

solving. They need to be exposed to how foundational ideas in area and volume are related to 

each formula to build procedural fluency from conceptual understanding.   
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Objectives and Perspective 

In supporting elementary pre-service teachers (PSTs) to enact pedagogical practices that 

promote teaching elementary mathematics for social justice, mentor lesson plans can be a useful 

resource to enhance their learning and teaching competence. Bartell (2013) asserted that through 

teaching mathematics for social justice, students use mathematics to study the world, increase 

their knowledge, and learn about issues of social injustices toward developing ideas of equitable 

practices for creating changes. In most teacher education method courses, PSTs learn how to 

teach the required mathematics methods and strategies before engaging in student teaching 

experience. While some PSTs may further be introduced to social justice pedagogies (Freire, 

2000; Ladson-Billings, 1995a, 1995b, 2014, 2021; Cochran-Smith, 2004; Paris & Alim, 2014; 

Paris, 2021) that enforce practices to support, enhance, and sustain the learning of all students 

inside the classroom. However, to effectively apply their learning, PSTs must explore 

instructional resources and engage in classroom discourse of ways to enact social justice 

pedagogies when planning and teaching elementary mathematics. It is for this reason, I suggest 

the use of mentor lesson plans as an instructional tool during mathematics methods courses to 

support PSTs learning. This practice will enable PSTs to see how they can plan and write 

mathematics lesson plans that promote teaching elementary mathematics for social justice.  

I position this idea of supporting PSTs to teach elementary mathematics for social justice by 

using three frameworks (a) Freire’s (2000) Pedagogy of the Oppressed with emphasis on the 

banking and problem-posing education models; (b) Culturally Relevant Pedagogy (Ladson-

Billings, 1995a, 1995b, 2014, 2021) with emphasis on the three tenets - academic success, 

cultural competence, and critical consciousness; and (c) Cochran-Smith (2004) six principles to 

support PSTs in teaching for social justice. 

 

Methods of Inquiry and Summary 

To provide PSTs with mentor lesson plans that promote teaching elementary mathematics for 

social justice, I make use of the textbook created by Bartell et al. (2022) that provides different 

elementary mathematics lesson plans that incorporate specific social justice standards, 

mathematical focus areas, and mathematical concepts. By using these mentor lesson plans, PSTs 

are provided with a guide that connects their learning of social justice and more specifically, 

teaching mathematics for social justice. Through this approach, PSTs can begin to develop an 

understanding of how social justice pedagogies can be integrated into mathematics learning for 

students in elementary classrooms. The overall goal is to provide a scaffold for PSTs to engage 

with mentor lesson plans that incorporate the social justice standards in preparation for student 

teaching experiences. 

mailto:howell97@msu.edu
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National policies and curriculum documents call for STEM integration into K-12 and teacher 

education. Certainly, studies have shown that engaging in STEM activities for PSTs is 

important; unfortunately, their implementation may not be uniform or effective. Analyzing the 

integration approaches of teacher educators and their method courses may better support PSTs’ 

development of STEM integration and use of STEM-integrated activities. Results indicated that 

participating educators have various approaches to STEM integration within their methods 

courses. Yet, commonalities of pedagogical techniques were consistent across course syllabi and 

participants’ interviews.  

Keywords: Integrated STEM, Preservice Teacher Education 

National policies and curriculum documents call for STEM integration into K-12 classrooms. 

A product of this integration is that students will better understand connections across STEM 

disciplines that will prepare them for specialized, high-demand skills (National Research Council 

(NRC), 2012; National Council of Teachers of Mathematics [NCTM], 2014). Furthermore, the 

Association of Mathematics Teacher Educators (AMTE) has suggested that effective teacher 

preparation programs “provide opportunities for candidates to make mathematical connections 

between various approaches to solving problems and opportunities for candidates to make 

connections between mathematics and other disciplines” (2017, p. 3). Similarly, the National 

Science Teaching Association (NSTA, 2020) has noted that STEM education provides 

opportunities for students to engage with “content in authentic and relevant ways.” Therefore, 

preservice teachers (PSTs) must experience STEM integration and develop pedagogical 

knowledge, even if this occurs within disciplinary-specific courses. 

Experiences with STEM integration must come sooner rather than later within teacher 

education. As an example, in Bartels et al.’s 2019 study, PSTs who had not participated in 

integrated STEM lessons could only define STEM disciplines and lacked an understanding of 

authentic STEM integration. After STEM-integrated lessons were modeled, 13 of these PSTs 

integrated three or more STEM subjects into their lesson plans and, overall, showed an enhanced 

understanding of STEM integration. Similarly, Bozkurt and Özyurt (2019) reported on 44 

secondary, mixed-discipline PSTs who participated in a 12-week STEM program. Before this 

program, their PSTs understood STEM disciplines but were unfamiliar with STEM integration. 

At the end of the 12-week program, all 44 PSTs collaboratively developed and implemented 

integrated STEM lessons. Nonetheless, the participating PSTs reported challenges with finding 

materials and implementing STEM activities. However, Bozkurt and Özyurt reported that 

students were interested in the activities, so they anticipated using integrated activities in their 

teaching. Overall, these results are important as they show that prior to experiencing STEM 

integration, PSTs may not understand how to integrate STEM disciplines in their classrooms. 
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Yet, when PSTs engage in STEM activities and design and implement integrated STEM lessons, 

they show an enhanced understanding of integrated STEM.  

As shown above, designing integrated STEM activities for PSTs is important; unfortunately, 

due to the lack of integrated STEM curricula, the implementation of such activities may be 

uncertain as they may not be uniform or effective. While many STEM educators agree that 

STEM disciplines are connected by ideas and skills and that STEM integration should focus on 

real-world contexts, the ways that disciplines are integrated into STEM education vary (Moore et 

al., 2020). Additionally, when STEM activities are multidisciplinary, engineering and 

mathematics may be given less attention. Furthermore, within the activities, if students are not 

asked to explicitly describe content concepts, such as specific mathematical ideas, they may not 

recognize the mathematical concepts that were employed. Thus, English (2016) suggested that 

teachers need support when they implement integrated STEM activities, especially with respect 

to highlighting the connection between engineering and mathematics. In addition to the literature 

showing variation in the content of STEM activities, there is also variation in the pedagogies and 

implementation strategies that PSTs experience. To understand more about the various 

approaches to STEM integration, finding commonalities is likely to support the development of 

authentic STEM integration in teaching methods courses. Thus, understanding how methods 

courses intend to prepare future teachers to implement integrated STEM activities is important 

for teacher educators. For this study, we explored: How do STEM teacher educators intend to 

integrate STEM within their teaching methods courses?  

Methods 

Twelve STEM teaching methods course syllabi and transcripts from six follow-up interviews 

of those who submitted syllabi were analyzed using qualitative methods. All but one of the 

syllabi were designed for secondary PSTs, the remaining for elementary PSTs. The data were 

analyzed using constant comparative methods and thematic coding in which the researchers 

conducted a line-by-line analysis of the syllabi and interviews (Strauss, 1987). A hybrid 

inductive and deductive coding method was used as most codes emerged from the data (Hatch 

2002). To serve as a foundation, the definitions of levels of STEM integration (Figure 1) were 

used to code explicit mentions of any of the STEM disciplines and their respective levels of 

integration.  

 

                  
Figure 1: Increasing Levels of Integration (English, 2016, p. 2) 

 

Through an iterative process of individual coding and team meetings to gain consensus on 

codes and develop a coding dictionary, the codes were refined. The following actions were taken 
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to ensure trustworthiness: all coding was completed using Dedoose (2021), qualitative analysis 

software; meetings were held to discuss coded excerpts and resolve disparities; all syllabi were 

coded by at least two researchers; and at times, syllabi and interviews were coded simultaneously 

by all researchers. Through this process, themes emerged that described levels of STEM 

integration and emphasized pedagogical techniques across the various courses.  

Results 

We present our results related to the levels of STEM integration as defined by English (2016) 

and pedagogical techniques. While there were examples of higher levels of integration such as 

transdisciplinary and interdisciplinary, the levels of STEM integration varied (Table 1). Most 

syllabi focused on multidisciplinary or disciplinary levels of integration within the course 

descriptions, standards, weekly calendars, and assignments. The few instances of 

transdisciplinary integration included students solving real-world problems through tasks or 

projects. PSTs would learn about how to teach “solving human and environmental problems 

through mathematics” (Yu-ri’s syllabus). There were many references to a single discipline or 

two or more disciplines. This was evident through the discipline-specific reading assignments for 

mathematics or science PSTs. Julie’s syllabi course descriptions serve as an example where 

mathematics and science are explicitly mentioned in which students build capacity to teach the 

societal uses of mathematics and science as well as “the use of technology across mathematics 

and science content” In these syllabi, PSTs would make connections across mathematics and 

science but may not have opportunities to use them in an interdisciplinary or transdisciplinary 

nature. These examples represent instances that were coded throughout the syllabi. 

In addition to levels of integration, the syllabi included several references to student-centered 

pedagogy. For the purpose of this report, we have included student-centered strategies with at 

least 50 occurrences in the coding such as equity, discussion or discourse, designing, and 

opportunities for reflection (see Table 1). As one of our highest occurrences, the equitable 

practices consisted of a variety of features such as cultural relevance and responsiveness, 

differentiation of instruction, building a positive classroom environment, and supporting students 

with disabilities. For instance, 10 of 12 syllabi mentioned that culturally responsive teaching 

approaches would be studied or discussed. Nine syllabi also included that differentiated 

instruction would be part of the course. Additionally, we noted that PSTs would learn a variety of 

teaching methods such as how to design and implement hands-on activities, facilitate discourse 

and discussion, lead inquiry activities, and appeal to students’ interests. For example, eight of the 

syllabi noted that PSTs would learn methods like how to teach in ways that “all students 

investigate, collaborate, communicate and defend their explanations” (Julie’s syllabi) as well as 

how to select resources for supporting inquiry and problem solving. Thus, throughout the syllabi, 

the instructors intended to teach in ways that support STEM Education methods that are 

grounded in constructivism (NSTA Board of Directors, 2020).  
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Table 1: Overall Themes in STEM Teaching Methods Syllabi 

Theme Frequency Theme Frequency 

Level of Integration Student-Centered Pedagogy 

Transdisciplinary 20  Equity 143 

Interdisciplinary 23  Discussion/Discourse 57 

Multidisciplinary 58  Designing 136 

Disciplinary 89  Opportunities for Reflection 69 

 

To further understand the syllabi results, follow-up interviews were conducted with 

participants who submitted syllabi. The interviews provided further insight into the STEM 

methods instructors’ intentions for STEM integration. Some of the instructors noted that while 

they wanted to include more of the higher levels of integration, their students were going to be 

teaching siloed STEM content courses (e.g., algebra, biology, chemistry, physics). Thus, while 

they did their best to incorporate integrated STEM activities, they also had the tension of 

preparing their students to teach within their content areas. As evident in Julie’s interview: 

“Sometimes I have to be like, ‘Okay, here's the integrated [task]. Now, how would you silo it?’ 

Because I have to be real about what their teaching contexts are.” The interviews also revealed 

that, given the current curricular demands for K-12 teachers (e.g., standardized assessments), 

they found it best to focus on STEM pedagogies such as how to implement hands-on activities 

and provide opportunities for authentic problem solving. For example, Lana said, “I emphasize 

high leverage teaching practices or best practice strategies, but I think any of those right? I mean, 

like, student-centered. Lots of student voice in the classroom…working with different people 

every single day, getting kids up and moving. So, you know whether it be in math [or] science, 

whether doing labs or experiments, but getting kids up, so movement, collaboration.” Here we 

can see how Lana considers best teaching practices focused on discussion and hands-on activities 

in her STEM teaching methods class while also balancing the need to prepare her students to 

teach siloed STEM courses.  

Discussion  

The findings learned from this analysis contribute to a better understanding of approaches to 

STEM integration and will inform the design of future STEM teaching methods courses. We can 

see from our research that while efforts are being made to incorporate integrated STEM into 

teaching methods courses, there are outside factors that influence the levels of integration. While 

the levels of integration may need some improvement, our findings also revealed that student-

centered pedagogies were a main feature of the syllabi and intentions of the instructors. This is a 

positive finding, as these pedagogies align with preparing students to apply 21st Century Skills 

(NSTA Board of Directors, 2020). In particular, PSTs are learning how to support the solving of 

open-ended and authentic problems that require multiple STEM disciplines, working 

collaboratively with other disciplinary experts, and maintaining perseverance to work with 

evolving technologies and solve environmental issues. 
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Due to the small sample size, our results are not generalizable. This sample size was small in 

part because, after an extensive search for STEM methods courses within teacher preparation 

programs and broad calls for participation, teacher educators from only six U.S. programs with 

STEM teaching methods courses responded. However, these results provide the broader STEM 

education community with ideas on which to build. We recommend that STEM integration 

continues to increase throughout all levels of education and within teaching methods courses. To 

address the uncertainty of how students are experiencing STEM integration within classrooms, 

we also suggest that further research be done within STEM content courses in K-16 education. 

As a concluding thought, we suggest that as more STEM teaching methods courses are 

developed, our findings and recommendations can inform course design and implementation.  
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This poster focuses on data from a program called SEE Math (Support and Enrichment 

Experiences in Mathematics; Kalinec-Craig et al., 2021; Kalinec & Rios, 2023), which is a 

revised version of the TEACH Math (Teachers Empowered to Advance Change in Mathematics; 

Turner et al., 2012) research group’s case study of a child’s thinking. Elementary teacher 

candidates (TCs) in SEE Math select a child in their field placement and engage in a series of 

problem solving tasks that support children’s funds of knowledge, their broader mathematical 

thinking, and their Torres’ Rights of the Learner (e.g., you have the right to be confused; to claim 

a mistake and revise your thinking; to speak, listen, and be heard; to write, do, and represent 

what makes sense to you; Torres, 2020; Kalinec-Craig, 2017). As a summative assessment for the 

methods course, the TCs conduct a 15-minute Mock Parent Teacher Conference (MPTC) to share 

what they learned about the child’s thinking over the course of the program. The purpose of this 

study was to answer the following research question: How do elementary teacher candidates 

(TCs) describe children’s confusion, (productive) struggle, and mistakes in their MPTC in 

humanizing ways (Goffney & Gutiérrez, 2018) and/or as rights of the learner?  

The authors of this exploratory, embedded, mixed methods study began by collecting the 

saved transcripts from the MPTCs from 64 TCs across three semesters (spring 2020, fall 2020, 

and spring 2021). Analysis began by applying a natural language process called “topic modeling” 

to create a collection of words (named as topics) that described the entire data set; 50 topics 

(with ten keywords words each) were selected (Rios & Kavuluru, 2018). Only topics involving 

confusion, productive struggle, and mistakes were included in the final analysis. The second 

author applied a sentiment analysis procedure to the subset of the topic indices to explore the 

sentiment language (e.g., positive, neutral, and negative) used by the TCs when describing 

confusion, productive struggle, and mistakes. Finally, the first author applied a systematic, 

thematic analysis (Saldaña, 2020) to understand the contextual nuances of the TCs’ descriptions 

in the MPTC.  

Findings from the study showed that topics associated with confusion, productive struggle, 

and mistakes were typically assigned a higher negative sentiment than that of the other topics 

from the transcripts. Yet the qualitative thematic analysis showed, “the TCs used rehumanizing 

language that centered on children’s confusion, (productive) struggle, and mistakes as a normal, 

albeit messy and complex, part of the learning process that centers on the child’s humanity and 

rights as a learner.” For example, one TC stated in her MPTC that her student, “… let me know 

when he didn’t understand something or when he had questions. And this is totally normal. And 

those are his rights as a learner to ask questions or be confused.” The study concluded that there 

is more to learn about how TCs describe children’s confusion, productive struggle, and mistakes 

in ways that rehumanize how children learn mathematics. Our poster will focus this 

underexplored, but important mixed methods approach to understanding large bodies of textual 
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data: a process that combines natural language processing models such as topic modeling and 

sentiment analysis with qualitative research methods.  
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TEACHERS’ CREATIVITY IN LESSON DESIGN AND ENACTMENT 
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This poster session shares the results of a study that examined eight secondary mathematics 

teachers’ use of contextualized situations in their lesson design based on participation in a STEM 

discovery learning center. Eight secondary mathematics teachers are participating in a six-year 

project focused on the development of agency and authentic practice (Priestley, et al., 2015; 

Frost, 2016). Their experiences co-facilitating activity-oriented lessons in summer STEM camps 

prior to their degree program and STEM fairs throughout their graduate level licensure program 

influenced their use of realistic and creative mathematics problem situations in their formal 

classroom settings both as preservice and inservice teachers.  

The foundation for this study was derived from two perspectives in mathematics education:  

contextualized problem situations and creativity in problem and lesson design (e.g. Sriraman, 

2009; Sevinc & Lesh, 2022). Among other components, Sevinc & Lesh (2022) described 

mathematically rich and contextually realistic problems as having opportunities for sense making 

and creativity (p. 679). Their study provided evidence that preservice teachers increased in their 

understanding of how to develop mathematically and contextually rich problems over the course 

of a semester-long methods course but suggested that additional research is needed.  

This study answers the following research questions: 

1. How did preservice teachers initially respond to written questions about the feasibility of 

applying activities from the summer STEM camps to formal classroom instruction? 

2. What types of contextually rich and creative problem-solving lessons did they 

incorporate into their classroom instruction?  

The summer camp lessons involved hands-on activities centered around themes such as 

making stained glass from jolly ranchers as part of an exploration of medieval times. The 

graduate level licensure program required the preservice mathematics teachers to create their 

own STEM fair project and also guide students in their internship settings in their development 

of projects.  Data sources included observations, reflective essays, lesson plans and focus group 

interviews. Initial responses to the STEM summer camp experiences indicated hesitancy to 

incorporate hands-on activities into formal classroom lessons due to perceptions that there might 

not be enough time or resources to include during daily instruction. However, views began to 

shift towards the end of their licensure program and into their first two years of teaching as they 

recognized the positive impacts of mathematically rich and contextually realistic problems on 

their own students.  
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This paper shares a synthesis of the literature related to the application of a relationships-first 

approach to high-dosage math tutoring. In the context of our research, high-dosage tutoring is 

delivered multiple times per week during the school day by paraprofessionals who work with 

students in historically under-resourced schools. We apply a critical perspective to frame the 

importance of attending to interpersonal relationships during tutoring. We then explain the core 

ideas of small group interactions, dialogue, relational interactions, care and belonging and 

provide a synthesis of these constructs. The literature synthesis presented is intended to be 

applied to research-based efforts aimed at supporting tutors working to increase their skills for 

cultivating strong interpersonal relationships and enacting equity oriented pedagogy. 

Keywords: Equity, Inclusion, and Diversity, Communication, Classroom Discourse, Affect, 

Emotion, Beliefs, and Attitudes 

The opportunity for students to develop positive personal relationships as part of their 

content-based interactions during math tutoring is often presented as the keystone of a human 

tutoring model, providing support that cannot be offloaded onto current or forthcoming 

technologies, even ones using modern Artificial Intelligence. This is especially true in high 

dosage tutoring contexts where the same tutor works with a designated group of students 

throughout an academic year. Research demonstrating that strong teacher-student bonds can 

enhance student motivation and engagement, and positively impact learning outcomes (Davis, 

2003; O’Connor & McCartney, 2007) underscores the value of a relationships-first human 

tutoring model. 

One component of the University of Colorado Boulder (CU) and Saga Education research 

project is focused on contributing to the professional growth of novice tutors learning to cultivate 

strong personal relationships with their students. Specifically, the CU and Saga research team is 

studying discourse-based interactions in the tutoring context and incorporating this knowledge 

into artificial intelligence (AI) models to generate feedback to help tutors and the coaches who 

work with them improve their effectiveness. Leaning into the keystone benefit of human tutoring, 

the primary focus for tutors’ professional growth centers on improving tutors’ use of discourse 

and dialogue about mathematical concepts and supporting tutors’ ability to cultivate increasingly 

caring and supportive relationships with their students. One goal of this research is to support 

tutors to learn how to weave interpersonal relationship building throughout the time they spend 
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working with students on mathematical content for the dual purpose of increasing students’ math 

learning and supporting students’ general well-being. 

Context and Overview  

Historically, tutoring has been primarily available to those who hire private tutors to support 

enhanced academic success for students whose families can afford to pay for this service 

(Nelson-Royes, 2015). Providing tutoring to a more economically diverse population of students 

has been shown to be a valuable strategy for reducing achievement and opportunity inequities 

and supporting students’ emotional well-being (Carlana & La Ferrara, 2021). In recent years 

tutoring, and particularly high-dosage tutoring provided in school during the school day, has been 

promoted as a way to support students and help address achievement inequities ‒ this effort has 

increased in the aftermath of school closures and online learning during the Covid-19 pandemic 

(Carlana & La Ferrara, 2021). This increased attention and momentum has led to a rapid increase 

in the availability of tutoring during the school day for students who are less likely to be able to 

afford the cost associated with hiring a private tutor. As of 2015, 32% of US high schools 

required academic tutoring for at least some of their students (US Department of Education, 

2017). More recently the U.S. Education Secretary, Miguel Cardona, has advocated for all 

students who are academically behind grade-level to receive high-dosage tutoring (at least 90 

minutes per week), and COVID relief funds have provided a source of funding to support 

tutoring services in schools (Stavely, 2022). 

The increase in human tutors working with students during the school day has several unique 

affordances. First, opportunities for students to work in small groups, for an extended period, 

with a knowledgeable math adult, tend to be rare in traditional classrooms. In an example of a 

context in which some students may receive small group instruction and where students have 

opportunities to engage with highly trained adults providing personalized support - students who 

receive special education services - the supporting teachers may not have the math knowledge 

necessary to effectively bring about high levels of learning, and not all students receive this 

support. Tutors who deliver high dosage tutoring can provide unique benefits by bringing high 

levels of math content knowledge to a small group tutoring context that is provided to all. 

Second, tutors provide socio-cultural and relational support that is not always possible in 

classrooms. The population of people hired as tutors is more diverse than the teaching workforce 

(Contreras, 2022) and more demographically aligned with the population of students they are 

working with. The population of tutors whose professional growth our research supports includes 

54% people from nondominant backgrounds, 19% of whom identify as Latine. These 

demographic characteristics increase the likelihood of students working with tutors with whom 

they share identity group memberships and/or cultural backgrounds, affinity and experiences. The 

combined scenario of working for extended periods of time in small groups paired with the 

potential for common experiences associated with shared identity group memberships and 

cultural backgrounds creates a powerful and unique opportunity for tutors to support students 

both academically and personally in ways that complement and augment other supports that exist 

in traditional school settings. 
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Theoretical Perspective 

Our work is grounded in the perspective that incorporating interpersonal relationship 

building throughout tutoring sessions in ways that are integrated with content instruction 

contributes to supporting students’ well-being and plays a central role in students’ increased 

understanding and knowledge about math. Foregrounding interpersonal relationships supports 

students’ thriving as both math learners and as developing young adults. 

A critical perspective casts a powerful lens to understanding these theoretical commitments 

and thus better supporting this development. A critical perspective focuses attention on how math 

instruction that supports the “mathematical identities, excellence and literacies of marginalized 

students” (Gutiérrez, 2008, p. 357) may differ from instruction that leads to increased test scores 

and reduced participation gaps. Despite a longstanding call in math education research literature 

for math teaching to incorporate a critical perspective (e.g., Gutiérrez, 2007; Martin, 2003), math 

tutoring continues to be almost exclusively oriented toward increasing students’ knowledge of 

math content with insufficient attention paid to how tutors and students relate to each other as 

more complete human beings. Gutiérrez’s (2009) provides an initial framework for 

understanding equity in math that explains the importance of relationship building in high-

dosage human tutoring contexts. 

Gutiérrez’s (2009) framework consists of two axes: the dominant axis includes the 

dimensions of access and achievement, and the critical axis includes the dimensions of identity 

and power. Tutoring models align with the dominant axis via their aim to increase students’ 

content knowledge. By providing students with access to learning opportunities tutoring may 

increase students’ achievement of academic success in math which may be indicated on 

assessments showing absolute increases in learning outcomes or reduced differences in 

achievement between identity groups. Tutoring models that only attend to mathematical content, 

without attending to interpersonal relationships, fail to account for the critical axis, including the 

impact of students’ experiences with identity and power dynamics on their learning. 

In delineating what is required in equitable math, Gutiérrez calls attention to the need to 

engage with students’ unique identities and the power dynamics at play in math learning spaces. 

Engaging in math teaching and learning in ways that reflect distributed power structures can 

support more student-centered learning, students’ agency and students’ mathematical identities 

and sense of belonging. Students have been shown to benefit from opportunities to bring their 

lived experiences to bear on the task of learning math in ways that align with their personal 

identity group memberships and individual perspectives and experiences (Esmonde, 2009; 

Battey et al. 2016; 2018; Ford et al. 2014).  

Dialogic learning spaces are an example of attention to both the dominant and critical axes. 

These spaces are built around rich and generative interactions between instructors and students 

that enable people to get to know each other’s unique ways of thinking and doing math. The goal 

is supporting students to develop conceptual understandings of math that are rooted in their 

individual perspectives and lived experiences. 

Literature Related to Relationship-First Instruction 

A commitment to building strong interpersonal relationships in the context of high-dosage 

math tutoring has been justified using a broad range of evidence from research literature. 

Gutiérrez’s framework provides a scaffold to situate additional components that are especially 
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relevant to the classroom in general and tutoring specifically. Looking at the dominant axis, the 

incorporation of tutoring into a student’s daily practice increases access and provides more 

support to increase achievement. Since tutoring inherently takes place in small groups it can 

bring about specific benefits unique to small group instructional contexts including increased 

opportunities for dialogue. Examining the critical axis, we draw from literature on relational 

interactions, care and belonging as relevant components necessary for attending to students’ 

experiences of identity and power dynamics, and we observe that each of these elements is 

interrelated and critical to student success and wellbeing.  

Small groups: creating a context for learning and growth 

Tutoring constitutes a unique context in which students are working in small groups, but they 

have the full-time participation of an adult who holds extensive math content knowledge. 

Research on small group mathematical activity, and equity and inclusion in small groups 

working on mathematical tasks, may apply to the tutoring context, recognizing that the tutor’s 

full-time participation differs from the role a teacher plays in a classroom setting. The presence 

of a tutor could potentially undermine the opportunity that is normally available to students 

working in small groups to exercise agency over how they engage with mathematical content. 

However, the small group setting offers opportunities for a skilled tutor to facilitate dialogue, 

engage in relational interactions, convey care, and cultivate a sense of belonging. 

Esmonde (2009) proposed a theoretical framework for understanding Opportunities to Learn 

during small group learning activities. This framework consists of four points about how learning 

happens: “(a) through participation, (b) in relation to a social ecology, (c) through processes of 

identity development, and (d) through communicating about mathematical content” (p. 1011). In 

Esmonde’s conceptualization, participation refers to students’ opportunities to “move on a 

trajectory toward more central and competent participation in classroom practices” (p. 1011). 

Social ecologies in small groups account for the forces that contribute to the social construction 

of identity within the norms and dynamics of a single small group, along with external influences 

on identity development such as intersections of race, class, gender, sexuality, language 

communities and more. Students’ identities can be influenced by their experiences engaging in 

dialogic learning, by their teacher’s enactment of relational interactions and expressions of care, 

and by the degree to which they feel a sense of belonging in the math learning community. 

Finally, with respect to communicating about mathematical content Esmonde considers the role 

of shared meaning making in the processes used by small groups working on mathematical 

activities. Esmonde’s (2009) framework provides a way to account for identity and power - 

Gutiérrez’s critical axis - in math learning, paying particular attention to the experiences of 

students who are members of nondominant identity groups and considering how students can 

experience agency in math learning that is relevant within their unique life experiences. 

Dialogue: connecting student and tutors together 

The term 'dialogue' is often used loosely in reference to discussion or conversation between 

teacher and students or between multiple students. However, the literature on dialogic teaching 

and learning has some important characteristics worth attending more closely. Dialogic teaching 

and learning “characterizes an epistemological relationship,” (Freire and Macedo, 2003, p. 191), 

“a process of learning and knowing” (p. 193) in which all participants have agency in the nature 

of the learning that occurs and how that learning develops. Billings and Fitzgerald (2002) 

observed that dialogic discourse can generate a “reciprocal flow of ideas involving actions and 
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reactions of group members [that] may lead to new understandings not held by any group 

member in advance of the discussion” (p. 909). The learning that results from collective 

sensemaking through dialogue moves beyond transactional learning that flows primarily from 

tutor to students. In other words, dialogic discourse results in learning that is multidirectional 

which reflects participants unique perspectives, experiences and ways of thinking. 

Development of a dialogic learning space is initiated by a teacher or tutor who is skilled at 

supporting student agency and who cultivates norms of participation that enable movement from 

peripheral to central roles of participation while considering students’ identities and experience 

of shifting power and authority dynamics. Webb et al. (2019) observe that a teacher’s role in 

creating inclusive and dialogic small group learning environments includes helping students 

know how to engage in active listening; ask and answer questions; brainstorm suggestions, ideas 

and opinions; explain and evaluate ideas; use persuasive talk; summarize conversations, and 

much else (p. 177). Xu and Clarke (2019) describe the importance of teachers considering 

cultural differences related to students’ identities and life experiences that may influence 

students’ participation and interactions with persons in positions of authority and may 

subsequently impact how students engage in a dialogic learning space. Langer-Osuna and 

Esmonde (2015) describes complexities of the shifting authority relations present in 

collaborative and dialogic math learning communities. The role of a teacher or tutor in 

cultivating a dialogic learning experience extends well beyond the creation of group-worthy 

tasks to include how these tasks are enacted through the intentional use of dialogic moves. 

Relational interactions: attending to how tutors communicate 

Literature on relational interactions specifically describes how teachers relate to and interact 

with their students (Battey, 2013; Battey et al. 2016; 2018). Relational interactions factor into the 

establishment of care, as will be described below, and they shape students’ math learning 

experiences. Teacher content knowledge and implementation of instructional practices have been 

shown to be impactful for student learning (Battey, 2013; Battey et al. 2016; 2018), but 

relationship interactions are equally impactful. A teacher may have extensive content knowledge 

and be skilled at using an extensive repertoire of instructional strategies, but if they do not 

establish and maintain supportive relational interactions, students may not thrive. Consideration 

of the nature of relational interactions is especially relevant for students who identify as members 

of minoritized groups in society and who are more likely to be learning math from educators 

whose identity group memberships and cultural backgrounds differ from their own. If teachers’ 

approaches to relational interaction are rooted in different cultural experiences or expectations 

this may result in relationships with these students that feel less personal or less familiar (Battey 

et al. 2016; 2018; Ford et al. 2014). Battey et al. (2016) specifically highlight how teachers 

perceive their African American and Latine students as more confrontational and spend more 

time disciplining their behavior as compared to their white peers. Ford et al. (2014) addresses the 

potential differences in how authority is established between White and Black teachers, and how 

this may impact their relationships with their students. While relational interactions are 

integrated with the concept of care, they can be more precisely descriptive of how a teacher 

connects with their students.   

Battey et al. (2016; 2018) identified five components of relational interactions that help build 

such “caring relationships,” with a particular lens on instructing minoritized students. These 

include framing math ability, acknowledging student contributions, attending to culture and 
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language, addressing behavior, and setting the emotional tone. These dimensions can be tracked 

by looking at specific forms of dialogic acts or conversational moves. A teacher who takes a 

positive approach to enacting each of these components can create a supportive learning 

environment. However, the converse is true as well; if a teacher takes a negative approach, it can 

diminish the student's willingness to engage and restrict their opportunities to learn. For example, 

in a case study looking at an elementary math teacher’s class, Battey (2013) observed positive 

framing of ability when the teacher encouraged students on a specific math problem, reminding 

them of their accomplishments on similar problems. Conversely, negative framing occurred 

when the teacher was sarcastic and questioned students’ basic math skills. Relational interactions 

highlight how communication can have an immediate impact on students. 

Care: establishing authentic relationships 

A fundamental component of relationships is the element of care, or attending to the needs of 

others (Bartell, 2011; Potvin et al, 2022; Maloney & Matthews, 2020). Within an educational 

context, Noddings (1984, 1988) has applied care theory to describe the teacher-student dynamic. 

When a teacher shows genuine care and compassion, this can significantly impact the student’s 

educational experience for the better (Bartell, 2011; Maloney & Matthews, 2020).   

However, there are many different critical components needed to successfully develop an 

authentic caring relationship (Bartell, 2011). Caring for a student means attending to their 

wellbeing at a personal level, and not just caring for their academic success (Maloney & 

Matthews, 2020). Noddings (1988) describes the need for ‘engrossment’, meaning the teacher 

must understand the students’ motivations and feelings and provide positive acknowledgment to 

form a reciprocal relationship. Similarly, Maloney & Matthews (2020) emphasize the need for 

empathetic care, which is “teacher’s authentic expression of identifying with the challenges of 

their students and prioritizing students’ well-being above their own” (p. 408). Maloney and 

Matthews (2020) found that when students experienced care as transactional or superficial, they 

were less invested in the class. However, when students felt empathetic care, they felt more 

connected to the class, that their input was valued, and that math was relevant to them. Whether a 

teacher shows genuine care for a student as a person, and not just for their academic 

performance, has ties to greater investment; students want to do better for teachers who care for 

them (Bartell, 2011; Maloney & Matthews, 2020). 

To establish this level of care and understand a student personally, teachers must understand 

not only the student’s identity and background but also their lived experience in the context at 

large. This is especially important for BIPOC students and any student in a marginalized or 

systematically oppressed community. To not acknowledge the challenges that have been built 

into these students' lives is to ignore a major factor in their educational experience (Maloney & 

Matthews, 2020). This also means teachers should be aware of their own teacher identity and any 

potential biases they may hold, especially as they are the ones in the position of power within the 

teacher-student relationship (Bartell, 2011). It is not enough for a teacher to care, the student 

must also feel cared for to establish an authentic connection (Bartell, 2011). Care in the 

classroom clearly has many nuances (Bartell, 2011), but is an essential part of maintaining 

healthy relationships (Potvin et al., 2022). 

Belonging: bringing together all members of tutoring groups 

Belonging is a multifaceted social construct that typically relates to the perception of 

inclusion and support within a community and is seen as a basic human need (Allen et al, 2021; 
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Gray et al. 2018). The sense of exclusion or isolation has been related to poor quality of life and 

depression (Allen et al., 2021). Thus, establishing a sense of belonging is important for young 

people, especially in socially interactive academic settings where they spend a significant portion 

of their time (Barbieri & Miller-Cotto, 2021). Not only is belonging associated with overall 

wellbeing, but it has also been found that the sense of belonging in a math setting is associated 

with better academic performance (Gray et al., 2018; Allen et al., 2021; Penuel et al., 2023; 

Barbieri & Miller-Cotto, 2021). Barbieri and Miller-Cotto (2021) found an association 

specifically between a sense of belonging in math and subsequent scores. Penuel et al. (2023) 

found that a student's sense of belonging predicted their level of contributions. This differed by 

race with White and Asian students contributing more than their Latine peers.  

Similar to the findings on care and relational interactions, a sense of belonging is especially 

impactful for BIPOC students (Barbieri & Miller-Cotto, 2021; Penuel et al., 2023; Gray et al. 

2018). Matthews et al. (2021) posits that there are seven key dimensions - 3 interpersonal and 4 

instructional - that constitute Belonging Centered Instruction. Educational institutions have 

historically been a place of exclusion for students who are members of minoritized identity 

groups, and these experiences can undermine their opportunities to develop a sense of belonging. 

However, when care is established and positive relational interactions occur, this can bolster a 

student’s sense of belonging. These concepts are interwoven together; when a student feels that a 

teacher genuinely cares about their wellbeing (often by using positive relational interactions) 

then the student may feel more belonging and be motivated to contribute and engage (Barbieri & 

Miller-Cotto, 2021; Penuel et al., 2023; Gray et al. 2018; Maloney & Matthews, 2020). 

Relationship Focused Tutoring: Alignment of Constructs with Critical and Dominant Axes 

To help us understand the role that each of the previously described constructs can play as 

components in a relationships-first high dosage tutoring context, we consider the alignment of 

key aspects of each construct with the dominant and/or critical axis. Notably, each construct 

contributes to both axes and helps expand Gutiérrez’s framework by suggesting how educators 

can attend to access, achievement, identity, and power. Table 1 shows this alignment. 

 

Table 1: Alignment of Constructs with Dominant and Critical Axes 

 Small Groups Dialogue Rel. Interact. Care Belonging 

Dominant movement 

toward central 

participation 

 

student 

agency 

 

-framing 

ability 

-acknowledge 

contributions 

positioning 

learning content as 

good for the self 

 

supports 

academic 

success 

 

Critical attention to 

student’s 

individual 

needs and 

experiences 

-shifting 

authority 

relations 

-multi-

directional 

learning 

-attending to 

culture and 

language 

-set emotional 

tone 

 

-attend to student 

wellbeing and 

lived experiences 

-empathetic care 

-potential biases 

supports 

feelings of 

membership 

in learning 

community 

 

 

Tutoring by nature involves working in small groups. As Esmonde’s (2009) framework 

explains, small group interactions can support students to move toward more central roles of 
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participation which enhances their access to learning opportunities and potentially academic 

achievement, the components of the dominant axis. Small group learning contexts also provide 

opportunities for individualized interactions that attend to students’ unique identities and lived 

experiences, the components of the critical axis.  

A dialogic learning space increases students’ opportunities to engage with teachers’ and 

tutors’ ways of conceptualizing and doing math which has the potential to support access and 

achievement through students’ participation in sense-making about mathematical ideas. The 

multidirectional nature of the learning generated through dialogic discourse depends on students’ 

opportunities to contribute their own unique conceptualizations and lived experiences in relation 

to the math they are learning. Learning that results from dialogic interactions is reflective of the 

ideas, insights and perspectives of all participants and relies on shifting power dynamics and 

authority structures around who holds and contributes knowledge. 

Regarding relational interactions, the ways that educators frame math ability, acknowledge 

student contributions and address behavior support students’ access to learning opportunities, 

while educators’ attention to culture and language and strategies for setting the emotional tone 

incorporate aspects of the critical axis of equitable math. 

Educators’ expressions and demonstrations of care attend to the dominant axis’ components 

when they are concerned with how learning mathematical content is good for the students. When 

educators’ enactment of care extends to attending to students’ well-being, demonstrating 

empathy, learning about and being responsive to students’ lived experiences, acknowledging and 

correcting potential biases and engaging in deep and authentic connection the critical axis 

components of identity and power are being addressed. 

Finally, educators’ who support the development of students’ sense of belonging as it relates 

to established and accepted practices of doing math are attending to the dominant axis 

components of access and achievement, while educators’ who cultivate learning environments in 

which students’ sense of belonging as unique and valued members of a community of learners 

are attending to the critical axis components of identity and power. 

Conclusion 

In the context of high dosage math tutoring in which tutors bring a relationships-first 

approach to their interpersonal interactions with their students it is helpful to have a clear 

understanding of what is involved in cultivating strong and productive tutor-student 

relationships. We propose that a more equitable and inclusive form of math tutoring can be 

achieved by explicitly considering how tutors engage with students in ways that attend to both 

the critical (identity and power) and the dominant (access and achievement) axes of equitable 

math by first building strong positive relationships with students and then leveraging those 

relationships throughout their interactions about math content. This paper contributes a synthesis 

of research related to how professionals who work in instructional roles can build relationships 

that support students’ well-being as a mechanism to contribute to increased math learning. This 

synthesis of the separate but related constructs described in this paper helps to explain how tutors 

can build positive interpersonal relationships in a high dosage tutoring context, supports the 

design of professional learning opportunities and contributes to the professional growth of tutors 

working to improve their skill at supporting and engaging with their students. 
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How preservice teachers (PSTs) learn to visually represent fraction multiplication with 

partitioning is an ongoing area of research. Our study investigated what strategies 15 

elementary PSTs used to solve and model two non-unit fraction multiplication tasks before 

instructional guidance. We found the majority of PSTs used algorithmic approaches to provide 

solutions and often did not provide an explanation or a visual representation to support their 

reasoning. Two special cases provided insights into challenges PSTs may face when depicting 

and partitioning the unit within area models. These findings have implications for purposeful 

sequencing of fraction tasks and intentional instruction around representing and partitioning 

units.  

Keywords: Mathematical Representations, Preservice Teacher Education, Rational Numbers, 

Teacher Knowledge 

Relevant Literature and Purpose 

Area models are a core pictorial representation used throughout the scope and sequence of K-

12 mathematics (Lischka & Stephens, 2020). Preservice teachers’ (PSTs’) ability to use 

representations fluently will directly impact their future students’ conceptual understanding and 

procedural fluency as representations are the vehicle that students use to understand the abstract 

concepts central to mathematics (Pape & Tchoshanov, 2001). In the domain of rational numbers, 

area models have been used to investigate PSTs’ conceptions of decimal multiplication (Rathouz, 

2011), fraction division (Leitch, 2023), fraction multiplication (Gichobi, 2018), fraction addition 

(Lee & Lee, 2023), understanding of fraction multiplication through problem posing (Yeo & Lee, 

2022), and the connections between fractions, geometry, and measurement (Lee & Lee, 2021). 

For fraction multiplication using area models, PSTs often struggle with producing visual 

representations of fraction concepts; connecting representations is crucial for the development of 

their content knowledge (Thurtell et al., 2019). Some of the challenges with fraction 

multiplication include: (a) insufficient foundational fraction knowledge; (b) interpreting fraction 

multiplication; and (c) recognizing the unit they are partitioning for accurate division and 

subdivision of factors (Son & Lee, 2016). This literature recognizes the importance of 

investigating the development of PSTs’ use of area models for fraction multiplication. 

For this report, we investigated the following research question: What strategies do 

elementary PSTs use when multiplying fractions before instructional guidance? This question 

contributes to a larger ongoing cross-institutional study focused on examining the relationship 
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between the fluency in which elementary PSTs use area models with whole numbers influence 

the use of area models with fractions. Specifically, we examined PSTs’ fluency with area models 

in relation to their ability to both solve fraction multiplication tasks and communicate their 

reasoning.  

Theoretical Background 

The mathematical experience and content knowledge that PSTs bring to their preparation 

programs must be strengthened to develop their pedagogical content knowledge. Pedagogical 

content knowledge should include the effective use of representations and the ability to develop 

procedural fluency from conceptual understanding (Ball et al., 2008). When adding fractions, 

PSTs often relied on procedural knowledge to solve the tasks and then represent their answers 

with an area model (Lee & Lee, 2023). When multiplying fractions, PSTs frequently used more 

familiar, algorithmic approaches as opposed to those that support the development of conceptual 

understanding (Gichobi, 2018). Although PSTs may have the procedural knowledge to compute 

the correct answers for fraction operations, they may lack conceptual understanding to transfer 

their thinking into different representations. Using only algorithms has been shown to limit PSTs’ 

understanding of how the unit is important in fraction multiplication (Izsak, 2008). To make 

sense of traditional fraction algorithms, PSTs should engage with using area models to build 

fluency with fraction operations. To become well-prepared mathematics teachers, PSTs need 

opportunities to connect procedural fluency with conceptual understanding (NCTM, 2014).  

 

Methods 

Participants and Settings 

Our participants included 15 undergraduate elementary PSTs (14 females and 1 male) who 

were enrolled in the second of a two-course sequence consisting of elementary mathematics 

content taught by one of the authors at a small, Midwestern university in the United States. The 

first course focused on whole number concepts and operations, and this second course focused 

on rational number concepts and operations. The concepts covered in these courses included a 

focus on understanding why familiar mathematical procedures work to support PSTs in 

developing conceptual understanding and pedagogical content knowledge for teaching. 

Data Sources and Analysis 

To investigate strategies PSTs used for multiplying two fractions before instructional 

guidance, they were given a paper-and-pencil pre-test prior to course work regarding rational 

number operations. The pre-test consisted of two non-unit fraction multiplication tasks: ⅔ × ¾ 

(required no additional subdivision) and ⅔ × ⅘ (required additional subdivision), and PSTs were 

directed to solve them using an area model. Additional directions on the pre-test included: (a) in 

your area model, only use additional subdivision when it is necessary; (b) do not use algorithms 

to solve the problem; (c) make sure to draw each step of your solution, provide a brief narrative 

explanation for each step, and write symbolic notations that will help the reader understand how 

you solved the problem; (d) clearly mark your final solution.  

We used an inductive coding by initially identifying key themes then iteratively generated 

new codes and themes (Creswell, 2013; Saldaña, 2016). First, we independently explored the 

data to visually inspect for trends in PSTs’ strategies, writing analytic memos on initial thoughts 

regarding how to categorize PST solutions. We debriefed by discussing responses and refined 

categories for coding: Provision of narrative explanations, accuracy of response (conceptual, 
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computation, and visual aspects), types of visual representations, and algorithmic approaches. 

Using these categories, we focused on two cases of visual representation for further examination. 

 

Findings 

Our preliminary pre-test findings revealed nuances associated with PSTs' use of the fraction 

multiplication algorithm and their adoption of area models to represent fraction multiplication. 

First, we briefly summarize those representations and algorithms. Then, we share two cases that 

allowed us to examine PSTs’ emerging use of visual representations with correct solutions but 

whose models did not fully depict how they arrived at their solutions. 

Summary of PSTs’ Fraction Multiplication Strategies 

We tasked the 15 PSTs with multiplying two pairs of fractions using area multiplication, 

accompanied by narrative explanations. Only 40% of the PSTs attempted to use visual 

representations for both tasks, and approximately 25% offered narrative explanations on both 

tasks. About a third of PSTs relied on algorithms for both tasks, some correct and some incorrect 

(e.g. “cross-multiplying”). The majority (around 60%) provided incorrect solutions, attributable 

to conceptual model errors, procedural strategy errors, or calculation mistakes. For instance, two 

PSTs used cross-multiplication, and some employed inaccurate common denominator strategies.  

Variations in Visual Representations 

The distribution of PSTs across different representation types for two distinct fraction 

multiplication tasks is summarized in Table 1. Only six PSTs attempted visual representations for 

each task, and one PST attempted a visual representation for only Task 1. 

 

Table 1: Types of Visual Representations Used by the Number of PSTs  

 

 Types of Visual Representations 

 One Rectangle with 

Length and Width 

Labeled as Factors 

Area Model to 

Represent Each 

Factor Separately 

Rectangular Area 

Model with 

Partitioning and 

Subpartitioning 

Strips / 

Cuisenaire Rod 

Model 

Task 1 3 2 1 1 

Task 2 3 2 1 0 

 

From Table 1, we observe that approximately half of the PSTs who attempted visual 

representations drew rectangles with the length and width each representing a fraction (the two 

factors). Two PSTs drew separate models for each of the factors and avoided subpartitioning 

their models to explain the multiplication process. These approaches were accompanied by 

algorithmic approaches to generate the product of multiplication. In Figure 1, Danielle (all names 

are pseudonyms) used a variation of this approach with circular area models representing ⅔ and 

⅘ alongside a “multiply across” method to produce 8/15 as the answer. Danielle proceeded to 

draw a rectangular area model to represent the solution incorrectly with only 7 of the 15 squares 

shaded.  
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Figure 1: Danielle’s Area Model Representation to Show ⅔ × ⅘ 

 

Interestingly, one PST drew strips or rods to represent two fractions. For obvious reasons, 

PSTs who employed two separate models for the two factors appeared to struggle with how to 

further partition to find the answer. Only one PST used partitioning and subpartitioning in their 

visual representation when solving the tasks. Amanda seemed to have used two different 

approaches for Task 1 and 2. Amanda’s first model involves partitioning and subpartitioning the 

unit (Figure 2, left). However, how her model represents a unit (the whole), ⅔, but ¾ is not clear. 

It is possible Amanda first drew a rectangle and partitioned it into thirds horizontally and shaded 

two parts to show ⅔, followed by partitioning the whole rectangle again into fourths (one vertical 

partition and one horizontal partition) and shaded three parts to show ¾. Subsequently, Amanda 

may have double-shaded overlapping parts and counted these parts (of which some are 

conceptually unequal but in Amanda's visual representation look about equivalent in area) to 

generate the solution of 4/8 = ½. With three types of shading and unequal partitioning, it is hard 

to interpret her process of subpartitioning and finding the answer, even though the solution is 

correct. Amanda’s model of ⅔ × ⅘ clearly shows her process of partitioning and subpartitioning 

the rectangular area model. It appears that she used the larger rectangle as a unit, initially 

employing horizontal partitioning to show ⅘ of the unit, followed by vertical partitioning to 

represent ⅔, thus showing 8/15 of the unit (whole) through double shading. It is interesting to see 

why Amanda chose to use two potential distinct ways to represent fraction multiplication. 

 

 
 

Figure 2: Amanda’s Area Model Representations to Show ⅔ × ¾ (left) and ⅔ × ⅘ (right) 

 

These findings highlight the inconsistencies PSTs may have in their current understanding of 

representing fraction multiplication, s specifically with depicting and partitioning the unit. 

 

Implications 

Many of our PSTs did not attempt to visually represent the fraction multiplication tasks and 
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instead utilized algorithmic approaches. Similar to existing literature (Son & Lee, 2016), PSTs 

erroneously found the common denominator when multiplying fractions. PSTs rarely provided 

an accompanying narrative to explain their thinking in visual representations. Extending upon 

prior literature, Amanda’s approaches demonstrated the difficulties PSTs face when identifying 

the unit in need of partitioning. We suggest that subsequent instruction emphasizes the 

importance of beginning with the unit of reference or involve real-world contextual problems 

that can assist in identifying the unit of reference. Amanda’s inconsistent partitioning could result 

from the experience of partitioning even-numbered denominators both vertically and 

horizontally, which is not possible with odd denominators. Math teacher educators should then 

carefully consider the use of multiplication tasks involving both even and odd denominators with 

area models. We acknowledge these are preliminary findings drawn from PSTs’ pre-tests on 

fraction multiplication. To further explore PSTs’ conceptions of fraction multiplication, we will 

examine their growth following instruction and how it endured throughout the semester. 
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This qualitative case study explores the impact of Collaborative Online International Learning 

(COIL) experiences on the ability of pre-service teachers (PSTs) to provide evidence-based 

noticing and responsive feedback in mathematics education. The research demonstrates that 

engaging in COIL activities improved PSTs' attentiveness and the quality of their feedback, with 

an emphasis on conceptual-responses-oriented feedback. Furthermore, the study highlights the 

influence of group interactions during COIL experiences on these enhancements. The 

implications of the findings are significant for teacher education programs, emphasizing the 

importance of offering personalized feedback and cultivating a deeper understanding of 

mathematical concepts. The study underscores the value of collaborative learning experiences in 

enhancing teachers' expertise and advocates for further research in this field. 

Keywords: teacher education, collaborative online international learning, noticing and feedback 

Purpose of the Study 

Assessing students' learning progress in a formative manner is essential for educators as it 

allows them to pinpoint areas that need attention, offer personalized feedback, and prepare for 

upcoming instructional sessions (Bailey & Drummond, 2006). Analyzing students' incomplete 

thought processes can provide valuable insights for instructors to tailor pedagogical approaches 

and improve educational outcomes (Peltier & Peltier, 2020). PSTs who encounter challenges in 

creating flexible and effective mathematical lessons may lack the necessary preparation to meet 

the diverse needs of their future students, underscoring the significance of enhancing teacher 

education programs to better equip PSTs with essential skills and knowledge (Lee & Kim, 2022; 

Mason, 2002). The study aimed to explore the impact of Collaborative Online International 

Learning (COIL) experiences on PSTs' capacity to provide evidence-based noticing and 

responsive feedback in mathematics education. Specifically, it aimed to evaluate the changes in 

the noticing patterns and feedback approaches of PSTs following their participation in COIL, 

with a focus on promoting conceptual-responses-oriented feedback. The research questions that 

guided the study were:  

1) How does participation in COIL activities impact PSTs’ noticing student thinking and 

providing feedback?  

2) What are the effects of the COIL activity on the alignment between PSTs’ noticing levels and 

the quality of feedback provided? 

Theoretical Perspectives 

Analyzing students’ cognitive processes through observations of their work can provide 

educators with valuable insights. This approach enables educators to grasp students’ 

understanding of mathematical concepts, facilitate deeper learning, and address any 

misconceptions through thoughtful feedback (Ball, 1991; McLaren et al., 2012). However, 
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identifying error patterns can pose challenges, and solely evaluating work may not effectively 

support student comprehension (Peltier & Peltier, 2020). When delivering feedback, teachers 

should prioritize ensuring student comprehension, promoting alternative strategies, linking 

current and underlying mathematical concepts, and encouraging critical reflection (Jacob & 

Empson, 2016). Additionally, it is essential for teachers to highlight student strengths, be 

responsive by inviting elaboration, introducing diverse perspectives, fostering collaboration, and 

restating reasoning (Daro et al., 2011). The interdependent relationship between responsiveness, 

thinking, noticing, and feedback quality underscores the importance of developing noticing skills 

to enhance interactions and feedback (Jacobs et al., 2011; König et al., 2022). 

Social interaction among PSTs plays a crucial role in fostering successful collaborative 

activities, facilitating learning through discussions, reasoning, reflection, critical thinking, and 

comprehension (Garrison et al., 2001; Kreijns et al., 2003; Liaw & Huang, 2000; Northrup, 

2001). Collaboration positively influences noticing abilities, enabling future teachers to observe, 

interpret, and appreciate student reasoning from diverse perspectives, thereby enhancing 

decision-making through an understanding of group dynamics (Abdu & Slakmon, 2023). The use 

of digital tools has enabled global collaborative learning participation, particularly in virtual 

exchanges involving intercultural interactions. Engaging in virtual exchanges can stimulate 

innovation, promote internationalization, and provide networking opportunities (Creelman & 

Löwe, 2019; Jager et al., 2019). COIL fosters meaningful connections and global collaborative 

problem-solving for teacher education (Potter & Bragadottir, 2020). In online preparation, 

composing narratives and receiving feedback assist in identifying learning opportunities for 

PSTs. Sharing narratives and receiving responses aid in developing discernment and refining 

practices (Sjöblom et al., 2023). However, instructors involved in COIL should possess 

knowledge of learning content, pedagogical strategies, and appropriate technology for their 

COIL experiences. Recognizing and highlighting the differences in learners' cultural 

backgrounds are essential for creating an inclusive COIL environment (Bae, 2022). 

 

Methods 

The research study utilized a qualitative descriptive case study methodology to address the 

research inquiries and provide a comprehensive account of the case by examining documents 

(Yin, 2014). The study involved 19 seniors enrolled in an elementary licensure program (the 

PreK-5 grade range) at a small university in the midwestern region of the United States. The 

research focused on a COIL activity designed to enhance PSTs’ abilities to analyze and 

comprehend their students’ mathematical strategies and errors, and to deliver meaningful 

feedback and responsive lessons. The PSTs were organized into small groups of 5-6 individuals, 

comprising PSTs from both a U.S. university and a Spanish university. These groups participated 

in a collaborative four-phase activity, which included individual work, interactive online 

collaborations, group report development, and reflection on the COIL experience. 

The data collection process aimed to examine the impact of COIL on the PSTs’ ability to 

notice errors/strategies and provide feedback. Prior to the study, the PSTs received instruction on 

number sense, the four basic operations, and teaching strategies. They were presented with six 

student solutions involving the four basic operations selected from The Assessment Project 

(http://map.mathshell.org): Ava (Addition), Jacob (Subtraction), Mason (Division), Aiden 

(Multiplication), Abigail (Division with numbers including 0), and Mia (Subtraction using 

http://map.mathshell.org/
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expanded form). The initial data collection involved individual written responses from the PSTs 

during an in-person mathematics methods class. The second set of data included group responses 

collected electronically after the COIL experience. Throughout the data collection, the PSTs were 

instructed to: (1) identify error patterns by analyzing the student solutions and (2) provide 

constructive feedback to enhance student comprehension.  

For data analysis, the study employed the general inductive and deductive approach 

(Creswell, 2013) centered around noticing literature (Jacobs et al., 2011; König et al, 2022). The 

data analysis process involved reading the data separately by each researcher, discussing the 

patterns, developing the coding framework, coding the data, and finalizing the coding process. 

The analysis was guided by a literature review, memos, and ongoing discussions. The analytical 

framework and coding structure was adapted from Lee et al. (2024) and modified for the 

research context. The codes include levels of noticing student strategies (Level 0-no attention to 

student strategies and errors; Level 1-partial or incomplete attention; Level 2-attending to student 

strategies and errors; and Level 3-fully unpacking student strategies and errors with additional 

discussion), levels of feedback quality (ranging from Level 0-providing minimal details but 

planning to correct errors to Level 3-probing guidance and building on student thinking), the 

mathematical aspect (procedural/ or conceptual), and connectivity.  

 

Results 

Unpacking and Supporting Student Thinking  

The COIL activity positively impacted PSTs' observational skills and analytical abilities in 

mathematics education. Before COIL, most PSTs were at Level 1, focusing on basic student 

strategies. After COIL, there was a notable shift: Level 1 PSTs decreased from 52% to 19%, 

while Level 2 increased from 44% to 48%, indicating progress towards more detailed analyses. 

Level 3 PSTs increased from 2% to 31%, showing significant growth in addressing complex 

student reasoning. Average noticing levels improved post-COIL for Mia, Abigail, Aiden, Mason, 

Ava, and Jacob, indicating enhanced attention to various mathematical topics especially 

subtraction and division. The findings suggest that COIL positively influenced PSTs' ability to 

comprehensively analyze student work, leading to improved support in mathematics education. 

The COIL activity positively influenced feedback quality by encouraging more tailored 

responses based on students' original thoughts. Following COIL, feedback levels increased, 

signifying a shift towards more meaningful feedback practices that delved deeper into students' 

reasoning to enhance learning effectiveness. Pre-COIL, feedback predominantly at Level 1 

(60%) focused on corrections, with some at Level 2 (34%) offering detailed responses. Post-

COIL, Level 1 feedback decreased to 55%, while Level 2 increased to 40%, reflecting enhanced 

responsiveness. Few PSTs provided Level 3 feedback addressing intricate student reasoning. 

Notable improvements in feedback levels were observed post-COIL for Mia, Abigail, and Aiden, 

showcasing heightened quality and specificity. The impact of the COIL activity on feedback 

quality varied across different math topics and student works, underscoring the significance of 

thorough noticing for delivering advanced-level feedback. 

Before COIL, PSTs heavily focused on procedural aspects in noticing (99.0%) while 

neglecting conceptual elements. After COIL, there was a shift towards a more balanced 

approach, with noticing incorporating both procedural and conceptual aspects, increasing to 

12.2%. Feedback predominantly emphasized procedural aspects (88.2%) pre-COIL, with 
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minimal attention to conceptual aspects (3%). Post-COIL, feedback on procedural aspects 

slightly rose to 89.5%, while feedback on conceptual aspects dropped to 0.0%. This shift towards 

more conceptual understanding, especially in Level 3 responses, underscores the importance of 

enhancing feedback to address conceptual comprehension in student work. Despite 

improvements in noticing both procedural and conceptual aspects, a decline in conceptually-

focused feedback post-COIL was observed, necessitating further enhancements. Maintaining an 

alignment between noticing and feedback is vital for effective teaching practices and student 

learning.  

Cross Analysis: Noticing vs. Feedback 

Table 1 presents a cross-analysis of PSTs' noticing levels and feedback quality. The 

comparison revealed that most PSTs were at Level 2 for noticing and Level 1 for feedback. 

Before COIL, PSTs were primarily at Level 1 for both noticing and feedback. However, after 

COIL, there was a significant improvement in PSTs' noticing abilities and feedback quality, with 

an increase in higher levels of noticing and feedback. International collaboration, as exemplified 

by PST#4 and their group's strategic development of Aiden's thinking, played a crucial role in 

this enhancement. The shift towards higher levels of attending and quality of instruction post-

COIL indicates a positive impact on PSTs' professional development, teaching practices, and 

student outcomes. The study emphasized moving towards a constructive approach in feedback, 

focusing on arithmetical errors and alternative correct methods in student work. By fostering 

Level 3 proficiency in both noticing and feedback, educators can provide a more comprehensive 

learning experience. The investigation aimed to understand the factors contributing to PSTs' 

advancements in noticing and feedback, with significant progress observed after COIL. 

 

Table 1. Cross Analysis of Noticing Levels and Feedback Levels Before and After COIL 

   
Count of Level of Noticing 

0 1 2 3 

Count of 

Feedback Quality 

(Level) 

0 
Before COIL 0 1 0 0 

After COIL 0 0 0 0 

1 
Before COIL 0 35 23 0 

After COIL 2 11 29 2 

2 
Before COIL 0 12 20 1 

After COIL 0 5 9 17 

3 
Before COIL 1 3 1 0 

After COIL 0 0 2 2 

 

Discussion, Implications, and Conclusion 

The study found that COIL experiences had a significant impact on PSTs' ability to notice 

and provide feedback on student work in mathematics education. Before COIL, PSTs mostly 

attended to student thinking at the procedural level, but after COIL, there was a shift towards 

conceptual level noticing and higher attention to student strategies and errors. This shift was 

evident in the feedback provided, with conceptual responses becoming more prominent. COIL 

discussions facilitated positive changes in PSTs' noticing and feedback, highlighting the value of 

collaborative learning experiences in developing teachers' expertise. 
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The study's implications for teacher education programs include the need to incorporate 

collaborative learning experiences like COIL to enhance PSTs' ability to provide evidence-based 

noticing and responsive feedback. Teacher educators should emphasize the conceptual aspects of 

operations and encourage PSTs to move beyond procedural thinking. Providing opportunities for 

PSTs to engage in collaborative discussions and analyze student work can lead to improvements 

in their ability to identify error patterns and provide constructive feedback. In conclusion, the 

study demonstrates the positive impact of COIL experiences on PSTs' ability to notice and 

provide feedback on student work in mathematics education. Collaborative learning experiences 

can enhance PSTs' expertise and contribute to the improvement of mathematics education 

practices. Teacher education programs should continue to leverage collaborative learning 

experiences to cultivate PSTs' capacity for evidence-based noticing and responsive feedback. 
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This research explores the perceptions of 32 elementary preservice teachers (PSTs) in a 

mathematics methods course when using real-world digital data to design grade 3-5 tasks that 

elicit mathematical models relating to issues of equity. Specifically, this research explored PSTs 

choices relating to types of equity issues, types of digital resources, task design to encourage 

mathematical modeling, and self-reflection on the experience. Results showed PSTs who focused 

on multicultural topics generally used qualitative digital sources such as images, articles or 

videos to set a tone or theme for the math tasks rather than encouraging modeling to explore the 

topic. In contrast, PSTs who explored social justice issues were more likely to support math 

modeling using quantitative statistical data from online sources. Self-reflections indicated 

appreciation and awareness of strengths and weaknesses relating to modeling equity issues. 

Keywords: Social Justice; Preservice Teacher Education; Modeling; Technology 

Elementary mathematics education should reflect the world students live in, to include 

cultural experiences and issues of social justice (Beard, 2021; Felton-Koesler et al., 2017; Kretz, 

2023; Litster et al., 2018; Williams & Roth, 2019; Xenofontos, 2020). Teachers are key to 

making this happen. However, “while social justice education has been professed, teacher 

training on social justice education is still not prominent in teacher education programs” (Suriel 

& Litster, 2022). Thanheiser & Sugimoto (2020) propose that preservice teachers (PSTs) can and 

should be developing a joint understanding of both mathematical knowledge and social justice 

issues in the teacher preparation courses to support this effort as PSTs move into their own 

classrooms. They noted that while most of the PSTs in their courses were able to create 

meaningful problems that included a social justice focus by the end of their study, only about 

half provided the source of their data. Without a data source, students may ignore the context or 

not believe the numbers in the context. Currently, we have a culture of “answer getting” when 

working with story problems where students are more likely to put on blinders to everything 

beyond the numbers (Bushart, 2018). An additional problem when working with story problems 

is the believability of the numbers within the problems themselves. Gary Schulz illustrated this 

cultural problem in his 1987 Peanuts comic strip when he has Sally note “only in math problems 

can you buy 60 cantaloupes and no one asks what the hell is wrong with you” (Schulz, 2023). 

Researchers recommend asking numberless word problems and adding in the numbers later to 

connect the numbers and the context (e.g., Carle, 2023; Bushart, 2018). Technology can be a 

great way to add in those numbers and provide a verified data source to extend mathematical 

understanding to real-world and social justice contexts (Kolb, 2017). 

Thus, the purpose of this inquiry was to explore elementary preservice teachers’ (PSTs’) 

perceptions of using technology to encourage mathematical modeling to explore various issues 

of equity.  
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Theoretical Framework 

Mathematical Modeling is the act of using mathematics to answer “big, messy, reality-based 

questions” (Bliss & Livertini, 2016, p. 7). Modeling real-world tasks can be a powerful tool to 

help students explore mathematics and issues of equity (Aguirre et al., 2019). This 

interdisciplinary conjunction of mathematics and other knowledge can help students engage in 

effective learning opportunities, meet the diverse needs of students, and engage in culture 

responsiveness (Litster et al., 2023; Williams & Roth, 2019). There are different levels of 

integration with lower levels focusing on thematic applications to situate the relevance of 

mathematics within the world and higher levels focusing on authentic applications of 

mathematics (Litster et al., 2023). Mathematical modeling showcased that authentic application 

of mathematics to reflect the world students live in.  

The number of one-to-one devices in elementary classrooms has been increasing over the 

past decade, with school closures due to the COVID pandemic exponentially increasing those 

numbers (Grey & Lewis, 2021). However, an increased use of technology does not always 

indicate that the technology is being used effectively (Kolb, 2017). Kolb’s (2017) Triple E 

Framework provides one lens for intentional technology use to engage, enhance, and extend 

student learning. PSTs can use technology to extend student learning for real-world contexts such 

as multicultural education or social justice issues by accessing real data such as demographics. 

PSTs can use technology to enhance student learning for these same contexts by using sites that 

allow students to organize and model real data to explore ideas and contexts. 

In their metanalysis of empirical studies utilizing social justice in mathematics education, 

Xenofontos et al. (2020) found that there is a variety of ways social justice is conceived and what 

it includes. With so many definitions to choose from, this study chose to utilize Hammond’s 

(2020) Distinctions of Equity framework, which provides a clean and simple framework for 

PSTs to consider different equity issues and their purposes. In this framework, there are three 

distinctions of equity: multicultural education focusing on social harmony, social justice focusing 

on critical consciousness, and culturally responsive education focusing on independent learning. 

According to this framework, PSTs that wanted to focus on multicultural education could 

consider tasks that focus on celebrating diversity, creating positive social interactions across 

differences, or exposing students to other cultures. PSTs that wanted to focus on social justice 

education could consider tasks that focus on exposing current social or political issues, exploring 

social or economic inequities, or recognizing historical patterns in society practices. 

Methods 

This study utilized a three-phase qualitative process (Saldaña, 2013) to analyze perceptions 

of 32 undergraduate preservice teachers enrolled in a senior mathematics methods teacher 

preparation course when designing grade 3-5 tasks that elicit mathematical models relating to 

issues of equity. The specific research questions were: 

• What types of equity issues did PSTs choose to explore? 

• What types of digital resources did PSTs use to collect or evaluate real world data? 

• How did the activity design encourage or discourage mathematical modeling to explore 

and reason about real-world issues? 
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• What were preservice teachers’ perceptions on their experiences designing and 

implementing their activity? 

Prior to designing their tasks, participants explored examples and non-examples of elementary 

math modeling (SIAM & COMAP, 2016), purposes of mathematics integration (Litster et al., 

2023), and using technology to extend student learning (Kolb, XXXX). Participants also 

analyzed physical and digital examples of using math to explore multicultural and social justice 

issues. Finally, participants discussed any societal implications or considerations that should be 

made when exploring issues of equity in public or private schools. Participants created their task 

designs within digital slides, using letter dimensions (8.5x 11 in) to allow for easy printing. They 

were limited to 3 slides for their instructions and worksheets; however, there was no limit to the 

digital content that could be accessed via links within the instructions or worksheets. The task 

designs were uploaded to a course discussion board and each participant tested 5 assigned tasks 

and provided feedback to their peers. Approximately half of the participants chose to implement 

a variation of their designed tasks with children in local schools in the Southeast region of the 

United States. Finally, participants reflected on their experience designing, testing, and 

implementing their tasks. 

The researcher collected PSTs’ task designs, peer work when testing designs, and reflections. 

These were qualitatively coded in three phases using structural, process, magnitude, pattern, and 

thematic coding (Saldana, 2018?). In phase 1, task designs were structurally coded to identify 

type of equity issues and technology used. In phase 2, peer work was analyzed using process and 

magnitude coding to identify presence or lack of mathematical models. Task designs were then 

analyzed using pattern coding to identify features across designs that encouraged or discoursed 

mathematical modeling. In phase 3, PST self-reflections and peer feedback were analyzed using 

pattern and thematic coding to identify PSTs’ perceptions on strengths and areas of need.. 

 

Results 

Results relating to RQ1: types of equity issues can be found in Table 1. 

 

Table 1: Types and Categories of Issues Present in PST Task Designs 

 

Multicultural (N= 17, 54 %) Social Justice (N=11, 34%) Other (N=4, 12%) 

Family Traditions 

Cultural Traditions 

Cultural Symbols 

Cultural Foods 

Clothing/Blankets 

Income Disparity 

Populations Redlining 

Bullying 

Women’s Suffrage 

Black Heroes 

Global Warming 

Weather 

Air Pollution 

Animal Shelters 

 

As seen in Table 1, the majority of PSTs (54%) chose to focus on exposing students to 

multicultural topics such as cultural lifestyles and artistic expressions. About a third of the 

students focused on present day or historical social justice issues. A small percentage (12%) of 

students focuses on non-equity issues such as the environment or animals. Results relating to 
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RQ2: types of technology used can be found in Table 2. 

 

Table 2: Types and Examples of Technology Used in PST Task Designs 

 

Technology Type Examples 

Statistical Data (N= 12, 38%) Populations, Income, Weather, Temperature, 

Expenditures, Bullying 

Examples & Resources (N=15, 47%) Images, Blogs, Articles, Videos 

Collaboration/ Sharing (N=4, 12%) Padlet, Google slides/docs, Jamboard 

Submit Answers (N=1, 3%) Google Forms 

 

As seen in Table 2, the majority of PSTs (47%) used technology to access qualitative 

examples and resources. This is not surprising as these types of technology align to multicultural 

explorations. The second highest type of technology (38%) was statistical data, which relates 

well to social justice and environmental issues. Other PSTs used collaborative sites to share 

simplified data or examples and allow students to set up their mathematical models. One PST 

used technology to submit answers. Results relating to RQ3:mathematical modeling can be 

found in Table 3. 

 

Table 3: Math Modeling in Tasks by Equity Types 

 

Modeling in Design Multicultural 

(N=17) 

Social Justice 

(N= 11) 

Other 

(N=4) 

Total 

(N=32) 

Supported Math 

Modeling 

1  

(6%) 

9 

 (82%) 

3  

(75%) 
13  

(41%) 

Modeling Framework 

BUT Never Returned 

to Original Question 

1  

(6%) 

1  

(9%) 

1  

(25%) 
3  

(9%) 

Used Topic as Theme 

for Math Solutions 

15  

(86%) 

1  

(9%) 

0 

 (0%) 
16  

(50%) 

 

As seen in Table 3, most of the tasks that focused on multicultural issues did not support 

mathematical modeling (86%). These task designs used the topic as a theme for the math. For 

example, one PST created story problems with topics from different countries (i.e., pesos in 

Mexico, sarees in Indiam kimchi in Korea). In another example a PST had students read an 

article about American Thanksgiving dishes using turkey, potatoes, or pumpkins that were 

inspired by dishes from around the world. She then asks fractional questions using the article as 

the theme (e.g., What fraction of the dishes involve turkey?).  Most of the tasks that focused on 

social justice or non-equity issues did support math modeling (82%). For example, one PSTs had 

students explore population and income statistics for different neighborhoods to explore 
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inequities in redlining. In another example, a PST had students explore the highest priority needs 

for animal shelters, the cost of those items, and potential ways to fund the purchases (e.g., if 

everyone donated $1 . . ).  

Results from the pattern analysis of designs that did support modeling showed that all the 

designs contained an open-ended original question to explore. For designs that followed with a 

scaffolded exploration to focus on specific aspects of the data, the last question repeated the 

original open-ended question. Designs also contained two or more of the following features: 

social justice or environmental topic, mathematics topic focused on operations or comparisons, 

used real-time statistical data from various websites or videos, used a collaboration site that 

required students to show and justify their work using words, numbers, and/or pictures. 

Results relating to Q4: PST perception on their experience identified three themes: perceived 

benefits of this assignment, perceived areas of need when working with equity topics, and 

perceived areas of need when working with technology. One common benefit PSTs noted from 

designing and implementing their tasks or testing the tasks for their peers was that they enjoyed 

being exposed to different cultures, past issues of equity, and current issues of equity they were 

not familiar with. They enjoyed learning something new in addition to the math. Several PSTs 

built upon this idea and noted that trying out their peers’ tasks helped them revise some 

misconceptions they previously had about various cultures or events. PSTs noted that they 

appreciated knowing the information was real, not something the textbook made up.  Other PSTs 

liked the change of pace from “traditional learning.” Several of the PSTs who tried out variations 

of their tasks with K-5 students also noted that their students had these same perceptions of 

enjoyment from the change of pace, learning new ideas, and using real applications of the math. 

Many PSTs liked how they were able to use evidence from student work (peers and K-5 

students) to see students think critically about different topics and the mathematics associated 

with those topics. Similarly, PSTs who tried out a task that utilized a collaborative site 

appreciated how they were able to see the critical thinking and models of that other people 

created using the same data in different ways. 

There were six areas of need that PSTs perceived are essential when designing and 

implementing tasks relating to multicultural or social justice issues. First, students may need 

more time to fully explore the topic. Second, students may need scaffolds such as a time limit or 

worksheet so they don’t get too distracted learning about the topic that they never use any math 

during the lesson.  Third, don’t assume students understand their own culture. Many PSTs were 

surprised at issues within their own city, state, or country. Other PSTs were surprised that their 

peers or students couldn’t think of any cultural symbols, traditions, or foods in their family. 

Fourth, PSTs noted that tasks that were more open engaged students in choices about what they 

wanted to explore and how to explore it. They found that closed tasks seemed to just focus on the 

math numbers or shapes. When working with these tasks, they had a hard time identifying what 

issue of equity the task was trying to explore. Fifth, building on the fourth idea, PSTs 

recommended that tasks exploring equity issues should use questions and follow-up questions to 

ensure students are making connections between the math and the equity issue. Many PSTs who 

did not do this in their initial task reflected that this was something they wish they had added, or 

in the case of those who taught a variation of their task, was something they changed before 

trying the task with K-5 students. Sixth, PSTs noted that you should not try to force a math and 

equity connection. They perceived that not all math works well to explore issues of equity and 
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not all issues of equity are best explored using math. 

There were six areas of need that PSTs perceived are essential when working with 

technology. First, students need clear directions on how to use or navigate the sites. Building on 

this idea, the second perception is that for complex websites, teachers may need to pull the data 

from the site and reformat it on a single page for use by younger students, students who struggle 

with the technology, or students who get easily distracted or overwhelmed. Third, when using 

collaborative websites, teachers must ensure open access for all participants. Fourth, you may 

need more that one digital resource to fully explore a topic of issue. Fifth, teachers need to 

ensure their students understand how to use basic technology features such as copying and 

pasting, taking a screenshot, using digital drawing tools, font sizes on text boxes, inserting 

information into a table, creating a graph, resizing shapes, etc. This perception came from both 

their own experiences trying out tasks as well as seeing what their peers tried or avoided within 

their own tasks. Building on ensuring digital fluency, the sixth perception was that students may 

skip an aspect of the task they don’t want to do or don’t know how to do easily with the 

technology. 

Discussion and Implications 

In summary, PSTs who designed tasks to explore multicultural issues of equity were more 

likely to use qualitative resources such as images and articles to learn more about the culture. 

They were also more likely to use the topic as a theme without explicitly connecting the cultural 

aspects to the mathematics, which may explain by most of these task designs did not support 

mathematical modeling. In contrast, PSTs who designed tasks to explore social justice or 

environmental issues were more likely to use quantitative statistical data using operations or 

comparisons to make judgments on inequalities. These task designs were more likely to support 

mathematical modeling. Regardless of whether PSTs felt their own task design was successful or 

not, they were able to identify several key ideas relating to benefits of having students create 

mathematical models to explore multicultural and social justice issues and areas of need when 

exploring issues of equity or using technology. 

PSTs perceptions of benefits and areas of need directly impact teachers who may wish to 

explore issues of equity in their classrooms or use technology to support mathematical modeling 

of real data. They may also impact MTEs who want to help PSTs incorporate modeling, 

technology or equity issues into their math lessons. Teachers may want to start with a 

multicultural or social justice questions – what they want students to learn about or explore. This 

can help guide their task design to ensure focus on the topic. They should also examine the topic 

to determine the inherent mathematics already embedded within their question (comparisons, 

operations, whole numbers vs decimals, etc.). Doing this can help them determine whether the 

math can be used to model the issue for an authentic application of the math or whether the topic 

better situates the relevance of the mathematics within the real world (Litster et al., 2023). For 

authentic situations, teachers may want to focus on using models and justifications to support 

their response to an open-ended question. For relevant situations, teachers may want to apply a 

sequential approach by focusing on one area and then the other, making connections as you go or 

at the end of the project. 
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This brief report describes preservice elementary teachers’ self-reports of the influence of peers’ 

thinking on their engagement in four mathematics tasks of varying openness. This report draws 

from a larger study that—in an effort to research certain types of mathematical tasks that are 

widely used but have not been systematically researched—investigated factors that were 

influential to preservice teachers’ engagement. In the larger context of this study, peers’ thinking 

was an unexpectedly strong and consistent influence on engagement. Preservice teachers’ self-

reports led to findings that peers’ thinking enhanced their cognitive and affective engagement in 

the tasks. The ways peers’ thinking was influential seemed to be related to the relative openness 

of each task. During discussion of the most open tasks, preservice teachers were more likely to 

report 1) that peers’ thinking inspired them towards further cognitive engagement and 2) 

stronger affective reactions to peers’ thinking. 

Keywords: Instructional Activities and Practices; Affect, Emotion, Beliefs, and Attitudes; 

Preservice Teacher Education 

Certain types of mathematics tasks have recently become popular with mathematics teachers 

and others in the mathematics education field. These educators offer considerable anecdotal 

evidence of the tasks’ positive impact on learners’ engagement—and related research suggests 

the tasks’ value—but the tasks and their impacts have not been thoroughly and systematically 

researched. Our larger study sought to cast light on this Black Hole of research (Matney et al., 

2020) by investigating preservice elementary teachers’ (PSTs) engagement in “Which One 

Doesn’t Belong?” (WODB, Danielson, 2016), “Notice and Wonder” (N&W, Fetter, 2021; Ray-

Riek, 2013) and “How Many?” (HM, Danielson, 2018) tasks. The novelty of these tasks seems 

to be that they are open to a considerable degree, meaning that learners have a wide range of 

choices in terms of how they respond to the tasks. Practitioners report that when discussing these 

tasks with their learners, they notice increased engagement and from a wide range of students 

(Danielson, 2016; 2018; Illustrative Mathematics, 2021; Newell & Orton, 2019; Ray-Riek; 

Rumack & Huinker, 2019).  

When studying PSTs’ engagement in four tasks of varying openness, we asked the questions: 

1) “How do elementary PSTs engage with open mathematics tasks?” and 2) “What factors 

influence PSTs’ engagement with open mathematics tasks?” We expected that the PSTs in our 

study would engage similarly to K-12 students, and that openness would play a significant role in 

eliciting that engagement. We found that PSTs did engage in a manner similar to that described 

of K-12 students and the openness of the tasks was a crucial factor in PSTs’ engagement. 

However, being able to hear and interact with peers’ thinking as a result of the tasks’ openness 

was also consistently a strong influence. In this brief report, we focus on this unexpectedly 

strong influence. 
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Theoretical and Conceptual Framework 

In focusing on peers’ thinking as one influence amidst a multitude of influences on learners’ 

engagement, we consider the classroom as an activity system (Engeström, 2015) that includes 

teachers, learners, materials, the physical environment, and their interaction (e.g., Gresalfi et al., 

2009). This perspective emphasizes “what someone does in a particular activity is always done in 

relation to what one has opportunities to do” (Hand & Gresalfi, 2015, p. 191). Peers’ ideas affect 

what one has opportunities to do during mathematical activity, which in turn shapes what one 

does during the activity. 

Understanding the classroom as an activity system is congruent with Middleton et al.’s 

(2017) conceptualization of mathematical engagement. They considered engagement to be “in-

the-moment relationship between someone and her immediate environment, including the tasks, 

internal states, and others with whom she interacts” (p. 667). The conceptualization includes 

behavioral, cognitive, and affective dimensions. At PME-NA 45, Middleton (2023) shared that 

he is increasingly understanding engagement to also consist of a social dimension, as during 

mathematical activity, “learners play off their peers, reacting to and modifying behavior to 

support each other and to get value added from the collaboration” (p. 7). The role of peers’ 

thinking connects to a social dimension of engagement. 

The larger study investigated PSTs’ engagement in mathematical tasks of varying degrees 

and types of openness. While this brief report focuses on the influence of peers’ thinking within 

that research setting, the ideas shared by peers were shaped by the space created by the openness 

of the tasks. We regard openness as having three dimensions (see Figure 1). The first two 

dimensions clarify the ‘open-start’ dimension of previous frameworks (e.g., Leikin, 2018; 

Mitchell & Carbone, 2011; Pehkonen, 1997; Silver, 1995) by distinguishing between ways to 

enter or focus the task (entry points) and the strategy or method to use when engaging with the 

task (strategies). The third dimension of openness addresses the number of possible endpoints 

(solutions) of a task. Our framework also incorporates the degrees along which tasks can be open 

as suggested by Mitchell and Carbone (2011). 

Methods 

The study from which this data was drawn was conducted across two semesters at a large 

Mid-Atlantic university in four sections of an elementary mathematics methods course for 

undergraduate PSTs. All sections were taught by the same instructor. For each task, we identified 

a section (n=16, 17, 23, 10) whose engagement with the task was generally representative of the 

other three sections’ engagement with the same task. Our overall methodological approach was 

pragmatic (e.g., Coyle, 2010; Frost & Nolas, 2011; Morgan, 2007) drawing on ethnography’s 

(Macgilchrist & Van Hout, 2011) emphasis on participant voice, case study’s (Merriam, 1998) 

thorough investigation of a clearly defined phenomenon and grounded theory’s (Glaser & 

Strauss, 1967) principle of being data-driven. 

Tasks 

In collaboration with the course instructor, we chose four tasks of varying openness for PSTs 

to engage with and discuss. We describe them here in order of relative overall openness. The first 

task was a word problem (WP) of high cognitive demand (Smith & Stein, 1998) that asked PSTs 

to find the number of cupcakes and boxes a baker used given parameters for number of boxes, 

number of cupcakes, and number of cupcakes that could fit in each box. The WP allowed for 
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multiple strategies and had one correct answer. The purpose of including the WP was to provide 

a comparison to the tasks that had a wide range of possible answers. The second task was a 

WODB that presented four addition expressions, each of which had multiple reasons it might not 

belong with the others. The third task was an HM task. PSTs were presented with an image of a 

large box of chalk and were directed to choose something to count in the image and to choose 

how to count it. The fourth task was a N&W, in which PSTs were asked to share what they 

noticed and wondered about three packages of toilet paper that all advertised larger rolls. The 

relative openness of each task along three dimensions is depicted in Figure 1. 

Data Collection and Analysis 

I observed each task session in person. During each session, the instructor introduced the 

task, the PSTs worked independently on the task, and the instructor facilitated a whole-group 

discussion of the task. Following each session, PSTs completed a semi-structured questionnaire 

that asked them questions about their engagement with and experience of the tasks. For example, 

PSTs answered questions such as, “Describe the strategies you used during the task and 

discussion,” “Describe any emotions you were feeling while work on the task and during the 

class discussion,” and “Was the way you thought and felt during this task similar of different 

from when you have engaged with math in the past? Please explain.” Questions varied slightly 

on between task sessions based on PSTs’ responses to previous questionnaires.  

 
 

Figure 1: Relative Openness of the Four Tasks Along Three Dimensions 

This brief report focuses on data collected from PSTs’ questionnaire responses. We 

inductively coded PSTs’ questionnaire responses for influences on their engagement using a 

constant comparative approach (Glaser & Strauss, 1967). When an influence appeared in 

multiple PSTs’ responses for a task, we included it in our findings. For example, if a PST 

mentioned being excited by the possibility of multiple answers, we coded that mention as 

evidence for the influence of the task’s openness. If a PST described finding others’ ideas 

interesting, we coded that description as evidence of the influence of peers’ thinking. 

Findings 

Peers’ thinking emerged as an influence on PSTs’ engagement across all four tasks. Table 1 

shows the percentage of PSTs for each task session whose questionnaires provided evidence of 

being influenced by their peers’ thinking. This theme was most present in PSTs’ responses to the 

HM and N&W questionnaires. The theme was also present in more than half of PSTs’ responses 

to the WODB questionnaire. The theme was present, but less so, in the WP questionnaire 
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responses. Across all four task sessions, peers’ thinking was largely a positive influence. The 

main task session in which peers’ thinking had a negative influence was the WODB.  

 

Table 1: Self-Reported Influence of Peers’ Thinking Across Tasks 

 

 WP (n=16) HM (n=17) WODB (n=23) N&W (n=10) 

Influence Overall 38% 94% 57% 70% 

Positive Influence 38% 88% 57% 70% 

Negative Influence 0% 6% 17% 0% 

 

The positive influence of peers’ thinking generally fell into two categories: appreciation of 

peers’ thinking and peers’ thinking motivating further engagement with the task. Table 2 lists the 

percentage of PSTs who expressed the influence of their peers’ thinking in these ways.  

 

Table 2: Self-Reported Positive Influence of Peers’ Thinking Across Tasks 

 

 WP (n=16) HM (n=17) WODB (n=23) N&W (n=10) 

Appreciation 38% 82% 57% 40% 

Further Engagement 6% 18% 39% 40% 

 

When PSTs demonstrated appreciation of peers’ thinking, they made statements such as it was 

“cool to see other ways that people were solving the same problem as me” (Carly, WP) or “I 

enjoyed seeing how different peers chose different things and ways to count” (Rachel, HM). 

Evidence of peers’ thinking spurring further engagement in the task included responses such as, 

“[I] was adapting my thinking to others to make sense of things” (Lila, WODB) and “I was 

constantly looking at the images when people were making notices and wonders to see if I could 

build off of that in any way” (Andrew, N&W). PSTs were most likely to go beyond appreciation 

and report peers’ thinking as spurring further engagement on the WODB and N&W 

questionnaires. 

An interesting phenomenon that occurred in the responses that expressed appreciation was 

that one or more PSTs in each of the most open tasks (HM, WODB, and N&W) described their 

reaction to peers’ thinking with unusual intensity. In PSTs’ responses to the WP, they described 

their reactions with words such as “liked,” and “interesting.” While PSTs also used similar terms 

in their descriptions of the influence of peers’ thinking for the other three task sessions, some 

PSTs also used words like “amazed,” “surprised” and “fascinated.” For example, Becca reported 

feeling “very much in awe” during the WODB task session because “there were so many new 

ways that other people were coming up with that I… did not see before.” During the N&W task 

session, Liz was “fascinated at how [her] other classmates were really digging deeply into what 

they noticed and wondered.” Lily was “floored” by the creative responses her peers shared 

during the HM task session.  

The main negative influence across any tasks had to do with ways PSTs were influenced by 

peers’ thinking during the WODB task session. This influence involved additional categories that 

did not occur in PSTs’ responses to the other task session questionnaires: being either encouraged 
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or discouraged when comparing their own ideas to peers’ thinking. Two PSTs (9% of 23 PSTs) 

mentioned being encouraged by peers’ thinking, particularly in hearing ideas that made them 

realize their own ideas were valid. Four PSTs (17%) felt discouraged at some point by peers’ 

thinking. Katherine shared that she “did feel a little bit less smart…for focusing on the surface 

level differences… while my classmates were discussing sums and multiples and patterns.” Mae 

had a similar experience, explaining she “felt like [her] thinking was…not thorough enough” and 

that she was “trying to keep up… because [she] wasn’t seeing these number sentences like a lot 

of [her] peers did.” Notably, all four of these PSTs also described being positively influenced by 

their peers’ thinking at some point in the discussion. 

Discussion and Implications 

The influence of peers’ thinking is an especially striking result as the questionnaire did not 

directly ask PSTs about peers’ thinking. Being asked questions about their engagement with the 

task and discussion prompted PSTs to bring up their thoughts and feelings about others’ ideas. 

This phenomenon underscores how central hearing peers’ thinking was to PSTs’ experiences. 

The openness of the tasks seemed to work in tandem with the influence of peers’ thinking, as 

PSTs were more likely to report the influence of peers’ thinking after engaging in discussion of 

the most open tasks. In the most open tasks, PSTs were also more likely to use more intense 

affective language to describe peers’ thinking and were more likely to report going beyond 

merely appreciating peers’ thinking to being spurred to further engagement. 

This brief report pinpoints an aspect of the use of open mathematics tasks that influences 

engagement. Hearing peers’ responses may be a key factor in open mathematics tasks eliciting 

the kinds of engagement that practitioners purport they elicit. In this case, it is crucial to 

prioritize discussion as part of the facilitation of these tasks. The significant impact of peers’ 

thinking in this study also supports  further exploration of the social dimension of engagement, 

particularly in terms of PSTs’ engagement with one another’s ideas. Ultimately, we as 

mathematics teacher educators want our PSTs to not only experience joy and fascination as a 

result of others’ mathematical engagement, but to feel drawn to be part of that mathematically 

vital experience themselves.  
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Students of all ages, including many adults, have long complained about fractions. The mere 

structure and definition of fractions have baffled students and caused them to doubt their 

mathematical abilities for generations, as evidenced by the focus on rational numbers in various 

guiding documents (e.g., AMTE, 2020; NGA, 2010; NRC & MLSC, 2001) and myriad studies 

centered on students’ ability to reason with rational numbers (e.g., Davis, 2003; Heller et al., 

1990; Thompson & Saldanha, 2003). Additionally, perseverance has played a prominent role in 

mathematics education, so much so that the first Standard for Mathematical Practice, as outlined 

by the Common Core State Standards (NGA, 2010), encourages students to “make sense of 

problems and persevere in solving them” (SMP.1). However, perseverance is not a trait that 

humans are born with; it is a behavior that is developed over time, under the right conditions, and 

when provided with proper tools (Middleton et al., 2015). Middleton and colleagues outline four 

core aspects of perseverance: (1) interests and identity; (2) setting goals; (3) utilizing resources; 

and (4) anticipating consequences. 

Early in a math course for elementary education majors taught by the authors, students solve 

contextualized (e.g., brownies) equal sharing problems involving Egyptian fractions. In class, 

students work in small groups to find a solution, and report the amount of a share each person 

will get in the form of an Egyptian fraction. As homework, students are asked to solve two 

similar problems and find at least two distinct solutions then answer several reflection questions 

about their experience solving the problems. 

There were 91 students enrolled in this course in the Spring 2024 semester, 86 of whom 

submitted the assigned problems and reflection. After reviewing the submissions and giving 

students grades and feedback, we compiled the student responses and coded the submissions for 

common themes based on the four aspects of perseverance outlined by Middleton and colleagues 

(2015). Though analysis is ongoing, we have found student responses that align with each of the 

aspects of perseverance. Some responses have discussed how students’ identities (Aspect 1) 

prevented them from persevering. Most of these responses center on students not feeling like so-

called “math people” and getting stuck after trying one approach. Some students cited a goal 

(Aspect 2) of getting the job done as their reason for persevering, while others stated that they 

were motivated by consequences (Aspect 4), like bad grades, if they didn’t finish. Finally, 

several students cited different resources (Aspect 3) they used to finish the task, including 

referring to previous examples or asking friends for help. 

The reflections analyzed in this study have already revealed evidence for each of the four 

core aspects of perseverance when working on a task involving Egyptian fractions. These 

findings indicate that problem-solving tasks that challenge students to think outside of their 

comfort zone, like the Egyptian fraction problems, can be beneficial in many ways. Not only can 

they help students explore mathematical concepts more deeply, but they can also provide a site 

for students to reflect on their experiences in ways that point them to productive pathways 
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towards perseverance. Based on the findings in this report, we anticipate future studies will focus 

on how other activities in this course provide opportunities for students to persevere. 
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Quantitative reasoning’s emergence as a foundation for students’ mathematical development has 

generated a need for supporting teachers’ capacity to teach for such reasoning. In this paper, we 

discuss a meanings perspective on working with prospective and practicing teachers in order to 

support their constructing meanings that foreground quantitative reasoning. Our meanings 

perspective, referred to as competing meanings, involves a problematization of extant meanings, 

the construction of alternative meanings, and a critical comparison of each. Here, we present 

our perspective and informing theories. We also draw on our empirical work to provide tangible 

and research-based examples of our competing meanings perspective.  

Keywords: Cognition, Preservice Teacher Education, Teacher Knowledge, Learning Theory. 

Students’ quantitative reasoning refers to the ways in which students conceive of and reason 

with measurable attributes constituting some phenomenon or context (Smith III & Thompson, 

2007; Thompson, 2011; Thompson & Carlson, 2017). Addressing number concepts, fractional 

reasoning, proportional reasoning, algebraic reasoning, rate of change concepts, and function 

concepts (e.g., Karagöz Akar et al., 2022; Steffe & Olive, 2010; Thompson & Carlson, 2017), 

researchers have identified quantitative reasoning as a bedrock for students’ mathematical 

development. These same researchers have highlighted that the various factors influencing 

students’ educational experiences do not sufficiently engender or support students’ quantitative 

reasoning. Whether with respect to improved curricular materials, continued knowledge 

development, or targeted pedagogical practices, a pressing need is better understanding how to 

prepare teachers in supporting their students’ quantitative reasoning. 

Over the past decade-plus we have engaged in a research program to understand not only 

students’ quantitative reasoning, but also that of prospective and practicing teachers. Our primary 

research emphasis has been understanding the relationship between teachers’ mathematical 

meanings and their quantitative reasoning, including how to engender teachers’ quantitative 

reasoning so that it might be leveraged to support shifts in their meanings. We have specifically 

sought to support shifts reflecting those meanings identified by researchers as critical for K-16 

students’ mathematics. We report on a perspective for supporting such shifts in this paper. 

We term our perspective competing meanings due to its simultaneous focus on teachers’ 

extant meanings, the meanings we seek to engender and center when working with teachers, and 

interactions between those meanings we seek to provoke. In what follows, we first provide 

background theory that informs our perspective including Piaget’s epistemology (Piaget, 2001), 
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Thompson’s theory of meaning and quantitative reasoning (Thompson, 2016; Thompson & 

Carlson, 2017), and Harel’s notion of intellectual need (Harel, 2013). Drawing on those 

informing theories, we outline the perspective of competing meanings as it relates to working 

with teachers, whether prospective or practicing. We support an operational approach to 

competing meanings by also providing a tangible example of it, both in the context of task 

design and research participant themes. We close with potential implications and future work by 

drawing specific attention to areas of theory left to flesh out or connect with.  

Informing Theory and Background 

Our perspective is informed by Piaget’s genetic epistemology, including von Glasersfeld’s 

(1995) extension of it. We focus here on the constructs of assimilation, perturbation, 

accommodation, and equilibration, and we point the reader to Dawkins et al. (2024) for an 

extensive collection of Piaget’s theory in mathematics education. Assimilation is the process by 

which an individual conceives a present experience via their current conceptual structures (von 

Glasersfeld, 1995). It is a constructive process that shapes an experience so that it affords and is 

constituted by those structures. In some cases, assimilation to extant conceptual structures results 

in an unexpected experience, which engenders a state of perturbation (von Glasersfeld, 1995). A 

perturbation can stem from several causes. For one, an individual might obtain an unexpected 

result after enacting a conceptual structure, thus yielding a sense of perplexity. As another 

example, in enacting a conceptual structure, an individual might become aware of some 

experiential feature that leads to their questioning the efficacy or relevance of that structure.  

Having experienced a perturbation, an individual engages in activity to reconcile that 

cognitive state. One form of reconciling a perturbation involves affective and coping responses, 

such as anxiety leading to disengagement (Tallman & Uscanga, 2020). Another form of 

reconciliation is that of accommodation, which can take on several forms. To name a few, the 

conceptual structure used in assimilation could be modified, an alternative conceptual structure 

could be enacted, or a novel conceptual structure could be constructed (von Glasersfeld, 1995). 

Regardless, accommodation is an act of learning via the elimination of a perturbation through a 

cognitive construction or reorganization. It often entails sustained, and effortful, cognitive 

engagement. Piaget hence referred to the process of accommodation as one of equilibration that 

establishes a cognitive state of equilibrium (von Glasersfeld, 1995). 

In service of operationalizing the aforementioned Piagetian constructs, Thompson introduced 

the intertwined theories of quantitative reasoning (Thompson, 2011) and meaning (Thompson, 

2016). With respect to the latter, Thompson’s (2016) theory of meaning is rooted in Piaget’s 

genetic epistemology and refers to an organization of operations, images, and other meanings. As 

it relates to the act of teaching, Thompson’s theory of meaning is connected to that of Silverman 

and Thompson (2008), who outlined a developmental process that spans the construction of 

personalized knowledge to the transformation of that knowledge to incorporate student meanings 

and pedagogical implications. That is, Silverman and Thompson recognized the importance of 

teachers’ mathematical meanings including teachers’ construction of key developmental 

understandings, which are understandings critical to the development of coherent and generative 

mathematical concepts (Simon, 2006). Before using Thompson’s theory of quantitative reasoning 

to further illustrate this perspective, we note that the perspective emphasizes mathematical 
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knowledge as a dynamic, in-the-moment implicative base of knowing for action, as opposed to a 

static, declarative base of knowledge for action (Liang, 2021; Thompson, 2016). 

Thompson’s (2011, 2012) theory of quantitative reasoning provides one framework for 

situating Piaget’s genetic epistemology, meaning, and key developmental understandings. 

Quantitative reasoning is reasoning that involves conceiving situations in terms of measurable 

attributes (i.e., quantities) and relationships between those attributes (i.e., quantitative 

relationships). Quantitative relationships form the basis for the construction and abstraction of 

mathematical objects (Moore et al., 2022; Smith III & Thompson, 2007). Covariational 

reasoning is a particular form of quantitative reasoning that involves constructing and 

coordinating quantities that vary in tandem (Carlson et al., 2002; Saldanha & Thompson, 1998; 

Thompson & Carlson, 2017). A growing number of researchers have identified important 

nuances in student and teacher thinking in this area (see Karagöz Akar et al., 2022 for a 

collection of contributions and researchers). Using the framework by Carlson et al. (2002), one 

meaning entailing covariational reasoning involves assimilating a situation via directional and 

amounts of change relationships. For instance, Ellis et al. (2015) explored students’ meanings for 

exponential relationships in the situation of (magic) plant growth and the quantities height and 

time. The students’ meanings involved their constructing the directional covariation of quantities 

(e.g., as time increases, height increases), and coordinating additive changes in one quantity with 

multiplicative changes in the other (e.g., as time increases additively, height increases by 

increasing amounts while preserving a constant ratio for a constant time period). Here, the 

operations constituting the meaning for exponential relationships involve conceiving the 

variation in each quantity, coordinating those two variations to construct and compare changes in 

each, and considering how the constructed covariational relationship is relevant to different 

contexts (e.g., a growing plant, a Cartesian graph, or a table). 

 

 
 

Figure 1: Students’ coordinating height and time (Ellis et al., 2015, pp. 143, 147, and 149) 

Our work is also informed by Harel’s (2013) intellectual need. We use intellectual need to 

clarify the perturbations targeted by our competing meanings perspective. Harel defined 

intellectual need as “a perturbational state resulting from an individual’s encounter with a 

situation that is incompatible with, or presents a problem that is unsolvable by, his or her current 

knowledge” (2013, p. 122). Importantly, Harel’s intellectual need refers to a state of perturbation 

that affords learning, and is thus not merely a state of confusion. A researcher is positioned to 

claim an individual has experienced an intellectual need when the meanings needed to reconcile 

an experienced perturbation are within the individual’s zone of proximal development, whether 

that development be in the context of reasoning or domain practices (Harel, 2013; Weinberg et 

al., 2023). With respect to the work here, intellectual need orients us toward not only seeking to 

engender perturbations, but also having in mind the ways in which teachers’ available reasoning 

can act as an asset in reconciling that perturbation. Furthermore, intellectual need draws our 
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attention to forms of perturbations that promote their reflective comparison of meanings that 

caused the perturbations and those that reconciled those perturbations.   

In summary, Piaget’s and von Glasersfeld’s framings of knowing provide us guiding 

cognitive mechanisms. Thompson’s perspective on meaning, with Silverman, Thompson, and 

Simon’s descriptions of how meanings inform teaching, further clarify our attention to the ways 

an individual’s personal meanings may be organized and transformed so that they are generative 

and flexible during the act of teaching. Theories of quantitative and covariational reasoning 

provide us concrete constructs by which to specify and differentiate mathematical meanings. 

Lastly, Harel’s notion of intellectual need aids us in clarifying the type of perturbations we seek 

to engender with teachers. Namely, we focus on perturbations that necessitate the enactment of 

alternative meanings to reconcile them (i.e., equilibration via accommodation). Furthermore, we 

focus on the transformative learning experiences that occur when a process of equilibration is 

accompanied by a subsequent perturbation that motivates reflectively comparing meanings.  

Competing Meanings 

Our competing meanings perspective identifies one form of learning via particular forms of 

intellectual need and, hence, perturbation and accommodation. Stated generally, the competing 

meanings perspective includes an individual experiencing a problematized extant meaning; 

enacting an alternative meaning; and, through additional processes of perturbation and 

accommodation, comparing the extant meaning and alternative meaning (Figure 2). 

 

 
 

Figure 2: The competing meanings perspective 

A problematized extant meaning first occurs via an act of assimilation that engenders a 

perturbation and an intellectual need for an alternative meaning. Then, via enacting that 

alternative meaning, the individual reconciles their perturbation with respect to the task situation 

associated with the initial perturbation. Critical to the competing meanings perspective is that a 

subsequent state of perturbation then occurs. Whereas the initial intellectual need was respect to 

the goal-oriented activity of the task, a subsequent round of intellectual need is created at the 

level of meanings; the individual becomes perplexed as to why their extant meaning results in a 

perturbation while the alternative meaning does not. The disparate nature of the meanings is thus 

at the root of the perturbation and associated intellectual need. By disparate, we mean that, in 

that moment, the individual infers that their two held meanings entail important differences and 

incompatibilities that are not trivial to resolve. This perplexity positions the individual to take 

each meaning as an object of thought and hold them against each other (i.e., competing 

meanings) in order to reconcile that perturbation. Yet an additional intellectual need might result 
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from this process, motivating the individual to explore the implications of that reconciliation, 

particularly if the alternative meaning is novel and viewed as a potentially more productive 

meaning. We return to this point in the closing of the paper.  

To situate and illustrate the perspective, we start with an abstract and abridged example. 

Consider a hypothetical student or teacher, who we name Blinder. For a particular concept, 

Blinder has constructed a meaning that we denote by Ma (we remind the reader that a meaning 

might be composed by a system of meanings), which has served as productive throughout his 

schooling experience. Entering our class or professional development, we might intend, for a 

variety of reasons, that Blinder construct an alternative meaning. We denote this alternative 

meaning by Mb. In working with Blinder, we determine that he holds meaning Ma and that 

meaning Ma and Mb are disparate; Ma is not a foundational way of thinking for Mb and, in fact, 

can inhibit the construction of and ability to teach for Mb. This raises the question: how do we 

engage with Blinder in a way that honors Ma and affords constructing Mb? This is a situation we 

have been presented with frequently in research, teaching, and professional development settings 

with students and teachers (e.g., Moore, Stevens, et al., 2019; Tasova, 2021). 

Using Linearity to Illustrate the Competing Meanings Perspective 

Consider linear relationships as an example topic to contextualize the abstract presentation 

above. Our work has adopted a quantitative reasoning perspective to center a meaning for linear 

relationships that involves constructing a constant rate of change. A constant rate of change 

between two quantities means that as the quantities’ magnitudes covary, their amounts of change 

exist in a proportional relationship. For any arbitrary change x (e.g., ∆x), y changes by a scaler 

factor m of that change (e.g., m⋅∆x). If that arbitrary ∆x is then scaled by a factor c, the change in 

y is scaled by the same factor, yielding a corresponding change in y of c⋅m⋅∆x. This is a critical 

and productive meaning (i.e., Mb), yet our and others’ work with teachers and students suggest 

that this is not always a typical meaning (Byerley & Thompson, 2017; Lobato et al., 2003; 

Moore, Silverman, et al., 2019; Thompson & Thompson, 1996; Zaslavsky et al., 2002). 

 

 
 

Figure 3: (a) Two graphs of y = x and (b-c) two graphs of y = 3x. 

A common extant meaning (i.e., Ma) for linear relationships is shaped-based (Ellis & 

Grinstead, 2008; Moore, 2021; Moore, Stevens, et al., 2019; Nagle & Moore-Russo, 2013; 

Zaslavsky et al., 2002), which entails reasoning about linear relationships in terms of properties 

of slope like movement and direction in association with learned formulas (e.g., (y2 – y1)/( x2 – 

x1)). These associations are forms of declarative knowledge, as opposed to symbolizing 

abstracted covariational relationships. An example of this is an individual comparing the visual 
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steepness of two lines to conclude the former has a greater rate of change than the latter (Figure 

3a). As another example of this meaning, an individual could conceive Figure 3b as having an 

incorrect rise-and-run and Figure 3c as a negative slope or rate of change because of its 

downward, left-to-right direction (Moore, Silverman, et al., 2019; Moore, Stevens, et al., 2019).  

Returning to the question raised above, in working with individuals holding a shape-based 

meaning, Ma, as their dominant meaning, we intend to both honor those shape-based meanings 

while determining how to support their constructing a rate of change meaning, Mb. Our goal is 

also to support their constructing Mb so that it becomes a meaning they view as important and 

productive (for them and their students), and more so than that of the shape-based meaning. 

Before describing an approach that draws on the competing meanings perspective, we recognize 

one way to support Mb is to use tasks in which Ma is not relevant, but Mb is. Similarly, one might 

use tasks that target Mb through focused, closed-ended questions and design. In our experience, 

such tasks are useful to engender Mb and possibly draw connections with Ma. Yet, such tasks can 

be so contrived as to feel too disjoint from the classroom for teachers. Relatedly, those tasks do 

not problematize Ma and generate an intellectual need for Mb so that the latter becomes their 

predominant or habitual meaning. With respect to teachers, for the tasks they envision teaching, 

Ma remains just as relevant, is more familiar or habitual, and is often more cognitively efficient. 

Our solution to this issue is to use tasks that not only afford or target Mb, but also draw the 

meanings Ma and Mb into competition with each other. Doing so requires that the task is designed 

so that Ma is still relevant to the task. Furthermore, we intend the enactment of Ma to lead to a 

conclusion that not only invites further thought, but that also stands in opposition to the 

conclusion derived from enacting Mb. This underscores the competing aspect of competing 

meanings. The initial perturbation should not leave the teacher viewing Ma as entirely 

problematic or unrelated, as it is through viewing Ma as still relevant despite some perturbation 

that the individual is positioned to compare its viability against that of Mb. 

We use the graph in Figure 3b to illustrate how we have attempted to target the cognitive 

process in Figure 2 and draw meanings into competition with each other in the context of linear 

relationships. When working with teachers, we present this task in two parts. We first provide the 

graph as illustrated in Figure 3b, but without the axes-labels “x” and “y”. We explain that a 

student provided the graph (without labels) as a solution to graphing “y = 3x”, and we ask them 

to consider how the student might have been thinking. After the teacher has exhausted the 

number of ways they can hypothesize as to how the student might have been thinking (see 

Moore, Silverman, et al., 2019 for examples), we then provide Figure 3b with “x” and “y”. We 

explain that the student added the labels to clarify their solution. We ask the teacher to comment 

on the graph, and we conclude the task asking how they would respond to the student as their 

teacher. We note that Figure 3c is created by most teachers when making sense of the solution 

due to their rotating the graph to horizontally orient x. If the teacher does not rotate the graph, we 

rotate the graph and ask them to consider it in that orientation, as well.  

The task incorporates the competing meanings perspective by using the following principles: 

(a) it sensibly affords assimilation to Ma and Mb; (b) in the event that Ma is enacted, it is likely to 

result in a perturbation, but still be viewed as relevant to the task; (c) in the event that Ma 

engenders a perturbation, Mb is likely available to the student or within their zone of proximal 

development; (d) the enactment of Mb can reconcile a perturbation stemming from Ma; (e) the 

teacher has the opportunity to reflectively compare the affordances and constraints of Ma and Mb; 
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and, critically, (f) the teacher is likely to perceive the task, Ma, and Mb as relevant to their 

instruction. Relating these task features to the cognitive account in Figure 2, (a) and (b) occasion 

problematizing an extant meaning; (a), (c), and (d) relate to accommodation via the enactment of 

an alternative meaning; and (b), (d), (e), and (f) support reflecting on and comparing extant and 

alternative meanings. Furthermore, the task embodies the competing aspect of competing 

meanings by using a situation in which Ma and Mb yield sensible, yet different conclusions. 

Enacted as is, Ma results in classifying the solution and its rotated version (Figure 3c) as 

inaccurate representations of y = 3x (e.g., the “slope” is wrong in Figure 3b and 3c), while Mb 

affords accepting both as accurate (e.g., each is the set of points so that y is three times as large 

as x and for any change in x, y changes by three times that amount). This in-the-moment 

incompatibility aids comparing the generativity and generalizability of each meaning including 

weighing which is better viewed as derivative of the other (e.g., slope as an implication of rate of 

change is more generative and generalizable than rate of change as an implication of slope).  

Data Illustrations 

Although this is chiefly a theoretical report focused on a particular form of learning and 

cognitive activity, it represents generalizations from a collection of empirical studies with 

students and teachers. The studies and their methodologies entailed semi-structured clinical 

interviews (Ginsburg, 1997) and various forms of teaching experiments (Steffe & Thompson, 

2000), and are summarized in Moore et al. (2022) and Moore et al. (2024). Here, we draw from 

our empirical data with prospective teachers working the aforementioned task.  

We use Table 1 to provide emblematic examples of each competing meanings component 

presented in Figure 2. Due to space constraints, we use quotes and only a brief narrative situating 

those quotes. We point the reader to our work referenced above for more detailed narratives of 

the students’ actions and meanings. With respect to a problematized extant meaning, the example 

quote is from a participant, Lizzie, who conceived Figure 3b as having a “positive slope” and 

Figure 3c as having a “negative slope” due to their direction of rise and run (i.e., Ma). For both 

graphs, Lizzie checked points to verify the accuracy of the formula y = 3x. This, when paired 

with the slope discrepancy between the given and rotated graph, left her perturbed and calling 

into question the viability of her thinking on the task (“this is so annoying”). With respect to 

enacting alternative meanings (i.e., Mb), Tatiana’s quote illustrates that by conceiving the graph 

via quantitative and covariational operations, she determined the graph to be a viable 

representation of y = 3x. This occurred after having not determined what was to her a satisfactory 

way to produce the unlabeled graph. In attributing a viable way of reasoning to the student 

solution, it also supported her reflecting on that meaning in terms of its flexibility. This is a key 

foundation for the reflective comparison of meanings.  

The problematization of an extant meaning can occur in a reflexive process with the 

enactment of alternative meanings. Similarly, the phenomenon of reflectively comparing extant 

and alternative meanings does not always immediately follow that process. It more often occurs 

iteratively across a sequence of tasks. With that said, the provided quote is from Ada and it 

occurred after engaging in several tasks across an instructional sequence. It illustrates that by 

comparing extant and alternative meanings, she came to view rate of change as a dominant 

meaning. She conceived slope as a visual property (i.e., Ma) derivative of and thus subordinate to 

rate of change (i.e., Mb). This enabled her to consider a graph like that in Figure 3c as having a 

rate of change of 3 and, hence, a positive slope. Furthermore, she could couch her appraisal of 
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the graph in terms of differentiating between the underlying mathematical concept of rate of 

change and common communicative practices (i.e., conventions). Such appraisals are critical to 

learning mathematics (Moore, Silverman, et al., 2019). As the participant Thomas described 

when privileging rate of change, “it’s smart [of a student] to understand that it’s not glued.” 

 

Table 1: Quotes Associated with each Competing Meanings Component 

 

Component Graph 

Considered 

Quote 

Problematized 

Extant Meanings 

Figures 3b-c 

(with labels) 

Lizzie: I’m rising this three…then I’m running negative 

one…the slope is negative again…this is so annoying. 

 

Enacting 

Alternative 

Meanings 

 

Compare Extant 

and Alternative 

Meanings 

 

Figure 3b 

(with labels) 

 

 

Figure 3c 

(with labels) 

 

Tatiana: Oh…we have a clever kid over here…so it now 

technically is y equals three x…not the standard way of 

doing it…They see the relationship between x and y.  

 

Ada: …even though it looks like a negative slope…we 

call it slope because it’s visual and it’s easy to visualize a 

negative and positive slope. But that’s only visual on our 

conventions of how we set it up…slope is rate of change, 

we can still see that for like equal increases of x we have 

an equal increase of y of three. And so for equal positive 

increase of one we have an equal positive increase of 

three. And so, it is a positive slope. 

 

Closing 

We presented one learning form that identifies how two meanings might be brought into 

comparison via processes of assimilation, accommodation, and perturbation. We illustrated how 

such a process involves different forms of intellectual need, including that with respect to solving 

a task, comparing meanings, and considering the implications of those meanings. We also 

illustrated the competing meanings perspective through a task and emblematic participant 

activity. The competing meanings perspective is still in its infancy as a construct. Moving 

forward, we envision a need for further connecting to other extant constructs and perspectives, 

the results of which will continue to shape and develop the idea of competing meanings.  

We have concentrated much of our research focus on the first two aspects competing 

meanings and relatively less on the nuanced ways in which teachers compare extant and 

alternative meanings (cf. Paoletti, 2020). A reflective comparison of meanings is a 

developmental process that occurs across a sequence of experiences, and it is through such a 

process that key developmental understandings are constructed and associated pedagogical 

implications are anticipated (Silverman & Thompson, 2008; Simon, 2006). We envision a fruitful 

area of inquiry to be more detailed investigations into how the competing meanings perspective 

might be used to engender such reflective comparisons and, accordingly, the construction of key 

developmental understandings. Furthermore, we view a need for further relating this process to 
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the development of mathematical knowledge for teaching. Here, we do not make strong claims 

regarding the development of mathematical knowledge for teaching. There are numerous factors 

other than a teacher’s knowledge that mitigates their instructional practices and the meanings 

they target in their classroom. But, literature identifies the critical role of meanings and teachers 

being reflectively aware of them (Liang, 2019, 2023; Tallman & Frank, 2020; Thompson, 2016), 

and the competing meanings perspective is one potential tool to support the transformation of 

knowledge to that which informs instructional action.  

For the purpose of adhering to the space constraints of the current report, we situated our 

work in the theories that directly informed its emergence and development. There is significant 

literature on learning, conceptual change, and perturbation, and thus an additional need is to 

further situate the notion of competing meanings within that literature. For example, Vinner and 

Dreyfus (1989) proposed compartmentalization as the phenomenon in which a learner has two 

potentially conflicting meanings. Noah-Sella et al. (2022) have since extended this phenomenon 

to incorporate Thompson’s theory of meaning and explore calculus students’ integral meanings. 

Their perspective foregrounds cases in which a researcher perceives a potential conflict or 

relationship between meanings, but the participant does not. The competing meanings 

perspective might contribute a way by which one considers how to support a student or teacher 

in bringing that conflict to the surface. As another example, researchers have productively 

pursued characterizing learning using Piaget’s forms of reflective abstraction (Ellis et al., 2024; 

Simon et al., 2010; Tallman & O’Bryan, 2024), including theorizing its role in constructing 

mathematical knowledge for teaching (Liang, 2021, 2023). We envision that drawing 

connections with this work will provide insights into how aspects of the competing meanings 

perspective are related to crucial abstraction processes.  
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In our mixed-methods study we investigated how prospective elementary school teachers (PSTs) 

in the early stages of their preparation learn mathematical content and also learn to 

assess/attend and interpret students’ mathematical thinking when analyzing students’ written 

work on a mathematical task in the domain of fractions.  We implemented an activity focused on 

building the PSTs’ assessment reasoning. Data from 44 PSTs were used to analyze the PSTs’ 

assessment skills using an adapted framework by Talanquer et al. (2015). Analysis using a linear 

model was conducted on the PSTs’ pre and post Mathematical Knowledge for Teaching using the 

Learning Mathematics for Teaching instrument and the level of PSTs’ assessment skills. Findings 

provide evidence that there is a significant association between the level of assessment skills and 

content knowledge at the end of the course than at the beginning of the course.     

 

Keywords: Assessment, Mathematical Knowledge for Teaching, Preservice Teacher Education, 

Teacher Noticing  

Introduction and Background 

The practice of formative assessment has been identified as critical for improving teacher 

effectiveness and student learning outcomes (Black & Wiliam, 2009). However, prospective 

teachers need support in developing such an important pedagogical skill which involves 

interpreting students' mathematical thinking (Boerst et al., 2019). This mixed-methods study 

aims to characterize and differentiate how elementary school preservice teachers (PSTs) interpret 

students' mathematical thinking when analyzing students' written work on a formative 

assessment task in the domain of fractions. Additionally, we explore any connections between 

the intervention focused on building PSTs’ assessment skills in the domain of fractions and the 

development of their mathematics knowledge for teaching (MKT). The mathematics content 

course which serves as the setting for this study affords opportunities to introduce PSTs to the 

required mathematics content with an eye towards teaching and interpreting elementary students’ 

mathematical thinking. We were interested to see whether such a content course in general and 

the activity focused on building PSTs’ assessment reasoning in the domain of fraction, in 

particular, would help the PSTs develop their MKT specifically in the domain of fractions (Ball 

et al., 2008; Stylianides & Ball, 2008; Thames & Ball, 2010). Research questions that guide our 

study are: (1) What are the levels of the PSTs’ overall assessment skills along the different 

dimensions within the categories of evaluate/attend and interpretation when analyzing students’ 
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mathematical thinking on a written task in the domain of fractions? (2) What connections exist, if 

any, between PSTs’ assessment reasoning skills and their MKT, as measured by the Learning 

Mathematics for Teaching (LMT, 2004) instrument? 

Methodology 

This mixed-methods study was conducted in a large Hispanic-Serving public university in 

the southern United States during the fall 2021 semester. The participants in the study consisted 

of 44 PSTs enrolled in their first mathematics content course for prospective elementary and 

middle school teachers. The data collected were (1) PSTs' written assessment of an 

elementary/middle school student's work on a formative assessment task that focused on 

identifying fractional values of area shapes. The formative assessment and the sample student 

work were part of the collection of tasks and student works found in Balanced Assessment 

(Schoenfeld, 1999) and (2) the pre- and post-test scores of the Learning Mathematics for 

Teaching (LMT) specifically the Content Knowledge (CK) and Knowledge of Content and 

Students (KCS) in the domain of Number Concepts and Operations (Hill et al., 2008).   

To answer the first research question, we analyzed the PSTs’ written assessments of student 

work based on our adapted version of Talanquer’s Framework (Talanquer et al., 2015) for 

evaluating and interpreting student understanding in the assessment of written work. In our 

framework there are four evaluative dimensions (evaluation stance, specificity in the evaluation, 

analysis of coherence, use of evidence) and four interpretive dimensions (quality of 

interpretation, productive thinking, scope of the evaluation, mathematical accuracy). Talanquer’s 

Framework was originally intended for use within science education, but it was informed by 

mathematics education, including the Jacobs et al. framework (Jacobs et al., 2010) during its 

development. The framework provides more layers of differentiation in scoring of ‘Attend’ and 

‘Interpret’ features of the Jacobs et al. teacher noticing framework thereby allowing to better 

capture the subtle differences in PSTs’ assessment capabilities. The framework also allows for 

analyzing the interpretations of PSTs’ student thinking by levels and with detail that is domain 

specific. We thus found Talanquer’s Framework adaptable to our setting in our mathematics 

education study. We noticed that PSTs’ assessment capabilities vary within each level, so instead 

of assigning a discrete score by level we decided to assign a score within an assigned interval for 

each level. We provide one example of an adaptation that we made noted in italics from the 

Talanquer Framework in Table 1. 

Table 1: Interpretive dimensions (soundness of interpretations characterized along these 

dimensions) and levels of sophistication in PSTs’ assessment of student understanding. 

 

Interpretive 

dimensions 

Novice 

[0,1] 

Emerging 

(1,2] 

Advanced 

(2,3] 

Quality of the 

interpretation 

Interpretations  

cannot be supported with the 

evidence available or claims are 

minimally supported by re-

stating students’ answers without 

unpacking the meaning in 

Interpretations are 

built, but the 

evidence provided 

is limited, 

superficial or 

formulaic. 

Reasonable 

interpretations of 

student 

understanding are 

built given the 

available evidence. 
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students’ responses 

 

Two of the authors first met to establish the modified codes described above and coded six 

PSTs’ written assessment reports together to get a sense of our coding scheme. We then 

separately coded all of remaining 38 participants’ written assessments. After coding, we met to 

reconcile any differences and came to an agreement. Throughout the coding process we 

maintained 90% or better reliability. We used a linear regression model to answer the second 

research question to explore associations between the change in the pre/post LMT scores and the 

level of assessment skills demonstrated by the PSTs in the domain of fractions. 

Findings and Conclusions 

Findings of our first research question capture the subtle differences in the PSTs’ assessment 

reasoning skills along four dimensions within the category of evaluation/attend and four 

dimensions within the category of interpretation in analyzing students’ mathematical thinking on 

a written task in the domain of fractions. Furthermore, we were able to differentiate our PSTs’ 

assessment skills into three levels of sophistication for evaluating and interpreting student 

thinking along these dimensions. On average PSTs’ (N = 44) score within the interval [0, 3] on 

the construct of overall assessment skills came out to be 1.53, which puts them on average in the 

middle of the emerging level spectrum. The table below provides a summary of the average 

scores of the PSTs along different dimensions within the two categories of the overall assessment 

skills - evaluation/attend and interpretation. 

Table 2: PST average scores on Evaluative and Interpretive dimensions 

 

Evaluative/ 

Attend 

dimensions 

evaluative 

stance 

specificity in 

evaluation 

analysis of 

coherence 

use of 

evidence 

 

Overall 

Evaluative/ 

Attend Skill 

Average Score 1.54 1.46 1.51  

 

1.46 1.49 

Interpretive 

dimensions 

quality of 

interpretation 

productive 

thinking 

scope of 

evaluation 

math 

accuracy 

Overall 

Interpretation 

Skill 

Average Score 1.60 1.54 1.47 1.61 1.56 

 

When differentiating the PSTs’ overall assessment skills into three levels of sophistication for 

evaluating and interpreting student thinking along these dimensions, we found that 34% (15 

PSTs) were at the Novice level, 39% (17 PSTs) were at the Emerging level, and 27% (12 PSTs) 

were at the Advanced level. Furthermore, PSTs’ overall interpretation skill average score came 

out to be slightly more (4.7% more) than their overall evaluative/attend skill average score. 

The student work that PSTs were asked to analyze was focused on identifying the fractional 

parts of a square subdivided into four equal smaller squares and each of the smaller squares 

divided into fractional pieces. Below we provide sample excerpts of the PSTs’ analysis at 
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different levels of sophistication along the ‘Quality of the interpretation’ dimension using the 

coding scheme given in Table 1. 

Novice Level: “None of the fractions in the square are the actual fraction that it needs to be, but 

in the mind of the child, I understand how student B got most of the answers.” (PST 415) 

Emerging Level: “It is clear that they (Student B) had difficulty understanding larger fractions 

and reasoning for dividing up a whole piece into many smaller and uneven pieces.” (PST 428) 

Advanced Level: “I noticed one main recurring issue, which was them thinking of it as four 

individual squares rather than one as a whole. For example, in part one, they incorrectly stated 

that A and B were each equal to one half. They are correct that A and B are one half of one 

fourth, however if Student B was looking at the big picture, letters A and B would be equal to 

one eighth. Those two eighths would be equal to one fourth of the entire square. As you can see, 

Student B solved the square in four different individual parts. Each fourth of the entire square 

was equal to one, when in reality the entire square should have been equal to one.” (PST 421) 

In addressing the second research question, changes in PSTs’ MKT were assessed using two 

versions, Pre and Post, of the instrument created by the Learning Mathematics for Teaching 

Project (2011). The instrument contains items from two subscales: Content Knowledge (CK) and 

Knowledge of Content and Students (KCS). We obtained separate estimates of the PSTs’ ability 

scores overall and for each subscale by using an IRT model and item parameters obtained as part 

of a nationally representative sample of middle school teachers (see Hill 2007).  PST’s exhibited 

significant gains overall (0.7, 𝑝 < .001) and in CK (1.2,  𝑝 < .001), but not in KCS (-.1, 𝑝 =
.499).  To explore the relationship between the level of sophistication of the PST’s assessment of 

student work (𝐿𝑖) and their MKT (𝑍𝑖), we fit the linear model: 

𝑍𝑖
(𝑃𝑜𝑠𝑡)

= 𝛽0 + 𝛽1𝐿𝑖 + 𝛽2𝑍𝑖
(𝑃𝑟𝑒)

+ 𝛽3𝐿𝑖 ∗ 𝑍𝑖
(𝑃𝑟𝑒)

+ 𝜖𝑖 

 

where 𝑖 = 1 , … , 44.  The results for the model with CK scale are shown in Table 3 below. 

Table 3: Coefficients Linear Model for Post Content Knowledge 

 

Coefficient Estimate Std. Error p-value 

Intercept (𝛽0) -.31 .56 .581 

Level of Sophistication (𝛽1) .76 .28 .009 

Content Knowledge: Pre (𝛽2) .43 .30 .160 

Interaction (𝛽3) .21 .15 .166 

  Adj-𝑅2 = .71, F = 35.71, df = 3, 40, p< .001 

 

The overall F-test and Adj-𝑅2 indicate the model is statistically significant and performs well 

at explaining variation in the post CK subscale score. When controlling for pretest score, the 

level of sophistication is a significant predictor of post test score. Comparing the estimates and 

the p-values, surprisingly, the level of sophistication of the PSTs’ assessment of student work is 

more strongly associated with the post test score than the pre-test is. That is, the data provides 

evidence that there is a more significant association between the level of assessment skills and 

content knowledge at the end of the course than at the beginning of the course. Although we 

cannot claim a causal relationship between the level of assessment of student work and content 

knowledge, the results look promising for investigating further this claim. We plan to strengthen 
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the design by including a comparison (control) group in the next phase of the project.    

Our findings suggest that analyzing PSTs’ assessment capabilities can be enriched by 

considering different dimensions along the evaluative/attend and interpretive strands of the 

construct. By capturing the subtle differences in assessment skills teacher educators can better 

support PSTs’ assessment reasoning. The significant association between the level of 

sophistication of the PSTs’ assessment of student work and content knowledge when controlling 

for incoming knowledge suggests that providing opportunities to learn how to assess students’ 

mathematical work, impacts PSTs’ mathematical knowledge positively. This result provides 

evidence, although taken with caution, that including more opportunities to learn how to assess 

and analyze student work as part of the teacher education curriculum is an effective instructional 

practice to improve mathematical learning.  
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Number Talks (NTs) may offer support for prospective teachers (PSTs) to engage in ambitious 

instruction. There has been a call for more empirical studies on NTs on the part of teachers. 

There are only a few studies on PSTs’ teacher moves during their enacted NTs in field placement 

classrooms. In this study, we analyzed 22 PSTs’ enacted NTs to identify themes associated with 

teacher moves used by those PSTs in their NT implementations. We found that revoicing and 

clarification teacher moves were dominantly used throughout 152 strategy segments in 48 NTs 

enacted by 22 PSTs. We also found how different teacher moves were used in each strategy 

segment in which individual students shared their strategy one after another and by PSTs, and 

how additional teacher moves were used with the dominant teacher moves. Discussions and 

implications are offered about mathematics teacher education and research. 

Keywords: Number Talks, Elementary School Education, Instructional Activities and Practices, 

Preservice Teacher Education 

Purpose 

In the U.S., there has been an increase in using Number Talks (NTs), brief daily instructional 

routines (10-15 minutes in length) in which “students mentally solve computation problems and 

talk about their strategies” (Humphreys & Parker, 2015, p. 5), in mathematics classrooms. 

Despite such popularity, the instructional routines have not been well-studied empirically. In 

their extensive literature review, Matney, Lustgarten, and Nicholson (2020) called for empirical 

studies on the efficacy of NTs on student learning. Some studies have addressed the call by 

working with (novice) teachers’ NTs in terms of, for example, the math-talk learning community 

(Woods, 2022), relationships with ambitious instruction (Pak, Cavanna, & Jackson, 2023), and 

formative assessment (Han & Thanheiser, 2021). 

In this paper, we investigate teacher moves used by prospective teachers (PSTs) in their NTs 

in their field placement classrooms. Studies on mathematical discourse (e.g., Arnesen & Rø, 

2022; Chapin, O’Connor, & Anderson, 2013; Franke et al., 2015; Herbel-Eisenmann, Steele, & 

Cirillo, 2013; Kazemi & Hintz, 2014) have shown the positive impacts of teacher moves on 

students’ conceptual understanding. Given that, student learning in NTs also may depend in part 

on teacher moves, which can offer students opportunities to reason and make sense of strategies. 

Among the four phases (Introducing, Collecting Answers, Idea Sharing, and Closing) of the NT 

routines (Pak et al., 2023; Parker & Humphreys, 2018), the Idea Sharing phase, which begins 

when teachers ask students to share their strategies and ends before teachers conclude the NT, 

involves multiple teacher moves that foster student reasoning. As such, we focus on the Idea 

Sharing phase to investigate teacher moves used by PSTs in their enacted NTs. PSTs need to 

learn how to engage in ambitious mathematics instruction (Kazemi, Franke, & Lampert, 2009; 

Lampert, Beasley, Ghousseini, Kazemi, & Franke, 2010). One way to begin to engage in 

ambitious mathematics instruction would be learning to effectively use teacher moves in the Idea 

mailto:byeonguk@pdx.edu
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Sharing during NTs. As for studies on NTs, little attention has been paid to PSTs’ NTs in general 

and teacher moves used by PSTs in the Idea Sharing phase in particular. In this paper, we would 

like to contribute to understanding PSTs’ use of multiple teacher moves in the Idea Sharing 

phase. As such, the purpose of this paper is to explore teacher moves PSTs use in the Idea 

Sharing phase in their enacted NTs. Understanding PSTs’ use of multiple teacher moves in the 

Idea Sharing phase can support mathematics teacher educators with an interest in PSTs’ teacher 

moves in NTs to enhance more effective ways for PSTs to use teacher moves in their NTs. 

 

Conceptual Perspectives 

In this paper, we draw on two conceptual perspectives to offer an understanding of how we 

approach PSTs’ use of multiple teacher moves in the context of NTs, especially the Idea Sharing 

phase. The first perspective is related to the idea that multiple teacher moves work together to 

facilitate mathematical discourse more productively (e.g., Arnesen & Rø, 2022; Ellis, Özgür, & 

Reiten, 2019). Ellis et al. (2019) developed the Teacher Moves for Supporting Student Reasoning 

framework, classifying talk moves into four categories: eliciting, responding, facilitating, and 

extending. This framework places individual teacher moves on a continuum based on their 

potential to support student reasoning. Mainly, it underscores the collective interplay of these 

teacher moves across categories to develop a learning environment that honors student reasoning 

and sense-making. Drawing on the framework, Arnesen and Rø (2022) found teacher moves with 

different levels of potential, high and low, to support student reasoning. They offered multiple 

illustrations of how an experienced teacher used high-potential teacher moves (e.g., requesting 

justification and indicating relationship) along with low-potential teacher moves (e.g., unraveling 

student input and acknowledging contribution) to share intellectual authority with students as the 

teacher facilitated mathematical discussion. Even though we do not fully use the teacher moves 

identified in their works in this paper, the findings suggest that effective support for student 

reasoning often involves using multiple teacher moves together. We extend the idea to NTs in 

this paper because it is also important for teachers, particularly PSTs who need to learn how to 

use multiple teacher moves together, to support students to make mathematical reasoning more 

accessible to other students in the context of NTs. 

The second perspective pertains to teacher moves used by novice teachers in the Idea Sharing 

phase during NTs. The Idea Sharing phase is where teacher moves can be used to support 

students in sharing their reasoning behind their strategies. Two studies (Pak et al., 2023; Murata 

et al., 2017) entailed findings regarding multiple teacher moves in the context of NTs. In a 

systematic analysis of 17 videos of NTs enacted by seven beginning elementary school teachers 

over three years, Pak et al. (2023) identified strategy segments and strategy-plus segments in the 

Idea Sharing phase. A strategy segment begins when a teacher asks an individual student to share 

his/her strategy and ends when the teacher moves to another student’s strategy. A strategy-plus 

segment begins when a teacher asks other students to contribute to the initial strategy shared by 

an individual student and ends when the teacher moves to another student’s strategy. To explore 

what beginning teachers could do to engage multiple students in each other’s strategies, Pak et al. 

(2023) focused solely on strategy-plus segments to find teacher moves used by the beginning 

teachers. Murata et al. (2017) identified multiple teacher moves used by two beginning 

elementary school teachers during NTs over five months. They focused on teacher moves used in 

the whole NTs including the four phases (Introducing, Collecting Answers, Idea Sharing, and 
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Closing). The teacher moves used in the Idea Sharing phase included feedback evaluation 

(teacher responding to student talk to offer feedback to the student about the idea), strategy 

explanation (teachers extending student thinking beyond what the student said), and process 

questions (questions about strategies and thinking process). Understanding teacher moves by 

(novice) teachers in NTs, especially in the Idea Sharing phase, is still at the beginning stage. 

Particularly, teacher moves used by PSTs in the Idea Sharing phase have been under-

documented. These two perspectives led us to explore how PSTs used multiple teacher moves 

together in strategy segments in the Idea Sharing phase. 

 

Methods 

Context, Participants, and Data Sources 

The research site was in a mathematics methods course for elementary school teachers at a 

small southwestern university. Data regarding the course submissions was gathered in Spring 

2023 as part of a research project that investigated how to support PSTs in learning to implement 

the eight mathematics teaching practices (National Council of Teachers of Mathematics, 2014).  

Twenty-nine PSTs agreed to participate in data collection, including electronic submissions 

of course assignments, including the Number Talk Project. In their informal weekly reflection, 

they reported that they had never heard about NTs before and it was the first time for them to 

learn about NTs. The Number Talk Project consisted of PSTs engaging in a learning cycle to 

plan, rehearse, and implement their NTs plan. At the end of the learning cycle, PSTs video-

recorded themselves enacting their revised NTs plan in their field placement classroom. PSTs 

also submitted a written reflection paper based on examining their NT video. 

In this paper, we only used videos of NTs because the videos allowed us to more clearly see 

and hear what PSTs did in the Idea Sharing phase than in other written submissions (e.g., NTs 

plan, reflection/analysis paper). Videos of NTs enacted by 22 out of 29 PSTs were available for 

analysis for this paper. Some PSTs did more than two NTs, which meant they posed more than 

two problems. We obtained a total of 48 NTs enacted by 22 PSTs as data sources. 

Data Analysis 

There were five steps we took to analyze the transcripts of videos of NTs using a thematic 

analysis (Saldaña, 2015). First, we identified the Idea Sharing phase in terms of two sub-

categories: strategy segments and strategy-plus segments. We used the work of Pak and 

colleagues (2023) to identify the sub-categories. Second, we analyzed 10 NTs enacted by four 

PSTs to create an initial analytic code of teacher moves in the strategy segments and strategy-

plus segments. Since we identified only one teacher move used by one PST in one strategy-plus 

segment, we decided to focus our analysis on teacher moves in strategy segments because our 

interest is in PSTs’ use of multiple teacher moves. We used both inductive and deductive coding 

to code the data (Hatch, 2002). We began with teacher moves identified in the prior studies such 

as Arnesen and Rø (2022), Chapin et al. (2013), and Murata et al. (2017). We particularly drew 

on Murata et al.’s (2017) teacher moves such as feedback evaluation, strategy explanation, and 

process questions because they emerged from novice teachers’ NTs. We decided to exclude 

process questions (e.g. “How did you solve to find out what the answer was?” “So now what 

should we do?) from our potential codes because process questions are used to help students 

proceed with their explanation rather than helping them reveal their reasoning behind strategies. 

Third, we applied the initial analytic codes to the rest of the NTs (38 NTs). We went through an 
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iterative process of individual coding and team meetings to reach a consensus on codes and 

develop codes of teacher moves in strategy segments. As a result of the process, the codes were 

refined (see Table 1). Fourth, we quantified teacher moves by PSTs, NTs, and strategy segments. 

Fifth, we compared and contrasted teacher moves within and across teacher moves by PSTs, 

NTs, and strategy segments to identify salient patterns. We ensured trustworthiness by having 

weekly meetings to discuss coded transcripts and to resolve disparities and by coding all 

transcripts by authors. 

 

Table 1. Codes for Teacher Moves Used by PSTs in Strategy Segments 

 

Teacher moves descriptions examples 

Revoicing what a 

student said 

PSTs repeat what a student said 

when they shared their strategy. 

Student: 3 times 30 equals 90. 

PST: 3 times 30 equals 90. 

Asking students 

questions for 

clarification 

PSTs ask students to clarify the 

process of getting the answer. 

How did you take away zero? 

Divided what by 10? 

Asking students to 

justify their 

reasoning 

PSTs ask students to explain 

the reasoning behind their 

strategy. This code usually 

involves a why question. 

Why did you divide 70 by 10? 

Why did you multiply it by 10? 

Responding to 

students' self-

correction on 

mathematical 

mistakes 

PSTs responded to students to 

support students in realizing 

their mistakes on their own. 

PSTs also wait patiently for 

students. 

PST: That is alright. 

Student: Because I added 3 at the 

start. You have to take 3 off. 

PST: Yes, but you added 3 to 67 and 

made it 70. If you didn't take away 3 

from 232, we still have an extra 3. 

Mentioning a brief 

connection between 

strategies 

PSTs briefly mention a 

connection they see between 

strategies in the form of 

questions. 

So you took this one and [pointing 

out another strategy recorded on the 

board] you kind of did it this way, 

right? 

Recapping a 

student’s strategy 

for the whole class 

PSTs summarize an individual 

student’s strategy for the whole 

class. 

She stacked in her head and she had 

to borrow. But she knew that 

borrowing from the zero, there is 

nothing to borrow from zero. 

 

Findings 

In this section, we present four findings to demonstrate how 22 PSTs used multiple teacher 

moves in the strategy segments. As mentioned earlier, we found only one teacher move used by 
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one PST in one strategy-plus segment, which is not included in the findings. To illustrate the 

findings, we use frequency tables and an excerpt. 

First, we found that seven different teacher moves were observed across 152 strategy 

segments within 48 NTs enacted by 22 PSTs (see Table 2). The two teacher moves (revoicing 

and clarification) were frequently used by PSTs. We call the two teacher moves as the dominant 

teacher moves. All 22 PSTs used revoicing 146 times in total throughout 94 strategy segments in 

44 NTs. Clarification was used 54 times throughout 43 strategy segments in 27 NTs by 17 PSTs. 

The other five teacher moves (asking students to justify their reasoning, responding to students’ 

self-correction on mathematical mistakes, mentioning a brief connection between strategies, 

recapping a student’s strategy for the whole class, and asking students to make connections 

between mathematical ideas) were less frequently used by the PSTs. We call the five teacher 

moves as the additional teacher moves. Asking students to justify their reasoning was used by 

three PSTs 14 times across seven strategy segments in five NTs. Responding to students’ self-

correction on mathematical mistakes was used by two PSTs three times in four strategy segments 

in three NTs. Mentioning a brief connection between strategies was used three times in three 

strategy segments in three NTs by three PSTs. Recapping a student’s strategy for the whole class 

was used 10 times in 10 strategy segments in nine NTs by eight PSTs. Asking students to make 

connections between mathematical ideas was used once throughout the entire data. 

 

Table 2: Frequencies of Teacher Moves by PSTs, NTs, and Strategy Segments 

 

Teacher Moves Instances 

Total 

152 

Strategy 

Segments 

48 

NTs 

22  

PSTs 

Revoicing what a student said 146 94 44 22 

Asking students questions for clarification 54 43 27 17 

Asking students to justify their reasoning 14 7 5 3 

Responding to students' self-correction on 

mathematical mistakes 

4 4 3 2 

Mentioning a brief connection between 

strategies 

3 3 3 3 

Recapping a student’s strategy for the whole 

class 

10 10 9 8 

Asking students to make connections between 

mathematical ideas 

1 1 1 1 

 

Second, we found that the PSTs used at least one teacher move in 114 strategy segments 
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(75%) and no PSTs used more than three teacher moves in any strategy segments (see Table 3). 

Among 114 strategy segments, 75 strategy segments (66%) contained one teacher move, 31 

strategy segments (27%) contained two teacher moves and eight strategy segments (7%) 

contained three teacher moves.  

 

Table 3: Number of Strategy Segments by Number of Teacher Moves Used 

 

Number of dominant and 

additional teacher moves 

None 1 2 3 Total 

Number of strategy segments 38 75 31 8 152 

 

Third, we found that each PST used different teacher moves throughout NTs. In terms of 

each PST’s use of different teacher moves throughout NTs, three PSTs used only one type of 

teacher move (revoicing), 10 PSTs used two different teacher moves, five PSTs used three 

different teacher moves, three PSTs used four different teacher moves, and one PST used five 

different teacher moves across the NTs (see Table 4). For example, PST2 used both revoicing 

and clarification moves in the first strategy segment. The same PST did not use any teacher move 

for the second and fifth strategy segments, used the clarification move for the third and fourth 

strategy segments, and used the justification move in the sixth strategy segment in her first NT. 

In her second NT, PST2 did not use any teacher move for the first strategy segment and used the 

revoicing move in the second strategy segment. So, PST2 used at most two teacher moves in one 

strategy segment and used three different teacher moves (revoicing, clarification, and 

justification) throughout the NTs.  

 

Table 4: Number of PSTs Who Used Different Teacher Moves Throughout NTs 

 

Number of dominant and 

additional teacher moves 

1 2 3 4 5 

Number of PSTs 3 10 5 3 1 

 

Fourth, we found that a few PSTs were able to use the dominant teacher moves in 

combination with additional teacher moves in strategy segments. Twelve PSTs only used 

revoicing and/or clarification without using any additional teacher moves and 10 PSTs used other 

additional teacher moves at least once along with the two dominant teacher moves across the 

NTs. Among 114 strategy segments that had at least one teacher move, 106 strategy segments 

(93%) contained either revoicing or clarification moves and only 8 strategy segments (7%) had 

teacher moves without revoicing or clarification teacher moves. Among 31 strategy segments 

PSTs used two teacher moves, 30 of them included either revoicing or clarification. Only one 

strategy segment had two additional teacher moves (recapping and asking students to make 

connections) without revoicing and clarification (see Table 5).  
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Table 5: Number of Strategy Segments With(out) Dominant Teacher Moves 

 

Dominant teacher 

moves 

0 additional 

teacher move 

1 additional 

teacher move 

2 additional teacher 

moves 

Total 

Revoice, no Clarify 56 7 1 64 

Clarify, no Revoice 12 0 0 12 

Revoice and Clarify 23 7 0 30 

Neither used 38 7 1 46 

Total 129 21 2 152 

 

Table 6 shows PSTs’ use of teacher moves when they used three teacher moves in one 

strategy segment. Among eight strategy segments, seven included both revoicing and clarifying 

and one PST used the revoicing move but clarifying. PST3 used revoicing, clarification, and 

brief connection in one strategy segment, and used revoicing, clarification, and recapping in 

three strategy segments, and used revoicing, clarification, and justification in one strategy 

segment. PST4 used revoicing, clarification, and justification in one strategy segment and used 

revoicing, clarification, and recapping in another segment. PST 21 used revoicing, brief 

connection, and recapping in one strategy segment.  

 

Table 6: PSTs’ Use of Three Teacher Moves Across Eight Strategy Segments 

 

PSTs Number 

Talks 

Strategy 

segments 

Revoicing Clarifying Justify Brief 

Connection 

recapping 

PST3 1st NT 2nd 2 1  1  

2nd NT 2nd 2 1   1 

3rd 2 2   1 

3rd NT 1st 1 3   1 

2nd 4 1 1   

PST4 1st NT 1st 2 1 3   

2nd NT 3rd 1 2   1 

PST21 2nd NT 2nd 2   1 1 
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We present an excerpt below to illustrate how PSTs used three teacher moves. The excerpt shows 

how PST3 used three teacher moves such as revoicing, clarification, and recapping in the third 

strategy segment in her second NT. She posed the second problem (4 x 140), followed by the 

first problem (8 x 70). In the excerpt, PST3 called on a student to share her strategy.  

 

T: Okay, let's hear from Emma 

S: So, what I did is. I figured out that 8 times 70… um... 8 times 70 and 4 times 140 are 

equal, you put both of those out  

T: Okay. 

S: If you take away the zero from 70 and 140, then 7 is half of 14, so I do times 2 

T: Times what by 2, 

S: 4 times 2 

T: So you did 4 times 2, 

S: 4 times 2 is 8, and then… (student thinking) 

T: Okay, so how do we get from 140 to 70? 

S: divide it by 2? 

T: Okay. And that 70. 

S: So it is 8 times 70. 

T: Okay. So Emma doubled our 4 to 8 and halved our 140 to 70 because we already saw 

that problem, right? Do we agree that that strategy works? 

 

In this excerpt, PST3 used the revoicing move once (“So you did 4 times 2”). She also used the 

clarification move twice (“Times what by 2?” “How do we get from 140 to 70?”). The PST used 

the recapping move once (“So, Emma doubled our 4 to 8 and halved our 140 to 70 because we 

already saw that problem, right?). 

 

Discussions and Conclusion 
Our analyses revealed four findings related to PSTs’ use of teacher moves in their enacted 

NTs, all of which related to teacher moves occurring within the 152 strategy segments in the Idea 

Sharing phase of the NTs routines. Specifically, we observed the PSTs’ teacher moves in terms of 

two dominant teacher moves and five additional teacher moves. We also found that a few PSTs 

used multiple teacher moves in strategy segments. These findings offer potential insights for the 

field of mathematics teacher education as we seek to support PSTs to engage in ambitious 

mathematics instruction. We offer two discussion points in terms of mathematics teacher 

education and research, respectively. 
First, these findings suggest a need for PSTs to learn to use multiple teacher moves in the 

strategy segments. We agree that novice teachers need to move beyond strings of strategy 

segments in which students simply share one strategy after another (Pak et al., 2023). As we 

briefly mentioned in the data analysis section, the data only included one strategy-plus segment 

in the whole data. The analysis also shows that a few PSTs can only use multiple teacher moves. 

We conjecture a relationship between strategy segments and strategy-plus segments: Teacher 

moves in the strategy segments can serve as a springboard to help multiple students engage in 

each other’s mathematical ideas in the strategy-plus segments because multiple students’ 

engagement depends on how much individual students are supported by teachers with 
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opportunities to reveal their reasoning and make sense of strategies. As such, our findings offer 

implications for mathematics teacher education. Specifically, mathematics teacher educators 

need to provide opportunities for PSTs to learn to incorporate multiple teacher moves into 

strategy segments to promote students’ reasoning and sense-making.  

Building on the first discussion point, second, these findings suggest a yet-uncharted research 

area regarding the effective use of multiple teacher moves in the strategy segments on the part of 

PSTs. We highlighted ways 22 PSTs used multiple teacher moves in strategy segments. This 

paper contributes to our understanding of teacher moves in the strategy segments. Many of the 

22 PSTs were able to use teacher moves perceived by researchers as effective for student 

reasoning (for example, revoicing (Chapin et al., 2013) and justification (Thanheiser et al., 

2021)). This paper extends Murata et al. (2017) and Pak et al. (2023) to explore multiple teacher 

moves in strategy segments. Murata et al. (2017) identified multiple teacher moves in the whole 

NTs. Pak et al. (2023) did not investigate the nature of strategy segments in terms of teacher 

moves. Due to a lack of data, however, the paper did not explore the efficacy of using multiple 

teacher moves in NTs, especially strategy segments, on student learning about mathematical 

concepts. As Matney et al. (2020) argued, it is essential to understand the impacts of NTs in 

general and multiple teacher moves in particular on students’ reasoning and sense-making. We 

suggest that further research be on ways to support PSTs to learn to more effectively use multiple 

teacher moves in the strategy segments in the Idea Sharing phase. 
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Purpose of Research and Connection to Literature 

This poster proposal represents a research-in-progress examining the Standard for 

Mathematical Practice 6: Attend to Precision. Mathematics, as a discipline, demands precision as 

a tool for accuracy and rationalization (Otten et al., 2019). The purpose of this study is to 

develop elementary preservice teachers’ ability to attend to precision through a series of 

professional learning seminars, written mathematical tasks, and micro teaching demonstrations.   

A review of literature revealed four key themes demonstrating the benefits to both teachers and 

students when precision is explicitly emphasized in mathematics instruction. First, attending to 

precision supports students’ learning and understanding (Engledowl et al., 2015; Leatham et al., 

2016; Brunn et al., 2015). Second, attending to precision supports the sequential nature of 

learning mathematics (Kieran, 2007). Third, attending to precision promotes effective 

communication. Common language demands in mathematics include asking students to analyze, 

describe, or justify mathematical concepts and ideas (CCSSI, 2010). Lastly, attending to 

precision supports effective engagement with other Standards for Mathematical Practice (SMPs). 

Methods 

Participants for the current study were recruited through enrollment in junior and senior 

block cohorts of an elementary education preparation program. Nine elementary preservice 

teachers engaged in pre- and post- questionnaires, researcher-led seminars, written discourse 

tasks, a micro teaching demonstration, and focus group interviews. Data was collected over a 

span of eight weeks and analyzed qualitatively to answer the research questions: 1) How do 

ePSTs attend to precision? 2) How do the tasks and experiences within this study influence 

ePSTs’ perspectives and abilities to attend to precision? and 3) How do researcher-led seminars 

support the development of ePSTs’ attend to precision? 

Preliminary Findings and Implications 

This study aimed to examine how elementary preservice teachers develop the specialized 

skill, attend to precision, through a series of seminars, engaging tasks, and micro teaching 

demonstrations. Additionally, this study sought to understand how ePSTs’ perspectives toward 

precision in mathematics changed over the duration of the study. Preliminary findings of the 

study include the impact of participants’ Mathematical Knowledge for Teaching (Ball et al., 

2008) on their ability to attend to precision, emphasis on students’ prior knowledge in facilitating 

an attention to precision in teaching, and participants’ heightened awareness to the importance of 

mathematical discourse and use of strategies in their instruction. Additionally, participants were 

reflective of their teaching demonstrations with respect to knowledge gained through the 

mailto:kpate@uwa.edu
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researcher-led seminars and expressed a need for more exposure and practice with Standards for 

Mathematical Practices (CCSSI, 2010). Potential implications seek to provide insight for future 

design of learning seminars within teacher preparation programs and suggestions for integrating 

Standards for Mathematical Practices (SMPs) into PSTs’ coursework and experiences.  
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Background 

Teacher educators have the responsibility of deepening preservice teachers’ (PSTs) 

mathematical content knowledge while also casting a vision of effective mathematics instruction. 

This research takes place in a middle school math methods course in which the investigative 

approach is presented as an ideal pedagogical model. The investigative approach “involves 

purposeful, inquiry-based, and meaningful instruction and, thus, can foster all aspects of 

mathematical power: a positive disposition, the processes of mathematical inquiry, and 

understanding” (Baroody & Coslick, 1998, p. 1-27). PSTs were taught about the investigative 

approach through brief lectures, textbook readings, homework assignments, and modeling. 

Students were given opportunities to demonstrate their developing conceptualization of the 

investigative approach by writing an essay, planning and teaching two 15-minute mini-lessons to 

classmates, and reflecting on their mini-lesson teaching experience (Amobi & Irwin, 2009; 

Lucero et al., 2023). We wanted to determine which elements of the investigative approach PSTs 

were able to use with fidelity to inform future instruction and research, so we developed the 

following research questions to guide the study: 

• How do preservice teachers describe the investigative approach? 

• What observable practices do preservice teachers use in their mini-lessons? 

• How do PSTs’ understandings of the investigative approach relate to practices observed? 

Methods, Results, and Implications 

This poster reports on a case study that examined two PSTs’ level of fidelity to the 

investigative approach through an analysis of their written descriptions of the investigative 

approach, recorded mini-lessons, and post-teaching reflections. Codes were generated from the 

data through open and axial coding (Glaser & Strauss, 1967). More specifically, the data were 

analyzed to highlight what the teachers knew and did not know about the investigative approach, 

as well as identify observable practices that did and did not match the investigative approach.  

The data collected from the PSTs’ essays on the investigative approach indicated that they 

were accurately able to describe its focus, lesson structure, and basic instructional strategies. 

Their mini-lessons included some observable practices that matched what they had learned and 

written about the investigative approach such as real-life contexts and effective questioning. The 

second mini-lesson was somewhat more student-centered than the first for both PSTs. However, 

the structure of the tasks chosen ultimately limited their opportunity to enact the mini-lessons in 

a way that we would consider truly investigative. Based on these results, we suggest providing 

greater support to PSTs in the task selection process. This could be done by providing exemplars 
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and analyzing them in small groups, modeling the task selection and development process for the 

class, and the instructor or peers offering written or verbal feedback on task selection before 

lesson implementation.  
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Trends in initial teacher preparation have pointed-out that traditional pipelines (i.e., 

undergraduate programs) found at institutions of higher education in the U.S. are not producing 

enough teachers to fill the deficit created by teachers leaving the profession (U.S. Department of 

Education, 2015). Furthermore, the need for teachers in rural communities is especially 

significant (Villegas et al., 2012) where historically there has been an on-going challenge in the 

recruitment and retention of teachers in schools located in these areas (Aragon, 2016; Barton, 

2012; Monk, 2007). In this poster session, we will report on our findings on a university 

residency that was designed to address the challenges of recruitment, preparation, and retention 

of P-12 teachers of mathematics in the rural communities in our state (D’Amico et al., 2022; 

Roy, et al., 2023).  

Carolina Transition to Teaching Residency 

The Grow Your Own (GYO) residency was committed to developing and sustaining 

reciprocal relationships with partner districts in rural communities that met the following criteria: 

(1) more than 20% of children living in poverty, (2) teacher turnover rate greater than 15%, and 

(3) located in counties qualifying as Opportunity Zones. The [Blinded] residency program was 

designed for individuals [henceforth residents] that held an undergraduate degree in a field other 

than education, and who were interested in transitioning to the teaching profession. During the 

18-month program, residents were be provided both professional and financial support as they 

were immersed in a year-long teacher residency while simultaneously pursuing a Master’s 

Degree in Education. The residency was followed by support for residents in obtaining teacher 

certification during their first three years teaching in one of our partner districts located in rural 

communities in our state.   

Findings 

Carolina Transition to Teaching residency program employed a Grow Your Own (GYO) 

approach to promote a teacher workforce that is more representative of the rural communities in 

our state (Villegas, Strom, & Lucas, 2012). At this point, twenty-seven individuals have 

graduated from the program within the first three cohorts and began teaching in rural, high-needs 

partner school districts across the state, clustered along a historically significant areas of teacher 

need in our state. Moreover, across the four cohorts of the program, nearly all residents (i.e., 

91.5%) have identified from underrepresented groups in the teaching profession in our state. 

Lastly, due to a GYO recruitment approach, 60% of all enrolled residents in Cohorts 1-4 

previously held an instructional assistant or substitute positions within the partner district in 

which they were they fulfilled their residency. 
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Research has shown that engaging teachers in problem posing is a worthwhile tool for 

learning how to teach mathematics. There is a rich body of literature focusing on pre-service 

teachers in one-step problem posing. Despite the difficulty that multi-step word problems present 

to students and teachers alike, there is less scholarly research investigating misconceptions 

surrounding two-step word problems. Thus, grounded in prior research on one-step problem 

posing and linguistic metalanguage, we qualitatively identify pre-service teachers’ two-step 

problem posing misconceptions, and provide implications for practice and future research.  

 

Keywords: Pre-service Teacher Education, Number Concepts and Operations, Elementary 

School Education, Instructional Activities and Practices 

Objectives 

In comparison to one-step word problems, two-step word problems provide students with 

additional challenges (Vershaffel et al., 2000; Van de Wall et al., 2019). First, multi-step word 

problems require students to identify an unstated hidden question and answer it before 

addressing the written question (Huinker, 1992). The hidden question provides students with the 

additional task of deciphering the underlying operations that are needed to solve the unstated 

question (Verschaffel et al., 2009; Van de Walle et al., 2019). Research has also shown that in 

addition to solving two questions, two-step problems often include more complex language 

structures, making them more difficult to understand and solve (Van Dooren et al., 2013; 

Verschaffel et al., 2009). The complexity of two-step word problems highlights the need for more 

research on how to support learners in solving these types of word problems.  

One approach is to engaging teachers in problem posing themselves, shown to be a 

worthwhile activity for learning how to teach mathematics (Cai et al., 2020; Cai & Hwang, 2020; 

Calabrese et al., 2024). Investigating samples of pre-service teachers’ (PSTs) problem posing 

provides insight into their conceptual and procedural understanding (Crespo, 2003). However, 

teachers can sometimes pose over simplistic problems or, on the other hand, include information 

that is irrelevant or is mathematically unsolvable (Leung & Silver, 1997; Silver et al., 1996; 

Stickles, 2011). Our study seeks to identify the linguistic and mathematical features of two-step 

word problems that present challenges for posing clear, solvable word problems by answering 

the research question: In examples of PSTs’ posed two-step word problems, what misconceptions 

were present? What do these misconceptions reveal about the key characteristics of two-step 

word problems? 

Perspectives 
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Being able to solve word problems requires a complex interaction between understanding 

mathematical, linguistic, and contextual features (Daroczy et al, 2020; Lin, 2021). Research has 

highlighted word problems as the most challenging tasks that students encounter in mathematics 

(Verschaffel et al., 2020). The language that describes the situations of word problems has been 

found to pose greater obstacles than the mathematical concepts involved in solving (Kintsch, 

1987; Wyndham & Säljö, 1997). Often, clarity in word problems is defined by student 

understanding and performance (Fuchs et al., 2008); thus, presenting clear word problems 

enhances students’ mathematical thinking and problem-solving skills (Barwell, 2009).  

Researchers suggest that factors such as comprehension, cultural and linguistic considerations, 

context, and numerical complexity, can all impact a student’s ability to understand and solve 

these word problems (Daroczy et al., 2015; Daroczy et al., 2020). These studies highlight the 

complexity of posing a clear word problem, which can be a challenging task for PSTs.  

 

Method 

The participant sample for this study were undergraduate PSTs enrolled in a mathematics 

problem solving course designed for education majors (n=56). The problem solving course is 

guided by Polya’s (1945) steps for problem solving, the Common Core (2010) 

addition/subtraction and multiplication/division taxonomies, problem posing (Silver, 1994), the 

written/hidden question (Van de Walle et al., 2019), and linguistic metalanguage (Halliday, 

1975). PSTs participated in individual and collaborative one- and two-step problem posing 

activities to gain a deeper understanding of mathematical concepts. The data source for this study 

is a structured two-step problem posing task from the final exam. PSTs were given the following 

prompt for posing: “Write a two-step word problem that utilizes the structures: 1) Take from-

Change unknown; 2) Array-Rows unknown.” PSTs were also asked to write the hidden question 

in a separate space from their final word problem, which was also transcribed for analysis.  

To analyze the data, the research team inductively identified instances of linguistic and 

mathematical distractors. We built on our findings from a previous study of the linguistic patterns 

of one-step additive problems (Author, 2022), to guide us to identify the salient patterns of two-

step problems. We drew on Systemic Functional Linguistics (SFL), a social semiotic language 

theory that has been shown to support students and teachers talk about the functions of language 

and how it shapes meaning in the subject areas (Fang & Schleppegrell, 2010; Halliday, 1975; 

Halliday & Matthiessen, 2013). Initially, we coded five sample word problems together and 

discussed initial patterns and discrepancies to obtain inter-rater agreement. We engaged in 

constant comparative analysis (Strauss & Corbin, 1997) of PSTs’ two-step word problems to 

code the remaining sample. Once we identified our final coding scheme and no new patterns 

were identified, we reviewed all of the word problems once again to ensure that the codes were 

accurately applied.  

 

Findings 

PSTs’ misconceptions regarding two-step problem posing contained three key characteristics: 

1) requirement of the hidden question; 2) alignment of the written and hidden question; and 3) 

distinct linguistic and numerical distractors that could impede requirement and alignment. The 

requirement of the hidden question describes the PSTs’ posed problems that require two steps to 

solve the problem. In other words, one is required to solve for the hidden question in order to 
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solve the second step of the problem. Alignment describes the connection between information 

provided and what the question (hidden and written) is asking for. Linguistic distractors describe 

linguistically unclear characteristics of the posed problems such as unclear referents, inconsistent 

verbs, atypical phrasing, inference required, and grammatical errors (see Table 1). Numerical 

distractors include characteristics such as an extra numerical referent (i.e., quantity) and missing 

numerical information (see Table 1). Further, PSTs demonstrated the aforementioned two-step 

misconceptions across four separate cases. These cases elucidated the moderation of distractors 

(i.e., linguistic and numerical) on the requirement and alignment of the hidden and written 

questions when PSTs posed two-step problems that were change (take from)-change unknown 

and array-number of rows unknown. 

 

Table 1: Linguistic and Numerical Distractors 

 
Linguistic Distractor Definition 

Unclear referent  

 

The referent(s) are described inconsistently. Can also be described through multiple 

synonymous terms. 
 

Inconsistent verbs Inconsistent use of verbs throughout the word problem (e.g., planted, dead, have). 
 

Inference required In order to solve the problem, the student must draw implicit conclusions about the 

actions or conditions of the referent. 
 

Atypical phrasing Non-standard phrasing (e.g., order of information, novel word choice) 
 

Grammatical errors Punctuation or spelling errors that may or may not change the meaning of the word 

problem.  

Numerical Distractor Definition 

Extra referent An extra numerical referent is included in the problem that does not change the 

meaning of the problem. 
 

Not enough 

information 

There is not enough numerical information present to solve the problem. 

 

Case 1 represents problems in which there is not a requirement of the hidden question to 

solve for the written question, nor alignment between the information presented in the problem 

and what the written question is asking for. In this case, the misalignment comes from having to 

solve for Stephanie’s organization of ruined stickers; therefore, this question is solvable, but not 

logical. In addition, the PST did not write their hidden question, which could have contributed to 

their misaligned problem.  

A common misconception for PSTs was posing two separate one-step problems, illustrated 

by Case 2. In other words, the information gathered was from solving for step one of the problem 

was not required for solving for step two. On the other hand, there were instances where PSTs 

posed two-step problems with a requirement of the hidden question, and alignment of the 

information given and the questions, but numerical distractors that made the problem unsolvable 

as in Case 3. The PST posed a problem where it was necessary to track Carl’s flowers, making 

the question required and aligned. However, the PST did not provide an important detail: the 

amount of flowers that Jenny had after giving some to Carl. This leaves the problem unsolvable.  
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Table 2: Cases of Two-Step Problem Posing Misconceptions 

 
Case Hidden 

Question 

Written Question Requirement Alignment Solvable Distractor 

1 Did not 

write one 

Stephanie has 42 stickers. While 

arranging them into equal rows and 

columns in her sticker book, she 

dropped some water on them. She 

now had only 20 stickers that weren't 

ruined. Saddened, she continued 

organizing her stickers into 11 equal 

columns. How many rows of stickers 

does Stephanie have? 
 

Yes No Yes, 

although 

unrealistic 

Linguistic 

Distractor-

unclear 

referent 

2 How 

many 

cookies 

did I eat? 

There were 34 cookies on a baking 

sheet. I ate some. Now there are only 

32 cookies on the baking sheet. If I 

arranged the cookies equally into 8 

columns, how many cookies would 

be in each row? 
 

No Yes Yes, as two 

separate 

one-step 

problems 

None 

3 How 

many 

flowers 

does 

Jenny give 

to Carl? 
 

Jenny has 10 flowers and gives some 

to Carl. Carl arranges his flowers into 

3 columns. How many rows of 

flowers does he have? 

Yes Yes No Numerical 

distractor-

not enough 

information 

4 How 

many 

cupcakes 

did Darcie 

give to 

Joseline? 

Darcie has 5 cupcakes, she gave some 

of the cupcakes to Josseline. Now 

Darcie has 3 cupcakes. Josseline 

arranged 6 of her cupcakes creating 

each column from the cupcakes 

Darcie gave her. How many rows of 

cupcakes did Josseline arranged them 

in? 
 

Yes Yes Yes Linguistic 

distractor-

Inference 

required 

 

5 How 

many tiles 

did Jack 

take? 

Jack's mom had 24 tiles she wanted to 

lay out. Jack wanted to help so he 

took some tiles leaving his mom with 

12 tiles. If Jack laid out his tiles into 

equal rows with 4 tiles in each row, 

how many rows of tiles did he lay 

out? 

Yes Yes Yes None 

 

Case 4 represents PSTs’ posed two-step problems with the requirement of the hidden 

question, alignment of the hidden and written questions, but numerical/linguistic distractors. 

Case 4 posed problems are solvable, however, the linguistic distractors in the problem interfere 

with the clarity of the problem. In this case, the problem solver must make the inference that 

Josseline had four cupcakes before Darcie gave her cupcakes to make sense of the array of 

cupcakes using the cupcakes from Darcie as columns. Last, Case 5 represents two-step problems 

with the requirement of the hidden question, alignment of the hidden and written questions, and 
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no numerical/linguistic distractors, which represents a clearly posed two-step problems.  

 

Conclusions 

Research has shown that engaging teachers in problem posing is a worthwhile tool for 

learning how to teach mathematics (Cai et al., 2020; Calabrese et al., 2024). Based on our 

findings, we propose that to pose clearly written two-step problems, the following criteria must 

be met: requirement of the hidden question, alignment of the information provided to the 

questions, and absence of numerical and linguistic distractors. Educators can use these findings 

as guidelines for posing contextually rich word problems that are still accessible from a 

mathematical and linguistic perspective.  

Our study contributes to problem posing literature by providing tools for defining and 

recognizing PSTs misconceptions with two-step problem posing. Despite the difficulty of multi-

step word problems (Verschaffel et al., 2000), there is a dearth of research on two-step problem 

posing compared to one-step for PSTs. Our analysis focused on two-step problem posing given a 

structured task; however, evaluating PSTs’ two-step problem posing misconceptions given an 

unstructured or semi-structured task is a future direction of research to further investigate PSTs’ 

understanding of multi-step word problems.  
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We share the teaching simulation as one approach to providing formative feedback in teacher 

preparation and consider the ways in which teacher candidates (TCs) take up the feedback in 

subsequent simulations. We hypothesize that TCs’ uptake depends on the connections between 

their own resources, the focus of the feedback provided, and the context of subsequent teaching.  

Keywords: Instructional Activities and Practices, Preservice Teacher Education, Teacher 

Educators, Elementary School Education. 

Beginning teachers who are “committed to supporting the mathematical success of each and 

every student” (Association of Mathematics Teacher Educators [AMTE], 2017) integrate strong 

content knowledge for teaching, skill with high-leverage teaching practices, adherence to 

professional ethical obligations, and commitments to equitable teaching and learning, alongside 

tools for learning and growing as professionals across their teaching careers (Davis & Boerst, 

2014) into their teaching. For teacher educators (TEs), this implies designing opportunities for 

teacher candidates (TCs) to develop integrated knowledge and skills in ways that support TCs to 

build their capacity for reflection and improvement. We share teaching simulations as one 

approach to providing such opportunities with immediate feedback and we consider the ways in 

which TCs take up the feedback to demonstrate growth in their mathematics teaching practice. 

Theoretical Framework 

At the foundation of our work, we view teaching as involving the interactions between and 

among teachers, students, and the content situated inside of the school environment (Cohen et al., 

2003; Lampert, 2001). We view teaching mathematics teaching as involving interactions 

between and among the TE, the TCs, and mathematics instruction, the content of teacher 

education (Ball et al., 2009; Ghousseini & Sleep, 2011; Shaughnessy et al., 2022). This implies 

that learning occurs through supported engagement in teaching, with opportunities to improve.  

In this context, formative assessment allows TCs to demonstrate the integration of content 

knowledge for teaching, high-leverage teaching practices, and commitments to equitable 

teaching and learning This provides the TE with a snapshot of the TC’s current knowledge and 

skill that can be the basis for providing feedback and additional learning opportunities that can 

foster subsequent improvement. Wiliam (2010) posited that the utility of formative assessments 

is measured by the extent to which they allow the demonstration of knowledge and skill paired 

with the extent to which they support decisions about subsequent work. This is the goal of 

formative assessment in teacher preparation—to elicit information about TCs’ practice and to 

provide feedback and learning opportunities that impact their future practice.  



   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1184 

 

Our work is situated at the intersection of this interactive view of learning to teach and 

formative assessment. Simulations are used as contexts to practice and demonstrate capabilities 

with teaching practice. Simulations are approximations of practice (Grossman et al., 2009) that 

place authentic demands on a TC while controlling the complexity of the work. Simulations 

allow the TE to control the mathematical content that the TC encounters, the strategies and 

thinking represented by students, and the teaching moves necessary to accomplish the goals of 

the simulation (Shaughnessy & Boerst, 2018a). We use simulations in formative cycles, allowing 

feedback to TCs to be taken up in subsequent simulations.  

These simulations focus on two practices that are essential to the daily work of teaching, 

eliciting and interpreting student thinking (National Council of Teachers of Mathematics, 2014). 

Put simply, eliciting student thinking focuses on making students’ ideas available through asking 

questions and posing tasks, and interpreting student thinking entails making sense of the 

information gathered to drive subsequent instructional decisions (Shaughnessy & Boerst, 2018b).   

The TC’s engagement in a teaching simulation cycle has four parts. First, the TC examines a 

piece of student work and plans questions to ask the student to learn about their process and 

understanding of the mathematics. Second, the TC has five minutes to interact with a simulated 

student to elicit the student’s thinking. The simulated student is a live actor trained to use a set of 

response guidelines that specify the student’s process and understanding of the ideas underlying 

the process. These guidelines include general guidance and specific responses to anticipated 

questions (see Shaughnessy & Boerst, 2018a). Third, the TE interviews the TC to learn about 

their interpretations of the student’s thinking and their own understanding of the mathematics. 

Throughout the simulation and interview, the TE uses an observational tool to capture key 

aspects of the performance. Fourth, the TE engages the TC in a feedback conversation. Our 

approach allows us to gather evidence of a TC’s knowledge and skills in nine performance areas 

(Shaughnessy et al., 2025) through an observational tool that is tied to feedback suggestions that 

the TE can use. We sought to explore whether and how feedback was taken up by TCs in a 

subsequent simulation involving the same teaching practices but differing mathematics content.  

Methods 

As part of ongoing work with TEs and TCs at two universities, we are supporting TEs in 

using the simulations with their TCs and learning about how TCs take up the feedback. We had 

37 TCs engage in a pair of back-to-back simulation cycles with their TE (see the student work in 

Figure 1). TCs were given 5 minutes to consider the feedback and then engaged in the second 

simulation. After both cycles, we interviewed each TC to learn about their understanding of the 

feedback that was provided and their perception of and reasoning about the extent to which they 

did or did not take up the feedback. The simulations, feedback conversations, and interviews 

were video recorded. We analyzed the feedback conversations to identify the feedback as well as 

the interviews to identify the TCs’ understanding of the feedback and why it was or why it was 

not taken up. To understand the corresponding uptake, the research team applied an observational 

tool to each simulation performance (see Shaughnessy & Boerst, 2018a).  
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Simulation 1 Simulation 2 

 
 

Figure 1: Student Work for Simulation 1 and Simulation 2  

How Might a Teacher Candidate Take Up Formative Feedback?   

In the first simulation (~3 minutes), a TC, Kendall, began by focusing on where the student 

had started and why. Kendall then pressed the student on what they had done in the ones place. 

The student shared how they generated the “23” in 6-2-3. Next, Kendall asked why the student 

had not carried. The student reiterated that using their approach, they write the answers below the 

column (and that they do not carry). Kendall then asked the student what would happen if they 

did carry. Kendall complimented the student on starting with the ones, which was immediately 

corrected by the student (who had started with the tens). Kendall then (incorrectly) stated that the 

student needed to start with the ones and asked about the reasonableness of the answer. By the 

end of the interaction, the student had stated that the answer was reasonable.  

As Kendall interacted with the student, her TE used the observational tool to keep track of 

the sorts of moves she made. The tool revealed that Kendall did not learn about the student’s full 

process. Further, Kendall did not ask about the student’s understanding of why the 6 and the 2 

can be combined, which is crucial given the student’s process. Additionally, the TE noted that 

Kendall was directing the student to use a different process.  

The TE engaged in a 7-minute conversation with Kendall, sharing three main pieces of 

feedback, which Kendall later described accurately. First, the TE named the importance of 

learning about the student’s full method and shared that one strategy is rewriting the problem and 

asking the student to solve it again and to talk aloud as they solve it. Second, the TE suggested 

that Kendall ask probing questions focused on the student’s understanding. Third, the TE 

suggested that Kendall stay open to learning about the student’s process rather than imposing her 

own method to solve the problem or assuming that there is one right approach. Kendall had 5 

minutes to consider the feedback and continue to plan for eliciting the second student’s thinking.  

For the second simulation (~5 minutes), Kendall began by asking the student to re-solve the 

problem. She then asked questions about the student’s steps, and after the student talked about 

the process of the trade, she pressed on where the 10 added to the 3 came from. After getting the 

student to talk about why they hadn’t crossed out anything in the subtrahend, Kendall returned to 

probing the student’s understanding of what they were adding to the “3.” The student stated they 

had taken 100 from the 500 and only added 10 of that 100 to the ones place. The student also 

expressed that the number (the minuend) is supposed to be “the same” after a trade. Kendall 

pressed around the reasonableness of the answer and the student stated the answer was not 

reasonable. Kendall asked about other approaches and the student acknowledged that it was their 

first time solving a problem “without tens.”  

Looking at the uptake of the feedback, first, we see that, as suggested by the TE, Kendall had 

the student re-solve to support knowing about the entirety of the student’s method. However, 

Kendall did not have the student talk while reworking the problem. Second, Kendall took up the 
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TE’s suggestion to ask probing questions by pressing on the student’s understanding of core 

ideas. Third, the TE suggested that Kendall stay open to learning about the student’s process, 

which was evident as Kendall did not encourage the student to solve the problem another way.  

Contrasting Case: Lack of Feedback Uptake 

We next turn to a case in which a TC, Sammie, did not appear to be taking up the feedback 

provided by her TE focused on probing understanding and posing a follow up problem.  

Probing Understanding  

In the first simulation, Sammie asked a question about the value of the 6-2-3. Sammie did not 

ask the student about their understanding of the combining of the 6 (tens) and 2 (tens). Sammie 

received feedback focused on asking questions to probe the student’s understanding. The TE 

said, “Do you remember how we’ve been talking about different kinds of questions we ask kids 

and following up with the whys? That’s what I want you to practice doing and continuing to do.” 

In the second simulation, Sammie asked why the student added the minuend and subtrahend 

together, and the student responded that they “subtracted,” but Sammie asked no questions 

focused on the student’s understanding of core ideas. When interviewed by a research team 

member about how she had taken up the feedback provided by her TE, Sammie said she had 

heard the feedback and tried to use it but forgot what the student said and filled in her own 

thinking, noting that she had tried to probe the student’s understanding but used the wrong 

operation. Later, Sammie said, “I think if I had worked with the same style of problem, I think I 

would’ve be able to get it right.” Thus, Sammie noted that the differences in the approaches used 

by the two students factored into her ability to probe the student’s thinking in the moment.  

Posing a Follow Up Problem  

As part of the first simulation, Sammie was asked in the follow-up interview to identify a 

problem that could be posed to the student to confirm their process and understanding. Sammie 

carefully identified a task and talked through her reasoning. In the feedback, the TE highlighted 

the care with which Sammie selected the numbers and named that posing another problem can be 

a useful strategy. In the second simulation, Sammie did not pose an additional problem to the 

student. Later, she said, “I was like, I don’t know what problem I would give this child.”  

Uptake of Feedback 

We note that it is challenging to ask about understanding in a context where there is a wrong 

answer or an unfamiliar algorithm and that the problem solved was a special case that surfaced a 

challenge that would not typically arise. Even though the feedback given by the TE could have 

been applied, Sammie may have needed additional support in learning about the sorts of 

understanding questions that could be useful in this particular mathematical situation, how to ask 

those questions in a situation where the answer is incorrect, and how to manage other 

complexities of interacting with the student in this context. Similarly, Sammie may have needed 

additional support to think about generating and using a follow up problem in this context.  

Discussion 

Across the broader data set, TCs varied in their ability or willingness to utilize the feedback 

provided by their TE. We hypothesize that TCs’ uptake depends on the connections between their 

own resources, the feedback provided, and the context of subsequent teaching. We conceptualize 

resources as the combination of content knowledge for teaching, skill with high-leverage 
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teaching practices, and orientations to teaching and learning that TCs bring to the work of 

mathematics teaching. In terms of the feedback, we are examining both the content (e.g., asking 

questions about student’s understanding of core ideas) and the nature of guidance (reminding the 

TC about something already known, convincing the TC about the importance of something, 

and/or teaching the TC something new to try or think about). Given that the TC’s teaching is 

influenced by the simulation context in which it occurs, we are considering the demands implied 

by particular mathematics content (invented/standard process, correct/incorrect answers) and 

particular characteristics of the student’s thinking (degrees of procedural fluency and 

components of conceptual understanding) designed into the simulation.  
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We describe how a teaching simulation cycle focused on eliciting and interpreting student 

thinking in elementary mathematics can reveal important aspects of a teacher candidate’s (TC’s) 

knowledge and skill with eight performance areas relevant to more equitable mathematics 

teaching. Appraising a TC’s knowledge and skill with respect to these performance areas is 

intended to support formative feedback that is actionable in subsequent teaching.   

Keywords: Instructional Activities and Practices; Preservice Teacher Education   

Formative assessment of teaching practice allows TCs to demonstrate the integration of 

content knowledge for teaching, high-leverage teaching practices, adherence to ethical 

obligations, and commitments to equitable teaching and learning, providing the TE with a 

snapshot of the TC’s current knowledge and skill. We situate our work at the intersection of an 

interactive view of learning to teach (Ball et al., 2009) and formative assessment, a critical 

component of teacher preparation (Association of Mathematics Teacher Educators [AMTE], 

2017). We use teaching simulations to provide interactive contexts to practice and demonstrate 

skill with mathematics teaching practice inside of formative assessment cycles that offer 

opportunities for feedback and improvement. Simulations are approximations of practice 

(Grossman et al., 2009) that place authentic demands on a TC while purposefully controlling the 

complexity of the work to allow TCs to encounter appropriate cognitive and practical demands 

on their budding teaching skills. Teaching simulations can provide early, frequent, and 

substantive formative assessment opportunities that are embedded in the doing of teaching. 

Specifically, we focus on the teaching practices of eliciting and interpreting student thinking. 

These practices are crucial for advancing more equitable mathematics instruction because they 

facilitate teachers’ connection with – and attention to – the children they teach. In this paper, we 

describe how our teaching simulation cycle provides opportunities for TCs’ to demonstrate their 

knowledge and skills with important facets that comprise the work of eliciting and interpreting 

student thinking and provide opportunities for TEs to observe such knowledge and skill in 

action. In turn, the observation provides the basis for formative feedback.  

Our Teaching Simulation Cycle 

Our simulation situation utilizes a piece of student work (see Figure 1) and a live actor 

(referred to as the simulated student) trained to use a set of response guidelines that specify the 

student’s process and the student’s understanding of the ideas underlying the process. These 
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response guidelines include general guidance and specific responses to anticipated questions (see 

Shaughnessy & Boerst, 2018). As the TC interacts with the student's work and simulated student, 

the TE uses an observational tool to capture key aspects of those interactions.  

The TC’s engagement in a teaching simulation cycle begins with the TC examining a piece of 

student work and planning questions to ask the student to learn about their process and 

understanding of the mathematics. Second, the TC has five minutes to interact with the simulated 

student to elicit the student’s thinking. Third, the TE interviews the TC to learn about their 

interpretations of the student’s thinking and their own understanding of the mathematics 

underlying the student’s process. Fourth, the TE engages the TC in a feedback conversation.  

 

 
Figure 1: Sample Student Work  

 

For over a decade, we have been designing, using, refining, and studying the use of these 

teaching simulations with our own preservice teachers. In the context of our current project, we 

are working with three TEs in different regions of the United States to develop tools and routines 

that support the using of the teaching simulations to provide formative feedback to TCs on their 

eliciting of student thinking.   

Nurturing More Equitable Mathematics Teaching 

Our approach allows us to gather evidence of a TC’s knowledge and skills with respect to 

eight performance areas that comprise the complex work of eliciting and interpreting student 

thinking, including why each area matters for nurturing more equitable mathematics instruction 

(see Shaughnessy et al., 2025 for an overview of how we conceptualize the articulation of 

performance areas within a more complex teaching practice for the purposes of teacher 

education). Next, we define each of these performance areas. We include a rationale for focusing 

on it and describe how the teaching simulation cycle enables us to learn about the knowledge and 

skills of TCs in that area.  

Eliciting the Student’s Process for Solving the Math Problem 

Elements of a student’s process may be evident in a student’s written work. However, when 

teachers look at a student’s written work, they often need to elicit more information about the 

process because the entire process is not visible in the written work. For example, in the student 

work shown in Figure 1, it is not clear how the student went from 6-2-3 to 83. Additionally, a 

teacher might make assumptions that do not correspond with what the student did. For example, 

TCs may assume that the student added the ones before the tens. This student starts with the tens. 

By asking about the entirety of the process, TCs can check these assumptions that could 

otherwise lead to mischaracterization of the student’s thinking and misdirect subsequent 

teaching. By looking at the interaction between the simulated student and the TC and which steps 

of the process the TC has the student talk about or otherwise show, we can gather evidence of a 

TC’s skills in eliciting a student’s process. 
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Interpreting the Student’s Process for Solving the Math Problem 

Interpreting a student's process is important because sometimes an initial hypothesis and/or 

in-the-moment interpretation is incorrect. This may be more likely to happen when a student and 

teacher have different preferences for which process to apply when solving the problem. 

Inaccurate claims about a student's process and subsequent actions to "correct" or intervene when 

it is not necessary can be counterproductive to a student's learning. In the follow-up interview, 

we gather evidence about how the TC interprets the student’s process by having the TC share the 

student’s process in their own words and apply the process to a new mathematics problem. 

Probing the Student’s Understanding 

Understandings are crucial to using and recalling a process and a basis for subsequent 

instructional steps. Teachers need to know a student's reasoning because sensemaking is 

foundational to doing and learning mathematics. Probing understanding is also a way for 

teachers to show students that they value the student’s reasoning, not just their process and 

answer. We can gather evidence of a TC's skills in probing student understanding by looking at 

the interaction between the simulated student and the TC and the questions the TC asks to 

uncover the student's understanding of the process they are sharing. We can also gather evidence 

of the extent to which they probe student understanding when a student’s answer is correct. This 

is critical because in many classrooms, incorrect answers are interrogated (and assumed to reflect 

a lack of understanding), and correct answers are affirmed with an assumption of “student 

understanding.” 

Teacher Interpretation Aspects of the Student’s Understanding 

Being able to notice and name the understandings that students share and identify 

corresponding evidence of those understandings is important for leveraging the resources 

students bring and considering the next instructional steps. In the context of the follow-up 

interview, we ask the TC to share what was learned about what the student understands about 

their process and the mathematical ideas underlying that process. By leaving the question open, 

our simulation allows us to learn what understandings TCs notice and name without support. As 

a complement to self-identification of student understandings, we also directly ask TCs about 

pivotal parts of the mathematical processes they encounter in the simulation. Teachers need to 

know about students’ understanding of these components. These are places where notation or 

conventions may play an important, but implicit, role in the process. Teachers need to learn about 

these understandings to leverage students' resources when considering the next instructional 

steps. When teachers make claims about these understandings, it is crucial that they use evidence 

to support and check interpretations. This guards against misinterpretations that can arise when 

the teacher speculates or makes assumptions about what the student understands without 

information from the student. Misinterpretations of a student's understanding can lead to 

unnecessary intervention or lack of intervention when one is warranted. In the follow-up 

interview, we gather information about this by asking the TC to share what they learned about 

the student’s understanding of pivotal parts of their process and the associated evidence gathered 

that supports those interpretations.  

Attending to the Student’s Thinking 

When teachers actively use what a student says and writes as the basis for their next 

questions, teachers are likely to learn more about the student's process and understanding. It also 

conveys to students that their ideas are valuable. Helping students to see the value in their own 
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ideas is a core part of building or shifting students' conceptions of what it means to do 

mathematics. We gather evidence of a TC’s skills in this area by examining the interaction with 

the simulated student and seeing whether there is evidence that the TC is taking up ideas that the 

student has shared verbally (through revoicing and/or posing questions connected to ideas that 

have been shared). We can also see whether the TC is attending to written representations of the 

student’s thinking and asking specific questions about what the student has written.   

Applying Mathematical Knowledge for Teaching 

Teachers use their mathematical knowledge in special ways, such as generating a follow-up 

problem that supports understanding the student's process. The appropriateness and accuracy of a 

teacher's communication with the student is important for ensuring the student can access the 

ideas and preventing misconceptions that language or representations can sometimes create. 

Through the interaction with the simulated student, we can sometimes gather evidence of a TC’s 

mathematical knowledge for teaching by observing them pose an additional mathematical 

problem to the student, but this does not always happen. To gather evidence of such knowledge 

from all TCs, the follow-up interview involves asking the TC to generate a problem that could be 

posed to the student to confirm the student’s process and understanding. We ask the TC why they 

selected the problem to learn about the features of the problem to which they are attending. 

Using Mathematical Knowledge and Skills 

Students can share processes for solving problems that are unknown to teachers. Teachers 

need to be able to use their own mathematical skills to analyze whether a strategy is 

mathematically sound and how it relates to other mathematical ideas. Determining the extent to 

which a student's strategy “works” across cases (generalizing) is key for determining the next 

instructional steps, including helping students see themselves as doers of mathematics. Teachers 

also need to be able to use mathematical knowledge precisely and with integrity and determine 

whether answers to problems are mathematically valid. Within the interaction with the simulated 

student and the interview, we can gather evidence of a TC’s use of mathematical language and 

representations with integrity. We also ask the TC about the correctness of the student’s answer 

and to generalize how the student’s process would work across problems.  

Conveying Respect for the Student as a Mathematical Thinker and Learner 

Equitable mathematics instruction reveals and builds on student sense-making. Critiquing a 

student’s strategy before seeking to understand it or redirecting a student toward a strategy they 

did not use can communicate to the student that their process is wrong or undesirable and that 

doing mathematics means deferring to a privileged process, often the algorithms traditionally 

taught in US schools. Within the interaction with the simulated student and the follow-up 

interview, TCs can demonstrate skills respecting the student as a mathematical thinker and 

learner by focusing on the student’s process (and understanding of that process) in the interaction 

and describing and interpreting that process in the follow-up interview.  

Discussion 

We view the ability to make facets of equitable mathematics instruction concretely visible, 

doable, and improvable in the work of teaching as a central driver of the design and 

implementation of the simulation approximation of practice. This paper illustrates how a 

teaching simulation cycle focused on eliciting student thinking can reveal TCs’ knowledge and 

skill in eight performance domains relevant to eliciting and interpreting student thinking. In our 
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current work, we are using these teaching simulation cycles to provide formative feedback to 

TCs about their teaching and to understand the ways in which they are able to take up their 

feedback in a second teaching simulation cycle that immediately follows the first cycle.  
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This study examines mathematics anxiety in preservice teachers, their efficacy beliefs regarding 

mathematics, and the relationship between these factors. The sample includes 50 preservice 

teachers at various stages of their undergraduate education. Data were collected using the 

revised Math Anxiety Rating Scale and Teacher Belief Survey. Descriptive statistics revealed 

high anxiety related to mathematics assessments and moderate anxiety in learning and 

performance experiences. Preservice teachers generally held a problem-solving view of 

mathematics and were neutral about the instrumentalist view.  

Keywords: Teacher Beliefs  

Mathematics anxiety, defined as "feelings of tension and anxiety that interfere with the 

manipulation of numbers and the solving of mathematical problems in a wide variety of ordinary 

life and academic situations" (Richardson & Suinn, 1972, p. 551), is more complex than just test 

anxiety or general anxiety. Hembree's (1990) meta-analysis of 151 studies found a correlation of 

.52 between mathematics anxiety and test anxiety but attributed 63% of mathematics anxiety to 

other sources like mathematics learning and homework. Additionally, Hembree identified 

mathematics anxiety as a learned condition, more behavioral than cognitive. 

Teacher efficacy is perceived as teachers' beliefs in their ability to influence student learning 

(Guskey & Passaro, 1994, p. 628). Mathematics teacher efficacy includes different belief 

systems on how students learn. Ernest (1989, as cited in Beswick, 2005) explored three views of 

mathematics: instrumentalist, platonist, and problem-solving. The instrumentalist view focuses 

on performance and content, the platonist view emphasizes understanding and constructing 

knowledge, and the problem-solving view is learner-focused, believing in learning through 

exploration. Van de Walle et al. (2019) promote a problem-solving approach called “teaching 

through problem solving” where students learn mathematics through exploring real contexts. 

Studies show varying relationships between mathematics anxiety and mathematical beliefs. 

Beswick (2005) found secondary teachers rarely held an exclusive problem-solving view. 

Hughes (2016) found elementary teachers leaned towards problem-solving views, with high 

anxiety corresponding to instrumentalist beliefs and low anxiety to problem-solving beliefs. 

Haciomeroglu (2013) found that preservice teachers with stronger constructivist mathematical 

beliefs felt less anxious. However, Uysal and Dede (2016) found no significant correlation 

between anxiety and beliefs in Turkish preservice teachers. Despite differing findings, many 

studies indicate a lean towards problem-solving views in mathematics teaching (Hughes et al., 

2019; Uysal & Dede, 2016). 

Literature reviewed has established that high mathematics anxiety for teachers may have 

consequences on mathematics learners’ anxiety. Literature has also shown the relationship 

between teachers’ anxiety, beliefs, and instructional practices. Investigating preservice teachers’ 

mathematics anxiety and the experiences that are associated with the most anxiety can reveal 

formative feedback for effective teacher education. Preservice teachers’ espoused beliefs about 

mailto:jtheut@olvnorthville.net
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the teaching of mathematics can predict their future instructional practices, giving teacher 

educators learner-centered tools for teacher education. Furthermore, exploring the possible 

correlation between mathematics anxiety and espoused beliefs about teaching may show factors 

that affect beliefs and anxiety, and consequently teaching practices. Thus, the objectives of this 

paper will answer the following questions:  

1. What is the nature and level of mathematics anxiety of preservice teachers? 

2. What is the nature and level of preservice teachers’ espoused beliefs about the teaching of 

mathematics? 

3. Is there a significant correlation between mathematics anxiety and espoused beliefs about 

the teaching of mathematics?  

Methodology 

Preservice teachers were conveniently sampled from one college in the Midwest, consisting 

of 50 participants at varying stages of their undergraduate education, from first year to senior 

year, including both elementary and secondary preservice teachers. Participants completed a 

survey comprised of two valid and reliable instruments: The Mathematics Anxiety Rating Scale-

Revised (MARS-R, Plake & Parker, 1982) and the Teacher Belief Survey (TBS, Beswick, 2005). 

The MARS-R includes 24 items on a 5-point Likert scale from 0 (low anxiety) to 4 (high 

anxiety), while the TBS uses a 5-point scale where 1 represents strongly disagree and 5 

represents strongly agree, with high scores indicating a stronger alignment to the problem-

solving view and lower scores aligning with an instrumentalist view on mathematics teaching 

and learning. Descriptive statistics were explored to summarize efficacy beliefs and anxiety. 

 

Results 

Nature and Level of Mathematics Anxiety of Preservice Teachers 

The total ratings for MARS-R scores range from 0 to 96, representing no to high 

mathematics anxiety. In the current study, preservice teachers' MARS-R scores ranged from 13 

to 86, with an average score of 50.62, slightly over the moderate stress level. The scores have an 

interquartile range of 41.5 to 60.25, indicating a symmetric distribution, with the lower 25% of 

scores between 17 and 41 and the top 25% between 60.25 and 86. Mathematics tests and 

assessments, particularly final exams and pop quizzes, have higher associated anxiety than other 

categories, with average ratings of 3.62 and 3.58, respectively (see Table 1). Preparing for a test 

and waiting for test results have lower anxiety ratings. Mathematics performance experiences, 

such as reading chemistry formulas and working on abstract problems, also induce moderate 

anxiety. 

The anxiety related to mathematics learning experiences, like having difficult homework due 

and signing up for a statistics course, is moderate, with an aggregate average of 1.913. 

Experiences with less mathematics interaction, such as buying a textbook or thinking about 

mathematics, result in lower anxiety ratings, showing that participants feel less anxiety in such 

scenarios compared to other categories. Notably, the experience with the least amount of anxiety 

attributed to it is watching a teacher work on an algebraic equation on the board, with an average 

rating of 1.48. Overall, mathematics performance does not have as much anxiety attributed to it 

as the mathematics assessment category.  
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Table 1 

 Averages and Standard Deviations of Mathematics Assessment Experiences 

Questionnaire Item Average 
Standard  

Deviation 

Thinking about an upcoming mathematics test one day before 3.04 1.009 

Taking an examination (quiz) in a mathematics course 3.02 1.116 

Being given a “pop” quiz in mathematics class 3.58 0.731 

Taking an examination (final) in mathematics class 3.62 0.725 

Getting ready to study for a mathematics test 2.4 1.05 
Waiting to get a mathematics test returned in which you expected to 

do well 
2.52 1.111 

 

Efficacy Beliefs about Teaching Mathematics 

The problem-solving view of the mathematics subset of TBS has a highest possible score of 

70, while the instrumentalist subset has a highest possible score of 50. Based on Brechin-

Harrison’s (2008) method of calculating TBS subset scoring ranges, the scoring ranges for each 

level of agreement are reported in Table 2. The TBS subscale scores provide insight into 

preservice teachers' efficacy beliefs. The problem-solving view of mathematics has a mean score 

of 55.44, indicating that participants generally agree with this view. In contrast, the 

instrumentalist view has a mean score of 33.56, showing that participants on average neither 

agree nor disagree with it. Ninety-four percent of respondents agreed that "it is important for 

children to be given opportunities to reflect on and evaluate their own mathematical 

understanding." Additionally, 90% agreed or strongly agreed with the statement, "a vital task for 

the teacher is motivating children to solve their own mathematical problems" (mean=4.3), and 

84% agreed that "teachers can create, for all children, a non-threatening environment for learning 

mathematics." However, only 70% agreed with the effectiveness of having students justify 

mathematical statements (mean=3.94) or allowing a student to struggle with a problem 

(mean=3.7). Overall, the problem-solving view has many components with which this sample of 

preservice teachers agrees. 

Table 2 

  Brechin-Harrison’s Scoring Range for TBS Subscales 

Sub-scale Level of Agreement  Scale Range 

Problem Solving View of Mathematics 

Strongly Agree 

Agree 

Neither  

Disagree 

Strongly Disagree 

70.0 - 63.0 

62.99 - 49.0 

48.99 - 35.0 

34.99 - 21.0 

20.99 - 14.0 

Instrumentalist View of Mathematics 

Strongly Agree 

Agree 

Neither  

Disagree 

Strongly Disagree 

50.0 - 45.0 

44.99 - 35.0 

34.99 - 25.0 

24.99 - 15.0 

14.99 - 10.0 
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In contrast, the instrumentalist view of mathematics, which preservice teachers had a neutral 

view on, had statements with averages ranging from 1.48 to 4.46. The most agreed-upon 

statement was "it is important for teachers to understand the structured way in which 

mathematics concepts and skills relate to each other," with 92% of participants agreeing 

(mean=4.46). Interestingly, while 86% agreed that "it is the teacher's responsibility to provide 

children with clear and concise solution methods for mathematical problems," only 74% believed 

in an expository style of teaching mathematics. Furthermore, although participants strongly 

agreed that there is a set amount of mathematics content to be covered at each grade level 

(mean=4.18) and that mathematics should be taught in a correct sequence (mean=4.2), there was 

no strong consensus on whether this sequence should come from a textbook (36.73%, 

mean=2.959). The responses reflected mixed views about the definition of mathematics, with 

55.1% agreeing that mathematics is computation (mean=3.571) and 54% agreeing that 

mathematics is a beautiful, creative, and useful endeavor (mean=3.48). This overlap indicates 

that some preservice teachers share both problem-solving and instrumentalist views on 

mathematics. 

 

Correlation Between Mathematics Anxiety and Efficacy Beliefs  

When comparing each participant's efficacy belief statements to their MARS scores, there 

was no significant correlation between the two variables. The statement with the strongest 

correlation, -0.298, "Knowing how to solve a mathematics problem is as important as getting the 

correct solution," is still considered very weak. The correlations of the other efficacy statements 

to their MARS scores were also very weak, ranging from -0.3 to +0.139. This indicates no 

significant relationship between the participants' mathematics anxiety scores and their efficacy 

beliefs. Despite the lack of strong correlations between specific items in the Teacher Belief 

Survey and the Mathematics Anxiety Rating Scale scores, there is a significant correlation 

between the TBS subscale scores and the MARS-R scores. The instrumentalist view on 

mathematics has a correlation of 0.734 with the MARS scores, and the problem-solving view has 

a correlation of 0.839. This indicates a substantial relationship between mathematics anxiety and 

holding either an instrumentalist or problem-solving view on mathematics, with higher anxiety 

corresponding to higher alignment with these views. 

 

Discussion and Conclusion 

Mathematics anxiety has been linked to various negative impacts on learners (Kargar et al., 

2010; Wang et al., 2015), including the performance of students taught by anxious teachers 

(Beilock et al., 2010; Schaeffer et al., 2020). In this study, elementary and secondary preservice 

teachers demonstrated moderate levels of mathematics anxiety, differing from previous studies 

reporting both high and low anxiety levels (Juanita & Budayasa, 2020; Patkin & Greenstein, 

2020). Preservice teachers generally aligned with the problem-solving view in mathematics 

teaching, which has positive implications for student learning outcomes (Behlol et al., 2018). 

However, despite overall agreement with problem-solving principles, many preservice teachers 

hesitated to let students struggle with mathematics problems, a crucial aspect of this teaching 

approach. Additional training may be beneficial to help preservice teachers embrace productive 

struggle in the classroom. Interestingly, our study found no clear association between 
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mathematics anxiety and specific teaching views, contradicting prior research (Hughes, 2016; 

Haciomeroglu, 2013). 

Limitations include the small sample size from a single institution, lack of disaggregated data 

for mathematics teaching endorsement seekers, and failure to distinguish between elementary 

and secondary education majors. Future research should address these limitations to provide 

deeper insights into preservice teachers' anxiety and teaching beliefs. Nonetheless, our findings 

offer valuable insights for modifying preservice teacher instruction to alleviate mathematics 

anxiety, particularly regarding assessments, and reinforce problem-solving pedagogies. 
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The PrimeD Framework and its Phases 

The abbreviation PrimeD stands for Professional Development: Research, Implementation 

and Evaluation and is a preservice teachers professional development framework as defined in 

Rakes et al. (2017) and  Saderholm et al. (2017). This framework has four phases phase I 

(Design and Development), phase II (Implementation), phase III (Evaluation) to IV (Research) 

as illustrated in Figure 1. These phases are dynamic, follow a feedback loop structure (as 

indicated by arrows in figure 1) and “continuously” build on each other. Together they offer a 

flexible structure that supports systemic and individual changes and builds leadership and 

professionalism in preservice teacher candidates.  

 
Figure 1. Diagram of PrimeD Phases Interactions with External Evaluation 

 

In Phase I, a common vision is developed, contextual issues are considered, and a plan of 

action is formed (including goals, outcomes, strategies, and assessments) which drives 

downstream activity (Bryk, et al., 2015). The Challenge Space from Phase I serves as an overall 

dynamic monitor to guide the implementation, evaluation, and research phases (indicated by the 

arrows in figure 1). Phase I is accomplished by preservice teacher candidates along with the 

project PIs. The next phase is the highly active Phase II where Phase I is implemented in the 

form of classroom Implementation and Whole Group Engagement (WGE). In other words, NICs 

and PDSA cycles drive this phase either towards Phase III and IV or back to Phase I. Phase II is 

accomplished by PIs, preservice teachers, their mentors, program alumni and the Co-PIs of the 

local and non-local sites.  

Figure 2 displays the structure of an observation sequence for the first round of NIC meetings 
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occurring at all four university sites. Each co-PI (solid vertical arrows) observed the NIC 

meeting at their site. They also observed a NIC meeting at one of the other sites (dashed diagonal 

arrows). The Lead evaluator observed the NIC meetings at all four sites. This structure ensures 

three observations for every NIC meeting. The data from each observation form is then entered 

in a spreadsheet, graphed and analyzed. The results are then discussed at the following 

evaluation and implementation team meetings. This structure is repeated three times each 

semester.  

 
Figure 2: NIC Meeting Observation Structure 

 

Phase III, Evaluation, focuses on the notion that members of a profession participate in 

establishing what strategies best meet the needs of their student populations. This phase is 

executed by the preservice teacher and the PIs. Similarly Phase IV emphasizes that it should be 

common practice that members of a profession participate in generating professional knowledge 

associated with their practice. The overall project evaluation that differs from the evaluation 

Phase and is illustrated below the larger rectangle in the Figure 1, should attend to these 

components as well as other implementation activities. Phases III and IV are interchangeable in 

their order and can be acknowledged together or individually. 

Description of the Evaluation Design 

The implementation design includes both evaluation and research components (Figure 1), so 

the evaluation for this project needed to address that entire structure, that is consist of the 

project’s implementation as well as their evaluation and research efforts within it. Therefore, the 

research questions are presented in two categories.  

Evaluation Questions about the Implementation 

• EQI 1: Did the Implementation connect to PrimeD consistently?  

• EQI 1a: Was the challenge space vision and design embraced by all participants?  

• EQI 1b: Did participants address evaluation and research in their lesson  development?  

• EQI 2: Did the Implementation team gather sufficient data to answer their research 

questions?  

Research Questions about the Evaluation  

• RQE 1: Did the formative evaluation design provide timely and useful data?  
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• RQE 2: Did the summative evaluation design capture the implementation and impact of 

the PD?  

• RQE 3: To what degree was the evaluation design efficient? 

This design builds in multiple collaborative observations which are compared and discussed 

after the event to calibrate observations and share outcomes as a fundamental part of the process.  

Research Questions about the Evaluation Design 

• RQ4: Did the evaluation design capture the implementation? Did it provide timely and 

useful data? 

• RQ5: Was the evaluation design efficient? 

• RQ6: Was the evaluation design effective; Did it capture the impact of the PD? 

•  

Results  

The project reported improved communication and participation among stakeholders and 

improved teacher candidate pedagogical content knowledge to engage in research-based teaching 

strategies for EQI 1. For EQI 2 in the NIC meetings, participants agreed upon innovations to 

implement in the classroom and evidence to collect regarding the innovation’s effectiveness. 

Participants shared adjustments made to their innovation strategy. Their results directed the 

conversations and guided further refinements within and across sites. Mentors, supervisors, 

alumni, and faculty were positioned as a collaborative support team. Finally, the challenge space 

continued to be discussed at team meetings throughout the project with an explicit focus on 

converging foci across institutions. Implementation strategies were explored and discussed in 

detail with a focus on how to maintain coherence across institutions while honoring the 

necessary contextual differences and aligned with the project vision which addressed EQI 2.  

Conclusion 

The need for “non-normal” evaluative mechanisms that are adaptive, open to challenges, 

highly collaborative and participant-centered is urgent, and even more so now, after the COVID-

19 period. The PrimeD framework has helped to address some important issues: How 

collaboration and sense of community benefits all, how to be both structured and flexible in 

evaluation tasks; How to share formative evaluation results in a timely manner; and how to blend 

evaluation and implementation in clear and useful ways.  

As evaluators, we need to rethink how “professional teachers” are developed. More study is 

needed to determine what guides change in practice and how that change is key to learning.  We 

need to know how to see the widening gaps that “normal” evaluation in education can create and 

when “post-normal” evaluation is required (Schwandt (2019).  We did learn that PrimeD 

framework can support “non-normal” evaluation. In today’s complex teaching environment, non-

normal evaluation will be critical for understanding PD structures and results. 

 

The structure of the PrimeD evaluation team had a number of advantages such as: 
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1. Open observations (completed observations and recordings were available to all team 

members as soon as they were completed),  

2. A local team member (site PI or Co-PI) was able to share and discuss results within their 

local team,  

3. The non-local team member (the PI or Co-PI at another institution) was able to share new 

ideas and results with their own team,  

4. Local PIs could review the observation results which guided their work and innovations.  

5. The PI’s (and all team members) could and often did attend regularly scheduled 

implementation and evaluation meetings in which evaluation results were discussed,  

6. Including site Co-PIs as part of the evaluation team reduced the cost of the evaluation and 

improved the observation reliability,  

7. The site PIs or Co-PIs became familiar with the work at all the project sites through the 

observations and evaluation alignment meetings promoting additional collaboration 

throughout the project and,   

8. Being on the evaluation team provided additional leadership opportunities for site PIs or 

Co-PIs. 
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Mixed-Reality Simulations (MRSs), blending real and virtual environments, provide a low-

risk environment (Dieker et al., 2014; Piro & O'Callaghan, 2019) to rehearse core teaching 

practices (Jacobs & Spangler, 2017). Grant and Ferguson (2021) designed a Mursion™ custom 

simulation to support pre-service teachers’ (PTs) mathematics discussion practice. PTs had 

opportunities to facilitate a discussion of provided student solutions (e.g., drawing, repeated 

subtraction, creating table) to a mathematics task: "Harry the Dog Problem" (Grant & Ferguson, 

2021), where Harry the dog is waiting in a line of 23 dogs to be washed. When a dog is washed, 

Harry sneaks ahead of two dogs. How many dogs will be washed before Harry? 

In this context, PTs encouraged students to share, attend to, repeat, and critique each other's 

work. However, they less frequently focused on students’ mathematical potentials (Kocabas et 

al., 2024). PTs attend to learner identities (Drake, 2006; Rubel et al., 2022) participation 

(Dunning, 2022), influencing PTs' discussion moves (Kocabas et al., 2023). We designed MRS to 

support PTs to attend to the mathematical potential of student solutions by creating PODSim, a 

new MRS application unlike Mursion™ (Grant & Ferguson, 2021). PODSim features gender 

ambiguous rainbow avatars and the ability to compare mathematics work (Table 1a & 1b) to 

encourage PTs to have increased focus on the mathematics. Further, we revised the solutions 

using virtual number lines to create opportunities for PTs to engage with avatar learners 

understanding of solutions that enacted the problem using repeated jumps and distances. We 

hypothesize that PODSim MRS microteaching environment (Grossman et al., 2009; Ledger et 

al., 2019) will support PTs’ foci on mathematics equity and interaction in discussion practices.  

Our revised solutions within PODSim foregrounds student work, removes race and ethnicity 

and positions PTs to directly encounter avatar students’ mathematics solutions created using 

virtual number line models (see Table 1c & 1d). The PTs were expected to use solutions to 

investigate avatars’ mathematical thinking by facilitating discussion that elicits avatar student 

reasoning, sense making, and ways of knowing to enhance mathematical understanding 

(Graeber, 1999; Jacobs & Spangler, 2017; Smith & Stein, 2018).  
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Table 1: Examples of Students’ Solutions and the Simulation Interface 

a. b. c. d.  
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As the number of Multilingual Learner (ML) students attending public schools rises, so does the 

demand for those who can teach them. To address the gaps between theory and practice (Ball, 

2000) in professional development (PD) programs, PrimeD (Professional Development, 

Research, IMplementation, and Evaluation) framework has been proposed which has four 

phases of Design, Implementation, Evaluation, and Research. The cyclic nature of PrimeD 

provides a coherent structure to PD activities. The purpose of my study is to examine possible 

benefits of PrimeD on secondary Mathematics PreService Teachers (MPST) reflecting on their 

instructional practices that engage ML students. 

Introduction 

Today, Multilingual Learner (ML) students are the fastest-growing student population group 

attending public schools nationwide (National Education Association https://www.nea.org/). By 

2025, 1 out of four students in the US are estimated to be an ML. With regard to mathematics 

learning, the achievement gap at different levels between ML and non-ML students has long 

been recognized. As the number of MLs attending public schools continues to rise so does the 

demand for those who can teach these students effectively. Based on data from the National 

Center for Education Statistics (NCES, 2017), the ratio of educators who are dedicated to 

addressing the needs of this growing population of students is substantially low.  

Among the reasons experts mention for the existence of shortage of trained mathematics 

teachers who are familiar with ML students’ needs is lack of robust educator training. Although 

teacher preparation programs are considered as one of the most important and effective ways to 

improve the knowledge and skills of STEM teachers and to enhance their performance, research 

shows that such programs often do not benefit participating teachers in general. To address the 

gaps between subject matter knowledge and pedagogy while teachers need to be equipped with 

both to be able to teach their students well (Ball, 2000), a professional development (PD) 

framework, called PrimeD (Professional Development, Research, IMplementation, and 

Evaluation), has recently been proposed. PrimeD organizes PD into four phases of Design, 

Implementation, Evaluation, and Research, which work in a cyclic nature and occur iteratively 

throughout the program. A key feature of PrimeD that appears to help preservice teacher make 

stronger connections between field experiences and theories learned in their coursework, as 

recommended by Gainsburg (2012), is the use of Networked Improvement Communities (NICs) 

(Bryk, Gomez, & Grunow, 2011; Martin & Gobstein, 2015) to cycle between classroom 

implementation and whole group engagement in PD sessions. 

PrimeD Professional Development Framework 

In 2017, Saderholm et al. proposed a Professional Development Framework called PrimeD 

(Professional Development: Research, IMplementation and Evaluation) which consists of four 

mailto:Pza226@uky.edu
https://www.nea.org/
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phases that are arranged into categories of: Design, Implementation, Evaluation, and Research 

(Figure 1).  

PrimeD first phase (Design and Development) is fundamental in the success of the PD as it 

focuses on bringing together all stakeholders to agree on a common vision, define the target 

outcomes, discuss the most critical challenges to reaching those targets, and subsequently 

develop strategies to overcome them. 

 

 

Figure 1: Condensed Model of PrimeD Framework (Saderholm et al., 2017). 

 

The second phase of PrimeD (Implementation), starts with the “whole group engagement” 

followed by “classroom implementation”, both of which are supported through Networked 

Improvement Communities (NIC). In this phase, the participating teachers will use effective PD 

elements (planned in the design phase) to come up with strategies that target specific aspects of 

their teaching through the Plan, Do, Study, Act (PDSA) cycles. The PDSA cycle is an iterative 

method used for systematic and continued improvement of a process.  

The next phase involves evaluation of phases I & II, which should be performed using both 

formative and summative assessments.  

The last phase of PrimeD, called Research, is focused on asking questions that would 

help better understand “what happened during the PD processes and why”, or help “gain insight 

into effectiveness (or lack of) certain approaches”, etc. So, inherently, this phase is closely 

related to and in constant interaction with other phases.  

 

Phase I: Design and Development 
Challenge Space 

• Common Vision & Design 

• Community Goals 

• Distributed Leadership 

• Outcomes & Targets 

• Strategies 

• Plan for Networked Improvement 
Communities and Plan-Do-Study-Act Cycles 

• Contexts 

Phase III: Evaluation 

• Judgment of Value and Merit 

• Fidelity of Program Components 

• Oversight of Context, Cycles & Connections 

• Measures & Outcomes Implementation 
• Was it Successful? 

Phase IV: Research 

• Generation of Knowledge 

• Attends to Context as a Set of Factors 

• Effect of Program Components on Outcomes 

• Relationships among Program Components  

• Validity and Reliability of Measures and 
Outcomes  

• What happened and why? 

Phase II: Implementation 
PD Supported by  

Networked Improvement Communities 

Whole Group Engagement 

Elements of Effective PD 

• Vision & Sustainability 

• Participant Engagement 

• School & Classroom 
Connections 

Classroom 
Implementation 

PDSA Cycles 

Classroom Studies 
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Methodology 

Research Design 

I have employed a convergent mixed-methods research design for my study. The design has a 

single phase of separate quantitative and qualitative data collection and analysis followed by 

merging and comparing quantitative and qualitative results to see if they confirm or disconfirm 

the findings (Creswell & Creswell, 2018). 

Participants 

The participants of my study were chosen by convenience sampling from a mixture of more 

than eighty-three female, male, and non-binary MPSTs across four institutions (Institutions 1-4) 

in three Eastern and Southeastern states in the US during the first three years of the program 

(2020-23). At all four institutions, quantitative data was collected by requiring PrimeD 

participants to submit two lesson videos (Pre and Post) from the beginning and the end of their 

student-teaching semester. A teacher evaluation instrument called MCOP2 (Gleason et al, 2017) 

was used to code and quantify MPSTs’ lesson videos. Excluding the incomplete data, I had 

access to MCOP2 scores of sixty-one lesson video pairs. By conducting semi structured 

interviews with eight MPSTs from Institution 3 and Institution 4, I was able to collect qualitative 

data. 

Analytic Strategy 

I used Thematic Analysis (Maguire & Delahunt, 2017) to analyze the interview transcripts 

and Wilcoxon and t-test to analyze the MCOP2 scores of MPSTs’ recorded Pre and Post videos. 

The focus of my study is on the nine indicators within MCOP2 Student Engagement subscale that 

are presented in Table 1.  

 

Table 1: MCOP2 Student Engagement Subscale Indicators (Gleason et al., 2017). 

 

Indicator 

1 

Students engaged in exploration/investigation/problem solving. 

Indicator 

2 

Students used a variety of means (models, drawings, graphs, concrete 

materials) to represent concepts. 

Indicator 

3 

Students were engaged in mathematical activities. 

Indicator 

4 

Students critically assessed mathematical strategies. 

Indicator 

5 

Students persevered in problem solving. 

Indicator 

12 

There were a high proportion of students talking related to mathematics. 

Indicator 

13 

There was a climate of respect for what others had to say. 

Indicator 

14 

In general, the teacher provided wait‐time. 

Indicator 

15 

Students were involved in the communication of their ideas to others 

(peer‐to‐peer). 
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Findings 

Table 2 shows that based on the available three-year data from Institution 2, Institution 3, and 

Institution 4, on average, Institution 3 has the largest percentage of participating MPSTs who 

improved their observed practices associated with MCOP2 indicator 1 (investigation and problem 

solving), indicator 2 (using variety of means to represent concepts), indicator 4 (assessing 

mathematical concepts critically), indicator 5 (perseverance in problem solving), indicator 12 

(mathematical discourse), indicator 13 (creating climate of respect), and indicator 14 (providing 

wait time). Similarly, on average, Institution 2 has the largest percentage (47%) of participating 

MPSTs who improved the form of student engagement that is measured by MCOP2 indicator 3 

(mathematical activities in their classrooms). By comparison, Institution 4, on average, has the 

largest percentage (56%) of participating MPSTs who improved on MCOP2 indicator 15 (peer-

to-peer communication of ideas).  

In harmony with the results of Institution3 quantitative data analysis, the emergent themes 

(Table 3) from interviews conducted with Institution 3 participants focus more on the impacts of 

offering wait time, mutual respect, and strategies that were implemented in their classroom as 

PDSA cycles that could increase mathematical discourse. Similarly, the themes emerged from 

Institution 4 qualitative data are more focused on peer-to-peer communication of ideas which 

confirm the quantitative results. This answers the first Research Question.  

To answer the second Research Question, I only relied on the qualitative data analysis results 

because the MCOP2 instrument did not collect any data from teachers’ reflections on their 

practices or with regard to ML students. The results of qualitative data analysis indicate that 

participating in PrimeD project has made the teachers become more reflective on their practices 

as they implement interventions, collect data, and study the data within the PDSA cycles. The 

themes presented in Table 3 that are associated with ML students are results of such reflection. 

 

Table 2: Percentage of MPSTs’ who improved scores of each MCOP2 indicator (highest 

values shown in bold). 

 

 
 

MCOP2 Institution 2 Institution 3 Institution 4 

 Y1 Y2 Y3 Avg. Y1 Y2 Y3 Avg. Y1 Y2 Y3 Avg. 

Indicator 1 
43 20 40 34 64 38 75 59 17 33 33 28 

Indicator 2 29 50 40 40 64 50 50 55 50 33 17 33 

Indicator 3 
71 30 40 47 64 25 50 46 17 33 17 22 

Indicator 4 43 30 40 38 64 50 50 55 50 33 17 33 

Indicator 5 29 20 20 23 55 63 25 48 33 17 67 39 

Indicator 12 71 20 20 37 73 25 25 41 33 50 33 39 

Indicator 13 57 40 40 46 82 50 50 61 33 50 67 50 

Indicator 14 71 40 20 44 45 75 50 57 17 33 17 22 

Indicator 15 57 30 40 42 73 38 25 45 67 50 50 56 
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Table 3: Themes emerged from MPSTs’ Interview. 
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Student Engagement Themes Participants 

Frequency 

Higher with activities and real-world problems 3 

Having a sense of belonging increases engagement  3 

Higher with varying activities 2 

Building relationship with students increases engagement  2 

Providing wait time increases engagement 2 

Impact of PrimeD Themes  

Importance of collaboration 5 

Getting new ideas from other participants 4 

Introduced different forms of engagement 3 

Helped teachers reflect on their practices 2 

Receiving valuable feedback from other participants 2 

Helped increase engagement  2 

Focused on conceptual mathematics learning 2 

MPSTs’ Reflection on their Instructions Themes  

Building teacher-student relationships help increase math learning  4 

Peer support increases participation and math learning  4 

MLs engage more in activities within small groups or individually with teacher 4 

Less for MLs because verbal communication is a barrier 4 

Providing wait time helps MLs participate 3 

Looping MLs in conversations helps them participate 2 

Building relationships helps MLs’ learning 2 

Giving a prompt helps MLs get started 1 

 

https://nces.ed.gov/programs/digest/d17/tables/dt17_209.10.asp?current=yes
https://www.nea.org/


   

 

Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1211 

 

Saderholm, J., Ronau, R. N., Rakes, C. R., Bush, S. B., and Mohr-Schroeder, M. (2017). The critical role of a well-

articulated, coherent design in professional development: an evaluation of a state-wide two-week program 

for mathematics and science teachers. Professional Development in Education, 43(5), 789–818. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1212 

 

 

 

 

 

 

Chapter 11:  

Professional Development and In-Service Teacher Education 
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The Rural Action Network for Growth and Engagement in Grades 6-8 Mathematics (RANGE 

Math) project is a teacher-researcher alliance for rural middle grades mathematics teachers and 

teacher-leaders, supported by experienced teacher educators with expertise in job-embedded 

professional development and school-based research. RANGE studies two models for expanding 

a successful local professional learning project to a large group of rural teachers in [Blind]. The 

project will investigate teachers’ implementation of Explicit Attention to Concepts (EAC) and 

Students’ Opportunities to Struggle (SOS), two clusters of instructional practices with robust 

research evidence for increasing students’ mathematics achievement (Hiebert & Grouws, 2007).  

RANGE tests two models for large-scale professional development with rural teachers of 

mathematics by attending to the unique funds of knowledge and challenges in rural schools. The 

project scaffolds teachers’ improvement efforts with job-embedded cycles of content-focused 

professional development and structured action research. The research design includes balanced 

random assignment of N = 90 rural teacher-participants to either online professional 

development with university-based specialists (Condition 1) or in-person professional 

development with a local teacher-leader (Condition 2), accompanied by controls for the quality 

of professional development, cycles of data-informed instructional improvement, and data 

collection protocols. Condition 2 includes a teacher-leader program that will build capacity of 

local teachers to lead instructional improvement, with both conditions benefiting from expert 

facilitators and a team of researchers offering measurement and analysis infrastructure to assist in 

data interpretation. A sequential mixed methods research design addresses student and teacher 

outcomes in the network, allowing for statistical estimates of shifts in teachers’ knowledge, 

beliefs, and instructional practices, as well as growth in students’ mathematics achievement and 

classroom engagement. Importantly, the study will build much needed evidence on the relative 

benefits of online and in-person models of professional development at scale with rural 

mathematics teachers. 

The purpose of the poster is to share the project design, intentions, and future directions to 

spur conversation about what it means to provide professional learning opportunities and 

research said opportunities in rural contexts. This project will improve scientific knowledge of 

STEM teaching by adding to scholarly understanding of: (a) effective mathematics instruction in 

the middle grades, (b) the adoption of EAC and SOS in rural settings, and (c) conditions that 

support rural mathematics teachers’ professional development. 
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We explored the videos used to provide professional learning opportunities for coaches taking 

part in video clubs as part of a three-part professional development project. In year one, 

professional development facilitators selected the videos, while in the second year of 

professional development, the coach participants selected videos. We explored the rationale that 

coaches provided for the selection of their video clips. Findings indicated that coaches selected 

video clips that included content directly aligned with content-focused coaching, highlighted the 

practices of coaching, and included content that the selector deemed important for others to 

notice. We provide implications for those designing video clubs for coaches, as well as teachers, 

as the findings may be applicable when considering video selection beyond coach video clubs.   

Keywords: Professional Development, Teacher Noticing 

Video Clubs in Research 

Researchers have repeatedly shown that video is a powerful tool for teacher education 

(Brophy, 2003; Coles, 2019; Christ et al., 2017; Gaudin & Chaliès, 2015; Santagata et al., 2021; 

Seidel et al., 2013). Of the many uses of video to support teachers, video clubs have been shown 

to be beneficial in improving teacher learning (van Es & Sherin, 2008; 2010). van Es and Sherin 

(2008) describe video clubs as the gathering of a group of teachers who “meet to watch and 

discuss excerpts of videotapes of their instruction” (p. 244). Video clubs have most commonly 

centered on mathematics or science content (Luna & Sherin, 2017), with the intent to develop 

teachers’ pedagogical development (Kang & van Es, 2019; Luna & Sherin, 2017). Walkoe (2015) 

notes that the purpose of video clubs is to support teachers to “attend to and reason” about 

particular content within a video, a purpose mirroring that of professional noticing (e.g., Jacobs 

et al., 2010; König et al., 2022; van Es & Sherin, 2008)(p. 525). In fact, many video clubs have 

been intentionally designed to support teacher noticing (e.g., Mitchell & Ariemma-Marin, 2015; 

van Es & Sherin, 2010; Wallin & Amador, 2019). Researchers have found that what is noticed in 

the videos in video clubs is consequential for teacher learning opportunities (Borko et al., 2008; 

Gaudin & Chaliès, 2015; Walkoe, 2015). Given the repeated use of video clubs for teacher 

learning (Coles, 2019; van Es and Sherin, 2010), and knowing the affordances of the process for 

learning (Beisiegel et al., 2017; Borko et al., 2008; van Es et al., 2014), we designed and 

implemented a video club structure for mathematics teacher educators’ learning. Situated in a 

mathematics education context, our video club was designed to help mathematics coaches 

improve their ability to: (a) facilitate productive planning and debriefing conversations with 

teachers, (b) notice the impact of their coaching practices on teachers’ thinking and instruction, 

and (c) use evidence from what they notice to make decisions about their coaching practices. The 
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specific focus of the video clubs was to support coaches to notice critical events (see Amador et 

al., under review) of one-on-one coaching cycles (see Kochmanski & Cobb, 2022).  

We designed and implemented the video clubs for a mathematics coaching context because 

we conjectured that the structure would support coach learning, just as video clubs have 

supported teacher learning (van Es and Sherin, 2010). However, before studying the outcomes of 

video club implementation in a coaching context, we considered it important to better understand 

the design of video clubs, as specific for a coaching context, as a way to delve into the nuances 

of how the professional learning opportunity was designed. As a result, we worked to answer the 

following research question: What rationale do coaches provide for how they select clips for 

video coaching clubs?  

Theoretical Framework and Related Literature 

We theoretically frame this work with the research literature on noticing. The concept that 

noticing what is important in educational settings and making decisions based on the 

interpretation of what is attended to is consequential to learning opportunities (Jacobs et al., 

2010; van Es & Sherin, 2008). While the importance of noticing for mathematics educators has 

gained attention in literature, and researchers have come to recognize the value of noticing 

(Sherin et al., 2011; van Es & Sherin, 2002, 2021), research on noticing in coaching contexts is 

limited (Amador et al., 2024). As a result, we frame the video club video selection by 

considering the opportunities to notice (see Stockero et al., 2017) available in a coaching context.  

The coaching approach utilized in our investigation is centered on content-focused coaching 

(West & Cameron, 2013), differing from instructional coaching or cognitive coaching methods. 

Content-focused coaching is characterized by its emphasis on disciplinary content during 

coaching discussions; coaching sessions should delve into the mathematical aspects of the 

lesson, how these mathematical concepts are incorporated into the task design, and which 

instructional strategies promote or enhance mathematical comprehension (Callard et al., 2022). 

The novelty in our professional development initiative was the adaptation of a traditional face-to-

face mathematics coaching model into a fully online, video-based coaching model (Amador et 

al., 2021). 

Method 

Twenty-three coaches participated in selecting videos as part of video clubs in which they 

took part during a larger three-part two-year professional development project designed to 

support coaches of mathematics. The other two professional learning components included an 

online course and one-on-one content-focused coaching in which a mentor coach (those with 

more experience who were part of our professional development team) supported the efforts of 

coach participants (individuals coaching in a school or school district in mathematics).   

In the video club structure, four to six coaches met regularly to discuss elements of video of 

coaching interactions between a classroom mathematics teacher and a coach. These meetings 

typically lasted from 90-120 minutes and included two focal videos for the coach participants to 

watch. Prior to the video club meetings, a member of the team selected video clips for 

participants to watch during the video club. It is the rationale for this selection to which we focus 

attention. To collect data on the rationale for their selected videos, coaches were asked verbally 

and in writing to provide an explanation for the video that they selected. Verbal interactions were 

audio recorded and transcribed verbatim. To analyze data, four members of our research team 

created a coding scheme that included categories for: (a) content-focused coaching aspects, (b) 
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coach support of the teacher, (c) teacher practices/knowledge, (d) coaching practices, and (e) 

video coaching club context. Within each of these broad five categories, the codebook had 

subcategories that further defined various reasons. To code data, all four researchers coded each 

rationale response with as many codes as were apparent in the data. The team of four then met to 

reconcile any discrepancies in the coding and arrived at final counts for the rationales coming 

from each of the 23 coaches. We then calculated frequency counts to arrive at an overall 

description of the rationale.  

Results and Discussion 

Analysis of the data reveals three main trends that indicate that participants selected video 

clips that: (a) included content directly aligned with content-focused coaching, (b) highlighted 

the practices of coaching, and (c) included content that the coach selecting deemed important for 

others to notice. The following provides an overview of the findings, and then each trend is 

described.  

Table 1 shows the breakdown of the overall rationale reasons provided. Recall that in some 

cases, participants provided more than one reason for a particular decision about (König et al., 

2022) video choice.  

 

Table 1: Percent in Each Category Provided as Rationale 

 

Content-Focused 

Coaching Aspects 

Coach Supports 

Teacher’s 

Teacher 

Practices/ 

Knowledge 

Coaching 

Practices 

Video 

Coaching 

Context 

Total 

38.61% 5.94% 15.84% 31.68% 7.92% 100% 

 

Content-focused coaching practices were a main reason participants gave for selecting 

particular video clips to show during the video club. Within this overarching category, 

participants said they selected their video clips because they: focused on mathematics learning 

goals, demonstrated the use of instructional practice goals, provided an example of the structure 

of the lesson design, showed how to talk about anticipating student strategies, examined 

evidence of student thinking, illustrated the launching of a lesson or task, demonstrated debrief 

conversation structure, showed the coach doing the mathematics with the teacher, or illuminated 

collaboration or co-learning. The following is an excerpt of an example of the rationale one 

coach provided that was coded for aspects of content-focused coaching: 

Yeah, so the first clip is us talking about […] coaching—if you look at the lesson planning 

document at the bottom there's the debrief coaching cycle. I was just showing her that and 

letting her know that I was going to use that in the post discussion. That was my own goals. 

That first section is me setting my goals and making them apparent to her. I don't know, I 

chose that for that reason. Then the second section, that's kind of long, is her setting some of 

her goals. I cut out the part for setting content goals, but we focused on her setting the math 

practice goals. That's why I chose the first one is just highlighted our conversations around 

goals. That was my number one reason for choosing it.  
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In this example, the coach explicitly states that the selection was centered on goals, mathematics 

practice and content goals, which are both aspects associated with content-focused coaching. 

Coaching practices were another main theme for why particular clips were selected. 

Coaching practices that were commonly coded included language related to: the five practices 

for orchestrating discussion (Stein et al., 2008), mathematics content development, engagement 

in related professional learning, and lesson content. In the following excerpt, the coach provided 

rationale related to the five practices, a key component related to coaching: 

As a district we are working on that five practices book […] Every time we do anything with 

PD, and I work with Arnold, it’s always that—what’s the goal of the lesson? What’s the goal 

of the teacher? That focus has been there. When I went back and saw the lesson, I’m like, 

“Woo-hoo, it is in there.” I was celebrating that yes, even—because when I did this with her, 

she’s first year teacher too. Being excited that this is being ingrained in her right from the 

beginning. I guess that’s why I picked it. 

In this example, the focus is clearly on coaching a teacher to implement the five practices, a 

theme that was common among participants, with nearly 32% of the reasons given for video 

selection related to coaching practices.  

Finally, a cross cutting theme that was not coded for directly with the codebook but was 

presented through thematic analysis was that of noticing (i.e., van Es & Sherin, 2008)—coaches 

selected videos that included content that they thought was important for others to notice. In the 

verbal description of her rationale for clip selection, Coach Riess shared her rationale behind the 

clips she chose for her first video coaching club was to include crucial aspects of content-focused 

coaching. To focus their time during the video club, Reiss narrowed in on learning goals and 

anticipating student strategies. She stated,     

We felt that those were really important and different to content focused coaching, where you 

might not see those aspects in other types of coaching, such as cognitive coaching or 

instructional coaching or student-centered coaching. That was how we kind of chose the 

topics of our video coaching club. When I went to go look for a clip that showed me having a 

discussion around learning goals, I first looked for a clip where that was really evident and 

clear and wasn’t chopped up by different conversations that kind of came in and out of that 

discussion around learning goals. The one I settled on is a clip that, in it, the teacher had 

provided me with two learning goals for the task, as she had written those learning goals. 

When I read the learning goals, I felt that one of them really did not match what the task was 

asking students to do. I knew that the teacher might not have internalized the content as well 

as I would like. That was one thing I noticed. I also noticed there was other content in the 

task she had chosen that wasn’t encompassed in her learning goals. Those were two things 

that I thought were interesting as I had looked at the learning goals she provided and the 

conversation we had. 

This example shows that Riess had ideas in mind of what she wanted coach participants to notice 

in the video club, and she identified a video that contained what she was hoping others would 

notice during the video club.  

These findings illuminate the reasons that specific clips were selected for the video clubs. As 

researchers have noted, the purpose of video clubs is to support educators to attend to and reason 
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about particular events (Walkoe, 2015). Knowing what events are selected and why provides 

important information for both researchers and professional development providers, as the videos 

that are shown are consequential to the possible learning outcomes and can be a powerful tool for 

educator learning (Brophy, 2003; Coles, 2019; Christ et al., 2017; Gaudin & Chaliès, 2015; 

Santagata et al., 2021; Seidel et al., 2013). We encourage researchers and professional 

development providers to be cognizant of video choice during their projects and to maintain 

awareness of the rationale for video clip selection as the selection evidenced in this research 

directly related to the coaches’ opportunity to notice and learn.  
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Video-based professional development (PD) supports teacher learning through grounding 

discussions in representations of practice. We consider PD where teachers, not the facilitator, 

were responsible for choosing video clips and generating a focal question. Using a framework 

for pedagogically productive talk, we investigate what contributes to productive video-based 

discussions. By analyzing two discussions held back-to-back, we unpack how the same group of 

teachers engaged in more and less pedagogically productive talk. This research has implications 

for understanding the features that contribute to productive video discussions in PD. 

Keywords: Professional Development, Pedagogically Productive Talk, Video-based PD 

Video-based professional development (PD) supports mathematics teacher learning through 

grounding discussions in representations of practice (e.g., Borko et al., 2008; Karsenty & Arcavi, 

2017; Santagata, 2009; van Es & Sherin, 2008). In these PD designs, teachers typically view and 

discuss videos related to a professional learning goal, such as noticing student thinking or 

facilitating mathematical problem solving. Choosing video clips and focal questions is critical, 

intentional work for facilitators (Borko et al., 2014; Sherin et al., 2009), as is norm-setting 

(Borko et al., 2011). Through norm-setting, video selection, and focal question development, the 

facilitator has great agency to shape teachers’ learning opportunities. 

However, ceding some of the decision-making from facilitators to teachers may provide 

teachers more agency in choosing the focus of their learning. Recent research has begun to 

explore the learning opportunities available when teachers select video clips (Richards et al., 

2021). Similarly, we posit that choosing the focal question for discussing a video clip may offer 

learning opportunities for teachers. Because clip and focal question selection are crucial for 

supporting teachers’ learning in video-based PD, researchers need to investigate the nature of the 

discussions when they are guided by teacher-selected video and questions.  

Pedagogically productive talk in PD consists of “talk that is productive for the development 

of participants’ adaptive expertise and professional judgment” (Lefstein, Vedder-Weiss, et al., 

2020, p. 362). This definition is based on Lefstein and colleagues’ practical experience and their 

review of the growing body of literature surrounding teachers’ discourse (Lefstein, Louie, et al., 

2020). We seek to understand the features of pedagogically productive talk within a video-based 

PD context where the focal question and video are both chosen by the teachers, rather than by the 

facilitator. We ask: How do two video-based discussions, where teachers chose both the focal 

question and the video clip, unfold to produce different kinds of pedagogically productive talk? 
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Methods 

Our research took place in a two-year PD program for early-career secondary mathematics 

teachers. Designed to promote equitable mathematics instruction (Cohen & Lotan, 2014), the PD 

included a two-week institute each summer, followed by virtual coaching sessions during the 

school year. We focused on small group coaching sessions, in which teachers shared videos of 

their own lessons and discussed emergent issues regarding their practice. For each small-group 

session, all teachers contributed a video clip, which the other group members viewed and 

commented on in advance. There were 22 teachers, divided into seven groups, that met three 

times per year. This resulted in 41 recorded sessions, containing 127 video discussions. Each 

session had the same structure, led by the same facilitator. Following norm-setting, the groups 

discussed each teacher’s video (20-25 min per video). For each video, first, the video-sharing 

teacher described the context of the clip and addressed contextual questions (5 min). Second, the 

facilitator invited each person, beginning with the video-sharer, to name strengths of the video 

(5-10 min). Third, the facilitator prompted the video-sharer to name a question emerging from 

the video, which the group then discussed (10-15 min). Following all video discussions, the 

meeting concluded with the facilitator asking each teacher to name next steps in their practice.  

Using a video discussion as the unit of analysis, we wrote memos following the framework 

for pedagogically productive talk (Lefstein, Vedder-Weiss, et al., 2020). We operationalized the 

framework using our data to generate indicators, non-examples, and guiding questions. Table 1 

briefly presents the six features of the framework and a summary of our guiding questions for 

analysis. Additionally, we assigned a score for each feature to indicate if it was minimally (0), 

partially (1), or fully (2) present in each discussion (maximum of 12 for each discussion). Based 

on these scores, we identified pairs of video discussions that took place in the same session and 

had different levels of productivity. From five pairs with scores differing by eight or more, we 

chose one pair for comparison using the analytic memos, video recordings, and transcripts. 

 

Table 1: Features of Pedagogically Productive Talk (Lefstein, Vedder-Weiss, et al., 2020) 

 

Criteria Summary of guiding questions for analysis 

Focused on problems 

of practice 

Is the discussion focused on a clearly articulated problem of practice 

that is rooted in issues the video sharer has faced in teaching? 

Involves pedagogical 

reasoning 

Do speakers offer different ideas, hypotheses, affordances, or 

constraints related to the problem of practice alongside reasoning? 

Anchored in rich 

representations 

To what extent do speakers refer to specific events, words, actions, or 

moments in the video and use them as evidence during the discussion? 

Multivoiced To what extent are different perspectives offered? How are these 

attended to, acknowledged, questioned, connected to, and built on? 

Includes generative 

orientations 

To what extent do the participants demonstrate orientations toward the 

problem of practice that are in line with the PD goals and values? 

Combines support 

and critique 

Do participants create a collegial and supportive space for sharing? 

To what extent do they offer critical questions or considerations? 
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Findings 

We present a detailed analysis of two discussions from one coaching session during the first 

year of the PD. The group consisted of teachers Diego, Rebecca, and Sadie, and facilitator 

Garima (all names are pseudonyms). The meeting was the group’s second of the year. Diego 

volunteered to discuss his video clip, from a review lesson, first. We found that the discussion of 

Diego’s video scored 2 (present) in all six rubric categories, the highest possible score. The group 

then discussed Rebecca’s video, focused on a novel participation structure Rebecca had tried. 

This discussion scored 1 (partially present) in the categories of problems of practice and 

generative orientations, and 0 (minimally present) in all other categories, yielding a total score of 

2. This large divergence of scores between two discussions during the same session with the 

same participants enabled us to interrogate what features of the PD supported productive talk and 

what features inhibited it. We describe the differences in pedagogically productive talk for each 

video discussion, focusing on each rubric category individually. 

Problems of Practice 

The questions Diego posed to the group to frame their conversation were, “At this moment, 

how could I have gotten more information about what they [the students] do and don’t know? 

What kind of moves could I have done?” These questions focused directly on a problem of 

practice, how to elicit and understand students’ thinking, that is an ongoing concern for teachers 

across contexts (e.g., Sleep & Boerst, 2012). The questions were explicitly tied to an event in the 

video and were generalizable and resonated with other teachers. The focus on eliciting and 

interpreting student thinking was evident throughout the discussion and across contributions 

from all participants. Rebecca posed the questions, “When you walk around the room and listen 

to groups, how do you decide when to intervene and what to say? How do I decide when I’m 

making a useful comment and when I’m interrupting the flow?” While the questions named the 

problem of practice—when and how should a teacher intervene in groupwork, the question was 

disconnected from Rebecca’s video. This made it difficult for the group to analyze classroom 

events and justify future courses of action. 

Pedagogical Reasoning 

During the discussion of Diego’s video, teachers engaged in thought experiments (Munson et 

al., 2021) and reconsidered previous practices. Rebecca, referencing a specific moment from the 

video, suggested using brainstorming. Sadie extended that thinking, wondering what the goals of 

that brainstorming might be. Curiosity about classroom events was prevalent, and all participants 

supported their suggestions with explicit reasoning. In contrast, during the discussion of 

Rebecca’s video, each person gave Rebecca tips and tricks for deciding when to intervene with 

student groups. These tips and tricks were not linked to specific evidence from the video clip, or 

necessarily supported with pedagogical reasoning. 

Rich Representations 

When discussing Diego’s video, participants referred to specific moments of the video to 

gain information and understanding regarding classroom events. They also used the video to 

create an imagined alternative story, considering how possible actions and interventions could 

influence outcomes. In contrast, when discussing Rebecca’s video, there was only one significant 

reference to the video, which was offered by the facilitator and not further explored by the group. 

Multivoiced 
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All participants shared ideas during both discussions. However, there were differences in the 

degree to which participants took up responses and built on ideas. During Diego’s video 

discussion, all participants attended to the ideas shared by others, frequently reflecting on how 

their suggestions would provide opportunities to deepen connections and student engagement. 

Conversely, during Rebecca’s video discussion, ideas were rarely attended to by any participants. 

This resulted in a parallel sharing of ideas without dialogism. 

Generative Orientations 

From the beginning of the discussion of Diego’s video, the group showed a generative 

orientation toward students, problems of practice, and teaching. Diego praised his students’ use 

of classroom resources. Others in the group readily responded to Diego's question, demonstrating 

a generative orientation toward the problem of practice. At the end of the conversation, Diego 

indicated that he was planning to try new practices based on suggestions from the group. During 

the discussion of Rebecca’s video, the group demonstrated generative orientations toward 

students, yet they did not show a generative orientation toward the problem of practice. For 

example, Rebecca did not identify specific areas for improvement in her activity structure, and 

the group did not engage deeply with any suggestions for future practice. 

Support and Critique 

In the discussion of strengths and highlights of Diego’s video, the group offered specific 

examples of the students’ mathematical knowledge, their capacity to share their thinking, and the 

dialogic nature of the discussion. Building from this, Diego positioned himself as open to 

critique and seeing his practice in new ways. Participants validated his question as shared and 

thought critically about new ways he could learn about his students’ thinking in the moment. In 

the discussion of Rebecca’s video, the strengths identified were largely couched in politeness and 

were general, including the students’ “energy” and Rebecca’s risk-taking for trying a new 

activity structure. Little support was offered to Rebecca in the rest of the discussion, which 

stayed at a general level about the pedagogical decisions in each participant's own classroom 

rather than the events and pedagogical decisions in Rebecca’s video. 

Discussion 
Despite similarities in these discussions, including the same participants in the same meeting, 

the discussions reflected different levels of productive talk. What may have contributed to the 

differences in how these discussions unfolded? We conjecture that there are three underlying 

factors distinguishing these discussions. Two factors reaffirm findings in prior literature: video 

clip selection and focal question selection are pivotal (Borko et al., 2014; Sherin et al., 2009). We 

found that teachers can select productive video clips for discussion, and with support, they can 

craft fruitful focal questions. Yet, granting teachers this agency and responsibility comes with 

certain risks: in response to Rebecca’s video clip, participants contributed less pedagogical 

reasoning and the discussion remained more general. Further, Rebecca’s focal question was not 

directly linked to the video and thus limited engagement with that evidence. This risk does not 

mean that facilitators must control video clip and focal question selection, only that it is 

important to note that there is variability in how teachers take up this responsibility. 

The third underlying feature that influenced the productivity of these conversations is the 

degree to which teachers attended to and took up one another’s ideas. The presence of teacher 

uptake in Diego’s discussion fueled a dialogic discussion in which multivoicedness, critique and 

support, pedagogical reasoning, and a generative orientation to professional learning and the 
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problem of practice were prominent. Diego repeatedly took up and considered aloud his 

colleagues’ ideas, revising his thinking about the problem of practice he presented. Other 

participants similarly built on one another’s ideas, posed questions, and offered pedagogical 

reasoning. This orientation, to take seriously other’s contributions and be open to revising 

thinking about one’s own practice, was a key lever for productivity in discussing Diego’s video 

and which the discussion of Rebecca’s video notably lacked. We argue that the notion of teacher 

uptake in professional discussions and its connections to other, well-established features of 

pedagogically productive talk is an area in need of further attention by the field. 
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Context is a critical consideration in teacher professional learning. When queried about 

formal professional development (PD), many teachers report dissatisfaction, often citing 

contextual agnosticism, and, thus, irrelevance (Boston Consulting Group, 2014). In informal 

learning spaces, teachers are generally freer to exercise choice toward more contextually relevant 

learning opportunities and resources. Regardless of formal or informal settings, the need for 

professional learning to be context-specific is not new (Borko et al., 2010; Desimone 2009). In 

fact, efforts to contextualize formal PD are ongoing (i.e., Fairman et al., 2023), with much work 

in this area attending to the ways professional learning opportunities can and should embrace 

specific classroom contexts. Relatedly, this pilot work considers how mathematics teachers’ 

course and geographic context shape their accessed set of professional learning opportunities. We 

pursue the following questions: What resources characterize the professional learning 

opportunities accessed by advanced secondary mathematics teachers? To what extent, if any, do 

the learning resources vary by mathematics subject and geographic context? 

Data for this study were collected via an online survey distributed through various teacher 

social media groups and discussion boards, with quotas observed for both the mathematics 

course taught and school district geographic locale (as defined by the National Center of 

Education Statistics (NCES) locale codes— city, suburban, town, and rural). Survey participants 

(N=14) for this pilot work were U.S. public high school teachers who taught an Advanced 

Placement® (AP®) mathematics course. The survey instrument had two primary parts, including 

both qualitative and quantitative questions, asking respondents to first select the learning 

resources they used for content-based professional learning within their AP® course, and second, 

to identify where the resources were accessed. Survey responses are currently being analyzed 

using mixed-methods geospatial analysis (Yoon & Lubienski, 2017). Follow-up interviews with 

selected survey participants are also in the process of being collected, transcribed, and analyzed 

for the purpose of further elucidating survey responses. 

Early findings reveal that mathematics teachers reported a range of resources (Min = 1, Max 

= 12) supporting their professional learning, with most resources (53.3%) being digital. Non-

digital resources were primarily accessed at home or at school. Locally accessed resources, 

outside of school and home, included professional learning communities, friends, teacher 

colleagues, university-affiliated learning opportunities, district-sponsored professional 

development, trainings facilitated by a local/regional educational cooperative, and 

national/statewide professional conferences. Despite an equal number of AP® Calculus AB and 

AP® Statistics respondents, AP® Calculus AB teachers reported more non-digital, locally 

accessible resources, particularly university-related and local/regional cooperative opportunities. 

Teachers in rural districts reported little access and the least travel to school-external, in-person 

learning opportunities. These findings suggest potential inequities in accessed professional 
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learning opportunities across content and context. Further inquiry is warranted to understand the 

mechanisms by which mathematics content and geographic context shape professional learning. 
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Experiential learning represents a shift in K-12 education that requires teachers to change the 

ways that they engage students. We created a professional development experience in which 

teachers learned about the entrepreneurial-based design challenges we developed (Authors, 

2019) and practiced implementing teacher check-ins with students participating in our summer 

camp. In this paper, we conduct a case study to explore how three teachers used teacher 

discourse moves during their teacher check-ins. We found three types of teacher-student 

interactions: (a) positioning students as experts, (b) co-designing with students, and (c) pushing 

students towards an outcome. These findings suggest that teacher professional development for 

experiential learning should intentionally support teachers in learning how to employ the moves 

during teacher check-ins in ways that elevate student expertise and advance their thinking. 

Keywords: Professional Development, Problem-Based Learning, Classroom Discourse 

Experiential learning provides opportunities for K-12 students to work collaboratively and 

across disciplines to create innovative, actionable, and empathetic solutions (Hashim et al., 

2019). Experiential learning represents a transformative approach to education (Slavich & 

Zimbardo, 2012; Yardley et al., 2012), challenging traditional pedagogical norms by prioritizing 

hands-on, inquiry-based learning experiences. There are many varieties of experiential learning 

approaches, ranging from problem-based learning to community-based learning (Haigler & 

Owens, 2018). Teachers play a pivotal part of experiential learning by adopting diverse roles, 

from facilitators to co-designers (Grossman et al., 2019; Haigler & Owens, 2018). As teachers 

navigate experiential learning environments, understanding the nuances of teacher-student 

interactions becomes imperative for optimizing instructional practices and fostering meaningful 

learning experiences. 

The Design & Pitch (D&P) Challenges in STEM project (Confrey et al., 2019) is an 

experiential learning curriculum that draws on project-based learning (Krajcik & Blumenfeld, 

2006), entrepreneurial-based learning (Lackeus, 2015), and design-based learning (Mehalik et 

al., 2008) to situate mathematics learning within entrepreneurial pitch competitions. In this paper 

we report how teacher discourse moves (TDMs; Herbel-Eisenmann et al., 2013) are leveraged 

when teachers practice facilitating experiential learning during a PD on D&P.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1229 

Literature Review 

Teacher Facilitation of Student Autonomy 

Learning environments that employ these experiential pedagogies are built on a culture of 

student-centered practices (Haigler & Owens, 2018), where students are provided with autonomy 

to ideate and create, meaning that each group is often thinking about different topics (Lee & 

Hannafin, 2016; Wilson et al., 2015). A teacher in this situation needs to check-in with students 

regularly to assess, support, and facilitate their progress (Grossman et al., 2019; Lee & Hannafin, 

2016). This requires teachers to have a deep understanding of the learning goals (Grossman et 

al., 2019), a willingness to allow students to assume autonomy and authority (Langer-Osuna, 

2011), and the flexibility to facilitate student thinking relating to a wide variety of ideas and 

solutions (Haigler & Owens, 2018; Krajcik & Blumenfeld, 2006). 

When managing student-centered classrooms with varying ideas and approaches, Herbel-

Eisenmann et al. (2013) found that teachers could effectively facilitate student learning through 

what they refer to as TDMs. Strategies like these are often used to facilitate whole group 

discussions (Herbel-Eisenmann et al., 2013; Smith & Stein, 2011), but they can also provide a 

way for teachers to purposefully engage students in conversations during teacher check-ins in 

experiential learning environments. 

Professional Development 

One way that teachers learn to use new curricular resources, especially those based in novel 

pedagogies, is through professional development (PD; Dingman et al., 2021). For PDs centered 

on learning about a new curriculum, regardless of format, McDuffie and Mather (2009) suggest 

first engaging teachers in an experience where they are positioned as the student. Then it is 

important to shift teachers back to the teacher perspective after thinking as a student, so they can 

reflect on how their experience informs their approaches to teaching with the resource (Dingman 

et al., 2021; McDuffie & Mather, 2009). An experiential way to do this is by having teachers 

approximate the practice of facilitating aspects of the curriculum in conditions that are less 

complex than a real classroom (Schutz et al., 2018). Approximations of practice allow PD 

participants to engage with how a novel curriculum might look in a classroom (Schutz et al., 

2018), since it may be quite different from their traditional teaching practice. 

This study explored how teachers leveraged TDMs while checking in with students during a 

PD on a novel curricular framework. This research is guided by the following question: How do 

teachers approximating the practice of a teacher check-in use TDMs to support, or hinder, 

amplifying student expertise? 

Methods 

The data for this paper was part of a larger study that focused on the design and study of a 

high school mathematics entrepreneurial curriculum and its associated PD, henceforth referred to 

as D&P. 

Context and Participants 

The D&P PD, in which the data was collected, lasted one week, and was held at the same 

time as a D&P student summer camp. In the first 2.5 days participants acted as students to 

experience one of the D&P challenges alongside the summer camp students, and then the final 

2.5 days the participants acted as teachers during the summer camp. During the D&P PD 

teachers engaged in teacher check-ins in multiple ways. To experience facilitation moves through 

the student perspective, teachers experienced multiple teacher check-ins as learners. Teachers 
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also had a chance to debrief their experiences as learners with PD facilitators. Additionally, 

teachers were given a document that outlined questions to consider asking during teacher check-

ins. 

Five teachers attended the PD experience. Three were high school teachers, one science and 

two mathematics, and two were elementary teachers. The two mathematics teachers were new to 

teaching and the other three teachers were veterans. The two elementary teachers were not able 

to experience the entire PD therefore their data was excluded from this analysis. 

Data Collection and Analysis 

All aspects of the summer camp and PD were video recorded. For this paper the videos of 

interest were the periods in which the teachers were checking-in with student groups. Thus, the 

video data was reduced to these 20 to 30 minute clips for data analysis. The check-in videos were 

memoed by the first author, from which a content log with brief summaries of each video was 

created. Considering each video’s memo and the content log, the research team selected one 

video per teacher participant that was representative of their understanding of teacher check-ins. 

After reducing the data to three videos, transcripts were created and were coded using a TDMs 

framework (Herbel-Eisenmann et al., 2013). Additionally, the transcripts were analyzed for the 

breakdown of teacher talk time versus student talk time (Hennesey et al., 2023). 

Results 

Preliminary analysis of three teacher check-in videos surfaced three types of teacher-student 

interaction: (a) positioning students as experts, (b) co-designing with students, and (c) pushing 

students towards an outcome. 

Positioning Students as Experts 

When the teacher check-ins began, each teacher spent time orienting themselves to the 

students’ ideas in relation to the D&P challenge. Teachers typically did this through the TDMs of 

assessing student thinking and revoicing (Herbel-Eisenmann et al, 2013). While all of the 

teachers had periods of positioning students as experts of their ideas, Teacher B exemplified this 

interaction type. She employed the TDM of waiting (Herbel-Eisenmann et al, 2013) throughout 

the interaction, as indicated by the short listening cues she provided to students such as “Yeah,” 

“Okay,” and “Nice.” The students engaging with Teacher B also had the highest amount of talk 

time, sharing their ideas and work for almost 60% of the time, in contrast to the 25% of time that 

students talked during the interaction with Teacher A and almost 50% of the time that they talked 

with Teacher C. 

Teacher C also used the TDMs of inviting participation and orienting to student work 

(Herbel-Eisenmann et al, 2013) to position students as experts. One instance of this was when 

she said, “Student S is taking what y’all have mapped out and she is tracing over it in color on 

the map to show the two routes? What are you doing?,” which shows both moves. She first 

elevated what Student S was currently working on (orienting the other students in the group to 

that work) and then she invited another student in the group to share what they were working on. 

These two moves together grounded group interactions in student ideas while facilitating 

collaboration amongst group members. 

Co-Designing with Students 

As teachers used the TDM of advancing student thinking (Herbel-Eisenmann et al, 2013) 

towards the challenge goal, they would sometimes become co-designers with the students, acting 

as a group member during teacher check-ins. During these co-designing periods, teachers worked 
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to advance student thinking through grounding conversations in student ideas. Teacher A did this 

when creating a map prototype by directing the students to pull up the technology tool for 

mapping on one computer and then having everyone (including the teacher) gather around that 

screen to work together. The co-designing interaction is exemplified in this set of quotes:  

Student: Uh, you could just uh add the whatever it’s called, the bottom left corner there, no 

farther down, yep, like then you can like add them along the route, just like plan it out 

and then you can hit how long to measure it. 

Teacher A: So I guess drop a pin where that thing is. And then you have to find [High School 

Name]. Or whatever, maybe the movie theater. 

Both the student and the teacher are figuring out the technology and which decisions to make 

together to advance towards the goal of prototyping a mapping app. 

Pushing Students Toward an Outcome 

The other way the teachers attempted to advance student thinking (Herbel-Eisenmann et al., 

2013) was to push students in a specific direction based on their understanding of the student 

ideas in relation to the challenge goals. This tended to frustrate and constrain students, rather 

than advance them. For instance, Teacher C was trying to advance the students’ thinking to be 

broader: 

What do you think would happen for your users if instead of giving them a very narrow trip 

from Dominos to the [location of the camp],...what if you expanded it, say from [close-by 

town] to the [location of the camp]? 

The students became frustrated with her pushes because they felt she was disregarding the work 

they had already done as well as suggesting that they were not doing the correct task. 

Discussion and Conclusion 

Within a PD focused on supporting teachers to adopt an experiential learning curriculum, 

teacher participants had multiple opportunities to engage in teacher check-ins–a critical 

component of experiential learning (Lee & Hannafin, 2016; Grossman et al., 2019; Wilson et al., 

2015). When teacher participants had the opportunity to approximate the practice (Schutz et al., 

2018) of teacher check-ins three teacher-student interactions emerged. As they engaged as 

teachers during the second half of the PD, the teachers naturally employed many TDMs (Herbel-

Eisenmann et al., 2013) during teacher check-ins, which led to two beneficial teacher-student 

interactions (positioning students as experts and co-designing with students) and one concerning 

teacher-student interaction (pushing students towards an outcome). Our analysis highlights an 

area of focus for experiential learning PD, the importance of how to facilitate moving towards 

the goal of the activity while staying grounded in the student ideas. While the literature shows 

the importance of the teacher engaging with groups during experiential learning to move them 

towards a learning goal (Grossman et al., 2019), our findings show negative student reactions 

during these moments. Thus, during these teacher check-ins while teachers are engaging with 

students around their ideas (a beneficial interaction), teachers must employ TDMs that both 

support the advancement towards the learning goal while continuing to position students as 

experts. If teachers push too hard to advance towards the learning goal, as shown above, students 

will begin to become complacent and lose connection to their idea, thus diminishing their 

expertise. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1232 

Therefore, based on our preliminary analysis, we suggest that experiential learning PD 

should intentionally support teachers in learning how to leverage TDMs (Herbel-Eisenmann et 

al., 2011) to engage students as experts while advancing them towards learning goals. This 

intentionality can be built into debrief sessions that support engaging in the curriculum as a 

learner (Dingman et al., 2021; McDuffie & Mather, 2009), or side-by-side coaching (Munson, 

2018) during teacher check-in approximations of practice. 
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Building on the critique of binary frameworks and the need for a nuanced understanding of 

instructional practices, we offer a methodological approach for gauging teachers’ professional 

growth through a simulation designed to support secondary mathematics teachers in facilitating 

problem-based lesson discussions. This paper explores data from a pilot online teaching 

simulation which, by design, avoids feedback reliant on binary labels for instructional practices. 

The study analyzes responses from ten prospective teachers in a simulation that supplements 

Milewski & Strickland’s (2020) functional framework for responding with subject-generic and 

subject-specific categories. Our findings demonstrate the viability of this approach in revealing 

shifts in participants' awareness of the linguistic functions underlying their responding moves. 

Keywords: Research Methods, Problem-Based Learning, Professional Development, Classroom 

Discourse  

 

Mathematics education scholars emphasize the importance of moving beyond narrow 

perspectives on 'good' teaching to effectively support teachers' professional growth (Chazan & 

Ball, 1999; Horn et al., 2022). This shift recognizes that framing teaching within binaries such as 

‘good/bad’ flattens the complexities of effective instruction, neglecting the dynamic adaptations 

required for responsive teaching (Biesta, 2007). Scholars oppose binary frameworks, 

acknowledging subjectivity and contesting conceptions of teaching framed in such terms 

(Berliner, 2005; Fenstemacher & Richardson, 2005). 

In response, innovative pedagogies guide teachers beyond a singular vision of instructional 

quality, emphasizing inquiry, practical arguments, and feedback as catalysts for professional 

growth (Horn et al., 2022; Fenstemacher & Richardson, 1993; Fernandez et al., 2020). However, 

this raises a methodological question: How can we assess the potential of professional 

development programs to support teacher professional growth if those programs do not put forth 

explicit goals for teachers' instructional practice? This paper introduces an innovative approach 

to the practice of responding to students’ contributions by developing a measure that does not 

rely on categorizing specific moves according to binaries. 

To illustrate, we delve into data from a pilot online teaching simulation for supporting 

secondary mathematics teachers in the critical decision-making involved in facilitating problem-

based discussions. Participants engage as teacher avatars, making critical decisions (e.g., 

selecting, sequencing, responding) in simulated discussions. Aligning with the aforementioned 

calls, we designed the simulation to avoid feedback categorizing participants' moves as more or 

less ‘desirable.’ Post-simulation, we grappled with the question of how to assess whether and 

how teachers were growing in their interactions within the simulation. It felt incongruent to 

develop a measure relying on a singular perspective of teachers' increased use of ‘desirable’ 
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practices. How then can we effectively evaluate teachers’ professional growth within this 

innovative and flexible framework of design? 

 

Theoretical Framework 

Teachers' discursive moves have often been seen through overly prescriptive lenses. Chazan 

and Ball (1999) criticized anti-telling rhetoric as too simplistic and agnostic to context, urging 

the field to move past proscriptions forbidding certain discursive moves. While research has 

progressed beyond slogans like ‘Don’t tell’ (Ellis et al., 2019; Franke et al., 2009; Michaels & 

O'Connor, 2015), quick translations from research to practice without context consideration 

remain common. This is exemplified by reports on the wide-scale dissemination of the Five Talk 

Moves (Chapin et al., 2009) into diverse professional settings: 

Our focus on the “talk moves” did not always seem to work. While some teachers easily 

picked them up, other teachers, particularly those less experienced, seemed to find them 

difficult … using them “robotically.” For example, the revoicing move would be used when 

there was no reason to revoice: a student might state a fact, clearly: “seven is a prime 

number” and the teacher would query “So you’re saying seven is a prime number? Is that 

what you’re saying?” to puzzled looks. Teachers would ask “Who agrees and who 

disagrees?” in a perfunctory manner, not following up on the reasons. Or “Who can repeat 

what she said?” when the original utterance was neither complex nor particularly useful for 

furthering the topic. (p. 117; Michaels & O’Connor, 2019).  

These perfunctory uses of talk moves echo the kind of lessons learned by educational researchers 

in the earlier standards reform movements (e.g., Cohen, 1990). Like their earlier predecessors 

(i.e., lists of standards), lists of moves, when presented and prescribed as a solution for the 

problems of practice, tend to overpromise and underdeliver, distorting practice while projecting 

an unwarranted authority.  

The observations outlined by Chapin help to illustrate Berliner’s (2004) description of the 

developmental progression of teachers. Berliner categorizes teachers as novices and advanced 

beginners, noting that novices often see teaching in terms of absolutes, while advanced beginners 

begin to recognize and respond to the nuanced contexts of teaching situations. The struggles with 

using talk moves robotically can be seen as characteristic of novice teachers, who are still 

developing their ability to adapt their practices to different contexts.  

To support teachers to move away from these kinds of robotic performance, it is crucial to 

support them in gaining better “understanding of and reasoning about practice” which requires 

both “a language capable of finer distinctions and a stance aimed less at evaluation” (p. 9, 

Chazan & Ball, 1999). Milewski & Strickland (2020) offer a framework categorizing responding 

moves into functional categories without evaluating them as more or less “productive.” Their 

framework categories responding moves into two layers of independent functional categories 

(i.e., Response vs. Rejoinder, Support vs. Confront vs. Invite) which can be composed into the 

following six functional categories for teachers’ responding moves:  

● Supporting-response: curtail the interaction while supporting the contribution  

● Confronting-response: curtail the interaction while confronting the contribution 

● Invitational-response: curtail the interaction while inviting other students to respond 

to the contribution 
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● Supporting-rejoinder: prolong the interaction while supporting the contribution 

● Confronting-rejoinder: prolong the interaction while confronting the contribution  

● Invitational-rejoinder: prolong the interaction while inviting other students to 

respond to the contribution 

More recently, we have been exploring an additional layer—subject-generic and subject-

specific moves. By subject-generic we refer to responding moves that can be used across a 

variety of content areas and courses without adaptation (e.g., What do others think); while 

subject-specific refers to responding moves that do make adaptations to various instructional 

situations (e.g., What do others think about the way he constructed the center of that circle?).  

When developing the simulations, we wondered whether gaining a greater understanding for 

the functional categorization of discursive moves would improve teachers’ practical reasoning 

about the practice of responding. Furthermore, we wondered how such shifts might play a role in 

shaping teachers’ instructional choices. To investigate, we needed to develop measures that 

moved beyond a categorization of teachers’ moves into evaluative binaries and toward measures 

that attend to the shifts in the kind of practical reasoning teachers’ use when providing an 

account for their decisions. In the background section, we provide more details about the 

simulation, paying particular focus to the ways we provided opportunities for users to both 

simulate and receive feedback on the practice of responding to students’ mathematical 

contributions. In the methods section, we describe the measures we developed for assessing the 

potential of that simulation for supporting teachers’ professional growth—that we define as 

participants gaining a better understanding of the functional role of discursive moves they elect 

to when responding to student contributions (e.g., when using a rejoinder, they indicate they do 

so because they want to prolong the discussion of an idea). In short, we describe methods used to 

pursue the following lines of inquiry: How does a functional approach to responding, featuring a 

measure that avoids categorizing instructional moves according to evaluative binary contribute 

to assessing changes in instructional practices when responding to students' mathematical 

contributions within the context of an online teaching simulation? Additionally, what insights 

can be gleaned concerning the alignment of participants' justifications with the underlying 

linguistic theories embedded in the designed feedback during the responding intervention? 

 

Background 

This paper is part of ongoing efforts to develop and evaluate online simulations supporting 

secondary mathematics teachers in facilitating problem-based lessons.  We created four 

simulations around the Tangent Segments Problem, which asks students to find a circle tangent 

to two intersecting lines, culminating in the Tangent Segments Theorem1. Each simulation 

immerses teachers in the complexities of fostering discussions on students' work. Two 

simulations cover the entire lesson, while two focus on specific phases, offering 'soft' feedback. 

The Responding to student work simulation, a targeted intervention, aimed to impact 

teachers' reasoning about responding. In this simulation, users encounter: 

● 4 storyboarded scenarios with student sharing work publicly (see Figure 1a),  

 
1
 The Tangent Segments Theorem states that two intersecting lines are tangent to a circle if and 

only if the points of tangency are equidistant from the point of intersection of the lines 
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● A panel of 18 possible responding moves with differing underlying functions, 

requiring users to indicate at least one they like or dislike, 

o The underlying functions of the moves are as follows: 9 Responses, 9 

Rejoinders; among which 6 Support, 6 Confront, and 6 Invite; and among 

which 12 are Subject-specific and 6 are Subject-generic.  

● 3 prompts for participants to articulate their goals for handling each student 

contribution, followed by a curated subset of moves that fulfill their goals (see Figure 

1b). 

● The original panel of choices of 18 responding moves is finally provided without 

delineation and participants are asked to choose a way to respond, which they can 

edit.  

 

  

Figure 1a. A scenario embedded in 

the Responding to student work 

simulation 

Figure 1b. A panel of 18 possible responding 

moves, after user expresses a preference for having 

the class respond, as opposed to responding 

themselves  

 

Users first select at least one move from the panel that they like or dislike. The second, third, and 

fourth interactions with the panel provide curated moves based on users' goals (see Figure 1b). 

This curation is driven by 3 prompts where users indicate (1) whether they prefer to respond 

themselves or ask the class to respond, (2) whether they prefer to prolong or curtail the 

discussion, and (3) whether they prefer to support or confront the student's ideas. The fifth 

interaction asks users to select a single move closest to their preferred response, with the option 

to revise. These questions along with the curate moves offer participants explicit guidance on 

linguistic distinctions from the Milewski/Strickland framework but deliberately omitted explicit 

attention to subject-specific and subject-generic distinctions to investigate the varied impact of 

feedback on functional distinctions. 

The Teaching the lesson with student participation simulation, serving as a pre-post 

assessment, presented 12 opportunities for participant responses to students’ contributions. 

Participants shared responses to students’ contributions and their reasons for those responses in 

open-ended boxes. We compared pre-post responses to assess our approach's potential for 

insights into changes resulting from the Responding to student work simulation. 
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Methods and Analysis 

The analyzed sample consists of responses collected during the integration of simulations 

into a Western University methods course in Fall 2023. Our focus is on 10 prospective teachers 

who completed all simulations (4 males, 6 females; 8 White, 2 BIPOC). These simulations were 

undertaken individually as homework assignments in the initial half of the methods course, with 

data collection confined to their simulation performance and subsequent reflective assignments. 

This study delves into prospective teachers' responses in the pre- and post-assessment, where 

they engaged in a virtual teaching exercise for a full lesson. 

We examined the alignment between the responding moves participants chose and their 

justifications. We analyzed responses to "How would you like to respond to the contribution 

made by…" (prompt 1) to discern shifts in types of responding moves. For these responses, we 

used the Milewski/Strickland (2020) framework along with newly added distinctions of subject-

generic and subject-specific moves. To further assess the simulation's potential in aiding teachers' 

understanding of the function of different responding moves, we introduced an additional 

measure. We sought evidence in participants' responses to follow-up prompts: "What do you 

anticipate could happen next?" (prompt 2) and "Please explain why you chose to respond to…in 

the way you did and at this moment (Optional)" (prompt 3). In our analysis, we looked for 

participants' recognition of the function of their responding move from prompt 1, ensuring 

alignment with the functional categorization. 

For example, one participant responded to prompt 1 with, "Why would the compass being 

smaller make the circle fit better? How would we be sure that it still hit the line and didn't get too 

small?" This was coded as a subject-specific confronting-rejoinder move. For prompts 2 and 3, 

the participant said, “More discussion about what we need to know about the points. The 

compass size isn't the problem here it's the location of the two points and that's what I want the 

conversation to skew towards.” This was coded as matching for subject-specific and linguistic 

functions because it anticipated a discussion about the location of the points and aligned with the 

rejoinder and confronting categories by anticipating a prolonged interaction in which the 

participant desired some problematizing regarding the location of the two points. 

Table 1 presents additional coded responses to illustrate our methodological approach. While 

most responses were coded as matches or non-matches, some instances proved less 

straightforward. Occasionally, participants did not explicitly address one or more functional 

categories in their reactions to prompts 2 and 3. In such cases, the data was marked as non-

explicit, and this did not count towards the total justifications. We report on shifts in teachers' 

responding practices and their inclination to provide anticipations and justifications that align 

with the theories underlying the simulation’s design in the findings section.  

 

Table 1: Sample coding for prompts 1, 2, and 3 in the pre- and post-assessments 

Prompt 1 

Responses 

Coding 

for Prompt 

1 Responses 

Prompts 2 & 3 

Responses 

Coding 

for Prompt 

2/3 

Responses 

Final 

Code 
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ask what the 

class thinks about 

what was said.  

Rejoinder I would guess because 

the two circles are both 

close there would be a 

majority agreeance [sic] 

but some might say that it 

is fine as long as the circle 

is tangent to the point. I 

prefer to let the class think 

about these ideas rather 

than I giving [sic] them all 

the answers.  

Match 

rejoinder 

Match 

linguistic 

Invite Match 

invite 

Generic Non 

match 

generic 

Non-

Match 

subject 

specific 

I agree, Iota 

made some good 

progress. What do 

you notice from 

their work that 

makes you say that?  

Rejoinder I anticipate the student 

will talk about the arc. I 

want to hear more and 

have a contribution from 

that student deeper than a 

"good job" while also 

assessing the student's 

understanding in the 

moment.  

Match 

rejoinder 

Match 

linguistic 

Support Match 

support 

Generic Non 

match 

generic 

Non-

Match 

subject 

specific 

That's great 

work, Omicron! 

That angle bisector 

ensures that our 

circle's center is 

equidistant from 

both sides, so it 

"fits" inside.  

Response I anticipate the class 

will have more comments 

maybe on the distance of 

the points not being equal. 

I want to ensure Omicron 

feels validated especially 

after the comment from 

their classmate and that the 

class understands the value 

of Omicron's contribution.  

Non 

match 

Response 

Non-

Match 

linguistic 

Support  

Match 

support 

Subject 

Specific 

 

Match 

SS 

Match 

subject 

specific 

Mu had a similar 

drawing to Nu, but I 

like the 

incorporation of the 

angle bisector and 

perpendicular line.  

Response I anticipate they will 

realize they need to edit 

their picture so the circle is 

smaller and "fits better."  

Match 

Response 

 

Non-

Match 

linguistic 

Support Non 

match 

support 

Subject 

Specific 

 

Match 

SS 

Results 

Our methodological approach reveals the potential of simulations to support a multifaceted 

view of teachers’ professional growth. The first six rows of Table 2 demonstrate discernible 

shifts in participants' instructional moves before and after the intervention. In the pre-assessment, 
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participants employed few rejoinders (29%), which increased to 62% in the post-assessment. 

Similarly, there was a shift towards supportive moves, with fewer supportive moves used in the 

pre-assessment (32%) compared to a majority in the post-assessment (67%). Additionally, the 

use of invitational moves increased from 10% to 16%.  

To illustrate these shifts, we share pre-post data from one of the participants, whom we will 

call Max Zimmerman. The first time through the simulator, Max responded to one of the student 

contributions with a closed confront, saying,  

“I would talk about how this is a great start and using perpendicular lines is a good way  

to think about it. I would then agree with the class and say you cannot just move points so  

it isn't quite there, but it is getting close.”  

In his final time through the simulator, Max responded to one of the student contributions with 

an open invitation, saying,  

“I would ask if anyone notices anything about how the circle is made using the points as 

we have seen examples where the initial point given appears to not work.”  

The comparison between Max’s pre and post simulation responses to students’ contributions 

illustrates how participants evolved from using more closed and confronting discursive moves to 

more open and collaborative ones.   

Apart from these shifts, we also report there was no substantial change in participants' use of 

subject-specific moves. Recall, we did not distinguish these moves in terms of more and less 

productive and even now, we would be hard pressed to make any claims indicating whether these 

shifts represent improved practice, as our focus is not on changing teachers’ behavior, but rather 

changing teachers’ ability to offer more reasonable justifications for their practices.  

The analysis of participants' justifications presents a more nuanced picture. While 

participants did not offer more coherent justifications related to the subject-specific nature of 

their responding moves, they showed a marked increase in awareness of the linguistic functions 

of their responding moves. None of the participants’ pre-assessment responses aligned with their 

move in terms of both linguistic functions (rejoinder/response, support/confront/invite), while 

71% of post-assessment responses aligned with both functions. Furthermore, 24% of responses 

had no matches for either function in the pre-assessment, contrasting with 0% of responses in the 

post-assessment responses had no matches.  

To illustrate what this trend looked like in the data, we return to participant Max.  Recall, in 

his first time through the simulator, Max used a closed confront to respond to a student 

contribution. He justified that decision by stating, “Encouraging students is always a good 

idea.” This suggests that Max did not quite understand the ways that his responding move was 

likely to be interpreted as confronting, rather than supporting, the student’s contribution.  He 

offered a second justification by saying, “Maybe there is a question or two about why using 

perpendicular lines will help.” Again, at this point, Max seems to not yet understand that 

because he elected to use an evaluative move, the subsequent interaction about the student’s 

contribution is more likely to be curtailed, rather than prolonged.  

In his final time through the simulator, recall Max responded to a student contribution with 

an open invitation.  This time, he offered a more realistic anticipation of that decision stating, 

“Hopefully some students begin to notice the pattern that a and b must be the same distance” 

and “Because I think they showed they know what to do and a slight understanding of where 

these points need to be in order for them to work”.  Unlike the justifications he offered in the 
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first time through the simulation, this time, Max demonstrates an accurate anticipation that his 

move will lead to students taking the next discursive moves and will do so in a way that 

promotes a prolonged discussion of the original contribution.  

The nuanced shift in participants’ justifications underscores the complexity in participants' 

justifications for their responding moves, highlighting the intricate nature of linguistic functions 

in the context of the simulation. To be clear, we consider the shift in matched justifications, 

rather than the shift in types of teachers' responses, to be a more reasonable indicator of 

professional growth. This approach avoids making value-laden judgments about which responses 

are good or bad and instead focuses on whether teachers can offer justifications for their 

decisions that align with the expected outcomes of their chosen actions. 

 

Table 2: Changes in subject-specific moves and justifications across the pre-post 

assessment (n=sets of responses to prompts 1-3) 

 
Pre 

(n=67) 

Post 

(n=61) 

Types of 

Moves 

Subject-specific 52 

(79%) 

49 

(79%) 

Response  48 

(72%) 

22 

(36%) 

Rejoinder  19 

(29%) 

39 

(62%) 

Support  21 

(31%) 

36 

(59%) 

Confront  40 

(60%) 

15 

(25%) 

Invite  6 (9%) 10 

(16%) 

Types of 

explicit 

justifications 

Matched on Subject-Specific  38 

(60%) 

34 

(53%) 

Unmatched on Subject-Specific 5 (7%) 5 (8%) 

Matched on linguistic functions  0 (0%) 44 

(72%) 

Unmatched on linguistic functions  67 

(100%) 

17 

(29%) 
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Conclusions 

The two outcomes concerning participants' ability to align their justifications with the moves 

they crafted were as expected. We anticipated that given the explicit feedback provided to them 

on these functions, participants would enhance their proficiency in offering justifications 

aligning with the linguistic function of their responding moves. Conversely, the absence of shifts 

in the participants’ propensity to provide justifications matching the subject-specific nature of 

responding moves was predictable since participants did not receive feedback on these aspects. 

The results indicating shifts in the function of participants' instructional moves were 

surprising, as the intervention did not guide preferred responding moves. Nevertheless, these 

shifts are intriguing, and we contemplate whether similar results would emerge with a larger 

sample of teachers. The illustration of the evolution in Max’s decision making and justifications 

for his discursive moves demonstrates the potential of the simulator for enhancing teachers' 

professional growth. Replicating this study on a larger scale with consistent results could 

strongly support Chazan and Ball's (1999) hypothesis, emphasizing the importance of "a 

language capable of finer distinctions and a stance aimed less at evaluation" to support teacher 

inquiry and professional growth. Future research will explore this avenue using the simulation to 

collect data from a national sample of teachers and employing the outlined methods to 

investigate whether the simulations help practicing teachers make their responding moves more 

purposeful. 
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In this paper, we begin by mapping major methodological contours in mathematics education 

research before delving into one methodology: narrative inquiry. We trace the use of narrative 

inquiry within the disciplinary boundaries of mathematics education noting significantly that it 

has been underutilized relative to other educational research fields. In order to highlight the 

potential of the methodology, we share two cases of its use outside disciplinary boundaries. In 

the first case, ‘analysis of narratives’ is used to complicate and contextualize mathematics 

teacher beliefs. In the second case, ‘narrative analysis’ is used to co-construct voices 

representing a spectrum of teacher responses to mathematics curriculum reform.   

Keywords: Research methods, systemic change, teacher beliefs 

Research in mathematics education has a history of maintaining conventional research 

methodologies and theories; being borne out of the fields of mathematics and psychology 

(Kilpatrick, 2020) may impact this tendency. When the field has begun to embrace new ways of 

doing mathematics education research or exploring different ideas as to what might count as 

mathematics education research (MER) there has been pushback. For example, in a 2010 Journal 

for Research in Mathematics Education (JRME) editorial, Heid asked “Where’s the Math (in 

mathematics education research)?” She contended that the articles published in JRME should 

have mathematics as an “essential component rather than being a backdrop for another area of 

inquiry” (p. 103), and her perception was that many submissions had gone astray of this focus. In 

a later JRME editorial, “A Future Vision of Mathematics Education Research: Blurring the 

Boundaries of Research and Practice to Address Teachers’ Problems,” Cai and colleagues (2017) 

outline a future where MERs and teachers work together to develop, implement, and refine 

mathematics tasks prior to placing them in a professional knowledge repository: their vision of 

bridging the theory-to-practice gap endorsed lesson study as a methodology. While this vision 

indeed bridges theory and practice, it significantly narrows what counts as MER and forecloses 

many alternative approaches. While we agree with Heid that mathematics should be central, we 

also ask, “Where is the research (in mathematics education research)?” While mathematics 

education researchers (MERs) need to center diverse concepts and ideas within mathematics, we 

find it also important for MERs to explore and consider multiple and diverse educational 

research methodologies. Then, complementing Cai’s vision for the future of lesson study, we 

invite mathematics education researchers to consider another methodology to bridge the theory-

to-practice gap, another methodology less used than lesson study: narrative inquiry. Our vision 

for MER is one in which diverse research methodologies, with narrative inquiry (NI) as one 

example, broaden ‘what counts’ as MER, what is studied within mathematics, and approaches to 

research. The following research questions guide our inquiry: 

1. How have narrative research methodologies been used in mathematics education research 

in the last 50 years? 
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2. In what ways does the narrative inquiry that is being done in MER vary across 

publication outlets? 

3. What unique insights or benefits might narrative inquiry offer to MER? 

To answer the first two research questions, we use a combination of (i) reading the Mathematics 

Education Atlas maps (Dubbs, 2021) for the JRME, Educational Studies in Mathematics (ESM), 

and For the Learning of Mathematics (FLM) and (ii) systematic literature review. The findings 

of these two analyses together, then, describe the uptake of narrative research methods across 

time (RQ1) and across publication outlets (RQ2). The details of our analysis and findings are 

elaborated in the sections that follow. In the discussion, we address RQ3 by elaborating 

Chapman’s (2020) contention that “the field of mathematics education could benefit from more 

attention to narrative as a way of knowing and narrative analysis” (p. 25). We turn next to an 

explicit discussion of our theoretical framing and research method before presenting our findings 

and recommendations. 

Theoretical Framing: Discourses and Knowledge Production 

Discourses are the taken for-granted narratives which structure our communal understanding 

of the field. Parks and Schmeichel (2012) argued that the dominant discourses of MER made it 

difficult to, not only publish research on race and ethnicity in dominant MER journals, but to 

even think of race and ethnicity together with mathematics education. In a similar way, 

discourses about MER make it near-impossible to consider MER from a narrative perspective. 

Thus, as Parks and Schmeichel described the impossibility of considering race and ethnicity in 

MER, here, we describe the discourses that establish which methods are thought easily and 

which methods are impossible to be thought. In total, then, these discourses not only have the 

effect of foreclosing certain research foci (e.g., race and ethnicity) but also certain research 

methods (e.g., NI). 

While our larger project investigates the uptake of the five approaches to qualitative inquiry 

outlined in Creswell’s (2013) Qualitative Inquiry and Research Design: Choosing among Five 

Approaches, in this paper we focus on the specific case of narrative inquiry. As the title suggests, 

Creswell presented five approaches within qualitative inquiry and, for each, named whose work 

he relied on to structure each approach: narrative research (c.f., Clandinin & Connolly, 2000; 

Pinegar & Daynes, 2007; Polkinghorne, 1995), phenomenological research (c.f., Moustakas, 

1994; van Manen 1990), grounded theory research (c.f., Corbin and Strauss, 2007; Glaser & 

Strauss, 1967; Strauss & Corbin, 1990, 1998), ethnographic research (c.f., Van Maanen, 1988; 

Wocott, 2008), and case study research (c.f., Stake, 2005; Yin, 2009;). 

We chose narrative inquiry as our focus because narrative inquiry asks the researcher to come 

alongside their participants to create more complex and nuanced understandings: this resonates 

with the future envisioned in 2017 by the JRME editorials. Further, Chapman (2008, 2020) and 

others (Beattie, 2006; Huber, 2013; Milner, 2007) have established the utility of NI in teacher 

education both as a research methodology and as a pedagogical tool. As we will show, while 

narrative inquiry methodology was tentatively being accepted in the ‘top-tier’ MER journals, it 

was being utilized more widely outside of MER and had long been an accepted methodology in 

literacy research. The Handbook of Reading Research (Kamil et al., 2001) included an entire 

chapter dedicated to narrative methods (Alverman, 2001). Subsequently, in 2007, the top journal 

of qualitative research, Qualitative Inquiry, dedicated a special issue (13:4) to narrative methods. 

In addition, Educational Researcher composed a special issue (38:8) in 2009 and the Journal of 
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Educational Research followed in 2010 (103:2). Narrative methods have been clearly established 

within the field of educational research and its subfields despite MER’s relatively slow uptake. 

Narrative Inquiry as a Way of Knowing 

Narrative is a scheme by means of which human beings give meaning to their experience of 

temporality and personal actions... [Narrative] provides a framework for understanding the 

past events of one’s life and for planning future actions. It is the primary scheme by means of 

which human existence is rendered meaningful. (Polkinghorne, 1988, p. 11). 

As indicated by Creswell, Polkinghorne (1988, 1995) is a name often associated with 

narrative inquiry (NI) as a research method. Within MER writ large and mathematics teacher 

education in particular, Chapman (2008, 2020)–building on the work of Polkinghorne and 

Clandinin and Connelly (2000)–is centrally positioned when discussing NI. The purpose of this 

section is to briefly introduce NI as a research method; for a more detailed discussion, we refer 

the reader to Chapman’s (2008) “Narratives in Mathematics Teacher Education,” Clandinin and 

Connelly (2000), and Kim (2016). 

For Polkinghorne (1988), narrative is a primary scheme for making meaning of life 

experiences. Chapman (2008) described five ways that those researchers who accept 

Polkinghorne’s premise have used narratives and NI education research: (i) as a research method, 

(ii) as a means of collecting data, (iii) as an object of analysis, (iv) as a tool in professional 

development or teacher education, and (v) as a basis for reflective thinking. Later, Chapman 

(2020) classified these five ways into the two categories of NI identified by Polkinghorne (1995): 

narrative analysis (the first way) and analysis of narratives (ways two through five).  

Using these two perspectives as a frame, then, our present analysis seeks to understand the 

ways that NI has been taken up in MER. Those MERs that have taken up NI as a research 

method will have explicitly named NI as their method and/or cited NI methodologists (e.g., 

Polkinghorne, Connelly & Clandinin, or Chapman). 

 

Research Method: Mathematics Education Atlas and Systematic Literature Review 

Our review of NI literature within MER consisted of two complementary approaches: the 

Mathematics Education Atlas (henceforth, the Atlas; Dubbs, 2021) and systematic literature 

review. The Atlas includes a complete mapping of published research and citation relationships 

in the JRME (1970-2019), ESM (2010-2016), and FLM (2010-2017). We used the database to 

quickly identify which published articles in these journals cited NI as a method. Since the Atlas’ 

records are limited to these journals and end with research in the late 2010s, we complement the 

map data with a systematic review of NI published in other research journals (and in ESM since 

2017 and in FLM since 2016). Together these approaches comprise a breadth of MER published 

within disciplinary journals (i.e., JRME, ESM, and FLM). In addition, we highlight two cases 

from non-mathematics education research journals. 

We used the Atlas to identify those articles that cite Clandinin, Connelly, Polkinghorne, and 

other authors that have developed the theoretical basis for NI as a methodology. In total, our 

reading of the maps returned one relevant article within the JRME (Wager, 2014), two relevant 

articles within ESM (Foote & Bartell, 2011; Nardi, 2016), and no relevant articles from FLM. 

Our definition of relevance was ‘articles that named and used NI as a method.’ For example, 

other authors (e.g., Remillard & Bryans, 2004) cited Clandinin and Connelly’s work on ‘teacher 
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as curriculum maker’ but did not undertake NI as a research method. We exhaustively discuss the 

identified articles in the findings section.  

Due to the temporal cutoffs of the Atlas maps, we complement our reading of the maps with 

a systematic literature review (Petticrew & Roberts, 2008). Since our interest is in capturing 

research that is explicit in naming NI as a method, we searched for articles that cited Clandinin, 

Connelly, Polkinghorne, and/or Chapman within JRME for articles since 2020, ESM for articles 

pre-2010 and post-2017, and FLM for articles pre-2010 and post-2016. This systematic search 

returned no additional articles from JRME, one pre-2010 article in ESM (Lloyd, 2006), and one 

post-2016 article in FLM (Chapman, 2020). Together with the results from the maps, four of 

these articles will be discussed in our Findings section related to RQ1. We chose not to 

separately discuss Chapman’s article since it is about NI as a research method instead of an 

article using NI as a method; instead, we include insights from Chapman through this article to 

emphasize our affinities with and departures from Chapman’s work. 

Finally, we chose two articles published outside the disciplinary mathematics education 

journals that are representative of the two categories identified by Chapman and Polkinghorne: 

‘analysis of narrative’ and ‘narrative analysis.’ Drake and Sherin’s (2006) article in Curriculum 

Inquiry was chosen to represent the first category while Martinie and colleagues (2016) article in 

Journal of Educational Research represents the second. Together, these articles provide the 

evidence to answer RQ2. We turn now to our detailed discussion of our findings. 

Findings 

As mentioned above, our use of the Atlas maps and systematic review together returned four 

articles from the high-quality, disciplinary MER journals included in this review: Foote and 

Bartell (2011), Lloyd (2006), Nardi (2016), and Wager (2014). This dearth of research evidence, 

as elaborated in the next subsection, upholds the discursive construction (Parks & Schmeichel, 

2012) of NI as an impossible method for undertaking MER. The systematic search of ERIC and 

Google Scholar, however, shows that NI is indeed a possible method for undertaking MER and 

we discuss the representative articles next (i.e., Drake & Sherin, 2006; Martinie et al., 2016).  

An Impossible Method, Little Uptake within Disciplinary Boundaries  

Here, we revisit our research questions and explicitly elaborate our findings in the context of 

MER and its potential futures. As Parks and Schmeichel (2012) argued, the persistence of 

particular ideas and relative neglect of others makes it easy to think of particular theories and 

methods (e.g., lesson study) while others remain difficult to consider (i.e., NI). Indeed, only 15 

articles within the three maps–11 within the JRME 2010s map and 4 within ESM–cite primary 

NI sources. In contrast to both JRME and ESM, in the FLM map, there are no articles that cite 

Polkinghorne, Clandinin and Connelly, or other authors that have developed NI as a method. 

Narrative inquiry as method in JRME. In the JRME maps, there are no articles that cite 

Polkinghorne while ten articles cite Clandinin and Connelly. Of these ten, nine articles (ranging 

from 1989 to 2015) cite Clandinin and Connelly’s work on ‘teacher as curriculum maker’ (e.g., 

1986, 1992): Averill et al. (2009); Brown et al. (2009); Fraivillig et al. (1999); Gresalfi & Cobb 

(2011); Huntley (2009); Leinhardt (1989); Oonk & Verloop (2015); Remillard & Bryans (2004); 

Tarr et al. (2008). The singular article to use NI as a method is Wager’s (2014) “Noticing 

Children's Participation: Insights Into Teacher Positionality Toward Equitable Mathematics 

Pedagogy”; this article will be discussed in detail shortly.  
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It is notable, as Creswell explicitly named Clandinin and Connelly as qualitative researchers, 

that only one article in this group named their study as qualitative research. Tarr (2008) reported 

their research as a “quasi-experimental design” that “employed both qualitative and quantitative 

methods” (p. 252). They explained that the qualitative methods were used to ‘characterize’ 

curriculum implementation and support the relationships between curriculum, teaching, and 

learning outcomes ascertained by the hierarchical linear modeling methodology. The first 

example of a citation that referred to narrative was Oonk and colleagues (2015) in which they 

explained, “practical knowledge often develops from stories of teaching practice, it is considered 

to have a narrative character (Clandinin & Connelly, 1996; Lin, 2002)” (p. 561). While we were 

looking for the influence that Clandinin and Connelly had on the use of NI as a method in MER, 

we theorize that their work on teachers as active creators of curriculum in these manuscripts 

helped to shift the positioning of teachers as enactors of fixed curricula to actors who bring 

stories and experiences that interact and influence curriculum and curricular decision making. 

This recentering of teachers and their experiences as important to the ways that curriculum is 

enacted, in our view, laid the groundwork for the entry of NI into the field.  

Wager (2014), the only article to explicitly use narrative as a method, looked to the theory of 

“identity in practice (Holland et al, 1998)” (p. 313) in her study of teacher noticing. She 

describes her use of the theory to “understand how lived experiences shape identity 

development” (p. 317) including how narratives and discourses position us relative to ourselves 

and others. Wager acknowledges the importance of teachers’ lived experiences and created 

narratives to “identify a storyline and position the teachers relative to equitable mathematics 

pedagogy” (p. 319). In her methods section, Wager described her research as an “empirical 

study” that used “qualitative and, to a lesser extent, quantitative methods to examine narrative 

data to uncover teachers’ actions as evidence of noticing participation” (p. 320). Wager cited 

Clandinin and Connelly (2000) when describing the “initial narratives” (p. 325) that she wrote to 

describe the teachers' equity experiences and perspectives. She described these narratives as 

“inelegant, brief descriptions that were another source of data” (p. 325). Here we see Wager 

moving from ‘narrative analysis’ to ‘analysis of narratives.’ Further based on additional data, 

Wager refined the narratives to “incorporate the comments made in their reflections” to provide 

“a snapshot of my interpretation of the teachers’ identity… based on the stories they shared 

(Wortham, 2001)” (p. 325). She then analyzed the narratives to consider the storylines of teacher 

noticing. While Wager cited Clandinin and Connelly’s (2000) seminal Narrative Inquiry: 

Experience and Story in Qualitative Research and used their methods, Wager did not explicitly 

name her methodology as NI.  

Narrative inquiry as method in ESM. In the ESM map, there are no articles that cite 

Polkinghorne and only four articles that cite Clandinin and Connelly: Darragh (2016); Foote & 

Bartell (2011); Nardi (2016); and Zazkis & Koichu (2015). Of these, Darragh’s review of 

identity research cited Clandinin and Connelly in reference to the concept of identity and Zazkis 

and Koichu (2015) undertook a duoethnography that cited Clandinin and Connelly cursorily as 

an example of the “diverse narrative approaches in qualitative research” (p. 164). The two 

articles by Foote and Bartell (2011) and Nardi (2016), together with the article by Lloyd (2006), 

undertook NI as a method and are discussed now. 

Lloyd (2006) demonstrated the potential of analysis of narratives as a way “to offer a window 

into preservice teachers’ ideas and sense-making about certain mathematics classroom events” 
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(p. 81) and to initiate change in practice and thinking. In Lloyd’s study, preservice teachers were 

invited to write fictional stories about mathematics classrooms in a methods course by taking up 

two opposing perspectives on a response to reform. The purpose was to encourage PSTs to 

imagine situations in the role of a teacher versus more familiar roles as student or observer. The 

teachers’ stories offered “a wealth of information about their individual identities and classroom 

experiences” (p. 58) and served as “powerful catalysts for change and development” (p. 59). The 

researchers theorized that the fictional accounts in particular were catalysts for change because 

they explicitly asked the teachers to create images of themselves and others outside of their 

actual experiences. The teachers’ fictional accounts were analyzed structurally and thematically. 

This study highlighted the potential of the use of NI both as a pedagogical tool and a research 

tool to identify preservice teachers’ views and anticipate specific responses to common 

classroom dilemmas. 

In a study exploring the narratives pre- and post-doctoral emergent scholars produced 

regarding their positionality on equity and diversity, Foote and Bartell (2011), explicitly named 

“two main forms of gathering stories and then analyzing them within a narrative framework” (p. 

49). The first form, in which researchers live alongside participants to gather stories of lived 

experience, aligns with Polkinghorne’s narrative analysis while the second, in which stories are 

gathered from participants “and the narrative data is analyzed for common themes, metaphors, 

plotlines, and so on to identify general themes or concepts” (Clandinin, 2007, p. xv, as cited in 

Foote & Bartell, 2011), aligned with Polkinghorne’s analysis of narratives. It is within the latter, 

the analysis of narratives that Foote and Bartell situated their work. They undertook 26 life-story 

interviews, “semi-structured interviews designed to elicit accounts of the life stories that the 

participants felt had influenced their interest both in issues of equity and diversity and in 

mathematics teaching and learning…[probing] for experiences that may have happened during 

different periods of the life cycle such as in childhood, young adulthood, and the present time” 

(p. 51). Through this work, Foote & Bartell found three themes within the narratives–“‘othering 

experiences,’ ‘bearing witness experiences,’ and ‘orienting experiences’” (p. 52)–that influenced 

emergent scholars’ choice to engage in equity-focused research. These researchers, however, also 

identified two tensions that the emergent scholars described in their narratives: “(a) a tension 

between research seemingly more focused on mathematics or research seemingly more focused 

on equity, and (b) a tension between research grappling with complex and important theoretical 

issues and urgent, practice-based considerations” (p. 52). The way these researchers gathered 

their data narratives and the nature of their findings firmly places the work within the paradigm 

of ‘analysis of narratives.’ In this analysis, the researchers provided important findings that 

“[make] visible how the life experiences of some early career mathematics education scholars 

impact the stance they bring to their research and, in so doing, reaffirms arguments that socio-

cultural perspectives of learning are important for mathematics education research” (p. 65). 

Furthermore, Foote and Bartell’s focus on emergent scholars extended Lloyd’s work to show 

that, in addition to serving as a research tool to identify preservice teachers’ views and common 

classroom dilemmas, NI can be employed to identify emergent scholars’ views and common 

research dilemmas. 

Nardi’s (2015) work with narrative fits within the broad concept of narrative analysis. Nardi 

justified the use of re-storying, a process of constructing a “story from the original data 

(Ollerenshaw & Creswell, 2002, p. 330)” (p. 363) that “assimilates the multiplicity of voices 
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(researchers’ and research participants’ as well as amongst the participants themselves) without 

suppressing or eliminating this multiplicity” (p. 364). Nardi’s project included interviewing 

mathematicians and creating narrative accounts that were co-constructed from transcripts of 

multiple mathematicians and mathematics education researchers to provide insight into 

university mathematics pedagogy. She argued that the stories she created are a “potent 

communicative tool which can be deployed by two communities—mathematics and mathematics 

education research—which often find communication challenging” (p. 364). The stories Nardi 

wrote provided a common language to discuss teaching and learning between the two 

communities. She described this method as communicating the substance of the research 

knowledge in forms that are amenable to both communities. The use of narrative allowed her to 

produce a “new form of knowledge about mathematical pedagogy co-constructed by members of 

two often separated communities …relocated to a novel third space which welcomes non-deficit, 

non-prescriptive, context-specific, example-centered and mathematically focused discourses” (p. 

373-374). Thus, Nardi extended NI beyond understanding preservice teachers’ (e.g., Lloyd, 

2006) and emergent scholars’ (e.g., Foote & Bartell, 2011) views and provided a powerful 

example of the ways that NI can open up other possibilities on knowing, on knowledge 

production (co-constructed multiplicative accounts), and communication across 

fields/communities (mathematics and MER). 

A Possible Method, Differences in NI Uptake outside Disciplinary Boundaries (RQ2) 

While NI has had slow uptake within the MER disciplinary journals, there has been MER 

that employed NI published in educational research journals outside the disciplinary boundaries. 

In this section, we present two examples of this research to explicate the potential of NI as 

methodology and to further emphasize the distinction between Polkinghorne’s (1995) analysis of 

narratives and narrative analysis. 

Case 1: Analysis of narrative. Drake and Sherin (2006) used NI to explore two teachers’ 

responses to reform-oriented mathematics curriculum. The authors justified their use of narrative 

inquiry because it “allows for a contextualized and integrated understanding of teachers’ beliefs, 

knowledge, and prior experiences'' (p. 157). Drake and Sherin came to believe that understanding 

the teachers' narratives in relation to their experiences as learners and teachers of mathematics 

provided clarity to teachers’ choices in implementing the curriculum. They stated that “narratives 

of identity both guide the actions of individuals and frame their interpretations of new 

information” (p. 158). While Drake and Sherin relied on narratives and specifically math story 

interviews, they did not employ narrative methodology writ large. Like Sfard and Prusak (2005) 

before them, they relied on narrative as a way to think about identity. The inclusion of narratives 

(past and present) in considering teachers’ decisions about reform complicates both what 

teachers say about the reform and who a researcher believes the teacher is. As Drake and Sharin 

(2006) explained, narrative inquiry “allows for an understanding of teachers’ beliefs not as 

isolated statements, but as interrelated ideas rooted in teachers’ identities-their stories of 

themselves as learners and teachers” (p. 158). Drake and Sherin (2006) included narrative in the 

theoretical framing of their article-more than in the methodology. Within the methodology, they 

named ‘mathematics story interviews’ drawing on McAdams’ (1993) life story interviews. They 

deemed their method of NI “different from and, in particular, more structured than, many other 

examples of narrative inquiry (Clandinin & Connelly, 2000)” (p. 162). Drake and Sherin’s work 

with narrative falls into the first of Polkinghorne's (1995) two categories, they analyzed the 
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mathematics life stories and coded to teacher beliefs within the stories. Drake and Sherin 

justified their use of NI because it allowed them to better understand the teachers’ adaptation of 

curriculum by first considering “their identities as learners and teachers of mathematics, as 

revealed their mathematics stories” (p. 164). They concluded their manuscript with a 

recommendation for future research that connects “teachers’ narrative mathematics identities 

using alternative methodologies” that are “more unstructured” (p. 184). Martinie et al. (2016) 

provides an example of a less structured NI methodology.  

Case 2 Narrative analysis. Like Drake and Sherin (2006), Martinie et al. (2016) employed 

narrative methods to understand mathematics teachers’ response to reform. Unlike Drake and 

Sherin, however, in this case, Martinie and colleagues went beyond ‘analysis of narrative’ 

methods and acknowledged narrative methodology in general, and ‘narrative analysis’ in 

particular, as an “important part of the education research landscape…[that] problematizes the 

positivist nature of knowledge as the objective and unitary way of knowing” (p. 659). They 

explained that narrative researchers use stories to “interrogate” and “reshape” (p. 659) dominant 

views and position their approach as being “alongside.” In the decade between Drake and Sherin 

and Martinie et al., narrative methodologies were more broadly explicated and employed. While 

analysis of narratives was used by Drake and Sherin, Maritinie et al. employed narrative 

analysis to both understand math teachers’ experience with common core implementation and to 

synthesize those experiences using narrative analysis that mingles the voices of the participants 

and ”synthesize[s] the fragmented data and (re)construct[s] them into a coherent story rather than 

separating them into different categories” (p. 660). The mingling of voices provides 

confidentiality and “attends to the ethical stance of narrative inquirers while interweaving our 

ontological, ethical commitments (Clandinin & Murphey, 2009)” (p. 660). In this case, the 

researchers created four voices that represented the teachers’ various responses to adopting the 

reform (hardcore adopter, anxious adopter, cautious adopter, critical adopter). Rather than 

providing themes of teachers’ responses to mathematics curriculum reform siloed into a 

monologue, this methodology presented four distinct voices that provided valuable insights into 

various stakeholders and resisted shutting down oppositional voices as less important forms of 

knowledge. With these four voices acknowledged, researchers, policymakers, and educational 

leaders can better address concerns, criticisms, and reservations to enact important change in 

mathematics education. 

Discussion 

By mapping the methodological contours of the field of mathematics education across time, 

we establish what has been done. We then use this sketch to emphasize the ways that this 

landscape and its boundaries limit what is seen as legitimate within the field, what is seen as 

proper methodologically and theoretically. To wit, we disrupt the present notion that ‘much 

progress has been made in the adoption of diverse qualitative perspectives in mathematics 

education research’ and imagine a more expansive future by making explicit the call to adopt NI 

methods. In response to our third research question, What might narrative inquiry offer 

mathematics education research?, we note the movement in the field of MER due to the 

positioning of teachers as creators of curriculum when Clandinin and Connelly’s work was first 

taken up, we then point to how analysis of narratives allowed MERs to complicate and 

contextualize teacher beliefs (Drake & Sherin, 2006) and how narrative analysis created a third 

space for communication between mathematicians and MERs (Nardi, 2015) and ‘voices’ that 
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represent a range of responses to mandated curriculum reform so that MERs might better 

understand how to work with teachers to enact change in mathematics education (Maritinie et al. 

2016). In many ways, our findings echo those of Geller, Hernández, and Chapman (2013): 

“[narrative was] used mainly as a conveyer of teachers’ knowledge and experiences and not as a 

narrative research methodology (which was what was proposed by Clandinin and Connelly, 

2000).” We close by reflecting on the overall lack of specificity we found in discussions of 

methodological work within the MER that we reviewed. We encourage mathematics education 

researchers to be more methodologically (and theoretically) adventurous and to carefully 

describe and cite their methodological sources. 
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This study examines the efficacy of two types of instructional strategies - Explicit Attention to 

Concepts and Student Opportunity to Struggle - for improving middle grades mathematics 

achievement. We worked with 100 grades 6-8 mathematics teachers, providing professional 

development on implementing the strategies in their local contexts, then partnering to conduct a 

large-scale cluster crossover study on two ways of sequencing the strategies, Struggle First vs. 

Concepts First. Compared to a business-as-usual control group, we found positive effects of both 

types of instructional sequences on students’ mathematics achievement, with greater positive 

effects for Concepts First than Struggle First. Interestingly, many teachers reported shifts in their 

beliefs about the strategies. The results highlight the potential for targeted professional 

development to support teachers’ adaptation and use of mathematics instructional practices. 

Keywords: Professional Development 

Keeping in mind the tensions mathematics teachers face in their instructional choices  

(Stahnke et al, 2016), we conducted a research study with 6-8 mathematics teachers to study the 

effects of attempting to adapt new instructional strategies on students’ mathematics achievement. 

 

Background 

The Explicit Attention to Concepts (EAC) and Student Opportunity to Struggle (SOS) 

framework focuses on two primary instructional strategies for enhancing mathematics education 

as articulated by Hiebert & Grouws (2007). Through a synthesis of research indicating positive 

effects across study design, teaching formats, and contexts, Hiebert and Grouws identified these 

clusters of instructional practices as supportive of students' conceptual understanding. Stein and 

colleagues (2017) built upon this work by operationalizing the measurement of the EAC and 

SOS constructs in teaching practice and examining their relationship to students’ skill efficiency 

and conceptual understanding. Their observational study found that teaching practices with both 

high EAC and high SOS tended to have the largest estimated effects on students’ skill efficiency 

and conceptual understanding, followed by in order by high EAC-low SOS practices, high SOS-

low EAC, and low EAC-low SOS practices. That research, as well as studies that focus on 

similar constructs (Fennema & Romberg, 1999; Kapur, 2014; Loehr et al., 2014; Schwartz et al., 

2011), has demonstrated positive effects of EAC and SOS instruction on students’ math 

achievement. Nonetheless, there are questions about supporting teachers’ implementation of 

EAC and SOS, including how EAC and SOS practices may differentially influence student 
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learning, effective ways to order instructional practices aligned to EAC and SOS (c.f., Schwartz 

et al., 2011), and how the practices are taken up by teachers. 

The 3-year Researching the Order of Teaching (ROOT) project, a $3 million research project 

sponsored by the National Science Foundation (Award No. 1907840) was designed to address 

some of the open questions about EAC and SOS in the context of middle grades mathematics 

settings. The ROOT project started in fall of 2019 with the recruitment of 100 Grade 6-8 

mathematics teachers from 34 schools within 22 school districts in the western United States. 

Initially, the professional development activities were designed to engage participating teachers 

in exploring ways to adapt and implement EAC and SOS as instructional practices in their 

classrooms (Hughes et al., 2023).  

A distinctive feature of the project was our objective to foster idea-sharing and provide 

support for implementation, without pushing for strict adherence to the researchers’ 

interpretations of the EAC and SOS instructional practices. We view teachers as key 

stakeholders, experts in their local contexts, and co-producers of knowledge (Kieran et al., 2012). 

We included activities such as interacting with colleagues around the practice guide as a 

boundary object (Crawford et al, 2022), planning and implementing a small sequence of lessons, 

and reflecting on features of the strategies to support teachers’ development of personalized 

routines and practices that fit their preferences, curriculum, and local context. The research 

questions were:   

1. Strategy Efficacy: What are the effects (if any) on student math achievement when 

teachers are asked to enact EAC and SOS instructional strategies? 

2. Sequencing Efficacy: What are the effects (if any) on student math achievement when 

teachers are asked to enact “Struggle First” or “Concepts First” instructional strategies? 

3. Teacher Beliefs: After attempting both Struggle First and Concepts First instructional 

strategies, which strategies did teachers perceive to be most effective for promoting 

students’ math achievement? 

 

     Methods 

We recruited 100 grades 6-8 mathematics teachers to participate in the project, of which 99 

completed the initial baseline data collection. The teachers all worked in public schools in a 

single western U.S. state, spread across 34 schools in 22 school districts. Nearly all worked in 

brick-and-mortar schools, though one teacher worked for a virtual public charter school. 

Teachers’ mathematics instruction often spanned multiple grades (49 taught Grade 6, 44 taught 

Grade 7, and 44 taught Grade 8) and courses (37 taught one course, 48 taught two courses, and 

12 taught three or more courses). The teachers worked in a variety of school settings, both in 

terms of students’ socio-economic status (mean eligibility for federal free or reduced school 

lunch was 58%, SD = 21%) and locale type (31% rural, 69% suburban or small city). Teachers’ 

demographics indicated substantial variability in mathematics teaching experience (mean = 9.8 

years, SD = 7.4, Range = 1 to 32), and they primarily self-identified as female (77%) and white 

(96%). Educational attainment among the teachers was typically a bachelor’s degree (57%), 

though 40% held a master’s degree, and 2% held an Ed.S.  

As an optional professional development activity for middle grades teachers, we planned for 

20% attrition annually (expected n = 100 teachers in year 1, 80 in year 2, 64 in year 3). A global 

pandemic began disrupting participating schools during the spring of year 1, causing a shift to 
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primarily remote activities during year 2 and increased attrition as teachers responded to their 

local crisis contexts. By year 3, the schools had primarily returned to in-person instruction (often 

with masks) and N = 58 teachers completed the planned research activities. We analyzed teacher-

level factors (e.g., grade levels, district types, years of prior experience) to look for indications of 

differential attrition during the pandemic disruptions, but found no significant evidence of 

divergence from random attrition.  

Research Design 

In year 3 we partnered with teachers to implement a cluster crossover research design in 

which the teachers were divided randomly into two groups – Concepts First and Struggle First 

during the summer prior to the study. We randomized the assignment of teachers to conditions at 

the school level to ensure teachers could collaboratively plan with teachers in their building, with 

students clustered within their teachers. There were 28 teachers in the initial Concepts First 

group and 30 teachers in the initial Struggle First group. During the fall, the Concepts First group 

was asked to start each lesson with EAC instructional practices followed by SOS instructional 

practices, while the Struggle First group was asked to start their lesson with SOS instructional 

practices followed by EAC instructional practices. In the spring, the groups ‘crossed-over’, with 

each group of teachers asked to follow the other groups’ sequencing instructions from the fall.  

The professional development during years 1 and 2 of the project involved familiarizing 

teachers with EAC and SOS, as well as supporting their implementation of these practices in 

their classroom through a summer institute, online modules, and small-scale teaching studies 

each fall and spring with in-school support from dedicated math instructional specialists. The 

teaching studies were typically 2-3 weeks in length and focused on whether a particular 

EAC/SOS strategy was practically useful for supporting student learning. The design and 

implementation of the instructional unit was supported by one of three full-time instructional 

specialists working on the project who were directly assigned to the teachers by school. The level 

of support provided during the crossover study was dependent on teachers’ request for support, 

with an average of M = 21 interactions (Range = 11 to 31) with specialists per teacher for an 

average duration of M = 31 hours (Range = 12 to 49). 

Data Collection & Analysis 

The primary data source was the state mathematics assessment data system, which was 

developed by a multi-state consortium for use in Grades 3 to 10. Nearly all students completed 

the exam each spring, which we used as pre and post scores. An interim comprehensive exam 

was administered during the winter between the “cross-over” of instructional strategies to obtain 

mid-year scores. We used demographic data for all students in the districts to generate a group of 

students from participating districts with non-participating teachers using a genetic algorithm to 

select a balanced sample of a control group with a similar demographic profile along key 

variables (district, grade level, sex, special-education status, and pre score). The final subsamples 

included n1 = 2202 students in the Concepts First in fall arm, n2 = 1941 students in the Struggle 

First in fall arm, and n3 = 4246 students in the control group. The sample was approximately 

balanced by grade level (Grade 6 = 32%, Grade 7 = 35%, Grade 8 = 33%), with students’ 

primarily reported as White (67%) or Hispanic/Latino (30%). Approximately, 10% of students 

met Special Education criteria and 11% were identified as English language learners. 

Demographic distributions were within 1% across the 3 subsamples. 
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For the two research questions about student achievement, we applied standard procedures 

for (ordinary least squares) multiple linear regression modeling. The outcome variable was 

students’ gains during periods of instructional intervention, with pre-identified explanatory 

variables obtained from prior observational studies of student achievement, including students’ 

grade level, study condition, race, and special education status. This included technical 

verification of model assumptions (e.g., independence, homoscedasticity, non-multicollinearity, 

omission of outliers, normal residuals) and summary reporting of model characteristics. The 

primary purpose of the regression models was estimates of effect sizes, relying on the crossover 

research design for claims of causal effects.  For the third question, we visualized teachers’ 

responses to brief survey questions during the final weeks of the crossover study about their pre 

and post beliefs regarding the relative effectiveness of the Concepts First and Struggle First. 

 

Results 

To assess Question 1, we applied multiple linear regression on the outcome variable of 

students’ annual mathematics achievement, with explanatory variables of categorical grade level 

(6, 7, or 8), binary study condition (control or EAC/SOS), binary race (White or non-White), and 

binary Special Education eligibility (no or yes). This resulted in a significant model, F(5, 7379) = 

25.68, p < .01, R2 = .02. All of the explanatory variables had statistically significant coefficients,  

including the intercept = 4.3 (t = .14, p = .03), grade 7 = 13.6 (t = 7.04, p < .01), grade 8 = 5.5 (t 

= 2.8, p = .01), White = 6.7 (t = 4.0, p < .01), special education = -17.32 (t = -6.1, p < .01), and 

EAC/SOS condition = 7.0, (t = 4.5, p < .01). The coefficients indicate absolute differences in 

average annual achievement across the explanatory variables while holding all other variables at 

baseline levels (listed first above). In particular, holding all other variables at baseline, the model 

suggests students of teachers participating in the EAC/SOS study had 7.0 points (95% CI = 3.4 

to 10.1) greater average mathematics achievement than comparable students of teachers engaged 

in business-as-usual instruction. For relative comparison, the average estimated effects of grade 

levels were 13.6 and 5.5 points (for Grades 7 & 8 versus Grade 6, respectively). 

To assess Question 2, we applied multiple linear regression on the outcome variable of 

students’ semesterly mathematics achievement, with explanatory variables of categorical grade 

level (6, 7, or 8), study condition (control, Struggle First, Concepts First), binary race (White or 

non-White), and binary Special Education eligibility (no or yes). This resulted in a significant 

model, F(7, 10389) = 66.25, p < .01, R2 = .04. With the exception of White (estimate = 2.7, t = 

1.9, p = .06), all the explanatory variables in the model had statistically significant coefficients,  

including the intercept = -15.0 (t = -7.6, p < .01), grade 7 = 9.9 (t = 6.0, p < .01), grade 8 = 4.2 (t 

= 2.5, p = .01), Spring semester = 27.4 (t = 20.0, p < .01), special education = -5.8 (t = -2.4, p = 

.02), Concepts First = 8.9, (t = 5.6, p < .01), and Struggle First = 4.5 (t = 2.7, p = .01). Similar to 

the other regression analysis, the estimated coefficients indicate absolute differences in average 

semesterly student achievement across the explanatory variables while holding all other variables 

at baseline levels. In particular, holding all other variables at baseline, the model suggests 

students of teachers attempting to enact Concepts First teaching had 8.9 points (95% CI = 5.6 to 

12.2) greater average mathematics achievement per semester than comparable students of 

teachers engaged in business-as-usual instruction. This is approximately twice the estimated 

effect of Struggle First teaching, which was 4.5 points (95% CI = 1.2 to 7.8) per semester.  
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For Question 3, during the last few weeks of the crossover study, teachers reported their 

beliefs about the relative effectiveness of Struggle First and Concepts First. Responses suggested 

teachers’ experiences led many to shift in their beliefs about which way of sequencing EAC/SOS 

instruction was more effective. For instance, 24 of the teachers reported shifting from believing 

Concepts First was more effective to believing Struggle First was more effective, compared to 

only 5 teachers who reported the reverse type of shift from Struggle First to Concepts First. 

 

Conclusions 

Overall, the findings support professional development structures that recognize the complex 

systems within which teachers are teaching, and that providing professional development around 

well-research strategies and providing autonomy around important aspects of implementation 

can result in increased student achievement. 
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We explored pedagogical dilemmas in a content focused coaching conversation. We explored 

how a coach managed the dual obligations of producing viable lesson artifacts while also 

advancing teacher thinking with respect to content and pedagogical knowledge. We termed these 

as instrumental and learning orientations, respectively. We describe a representative case 

selected from a larger sample to characterize: (a) the presence of these orientations, (b) the 

purposes each orientation served, and (c) how the orientations functioned in tandem. The results 

show that the coach found strategic moments to advance teacher thinking while fulfilling the 

instrumental obligation of producing lesson artifacts. 

Keywords: In-service teacher education; teacher educators; professional development  

Educators face the perpetual tension of conveying conventional disciplinary knowledge to 

learners while simultaneously eliciting and building from learners’ idiosyncratic ways of thinking 

(Lampert, 1985). While these tensions have typically been explained in terms of teachers and 

students, there is a parallel to the work of teacher educators whose goal it is to help teachers 

understand content or pedagogy. We situate an exploration of these tensions in the context of 

content focused coaching (CFC) (West & Cameron, 2013). An important goal in content focused 

coaching is to support teachers’ development of their content and pedagogical content knowledge 

(Ball et al., 2008), a goal that may be in tension with more instrumental goals of producing a set 

of viable lesson artifacts for the teacher to implement in an upcoming lesson. We frame this 

tension in terms of pedagogical dilemmas, which Windschitl (2002) describes as navigating 

between “honoring students' attempts to think for themselves while remaining faithful to 

accepted disciplinary ideas” (p. 133). We translate the notion of pedagogical dilemmas of 

teachers to those of coaches, a parallelism termed lifting (e.g., Prediger et al., 2022) in which 

experiences from teaching are applied to the facilitation of professional development, including 

coaching. We posit that the knowledge required to teach is a form of disciplinary knowledge, 

involving both content and pedagogical knowledge (cf. Ball et al., 2008; Shulman, 1986), and 

that coaching is intended to develop those forms of knowledge.  

Content Focused Coaching 

The coaching model employed in our study was CFC (West & Cameron, 2013), which stands 

in contrast to instructional coaching or cognitive coaching. CFC is distinguished by its focus on 

disciplinary content in the coaching conversations; coaching sessions focus on the mathematics 

of the lesson, how that mathematics is addressed in the task design, student thinking that might 

emerge during the lesson, and what kinds of instructional moves facilitate or advance 

mathematical understandings (Callard et al., 2022). The innovation in our professional 

development project was the translation of a face-to-face model of mathematics coaching to a 

fully online, video-based coaching model (Amador et al., 2021). 
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Orientations in Coaching Conversations 

We characterize pedagogical dilemmas in coaching in terms of two orientations: learning and 

instrumental. A learning orientation involves a focus on advancing teacher thinking with respect 

to mathematical content, student reasoning around that content, and pedagogical strategies that 

promote student thinking. An instrumental orientation involves a focus on generating a set of 

tangible artifacts around the lesson, including a well-defined learning goal, a high-quality 

mathematical task, and a set of anticipated student strategies (West & Staub, 2003). With respect 

to the presence of these orientations, we posed the following research questions: How were 

instrumental and learning orientations evident in a planning conversation as part of content-

focused coaching cycles, what purposes did each serve in the conversation, and how did they 

function in tandem? 

Methods 

We selected a representative coaching conversation from a larger set of 28 conversations, ten 

of which we analyzed for pedagogical dilemmas in a broader study (Choppin et al., in review). 

For reasons of space, we restrict analysis in this paper to one planning conversation. The focal 

coaching conversation involved a teaching team of two teachers, named Larson and Walters, and 

a coach, named Reiss.  

For this paper, we analyzed the planning conversations for the presence of instrumental and 

learning orientations. An instrumental orientation related to the obligation to produce viable 

lesson artifacts by the end of the planning conversation, while a learning orientation related to 

the coach’s desire to advance the teacher’s content and pedagogical content knowledge. In terms 

of distinguishing between instrumental and learning orientations in the coaching transcripts, we 

coded a coach turn instrumentally oriented if: (a) the coach suggested revising the mathematical 

goal or task without an accompanying explanation, (b) elicited details of a task or student 

strategy, or (c) described student strategies or mathematical task without explaining connections 

to the mathematical goals of the lesson. We coded a coach turn as learning oriented if: (a) the 

coach pressed the teacher to explain the rationale for their choice of goal or task, (b) explained a 

goal or task in ways that connected to broader mathematical or pedagogical ideas, or (c) 

explained how a student strategy indicated understanding of a mathematics concept. The key 

distinction between the two categories was the presence of an explanation or a press for an 

explanation; explanations entail a connection between two related topics (e.g., between an 

interpretation and evidence, between a representation and the idea it is intended to convey, 

between student thinking and the mathematical goal). We interpreted explanations or press for 

explanations as evidence of the coach’s intent to advance the teacher’s content or pedagogical 

content knowledge. 

Results 

We selected a case to explore the distinctions between the two orientations and how the 

interweaving of the two characterized the coaching conversation. The teachers (Larson/Walters) 

sent Reiss a task they had adapted from an online source but communicated to Reiss that they 

wanted to revise the task. The task required students to generate a graph and function from a 

table of values, generate a table from a verbal rule, and match multiple representations. Reiss 

explained that during the planning meeting “we ended up greatly modifying the task … it was 

very skills-based [and we transformed it to focus on] the relationship between the three different 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1262 

representations.” Our analysis revealed three phases in the planning meeting. We characterized 

the first and last phases as instrumentally oriented and we characterized the middle phase as 

learning oriented.  

 

Phase One. In the initial phase the teachers provided multiple goals: Larson stated, “They 

would be able to see the relationships between the coordinates, to be able to write the rules, and 

be able to articulate how you get the coordinates just based on the rules.” The teachers had 

indicated to Reiss that they had revised the task in advance of the planning meeting to include a 

series of input / output tables, from which they hoped students would be able to generate rules. 

Walters explained that the students “have multiple tables with X and Y coordinates and 

coordinate pairs [to] figure out what the rule might be for those particular tables.” Larson added 

that the rules would be “adding three to X and … adding six to X or something like that.” 

We characterized this phase as instrumentally oriented because the focus was on generating 

detailed descriptions of the mathematical goal and task. In the second phase, Reiss sought to 

clarify how students would engage with the task and if the current formulation of the task 

presented sufficient opportunities for sensemaking, described below.   

Phase Two. Reiss initiated this phase with a suggested revision to the task that was more 

open than the one the teachers had presented, stating “would there be a way to give them … a 

bunch of tables, and have a bunch of rules and have a bunch of graphs to see if they could match 

them.” Reiss also suggested leaving some blank spaces on the bottom of the table to have 

students generate their own points. Reiss asked, “Where do you think kids will struggle if you 

were to give them a set of graphs, a set of tables, and a set of rules? Where do you think they’re 

going to struggle with that?” Larson responded that students might struggle to identify 

coordinates, to which Reiss responded by explaining that students struggle with identifying 

coordinates that do not correspond to points visible on the graph. Reiss elaborated on the 

suggestion to add blank spaces on the table, stating “I think if you left spaces on the table where 

they had to add in some additional points” so that students would understand that “all those 

points are still falling on this line.”  Reiss explained that leaving blanks on the table and 

matching rules with tables would open up the task and provide more opportunities for students to 

make connections.  

We characterized this phase as learning oriented because Reiss pressed the teachers to 

explain why they thought that the task would support students to identify coordinates and to 

make rules from a table. In this phase, Reiss made suggestions about the task and explained how 

those suggestions would support students to make sense of the mathematical goals of the lesson. 

The pressing and explaining by Reiss pushed the teachers to provide their justifications for the 

task and how it addressed the mathematical goal. 

Phase Three. The third phase of the conversation focused on finalizing the task features and 

the summary discussion. Reiss suggested an extension to the matching activity in case some 

students completed it too quickly. Reiss made this suggestion without explaining how it would 

support students to make sense of mathematical concepts, so we characterized it as an 

instrumentally oriented move. Though we characterized this phase as instrumentally oriented, 

there were moments when Reiss provided additional explanations of how students might struggle 

with generating points on the line and rules, why her suggestions for revising the task provided 

opportunities for student sense making, and how to support the students in their efforts. Reiss 
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pushed the teachers to consider how leaving a blank space provided opportunities for 

sensemaking that a more scaffolded approach would not. We characterized the last part of this 

phase as instrumental because it primarily focused on logistical details of the summary 

discussion. 

Discussion 

Reiss used the first phase (characterized as instrumentally oriented) to clarify the 

mathematical goal and the task. In the second phase (characterized as learning oriented), Reiss 

pushed the teachers to consider connections to the big mathematical idea embedded in the task 

and goals, and to revise the task in ways that supported student sensemaking of the mathematical 

goals. The third phase (characterized as instrumentally oriented) was focused on finalizing key 

details of the task and to organize the summary discussion of the lesson.  

The analysis shows how the orientations served distinct but complementary purposes. Reiss 

leveraged an instrumental orientation – making specific suggestions to revise the task – with a 

learning orientation, explaining why these suggestions would enhance students’ sensemaking 

opportunities. Reiss balanced the obligation of pushing the teachers to expand their 

understanding of mathematical and pedagogical ideas with the obligation to produce viable 

lesson artifacts by the end of the conversation. The dynamic between the orientations allowed 

Reiss to honor the teachers’ ideas and their need to produce a viable and well-defined lesson plan 

with her own desire to advance the teachers’ understanding of mathematical content and 

pedagogical principles.  

Regarding the pedagogical challenges coaches face, the findings illustrate how Reiss 

managed the tension between instrumental goals (e.g., crafting instructional materials for 

teachers to use in a lesson) and learning goals (e.g., eliciting and advancing teachers' cognitive 

processes regarding mathematical content, ambitious pedagogy, task design, and student 

cognition) (Harbour et al., 2021; Russell et al., 2020; West & Staub, 2003). Reiss ensured that 

Larson/Walters established a clear mathematical goal, a key component to develop teachers’ 

pedagogical content knowledge (Ball et al., 2008). Simultaneously, Reiss leveraged the 

development of the goal and task to stimulate teacher thinking by prompting them to articulate 

their thoughts and providing explanations that underscored aspects of the task that afforded 

connections to significant mathematical concepts. We hypothesize that an excessive focus on 

instrumental goals might have limited teachers' cognitive expansion, while an excessive 

emphasis on learning goals could have hindered the creation of high-quality instructional 

materials for an upcoming lesson. 

The three phases showed how the interweaving of the two orientations is an essential feature 

of coaching conversations. Each orientation was strategically employed in the planning 

conversation. These phases illustrate Reiss' awareness of the conflicting obligations and 

opportunities to stimulate teachers' cognitive processes. In summary, Riess coached in a way that 

navigated pedagogical dilemmas by leveraging the production of viable artifacts as opportunities 

to stimulate teacher thinking at strategic junctures, providing opportunities for teachers to 

develop their pedagogical content knowledge. 

We argue that the actions of Reiss, to balance pedagogical dilemmas between the 

instrumental phase and learning phase, all within one coaching planning meeting illuminate 

coach actions parallel to those of an effective teacher as they would balance teaching phases. The 

case shows a situation parallel to a teacher’s work to hone students’ attempts to think for 
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themselves (Windschitl, 2002). At the coach level, this principle was lifted (e.g., Prediger et al., 

2022) as Reiss honed the teachers’ attempts to think for themselves in the process of planning a 

mathematics lesson. Building from these findings, the following provides implications for 

coaching and research on coaching. 
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We explored the facilitation of video coaching clubs to provide professional learning 

opportunities for coaches taking part in video clubs as part of a three-part professional 

development project. We lifted a facilitation framework (van Es et al., 2014) from a video-based 

teaching context to a video-based coaching context to better understand how the facilitators of 

video coaching clubs drew out contributions from coach participants while simultaneously 

leveraging their own insights as productive tools to advance the conversation. We further 

explored how facilitation practices changed over the course of two years. We found that 

facilitators increased their contributions when the videos came from the participants. The 

facilitators used the videos to reinforce the principles of content-focused-coaching, to model how 

to reflect on videos of coaching, and to conjecture about broader issues in coaching. 

Keywords: rural, middle grades, professional learning, ambitious teaching, video clubs. 

We studied discourse moves of facilitators of video clubs that were designed to support the 

professional learning of mathematics coaches. Our video coaching clubs consisted of groups of 

four to five coaches who met regularly to collectively view and analyze videos of coaching 

practice, similar in structure to video clubs that have been used with teachers (Gaudin & Chalies, 

2015; van Es & Sherin, 2008). While there has been considerable literature on the facilitation of 

video clubs for teachers (cf. van Es et al, 2014; Coles, 2019), there has not been a parallel focus 

on video clubs for mathematics coaches. Karsenty et al. (2023) define a facilitator as “a 

professional who manages the PD activities, sets norms for interactions, supports teachers’ 

exchange of experiences and insights, monitors the discussion, and works with teachers toward 

the goals set for the PD” (p. 28). 

We note the complexities of extracting practices from nested activities to new layers of 

practices (e.g., nesting and lifting [Prediger et al., 2019]) to analyze the practices of facilitators of 

teacher educators). We studied the practices of the video club facilitators by adapting the 

Framework for Facilitation of Video-Based discussions, developed by van Es et al. (2014). This 

framework includes broad categories such as orienting group to the video analysis task, 

sustaining an inquiry stance, maintaining a focus on the video and the mathematics, and 

supporting group collaboration, that include specific facilitation moves (e.g., launching, 

countering, etc.)  The literature on video clubs for teachers shows that these clubs provide 

opportunities for teachers to develop their capacities to attend to how their actions supported 

student thinking. In turn, we hoped to show how the Video Coaching Clubs–given the name 

because mathematics coaches are the participants, not teachers–would support coaches to attend 

to how their actions impacted teacher’s learning. The premise of a mathematics education video 

club is to create an environment for a group of educators to develop evidence-based reasoning as 

the basis of teacher growth (van Es & Sherin, 2008); our intent was that video coaching clubs 

would foster a context for coaches to develop evidence-based reasoning as the basis for coach 

growth. We answered the following research question: How did the facilitator draw out 

contributions from the coach participants while simultaneously leveraging their own insights as 
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productive tools to advance the conversation? How did facilitation practices change over the 

course of four video coaching clubs?  

 

Design Principles for our Video Coaching Clubs 

We based our video club design on several principles. First, we wanted our coach participants 

to draw on videos of coaching to support their evidence-based noticing of relevant coaching 

incidents; this follows the principle of lifting (Prediger et al., 2019) principles from teacher video 

clubs to that of coach video clubs.  

We also drew from the notion of unpacking content related to teachers’ planning practices to 

serve as a basis for the coaching episodes around which we wanted the coach participants to 

reflect. In other parts of our project we utilized content-focused-coaching [CFC] (West & Staub, 

2013) as the model of coaching we emphasized; CFC is intended to develop teachers’ content 

knowledge and pedagogical content knowledge. Content-focused coaches typically engage 

teachers in a three-part coaching cycle in which a coach and teacher collaboratively plan, teach, 

and reflect upon a mathematics lesson (West & Cameron, 2013). The planning phase of the 

coaching cycle is an opportunity to support teachers to develop new planning practices, while the 

debriefing phase is an opportunity to help teachers reflect on the ways students engage with 

mathematics (e.g., Witherspoon et al., 2021). Thus CFC-based planning and debriefing practices 

were the focus of the coaching episodes coach participants viewed..  

Third, we followed the lead of van Es et al. (2014) and Coles (2019) in designing for high 

quality or productive discussions, which are characterized by four primary purposes for 

facilitation: orienting the group to the video analysis task, sustaining an inquiry stance, 

maintaining a focus on the video and the mathematics, and supporting group collaboration (the 

same key components of the van Es et al. (2014) facilitation model). Our model was intended to 

manage the tension between providing adequate scaffolding without being too prescriptive 

(Coles, 2019; Elliot et al., 2009).  

Study Context 

The Video Coaching Clubs are one of three components of fully online professional learning 

intervention designed to support mathematics coaches to engage in CFC. Coach participants 

from rural districts participated in an online course, online video coaching clubs, and one-on-one 

video-based coaching cycles with a Mentor Coach. Each video club met eight times over two 

years for approximately two hours each time; in the first year (first four clubs) the facilitator 

presented a video clip of their own coaching; these clips were chosen as examples, not exemplars 

of coaching moments, intended to initiate an inquiry into coaching, not an evaluation of the 

coach or the teacher (Borko et al.,  2011). In the second year, each coach participant, rather than 

the facilitator, presented a video as the basis of group reflection. To facilitate evidence-based 

reasoning, the coach participants were asked to follow a see-think-wonder sequence for each 

relevant moment they noticed in the video, meaning they responded to prompts asking: What did 

you see? What did you think? What did you wonder?. These responses were written 

independently; these reflections became the basis of the public reflection that followed via 

dialogue as part of the video coaching club.   

Methods 

Data Collection 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1267 

We analyzed transcripts from three groups of coaches who each met eight times, for a total of 

24 Video Coaching Clubs. The clubs were all part of the first cohort of our project; consequently, 

all of the facilitators were new to the roles and to video coaching clubs. The Video Coaching 

Clubs were conducted via zoom and recorded; these sessions were then professionally 

transcribed and entered into spreadsheets for analysis.  

Data Analysis 

We adapted the coding framework from van Es et al. (2014) that was focused on teachers 

reflecting videos of mathematics lessons. The categories from that framework described the 

facilitator role of the Video Coaching Clubs in regard to high quality discussions and thus largely 

aligned with our purposes. However, we made a couple of adaptations to the framework to 

capture the extent to which the intellectual contributions drew from the facilitator or the 

participants. We were interested in capturing the ways in which the facilitator drew out 

contributions from the coach participants while simultaneously leveraging their own insights as 

productive tools to advance the conversation.  

The practices from the Van Es et al. (2014) were: orienting the group to the video analysis 

task, sustaining an inquiry stance, maintaining a focus on the video and the mathematics, and 

supporting group collaboration. We largely kept the first and fourth roles, but incorporated the 

second and third into two newly defined practices. Both new categories, focusing on 

contributions of participants and facilitator interjecting their thinking, incorporated aspects of an 

inquiry stance and evidence-based reasoning while allowing us to explore how intellectual 

authority played out in the clubs. For example, in the category of focusing on contributions of 

participants, the codes probing participant reasoning, paraphrasing, lifting up, and summarizing 

and connecting function to make explicit the reasoning of the participants’ reflections on the 

videos; these promote an inquiry stance. In the facilitator interjecting their thinking category, the 

codes offering an explanation and questioning/wondering focus on the reasoning of the coach, 

while the code highlighting / providing evidence mark moves where the coach focused on the 

video and the mathematics. See Table 1 for a list of categories, codes, and definitions. 

 

Category Code Definition 

Orienting to the 

video club norms 

and activities 

Setting norms / 

expectations 

Setting cultural norms for participating, 

such as how to formulate disagreements 

Explaining Video Coaching 

Club activity and directions 

Providing details of the activity and how it 

will be structured 

Contextualizing clip 

Provide additional information about the 

coaching context and mathematics lesson 

Focusing on 

contributions of 

participants 

Prompting participant ideas 

Pose general prompts to elicit participant 

ideas 

Probing participant 

reasoning 

Prompt participants to explain their 

reasoning and/or elaborate on their ideas 

Paraphrasing 

Restate and revoice to ensure common 

understanding of an idea 
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Lifting Up 

Identify an important idea that a participant 

raised in the discussion for further discussion 

Summarizing and 

Connecting 

Make connections between ideas raised in 

the discussion 

Facilitator 

interjecting their 

thinking 

Offering an explanation 

Provide an interpretation of an event, 

interaction, or mathematical idea, from a 

stance of inquiry 

Highlighting / providing 

evidence 

Direct attention to noteworthy coaching or 

teaching moves in the videos 

Questioning/wondering 

Coach poses a hypothetical question or 

wonders about possible alternative actions. 

Orchestrating 

discussion 
Distributing participation 

Invite participants to share different ideas 

who have not already participated in a 

discussion thread. Use in cases where the 

instructor calls out names to ensure everyone 

has participated. 

Validating participant ideas Confirm and support participant contribution 

 

Table 1: Categories, Codes, and Definitions in the Framework 

 

Results 

The summaries for each category yielded some consistencies across the facilitators. The 

facilitators spent roughly one third of their turns orienting the coach participants to the VCCs, 

with percentages decreasing from the first year to the second for each facilitator. The following 

quote from Reiss in VCC1 is an orienting move that illustrates how the coaches framed the 

clubs: 

We've come up with three goals that we're really working towards in these video 

coaching clubs. The first one is to grow in our ability to make sense of coaching moves 

and teacher thinking by noticing and naming interesting moments in a planning 

conversation. Then we also want to work on growing our personal capacity to facilitate 

content focused coaching planning conversations with teachers. We're going to continue 

to grow our collaborative community of coaches through rich conversations about 

authentic coaching moments. (Reiss, VCC1) 

Roughly a fifth of the facilitator turns focused attention on the contributions of the coach 

participants; about half of those were prompting participant ideas and the other half a 

combination of the other four codes in that category. Roughly one in six facilitator moves 

involved facilitator interjecting their thinking, though the percentages in this category increased 

from the first year to the second year, which we explore below. Table 2 displays the overall 

percentages across both years of the VCCs.  

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1269 

Code Category Lowrey Reiss Whilton 

Orienting 32.2 43.5 32.7 

Focusing on contributions of participants 20.4 23.0 18.9  

Facilitator interjecting their thinking 15.5 13.9 16.1  

Orchestrating 20.2 9.7 14.7  

Table 2: Results across Categories for Both Years 

We noted a number of trends when comparing the first year (the four VCCs where the 

facilitator presented a video of their own coaching) with the second year (the last four VCCs 

where the video was from one of the coach participants). These trends offer insights into the 

nature of VCC facilitation and into the impact of the selection of videos in terms of the conduct 

of the VCCs. We focus on four codes where we noted differences across the two years of the 

VCCs, three of which are in the facilitator interjecting their thinking category. Three of these 

codes showed increases across the two years while one did not. We will provide examples of 

facilitation moves for each of these codes to provide insights into facilitation and why facilitation 

changed when the source of the videos changed. We first note that the code setting norms and 

expectations decreased for Lowrey and Reiss across the two sets of VCCs from around 7% of 

facilitator turns to around 1.5%; this can be explained in part because by the second year of 

VCCs the norms and expectations would already be established. We note this to illustrate that 

there were some expected changes across the two years, first because the norms of the 

community had already been established and because the facilitator was no longer presenting 

their own video. See Table 3 to see the codes and the percentages across the two years. 

 

Code Category Lowrey 

VCC1- 

VCC4 

Lowrey 

VCC5- 

VCC8 

Reiss 

VCC1-

VCC4 

Reiss 

VCC5- 

VCC8 

Whilton 

VCC1- 

VCC4 

Whilton 

VCC5- 

VCC8 

Paraphrasing 5.5  1.5 3.3 2.9 4.4  1.8 

 

Offering an explanation 7.6  10.1 3.0  10.3 6.1  11.1  

Highlighting / providing 

evidence 

0.5  4.6 0.3  4.9 1.7 3.6  

Questioning/wondering 2.2     6.1 0.00     13.2 2.2 9.3  

Table 3: Percentage of Facilitator Moves for Selected Codes 
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The four codes we focus on below showed notable changes across the two years, with 

paraphrasing being the only one of the four that decreased. Here is an example from Lowrey: 

I guess what I’m hearing is that there were—you bumped into some kids that just having 

that understanding of fractions that we can cut things up and we can still share them and be 

able to use all of them and share them equally and what that might mean. Then this idea of 

cutting ‘em all into fourths and is that going to give me the same amount as if I had a whole 

brownie? If I had four of those fourths, would that give me a whole brownie? (Lowey, 

VCC1) 

Here, Lowrey emphasizes the mathematical explanation provided by a participant in a detailed 

way. This example and others of paraphrasing largely served the purpose of “facilitator 

modelling the kinds of discourse or social and discussion norms desired in a group” (Coles, 

2019, p. 11). Similar to the decline in the norms and expectations code, the incidences of this 

code likely declined because the norms and expectations were more established in Year 2.  

The highlighting / providing code increased in part because the facilitator in year two 

followed the same see-think-wonder sequence to reflect on the video as the other non-presenting 

participants. For example, Whilton referenced a moment in participant Rice’s coaching video: 

One thing, too, from a coaching move that I noticed, I felt like the—I felt like the teacher’s 

explanation in response to the coach’s question was … just a broad statement. Then Rice 

followed up with a very specific, though. “Well, I heard a student say”—she named a very 

specific moment. (Whilton, VCC7) 

This differed a bit from the first year, where the highlighting revealed new insights into a 

coaching session the facilitator had conducted: 

Just like Stevens said, I didn't even catch the why. The part I caught from the teacher in that 

same moment though was she said, "I would have asked them this because that would have 

aimed at our third goal," right? Same moment, but then she named the question and then 

said, "I would have asked that because that would have gotten us towards the third goal." 

(Whilton, VCC4) 

The two codes that had the highest frequency of these four were offering an explanation and 

questioning/wondering. These codes represented the most substantial and detailed insights from 

the facilitator. As represented in the Reiss quote that expressed the goals of the VCCs, the 

facilitators’ goals included supporting the participants to understand the principles of content 

focused coaching and to make sense of specific instances of coaching with respect to those 

principles. Below, we include instances of these codes to show how the coaches accomplished 

these goals and why they were more prevalent in year two.  

The first example of offering an explanation is from Reiss connecting her interpretation of 

the video to the process of supporting teachers to identify a mathematical goal: 

I think what was happening was that the coach didn't want to give away too much about 

what she—I think she may have been trying really hard not to make the goal for her, so she 

was trying not to give too specific of examples because she wanted the teacher to self-

select her goals. (Reiss, VCC 5) 

A second example comes from Whilton, who described how the coach was trying to get the 

teacher to notice what students were doing: 

[was] the coach picking up maybe on this general nature of, "We talked about, and we did 

this," and the coach was like, "Wait a second. "We" were doing this stuff. What were the 
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kids actually saying?" And pushing for that specificity from what were the kids actually 

saying versus living in this  (Whilton, VCC 6) 

These examples illustrate how facilitators used moments in the video to raise essential tensions 

in content focused coaching; in one case it was about providing opportunities for teachers to 

contribute to lesson planning and in the second it was about supporting teachers to notice 

students’ mathematical thinking. In both cases, the facilitators’ explanations animated the 

coaches’ intentions and actions in ways that foregrounded principles of content focused 

coaching; they were able to leverage a participant’s video to make a point that may not have been 

as poignant had it been their own video. 

The first example of questioning/wondering is from Reiss in which she wonders about the 

outcome of the coaching conversation: 

Then I had a lot of wonderings about it. I wondered what might have happened when the 

teacher actually taught the lesson, if the students were able to actually make connections 

between the tiles and, again, it seemed like a rote procedure. Were they able to make a 

connection between the tile and solving equations or was it really just this procedure of I 

do this, I do this, I put this tile down. (Reiss, VCC 8) 

The second is from Whilton as he wonders about a broader coaching principle; 

My wondering, then, as a coach, is maybe, how do we press—again, back to the “all” 

conversation. What do we do about the kids who are conceptually challenged versus—

what are the coaching moves to not let that just be like, “Oh, they struggle”? It very well 

could’ve happened. I’m not saying that Rice didn’t do it, but it makes me wonder, how, 

maybe, do we press in the moment for the “all” piece on that? (Whilton, VCC 7) 

These wonderings represent the two most common types of wonderings, one in which the 

wondering about what happened in the subsequent lesson and the other a wondering about 

coaching in general. The first kind of wondering creates an anticipatory mind frame to support 

coaches to envision how their coaching impacts teaching, while the second kind of wondering is 

connected to general issues encountered in coaching and how to address them.  

 

Discussion 

This study explored the design and implementation of video clubs for mathematics coaches 

who are learning about content-focused coaching. We adapted a framework previously used to 

study facilitation in video coaching clubs for teachers because our design had considerable 

overlap with that of the framework’s authors. We used that framework to study facilitation moves 

in 24 VCC sessions across three facilitators in order to better understand how facilitation might 

differ in video clubs for coaches and to understand how the source of the coaching videos 

impacts facilitation. 

We found that the facilitators utilized some of the norming and orchestration moves 

documented elsewhere, showing that they were principled in adhering to facilitator roles for 

video clubs. The most interesting findings related to the differences between year one and year 

two of the VCCs, when the source of the video changed from episodes of the facilitators’ 

coaching to that of the participants’ videos. We found that the norming moves decreased while 

the moves in which the facilitators injected their insights increased. We saw this particularly with 

moves associated with explanations and with questioning and wondering. We attribute this to 

opportunities in which the facilitators used the videos to reinforce the principles of content-
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focused-coaching, to model how to reflect on videos of coaching, to foster anticipatory thinking, 

and to conjecture about broader issues in coaching. 
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This study examines how a Math 1 Professional Learning Community (PLC) collaboratively 

plans responses to student thinking on formative assessments. The PLC demonstrates awareness 

of student adaptability, yet there is potential to more fully embrace diverse student perspectives. 

While the PLC shares insights, there are opportunities to further integrate student work as class-

wide learning opportunities, which could enhance the effectiveness of planning responses. 

Findings underscore the importance of sustained collaborative learning spaces for educators to 

continuously improve their ability to respond to student work equitably.  

Keywords: teacher noticing, formative assessment, Professional Learning Community 

When students express their mathematical thinking, they provide valuable insights for 

teachers to make informed instructional decisions. Making space for this during the process of 

learning a topic is considered formative assessment (Wiliam & Black, 1996). The use of 

formative assessments allows educators to monitor student learning and adapt teaching strategies 

accordingly (Jacobs et al., 2010; Wiliam & Black, 1996). Although there are many proponents of 

implementing formative assessments in the classroom (Black & Wiliam, 1998), there is limited 

research on how teachers go about planning to respond. When considering plans to respond, 

research is mostly related to individual feedback (Abdulhamid & Venkat, 2018; Jacobs & 

Ambrose, 2008; Land et al., 2019) and whole group instruction (Abdulhamid & Venkat, 2018; 

Dunning, 2023; Leshin, 2023; Stockero et al., 2022), with minimal reference to small group 

interactions. In the articles that reference small groups, no commentary is made to whether these 

small groups are heterogeneous or homogeneous (Land et al., 2019; Leshin, 2023). Knowing that 

there are teaching habits of wanting to fix misconceptions rather than building on students’ 

strengths and various strategies (Cohen & Lotan, 2014; Ladson-Billings, 2009), there is a gap in 

the research on planning to respond equitably for heterogeneous groupings. As research supports 

the benefits of heterogeneous groups for student learning (Boaler et al., 2000), the same is ideal 

for adult learning; potential benefits of analyzing student work as a PLC include better 

understanding of student thinking and structured opportunities to ask questions of colleagues 

related to student thinking and responsive instruction (Jilk, 2016; Little et al., 2003). This study 

aims to describe the ways that a PLC collaboratively plans to respond to student thinking on a 

formative assessment item. 

Background Literature 

Formative assessments inform educators of student understanding, allowing for adaptive 

teaching, as highlighted by the value of students sharing their reasoning and offering teachers a 

snapshot into their understanding (Baldinger, 2020). Abdulhamin and Venkat (2021) advocate for 

formative assessments as they establish a two-way feedback loop between students and teachers. 

According to Bas-Ader and Carlson (2022), educators’ respond more adeptly to student ideas 

when they strive to comprehend students' thinking while also reflecting on their facilitation. 
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Dunning (2023) found that teachers might adjust their learning goals to align with student 

strategies. Thus, formative assessments play a key role in cultivating a dynamic learning 

atmosphere. 

PLCs are pivotal in collectively analyzing written formative assessments, offering educators 

a collaborative platform to merge expertise and perspectives while examining student work 

(Jacobs et al., 2010). Jilk (2021) says the benefits of PLCs sharing best practices promotes shared 

learning and continuous improvement, boosting teachers' collective instructional capabilities. 

Little et al. (2010) shows that collaborative analysis when looking at student work leads to more 

consistent and holistic evaluation methods, crucial for meeting diverse student needs. Regular 

PLC meetings allow teachers to coordinate their instruction, address challenges, and create 

effective responses to student work, fostering equity and inclusivity in education (Little et al., 

2010). Such collaborative effort in PLCs ensures that every student's learning journey is 

understood and supported, enhancing the overall quality of education. 

Theoretical Framework 

To frame planning to respond to students’ written work on formative assessment items, 

literature on teacher noticing of student thinking is referenced. Jacobs et al. (2010) describes 

teacher noticing of student thinking as consisting of three interrelated phases: attending, 

interpreting, and planning to respond. In the attending phase, teachers document the specific 

strategies used by students. During the interpreting phase, teachers evaluate and infer the 

student’s level of understanding based on these strategies. Lastly, in the planning to respond 

phase, teachers evaluate the best ways to react, informed by their evaluation of the student’s 

understanding. Leshin (2023) extended this framework to emphasize what each of the 

components includes when noticing for equity in students’ mathematical thinking. Specifically 

related to planning to respond to student thinking on formative assessments, teachers must 

leverage trends in student understanding to determine multiple plans to respond for the entire 

class and small groups, highlight elements of student work to share, and showcase student work 

that can elevate an individual’s status (Leshin, 2023). 

Methods 

This research employs a case study approach (Yin, 2014) to investigate a specific PLC's 

method of analyzing written formative assessment data. 

Participants and Context 

The case in this study involves a Math 1 PLC, composed of nine high school educators, that 

regularly analyze student-written work. Among the PLC are two co-teachers and an Instructional 

Leader (IL). The IL facilitates PLC meetings and coaches teachers.. All members of the PLC are 

educators of color. In this session, one member was absent, resulting in a gender-balanced 

composition. 

The PLC meets for one hour twice a week. Analysis of student work occurs twice a month. 

For this session, each PLC member brought one of their class sets of student work to analyze. 

This PLC’s agenda is based on their prior experiences for analyzing formative assessments; no 

training for this process was provided. This session included 40 minutes to analyze students’ 

work on a formative assessment task from a unit on systems of linear equations and inequalities 

(see Figure 1). PLC members sat in pairs for this session. 
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Figure 1: The Formative Assessment Task  

 

Data Collection and Analysis 

Data collection took place during one PLC meeting, involving video and audio recordings of 

the team collaboration while noticing student thinking of written artifacts, detailed field notes to 

align conversations with student work being referenced, and pictures of completed student work 

being referenced. 

All talk related to noticing student-written work for student thinking and equity during the 

PLC meeting was transcribed verbatim. The transcripts were then coded using Leshin’s (2023) 

codebook for noticing student thinking and equity (see Table 1). Other artifacts were used to 

reference the student work that teachers referred to in conversations with peers. Once the data 

was coded, the presence or absence of data for each Planning to Respond subsection of Leshin’s 

(2023) codebook revealed recurring themes representing common practices that supported or 

provided opportunities for growth in the PLC while equitably noticing student thinking.  

 

Table 1: Leshin (2023) Sub-codes and Descriptions for Planning to Respond 

 

Planning to respond sub-codes Description 

Patterns shape multiple plans to 

respond 

Teacher uses patterns in understanding to shape plans to 

respond for the whole class and small groups. 

Leverage aspect of work for 

learning 

Teacher identifies aspects of work (including mistakes or 

partial understandings) to share with the class as a 

learning opportunity. 

Highlight exemplars to elevate 

status 

Teacher identifies aspects of work to share with the class 

to celebrate or elevate a student.  

 

Results 

Based on the framework set by Leshin (2023), one component of planning to respond was 

observed, using patterns to shape multiple plans to respond. According to Leshin (2023), 

effectively planning instructional responses involves recognizing and using patterns in student 

understanding. Teachers in the PLC discussed multiple patterns across student work, including 
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misreading ordered pairs, misreading scale, and misunderstanding inequality symbols. All trends 

shared were misconceptions. For misunderstanding inequality symbols, a teacher in the PLC 

identified a recurring pattern where students replace inequality symbols with equality symbols. 

As a PLC, this misconception was identified as not being unique to current students but was 

noted as a common issue observed over several years. The teachers decided on different plans to 

respond, some decided to encourage students to reread the question upon completing their work 

while other teachers decided to have students box the symbol to bring their attention to the 

mathematical statement. These strategies were aimed at helping students realize the need to 

revert the placeholder equality symbol back to the correct inequality symbol. 

Two aspects of Leshin’s (2023) framework did not occur during this PLC session, leveraging 

aspects of student work for class learning nor highlighting student work to elevate student status. 

The PLC did not actively use student mistakes or partial understandings as class-wide learning 

opportunities. Responses to student work were more individualized, with general soft-skill 

advice like "read the question out loud" or skill tips such as reminding students to replace 

equality signs with inequality symbols. Leshin (2023) suggests using aspects of correct student 

work to elevate student status; however, this practice was not observed in this PLC session. 

There was no discussion nor selection of admirable student work to be shared with the class, 

indicating a potential area for growth in acknowledging and showcasing student achievements. 

On the contrary, students were often referred to in terms of evaluating their abilities, “those tend 

to be the stronger kids,” “these kids can do this,” and “you have that data and you can kind of see 

where kids are stronger and weaker.”  

As the PLC discussed trends and different possible ways to respond, the discussion became 

multifaceted, addressing immediate next steps as well as longer-term plans for several days 

ahead. There was a reality for teachers about being at different places with pacing; teachers 

ranged from being 0-5 lessons apart from each other in the unit. This created a space for a 

teacher who had already taught subsequent lessons to share their experiences, including 

decisions made and where students continue to struggle. For one particular activity implemented, 

the teacher shared that for “a lot of students, you could tell them from the kids who don't know 

how to solve with the variables being on both sides, that's where they will struggle, so I need to 

do a big lesson on that.” This exchange provided insights for those who had not yet taught these 

lessons. 

Discussion and Conclusion 

The PLC’s practices while planning to respond show an understanding of the need for 

student adaptability, yet fall short in fully centering diverse student thinking. While there is 

collaborative sharing of insights, the lack of integrating student work as class-wide learning 

opportunities (Leshin, 2023) limits the effectiveness of planning to respond in a way that 

supports a space where students have the right to make mistakes, share ideas, and engage in 

conversations to deepen their learning (Kalinec-Craig, 2017). Determining how to respond to 

student work become more natural as educators attempt to understand student thinking more 

often, suggesting that the craft of planning to respond can be learned (Baş-Ader & Carlson, 

2022). Since planning to respond can be learned, sustained collaborative learning spaces for 

educators can strengthen a teacher’s craft of planning to respond (Jacobs, 2010; Jilk, 2016; Little 

et al., 2003). The findings of this study indicate that PLCs need support with respect to equitably 

planning to respond (Leshin, 2023). Future work is needed to design resources and support 
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learning experiences for PLCs with diverse team members with this focus. It is important to note 

that a limitation to this study is that only one PLC session was observed; a more in-depth 

understanding over time is needed to capture the full complexity of current practices. 

Additionally, since this study only focused on planning to respond, future work should aim to 

understand how PLCs’ interpreting practices influence their plans to respond. 
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Coaching literature is replete with guidance on how coaches can lay the foundation for 

successful in-person coaching partnerships with mathematics teachers (e.g., Knight, 2007; 

Killion, 2008). With the increased use of virtual coaching (e.g., Carson et al., 2019; Gregory et 

al., 2017; Matsumura et al., 2019), amplified by the pandemic, it is less certain how coaches 

create conditions for productive coaching interactions with teachers in online spaces, which 

arguably are more impersonal as compared to in-person settings. To address this gap, we sought 

to answer the question: In an initial conversation with mathematics teachers, how do experienced 

coaches create conditions for future one-on-one coaching interactions? 

We adapted conceptualizations from the medical field regarding how doctors seek to build 

rapport with their patients (e.g., Roter & Larson, 2002) and contend coaches have three central 

tasks during initial conversations with mathematics teachers: (1) build social and emotional 

rapport; (2) discuss professional experiences and goals; (3) communicate expectations for future 

coaching interactions. Our study aimed to understand the ways in which coaches navigated these 

three tasks given they require a coach to act, respectively, as fellow human, professional 

colleague, and knowledgeable authority. 

We analyzed one-on-one “Getting to Know You” meetings of 18 coach-teacher dyads, 

conducted via Zoom, that occurred prior to online coaching cycles. All coaches had multiple 

years of experience coaching online and all teachers taught grades 4 – 10 mathematics. We coded 

the talk-turns of the coach, parsed at the sentence level, using specific codes nested within the 

following broad categories: social rapport building, emotional rapport building, professional 

experience, professional goals, conversational goals and logistics, and coaching expectations. 

Each broad category corresponded with one of the three central tasks previously described.  

Preliminary findings revealed that coaches tended to focus on topics related to professional 

experience but used diverse strategies to infuse social and emotional rapport building into 

conversations about professional topics. In doing so, coaches managed the obligations to act as 

both a professional colleague and fellow human by connecting simultaneously at professional 

and personal levels. Our study contributes to the growing body of research focused on how 

coaches engage with teachers and productive coaching practices (e.g., Kochmanski & Cobb, 

2023; Gibbons & Cobb, 2016; Witherspoon et al., 2021). Specifically, our findings provide new 

knowledge about how experienced coaches responded to the complexity of supporting 

mathematics teachers in one-on-one interactions that occurred in online spaces. This knowledge 
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holds implications for future research and points to practical strategies to support coaches as they 

seek to support the teaching and learning of mathematics. 
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We analyzed the planning conversations of two coach-teacher pairs in an online version of 

content-focused coaching. We used four coaching discourse moves to explore two central 

tensions in content-focused coaching: the tension between the intellectual authority of the 

teacher and the coach and the tension between instrumental and learning orientations. We 

analyzed the coaching conversations by the number and nature of phases, by how authority was 

distributed across the coaching conversations, and by how the orientations fluctuated throughout 

the conversations. The analysis revealed that one coaching conversation was more structured in 

terms of the progression of content and authority; by contrast, the other conversation was more 

improvisational and free-flowing. We also noted that other factors, such as the teacher’s 

familiarity with the task and the mathematics content, influenced the conversation. 

Keywords: In-service teacher education; teacher educators; professional development. 

Coaching is a professional learning activity that holds the potential to improve teaching (e.g., 

Kraft & Hill, 2020) and student learning (e.g., Campbell & Malkus, 2011). Content-focused 

coaching, a particular model of coaching, has the primary goal of developing teachers’ content 

knowledge and pedagogical content knowledge (Callard et al., 2022; West & Cameron, 2013). 

Content-focused coaches typically engage teachers in a three-part coaching cycle in which a 

coach and teacher collaboratively plan, teach, and reflect upon a mathematics lesson. The 

planning phase of the coaching cycle has drawn considerable attention from the mathematics 

education research community. This phase is an opportunity for coaches to cultivate new 

planning habits for teachers, which are necessary for implementing ambitious instructional 

practices (e.g., Witherspoon et al., 2021).  

The discursive behaviors of a coach shape the learning experiences of a teacher (Costa & 

Garmston, 2016). Thus, realizing the potential of coaching during planning conversations as a 

mechanism to improve teaching and learning depends upon the coach’s ability to skillfully 

facilitate the interaction. When facilitating planning conversations, content-focused coaches 

encounter two central challenges. First, coaches must dynamically manage competing roles of 

acting as a knowledgeable expert and a collegial partner. Coaches often hold a formal role and 

title that can elevate their position in relation to the teacher (Mosley Wetzel et al., 2017). 

Furthermore, content-focused mathematics coaches also tend to possess expertise in both content 

and pedagogy, as this is a prerequisite for the position (West & Cameron, 2013; Witherspoon et 

al., 2021). Throughout a conversation, content-focused coaches must carefully balance the 

distribution of intellectual authority as they operate from a potential position of power (e.g., 

Ippolito, 2010). As a second tension in facilitating planning discussions, coaches must support 
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teacher learning while simultaneously helping a teacher to generate products needed to teach the 

lesson. Thus, coaches navigate between two orientations: learning and instrumental. When 

operating with a learning orientation, content-focused coaches strive for outcomes that can 

transcend the current interactions, such as helping teachers deepen their knowledge of 

mathematical content and content-specific pedagogy along with cultivating new planning habits 

(Stein et al., 2022). When operating with an instrumental orientation, content-focused coaches 

help teachers develop practical products needed to teach the upcoming lesson, such as a detailed 

lesson plan or list of anticipated student strategies (West & Cameron, 2013). 

Existing studies are beginning to examine the ways coaches manage the tension of acting as 

an expert and colleague (Gillespie et al., 2024; Witherspoon et al., 2021) and holding learning 

and instrumental orientations (Choppin et al., 2024). However, there is not adequate research that 

has explored how coaches manage these two tensions in tandem during planning conversations. 

Specifically, we explored the following research question: How do mathematics coaches manage 

the two central tensions of (a) distributing intellectual authority between the coach and teacher 

and (b) holding both instrumental and learning orientations during planning conversations with 

teachers?  

Theoretical Framework 

We identified two central tensions present in content-focused coaching. First, coaches act as 

both a knowledgeable expert and a collegial partner, which requires coaches to balance 

intellectual authority through a planning conversation (Gillespie et al., 2024). Intellectual 

authority refers to whether the coach’s or teacher’s perspective is privileged at moments in time 

and relates to how a coach manages the competing roles of acting as expert and colleague. As a 

second tension, coaches navigate instrumental and learning orientations to support teacher 

learning while meeting coaching obligations. An instrumental orientation relates to the obligation 

to produce viable lesson artifacts by the end of the planning conversation, while a learning 

orientation relates to the coach’s desire to advance the teacher’s content and pedagogical content 

knowledge.  

To make sense of the ways coaches manage these tensions, we focused on the coaches’ 

discourse moves. We define a discourse move as the way coaches use language within a specific 

conversational moment to communicate with teachers. In other words, we focused on how 

coaches talked to teachers. Within mathematics education, researchers have analyzed discourse 

moves to understand how teachers participate in professional learning experiences (e.g., Borko et 

al., 2008), how facilitators manage discussions in small group settings (e.g., Amador & Carter, 

2018; van Es et al., 2014), and how coaches facilitate one-on-one conversations (e.g., Gillespie 

& Amador, 2024; Witherspoon et al., 2021). 

We identified four central coaching discourse moves: elicit, press, explain, and suggest. We 

argue that the coach’s use of each move within a conversational moment a) positions either the 

coach or teacher as the intellectual authority and b) reflects the coach’s orientation (learning or 

instrumental). First, we describe elicit and press moves, which each position the teacher as the 

intellectual authority, but reflect different coaching orientations. Elicit moves are coaching 

discourse moves that initiate opportunities for the teacher to share their thinking, making the 

teacher’s thinking about the planned lesson visible to the coach (van Es et al., 2014). Press 

moves also invite the teacher to share their thinking but call for the teacher to elaborate and 

expand upon previously shared ideas or provide a rationale for why their ideas might be 
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productive (Franke et al., 2009). For example, an elicit move could involve the coach asking the 

teacher to share how they were planning to launch the lesson. A press move could involve the 

coach asking the teacher to explain why they feel their plan to launch the lesson would be 

effective. With respect to managing the tension between acting as expert and colleague, we 

consider both elicit and press moves to position the teacher as the intellectual authority within a 

conversational moment since both moves invite the teacher to share their thinking or ideas. 

However, we argue that elicit moves reflect an instrumental coaching orientation since teachers 

are simply asked to report on their existing ideas. In contrast, press moves correspond to a coach 

holding a learning orientation since these moves call on teachers to elaborate on initial thinking, 

which can support new insights about content or pedagogy (Stein et al., 2022). 

Explain and suggest are associated with the coach acting as an expert since both moves 

position the coach as the intellectual authority within a moment in the conversation. In using an 

explain move, a coach shares their interpretation of a mathematical concept or pedagogical 

principle (van Es et al., 2014). Suggest moves involve the coach recommending an action for the 

teacher to enact (Amador et al., 2024). While explanations and suggestions both position the 

coach as the intellectual authority, they reflect different coaching orientations. Suggest moves 

relate to an instrumental coaching orientation since the coach is recommending a practical action 

for the teacher to use when teaching the lesson. Explain moves, in contrast, correspond to a 

learning orientation since the coach is sharing their interpretation of a mathematical concept or 

teaching principle, which provides opportunities for teachers to deepen their understanding of 

content and/or pedagogy. Figure 1 visually depicts these four moves in relationship to intellectual 

authority and orientation. 

 

 

Figure 1: The Four Discourse Moves in Relation to Intellectual Authority and Orientation 

Methods 

We analyzed two planning conversations involving separate coach-teacher pairs. The 

conversations took place as part of a larger professional development project that involved three 
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cohorts of teachers; these coaching conversations were part of the third cohort (see Choppin et 

al., 2021). The two coaches, pseudonyms Reiss and Whilton, were paired, respectively, with 

middles grades teachers Harris and Jackson. We considered Reiss and Whilton to be mathematics 

specialists serving as organization-based mathematics coaches (e.g., Baker et al., 2022) as they 

were employed by a professional learning organization external to the participating teachers’ 

schools and districts. Both coaches had coached in at least one of the prior two cohorts and were 

familiar with the content-focused coaching model employed in the project. All the coaching 

activities occurred online, with the planning conversations taking place via Zoom.  

We recorded the planning conversations and had them professionally transcribed. We then 

parsed the coaching conversations into stanzas. Each stanza contained at least one coach-teacher 

interaction as well as text needed to understand the context of that interaction (Saldaña, 2013). 

Stanzas entailed interactions around a bounded discussion; when the topic shifted, we created a 

new stanza. Within the stanzas, we coded the coaches’ discourse moves at the level of turn using 

the four codes described in the framework: elicit, explain, press, and suggest. Four coders coded 

each transcript, after which we met to reconcile the codes to ensure consensus.  

The transcripts were also coded for the content of each turn, focusing primarily on the 

following three codes that represented principles of content-focused coaching: mathematical 

goal; mathematical task; and potential student strategies or misconceptions (e.g., Callard et al., 

2022; West & Cameron, 2013). The mathematical goal involved the articulation of the content 

addressed in the lesson and sometimes the local curriculum standard associated with that content. 

The mathematical task involved the main problem that would be presented to students during the 

lesson. Potential student strategies and misconceptions involved likely approaches students 

would utilize when working on the mathematical task.  

We then divided the transcripts into phases consisting of one or more stanzas. Phases were 

demarcated initially by a change in focus of the discussion (e.g., mathematical goal, 

mathematical task). Our description of the focus for each phase included the content code and 

additional details as warranted (e.g., revising the mathematical task instead of just mathematical 

task). In some phases, multiple topics were interwoven, so we listed all relevant topics. We then 

characterized each phase using the categories in the framework. We characterized a phase as 

teacher as authority if most of the coach’s discourse moves were either elicit or press and coach 

as authority if most of the coach’s discourse moves were explain or suggest. Similarly, we 

characterized a phase as instrumentally oriented if most of the coach’s discourse moves were 

elicit or suggest and as learning oriented if most of the coach’s discourse moves were explain or 

press. There were instances in which the intellectual authority and orientation changed within a 

stanza, which led us to divide some phases into two. We characterized phases as mixed if there 

were relatively equal amounts of discourse moves associated with each category. 

In terms of distinguishing between instrumental and learning orientations in the coaching 

transcripts, we coded a coach turn instrumentally oriented if: (a) the coach suggested revising the 

mathematical goal or task without an accompanying explanation, (b) elicited details of a task or 

student strategy, or (c) described student strategies or mathematical task without explaining 

connections to the mathematical goals of the lesson. We coded a coach turn as learning oriented 

if: (a) the coach pressed the teacher to explain the rationale for their choice of goal or task, (b) 

explained a goal or task in ways that connected to broader mathematical or pedagogical ideas, or 

(c) explained how a student strategy indicated understanding of a mathematics concept. The key 
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distinction between the two categories was the presence of an explanation or a press for an 

explanation; explanations entail a connection between two related topics (e.g., between an 

interpretation and evidence, between a representation and the idea it is intended to convey, 

between student thinking and the mathematical goal).   

Results 

The analysis showed how the Reiss-Harris and Whilton-Jackon planning conversations 

proceeded in quite different ways. The differences were marked by the number and nature of 

phases, how intellectual authority was distributed across the coaching conversations, and, to a 

lesser degree, how the orientations fluctuated throughout the conversations. See Figure 2 for a 

visual summary of the analysis.  

The phases in the Reiss-Harris conversation were generally confined to a singular topic (e.g., 

goal or task) and had a content progression (goal, task, strategies) that was the most common 

across the larger set of over 30 coaching conversations we analyzed for a larger study. The 

conversation, however, was unique in the extent to which the coach and teacher discussed the 

mathematics of the task. The task, informally known as the Locker Problem, can be stated as: 

The first student opens every locker; the second student starts with the second locker and 

closes every other locker; the third student starts with the third locker and changes the state 

of that locker and every other third locker; etc. After all the students have gone through, 

which lockers remain open? (Lappan et al., 2014) 

 

Reiss-Harris Whilton-Jackson 

https://docs.google.com/drawings/d/1vXA9W7dlPTyVlA7GPKPFGo3SUP47hyRf5J-YwZJge0w/edit?usp=sharing
https://docs.google.com/drawings/d/1pU-1EnsixsS-wIjEicmX_KVdermVPRahu332B2qMjdQ/edit?usp=sharing
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Figure 2. Visual of Authority / Orientation Dynamics Across Coaching Conversations  

(Note: The length of the boxes roughly corresponds to the relative lengths of the phases.) 

 

Reiss and Harris engaged in extensive discussion about the mathematics in the task (totaling 

10 stanzas), in part because the teacher had not solved the problem in advance of the planning 

meeting and was not familiar with it, as reported by Reiss. During this discussion, Reiss provided 

numerous explanations about the mathematics and possible student strategies and pressed the 

teacher to explain her thinking. For example, Reiss stated:  

First kid goes down and opens everything. Then the second kid, I actually kept, okay, he’s 

going to change and close 2, 4, 6, 8, and 10. Then I went to the third guy. I tried to see in 

each state what happened. Then I knew after 10 what would still be open after 10, so I just—I 

broke it down that way to see if that would help. What I found was after 10, locker 1, locker 

4, and locker 9 were still open. 
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Here, Reiss shared her insights into the mathematics content without giving away the pattern, 

leaving her openings to subsequently press the teacher about her thinking. The phase in which 

this took place was characterized as mixed in terms of intellectual authority because Reiss 

provided explanations but also pressed the teacher to explain her thinking. The phase was 

characterized as learning oriented due to the consistent presence of explanations and press for 

explanations. Once the conversation turned to the design of the lesson, Reiss made numerous 

suggestions related to revising the mathematical goal, the design of the task, and how to enact the 

task. As Reiss made these suggestions, she explained why they would provide or enhance 

opportunities for student sensemaking. These phases were characterized as positioning the coach 

as the authority, as Reiss was the primary contributor, and as mixed in orientation because Reiss 

suggested ways to finalize the details of the mathematical goal (instrumental) and task while 

simultaneously explaining how these suggestions would support students’ mathematical 

sensemaking (learning). 

In contrast to the Reiss-Harris conversation, the phases in the Whilton-Jackson conversation 

typically involved multiple topics, with an emphasis on making connections between the topics. 

For example, the fifth phase of the planning conversation consisted of nine stanzas in which 

Whilton emphasized connections between the mathematical goal, the task, advancing questions, 

and student strategies. The phase began with Whilton pressing the teacher to explain what kinds 

of student strategies would indicate their understanding of the mathematical goal. Whilton then 

explained the connections between the representations emphasized in the mathematical task and 

the strategies discussed by the teacher. He also explained the connections between different 

strategies, and suggested to the teacher about how to respond to one of the strategies they 

discussed:  

In a sense, once they say, ‘Wait. I saw one plus three plus one,’ if we just capture that for 

them, like, ‘Hey, I’m just going to write down what you said. You said one plus three plus 

five. Tell me. What did your brain do on the next one?’ I feel like we’re still trying to unpack 

the kids’ thinking for them as opposed to implanting thinking for them. At least in my 

interpretation, I feel like we haven’t—I can see where it’s a real slippery slope, but I think 

we’re still honoring where kids are, their thought process, and just helping bring clarity. 

What do you think about that? Do you agree with me?  

Whilton explained how the question he suggested could simultaneously advance and validate 

student thinking, connecting to a broader pedagogical principle of building from student 

thinking. Whilton then returned to explaining the connections between the visual diagram in the 

task and a potential strategy but then tied that strategy to the mathematical goal: 

I think then you can hear, ‘Oh, they’re talking about five and then adding three each time,’ …  

I think we can really listen to what kids have to say and help them, but I like how you just 

added that … that also really helps bring home that other goal you were talking about, too. 

Right? That seeing this constant rate of change now. Why is it happening, and where is it 

coming from? 

These examples illustrate how Whilton emphasized connections between the task, the strategies 

that students might produce, the mathematical goals represented in those strategies, and possible 

questions to pose to students in response to a given strategy. We characterized this as a single 
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phase because there were inter-connections between the stanzas and the topics throughout the 

phase. In terms of overall characterization of authority, the phases fluctuated, with a trend from 

teacher to coach; in much of the conversation, Whilton mixed elicitations and presses with 

explanations and suggestions. The orientations across phases also fluctuated, with some 

instrumental phases where Whilton pressed for details around the mathematical goal and student 

strategies and some learning phases where Whilton explained the reasoning behind strategies or 

instructional moves or pressed the teacher for explanations. The results show how Whilton 

nimbly moved between topics and between elicits/presses and explanations/suggestions to 

establish essential understandings and finalize details of the goal, task, and potential strategies. 

Discussion and Implications 

The framework and visual representations of our findings provide insights into the evolution 

of and nuanced differences between two planning conversations with respect to the topic of 

discussion, distribution of intellectual authority, and coaching orientation. In turn, we illustrated 

the unique ways two coaches managed the two central tensions of distributing intellectual 

authority, thus serving as both an expert and colleague, and navigating instrumental and learning 

orientations during planning conversations with mathematics teachers. The analysis showed a 

purpose in how the Reiss-Harris conversation evolved; first Reiss wanted the teacher to 

understand the mathematics before she turned the conversation to the more instrumental 

discussion around the details of how to enact the mathematical task with students. Furthermore, 

given the teacher’s lack of familiarity with the task and the mathematics, Reiss’s emphasis on 

suggestions and explanations (i.e., positioning herself as the authority) was warranted. The trend 

toward mixed or learning oriented phases also provides insight into her intention to push the 

teacher’s mathematical and pedagogical understanding while producing viable lesson plan. The 

Whilton-Jackson coaching conversation was more complex because there was no consistent 

progression across topics, authority, or orientation. This conversation was more free-flowing and 

improvisational, with Whilton strategically injecting his perspective, thus assuming intellectual 

authority temporarily to make opportunistic connections between topics. 

Our study offers two primary contributions to the collective knowledge of coaching within 

the field of mathematics. First, prior studies have attended to the ways coaches continually shift 

the intellectual authority across coaching conversations (e.g., Gillespie et al., 2024; Russell et al., 

2020; Witherspoon, 2021). Through our detailed analysis of the Reiss-Harris and Whilton-

Jackson planning conversations, our findings suggest that intellectual authority is intertwined 

with a coach’s orientation and topic of conversations, which are related to underlying contextual 

features of the coaching cycle. Thus, we contend that the ways in which a coach distributes 

intellectual authority are associated with multiple factors and caution against making inferences 

about inherent coaching styles or tendencies from the analysis of a single cycle. For example, the 

discursive actions of Reiss were likely influenced by the teacher’s lack of familiarity with the 

task and underlying mathematics. Other cases, with differing contexts, might look quite different 

with respect to intellectual distribution, and in fact, we have noted differences in other analyses 

of Reiss’s coaching.  

As a second contribution, prior studies have highlighted the need to better understand the 

interactional patterns of a coach and teacher (e.g., Saclarides, 2022). In response, researchers 

such as Gillespie et al. (2024) and Baldinger (2014) have developed methodologies and 

generated visual representations to depict salient features of coach/teacher interactions. Similarly, 
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our framework and methodology weave together three constructs – intellectual authority, coach 

orientation, and content – to generate visual representations that afford insight into nuanced ways 

coaches manage two central tensions in planning discussions.  

The findings connect to the conference theme - envisioning the future of mathematics 

education in uncertain times – by highlighting the influence of contextual factors on the nature 

of coaching conversations and the need for both intentionality, as seen most prominently in the 

Reiss conversation, and flexibility, as seen in the Whilton conversation, to meet the contingent 

needs of teachers.  

Future Research 

The analysis illustrates how the framework provides insights into the nature of coaching 

conversations. We framed the analysis in terms of two central tensions, one involving intellectual 

authority and the other involving instrumental or learning orientations; furthermore, we 

connected these tensions to the content emphasized in phases of coaching conversations. The use 

of the framework leads us to several new questions about the nature of coaching conversations. 

First, the analysis revealed that the Reiss-Harris conversation was more structured in terms of the 

progression of content and was influenced by the teacher’s lack of familiarity with the task and 

the mathematics. By contrast, the analysis showed that the Whilton-Jackson conversation was 

more improvisational and free-flowing. We encourage future research to consider characterizing 

coaching conversations according to a structure-improvisation continuum and examine what 

factors influence how coaching conversations play out.   

Second, it is plausible that both conversations were productive in terms of supporting teacher 

development. We encourage future research to use of our framework and methodology to 

deconstruct the planning conversations into phases, characterized by content, intellectual 

authority, and coach orientation, as a first step to understanding how a multi-faceted conversation 

may support teacher development. Our analysis showed how each phase presented different 

opportunities for teachers’ development; future research should examine how the different 

coaching orientations and intellectual distribution in a phase of a planning conversation results in 

changes to teachers’ knowledge or their subsequent teaching. Finally, in the discussion section, 

we cautioned against making inferences about a coach’s style or tendencies, given the contextual 

features of a coaching cycle likely influenced the behaviors of the coach. To better understand 

coaches’ tendencies with respect to distributing intellectual authority and holding differing 

orientations, we recommend future studies use our framework and methodology to examine 

multiple coaching cycles from a single coach-teacher pair and coaching cycles that feature a 

single coach working with different teachers. 
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The term “coach” carries broad and diverse definitions throughout professional development 

literature within mathematics education. Such differing definitions consider a coach to be a peer 

observer, one-on-one teacher support, implementation support, or small group professional 

development facilitator (Baker et al., 2022; Bengo, 2016; Campbell & Griffin, 2017; Kraft et al., 

2018; Kraft & Hill, 2020; Russell et al., 2020). While definitions of coaching vary, the primary 

purpose of coaches in mathematics education does not. Researchers consistently emphasize the 

hope of coaches supporting teachers’ learning to positively impact student learning (e.g. Gibbons 

& Cobb, 2016) through ongoing, active, and content-focused observation and feedback cycles 

(Desimone & Pak, 2017; Kraft et al., 2018).  

Considerate of these diverse definitions, we have identified a need to synthesize existing 

coaching literature within mathematics education through a systematic review of related 

literature in order to organize the contributions based on the specific focus of stated research 

questions. The intent of this poster will be to share the design of our systematic review and the 

analysis of the literature to formulate an image of how researchers are further developing 

understandings around coaching in mathematics education. Our review considers the varying 

definitions of coaching and diverse research on the impact of coaching in mathematics education.  

The following research questions guided our review of the literature: (1) What questions are 

researchers asking to better understand (define, support, promote) coaching in mathematics 

education? and (2) What frameworks and methodologies are researchers utilizing to better 

understand (define, support, promote) coaching in mathematics education? 

To answer the first research question, we examined 45 research questions from 21 peer-

reviewed journal articles published between the years 2013-2023 that focused on coaching in 

mathematics education. We organized these research questions in four categories based on focal 

populations: coaches, teachers, school systems, or students. Preliminary analysis revealed that 

within these categories research questions related to: (1) coaching behaviors, (2) coach learning, 

(3) teacher outcomes, (4) system outcomes, or (5) student outcomes. To answer the second 

research question, we recorded the theoretical framing researchers utilized to position their work 

along with accompanying methodological approaches to understand trends in how researchers 

have conducted empirical inquires on coaching within mathematics education. Within our 

emergent categories, we are finding tendencies in literature favoring certain methodological 

approaches.  Further analysis from this systematic review is underway. Our poster will provide 

an organized synthesis of recent research questions as well as accompanying methods and 

theoretical perspectives, thus providing the field with greater clarity about research trends on 

coaching within mathematics education.  
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This study explores how an instructor designing assignments in an online homework system for a 

college algebra course considers the development of procedural fluency in connection with 

conceptual foundations. Findings reveal shifts in the instructor's perspective, highlighting the 

importance of connecting procedural fluency to conceptual foundations. The study underscores 

the potential of co-design activities in reshaping instructors' beliefs and instructional practices, 

offering insights into enhancing mathematics education in college algebra courses. 
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The instruction of college algebra courses has long been a concern given the barrier it 

presents for many students (Tunstall, 2018) – both those for whom it acts as a terminal math 

course and those who need it as a prerequisite for another course within their major. Mathematics 

education organizations have long called for undergraduate mathematics instructors to support 

students’ deeper engagement with mathematical ideas and habits of reasoning (e.g., NCTM, 

1980; AMATYC, 2006; MAA, 2018). This means attending to students’ conceptual 

understanding, procedural fluency, and how the latter builds on the former. In the Mathematical 

Association of America (MAA) Instructional Practices Guide (2018), the authors noted,  

Conceptual understanding involves knowing what to do and why it works, while procedural 

fluency involves deciding and knowing how to do it…. When students learn procedures in 

such a way that they are connected to conceptual foundations, they will have more success in 

using these procedures, will recall them for a longer period of time, and will be able to use 

these procedures flexibly and effectively in a problem-solving situation. (p. 42)  

In undergraduate mathematics courses, like college algebra, there is widespread emphasis on 

traditional lecture focusing on procedural knowledge, rather than conceptual understanding (e.g., 

Duffin et al., 2019; Khasawneh et al., 2023; Veith et al., 2023).  

College algebra courses are typically quite large, often having well over 50 students enrolled 

in a single section. In these contexts, web-based homework systems are often used to support 

students and instructors by providing immediate feedback to both. Research has shown that these 

systems can make learning more active and adaptive while also focusing on improving 

conceptual understanding and problem-solving skills (e.g., Porter et al., 2015; Rochelle et. al, 

2016; Twigg, 2009). However, there is little research on how instructors might use these systems 

to improve their practice – especially as it relates to supporting their students in learning 

procedures in ways that are connected to conceptual foundations. The purpose of this study is to 

answer the following research question: How does an instructor who is designing the 
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assignments and supports for an online homework system for a college algebra course consider 

the development of procedural fluency as connected to conceptual foundations?  

Context of the Study 

This study is in the context of a larger project in which the instructor is leading the co-design 

of a set of online homework problems – and their supports – for undergraduate college algebra 

using the online homework system ASSISTments (www.assistments.org). Online homework 

systems are commonly used in college mathematics courses (e.g., ALEKS (Hagerty et al., 2005), 

MyMathLab (Duffin et al., 2023), WeBWork (Roth et al., 2008)), in addition to learning 

management systems that have mechanisms for creating online assignments (e.g., Canvas, 

Moodle). These programs are similar in that they make assigning homework problems easy, 

students can resubmit multiple times until their response is deemed correct, and students are 

given immediate feedback with respect to the correctness of their final answers. However, in 

addition to this immediate feedback, students also have the ability to access carefully designed 

supports. What sets ASSISTments apart are the supports that instructors can add at the problem 

level (up to 3 different supports), rather than just using publisher-supplied supports available to 

students as they work on assigned problems. Supports can be in the form of videos, worked 

solutions, or scaffolding hints. While ASSISTments has been used widely at the middle school 

level (Feng and Heffernan, 2006; Heffernan et al., 2012; Heffernan and Koedinger, 2012), this is 

the first use of it in undergraduate college algebra meaning that though the platform exists, the 

problems and supports for those problems needed to be created.  

Methods 

This is an intrinsic case study (Yin, 2018) of one college algebra instructor, Michael (the 

third author of this paper), who is also leading the co-design of the college algebra assignments 

in ASSISTments at a large southeastern university. This unique context provides an opportunity 

to learn about how Michael is making sense of “building procedural fluency from conceptual 

understanding” (MAA, 2018, pg. 42) through co-design (Severance et al., 2016). 

The data for this study include a series of interviews as well as analysis of artifacts used in 

the creation of assignments and supports to use in ASSISTments assignments. Michael took part 

in 6 semi-structured interviews over the course of a year. The interviews were between 30 and 60 

minutes long, took place via Zoom, and were recorded. Artifacts include Google documents and 

sheets in which Michael kept meeting notes and planned the problems he was going to add to an 

ASSISTments assignment as well as the associated supports. Given that the rest of the local 

research team is made up of mathematics education researchers, Michael’s practice was to ask 

for their feedback on all supports as well as problems he had labeled as “conceptual” in nature. 

As such, discussions about these designs occurred in the shared documents using the “comment” 

features. 

Interview transcripts and design artifacts were coded (by the first two authors) for attending 

to conceptual foundations. All of the quotations assigned this code were then read for emerging 

themes. Throughout this process, the research team would share the emerging findings with 

Michael to get his feedback and to make sure we were representing his ideas appropriately. 

Those emerging themes are what we report on in this study.  
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Preliminary Findings  

In what follows, we share three phases of Michael’s ongoing development: his stance that 

conceptual understanding is not a priority, coming to understand what conceptual understanding 

of a procedure means, and advocating for making connections between procedures and their 

conceptual foundations.  

Conceptual Understanding is Not a Priority 

Early in the project, Michael repeatedly noted that attending to the connections between 

procedures and their conceptual foundations was not a priority for him. This was evident in the 

design of both the questions he included in the ASSISTments assignments and their associated 

supports. For example, approximately 6 months prior to the pilot semester, Michael and his team 

began identifying problems to include in the first ASSISTments assignments. In one of these 

early meetings, he shared that he knew he needed to include what he referred to as “conceptual 

problems”, but he was not sure what that looks like. He mentioned many times that he was only 

including this type of problem because he thought he had to due to the goals of the overarching 

project. He did not think they were a priority because they are not tested on the course common 

exam. Michael explained, “I don't think I would highly emphasize any feedback that I give for 

conceptual questions in the current course format for College Algebra. Conceptual questions tend 

to not be emphasized on the common final.” He also shared that “using space on my tests in 

order to ask the conceptual questions will take that space away from the procedural questions 

that are going to be on the final.”  

Coming to Understand What Conceptual Understanding of a Procedure Means 

As Michael started to draft what he referred to as “conceptual problems”, there is evidence 

that he felt he was learning what conceptual understanding of a procedure might mean. When he 

drafted these items, there was a lot of back and forth with the mathematics educators on the team 

about what makes a question “conceptual”. For example, the first draft of a “conceptual 

question” for a unit on exponents stated, "When can you subtract two exponents?" After some 

discussion about the fact that the question is simply asking students to identify when they can use 

a particular procedure, and was missing the conceptual “why”, Michael revised the question to, 

“Provide an example of when subtracting two exponents is appropriate. Explain your reasoning.” 

This revised question is focused on procedural fluency - recognizing when a procedure is 

appropriate to use - and by asking students to explain their reasoning it is asking for the 

underlying concept as well. 

Figure 1: Sample Supports for an ASSISTments Item 

Support Draft 1 

Similar to the graph of a parabola, the quadratic 

formula, 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, can determine the 

solutions to a quadratic equation. The 

discriminant, b2-4ac, is part of the quadratic 

formula. The value of the discriminant indicates 

how many times the parabola intersects the x-

axis and how many real solutions a quadratic 

equation has. 

 

Support Draft 2 

As a reminder, the discriminant, b2-4ac, is the part 

of the quadratic formula that is under the square 

root symbol, 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. Given a square root 

can have two (if > 0), one (if = 0), or no real 

solutions (if < 0), the value of the discriminant 

determines how many solutions there are for a 

quadratic equation.  
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If the discriminant is positive, i.e., b2-4ac > 0, 

how many solutions does the quadratic equation 

have?  

If the discriminant is positive, i.e., b2-4ac> 0, how 

many solutions does the quadratic equation have? 

Write the answer as a number.  

 

At the same time as he was creating the questions in the assignments, Michael was also 

creating the supports for those questions. We saw a similar shift in this work. For example, when 

designing a support for the problem: “Based on the discriminant, state how many real solutions 

there are to the following quadratic equation: 2x2 - 6x + 7 = 0.”  Michael’s first support draft was 

very procedural, asking students to recall a rule they learned about the discriminant (see the 

example on the left side of Figure 1). After some back-and-forth discussion with the mathematics 

educators to identify the foundational concept – that a square root can have one, two, or no real 

solutions, he revised the support to include the conceptual foundation (Figure 1 right side). 

Michael later noted that this back and forth was helping him understand what conceptual 

understanding means in the context of a procedure-heavy course like college algebra.  

Advocating Connecting Procedures to their Conceptual Foundations 

After a full semester of pilot and design work, there was evidence that Michael not only had 

a deeper understanding of how to develop procedural fluency from conceptual understanding but 

also thought it was important. Michael shared that based on his engagement in this design work, 

he has started to change his practice. He explained, “I started to really think about how I should 

give an explanation in class…I’ve gotten better over time, I think my instruction has gotten 

better.” At the same time, there is evidence that Michael has begun to advocate for an emphasis 

on providing conceptual foundations in the supports for ASSISTments assignments as well. He 

explained that he reached a point where he thought “those explanations I was giving a class are 

just so much better than the ones that we were putting into the assignments.” This made him 

realize that,  

If I had to give this to my students, I would want to make sure that they had a support that 

was the closest thing to what I could provide them if they were actually in person with 

me…So that’s why I started saying that these things need to be better. These things can’t just 

be railroaded through and just kind of shoved down their throats. They actually need to 

understand what is going on. 

Michael is currently redesigning many of the ASSISTments assignments to align with what he 

now understands about the importance of connecting procedures to their conceptual foundations.   

Discussion and Conclusion 

The case of Michael provides an interesting example of how engaging in co-design, like 

designing the ASSISTments assignments and supports, might shift instructors’ beliefs about the 

importance of attending to the conceptual foundations of procedures when developing procedural 

fluency in a college algebra course. We emphasize the co-design aspect of such work, as it seems 

as if the interaction with mathematics educators was an important part of Michael’s journey. Our 

results are consistent with research on curricular co-design efforts (e.g., Severence et al., 2016). 

We recognize that engaging in this kind of design is not something that all instructors get to do, 

but the findings here suggest it might be helpful to consider ways of possibly engaging them in 

similar co-design activities. In fact, unlike online homework products that are prepopulated with 
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questions, ASSISTments allows all instructors to add their own questions and supports making 

such work possible. We are curious about how instructors who engage with the assignments and 

supports that Michael has created will, or will not, take up his stance on the importance of 

including the conceptual foundations – consistent with MAA (2018) recommendations – in their 

own explanations and attention to student responses on conceptual questions within 

ASSISTments to inform their instruction. This is an area ripe for future research.  
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This study examines secondary mathematics teachers’ justifications for sequencing student work 

(SW) in relation to the different ways they might sequence SW. Existing research recommends 

selecting and sequencing SW in a way that creates a coherent mathematical storyline (Smith & 

Stein, 2011), but there is a lack of empirical evidence on how teachers can develop the expertise 

needed to enact that (Dunning, 2023). We focused on actions teachers might take when 

considering how to sequence SW in the context of StoryCircles, a lesson-centered professional 

development program. We found emerging patterns between teachers’ heuristics for sorting SW 

and the obligations they use to justify those heuristics. In particular, the disciplinary obligation 

was consistently prioritized, and the individual obligation played a crucial role in justifying 

teachers' attention to making mathematics accessible by scaffolding SW by complexity. 

Keywords: Lesson-centered Professional Development, Instructional Activities and Practices, 

Classroom Discourse, Sequencing 

Objective 

Some years ago, Stein and colleagues (2008) outlined five fundamental practices for 

orchestrating productive mathematics discussions: anticipating strategies, monitoring strategies, 

selecting strategies, sequencing strategies, and connecting strategies within whole-class 

discussions. According to them, the purposeful selection and sequential presentation of student 

work increases the likelihood of fostering discussions where mathematical understanding is 

collaboratively constructed by all individuals in the classroom. Furthermore, teachers’ attention 

on the practices of selecting and sequencing supports their efforts to teach in ways that are 

responsive to students' mathematical thinking. However, “more research needs to be done to 

compare the value of different sequencing methods” (Smith & Stein, 2011, p. 11) and little is yet 

known about how teachers reason about the practices of selecting and sequencing students’ work 

(Dunning, 2023). In this paper, we share about an ongoing data collection and analysis effort in 

which we seek to gain more understanding by sharing data gathered in the context of a lesson-

centered professional development, examining the ways that two different groups of secondary 

mathematics teachers (one set of algebra teachers, one set of geometry teachers) annotated a set 

of storyboard frames representing written samples of students’ mathematical work. In that 

context, teachers collectively considered how to leverage and expand upon students' 

mathematical work in the context of a problem-based lesson. Specifically, we ask:  

In what ways do existing heuristics for categorizing teachers' practices of sequencing 

distinguish the set of interactions about sequencing we observed across two groups of 

StoryCircles teachers? What justifications for selecting and sequencing student work do teachers 
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make according to the type of sequencing they want to do? 

Theoretical Framework 

While the aforementioned scholars have emphasized the importance of the lesson goal in 

shaping teachers’ decisions regarding selecting and sequencing, empirical research suggests that 

teachers use a variety of ways to think about selecting and sequencing—some of which prioritize 

other matters as more pressing than the lesson goal (Ayalon & Rubel, 2022; Dunning, 2023). 

Researchers have suggested a variety of heuristics for selecting and sequencing students’ work, 

including focusing on misconception (Smith et al., 2008) and building on correct strategies by 

employing the order of complexity heuristic (Meikle, 2016), but the field has yet to understand 

the differences in the ways that teachers’ reasons about those heuristics. Expanding on this prior 

work, Ayalon and Rubel (2022) recently reviewed the lesson-centered PD literature and reported 

four distinct heuristics recommended to teachers for selecting and sequencing: (1) privilege 

variety of ideas, (2) accessibility and participation considerations require scaffolding by 

complexity, (3) the importance of attending to errors, and (4) any set of solutions yields 

particular connections and mathematical ideas. The authors also report that associating with these 

heuristics, especially the order of complexity, reflects a particular perspective on mathematical 

ability and teachers were more often observed prioritizing accessibility over the effort to develop 

a coherent sequence in a mathematical storyline. As such, Ayalon and Rubel (2022) suggests 

needing to find more strategies that integrate these heuristics: 

Privileging a variety of ideas, including diverse strategies, creates the basis for the 

mathematical conversation that ensues (Dunning, 2023) and helps recognize the important 

mathematical connections within those ideas (Richards & Robertson, 2016). Such comparison of 

different strategies has been proven beneficial in enhancing students' procedural flexibility and 

deepening conceptual understanding (Rittle-Johnson et al., 2009). The variety could be based on 

the representation type (e.g., graphs, formulas), the underlying problem-solving strategy (e.g., 

drawing a diagram, looking for patterns), or solutions that produce divergent answers (Ayalon & 

Rubel, 2022). Teachers also consider strategies in terms of mathematical sophistication, 

recognizing less sophisticated strategies and increasing progression to the most complex (Ayalon 

& Rubel, 2022; Stein and Smith, 2011). This scaffolding by complexity could be based on 

“criteria like concrete to abstract, specific to general, or most common to unique” (Ayalon & 

Rubel, 2022, p. 4). By sharing or attending to errors, and then discussing the erroneous solution 

or contrasting it with another solution could help resolve misunderstandings (Rittle-Johnson et 

al., 2009; Stein et al., 2008). Meikle (2014) notes that teachers often begin with erroneous 

solutions. Finally, yielding particular connections and mathematical ideas has to do with 

building a mathematically coherent storyline (Smith & Stein, 2011) that aligns with the lesson  

goal. 

We leverage the ideas from Practical Rationality (Herbst & Chazan, 2011, 2020) to argue that 

teachers’ decisions can be accounted for on more than just individual resources, such as skills, 

knowledge, and beliefs. In particular, there are professional sources of knowledge that teachers 

draw crucially on, namely recognition of the (1) norms of instructional situations (Herbst, 2012) 

and (2) professional obligations of teaching mathematics. In prior work, we have described how 

teachers’ recognition of the norms of instructional situations help account for their decisions 

related to selecting and sequencing student work (Schwarts et al., 2023), such as letting the 

lesson goal guide their decisions when there was tension with attending to all students. In this 
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paper, we aim to describe ways that teachers’ recognition of the professional obligations of 

mathematics teaching play a role in informing their decisions about sequencing. While a 

complete description of practical rationality and all of its components are beyond the scope of 

this paper, we do take a moment to describe more details related to the professional obligations. 

To describe what sources of justification are available for a teacher to justify decisions, we 

build on the idea that teachers’ actions relate to the obligations they need to satisfy as teachers in 

an instructional system (Herbst & Chazan, 2011). These obligations bind the teacher to the 

environment of the instructional system which impacts their ties with the students and content in 

an instructional triangle (Cohen et al., 2003). At the same time, obligations provide sources of 

justification for a teacher’s action, just as much as norms of instructional situations do, 

sometimes even justifying deviations from the norms as well. Herbst and Chazan (2011) propose 

four professional obligations which demand teachers’ attention, namely the professional 

obligation to attend to: (1) the discipline that the teacher is meant to represent (Disciplinary 

Obligation), (2) the individual students the teacher is meant to serve (Individual Obligation), (3) 

the socio-cultural world of a given society and its customs and values (Interpersonal Obligation), 

and the (4) institution(s) that create official time, space, and sanction for all those relationships to 

happen (Institutional Obligation). 

Methods 

Context 

The context of this study is StoryCircles, an innovative professional development model 

where secondary mathematics teachers collaboratively anticipate a problem-based lesson through 

iterative phases of scripting, visualizing, and arguing about alternatives (Herbst & Milewski, 

2018, 2020). Similar to Lesson Study (Lewis, 2009), StoryCircles engages groups of 

practitioners (secondary mathematics teachers in this study) to create a lesson through successive 

iterations. This activity is animated not only by the processes of scripting, visualizing and 

arguing, but also the problems of practice that the group collectively identifies and shows a 

willingness to work on as they work out the details of the lesson (see Figure 1). The group’s 

activities are supported by a facilitator who is not simply another group member who suggests 

possible ideas for the lesson, but instead takes up the role for directing the discussions toward the 

instructional goal and orienting practitioners toward one another—encouraging participants to 

share their professional knowledge through the creation of a common artifact. Distinct from 

Lesson Study, the group is involved in this process virtually and uses storyboards to visualize 

their practice and receive feedback on it (Milewski et al., 2018). 

 

 

Figure 1: The StoryCircles Model of PD 
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The data in this report is drawn from three groups of secondary mathematics teachers (1 

Geometry and 1 Algebra) engaged in a six-week long StoryCircles. All three groups focused on 

transforming a thinly developed storyboard (which contained only a few key frames) into a fuller 

representation of the way a lesson could unfold. The geometry group focused on the Tangent 

Circle Problem and the algebra groups focused on the Walkie-Talkie Difference of Functions 

Problem. Across these engagements, teachers engaged in asynchronous activities which include 

the frames for different phases of a lesson: Problem Posed (Phase 1); Getting Your Feet Wet 

(Phase 2); Whole Class Check-In (Phase 3); Redirecting the Work (Phase 4); Whole Class 

Discussion (Phase 5); Goal Statement (Phase 6). First, the teachers were expected to review and 

leave comments on the frames in each phase. Then, they were expected to discuss these frames 

considering how they could modify and/or use those frames to develop their storyboard. 

For the purpose of this analysis, we focus on suggestions secondary mathematics teachers 

from two groups (1 Geometry and 1 Algebra) made about a set of frames representing the second 

phase: Getting Your Feet Wet. In these frames, student work (SW) examples are shown from the 

viewpoint of looking over the shoulder of the student. The frames were provided to give 

resources for the group of teachers to consider for incorporation into their storyboard (see Figure 

2a) and discuss during the synchronous meetings. Across the 15 frames, the student work 

samples varied in terms of their strategies, correctness, normativity to the instructional situation, 

serviceability for advancing toward the instructional goal, and their responsiveness to the 

problem statement (Herbst et al., 2023). In their interactions with these frames, secondary 

mathematics teachers had the opportunity to delve more deeply into given SW examples to 

notice the features of SW beyond their correctness. The teachers were expected to consider 

which ideas they would address in the context of a small group setting and which they would 

feature as part of the coming whole class interactions which refer to the latter phases. For this 

reason, while the actions are around the decisions of this phase, the justifications may expand on 

to the other phases if the teachers felt they were relevant to their decisions in Phase 2. 

 

   
a. A frame from Phase 2: 

Getting Your Feet Wet 

b. A SW from Phase 2: 

Getting Your Feet Wet 

c. A frame of Phase 3: Whole 

Class Check-in 

This material is © 2024 by The Regents of the University of Michigan. 

 

Figure 2: Examples from different phases of a lesson  

 

Data Sources and Analysis 

The data used for this analysis comprise memos and transcripts from synchronous meetings 

involving two groups of teachers who participated in StoryCircles. Each group of teachers 
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developed a Geometry or Algebra lesson-centered storyboard over six to seven one-hour 

synchronous meetings. We identified the specific synchronous meetings from each group where 

they made the most changes to the storyboard by tracking alterations in their 6 to 7 versions of 

the storyboard, each created during each of the synchronous meetings. 

 

Table 1: Examples of actions categorized by Ayalon and Rubel’s (2022) heuristics 

 

Types of Heuristics Examples 

Privilege variety of ideas “I like how there's a table, a graph, and an equation.” 

Accessibility and 

participation 

considerations require 

scaffolding by complexity 

“I might start with the work of [student] Epsilon that's at a very basic 

level. And then maybe go to [students] Delta or Kappa or [Omicron], 

or Kappa's work to share first, and then, as I progressed through the 

frames show a more detailed understanding.”  

Attending to errors “they [(students whose work was selected)] accounted for the 5 miles, 

which I don't think any of the other ones had done at that point.” 

 

Within the synchronous meeting, our focus was on moments when participants discussed the 

selection and sequencing of student work. We conducted an analysis of the actions taken by the 

participants during professional development, employing coding based on Ayalon and Rubel’s 

(2022) framework for guiding teachers in selecting and sequencing students’ solutions (see Table 

1). Then, we examined the participants’ justifications following their actions, drawing on the four 

professional obligations (Herbst & Chazan, 2011; see Table 2). 

 

Table 2: Examples of justifications based on types of professional obligations 

 

Professional 

Obligations 

Examples 

Disciplinary 

Obligation 

“the difference in [Gamma’s and Mu’s] answers, because they're not wrong. 

If I did my math right, they're not wrong. They're just representing 2 

different things.”  

Individual 

Obligation 

“the kid that doesn't understand by the time the first thing comes out it's 

already way over his head. They're checked out, they're done. And so I think 

it does make a lot of sense to keep it in that order.” 

Interpersonal 

Obligation 

“because they're both inputting hours. And maybe the kids [can] discuss 

where that 1.5 differences [are] and what that 1.5 represents.” 

Institutional 

Obligation 

“I think that we need to be realistic. So how long is, I mean, I don't know of 

any math teacher that's getting more than an hour of instructional time, do 

you have? Well, how long is your class?” 

 

Through this analysis, we consider the following questions: 

1. How well do Ayalon and Rubel’s (2022) heuristics for categorizing teachers' practices of 

sequencing distinguish the set of interactions about sequencing we observed across two 

groups of StoryCircles teachers? 
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2. What justifications for selecting and sequencing student work do teachers make 

according to the type of sequencing they want to do? 

We found that actions related to selecting and sequencing student work could be classified 

according to the heuristics described by Ayalon and Rubel (2022). Specifically, we were able to 

categorize participants’ ways of sequencing student work based on the first three categories of 

action featured in Table 1 as they were more prevalent in our data and easily distinguishable. 

With more data, we may be able to make use of the fourth heuristic, yielding mathematics 

connections and ideas. 

Results 

Across the sets of exchanges about sequencing that we observed, a higher occurrence of the 

suggestions in those exchanges favored the variety of ideas and attending to errors heuristics 

than the order of complexity heuristic (see Table 3, number of actions). This could be attributed 

to our focus on synchronous meetings where most changes were made to the storyboard artifact, 

and participants began examining individual SW during the “Getting Your Feet Wet” phase. At 

the same time, focusing on decisions that resulted in the most changes in the artifact lends 

strength to the actions the participants claimed they wanted to take in sequencing and selecting 

student work. 

 

Table 3: Relationship between the heuristics argued for and the professional obligations 

used to support those argument 

 

 Number of 

Actions 

Disciplinary Individual Interpersonal Institutional 

Variety of ideas 20 16 1 2 1 

Order by complexity 10 5 4 1 0 

Attending to error 26 16 8 2 0 

Number of justifications: 37 13 5 1 

 

In terms of the justifications made by participants, we found more attention to the 

disciplinary and individual obligations (see Table 3). Some of the references to the disciplinary 

obligations were related to the teacher’s recognition of the need to sequence work intentionally 

to build on each other and ensure mathematical correctness (see Table 2, example of disciplinary 

obligation). Participants also delved into specific mathematical features of student work, such as 

markings on geometric constructions, providing insights into the students’ thinking process and 

procedure. Individual obligations were also prominent, with a focus on how the individual 

student who created the work was thinking (see Table 2, example of individual obligation). 

Another common justification attending to individual obligations involved focusing on students 
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who may be struggling and considering how they might benefit from the student work being 

potentially shared out. The interpersonal obligation was typically attended to when related to 

how other students as a whole class might benefit from the student work selected or sequenced 

and how they might discuss it among themselves (see Table 2, example of interpersonal 

obligation). Finally, the institutional obligation didn’t receive much attention when considering 

the practices of selecting and sequencing student work. One instance of the institutional 

obligation was mentioned when participants were attending to time constraints in a typical 

mathematics class when considering how much variety of student work they would then want 

(see Table 2, example of institutional obligation). 

As we consider the relationship between the types of heuristics participants argued for and 

the professional obligations used to support those arguments, we generally found that the 

disciplinary obligation was a consistent priority for participants, regardless of their preferences in 

selecting and sequencing student work (see Table 3, number of justifications). When using the 

variety of student work heuristic, participants emphasized conceptual differences among various 

types. These distinctions were clarified through specific procedures, such as inputting different 

numbers, and involved prioritizing evidence of students' understanding of the problem over 

correctness, although the correctness was often considered a distinguishing factor among types 

of student work. When using the attending to errors heuristic, participants often justified their 

actions using the disciplinary obligation—providing justifications related to addressing 

misconceptions and describing specific mathematical features they felt were important for 

students to learn and for the work to highlight so that there is a progression towards the lesson 

goal.  

In contrast, when using the scaffolding by complexity heuristic, participants often justified 

their suggestions with the individual obligation—arguing for the importance of understanding 

how individual students, who completed the work, were thinking and how certain tasks in the 

earlier sequence would provide opportunities to support struggling students with comprehension. 

For example, while creating a table might be easier for some, presenting a graph first could offer 

a visual aid to enhance problem understanding. This reflects Meikle’s (2016) general rationale 

for sequencing solutions, which typically involves the order of complexity heuristic while 

remaining independent of the mathematical content. 

We also acknowledge the important role that the interpersonal obligation played in 

participants’ justifications. References to this obligation involved attending to all students and 

ensuring that the selected and sequenced student work would contribute to class-wide 

conversation and all students’ learning. This also demonstrates how the participants adhered to 

the design of the professional development as the latter phases of the storyboard included 

activities like whole-class discussions, which were observed by the participants in the 

professional development and connected to initial selection and sequence of student work. 

Conclusion 

We illustrate a potential relationship between teachers’ heuristics for sequencing student 

work and particular professional obligations. We found that the disciplinary obligation remained 

a consistent priority for participants, leading to an emphasis on the comparison of strategies, 

progression of procedures, and learning opportunities by addressing errors. At the same time, the 

individual obligation was crucial, especially when using the scaffolding by complexity heuristic, 

as teachers argued for comprehension while maintaining independence from the mathematical 
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content. Purposefully selecting and sequencing strategies and fostering a shared language among 

teachers to discuss these ideas is an important emphasis in StoryCircles. This practice of 

selecting and showcasing a representative solution from each category adds significant value in 

the eventual whole class discussions (Ayalon & Rubel, 2022). Planning for and leading 

mathematical discussions is challenging due to its inherent complexity, requiring teachers to 

notice and interpret students' thinking and make on-the-spot decisions. The attention to heuristics 

for selecting and sequencing and the extent to which they depend on the professional obligations 

provides the field with greater opportunities to understand the ways that teachers reason about 

important instructional practices. Furthermore, providing teachers with opportunities to learn 

more about why other teachers make the decisions they do has the potential to help support 

teachers gain greater clarity on their own instructional practices. 
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One-on-one coaching often involves a coach and teacher meeting to debrief after a lesson. One 

function of debriefing conversations is to enable coaches and teachers to look back on the lesson 

and figure out whether the instructional changes the teacher made were in fact improvements. 

We examined 25 cases in which a mathematics coach and teacher debriefed after a lesson to 

understand how coaches can support teachers in accomplishing this function. The findings 

emphasize the importance of mathematics coaches supporting teachers to explicitly link the 

instructional changes they made with their implications for students’ thinking, learning, or 

engagement. Doing so can enable teachers to see whether the changes they made were 

improvements. In further clarifying this process of analyzing a prior lesson, we contribute to 

research examining effective one-on-one coaching interactions. 

Keywords: Professional Development, Teacher Educators, Middle School Education. 

Researchers have reached a consensus on the types of instructional practices that can support 

students in attaining rigorous mathematical learning goals, such as those proposed by the 

Common Core State Standards in Mathematics (National Governors Association, 2010). Often 

referred to as ambitious and equitable instructional practices (Lampert et al., 2011; Lampert et 

al., 2010; Author & colleague, 2010), these practices include selecting tasks of high cognitive 

demand (Stein & Lane, 1996), launching tasks in ways that enable all students to begin working 

on them productively (Jackson et al., 2013), and pressing students to explain their reasoning and 

make connections between solution strategies during whole-class discussions (Kazemi & Stipek, 

2001; Stein et al., 2008). Ambitious and equitable instructional practices differ significantly from 

typical instruction in most US mathematics classrooms (Hiebert, 2013), and there is substantial 

evidence that teachers require sustained support if they are to develop such practices (e.g., 

Author et al., 2018). Many schools and districts are providing the required support by hiring 

mathematics coaches to work directly with mathematics teachers to aid them in developing 

ambitious and equitable practices (Mudzimiri et al., 2014; Obara, 2010). 

Mathematics coaches often work with mathematics teachers by engaging them in one-on-one 

coaching cycles. One-on-one coaching cycles consist of three phases: a lesson planning phase, in 

which a coach and teacher collaboratively prepare for a focal; a classroom instruction phase, in 

which a coach and teacher implemented the focal lesson; and a debriefing phase, in which the 

coach and teacher collaboratively analyze the impact of focal lesson (West & Staub, 2003). There 

is evidence that one-on-one coaching cycles can support individual mathematics teachers’ 

development of ambitious and equitable instructional practices when coaching cycles are 

facilitated effectively (Kraft & Hill, 2020; Russell et al., 2020). 

Researchers have made progress in understanding what it looks like for coaches to facilitate 

one-on-one coaching cycles effectively, especially as it relates to planning conversations (Russell 

et al., 2020; Witherspoon et al., 2020) and the classroom instruction phase (Saclarides & 

mailto:paul.cobb@vanderbilt.edu
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Munson, 2021). Yet, comparatively less is known about how mathematics coaches can facilitate 

debriefing conversations effectively. In particular, little is currently known about how coaches 

can support teachers to look back on a lesson they taught and determine whether any changes 

they made in their instruction actually enhanced students’ learning opportunities. As we note 

below, making such a determination is a primary function of debriefing. In this report, we clarify 

how coaches can support teachers in determining whether a change in instruction enhances 

students’ learning opportunities, and is thus an improvement. We do so by examining 25 

coaching cycles in which a mathematics coach and teacher debriefed after the lesson.  

Literature Review 

In recent years, scholars have begun to investigate how coaches can facilitate one-on-one 

coaching cycles productively, such that they can support teachers’ development of ambitious and 

equitable instructional practices (e.g., Kochmanski & Cobb, 2023a; Munson & Dyer, 2022; 

Russell et al., 2020; Witherspoon et al., 2021). To date, researchers have predominantly focused 

on the co-planning phase (Rusell et al., 2020; Witherspoon et al., 2021) and lesson enactment 

phase of coaching cycles (Munson & Dyer, 2023; Saclarides & Munson, 2021). Far fewer studies 

have examined how coaches can support teachers’ development of ambitious and equitable 

instructional practices in the debriefing phase of coaching cycles (Saclarides, 2022). That said, 

there is evidence that debriefing conversations can function in two ways to support teachers’ 

learning (Gillespie et al., 2023; Saclarides, 2022). First, coaches and teachers can look back on a 

lesson to figure out whether any instructional changes they made enhanced students’ learning 

opportunities (Hinojosa, 2022; Saclarides, 2022), and thus constituted improvements. We refer to 

this as the retrospective function of debriefing. Second, coaches and teachers can collaboratively 

identify new instructional changes they might make in future lessons (Kochmanski & Cobb, 

2023b; Russell et al., 2017; Saclarides, 2022). We refer to this as the prospective function of 

debriefing. 

In our prior work (Kochmanski & Cobb, 2023b), we have clarified how coaches and teachers 

can collaboratively identify the specific instructional changes they might make in future lessons. 

We found it is important for coaches to first prepare for a debrief by analyzing the lesson and 

identifying possible potential instructional changes that the teacher might make. Much as 

anticipated student solutions can inform class discussions, the instructional changes a coach 

identifies for a teacher ahead of a debrief can inform how the coach supports the teacher in 

setting improvement goals when debriefing. Further, we found it is essential for coaches to 

identify instructional changes that are (a) feasible for the teacher to make with the coach’s 

support and (b) likely to immediately enhance students’ learning, if attained (Kochmanski & 

Cobb, 2023b). We consider changes to be feasible when they build directly from a teacher’s 

current practices. Instructional changes are likely to enhance students’ learning when they occur 

in phases of lessons where students’ learning first breaks down. To illustrate this latter criterion, 

consider a lesson in which almost all students could not start the mathematics task because the 

launch was confusing. In this case, working to improve how the teacher facilitates whole-class 

discussions would not immediately enhance students’ learning because most students are 

unlikely to benefit from the whole-class discussion if they have not had opportunities to engage 

themselves in the mathematics task prior to the discussion. In contrast, it would immediately 

benefit students to make changes in how the teacher launches the task. 
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While we have made progress in understanding how coaches can support teachers to 

accomplish the prospective function of debriefing, there is still much left to learn the 

retrospective function of debriefing conversations. We are unaware of any studies that have 

closely investigated how coaches can facilitate debriefing conversations in which they support 

teachers in determining whether the changes they tried out in the lesson enactment phase actually 

benefited students’ learning and were thus improvements in teaching. Given this, we asked the 

following research question: How can mathematics coaches support teachers in determining 

whether the instructional change(s) they made during the lesson benefitted students’ learning, 

and were thus improvements? 

Methods 

Study Context 

This study occurred in the context of a multi-year research-practice partnership (RPP) 

between university researchers and district leaders from a large, urban school district in the 

south-eastern United States. The district comprises 128 total schools, including 74 elementary 

schools, 30 middle schools, and 24 high schools. It serves over 85,000 students and is highly 

diverse, with over 100 languages spoken by students. Over 40% of the district’s students are 

classified as economically disadvantaged and just over 20% of students have limited English 

proficiency. A primary goal of the RPP was to improve the quality of mathematics instruction in 

the district by training a cadre of middle and secondary mathematics coaches who could work 

with teachers in their schools. As part of the RPP, researchers and district leaders conducted a 

coach professional development (PD) design study that aimed to support mathematics coaches in 

learning to conduct one-on-one coaching cycles effectively with teachers. In the PD design study, 

researchers and district leaders collaborated to design and implement a sequence of eight 90-

minute PD sessions. Because debriefing is a central part of coaching cycles, a significant portion 

of the PD design study focused on supporting the coaches to prepare for and then facilitate 

debrief conversations productively, including how coaches can support teachers to determine 

whether changes in instruction constitute improvements. Consequently, if the PD was successful, 

we would be able to collect data that would enable us to analyze the types of debrief 

conversations in which we were interested. 

Participants 

Fourteen middle school mathematics coaches and one high school mathematics coach 

participated in the coach PD. All 15 coaches were school-based and all of them were hired from 

a district-approved pool of applicants who had demonstrated prior success in ambitious 

mathematics teaching. We purposefully selected seven focal coaches to be representative of the 

range of coaching experience in the larger group. We collected data on these seven coaches’ 

enactment of coaching cycles with the same teacher after each of the coach PD sessions. All 

seven focal coaches had more than five years of experience teaching prior to becoming a coach. 

Four of the seven coaches were novices in their first year of coaching, two of the seven coaches 

had extensive experience coaching in the district, and one coach had multiple years of coaching 

experience but was new to coaching in the district. Six of the coaches worked in middle schools, 

and one of the coaches worked in a high school. 

Data Collection 

We documented 25 total coaching cycles conducted by the seven focal coaches. For each of 

the cycles, we collected three types of data relevant to answering our research question. First, we 
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audio recorded the co-planning conversations between the coach and the teacher. Reviewing the 

audio recordings of the co-planning conversations enabled us to identify the instructional 

changes the coaches intended to make in the lesson. Second, we observed each lesson and wrote 

structured lesson observation notes. We also collected students’ work from the lesson. These data 

enabled us to see whether the teacher actually made the intended instructional changes, as well as 

whether those changes appeared to enhance students’ learning opportunities. Finally, we audio 

recorded the debriefing conversations between the coach and teacher. These audio recordings 

enabled us to see whether and how the coaches and teachers discussed the instructional changes 

the teachers made in the lesson. 

Data Analysis 

We conducted two phases of analysis to answer our research question. In the first phase of 

analysis, we determined whether the coach supported the teacher in accomplishing the 

retrospective function in each of the 25 coaching cycles. We considered coaches and teachers to 

have accomplished the retrospective function when the debriefing conversations satisfied two 

criteria: (1) the coach and teacher concluded whether or not the teacher made an intended 

instructional change in the lesson and (2) if the teacher made an instructional change, the coach 

and teacher accurately determined whether or not the change improved students’ learning 

opportunities, and thus constituted an improvement. In phase two, we answered our research 

question by comparing cycles in which the coach supported the teacher to accomplish the 

retrospective function with those in which the coach did not.  

Phase 1. We first determined whether each debriefing conversation satisfied the first 

criterion. To do so, we identified the instructional change(s) the coach and teacher intended to 

make in the lesson by analyzing the co-planning conversations for each cycle. We used inductive 

coding to record the intended instructional changes in a table. We then determined whether the 

teacher made the instructional change by analyzing the structured lesson observation notes and 

students’ work. Finally, we identified episodes in the debriefing conversations in which the coach 

and teacher discussed the instructional change. We compared these episodes with our own 

assessment of the lesson to see whether the coach and teacher accurately determined whether the 

teacher made the intended instructional change(s). 

We next determined whether the debriefing conversations satisfied the second criterion. This 

took three steps. First, we identified when in each lesson students’ learning first broke down 

(e.g., launch of the task, small group work time, whole-class discussion), if it did at all by 

analyzing the structured lesson observation notes and students’ work from the lesson. Following 

a process similar to that described in Kochmanski and Cobb (2023b), this involved asking two 

analytic questions: “Were all students able to work meaningfully on the tasks?” and “Was the 

range of student strategies in the lesson rich enough to have a productive discussion?” If we 

answered no to either of the questions, we considered students’ learning to have broken down in 

the launch of the task or in the small group work time prior to the whole-class discussion because 

the potential for students’ learning in the whole-class discussion wasn’t there. If we answered yes 

to the questions, we considered students’ learning to have broken down during the whole-class 

discussion, if it did at all. For example, in one case, the structured lesson observation notes and 

students’ work indicated that almost all students had blank papers during their small group work 

time, indicating that students’ learning opportunities broke down during the launch of the task. 
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The first two authors analyzed each lesson separately, and then met to reach consensus on when 

in the lesson students’ learning broke down, if it did at all. 

In the second step, we compared the instructional change the teacher made with the results of 

our analysis from step one to determine whether the instructional change improved students’ 

learning opportunities. We considered an instructional change to have improved students’ 

learning opportunities when the change occurred in the phase of the lesson in which students’ 

learning first broke down or in a phase prior to the break down in students’ learning. For 

example, if our assessment of a lesson indicated that students’ learning broke down in the whole-

class discussion, and the coach and teacher made a change in how they organized small group 

work time, then we considered the instructional change to have improved students’ learning 

opportunities. We also considered an instructional change to have improved students’ learning if 

there was no evidence of a break down in students’ learning. In the third step, we identified 

episodes in the debriefing conversations where the coach and teacher discussed whether the 

instructional change the teacher made was an improvement. We classified debriefing 

conversations as satisfying the second criterion when our analysis of the instructional change 

corresponded with the coach’s and teacher’s conclusions. 

Phase 2. As a reminder, in phase 2, we compared cycles in which the coach supported the 

teacher to accomplish the retrospective function with those in which the coach did not. We first 

identified episodes in the debriefing conversations in which the coach and teacher discussed the 

instructional changes the teacher made in the lesson. We then used open coding to characterize 

coaches’ and teachers’ justifications for whether and why the instructional change, if made, was 

an improvement or not. We open coded these episodes because there is limited research 

examining why coaches and teachers see instructional changes as improvements, and there was 

thus no available coding scheme that was adequate for our purposes. When appropriate, we 

adapted language for our open codes from prior research examining one-on-one coaching 

conversations between coaches and teachers (e.g., Kochmanski & Cobb, 2023b; Russell et al., 

2020; Saclarides, 2022). Table 1 shows the codes we used to characterize the justifications. We 

then compared the justifications in the cases that accomplished the retrospective function with 

the justifications in the cases that did not. 

 

Table 1: Justification Codes for Debriefing Conversations (Retrospective) 

Coach and Teacher Justification Definition 

Coach and/or teacher attributed 

changes in students’ thinking to 

changes in instruction 

Discussed how an instructional change impacted how 

students reasoned mathematically in the task or explained 

and justified their reasoning in whole-class or small-

group discussions. 

Coach and/or teacher attributed 

changes in students’ engagement to 

changes in instruction  

Discussed how an instructional change the teacher made 

impacted how students engaged in the task or students’ 

apparent confidence in engaging in the task. 
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Teacher connected an instructional 

change to opportunity to learn 

about students’ thinking 

Discussed how an instructional change impacted their 

ability to understand how students were thinking about 

mathematics in the lesson. 

Teacher made the intended 

instructional change  

Based determination solely on whether the teacher 

actually made the intended change in the lesson. 

Coach compared the instructional 

change with vision of effective, 

high-quality teaching 

Coach tells the teacher that the instructional change is an 

improvement because it marks a shift toward what the 

coach sees as effective teaching. 

Results 

We found that coaches supported their partner teachers in accomplishing the retrospective 

function in 13 of the 25 coaching cycles. In six of the 12 unproductive cycles, the coach and 

teacher accurately determined whether the teacher made the intended instructional change. 

However, their assessment of whether that instructional change was an improvement was at odds 

with our analysis of the lesson. In one of the unproductive cycles, the coach and teacher did not 

discuss an instructional change in the debriefing conversation. They therefore could not 

accomplish the retrospective function. In the remaining five cycles, the coach and teacher did not 

specify an intended change in the co-planning conversation. 

To understand how coaches can support teachers in accomplishing the retrospective function 

of debriefing, and thus answer our research question, we compared the 13 productive cycles with 

the six cycles in which the coach and teacher’s assessment of the instructional change differed 

from our own. Table 2 shows the frequency of the types of coach and teacher justifications 

organized by whether the coach supported the teacher in accomplishing the retrospective 

function. The types of justifications that coaches and teachers gave in the 13 productive cases 

differed from the corresponding justifications in the six unproductive cases. 

 

Table 2: Frequency of Justification Codes  

Type of Justification 

Number of cases 

Accomplished 

retrospective function 

Did not accomplish 

retrospective function 

Coach and/or teacher connected changes in 

students’ thinking to changes in instruction 

10 0 

Coach and/or teacher connected changes in 

students’ engagement to changes in 

instruction  

2 0 

Teacher connected opportunities to learn 

about students’ thinking to changes in 

instruction 

1 0 
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Teacher made the intended instructional 

change  

0 4 

Coach related the instructional change with 

vision of effective, high-quality teaching 

0 2 

 

In each of the 13 cases with productive debriefing conversations, the coach and/or the teacher 

connected changes in students’ thinking, their engagement in the task(s), or opportunities for the 

teacher to learn about students’ thinking to the instructional change the teacher had made. In one 

coaching cycle, for example, the coach and teacher planned to implement a more open-ended 

task in the lesson. The teacher implemented the task as intended in the lesson. In the debriefing 

conversation after the lesson, the coach and teacher identified changes in students’ thinking, and 

they attributed the changes to the teacher’s decision to implement the more open-ended task. 

Specifically, the coach and teacher noticed that the students had to figure out their own strategies 

for solving the task, rather than using a strategy that was hinted at in the task. Consequently, 

there was a wide range of solution strategies in the small group discussion time on which the 

teacher could capitalize in the concluding whole class discussion. The coach prompted the 

teacher to relate these changes in students’ strategies to their decision to implement an open-

ended task, asking, “What did you think about [the new task]?” In response, the teacher 

attributed the changes she noticed in students’ thinking to her selection of the open-ended task. 

She noted that students in her class usually “figure out something to do with the numbers,” and 

then come up with an answer without explaining why it might make sense. However, with the 

new task, the teacher observed that her students “actually had to problem solve” and discuss 

different solution strategies in their small groups. Then, the groups had to draw on their prior 

mathematics knowledge to settle on an answer. The teacher and the coach agreed that the new 

task was an improvement because it resulted in enhanced student learning opportunities. 

In contrast, in all six cases with unproductive debriefing conversations, the coach and teacher 

discussed the change in instruction without considering whether the change made a difference for 

students’ learning and/or engagement. In four of the cases, the coach and/or the teacher 

concluded that making the intended instructional change was a sufficient reason to consider the 

change as an improvement. In one case, for example, the coach and teacher worked together to 

ensure the teacher could “make it through” all parts of her lesson plan. In the co-planning 

conversation, the coach suggested that she and the teacher make a timeline for the lesson and 

then use a timer to stay “on track”. The teacher used the timer successfully in the lesson. In their 

subsequent debriefing conversation, the coach and teacher agreed that the lesson was an 

improvement because the teacher stayed on track. While the coach and teacher perceived this 

change in instruction to be an improvement, our analysis indicated that this change had limited 

bearing on students’ learning opportunities. Instead, we found that the teacher provided minimal 

support to students during the launch of the task, and as a result, many students left their papers 

blank during their work time, indicating they struggled to get started on the task. Completing all 

phases of the lesson therefore had limited impact on students’ learning opportunities because 

students’ learning opportunities first broke down early in the lesson during the launch of the task. 

In the other two cases, both coaches used their visions of high-quality teaching to assess the 

instructional changes their partner teachers had made and then simply told the teachers that the 
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changes were improvements. To illustrate, we focus on a coaching cycle in which the coach and 

teacher worked to improve students’ engagement by making the task more “relatable” to 

students. To do so, the coach and teacher decided to start the lesson with an introductory task 

about her recent experience buying strawberries at a grocery store. However, the primary task for 

the lesson focused on estimating the cost of oranges. In the debriefing conversation following the 

lesson, the coach and teacher observed that the teacher “kind of lost [students] after a while” 

because it took a long time to discuss her trip to the store to buy strawberries. Despite this, the 

coach told the teacher that “making [the launch] personal was really good” She then went on to 

note that this kind of personal connection is an effective teaching strategy, and thus constituted 

an improvement. Unfortunately, their decision to include a personal story both increased the time 

the teacher spent introducing the task and appeared to be confusing for many of the students who 

then struggled to begin working on the task. Our assessment of whether the instructional change 

was an improvement therefore differed from that of the coach. 

Discussion and Conclusion  

The goal of this analysis was to clarify how mathematics coaches can support teachers in 

determining whether the instructional change(s) they made during the lesson benefitted students’ 

learning and their engagement and were thus improvements. We found that in the cases in which 

coaches succeeded in supporting teachers in making this kind of determination, they connected 

changes in students’ thinking and their engagement to changes in instruction. In contrast, we 

found that in the unproductive cases, the coaches and teachers either concluded that making the 

intended instructional change was a sufficient reason for the change to be an improvement or the 

coaches used their visions of high-quality teaching to assess whether the changes were 

improvements for teachers. It therefore appears unproductive for coaches to focus only on the 

teacher’s actions without considering the consequences of those actions for students’ thinking 

and engagement. 

The results of our analysis make a significant contribution to research on one-on-one 

mathematics coaching. Specifically, our findings extend prior research examining one-on-one 

debriefing conversations in mathematics coaching (Russell et al, 2017; Cross Francis et al., 2021; 

Saclarides, 2022). Several recent studies of one-on-one coaching have examined the focus and 

nature of coaches’ and teachers’ talk during debrief conversations descriptively (Amador et al., 

2024; Cross Francis et al., 2021; Gillespie & Amador, 2024; Saclarides, 2022). Our study builds 

on and extends this primarily descriptive work by clarifying how coaches can accomplish the 

retrospective purpose of debriefing conversations, thereby advancing our understanding of how 

coaches can facilitate productive debriefing conversations. Specifically, we highlight the 

importance of linking students’ learning opportunities to instructional changes. While prior 

research points to the importance of connecting students’ learning to instruction during co-

planning conversations (Russell et al., 2020; Witherspoon et al., 2020) and when observing a 

lesson to identify instructional improvement goals for teachers (Kochmanski & Cobb, 2023b), 

this is the first study to highlight the importance of this connection in debriefing conversations. 

Regarding implications for future research, it appears important for coaches to support 

teachers in connecting students’ learning and instruction in all three phases of coaching cycles. 

Future research might investigate in greater detail how coaches can be supported to see this 

underlying principle as a central tenet of productive one-on-one coaching cycles. Further, we 

suspect that coaches who support teachers in connecting students’ learning (or lack thereof) to 
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their instruction might also be supporting teachers in coming to view instructional limitations as 

the primary source of students’ learning difficulties (Jackson et al., 2017). This would be a 

significant development as prior research indicates many mathematics teachers attribute the 

difficulties of students they perceive are struggling primarily to inherent characteristics of the 

students (Jackson et al., 2018). Future research might investigate whether this is the case. Finally, 

while we investigated the retrospective function of debriefing conversations in the context of 

one-on-one coaching cycles, we anticipate that our findings will prove relevant to other settings 

in which teachers analyze their instruction with a colleague, such as mentor-mentee relationships 

in pre-service teacher education and when teachers work with a peer to improve their instruction. 

However, this conjecture requires further investigation. 
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Professional learning programs are designed to promote teacher learning to foster improved 

instructional decision-making to achieve better student learning outcomes (Borko et al., 2010; 

Darling-Hammond et al., 2017). One way to investigate teachers’ professional learning 

experiences is to incorporate reflective journals into professional development. Reflecting in 

journals affords opportunities for teachers to document their experiences and make sense of their 

professional learning (Brown et al., 2011; Henderson et al., 2004). In this study, I examined 

relationships between two elementary teachers’ intentions, as documented in reflective journals 

kept during a professional learning experience, and their mathematics teaching practices one year 

later. This descriptive case study investigates how elementary teachers made sense of their 

professional learning in their reflective journals, and then, a year later, which aspects of teaching 

from reflective journals appeared to translate into their mathematics teaching. The research 

question that guided this study: In what ways do elementary teachers’ reflective journaling about 

their professional learning translate into their mathematics teaching practices a year later? 

The main finding is that two elementary teachers’ thinking in their reflective journals 

translated into their mathematics teaching practices, based on both reported and observed data. 

The aspects of mathematics teaching that teachers intended to improve – identifying the key 

learning goals of the lesson and creating intentional questions – were key aspects of effective 

mathematics teaching (NCTM, 2014; Smith & Stein, 2018). Figure 2 summarizes both 

participants’ intentions and their mathematics teaching practices. This study has implications for 

teacher educators and professional learning designers to consider embedding reflective 

journaling as part of their professional learning programs. Reflection can be an important tool 

that supports professional learning and teacher education (Cimer et al., 2013; Schön, 1983).  

 
Figure 2: Summary of the Findings 
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Examining how teachers notice students’ errors is one part of understanding how teachers can 

learn to respond to errors productively. This paper explores how teachers notice student errors. 

Across one discussion, teachers negotiated their noticing by seeking, offering, and sharpening 

accounts of video evidence, and by offering, extending, and contesting interpretations of video 

evidence. Together, these moves constituted their shared framing of the error as worth 

understanding. This research contributes to our understanding of how teachers notice and can 

co-construct their noticing in the context of video-based professional development. 

Keywords: Professional Development, Teacher Noticing 

Mathematical errors — students’ contributions that are not mathematically complete, precise, 

or correct (Baldinger et al., 2021) — are resources that can be leveraged to support students' 

learning (Borasi, 1987; NCTM, 2000). Teachers can work with students to examine errors to 

extend and deepen their mathematical thinking (Tulis, 2013). Yet, dominant deficit discourses in 

mathematics education typically value correctness over meaning, making productively engaging 

students’ errors difficult for teachers (Adiredja & Louie, 2020). Indeed, teachers often ignore or 

simply correct errors (Santagata, 2005). Even teachers who report believing that errors are 

resources do not consistently use them as such in the classroom (Alvidrez et al., 2022).  How, 

then, can teachers approach errors in more productive ways?  

Every decision and response a teacher makes is, in part, an extension of something they 

noticed (Mason, 2002). Noticing has been conceptualized as the dynamic interplay of teachers’ 

attention, interpretations, and framing (Louie et al., 2021), where framing is understood as the 

process of activating or developing schemas that both construct and are constructed by what 

teachers see and their sense of its meaning (Sherin & Russ, 2014). These schemas represent a 

“framework of frameworks” for a participant in an activity, reflecting a key element of the 

broader participant group's culture (Goffman, 1974, p. 27). Students running and shouting may 

be interpreted favorably by a teacher monitoring recess, and less favorably by a teacher 

monitoring silent reading time. The teacher’s understanding of the nature of either activity (her 

framing) influences her attention to and interpretations of students’ running and shouting, and, in 

turn, her attention to and interpretations of their running and shouting influences her 

understanding of the nature of either recess or silent reading time.  

Teachers can learn to notice students’ mathematical thinking (Dindyal et al., 2022), and 

noticing students’ thinking has been linked to improved student learning outcomes (Kersting et 

al., 2010). Less is known about how teachers notice errors specifically. With this in mind, I 

unpack a discussion among three teachers about one student’s mathematical error, tracing how 

they negotiated what happened in the video and what it meant to reach a well-supported and 

shared conclusion, asking: In one productive discussion about one student’s mathematical error, 

how did teachers frame Evan’s error as worth understanding? 
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Methods 

Data come from a nine-week, online, professional development course for in-service K-2 

mathematics teachers. Nine teachers participated in the course. One goal of the course was to 

support teachers to notice strengths in students’ thinking. On alternating weeks, teachers 

recorded and uploaded video clips of their students trying new tasks to an online platform, then 

watched and marked moments of students’ thinking in their own and their peers’ videos using a 

video annotation tool (Larison, Richards, and Sherin, 2022). The other weeks, teachers met 

virtually on Zoom in small groups to discuss their videos. I facilitated the virtual video clubs 

(Sherin & van Es, 2009), working to maintain our focus on students’ thinking in the videos. Here 

I explore part of one video club between a differentiation support teacher, Bea, and two second-

grade teachers, Casey and Glenda (all names are pseudonyms). 

A ~four-minute-long video clip from Bea’s classroom formed the basis for the teachers’ 

discussion. In the clip, three students shared their thinking about what goes in the blank in the 

equation 8 + 5 = __ + 7. Evan, a first grader who had historically attained high test scores, 

originally wrote “4” in the blank. Bea asked, “Why did you put a four there?” He responded, 

“Because eight plus…” pausing mid-sentence. After ~five seconds, Bea asked, “What are you 

thinking?” Evan told her, “I got mixed up…I thought the seven was more than eight.” He 

concluded that “six” should go in the blank rather than four. 

I examine one ~five-minute discussion segment among the three teachers as a case (Yin, 

2009) of a productive discussion about a student’s error to unpack teachers’ noticing. Productive 

discussions about students’ thinking have been conceptualized as focused on students’ thinking, 

concerned with mathematically substantive ideas, and involving joint sensemaking among 

teachers (Sherin et al., 2009). I conceptualize a productive discussion about a student’s error as 

also reaching a well-supported and shared conclusion about the meaning in the student’s error. I 

do not suggest that teachers reaching a well-supported or shared conclusion is always possible or 

preferable; rather I use this approach to examine the work teachers did to reach their conclusion. 

To begin to unpack teachers’ noticing (Louie et al., 2021) related to the error in the video, I 

coded what they attended to, or evidence from the video mentioned in conversation, and their 

interpretations of that video evidence. To explore how teachers negotiated what happened in the 

video and what it meant, I used a constant comparison method (Glaser, 1965) to locate and 

characterize instances in which teachers interacted with video evidence their peers brought 

forward (a proxy for their attention), and engaged their peers’ ideas about video evidence (a 

proxy for their interpretations). Finally, I looked across the teachers’ discussion of video 

evidence and its meaning to infer the framings that organized and were organized by their 

attention and interpretations (Sherin & Russ, 2014). In practice, attention, interpretation, and 

framing are closely related. I separate them here for analytic purposes only. 

 

Findings 

Bea, Casey, and Glenda negotiated their noticing about the video in six different ways —  by 

seeking, offering, and sharpening evidence, and offering, extending, and contesting 

interpretations (see Table 1). To understand the relationship between their negotiations, their 

framing of Evan’s error, and how together they functioned to support the teachers in reaching 

shared meaning about the error, consider the following examples within the trajectory of their 

discussion. 
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Table 1: How Teachers Negotiated Salient Video Evidence and Its Meaning 

  

  Type of 

Negotiation 

Example 

Attending Seeking 

Evidence 

Casey asked, “I think he says… ‘I’m trying to think about how 

eight plus five, what would make it the same,’ does he say 

that?”    
Offering 

Evidence 

Glenda said, “I heard this time, ‘would make the same.’” 

   
Sharpening 

Evidence 

Responding to Glenda’s offering, Casey said, “Yeah he says, ‘8 

plus 5. I was thinking 8 plus 5 would make the same as 4 plus 

7.’”  
Interpreting Offering Casey conjectured, “I think he was really thinking…six plus five 

equals four plus seven...”   
Extending Adding to Bea’s interpretation, Glenda said, “Yeah ‘cause 

then…his pointing of the marker, too…he was saying since eight 

and five are further apart, seven and six should be closer 

together in terms of ‘the same as.’”   
Contesting Bea, responding to Casey, asked, “Or he got mixed up on which 

one (seven or eight) was bigger, right?” 

 

In the initial part of their discussion, the teachers established the shared goal of figuring out 

the meaning of Evan’s error by their careful and sustained engagement with it. This goal reflects 

their framing of Evan’s error as worth understanding. They offered and contested a few 

interpretations about why Evan stated that four should go in the blank. More specifically, the 

discussion began when I asked, “What did you notice about Evan’s thinking?” Casey offered an 

interpretation that the source of Evan’s error was related to his sense of the numbers seven and 

eight, saying,  “...he was thinking, ‘okay seven is more than eight,” so he needed a number more 

than five.” She followed up, offering another interpretation that perhaps Even confused the 

eight with a six, thinking, “…six plus five equals four plus seven.” Bea, contesting Casey’s 

second interpretation and extending her first, replied, “Or he got mixed up on which one was 

bigger, right?” After a couple of talk turns between Bea and Glenda, Casey added, “I think he 

says… ‘I’m trying to think about how eight plus five, what would make it the same,’ does he say 

that?” both offering and seeking evidence from her colleagues. Bea responded, sharpening the 

evidence, “...He was pointing to the eight plus five, and he would say, ‘This would need one 

smaller number.’” Glenda responded, “I was trying--I still need to listen. I want to think about it 

more because…I honestly think he has a far more sophisticated understanding of these numbers 

than I do….I’m like, ‘what is he getting that I’m not figuring out?’ and I know that it’s working 

in his head,” to which Casey and Bea immediately agreed, prompting me to ask if they would 
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like to rewatch the video, to which all three teachers agreed. Together, these moves reflect the 

teachers’ continued framing of Evan’s error as worth understanding. 

After rewatching the video, Glenda offered evidence, saying, “I heard this time, ‘would 

make the same.’” Casey sharpened the evidence, adding, “Yeah, he says…eight plus five 

would make the same as four plus seven.” Bea shifted back to the error specifically, offering a 

new interpretation, “...He realized that those were one away from each other and so that’s why 

he had the four at first was because he knew that was one away from five. He just went the other 

way.” Casey and Glenda responded, “Ooh!” in tandem. This series of talk turns signaled an 

“Aha! moment” for the group. Glenda extended this interpretation, offering additional 

evidence about Evan tapping his marker. 

Together, Bea, Casey, and Glenda concluded that Evan, having drawn on his relational 

reasoning skills, knew that “something one away” from five should go in the blank, and his error 

was located in his having compensated “the other way” from five when he originally answered 

six, rather than four. Their conclusion reflects the shared interpretation that Evan had drawn on 

his sense of the numbers seven and eight, and their relation to five and the blank. The teachers’ 

conclusion can also be understood as the result of their negotiating video evidence and its 

meaning within their shared framing of Evan’s error as worth understanding. 

 

Discussion 

This research contributes to our understanding of how teachers notice students’ mathematical 

errors and how teachers co-construct their noticing of classroom videos together in discussion. 

Here I have begun to explore the social dimension of one teacher group’s noticing by tracing 

how teachers took up, contested (Goodwin, 1994), and otherwise engaged one another’s 

attention, interpretation, and framing of one student’s thinking in a classroom video. Note that 

teachers negotiated video evidence (a proxy for their attention) and its meaning (a proxy for their 

interpretations), but appeared to frame Evan’s error in the video in parallel and seemingly 

productive ways across the duration of their talk. Future work can explore what happens when 

teachers bring different frames, perhaps more and less productive, to their noticing together. 

Finally, recall that Bea was a differentiation support teacher, not a self-contained classroom 

teacher. Bea’s job was to meet with small groups of (usually three) students, which allowed her 

to focus more carefully on individual students’ thinking, rather than feel rushed to notice a 

classroom of different students’ thinking. She was not bound by a curriculum or accountable to 

test scores because she was not the students’ primary teacher. Evan was selected for 

differentiated instruction based on his high test scores. Indeed, Bea introduced him at the 

beginning of the course, writing, “Evan consistently scores high…” Framing has been conceived 

as the coordination of teachers’ resources specific to the context, such as their knowledge, 

beliefs, and perceptions of environmental constraints (Richards et al., 2020). We can reasonably 

infer that Bea’s knowledge (and by extension, Casey and Glenda’s knowledge) of Evan’s 

achievement history was salient to framing his error as worth understanding from the outset of 

the discussion. Teachers also likely perceived few environmental constraints for noticing Evan in 

the context of Bea’s classroom, and the video club, where they could slow down to make sense 

of Evan without the pressure of deciding how to respond. 

Let us suppose, then, that the teachers noticed Evan’s error particularly carefully because of, 

in part, his achievement history and their perception of the affordances of the environment of 
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Bea’s classroom and the video club itself. Many questions remain: To what extent did Evan’s 

thinking having been an error influence their noticing? How did these teachers engage other 

students’ thinking, with different achievement histories and in other classroom contexts? Did 

teachers routinely frame Evan’s thinking in seemingly productive ways? In our final video club, 

Bea shared “frustration” with Evan, and “confusion,” at his incorrect use of the equal sign, 

despite having been exploring it for weeks. Future research can continue to explore the complex 

relationships between teachers’ noticing and who and what they notice. 
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Effective professional development is critical for growth and change within American 

education (Darling-Hammond et al., 2017). Therefore, those leading the professional 

development (facilitators) must be prepared to “successfully facilitate newly developed PD 

models that offer high-quality learning opportunities for teachers” (Borko et al., 2014, p. 14). To 

do so effectively, facilitators must be adequately prepared and supported (Borko et al., 2014; 

Koellner et al., 2011; Roth et al., 2017). Facilitators must draw from a rich knowledge base to 

make decisions and take action in planning and enacting their professional development sessions 

(Rodgers et al., 2017). Few empirical studies have been explicitly designed to study the 

facilitation of professional development or facilitator learning. Lesseig et al. (2017) noted that, as 

a field, we “lack research-based principles to guide the design of leader preparation” (p. 592). 

Therefore, studying how facilitators learn and enact effective PD is imperative. 

This poster aims to describe the emergent findings of a study to address the needs of 

preparing, supporting, and researching facilitation by investigating facilitator learning in a 

facilitator professional development (FPD) designed to prepare and support facilitators as they 

enact a high-quality, effective mathematics PD program. This study focused on five facilitators 

and one facilitator educator as they participate in an FPD focused on reflective facilitation 

(adapted from Smith, 2001) and TRU for Professional Growth (TRU-PG) (Schoenfeld, 2015) to 

support their enactment of the Analyzing Instruction in Mathematics Using the TRU Framework 

(AIM-TRU) PD model. Each participant had various facilitation experiences and was from the 

same region in the Northeast United States. 

This FPD was centered around Schoenfeld’s (2015) Teaching for Robust Understanding for 

Professional Growth (TRU-PG) framework. This framework depicts five dimensions that 

characterize powerful learning environments: Professionalism, Room to Grow, Equitable Access, 

Agency, Ownership, and Identity, and Uses of Assessment. These dimensions have been posited 

by Schoenfeld as a framework for PD based on abstraction from the Teaching for Robust 

Understanding (TRU) framework, which has been shown to create powerful mathematics 

learning environments (Schoenfeld, 2015). Participants meet for seven FPD sessions throughout 

the school year. Each of the seven sessions focused on one dimension of TRU-PG or reflective 

facilitation practices. Each of these sessions was video recorded and transcribed. The research 

questions driving this study are: How does the facilitator professional development model 

support facilitator learning? and How does the discourse in a facilitator professional 

development align with the TRU- PG framework? 

Drawing on situated learning perspective and community of practice (CoP) theoretical 

frameworks (Wenger, 1999), I use frame analysis (Bannister, 2015) to examine participation 

changes and how the discourse aligns with the TRU PG framework. This poster will report on 

preliminary findings of facilitator learning in this FPD, including an analysis of the problems of 
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practice faced by participants and how they changed over time. The poster will also report on 

how the problems of practice align with the TRU-PG framework. 
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Mathematics teacher leadership is promising, yet complex work. This systematic review takes 

stock of the current research landscape on mathematics teacher leadership, specifically 

mathematics specialists as teacher leaders (MSTL). This study’s findings provide further 

evidence that mathematics-specific teacher leadership is on the rise. Further, in considering the 

research design, the trends surrounding the methods, research questions and framing also 

illuminate future research directions and complexities. 

Keywords: Instructional Leadership, Research Methods  

Perspective on Teacher Leadership 

As early as the 1970s, a teacher-leadership model was established to position teachers as 

educational change agents (Andrew, 1974). Within this model, the teacher leader position is an 

“in-school position” that moves beyond supervision responsibilities or those of a master teacher 

and is a “front line leadership role for improvement of curriculum and instruction” (p. 2). This 

teacher leader positioning allows for career growth and advancement while allowing teachers to 

remain in classrooms (Andrew, 1974), a promising aspect given current teacher retention issues 

(Yow et al., 2021a). Content-specific professional learning has proven to be an essential 

component of effective professional development (PD; Darling-Hammond et al., 2017; 

Desimone, 2009). Research indicates teacher leaders also believe that expertise in subject-matter 

and pedagogical content knowledge is important for them to engage effectively in teacher 

leadership (e.g., Snell & Swanson, 2000). 

We define a mathematics-specific teacher leader as a type of mathematics specialist who has 

primary responsibilities within a P-12 classroom and provides formal and/or informal support for 

teaching and learning mathematics to in-service teachers through mentoring and other support 

structures (Baker et al., 2022). Thus, we refer to this individual as a mathematics specialist as 

teacher leader (MSTL, p. 31). Mathematics-specific teacher leadership is promising (Yow et al., 

2021a), yet complex work (Klein et al., 2018), and research interest in this form of leadership is 

on the rise (Rigelman & Lewis, 2023). 

 

Purpose 

The purpose of this systematic review is to understand the current MSTL research landscape 

and explore the following research questions: (1) What are the historical publication trends for 

MSTLs? and (2) What are the various methods, research questions, and framing used in research 
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design for MSTLs?  

Methods 

We explored the historical publication trends for MSTLs and the various methods, research 

questions and framings used in research design. Below we outline the systematic procedure we 

used to investigate the research related to MSTL between 1981-2021 and describe the 

methodological parameters of our data identification and analysis. We drew on Cooper et al.’s 

(2019) comprehensive steps to achieve a high-quality literature synthesis (Sandelowski & 

Barroso, 2007) to inform research and practice.  

Data Collection  

For the purpose of this analysis, we targeted the articles in which mathematics specialists 

served as teacher leaders from a larger body of work (Baker et al., 2022), wherein we explored 

empirical research to examine the positioning of mathematics specialists (see Baker et al., 2022 

for a detailed process of inclusion and exclusion criteria). Within that larger analysis on 

mathematics specialists, 57 articles were identified with the MSTL code. To evaluate study 

quality, we used the appraisal criteria of Risko et al. (2008). This evaluation tool has seven 

quality criteria that enables the appraisal of articles from various methodologies. Of the 57 

articles, 34 received an overall score of “3”, meeting all seven criteria and producing a 60% 

inclusion rate. 

Data Analysis 

To answer our research question about historical publication trends for MSTLs, we began by 

isolating the 34 unique articles that featured a MSTL, and completed counts to determine the 

frequency of publications between our target dates of 1981–2021. The lower date range was 

based on the call for mathematics specialists from National Council of Teachers of Mathematics 

(NCTM) in 1981 (Dossey, 1984), a catalyzing event noted by Fennell (2017), and the upper date 

range was the last complete year of research available at the time analyses began. We then 

represented this data in a line graph to help illustrate publication trends over time. Next, we 

identified the journal title for each article that was published during this time frame and 

determined the frequency with which each journal published an MSTL article. We then 

examined the title to determine if the journal was a mathematics-specific education journal or a 

general education journal. The code “math” was used if only mathematics appeared in the 

journal title and the code “general” if there was no mention of mathematics in the title, or the 

journal focused on research across content areas (e.g., literacy, social studies). We then 

completed frequency counts of the journals that published one of the 34 MSTL articles. 

To determine trends in research methods, we coded each article with an overarching 

description of the methodological approach (mixed methods, qualitative, quantitative) and 

determined the frequency of the approaches. We first searched the full article to identify how the 

author(s) described the study. In instances in which the author(s) did not identify a description of 

the methodology, we made inferences based on the data collection tools identified in the study. 

For example, if the article mentioned using interviews or observations, we coded the article as 

“qualitative.” If the article mentioned using statistical analysis of scores on an assessment, we 

coded the article as “quantitative.” If an article mentioned both qualitative and quantitative data 

sources, we coded it as “mixed methods.” 

To determine trends in research questions, we compiled each article’s question(s). While 

some articles (e.g., Insuander et al., 2019) had multiple research questions, other articles featured 
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a single research question that guided the investigation (e.g., Yow et al., 2021b). Nevertheless, 

all questions from one article were inserted into a single cell of our matrix. One member of the 

research team open-coded (Saldaña, 2021) the questions to determine what concepts emerged, 

and then made a preliminary categorization key. Two research team members then independently 

categorized the research questions into one or more of the following categories: “teacher leader 

characteristics”, “teacher leader interactions”, and “teacher leader professional learning”. Only 

the presence of a category was recorded for each research article. Upon coming together to 

obtain consensus, a fourth category “systems” emerged. We also further refined “teacher leader 

interactions” to encompass the interactions a teacher leader has with any K-12 partner and 

“teacher leader professional learning” to illuminate that the PD was for the teacher leaders. 

Beginning with a list of the headings and notes about codes for concepts and theories of the 

studies compiled by four authors, one author created an initial coding framework. A second 

author then referred to the articles themselves to apply the coding framework as a validation of 

the conceptual topics and to confirm the interpretation of the headings. As with the research 

questions, two authors met to come to consensus on the coding. Based on the research question 

coding and reviewing the literature review sections, a distinction between PD for teachers and 

PD for teacher leaders was made in the framework.  

To determine the type of framing of MSTL research, we identified the articles with a clear 

heading that outlined a theoretical or conceptual framework. The next step was to consider the 

introduction and literature review sections to identify a conceptual or theoretical framework. 

This process yielded additional articles where the framework was identified by the authors 

embedded within text (often the literature review) and not within an independent section, which 

meant most of the articles had an identified theoretical or conceptual framework. The remaining 

articles were deemed to use a practical framework and their literature review constructs were 

analyzed to determine the practical frameworks for these studies.  

 

Results 

Research Question 1: Publication Trends 

We examined the 34 unique studies that were coded as MSTL. Overall, there was an 

increasing trend in publications featuring an MSTL. Although the period we examined spanned 

over 40 years, the publication range was 2004-2021, with the majority published in the last 

decade. Between 2012-2021, there were 30 articles published which represent 88% percent of 

the total MSTL-focused subset, and 24 (71%) of the 34 articles being published during the most 

recent five years span of 2016-2021.  

MSTL articles were published within 23 journals. Of those 23 journals, eight were 

mathematics-specific education journals and 15 were general education journals. Seven journals 

published more than one MSTL article. In the sub-set of seven journals, there were 16 MSTL 

articles of which four were housed in mathematics-specific education journals and three were in 

general education journals. The mathematics-specific education journals housed 10 of the 16 

articles (63% of this subset; 29% of the entire data set).  

Research Question 2: Research Design Trends 

Methods 

The 34 research articles include 24 qualitative studies, one quantitative study, eight mixed 

methods studies and one article focused on tool development. Common approaches to data 
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collection included surveys (e.g., Yow et al., 2021b); interviews (e.g., Webel et al., 2018); and 

observational data (e.g., Gerstenschlager & Barlow, 2019). Many studies used case study 

approaches (e.g., Roberts, 2020) to analyze teacher leaders’ development individually (e.g., 

cross-case analysis) or collectively over time. 

Research Questions 

Four categories of research questions emerged from the analysis: (a) leader characteristics, 

(b) leader interactions with others, (c) leader reactions to PD programs, and (d) systems-level 

analysis. The first three categories characterize aspects of the MSTLs’ experience, roles, 

practices, and leader development. These questions capture their transition from teacher-to-

teacher leader, the roles they play in schools, the kinds of knowledge and practices they need, 

and the influence of PD on their development as leaders.  

While each article could include multiple questions with a specific categorization, we only 

coded for the presence or absence of the category. It was somewhat arbitrary as to the number of 

research questions as well as whether specific categorizations were present across one or 

multiple research questions. For instance, Cassata and Allensworth (2021) stated “RQ1. What 

were the practices teacher leaders used to support instructional change? RQ2. In what ways did 

school-level factors shape the practice of the teacher leaders?” (p. 2). In this example the first 

question is about the influence of MSTL on others and the second question is a systems question 

because it centers on the influence of the school on the MSTL. However, other articles might 

have multiple, related questions about a MSTL’s interactions. For example, Borko et al. (2021) 

state “(1) How did the Teacher Leadership Preparation sessions evolve over time? (2) What key 

Problem-Solving Cycle ideas did the Teacher Leaders adopt and how did they adapt them over 3 

years of planning and facilitating workshops?” (p. 130). The greatest number of articles are about 

PD programs for teacher leadership. Fewer studies are about MSTL characteristics or their 

interactions with others. While a clear pattern of research question categories did not emerge, it 

is important that the field is studying MSTLs in concert with the influences of either PD for them 

or their work within a system. 

Framing 

There was a total of 18 articles (53%) with a clearly identified theoretical framework with 

two specific theories used in two different articles: (a) professional noticing, and (b) situative 

learning. Three of the 18 articles did not have an identified section outlining the theoretical 

framework but instead embedded the framework within the literature review (e.g., Cwikia, 2004; 

Lu et al., 2020) or the introduction (e.g., Insulander et al., 2019). As we documented the theories 

used to study mathematics-specific teacher leadership, we also analyzed each article to determine 

if certain themes were evident across the 18 articles. Within some articles, researchers leveraged 

more than one theory and sought to answer multiple questions. For this reason, an article may be 

represented more than once within the identified themes. There were seven articles (21%) with a 

clearly identified conceptual framework. While one of these articles had a clearly labeled 

conceptual framework heading, it was also referred to as a theoretical framework elsewhere in 

the article (Boylan, 2018). All seven articles also used their conceptual frameworks in the 

analysis of their data. The conceptual frameworks used by studies of teacher leadership within 

mathematics education included frameworks about conceptualizing and defining informal 

mentors, communities of practice, induction, images of a teacher, and systems of teacher 

leadership. Others used formalized conceptual frameworks like Three-Tetrahedron (3-T) Model 
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of Professional Development (Prediger et al., 2019) and The PRIME Leadership Framework 

(National Council of Supervisors of Mathematics [NCSM], 2008). 

After determining whether an article had an author-identified theoretical or conceptual 

framework, we identified ten articles (29%) that used a practical framework to frame their study 

within known and successful practices (Eisenhart, 1991). For this analysis, we examined each 

article’s introduction, literature review headings, and background sections to identify the 

practical frameworks. These were compiled into the following categories: mentors/ mentoring, 

mathematics coaching/specialists, teacher leadership, and instructional practice. The framing of 

mathematics coaching/specialists included background information, responsibilities, roles and 

their development and support. An instructional practice framing included exploring flipped 

classrooms, synchronous online teaching and blending learning, and data informed practices. 

Articles with a mentoring framing explored mentoring relationships and influence. A teacher 

leadership framing included influence, learning environments, data-informed decisions, and 

program components. One feature that seemed to distinguish the conceptual frameworks from 

the practical frameworks was that conceptual frameworks used a more general construct of 

mentoring, while the practical frameworks explored mathematics-specific literature around 

coaching and specialists, which was highlighted as an individual theme. 

While the previous section explored the frameworks more holistically, this section examines 

the concepts that make up the background literature portions of each study and which are used to 

situate the studies in the research literature. Four categories of framing concepts emerged from 

the coding process: (a) practices, (b) positioning, (c) purpose, and (d) PD. Due to the complexity 

of the research questions surrounding mathematics-specific teacher leadership, an article could 

be assigned more than one framing category. The first framing category included types of 

practice and how studies described the type of actions, behaviors, strategies or approaches 

MSTLs should employ. The second category included two different positionings for leadership. 

One positioning is “teacher leadership” referring to general teacher leadership framed as: the 

influence on other teachers, informal or formal leadership roles, and taking up activities beyond 

classroom teaching. The second positioning was specific framing as content-specific leaders (in 

this case, mathematics) where the practices, standards, content, and knowledge of the discipline 

is positioned as critical to the role. The third category was about the purpose of the study itself 

including the intervention the authors might suggest or the teacher leadership itself. This 

category included teaching induction, teaching practice, professional knowledge, and 

instructional change as what might be influenced or changed by the teacher leadership process. 

The final category included two framings of PD: teacher PD and teacher leadership PD. 

The three practices included formal and informal leadership practices and roles. The codes 

were used to describe the language authors used to situate their research via the literature or other 

frameworks. So, while Knapp (2017) was an often-cited article about mathematics coaching and 

the findings include coaching as a term, the literature review is framed around teacher leadership. 

Other articles framed specific aspects of teacher leadership practice in their findings, thus 

providing a window into how the research was theorized and supported.  

The two categories of content-specific/mathematics leader and teacher leaders displayed how 

the role might be defined in the school, how the leadership work might be framed, and the 

complexity of teacher leadership overall. Content-specific teacher leadership (i.e., mathematics-

specific) might emphasize mathematics classroom practices, mathematics standards, or how the 
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leadership is situated in the content domain. For instance, Borko et al. (2021) described a model 

driven by a problem-solving cycle using mathematics tasks. Myers et al. (2020, 2021) and Webel 

et al. (2018) described elementary mathematics specialists focused on the teaching and learning 

of mathematics. In contrast, Boylan (2018) described “adaptive leadership” as a teacher 

leadership framework that could be applicable for multiple kinds of teacher leaders or school 

leaders. Smith et al. (2017) used ecological systems theory to understand teacher leadership as 

part of a network of influences and interactions. We have described this as positioning because it 

is about how the article positions the work and the research that supports it.  

The purpose category of codes described the kinds of literature that frame the purpose of the 

leadership or the study. Teacher leadership was desirable in these studies for some purpose or 

goal. So, the goal might be to improve teacher induction, spur instructional change, describe 

teaching practice(s) or professional knowledge without a particular PD or intervention.  

Professional knowledge included different types of knowledge for teaching and may also 

include teacher leadership knowledge. It was difficult to draw a clear distinction in the literature 

review sections between these, so it remained one category of professional knowledge. In 

addition, many of the teacher leaders were continuing to teach in classrooms so their knowledge 

of teaching and knowledge of leadership were likely intertwined. The final category came about 

after the coding of the research questions where PD for leadership became a clear category. 

These articles emphasize how they are drawing on findings about teacher PD to inform teacher 

leadership PD. However, a large number of articles distinguished features of teacher leadership 

that required different PD (e.g., adult learning, conducting research about teaching practices) 

than might be expected of a teacher.  

We examined how the categories might be related to research question types, specific 

theoretical frameworks, and other categories. We also looked for patterns in how the categories 

might connect to one another. While there are consistent categories of the types of concepts and 

research that articles reference in their studies, there is not a clear relationship about when the 

categories might be connected to one another. For instance, we expected some connection 

between teacher induction and mentoring. However, articles might refer to both (n=12), 

mentoring only (n=5), or induction only (n=2).  

It is important that studies are making a distinction between PD for teachers and PD for 

leadership. Some articles (e.g., Borko et al. 2021; Myers et al., 2021) referred to both. The 

literature review sections that focus on the design or goals for PD were complex because the 

design of leadership PD understandably draws upon the design of teacher PD. These sections 

brought in findings about the duration, structure, and organization of PD that have been long-

standing. Despite the complexity, it is an important finding that the specific needs and interests 

of teacher leadership were recognized as needing different content, such as adult learning 

theories, adaptive school leadership (Boylan, 2018), and the perspective on content. 

 

Discussion  

For the current investigation, we analyzed 34 research articles that centered the work of 

MSTLs. We remind the reader that we had initially identified 57 research articles but excluded 

23 because they did not meet some aspect of the Risko et al. (2008) appraisal criteria. In 

particular, some articles were eliminated because of inadequate participant description, not 
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linking findings back to research, and/or not linking the findings to the research questions. Some 

articles had more than one of the Risko et al. (2008) criteria missing from their study.  

Our findings revealed that research on and about MSTL is increasing. Nearly 90% of the 

MSTL research originated in the last decade and 70% of the articles were published during the 

most recent five years span (2016-2021). Two-thirds of the MSTL articles were published in 

general education journals. These publication trends highlight a need for the field to consider 

how to expand research on MSTLs and depict a real tension that scholars face when choosing 

publication outlets. From our experiences, we have learned that if the mathematics in the 

manuscript is not prominent enough, scholars tend to shy away from mathematics-specific 

journals and instead submit to general education journals to face less reviewer push back about 

"where is the math?" The implication is that mathematics-specific journals are not the 

predominant outlet for published work about MSTLs. We encourage the research community to 

consider the ways in which we might elevate work about MSTLs and MS more broadly in 

mathematics-specific or STEM-specific journals. 

Future directions are also evident in the results regarding the research design, the trends 

surrounding the methods, framing, and research questions. The most frequent research design 

across the 34 articles was qualitative. Because MSTL is a growing field (Rigelman & Lewis, 

2023; Yow et al., 2021a) and there are very few MSTLs working in schools, this makes sense. As 

a community we are trying to understand the boundaries of these individuals as they navigate 

their unique P-12 contexts.  

To study everyday leadership and support for P-12 school initiatives (Fennell, 2017), it will 

be essential for future research to continue to address the contextual nature of both P-12 

education and teacher leadership. There is then a parallel needed to clearly define the roles, 

responsibilities, and contextual nuances of MSTL work. Similar to research calls to action 

around mathematics specialists (Baker et al., 2021), more specificity is required in how we speak 

about and define MSTLs so that “the field of mathematics education can not only come to a 

common understanding, but advance both policy and practice” (p. 9). MSTLs can be one part of 

a coherent system for PD (Cobb et al., 2018). Further research is needed about the interactions 

between leadership at multiple levels: classroom, grade-level, school, and district.  

To design research questions around MSTLs, it is important to recognize the complexities of 

teacher leadership broadly (Klein et al., 2018) as well as the need for MSTLs to possess 

specialized knowledge around leadership (e.g., AMTE, 2013) and the teaching, learning, and 

leading of mathematics (NCTM, 2014). This is amplified by the fact that most of the research 

questions in the current body of research center on leader interactions with others and leader 

reactions to PD programs, speaking to the complexity of the work and the need to understand an 

MSTL’s influence and how that might inform MSTL professional learning. It also signals that the 

mathematics and teacher leadership research communities are wondering about the influence of 

these positions and the professional learning required. Further research on the MSTL positioning 

will be essential to understanding how these individuals take on or reject particular roles or 

responsibilities (Hunt & Handsfield, 2013) and the ways they position themselves or are 

positioned by others (Davies & Harré, 1990). Not surprisingly, there were fewer research 

questions around systems-level analyses. System-level work is even more complex, dynamic, 

and multifaceted as there are additional layers within and beyond an individual school 

community. It will be essential for future research to consider how MSTLs “develop long-term 
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goals advocating for systematic instructional change and/or short-term goals providing small, 

measurable successes that serve as milestones” (Hjalmarson & Baker, 2020, p.555). 

When analyzing the framing of MSTLs, we noticed a variety of theories and constructs. 

Although potentially alarming, this is logical as the field of mathematics-specific teacher 

leadership is emerging (Rigelman & Lewis, 2023; Yow et al., 2021a). The field is also 

multifaceted as there are many theories in play beyond those associated with teaching and 

learning: leadership theories, adult learning theories, mathematics-specific theories, and systems-

level change theories to name a few. These theories are alluded to within the Teacher Leader 

Model Standards (2011) and the Mathematics Specialist Standards (AMTE, 2013) and illuminate 

the layers of complexities teacher leaders and MSTLs face.  

However, while past research has illuminated that teacher leadership is either atheoretical 

(York-Barr & Duke, 2004) or partially theoretical (Wenner & Campbell, 2017), we see this space 

of mathematics-specific teacher leadership framing as a potential foundation from which to 

build. Considering that the field of mathematics-specific teacher leadership is new, the findings 

from our study illuminate four possible categorizations from which to frame future studies: (a) 

practices, (b) purpose, (c) positioning, and (d) PD. There is even a similar distribution of 

construct categorization across the research questions asked. This is a positive sign for the field. 

If we were focused too heavily on one or two of these categorizations, then we would likely be 

missing important aspects of mathematics-specific teacher leadership. However, we are not 

stating that these are the only categorizations, just we are seeking the foundation from which 

future research can build and new theories can emerge for a fledgling field. 

 

Disclaimer  

This work was completed while Margret A. Hjalmarson served as a program director at the 

National Science Foundation. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the views of 

the National Science Foundation. 
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Research is needed about mathematics specialist and their work. There are questions of policy 

and practice that need instrument design and development to advance research about the 

nuanced work of mathematics specialists. This systematic literature review will identify the gaps 

and need for the development of rigorous, quantitative measures. 

Keyword: Measurement, Mathematics Specialist  

With the increased use of mathematics coaches and specialists and an increase in related 

research (MCSs; Baker et al., 2021; Rigelman & Lewis, 2023), a need for valid measures is at 

the forefront. The goals of MCSs are to influence teacher practices and beliefs to improve 

student learning (e.g., AMTE, 2013; Campbell & Malkus, 2011). With the current measures 

available, however, there is fragmented evidence to make the connections among these goals. 

Without measures that accurately capture specific information pertaining to MCSs, there is a lack 

of empirical evidence about their work in schools and influence in the system of mathematics 

teaching and learning.  

 

Purpose 

The purpose of this systematic review is to understand the current instrumentation used in 

MCS research with the objective of identifying specific needs for validated instruments. This 

work was guided by the following research question: What are the current tools and 

instrumentation used for MCS research? For our theoretical framing, we draw on Gutiérrez’s 

(2009) conceptualization of equity in mathematics education. Gutiérrez identifies four equity 

dimensions: (1) access; (2) achievement; (3) identity; and (4) power for which we will organize 

the MCS instrumentation.  

 

Design Process  

We draw on Cooper et al.’s (2019) comprehensive steps to achieve a high-quality literature 

synthesis (Sandelowski & Barroso, 2007) to inform both research and practice. In 2020, we 

analyzed a subset of our data corpus (n=130) that were tagged with a mathematics specialist 

code. We applied an open coding process to attend to how the mathematics specialist was 

presented within research. Our primary code identified the role or position of the mathematics 

specialist (e.g., coach, teacher leader) and our secondary code indicated the context (e.g., school, 

district). Last, we took this data set and identified the tools and instruments used in order to 

mailto:cbaker@gmu.edu
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highlight the need for validated instruments for MSC research.  

 

Implications 

The implications for this work include stronger methodological practices for MCS 

research, in addition to using validated instruments to support MCSs in their practice.  

 

Disclaimer  

This work was completed while Margret A. Hjalmarson served as a program director at the 

National Science Foundation. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the views of 

the National Science Foundation. 
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Extensive research has been conducted on the characteristics of effective professional learning 

(PL); with many scholars asserting a consensus has been reached. However, empirical studies 

into the outcomes of PL initiatives do not consistently align with this consensus. In this paper it 

is suggested that a key element, namely teacher agency, has been overlooked. We advocate for 

the use of new conceptual frameworks that contextualize teacher learning as occurring within a 

complex learning system. This allows for the investigation of processes and interactions between 

parts of the system that support the emergence of learning. Our findings highlight the essential 

mechanisms that emerge from these systems when mathematics teachers are positioned as active 

participants in the design and facilitation of their own learning. 

Keywords: Professional Development 

Perspective of the Study 

The characteristics of effective professional learning (PL) have been well documented, with 

some arguing that a consensus has been reached (e.g., Darling-Hammond et al., 2017; Desimone, 

2009). An examination of literature spanning several decades indicates that the essential 

attributes for successful teacher PL include: a focus on subject matter content and pedagogy, 

collaboration and interaction with colleagues, engagement in active learning tasks for teachers, 

coherence with existing curricula and policies, and extended duration of PD programs 

(Desimone, 2009). What research has found however, is that even when PL programs for 

teachers are designed using these features they often produce conflicting results (Goldsmith et 

al., 2014). In fact, more recent critiques make note of the absence of teacher choice within 

discussion of PL models (see Boylan, 2021; Boylan et al., 2018). Without teacher involvement in 

designing and directing these learning experiences, PL programs may perpetuate the deficit view 

of teacher learning in which teachers are seen as passive receivers of knowledge (Davis & 

Renert, 2014; Bruce et al., 2010). To move away from the deficit view of teacher learning, 

researchers have begun to consider the role that shared leadership, time and space for PL, and 

high levels of teacher agency play in effective PL (Day, 2017; Hauge & Wan, 2019).  

Building from the assumption that teachers are professionals with the ability to seek out, 

develop, and lead their own PL experiences, Sachs (2003; 2016) encourages the field to design 

and study PL experiences that position teachers as professionals. In fact, studies of PL models 

that sustain teacher learning found that high levels of teacher agency are required (Campbell et 

al., 2016; Day, 2017; Hauge & Wan, 2019). Therefore, a design and study of PL should go 

beyond the consideration of widely adopted key features (Biesta et al., 2015; Calvert, 2016) and 

investigate when teachers have agency, what emerges as explanatory mechanisms that support 

learning in these communities. By mechanisms we are referring to the processes and interactions 

between these key features that support learning. 
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To this end, this report investigates the following research question within a regional 

university-supported, multi-site PL initiative: When mathematics teachers are positioned as 

active participants in the design and facilitation of their own learning, what emerges as essential 

mechanisms of the PL initiatives that support this learning?  

Theoretical Framework 

As discussed, the consensus on key features of PL have provided the field with standards for 

how teachers should be supported in their learning. Missing from these features is the role that 

teacher agency plays in the design and implementation of PL for teachers. 

Teacher Agency  

Teacher agency is enacted when teachers “exert influence, make choices, and take stances on 

their work and/or professional identities'' (Etela ̈pelto et al., 2013, as cited in Day, 2017, p. 37). 

When teachers possess agency, they can exert control and determine the actions they will 

undertake. Teacher agency, therefore, plays a crucial role in what is learned through engaging in 

PL of any type. Teachers bring their own experiences and expertise to the practice of teaching, 

and this is a valuable resource that should be part of any model of teacher PL (Guskey, 1986). 

Campbell et al. (2016) suggest that teachers are and should be leaders in their own PL and that a 

priority in designing and supporting teacher learning is the inclusion of teachers’ voice in 

influencing the methods, goals, and content of that learning (Campbell et al., 2016). 

Looking Beyond Individual Features of Teacher Professional Learning 

We align with other researcher who view education as a complex learning system from which 

learning emerges (e.g., Cochran-Smith et al., 2014, Jacobsen et al., 2019; Opfer & Pedder, 2011). 

Research in teacher learning has often focused on specific features of PL rather than considering 

its complex nature and the ways that learning is socially constructed (Cochrane-Smith et al., 

2014). Considering these features separately does not allow for an understanding of how the 

pieces interact and influence one another (Opfer & Pedder, 2011). Some wonder why some 

initiatives, designed using these effective strategies, are unsuccessful while others, with none of 

the characteristics of effective PL, are more successful (Opfer & Pedder, 2011). The issue may 

lie in the framework used to analyze these studies as current theoretical models of teachers’ PL 

tend towards a linear and reductionist perspective (e.g., Cochran-Smith et al., 2014; Strom & 

Viesca, 2020). 

Complexity Theory 

Current research on mathematics teacher PL has begun to consider its complex nature and 

how the use of complexity science can help the field gain a deeper understanding of ways to 

support and possibly trigger this learning. (e.g. Cochran-Smith et al., 2014; Strom & Viesca, 

2021). Complex systems are open, non-linear, not predictable, and not defined only by the sum 

of their parts but also by the ways that these parts interact with, and influence, each other and the 

environment (McMurtry, 2008). Complex systems are defined by key characteristics including 

self-organization, adaptation, nestedness, and emergence (Cilliers, 1998; Davis & Simmt, 2003). 

Self-organization suggests that there is no hierarchical authority imposing instructions on the 

system and is achieved through the non-linear interactions within the system and between the 

system and its environment (Strom & Viesca, 2021). Adaptation means that a system can change 

its structure, but involves more than a predictable, linear response to a system’s environment 

(Davis & Simmt, 2003). Complex systems often involve systems nested within self-similar 

systems, with smaller components of a system resembling the system as a whole (Suurtamm, 
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2020). Emergence refers to the ongoing evolution of a system that arises through the interaction, 

self-organization, and adaptation of the nested systems (Davis & Sengupta, 2018). 

Emergence also relies on a set of conditions which provide a framework to study what and how 

systems learn (Cochran-Smith et al., 2014; Davis et al., 2012). These different conditions include 

specialization and trans level learning. Specialization creates a constant tension between 

redundancy and diversity. In a professional learning community (PLC), redundancy is 

represented by the shared practices, assumptions, and expectations of mathematics teaching. 

Diversity manifests in the different beliefs, attitudes, experiences, and knowledge each teacher 

brings to teaching mathematics. Trans-level learning involves neighbor interactions in a system 

with decentralized control (Davis & Sumara, 2006). Neighbor interactions in a complex system 

involve individuals’ “ideas, hunches, queries, and other manners of representation” (Davis & 

Sumara, 2006, p. 142) bumping up against and colliding with one another. In a PLC, these 

interactions could include sharing solutions to problems, co-planning lessons, discussing student 

and student thinking, or engaging in a pedagogical book study. Decentralized control suggests 

that these interactions occur as individuals and groups find their own reasons to share and listen 

to each other. Moving forward these characteristics and conditions are referred to as mechanisms 

that interact to support teacher learning. 

Methods 

This study was a qualitative multiple-case study (Creswell & Poth, 2018; Yin, 2016) 

combined with a complexity science framework. This research design was influenced by 

Anderson et al. (2005) who suggested combining the case study approach with complexity 

science as a way to gain insight into systems of learning. They argue that analyzing a system by 

simply breaking it into parts does not provide an adequate description of the mechanisms at play 

within that system (Anderson et al., 2005). This study moved beyond simply describing key 

features of PL and towards understanding the mechanisms that support educators, with high 

levels of teacher agency, as they work in a collaborative system. 

Context and Participants 

This study was part of a larger study that focused on the Ontario Association for Mathematics 

Educators Grade 9 Applied Math Inquiry Project (McKie, 2023; Suurtamm et al., 2017), from 

here referred to as the project. This project involved 10 high school PLCs from across the 

province. PLCs applied to participate in the project by submitting an application. The application 

needed to include a list of the PLC members and their roles, and a description of the PLCs self-

defined problem of practice (McKie et al., 2017). This self-defined problem of practice 

highlights the way that teacher agency was purposefully integrated into the project design. The 

PLCs were supported to meet monthly within their own schools as well as multiple times each 

year at project wide meetings. The design of the project was influenced by the perspective that, 

similar to researchers, teachers assume an inquiry stance when examining their practice 

(Cochran‐Smith & Lytle, 2009; Suurtamm & Koch, 2019). This inquiry stance involves the 

active, iterative process of engagement in, and reflection on, practice which results in the 

emergence of new ideas and actions (Suurtamm & Koch, 2019). The collaborative nature of the 

project, the high level of teacher agency, and the use of PLCs was informed by complexity 

theory (Suurtamm & Koch, 2019). This supported the focus on the role that nested systems, in 

this case the 10 PLCs in this project, played in influencing the emergence of learning. The 

condition of diversity was intentionally built into the project through the requirement that PLCs 
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consist of individuals with varying roles such as administration, special education, and 

mathematics teachers (McKie et al., 2017). The 10 PLCs also represented a diversity of contexts 

and experiences. Some PLCs were situated in large urban settings and others in more remote 

settings or serving smaller populations. Some PLCs were established collaborative learning 

communities and others were newly formed. 

Participants in this study were original project participants. Years of experience of these 

participants ranged from 12-32 years and different roles of the participants included principals, 

mathematics teachers, mathematics department heads, special education teachers, and research 

team members. 

Data Collection and Analysis 

Data for this study was collected in two phases, the first being a survey sent to all individuals 

who participated in the original project (N80). The survey served two purposes, the first to 

collect information related to the participant's position, role in the PLC formation, how the PLC 

operated, and the perceived influence the project had on the participant’s learning. The second 

purpose was to identify, and recruit individuals for phase 2 of the study. The survey asked 

participants if they were interested in being contacted for further participation in this study. 

Those that indicated ‘yes’ were contacted to participate in semi-structured interviews during 

phase 2. These interviews (N=13) provided a deeper examination of the individuals’ learning and 

the shared learning experiences within the nested systems of the PLCs and the project as a 

whole. Questions in each phase focused on teachers’ experiences with the project, the influence 

the project had on the participant’s learning, the collaborative nature of the project, and the 

sustainability of their learning. A theory-driven codebook (DeCuir-Gundy et al., 2011) was 

created using the mechanisms of complex learning systems described earlier, self-organization, 

adaptation, nestedness, diversity, redundancy, neighbor interactions, and decentralized control 

(Davis & Sumara, 2006). These codes were applied to survey and interview responses, next the 

results of this analysis are presented. 

Results 

Analysis of the data from the study revealed that four key mechanisms emerged that 

supported teacher learning. These include neighbor interactions, decentralized control, self-

organization, and nestedness. These four mechanisms are not independent, rather they interact 

and influence each other. 

Neighbor Interactions 

Neighbor interactions in the project included time to interact with resources and other 

individuals and their ideas. At project-wide meetings the PLCs were introduced to different 

resources that the research team felt supported the identified issues and challenges. One 

particular resource, 5 Practices for Orchestrating Productive Mathematics Discussions (Smith & 

Stein, 2015) was provided to each individual and multiple PLCs chose to incorporate this 

resource as part of their learning. Neighbor interactions with individuals and their ideas also 

were identified as an essential mechanism. These individuals included other educators, 

researchers, and students. Neighbor interactions included PLC members interacting with student 

thinking, PLCs discussing and negotiating new practices and ideas within their own context, and 

neighbor interactions across PLCs at the project-wide meetings. Responses to the Phase 1 survey 

overwhelmingly point to neighbor interactions as influencing teacher learning. 86% of survey 

respondents self-reported that interacting with resources and with others either from their own 
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PLC or across the project was either the most influential component on their learning or the 

highlight of the project for them. For example, one participant shared “the other teachers that we 

were able to network with and learn alongside with was amazing!! Really challenged our 

thinking on spiraling and rich tasks” (PLC 1, phase 1 survey) and from another participant, “a 

highlight of the project was meeting and sharing experiences, perspectives, and resources with 

colleagues all over the province” (PLC 7, phase 1 survey). Neighbor interactions were not a 

stand-alone feature, they were supported through the next key feature identified, decentralized 

control. 

Decentralized Control 

Although the project schedule of activities and overall goals were determined by project 

leaders, each PLC was in charge of determining their context specific goals, ways of working, 

and their focus throughout the project. In this way the project demonstrated decentralized 

control. At individual PLC meetings each PLC determined their schedule, focus, and activities. 

At project-wide meetings time for individual PLCs to work together was scheduled as was time 

for groups to collaborate across PLCs in ways that were meaningful to them. A PLC 1 participant 

commented that the “the teacher led approach to this was great!” suggesting that providing space 

for teacher voice and choice was a quality she identified as influential. Decentralized control 

supported neighbor interactions and created opportunities for individuals who may not have been 

supported in their own PLCs in ways that were meaningful to them. For example one participant 

shared how interacting with PLC 7 supported her own learning and that of her PLC: 

We learned about using rich tasks to drive instruction from William [PLC 7] and [the PI] 

suggested a Jo Boaler book for our group to read… our group continued to learn about 

Thinking Classrooms and spiraling curriculum mostly being influenced by the group from 

PLC 7. (PLC 1, Phase 1 survey) 

Decentralized control supported neighbor interactions, these two mechanisms interacted to 

influence and support how the individuals and PLCs self-organized, the third essential 

mechanism that emerged from analysis of the data. 

Self-organization 

Self-organization was apparent at multiple levels in the project. This self-organization was 

not pre-determined at the beginning of the project but rather it was based on needs that arose 

through the neighbor interactions that were enabled in a network with decentralized control. The 

research team members from different PLCs were interacting, sharing information and 

experiences, and adopting different strategies to share with their assigned PLCs. Other ways the 

project demonstrated self-organization was PLCs seeking out, and making connections with, one 

another. Different PLCs created shared document folders online for sharing resources and also 

planned visits to each other's schools to collaborate. This self-organization came from neighbor 

interactions at the project-wide meetings and the PLCs sharing with one another. One participant 

explained that as the project progressed more opportunities to connect with other schools were 

created and the participants self-organized visits with at other school sites:  

Every time [the project] extended I seemed to be connected with new people along the way 

and that led to all kinds of exchanges with other teachers and other schools. It also led to 

some dates where we…went to the [other] school and we had [other PLCs in the project] 

coming to our school as well. (PLC 7, phase 2 interview) 
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During project-wide meetings different PLCs would seek out connections with people and 

resources that they felt could support their work and their learning. During the final project-wide 

meeting at the end of Year 2 different PLCs self-organized into working groups to develop 

presentations for the project’s annual conference as well as for the Grade 9 project conferences 

that were organized to share the learning from the project with educators across the province. 

Self-organization, which was supported by neighbor interactions in a system with decentralized 

control was also made possible by the fourth essential mechanism, nestedness. 

Nestedness 

The nestedness of the project provided opportunities for individuals and PLCs to connect 

with others both within their own school and with others beyond their own PLCs. Several 

individuals commented on the fact that the project allowed them to get to better understand their 

colleagues professionally. Teachers being nested within PLCs in their own school provided 

opportunities for neighbor interactions: 

It was an interesting thing because working with [teacher], she and I have been friends for a 

million years right? And like we fished together, and we hang out together as much as we can 

right? But I think [the project] made me realize how she thought too, like it not only helped 

me identify the strengths of myself but of the people that were working with me in the 

project (PLC 4, phase 2 interview) 

Nestedness at the project level introduced new, diverse perspectives and experiences as well. 

Individuals who were seeking new ideas beyond their own PLC were buoyed by the opportunity 

to learn with others across the province. One participant shared:  

I got a lot of energy from people from other schools that had the same kind of excitement 

about things as I did, but within my own board I don't know whether I felt that same level of 

excitement by others…I really enjoyed being able to get that perspective, like I really 

enjoyed meeting people from other schools and thought about “wow everybody should, we 

all should know what's going on out in all of [the province]” so we do have a better 

perspective [about] where we are at compared to them and where we should be at or what we 

should be, you know, aiming to be at. (PLC 10, phase 2 interview) 

The nestedness of the project enabled the other essential mechanisms that emerged and together 

these four mechanisms; neighbor interactions, decentralized control, self-organization, and 

nestedness influenced teacher learning. Next, a discussion is presented on how these essential 

mechanisms of complex learning systems connect to the research on the key features of effective 

PL. Through this discussion we argue that the mechanisms of complexity offer insight into how 

and why these characteristics can support learning and why teacher agency is essential in PL. 

Discussion 

This study aimed to explore the mechanisms facilitating the emergence of learning in a PL 

experience where teachers actively participated in designing and directing their own learning. 

Within this study the emergence of teacher PL was considered using complexity theory. The 

findings suggest the importance of neighbor interactions, decentralized control, self-organization, 

and nestedness within PL experiences. These identified mechanisms connect to previous 

literature on key features of PL and also spotlight the importance of teacher agency to promote 
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PL. In what follows, we first make connections to previous literature on PL and then highlight 

mechanisms within PL experiences that promote teacher agency. 

Connections to Literature: Neighbor Interactions  

Participants in this study overwhelmingly stated that interacting with colleagues in their PLC 

and with others across the project had the biggest influence on their learning. This is in line with 

numerous researchers who have reported on the crucial role that teacher collaboration plays in 

supporting teacher PL (e.g., Borko & Potari, 2019; Schleicher, 2015; Stigler et al., 1999; Vescio 

et al., 2008). Collaboration has been previously identified as a key feature to PL experiences for 

teachers. 

Neighbor interactions with resources such as rich tasks and the curriculum were also 

mentioned as key to teacher learning. This aligns with researchers who suggest that a key feature 

of effective PL should focus on content and be aligned with the curriculum (e.g., Ball et al., 

2005; Cohen & Hill, 1998; CPRE, 1998; Darling-Hammond et al., 2017; Loucks-Horsley & 

Matsumoto; 1999). When teachers engage with content and curricula, specifically mathematical 

content, they are provided opportunities to develop a deeper understanding of concepts and even 

to change their own identities as learners of mathematics (Anderson et al., 2018).  

Lastly, interacting with student thinking and student work emerged in this study as a widely 

adopted activity. Several researchers have identified a focus on student thinking as an effective 

strategy for teacher PL (Darling-Hammond et al., 2017; Roth et al., 2011; Smith & Stein, 2015). 

Focusing on student thinking can provide teachers opportunities to better understand student 

ideas in order to better anticipate and plan responses and prompts to students questions or 

misunderstanding (Roth et al., 2011; Smith & Stein, 2015). This study found that neighbor 

interactions promoted the emergence of learning within a PL experience as a mechanism that is 

essential to support the previously identified key features of professional development: 

collaboration, and a focus on content and pedagogy. 

Mechanisms of Professional Learning that Support Teacher Agency 

While neighbor interactions connect to previous literature on key features of PL (Darling-

Hammond et al., 2017), decentralized control, self-organization, and nestedness highlight the 

importance of teacher agency, an emerging key feature of PL (Biesta et al., 2015; Calvert, 2016). 

Decentralized control. Decentralized control implies a shared leadership where no 

individual makes decisions and controls the system. Davis and Sumara (2006) go so far as to say 

that a single leader choosing the direction in a system could eliminate the potential for learning 

to emerge from a system. Similarly, research suggests that for collaborative PL to be effective a 

PLC requires a shared leadership approach (Hipp et al., 2008; Leithwood & Riehl, 2005). Shared 

leadership implies that teachers participate in determining the focus and direction of PL activities 

(Calvert, 2016). Shared leadership aligns with teacher agency, an important characteristic of 

effective PL cited in the research literature (e.g., Biesta et al., 2015; Day, 2017; Hauge & Wan, 

2019; Sachs, 2016). The mechanism of decentralized control is critical within the PL experience 

to allow for shared leadership to promote teacher agency.  

Self-organization. Self-organization manifested across different levels of the project, 

including ways the project self-organized in response to PLC’s needs and the ways that different 

individuals adapted their practices in response to neighbor interactions across the nested systems 

of the project. These examples of self-organization are similar to a claim by Davis and Simmt 

(2003) that systems in education are adaptive self-organizing systems. Self-organization is an 
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ongoing phenomenon that arises from the interactions of parts of a system with decentralized 

control and the “process of self-organization changes the relationships among the elements of the 

system as new relationships emerge” (Cochran-Smith et al., 2014, p. 8). These new relationships 

were apparent in the ways the different PLCs established connections with others within, and 

beyond their own PLCs. Teachers choosing the tasks to engage with, the content to focus on, the 

models of PL to employ, and the learning experiences they chose to share with others in the 

project all influenced the self-organization of the learning systems involved in the project. All of 

these actions were determined and negotiated by the participants in the project rather than 

through top-down instruction. Through self-organization, teachers had the agency to influence 

their learning opportunities on multiple levels. 

Nestedness. The nestedness of the project supported important neighbor interactions between 

individuals and PLCs. The opportunities for individuals in PLCs that lacked the necessary 

balance between conditions such as diversity and redundancy to find this balance with others 

across the nested system supported teacher agency and the emergence of learning. Studies that 

focused on collaboration and supporting communities of practice (Wenger, 1998) generally 

focused on what an individual learned through their involvement in a project rather than how the 

project influenced their learning, and the learning of a larger system (e.g., Zehetmeier, 2015). 

Through this study nestedness emerged as an essential mechanism of complex learning systems 

as it was critical to support teacher agency by allowing teachers, and PLCs, to seek out learning 

opportunities across PLCs in the project. 

Conclusion 

Supporting and establishing the essential mechanisms of complex learning systems aligns 

with much of the research on the characteristics of effective PL (e.g., Anderson et al., 2018; 

Hord, 2008; Liljedahl, 2018, & Loucks-Horsley & Matsumoto, 1999). Yet, establishing the key 

features of PL is not sufficient to support teachers in their learning (Day, 2017; Hauge & Wan, 

2019). Understanding how mechanisms of complex systems interact and align with the features 

of PL provides insight into how and why these features support teacher learning. This study 

demonstrates that considering the ways to establish a balance of essential mechanisms necessary 

to support learning is crucial. Thus, whether designing PL explicitly or considering how to 

establish environments conducive to teacher learning, the field should consider, and strive to put 

in place, the mechanisms of complex learning systems. Particularly, those in positions to 

influence learning systems should be conscious of the ways that decentralized control, self-

organization, and nestedness are manifested in their context and strive to support these factors in 

order to support neighbor interactions. 

It is important to note that when a learning system is unable to achieve a balance of these 

mechanisms, teacher agency becomes critical to make connections across the larger educational 

system to support a balance. Thus, organizing teacher learning within a nested complex learning 

system can provide opportunities for teacher agency across levels within the system to support 

the emergence of learning. We recommended that teachers are provided opportunities to meet 

and interact with others beyond a teacher’s own context. This can provide the necessary 

perturbations to encourage teachers to continually push their thinking and respond in novel ways 

to new ideas, leading to the emergence of learning.  

Teacher agency has emerged as an important area of focus in research and centering the voice 

of the teacher was an important component of this study. This study highlights the importance of 
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conducting research that centers teachers’ voices because teachers’ perspectives, expertise, and 

experience are valuable assets that enrich the research process and contribute to more meaningful 

understanding of the complexity of mathematics teachers’ collaborative PL. As the world 

continually changes, for both students and educators, research must move beyond the linear 

models used to study teacher learning. Teaching and learning mathematics has always been a 

complex endeavor and in order to better support mathematics teacher learning the field must look 

beyond individual key features towards essential mechanisms that support learning in complex 

systems. 
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Facilitating classroom discussion is complex work, especially for elementary classroom teachers 

who must make sense of classroom discussion practices across content areas. We examined two 

teams of elementary teachers and teacher educators as they engaged in professional learning to 

understand what connections among classroom discussion practices across content areas 

emerged from their conversations and how these connections were leveraged to support 

mathematics classroom discussions. We elaborate on two key ways that cross-content practices 

were leveraged: student participation and teacher facilitation moves. 

Keywords: Teacher Educators; Classroom Discourse; Elementary School Education 

Mathematics classroom discussions can support students’ deep mathematical learning and 

provide opportunities to make sense of new content (Kazemi & Stipek, 2001; O’Connor & Snow, 

2017). However, literature concerned with supporting mathematics discussion tends to be siloed 

to practices intended only for mathematics content (e.g., Bishop et al., 2020; Webb et al., 2014). 

Classroom discussion is a valued dimension of instruction across content areas starting in early 

elementary grade levels (Fitzgerald & Palincsar, 2019). Elementary classroom teachers are 

uniquely tasked with facilitating classroom discussion across multiple content areas. As such, 

elementary teachers are expected to draw on a vast range of practices to balance social and 

content goals which vary by content area (Rainey & Moje, 2012). 

In this study, we look specifically at how teachers consider the similarities of classroom 

discussion across content areas. We hypothesize that the similarities in elementary discussion 

practices across content areas can be leveraged by educators to create richer discussion in 

mathematics lessons. As such, we ask: what and how do teachers and teacher educators identify 

connections within classroom discussion practices across content areas? 

Theoretical Framework 

We are interested in examining how educators leverage their experience and expertise to 

support classroom discussion practices across content areas and make sense of high-quality 

instructional practices. As a theoretical framework, teachers’ collective sense-making frames 

how educators collaborate to make connections in their discussion facilitation practices in 

mathematics and ELA. Coburn (2001) argues that teachers’ sensemaking is social, as it is “rooted 

in social interaction and negotiation [and]... is deeply situated in teachers’ embedded contexts” 

(p. 147). Collective sensemaking involves the interactions and negotiations among individuals to 

establish meaning of particular events or shared experiences (Coburn, 2001; Kelly, 2006). In 
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other words, it is the opportunities teachers have to interact with one another in communities of 

practice (Wenger, 1998) that allow space for their professional learning. 

Elementary teachers are expected to engage in high-quality instruction in multiple content 

areas, and that instruction is often expected to include discussion. While attention to researching 

teachers’ discussion practices has focused on content-specific analysis (e.g., Bishop et al., 2020), 

we see opportunities in a collective sensemaking framework to examine how teachers use their 

different levels of expertise to negotiate meaning of classroom discussion across content areas. 

Sensemaking can thus occur in the interaction of talk (Bakhtin, 1981) where teachers’ shared 

engagement with ideas prompts new or refined interpretations of ideas. 

Methods 

We draw on data collected from a larger study of professional learning (PL) that focused on 

supporting elementary teachers’ classroom discussion practices. Our analysis focused on a subset 

of educators in one district in the northeastern United States, from Parks and South Elementary 

Schools (pseudonyms). Teachers met in grade level bands for full day job-embedded PL with 

teacher educators, including instructional coaches and a facilitator from the research team. The 

PL followed the Learning Labs structure (see Kazemi et al., 2018) and focused on developing 

classroom discussion practices in mathematics and ELA. Learning Labs consist of a cycle of (1) 

introducing new ideas related to content and pedagogy, (2) co-planning an instructional routine, 

(3) enacting the routine in one of the teachers’ classrooms, and (4) debriefing the experience to 

make plans for their future instruction. 

Data Collection 

We focus specifically on the PL sessions with the third (N=3) and fifth (N=5) grade teachers 

because they engaged with a wide range of ideas about leveraging the classroom discussion 

practices in one content area to support another. In the 2022-2023 school year, each grade level 

team participated in a total of four Learning Labs (two mathematics and two ELA) with a PL 

facilitator and their instructional coaches. Among these teams, the teachers and teacher educators 

are primarily white women and come from a wide range of teaching experience. Each PL session 

was video and audio recorded. 

Data Analysis 

We used the conversations of teachers as they participated in the series of Learning Labs as 

our primary data source. Analysis focused on understanding what teachers and teacher educators 

said about connecting discussions across content areas during the PL sessions. We reviewed the 

introduction and enactment debrief portions (phase 1 and phase 4) of each Learning Lab 

(mathematics or ELA, eight Labs total). Using an inductive coding process aligned with a 

grounded theory approach (Charmaz, 2000), we reviewed these portions of the Learning Labs for 

moments where teachers reflected on their classroom discussion practices. Ultimately, we 

documented moments where educators talk about discussions in mathematics compared to other 

content areas (63 instances total). Then, using a constant comparative method (Charmaz, 2014), 

we identified larger themes of how teachers leveraged their understanding of classroom 

discussions across content areas. For this paper, we focus on instances where educators leveraged 

non-math content thinking to make sense of mathematics discussions. 
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Results 

In our analysis of the third and fifth grade teams’ interactions during their respective PL 

sessions, we identified common ways that the educators leveraged discussion practices across 

content areas to develop rich mathematics discussions. These four cross-content connection types 

were (1) similarities in classroom discussion norms, (2) adapting tasks, (3) similarities in student 

participation, and (4) similarities in teacher facilitation moves (see Table 1). Below we detail two 

of these types of connections with examples from the teachers and teacher educators. 

 

Table 1: Cross-Content Connections to Support Classroom Discussion 

 

Theme Description Example 

Classroom 

Norms 

Recognizing ways to 

develop the norms of 

discussion for 

mathematics as a form of 

developing social skills 

Esther: [After our last ELA LL] I’ve been really 

trying, across all areas, to get kids to explain other 

students’ thinking. In math, [...] “Why did this person 

do what they did?,” getting kids to repeat what others 

said… to see if there was active listening. [Grade 3, 

ELA LL2] 

Adapting 

tasks 

Recognizing a need to 

adapt the goals or 

structure of a task to be 

more like tasks from a 

different content area 

Greer: ELA tends to be a little bit more open with 

our questions when we're asking them during the 

read aloud. 

Olivia: How do we then open up like, we have to 

think of open tasks for kids, right, in math? [Grade 

3, MATH LL1] 

Student 

participation 

Understanding the ways 

that students can 

participate in a discussion 

that work to create a 

comfortable environment 

Greer: Students are more confident in math than 

reading. In math, there is a right answer and you 

can come to it in many ways. Reading is vague and 

there are multiple answers. It's harder to make a 

safe space with text because there is more variation 

and vulnerability. [Grade 3, ELA LL1] 

Teacher 

facilitation 

moves 

Naming facilitation 

moves that support 

discussion across content 

Elliott: I’ll put sunglasses on and they know I’m not 

there. They can’t ask questions, they’ve got to 

figure things out on their own. [Grade 5, MATH 

LL2] 

 

Student Participation 

Regardless of content area, the teams developed an understanding of the ways that students 

can participate in a classroom discussion that work to create a “comfortable” environment. 

Teachers emphasized the importance of student participation and discussed ways to support 

students to feel comfortable to share their ideas during discussions, noting differences in student 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1352 

participation across content areas. In one such example, Esther, a third-grade teacher, described 

her observations about student participation, "It shifts throughout the day if they are comfortable 

with the content." She explained that in science and social studies students feel more comfortable 

and excited to respond. The teachers extended this idea by sharing their own observations and 

collectively came to associate student participation with confidence. Another third-grade teacher, 

Winter connected this to mathematics and ELA as she described, 

It is important to look at who is participating and who is not participating in all discussions. 

In math, a student may have an answer but not feel confident sharing it. In reading, students 

don't know how to say a word, so [they] won't try. 

Teachers recognized that student participation was important across content areas but named 

differences in the ways that students might hold back from participating. They leveraged 

characteristics of the spaces in which students are comfortable to participate as they talked about 

how to support student participation in mathematics classroom discussions. 

Teacher Facilitation Moves 

Teachers also considered the specific pedagogical moves they might make in one content 

area for discussion that could easily be used in another, not just mathematics teaching. The 

connections they made focused on patterns of participation that could support classroom 

discussion across content areas. For example, the PL facilitator in a fifth grade Learning Lab 

asked what feels similar or different between leading discussions in reading and mathematics. 

Cait and Janet brought up the desire to move away from the typical discussion structure of 

initiate, respond, evaluate as a goal in both mathematics and ELA discussions, drawing on their 

experiences facilitating mathematics classroom discussion. Cait added that she wanted to “shift 

to other ways to get student responses and student discussion” such as having the teacher stand 

back to let students collaborate. In this example, Cait and Janet co-developed a shared goal to use 

facilitation moves that increased student voice in classroom discussion, drawing on the prior 

success the 5th grade team had with this particular teacher move in an earlier mathematics 

Learning Lab. We hypothesize that connections among pedagogical moves allowed teachers to 

extend their experiences facilitating classroom discussion across content areas. 

Discussion 

In their conversations during PL, educators made connections among discussion practices 

across content areas to leverage support of mathematics classroom discussion. We primarily 

focused on how these PL discussions support mathematics and identified ways that the teachers 

leveraged successful mathematics practices to support other content area discussions.  

Each theme emerged from the conversations among teachers and teacher educators through 

collective sense-making (Coburn, 2001) of classroom discussion practices in elementary 

classrooms, grounded in their own discussions and collaboration. Collective sensemaking was 

evident in how educators listened to the reflections of their peers to refine their thinking about 

discussion practices. This work highlights how teachers draw on their experiences and 

interactions with one another to make meaning of instructional practices within their own 

contexts (Kelly, 2006; Wenger, 1998). Although we investigated these ideas with a small sample, 

this study sets a foundation for future work to examine teachers’ reflections in different settings 

to support teacher learning in their unique contexts.  
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Elementary teachers, who teach across content areas, are being asked to incorporate 

classroom discussion, but often without support for how these practices may be similar. The 

changing landscape of education and uncertainty in children’s mathematical learning indicates an 

urgent need to support teachers to leverage their expertise in other content areas to support 

mathematics instruction. Thus, we argue that leveraging teachers’ experiences in the areas of 

classroom discussion norms, adapting tasks, student participation, and teacher facilitation moves 

provides an opportunity for enriching mathematical discussion practice in the classroom. 
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In mathematics education, significant attention has been given to understanding the knowledge 

teachers need to effectively teach mathematics. While much research has focused on the 

knowledge of pre-service and beginning teachers in the context of classroom mathematical 

problem-solving, there is limited insight into the knowledge in-service secondary teachers use to 

develop and teach mathematics through problem-solving. This participatory action research via 

lesson study reports the knowledge nine secondary math teachers in sub-Saharan Africa used to 

craft problem-solving lessons. The data revealed a collective understanding of problem-solving 

as involving high level, open middle tasks grounded in students' everyday experiences.  

Keywords: Mathematical Knowledge for Teaching, Professional Development, Teacher 

Knowledge, Problem-Solving. 

Mathematics Problem-Solving Knowledge for Teaching 

Teachers are essential components of the education system and are pivotal in achieving a 

nation's educational goals. In mathematics education research, significant attention has been 

given to understanding the knowledge teachers need to teach mathematics effectively. A key 

contribution to this discourse is the Mathematical Knowledge for Teaching (MKT) framework 

(Ball et al., 2008), built on Shulman's (1986, 1987) seminal work advocating for a professionally 

oriented knowledge for teaching mathematics. Ball et al. conceptualized MKT as “mathematical 

knowledge needed to carry out the work of teaching mathematics. . . [emphasizing] the tasks 

involved in teaching and the mathematical demands of these tasks” (p. 395). 

Teaching Through Problem Solving 

The MKT framework laid the foundation for a new line of research focusing on Mathematics 

Problem-Solving Knowledge for Teaching (MPSKT) (Chapman, 2015; Foster et al., 2014; 

Clivaz et al., 2023). The MPSKT framework (see Table 1) underscores the importance of 

problem-solving skills, as emphasized by the National Council of Teachers of Mathematics 

(NCTM, 2000). 

MPSKT includes understanding the need for authentic, non-routine tasks that challenge 

students’ existing knowledge and skills, encouraging them to develop deeper understanding and 

proficiency (Bailey, 2022; Lester, 1994; Masingila et al., 2018). Mathematical problem-solving 

tasks should be meaningful, stimulating, and aligned with students’ abilities and interest to 

promote effective problem-solving. Students should engage in solving tasks for which they do 

not have an immediate or obvious solution (Schoenfeld, 1985).  

However, teaching problem solving poses significant challenges such as finding and 

selecting appropriate tasks or overcoming the persistence of traditional teaching methods 

(Masingila et al., 2018). As Lester (1994) notes, problem solving is a complex human endeavor 

that involves more than recalling facts or following routine or memorized procedures. As 

mailto:bodiwuor@syr.edu
mailto:dtgraysa@syr.edu
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Henningsen and Stein (1997) assert, teaching through problem solving involves selecting and 

implementing high-level tasks (Stylianides & Stylianides, 2008) while maintaining the level of 

cognitive demand. 

Table 1: Mathematics Problem-Solving Knowledge for Teaching (Clivaz et al., 2023, p. 23) 

 

Overview of Study 

Through a lesson study-based professional development program, this study examined how 

nine high school math teachers in sub-Saharan Africa comprehended and planned for teaching 

through problem-solving. This study addresses the question: How did nine high school math 

teachers in sub-Saharan Africa collectively comprehend problem-solving tasks and teaching 

through problem solving? The study contributes to our understanding of knowledge of 

mathematical problem-solving tasks, fostering a problem-solving-oriented classroom 

environment, and facilitating professional development on this approach. 

The study employs Lewis et al. (2019) model of lesson study impact (see Figure 1), 

suggesting that “lesson study can influence instruction and student learning through intermediate 

changes in teachers’ knowledge and beliefs, professional norms and routines, and instructional 

materials.” (Lewis et al., 2019, p. 15). This model underscores the potential of lesson study to 

enhance teaching practices and student outcomes, supported by several other studies (Dotger et 

al, 2023; Lewis & Perry 2015, 2017; Pernilla & Henrik 2018). George Pólya's heuristic methods 

provided practical steps for problem-solving (Pólya, 1945), which were further reinforced by the 

National Council of Teachers of Mathematics (Cai & Lester, 2010; NCTM, 2000) standards 

emphasizing problem-solving as essential for mathematical understanding. 

Figure 1: Theoretical model of lesson study impact (Lewis et al., 2019, p. 15) 
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Method 

The study opted for participatory action research via lesson study to emphasize active 

participation and collaboration among all stakeholders involved (Lewis & Tshuchida, 1999; 

Stigler & Hiebert, 1999; Townsend & Taylor, 2022). The study took place within the Kenyan 

education system, with the goal of investigating the impact of lesson study on teachers’ 

understanding of problem-solving tasks. Nine mathematics teachers from a Kenyan secondary 

school took part in a series of eight meetings, approximately 80 minutes each. The meetings 

focused on comprehending problem-solving teaching methods and planning and implementing 

lessons that followed this approach. Data sources included a pre-survey, recorded meetings, 

lesson plan, individual reflections from participants and researcher fieldnotes. The first author 

served as a knowledgeable other, offering support to participants throughout the process. 

The first author conducted an initial focus group discussion with participants to identify a 

focal topic for lesson study. The cohort identified similarity and enlargement as a challenging yet 

essential topic for their curriculum. The cohort discussed what lesson study is and how it works, 

using resources from the Lesson Study Group at Mills College. The first author introduced 

participants to Polya’s (1945) problem-solving framework: understanding the problem, devising 

a plan, carrying out the plan, and looking back. During discussion, the cohort considered reasons 

for teaching through problem solving, the role of teachers in problem-solving classrooms, the 

nature of problem-solving tasks, and how to orchestrate a problem-solving classroom. 

Analysis, Results and Discussion 

We used Reflexive Thematic Analysis (RTA), an analysis process that emphasizes active 

engagement and reflexivity of the researcher during analysis (Braun & Clarke, 2022). The unit of 

analysis was described as segments of communication reflecting participants' understanding of 

problem-solving tasks or pedagogy, which included individual sentences, detailed paragraphs, or 

group conversations. We generated initial codes that we merged into four major themes that 

describe how the cohort conceptualized problem-solving tasks and teaching through problem 

solving. We describe each theme and provide illustrative examples of the data that support each 

theme. 

Open middle tasks. Teachers discussed creating tasks with multiple entry points, allowing 

students to approach problems in various ways and encouraging diverse problem-solving 

methods. This multidimensional approach ensures students can explore different solutions and 

deepen their understanding. For example: 

Mr. Mirumbe 24:59: The problems that we wish to have should be multi-dimensional. That a 

number of students should come with different ways that can be related to or not 

necessarily related, but they follow a certain rule that at the end of it, we can come up 

with a conclusion. (Day 3) 

Mr. Ambere 12:59: Whatever I highlighted from the lesson is that the students were using the 

various methods to solve the problem. . . . There are those who after being given the 

materials, they went directly by measurement and got the various dimensions. But there 

are those who didn't use the measurement, they just did the calculation to get the length 

and the width. (Day 6) 

Challenge students’ thinking. Teachers designed problems to challenge students' thinking 

and reasoning, avoiding tasks that they perceived as rote application of knowledge. Mr. Okello 
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asked about the complexity of the questions, while Mr. Mirumbe emphasized the importance of 

problems that require deep thinking and decision-making. For example: 

Mr. Okello 36:23: How about. . . if I may ask, the question, should it be complex or just a 

simple question? (Day 3) 

Mirumbe 14:30: We give a problem, something that will require them to think and reason and 

solve the challenge that will be given to them. Not an exercise that they can copy the 

knowledge that they had learnt from the previous lesson to solve. Something that is quite 

challenging that can involve them using good decision. (Day 4) 

Real-life relevance. Teachers emphasized the importance of connecting mathematical 

problems to real-life situations, such as measuring the height of a tree using shadows, as stated 

by Mr. Kasyoki. Md. Filomena noted that students often perform calculations without 

understanding the underlying concepts or real-life applications, which hinders the development 

of true problem-solving skills. 

Mr. Kasyoki 30:20: Measuring the height of a tree using shadows. You see we cannot 

measure it directly. We cannot tell them to go and measure the height of a tall tree or a 

story building like our new academic block. Instead, they can find the height in terms of 

linear scale factor. They can measure their heights themselves by comparing [length of] 

shadows of the tree and a shorter object whose height they can obtain. (Day 4). 

Md. Filomena 04:00: Like we said, most of the students can do the calculation of similarity 

and enlargement but they never think more about what they are doing. It's like they look 

for the formulas. When you are given this, you do this and leave but now they have never 

thought about it and the application. ...Are they[students] going to develop the problem-

solving skills or it's just a matter of coming up with the formulae and using them in an 

exam. We talked about the application part of the similarity and also be able to relate in 

real life situation. (Day 5) 

Students’ ability. Teachers tailored tasks to match students' abilities, ensuring problems are 

challenging yet accessible. Mr. Kasyoki challenged his colleagues to consider the students' 

perspective and avoid overly complex tasks that might confuse them. The goal was to engage 

students meaningfully without causing frustration. 

Mr. Kasyoki 53:15: So I think if we are the ones thinking this much, we have to ask 

ourselves how much our students will think about it. (Day 3) 

Mr. Kasyoki 50:51: You may confuse our students if you give them money in fraction form. . 

. . how many times have you used currency in terms of fractions? How often? (Day 5) 

Discussion 

In a region where access to resources and opportunities is limited, a students’ ability to think 

critically, creatively, and analytically can mean the difference between empowerment and 

disempowerment. Teaching through problem solving supports students to develop problem-

solving skills. The MPSKT framework outlines knowledge that teachers need to effectively teach 

problem-solving skills. This study informs our understanding of how lesson study can support 

teachers to engage – and potentially develop -- their MPSKT, particularly in the areas of 

Knowledge of Mathematical Problems and Knowledge of Students as Mathematical Problem 

Solvers. 
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Engaging teachers in reflective practices is recognized as a crucial component of their adaptive 

expertise development. Drawing on this perspective of adaptive expertise development, we 

qualitatively examined how the design and structure of a Studio Day professional learning cycle 

afforded opportunities for reflective practice for secondary in-service mathematics teachers. We 

found that small group reflections, immediate reflections-on-action, and the use of videos 

afforded notable instances of reflective practices throughout the Studio Day Cycle that supported 

teachers’ development of adaptive expertise of equity-based, language-responsive teaching. We 

suggest that Studio Day Cycles are one avenue to better support in-service teachers’ 

development of adaptive expertise of mathematics language routines and multilingual learner 

core practices. 

Keywords: Professional Development, Middle School Education, Equity, Inclusion, and 

Diversity 

Supporting adaptive expertise development is one way the field can better prepare 

mathematic teachers to face the evolving challenges of teaching and attend to the diverse and 

emergent needs of students (Anthony et al., 2015). To effectively respond to the increasing 

linguistic diversity and growing proportion of multilingual learners in K-12 classrooms (Meyer 

et al., 2020), we contend that an adaptive expertise of equity-based, language-responsive 

pedagogy positions teachers to support all students in mathematics, especially multilingual 

learners (Roberts & Olarte, 2023). Despite the growing focus on equity-based pedagogies and 

curriculum for multilingual learners (e.g., de Araujo & Smith, 2021), the existing scholarship 

base on adaptive expertise has generally focused on pre-service teachers (e.g., Anthony et al., 

2015). We argue that it is equally important to examine and identify best practices to support in-

service teachers’ development of adaptive expertise of mathematics instruction for multilingual 

learners. In the present work, we report on how teachers’ participation in a professional learning 

cycle, Studio Days (Von Esch & Kavanagh, 2018), focused on mathematics language routines 

(Zwiers et al., 2017) and multilingual learner core practices (Roberts & Olarte, 2023) supported 

opportunities for the development of adaptive expertise of equity-based, language-responsive 

mathematics teaching. 
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Engaging teachers in reflective practices (e.g., Cavanagh & Prescott, 2010) – broadly 

referring to opportunities that teachers can be reflective and metacognitive about their teaching 

practices – is recognized as an integral dimension of adaptive expertise development (Anthony et 

al., 2015; Wetzel et al., 2015). Tsui (2009) asserted that “the process of reflection and conscious 

deliberation in which practical knowledge is theorized and theoretical knowledge is interpreted 

in practice” (p. 437), is how teachers develop adaptive expertise. Moreover, effective 

professional learning programs have been characterized as those that allow teachers to explore, 

inquire, experiment, and reflect (Wise et al., 1999). Although many scholars have reported on 

professional learning interventions that prompt mathematics teachers to engage in reflective 

practices and inquiry (e.g., Gningue et al., 2014), there is still limited research examining 

professional learning efforts that specifically encourage teachers to reflect on mathematics 

instruction for multilingual learners (de Araujo et al., 2018). The research question that guided 

this study was: How did opportunities for reflective practices within a Studio Day Cycle support 

mathematics teachers’ development of adaptive expertise of mathematics instruction for 

multilingual learners?  

Conceptual Framework 

We draw on reflective practice (i.e., Muir & Beswick, 2007) and adaptive expertise (Yoon et 

al., 2015) to share how the design and structure of the Studio Day Cycle (Von Esch & Kavanagh, 

2018) afforded teachers opportunities to engage in reflection that supported their adaptive 

expertise development. 

Reflective Practice 

Existing literature has widely emphasized the importance of teachers being metacognitive 

about their practice and how looking inward and reflecting on that practice is crucial to their 

development and change (Cavanagh & Prescott, 2010). Hayden et al. (2013) wrote, “Reflection 

on critical incidents in teaching and on feedback received can become the catalyst for 

transformative change in teaching practice” (p. 144), highlighting the salience of teachers both 

considering important events in their classrooms and receiving support to unpack those events. 

Encouraging teachers to reflect on their students’ use of language in mathematics classrooms and 

their current language-responsive practices within a professional learning community can be 

conducive to developing their adaptive expertise. We align our work with Muir and Beswick 

(2007), who conceptualized reflective practice as “reflection that is deliberate and can be focused 

on events or incidents, and personal experiences” (p. 77). They offered a three-level model to 

examine in-service teachers’ reflective practices: (1) technical description, or teachers recalling 

general accounts of classroom practices, focusing on technical aspects, and omitting value 

judgements to the experiences; (2) deliberate reflection, or teachers identifying ‘critical 

incidents’ and providing rationales for past and future actions; and (3) critical reflection, or 

teachers moving beyond identifying ‘critical incidents’ to consider others’ perspectives and offer 

alternatives. We consider these forms of reflective practices to uniquely support teachers’ 

development of dimensions of adaptive expertise. 

Adaptive Expertise 

Adaptive expertise broadly refers to the process of teachers’ recognizing and identifying 

emergent needs, making sense of multiple perspectives, and orchestrating multiple teaching 

approaches to meet the demands of different situations (Hatano & Inagaki, 1984; Yoon et al., 

2015). We utilize Yoon et al.’s (2015) characterization of three dimensions of adaptive expertise 
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to describe teachers’ mathematics instruction more explicitly for multilingual learners (See Table 

1). Like other scholars who have brought the theories of reflective practice and adaptive 

expertise together (e.g., Anthony et al., 2015; Tsui, 2009), we consider opportunities of reflective 

practice as conduits of teachers’ adaptive expertise development. With our goal of supporting the 

development of their adaptive expertise of mathematics instruction for multilingual learners, we 

aimed to engage in-service teachers in a myriad of reflective practices within a Studio Day 

Cycle.  

Table 1: Adaptive Expertise of Mathematics Instruction for Multilingual Learners 

 

Dimension Description 

Flexibility Awareness of students and context, particularly multilingual learners. 

Ability to constantly adapt practice and respond to unexpected issues 

as related to students’ needs, particularly multilingual learners. 

 

Deeper Level of 

Understanding 

Able to assimilate information and to implement or make connections 

that builds or addresses deeper level of knowledge. Able to bring in 

variations from outside the present system of activity as related to 

instruction for multilingual learners. Able to describe the affordances 

and constraints of mathematics language routines. Considers contexts 

in which to apply and integrate instructional practices for 

multilingual learners.   

 

Deliberate 

Practice 

Demonstrates an ability to show motivation, focus, and repeated 

effort to monitor their practice, and devises and subsequently 

attempts revamped attempts to improve implementation, as related to 

multilingual learners. Improves, assesses, and reflects on their own 

and others’ implementation of language-responsive practices. Explicit 

evidence of reflecting on how to improve as related to mathematics 

language routines and other language-responsive practices. Describes 

how they are motivated to continue to develop their practice.  

 

 

Method 

Context  

The present study is part of a large, multi-year funded project focused on supporting the 

development of mathematics teachers’ adaptive expertise of mathematics language routines and 

data science instruction in a school district in the West Coast of the United States. We designed 

our professional development intervention around Studio Days (Von Esch & Kavanagh, 2018; 

See Figure 1 below). Adapted from Lesson Study, two teachers develop and study a single lesson 

(not necessarily the same lesson/content). However, their lessons are focused on the same focal 

mathematics language routine (MLR) paired with a multilingual learner core practice (Roberts & 

Olarte, 2023). Other teachers observe a live enactment of the lesson and reflect on the observed 

lesson. In the 2023-2024 academic year, we planned three Studio Day Cycles with participating 
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teachers. Each Studio Day Cycle began with a Pre-Studio Day where the research team 

introduced the focal MLR and multilingual learner core practice. We outlined the stages of the 

routines, highlighted considerations for enacting the routines, and participating teachers 

experienced the routines as students. About one week after the Pre-Studio Day, two teachers 

volunteered to enact the focal routine in their classroom during the Studio Day, and the research 

team and other participating teachers observed these classroom enactments. The teachers then 

debriefed their enactment following their lesson, briefly sharing their experience, and receiving 

feedback from the observers. Then, about a week after the Studio Day, we reflected on that 

experience in a Post-Studio Day, where teachers reflected on video clips of the enactments, 

copies of student work from the Studio Day, and the MLR and multilingual learner core practice. 

 

Figure 1: Studio Day Professional Learning Structure 

 

Participants 

The research team designed the Studio Day Cycle for the 2023-2024 academic year. 

Purposeful sampling (Miles et al., 2020) was used to recruit the district’s mathematics 

instructional support specialist, three Math 7 teachers, and two Math 8 teachers from the three 

district junior high schools (See Table 2). For the present study, we report on the first Studio Day 

Cycle, where we focused on the mathematics language routine Collect & Display, paired with the 

multilingual learner core practice: identifying disciplinary language demands and supports. In 

Collect & Display, teachers capture students’ oral words, ideas, phrases into a stable reference. 

The intent of the routine is to stabilize students’ language in order to use their output as a 

reference for developing their mathematical language (Zwiers et al., 2017). The multilingual 

learner core practice of identifying disciplinary language demands and supports, refers to 

teachers employing or identifying language supports for students. They also adequately scaffold 

or produce language while attending to aspects of language that may be challenging for students 

(Aguirre & Bunch, 2012).  

 

Table 2: Participant Profiles 
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Name 

(pseudonym) 

Grade Level Race/ 

Ethnicity  

(self-

described) 

Years 

Teaching 

Mathematics 

Bilingual/ 

Multilingual 

(self-

described) 

Ms. Ruth  7th grade White 26 – 

Ms. Severn 7th grade Caucasian 4 Semi Fluent 

in Spanish 

Ms. Taylor 7th grade White 34 – 

Ms. Foster 8th grade White 3 Russian 

Ms. Penny 8th grade White 2 – 

Ms. Hope Instructional 

Specialist 

Caucasian 25 – 

 

Data Collection and Analysis 

We video- and audio-recorded each meeting of the Studio Day Cycle, and utilized the videos 

and transcriptions of each meeting to examine the types of reflective practices that teachers 

engaged in. First, we created content logs of the videos to identify notable instances of reflective 

practices. We then coded (Miles et al., 2020) the transcriptions for the type of reflective practice 

using Muir and Beswick’s (2007) three-level model. This allowed us to describe how the 

participants reflected during the Studio Day Cycle. Next, we drew on Yoon et al.’s (2015) 

characterization of the three dimensions of adaptive expertise (again, see Table 1) to make sense 

of how the moments of reflective practice supported teachers’ development of adaptive expertise. 

We met as a research team to discuss themes that we observed in the data and wrote analytic 

memos (Miles et al., 2020) to better understand how the opportunities of reflective practices 

within the Studio Day Cycle afforded or constrained teachers’ adaptive expertise development.  

Findings 

To illustrate how the reflective practices within a Studio Day Cycle supported teachers’ 

adaptive expertise development, we describe the structure of each day of the cycle and highlight 

the notable instances of reflective practices taken up by the participants. 

Pre-Studio Day 

Our goal for the Pre-Studio Day was to introduce teachers to the focal mathematics language 

routine Collect & Display, and to the multilingual learner core practice, identifying disciplinary 

language demands and supports. Although we observed instances of all three types of reflective 

practice during the Pre-Studio Day, we found that teachers primarily engaged in technical 

descriptions. This was expected given that this first day of the Studio Day Cycle was designed to 

introduce teachers to the core practice and MLR, as well as to get a sense of how teachers 

noticed their students’ language use in the classroom and to discern what they already did to 

support students to read, write, and speak about mathematics. For example, Ms. Foster said,  

We've identified disciplinary language demands and supports, like making sure kids truly 

understand the words that we're saying mathematically. Like, just making sure if I'm saying 

“solve”, what does that mean?...So, just making sure kids truly understand the words that 

we're saying and using their language to help bridge the gap [motions bringing hands 

together] between academic [language] and their every day [language]. 
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This technical description of her students’ language demands and her practice of building on 

students’ language also revealed Ms. Foster’s flexibility, or awareness of students’ needs.   

Reflective practices in small groups. One exemplar opportunity for reflective practice 

during the Pre-Studio Day was placing participants in small groups and having them reflect on 

the following questions: (1) Why do students use language in mathematics classrooms? (2) How 

do your students use language and communicate in the mathematics classroom? (3) What tools 

do your students use to use language and communicate in the mathematics classroom? The 

questions were purposefully posed to get a general sense of what teachers presently noticed and 

understood about their students’ use of language. They were first given time to think 

individually, and this afforded opportunities to engage in technical descriptions. However, once 

the teachers were discussing in the small groups, we observed instances where teachers engaged 

in deliberate reflection as they identified critical incidents of students using language in the 

classroom, and critical reflection as they expanded beyond identifying critical incidents and 

considered the perspectives and experiences of the members of their small group. They used a 

Jamboard to record their ideas and display them to the whole group, where they shared such 

ideas as: “They use hands or drawings to clarify because they don’t have formal language, so we 

try to get them to have language to explain” and “language is used to explain their thinking and 

to clarify their understanding.” These ideas illustrated that the teachers were able to work in a 

group with each other to develop generalizable ideas in their critical reflections. 

During the small group time, teachers went back and forth sharing their ideas, and it was in 

these rich discussions that we observed teachers engage in both deliberate reflection and critical 

reflection. For example, in one small group we observed teachers collectively reflecting on 

critical incidents of students’ language use, such as students gesturing or asking each other 

questions in the classroom. Then, Ms. Hope demonstrated evidence of critical reflection as she 

considered the perspectives of the other members of the group, synthesized their group 

reflections, and articulated that students’ language could be broadly categorized as “input and 

output.” In these reflective practices, we again primarily saw evidence of flexibility, as evidenced 

by awareness of students’ language in mathematics. 

Studio Day 

The Studio Day occurred one week after the Pre-Studio Day. On this day, Ms. Ruth and Ms. 

Taylor enacted the routine Collect & Display in one of their class periods. The other teacher 

participants took on participant-observer roles during the lessons, walking around, taking 

observation notes, and interacting with students. The Studio Day began with a pre-brief of Ms. 

Ruth’s lesson, where she provided details of her lesson plan, her classroom, and her expectations 

of what the research team/other teachers should do during her lesson. After Ms. Ruth enacted the 

routine, the participants and the research team met to debrief Ms. Ruth’s lesson. After this 

debrief, we held a similar pre-brief for Ms. Taylor’s upcoming lesson. The other teachers took on 

similar participant-observer roles during Ms. Taylor’s classroom enactment, and at the end of the 

day, we debriefed Ms. Taylor’s enactment of Collect & Display. The reflective practices of the 

Studio Day privileged deliberate reflection and critical reflection because teachers observed 

actual classroom enactments through which they identified and reflected on critical incidents 

shortly after each teachers’ enactment.  

Immediate reflection-on-action. Key reflective features of the Studio Day were the pre-

brief sessions that oriented teachers to details of the upcoming lesson, classroom dynamics, and 
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student engagement prior to observing Ms. Ruth and Ms. Taylor enact the routine with their 

students, and the debriefs immediately after the lesson that engaged teachers in reflection-on-

action (Manrique & Abchi, 2015). Reflection-on-action refers to teachers’ purposeful reflection 

after their practice, and in our debriefs, we prompted teachers to reflect on Ms. Ruth’s and Ms. 

Taylor’s enactment of Collect & Display. For the enacting teachers, we asked them questions 

such as: (1) How did you feel about the lesson?; (2) Did you consider multilingual students 

during your lesson?; and (3) How did you adapt in real time? For the observing teachers, we 

asked them questions such as: (1) What did we see students doing during Collect & Display?; 

and (2) How did students engage with disciplinary language demands? The debriefs allowed the 

teacher who just enacted the routine to reflect on their teaching practices immediately after class, 

and provided the other participating teachers opportunities to share insights and feedback based 

on their observation notes. Moreover, we purposefully oriented teachers’ reflections using the 

MLR and paired multilingual learner core practice. 

Again, we observed that teachers were able to take up all three reflective practices during the 

debriefs. For example, Ms. Ruth engaged in technical descriptions and deliberate reflection 

within her own enactment of the routine and shared that the students were “very engaged and 

[for] kids who have difficulty accessing [the problem], it [Collect & Display] gives them 

opportunities to access, because there’s no penalty for getting it wrong.” During this moment of 

reflective practice, we found that Ms. Ruth exhibited the dimensions of adaptive expertise 

flexibility and deeper level of understanding, because she demonstrated an awareness of her 

students, and she articulated an affordance of Collect & Display – mainly that it was a routine 

that allowed students to access the mathematics content and language. The immediate 

reflections-on-action in the debriefs also afforded the observing teachers valuable reflective 

practices that developed their adaptive expertise. For example, Ms. Severn engaged in technical 

descriptions and deliberate reflections as she praised Ms. Ruth’s ability to connect students’ 

informal language with the formal mathematics language. She explained, “Highlighting the ways 

that informal and formal language related to each other was, I think, a good way to marry the 

different levels of language that the kids need.” In this reflection, Ms. Severn exhibited flexibility 

because of her awareness of students’ language use, and she also exhibited a deeper level of 

understanding of practice of identifying disciplinary language demands and supports. Through 

her reflection of Ms. Ruth’s lesson, Ms. Severn shared those explicit connections between 

students’ informal and formal language supported their language needs in mathematics.  

Post-Studio Day   

We held our Post-Studio Day one week after the Studio Day and in between this time, 

teachers were encouraged to continue to use the MLR in their classrooms. Additionally, to 

prepare for the Post-Studio Day, the research team purposefully selected video clips from Ms. 

Ruth’s and Ms. Taylor’s classroom enactments of Collect & Display. We selected clips from two 

types of videos: a video from an iPad turned towards the front of the classroom (i.e., focused on 

the teacher), and videos from Ordro headband cameras that students were wearing during class. 

We selected moments that would allow for broad reflection, as well as those that would allow for 

purposeful reflection on teachers’ language-responsive mathematics instruction. We found that 

because a goal of the Post-Studio Day was to discuss how teachers can build on the enactments 

of the Studio Day and how they can implement the routine in their own classrooms, the moments 

of reflective practices on this last day primarily encompassed deliberate reflections and critical 
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reflections and afforded development of the deeper level of understanding and deliberate 

practice dimensions of adaptive expertise. Participants were able to articulate how they might 

integrate the routine in their classroom and demonstrated motivation and desire to improve future 

implementations of the MLR. 

Reflecting on videos enactments. The notable opportunity for reflective practice of the Post-

Studio Day was when teachers were shown the video clips of Ms. Ruth’s and Ms. Taylor’s 

enactment of Collect & Display. Overall, the teachers reported that this was an extremely 

valuable opportunity not only to see themselves teach, but seeing the videos from the student 

headband cameras provided new insight into how the students worked with their peers, how they 

spoke about mathematics, and how they made sense of the task. Both Studio Day focal teachers 

had utilized the Desmos curriculum (Amplify Education, Inc., 2024) to enact Collect & Display, 

and the teachers demonstrated evidence of technical descriptions and deliberate reflection as 

they articulated details of their enactments and provided rationale for features of their Desmos 

activity. For example, Ms. Ruth explained, “I don't think I've ever gotten as, as rich variety… 

What's different? But it's really nice that we have a way for kids to share their thinking that's safe 

because you can anonymize it.” In this moment, we also observed Ms. Ruth’s development of a 

deeper level of understanding of the routine Collect & Display, because she described an 

affordance of facilitating the routine specifically through Desmos – integrating her understanding 

of the goals of the routine with what Desmos affords for the students. Mathematics language 

routines are flexible and adaptable, and we observed that teachers developed their adaptive 

expertise because they described the affordances and constraints of using technology to enact the 

routine instead of traditional paper/written work.  

Discussion and Conclusion 

We found that the Studio Day Cycle afforded valuable opportunities for reflective practices 

that supported teachers’ development of adaptive expertise of language-responsive, mathematics 

pedagogy. Over the course of the cycle, we found notable instances of participants engaging in 

all three types of reflective practices that supported their development of adaptive expertise. For 

example, we found that participants most often engaged in technical descriptions, consistent with 

how this reflective practice is considered a lower-level reflection (Muir & Beswick, 2007). 

Additionally, in the moments of technical descriptions, we found teachers to most exhibit and 

develop flexibility as they demonstrated increasing awareness of students or adapted their 

practice in response to students’ needs. Importantly, we found that design features of the Studio 

Day Cycle privileged specific types of reflective practices – such as viewing videos of classroom 

enactments encouraging deliberate reflections, because participants were oriented to specific 

critical incidents, and small group reflections encouraging critical reflections as teachers 

considered each other’s perspectives and ideas. This is consistent with existing literature on the 

value of supporting teachers to engage in reflection-on-action (Manrique & Abchi, 2015) as well 

as the use of video in teachers’ professional development (i.e., van Es & Sherin, 2010). The 

present work demonstrated that professional learning interventions can curate catalysts of 

reflective practices that can specifically support teachers’ development of adaptive expertise of 

language-responsive mathematics instruction. With reflective practices a critical component of 

adaptive expertise development (Anthony et al., 2015), we suggest that Studio Day Cycles are 

flexible, adaptable models for interventions that can provide in-service mathematics valuable 
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opportunities to develop their adaptive expertise of equity-based, language-responsive 

pedagogies for multilingual learners. 
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IN-SERVICE TEACHERS’ PERFORMANCE ON FRACTION OPERATIONS 
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This study explored 236 in-service elementary and middle grades mathematics teachers’ 

knowledge on fraction operations across the U.S. The research questions were as follows: 

1. To what extent do teachers solve problems that address fraction operations correctly?  

2. What relationships exist among teachers’ choices of fraction operations? 

For each of the four problems, teachers were asked to select one of the following six choices:  

 i)  
2

3
  x  

4

5
   ii) 

2

3
  +  

4

5
    iii) 

4

5
  –  

2

3
    IV)  

2

3
  ÷  

4

5
   V) 

4

5
  ÷  

2

3
    VI) None of these 

 

Table 1: Fraction Operations Problems 

 

Key Concept Problem 

Fraction Partitive Division 1) A 4/5 of a package of butter weighs 1 pound. How much 

does a 2/3 of a package of butter of that same kind weigh? 

Fraction Subtraction 2) Emily has a rope that is 4/5 meters long. However, she 

needs a rope that is exactly 2/3 meters long for a project. What 

part of her rope should Emily use for her project? 

Fraction Multiplication 3) If 2/3 of a gallon of yogurt weighs 1 kilogram, then how 

many gallons are 4/5 of a kilogram of yogurt? 

Fraction Measurement Division 4) You have 4/5 cups of honey. A batch of brittle calls for 2/3 

cups of honey. How many batches of brittle can you make? 

Results & Discussion 

One main result was that only about a third of the sample of teachers responded to the 

fraction partitive division, fraction multiplication, and fraction subtraction problems correctly. 

On the other hand, teachers performed better on the fraction measurement division problem with 

about two-thirds of the sample’s correct answer. Moreover, there was a statistically significant 

relationship between teachers’ responses to each fraction operation and the remaining three 

operations (e.g., for fraction partitive division and multiplication; 2(25) = 108.6, p = .00).  

 

Table 2: Summary of the Results 

 

 2/3 x 4/5 2/3 + 4/5 4/5 – 2/3 2/3 ÷ 4/5 4/5 ÷ 2/3 None 

Problem 1 [2/3 ÷ 4/5] 66 3 9 75 25 58 

Problem 2 [4/5 – 2/3] 38 3 89 28 16 62 

Problem 3 [2/3 x 4/5] 91 1 6 48 41 49 

Problem 4 [4/5 ÷ 2/3] 17 5 24 14 158 18 

 

As consistent with prior research (e.g., Izsák et al., 2019; Ma, 2010), this study reveals that 

teachers had limited understanding of fraction operations. Contrary to the most findings in past 
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research (e.g., Timmerman, 2014), teachers in the present study performed much better on the 

fraction measurement division problem than the fraction partitive division problem.  

Acknowledgments 

This work was supported by the Herman & Rasiej Mathematics Initiative. Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views of the Herman & Rasiej Mathematics Initiative.   

References 
Izsák, A., Jacobson, E., & Bradshaw, L. (2019). Surveying middle grades teachers’ reasoning about fraction 

arithmetic in terms of measured quantities. Journal for Research in Mathematics Education, 50(2), 156–209. 

Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental 

 mathematics in China and the United States. Routledge. 

Timmerman, M. A. (2014). Making connections: Elementary teachers’ construction of division word problems and 

representations. School Science and Mathematics, 114(3), 114–124. 

 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1372 

2CULTIVATING MATHEMATICS TEACHER CURIOSITY: AN EXPLORATORY 

ANALYSIS 

CULTIVANDO CURIOSIDAD DOCENTE: UN ANÁLISIS EXPLORATORIO 

Jennifer Osuna1 

Stanford University 

jmlo@stanford.edu 

Faith Kwon 

Stanford University 

fkwon@stanford.edu 

Miriam Leshin 

Stanford University 

mleshin@stanford.edu 

Jen Munson 

Northwestern University 

jmunson@northwestern.edu 

This paper explores the notion of teacher curiosity and connects it to the pedagogical work of K-

5 mathematical inquiry. We explore teacher interviews from professional development (PD) 

designed to foster curiosity among elementary mathematics teachers to consider how teachers 

reflected on curiosity and the objects of their curiosity. Findings show that within the PD 

context, teachers: (a) expressed the importance of cultivating curiosity in their students, their 

colleagues, and themselves, and (b) expressed curiosity about: (1) children’s mathematical 

thinking, (2) their own math instructional practices, and (3) their own affective state. We end 

with directions for future work.  

Este artículo explora la noción de curiosidad docente y la conecta con el trabajo pedagógico de 

la investigación matemática K-5. Exploramos entrevistas con maestras participando en un 

desarrollo profesional (PD) diseñadas para fomentar la curiosidad para considerar cómo 

reflexionaron sobre la curiosidad y los objetos de su curiosidad. Encontramos que dentro del 

contexto del PD, los maestros: (a) expresaron la importancia de cultivar la curiosidad en sus 

estudiantes, sus colegas y en ellos mismos, y (b) expresaron curiosidad sobre: (1) el pensamiento 

matemático de los niños, (2) sus prácticas de instrucción, y (3) su propio estado afectivo. 

Terminamos con indicaciones para trabajos futuros. 

Keywords: Professional development; Affect, emotion, beliefs, and attitudes; Elementary school 

education 

A stance of curiosity is often assumed in teachers who center student thinking and inquiry in 

the mathematics classroom (e.g., Engle, 2013), though the field knows little about the construct 

of teacher curiosity or its cultivation. In the field of psychology, research has variously 

characterized curiosity as (a) a trait, with individuals being either more or less curious by nature, 

or (b) a state, a transient experience stimulated by the environment over which the individual has 

little control (Litman, 2005; Schmitt & Lahroodi, 2008). In either case, curiosity is viewed as a 

condition that fuels inquiry and, ultimately, learning. However, from a sociocultural perspective 

(Lave & Wenger, 1991), who we are in interaction with one another and our environment shapes 

and is shaped by the social world, rather than being purely internal or individual. In our work 

focusing on teacher curiosity, we frame curiosity as neither purely an individual trait or a state, 

 
2 All authors contributed equally to this paper.  
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but rather as a deliberate stance teachers can learn and then take on in their classrooms. Further, 

we differentiate teacher curiosity from related practices such as teacher noticing (Van Es, 2011) 

and inquiry, framing curiosity as a stance or orientation toward activity, others, and/or self that 

can make such connected practices more likely to occur. As such, we conceptualize and 

investigate teacher curiosity as a learnable professional stance, one that can be fostered in 

communities of practice by sharing in collective inquiry into and curiosity about the work of 

teaching and learning. 

While the construct of teacher curiosity, in particular, has been underexplored, research into 

developing teachers’ capacity to center, elicit, probe, and design instruction based on student 

thinking has shown that the most skilled teachers approach student thinking with curiosity 

(Franke et al., 2001). Indeed, Franke and colleagues (2001) described curiosity about students’ 

mathematical thinking as one of the characteristics of teachers who were able to continue to learn 

from their daily practice after the end of formal professional development.  Building on this 

work, Ananthanarajan (2020) recently operationalized teacher curiosity about student thinking in 

the context of mathematics teachers as an instance “where teachers recognize something as 

unknown, unfamiliar, puzzling, uncertain, or new in the context of teaching and learning, and 

feel motivated to initiate inquiry into that instance” (p. 31). She described how developing and 

making space for teachers’ curiosity offers them the agency to follow their interests and ask 

questions that motivate inquiry in their own teaching practice. This operationalization focuses 

solely on teachers’ curiosity about student’s mathematical thinking, which we seek to broaden by 

more openly exploring the possible objects of teachers’ curiosity when engaged in mathematics 

professional development (PD).  

This paper explores the notion of teacher curiosity within the context of a PD program 

designed to cultivate curiosity as a component of inquiry-based mathematics teaching. The 

program took up the view that curiosity could both be learned by teachers and could in turn 

support their professional learning. In this context, we draw on interviews with participating 

teachers to explore the following question: When reflecting on PD and coaching designed to 

foster elementary mathematics teacher curiosity, to what degree did teachers express curiosity 

and what were the objects of that curiosity?  

Methods 

Professional Development Context 

The PD explored here took place within a research-practice partnership (RPP) between 

university-based researchers and a small elementary school district in Northern California that 

serves a culturally and linguistically marginalized community. The district’s mathematics coach, 

in collaboration with our research team, established a math teacher cohort of five teachers, all of 

whom volunteered to participate in two years of PD during the 2020-2021 and 2021-2022 school 

years. In the fall of 2020, the mathematics coach established a second math teacher cohort of 

four teachers, all of whom volunteered to participate in one year of PD during the 2021-2022 

school year. This district PD built on previous work in the RPP (Osuna & Munson, 2023).  

The PD, which was co-designed by the mathematics coach and the research team, included 

two-hour after-school meetings, twice per month, totaling 10 sessions each year. The PD 

program sought to support teachers in student-centered, responsive teaching in mathematical 

inquiry, along with one-on-one coaching sessions with the coach. With the onset of the COVID-

19 pandemic in March 2020 and an abrupt shift to remote instruction, the need to support 
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teachers and students in this context of incredible uncertainty came to the fore. With these shifts, 

curiosity became a prominent focus throughout the PD and coaching, as both a lens for 

considering student mathematical thinking and reflecting inward toward their own experiences 

and feelings.  

PD activities and coaching sessions revolved around cultivating teachers’ curiosity about 

mathematics and about students’ mathematical thinking, such as analyzing students’ 

mathematical work. Opportunities to reflect on and discuss their own affective states as it 

pertained to teaching during the pandemic were also regularly folded in. Table 1 summarizes the 

areas of focus and offers examples of PD activities within each area. 

Data Sources 

Several data sources were collected throughout the PD. The present analysis focuses on 

interviews with teacher participants. 15 semi-structured interviews were conducted on Zoom 

with six of the nine participating teachers, ranging from one to four interviews per teacher. 

Complications from the COVID-19 pandemic, including limited teacher bandwidth, impacted the 

number of interviews the research team was able to collect. Interviews were 30-60 minutes in 

length. Table 2 shows the timeline and distribution of interviews across teachers. All names are 

pseudonyms.  

 

Table 1: Overview of PD areas of focus 

 

Area of Focus Description and Examples of Activities 

Cultivating an 

inward-focused 

curiosity  

 

Sessions included activities, discussions and reflection questions that 

prompted teachers to turn their curiosity inwards. The first session began 

with sharing what brings one joy, followed by an activity where they wrote 

their mathography. All sessions ended with individual reflection time, 

where teachers were prompted to articulate their lingering curiosities about 

themselves and their students, parts of their math instruction they’re most 

proud of, or applying a curiosity lens to their own mathographies. 

Cultivating 

curiosity about 

children’s 

mathematical 

thinking and 

experiences 

Sessions included activities and discussions looking at student math work 

or watching videos of students doing math engaging a curiosity lens.  One 

such discussion began with the prompt of asking teachers to identify what 

they had found fascinating about a piece of student work. This was 

followed by sessions analyzing student work with a curiosity lens then 

reflecting on the experience. 

Doing 

mathematical 

activities 

Most sessions included an inquiry-based, open-ended math activity, such as 

Notice and Wonder, Which one doesn’t belong?, or the Paper Folding task. 

These activities often culminated with a debrief discussion about how to 

adapt the activity for their students. 
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Learning and 

practicing 

teacher talk 

moves to elicit 

student thinking 

Sessions included exploration of teacher talk moves, in particular moves to 

elicit student thinking. This was followed by watching videos of two 

teachers eliciting student thinking and discussing what was noticed in the 

videos, ending with a reflection. 

Discussing 

readings 

 

Discussions were primarily based on the book, Becoming the math teacher 

you wish you’d had by Tracy Zager, which offers ideas and strategies for 

teaching student-centered mathematics. 

 

Data Analysis 

Teacher interviews (n=15) were transcribed for analysis and used to inductively develop a 

definition of curiosity in the context of our data. We operationalized curiosity as: “Expressing an 

orientation of openness, inquiry, seeking learning, wonder, perplexity, and marvel, discussing 

trying to cultivate such an orientation, or naming curiosity as a goal or experience; promoting 

curiosity among colleagues or students; reflecting on being the object of another person's 

curiosity; or expressing the desire to seek information.” This definition was refined through 

discussion and then applied to the interview and reflection data. Using our operationalized 

definition, we identified all instances of curiosity across the interviews.  

We then coded across all the instances of curiosity (n = 63) and inductively classified the 

objects of teachers’ curiosity. This approach revealed three distinct objects of teachers’ curiosity, 

as well as expressions of the importance of cultivating curiosity among others. These 4 codes 

were then applied across the dataset. We then returned to the coded data and explored themes 

within the two most frequent codes: expressing curiosity about one’s instructional practice and 

expressing curiosity about children's mathematical thinking. Below, we describe the overall 

findings and zoom into the themes within these two most frequent expressions of curiosity.  

 

Table 2: Timeline and distribution of interviews across teachers 

 

 Math 

Leads 

Interview #1: 

Teacher Story 

Interview #2: 

End of Year 1 

Interview 

#3: Start of 

Year 2 

Interview #4:  

End of Year 2 

First 

Cohort 

 

Alejandra x x x x 

Adeline x x  

Ashley  x 

Roya x x x x 

Eujin  

Second Nina x x Teachers in the second cohort 
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Cohort 

 

Dolores x x participated in the PD for one 

year. 
Soyoung  

Nadia  

 

Findings 

Across 15 interviews with six teachers, we recorded 63 instances of curiosity across all 

teachers as it related to their participation in the PD. As they reflected upon their learnings from 

PD and coaching, teachers: (a) expressed the importance of cultivating curiosity in their students, 

their colleagues, and themselves; and (b) expressed curiosity about various domains, in 

particular: (1) children’s mathematical thinking, (2) their own math instructional practices, and 

(3) their own affective state.  

Teachers expressed the importance of cultivating curiosity in others 

Teachers expressed the importance of cultivating curiosity in others, in particular their own 

students’ mathematical curiosity, their colleagues’ curiosity about student thinking, and their own 

curiosity. For one, teachers expressed the importance of cultivating students’ own curiosity about 

mathematics and each other’s thinking. For example, Alejandra reflected on the importance of 

inspiring students to be curious about their own mathematical processes and thinking and being 

excited about mathematical possibilities: 

And what I have learned from this math cohort is that the most important thing is not that the 

students get the right answer, but the process behind… getting to the answer, even if their 

answer is right or wrong, is not as important as understanding their process and making them 

feel excited about math, helping them get excited and curious about math. (Alejandra) 

Another teacher discussed connections between student curiosity and learning, noting how an 

orientation of curiosity supports sense-making and building mathematical understanding: 

'Cause that's what their brains are trying to, like, make connections about, you know, that's 

what they're trying to understand. So like, uh, letting them guide that make sense 'cause then 

they're- they're already curious about it. They're already trying to understand it. So we just 

need to help kind of guide them and give them more tools and resources to build that 

understanding. (Ashley) 

Teachers also expressed value in cultivating curiosity among their colleagues and themselves. 

For example, one teacher noticed the ways in which the PD coach fostered curiosity among 

teachers and remarked on its importance as “a really good approach” that ought to continue with 

more teachers in continuing years: 

[Coach], really, she, even when she comes to do like a math talk at a staff meeting. She's 

really just like, ‘Okay, I'm showing you this and, hopefully, you are curious. If you are, you 

contact me, and I can show you more.’ You know, like, she's trying to bring that curiosity out 

of the teachers, so that more people are interested in this work. So thinking about our site, I 

think that's a really good approach, maybe next year, just continue this work.” (Adeline)  
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Another teacher remarked on the importance of the emerging curiosity among the fourth 

grade teaching team, who were not part of the PD, but were showing signs of being “very 

fascinated” by students, noting that this spread of curiosity was the most noteworthy 

commentary: 

Fourth grade [teaching team] seems to be very interested in how we're doing math because 

our kids are going into fourth grade and they're seeing like the results of inquiry, and they're 

like very fascinated by the strategies that they're seeing. So, I would say the biggest like 

commentary around it has been between fourth grade third grade and like within third grade. 

(Roya) 

Teachers expressed curiosity about various domains 

Teachers expressed curiosity about various domains, in particular: (1) children’s 

mathematical thinking, (2) their own math instructional practices, and (3) their own affective 

state. While it was the least frequent code, teachers expressed curiosity about their affective 

state. Teachers at times expressed how curiosity generated feelings of excitement, vulnerability, 

and even hopefulness. Additionally, while the PD was explicitly structured to cultivate teachers’ 

curiosity about students’ mathematical thinking, teachers’ curiosity about their own math 

instructional practices was the most frequent code across the data set. Below we focus on these 

two types of expressions of curiosity, in particular, illustrating how this lens of cultivating 

teachers’ curiosity about students’ mathematical thinking seemed to also promote curiosity about 

their own practice. 

Teachers expressed curiosity about children’s mathematical thinking. There were 16 

instances of curiosity about students’ mathematical thinking across the data set, and every 

teacher interviewed expressed this form of curiosity. As prioritized in the learning goals of 

professional development, teachers reflected on the importance and practice of being curious 

about children’s mathematical thinking, shifting away from an evaluative stance.  For example, 

Adeline described working to understand, rather than judge, her students’ work: 

The biggest thing is really just be curious about student work and be curious about their 

thinking before you judge them—[laughs] I used the word judge—before you make 

assumptions, that's the biggest thing I think I learned from this work is you try to understand 

them. (Adeline) 

Here Adeline reflected on the importance of trying to understand, rather than make 

assumptions about, her students’ thinking. In addition to describing this shift from an evaluative 

stance to a curious one, teachers discussed what it looked like for them to enact this curiosity 

lens in their classrooms. Adeline elaborated in a later interview on how she worked to put this 

curiosity lens into practice when conferring with her students about their thinking: 

[In the past] I was kind of listening for their mistakes and then try to like help them to fix it 

[laughs]. So it's like kind of a different perspective…like, are you making sense of the 

problem? Does this student have a plan? And then, does this student know like -- like ‘the 

plan’ meaning like what kind of strategy to use--and then, does this student know how to 

pick the right tool? (Adeline) 

In this quote, Adeline contrasted her past tendency of listening for mistakes in order to “fix 

them” with her curiosity lens of trying to understand students’ sense-making. Similarly, 
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Alejandra connected curiosity about what students are saying to staying present in conversations 

with students in-the-moment, stating: 

It is important that, first we need to have some questions in mind, some basic questions, and 

then from the students’ responses build upon that and then ask them more questions that are 

just based in the present moment. We need to be 100% present, listening to our students and 

then being able to question them more, no? So that's how curiosity looks like to me, lots of 

questioning (Alejandra) 

In these quotes, Alejandra and Adeline discussed the ways in which being curious when 

engaging with students supported them to be responsive to students’ mathematical thinking. 

Although teachers acknowledged the challenges of staying curious about students’ thinking in 

their classrooms, they also marveled at the joy that it brought them, as Ashley reflected: 

I wanted to enjoy math time more and like have more like fun with it and have it be more 

interesting and like not just like worksheets and be, uh, uh, like really curious and like 

thoughtful about what students were doing and like really like allow myself to-to be like that 

curious (Ashley) 

Teachers expressed curiosity about their own mathematical instructional practices. 

There were 32 instances of curiosity about teachers’ own mathematical instructional practices 

across the data set, and every teacher interviewed expressed this form of curiosity three or more 

times. In particular, teachers expressed curiosity about (a) a different way of teaching, (b) 

specific pedagogical approaches, and (c) their own professional growth journey.  

Across interviews, teachers expressed curiosity about teaching mathematics in a different 

way than they currently were or had experienced as a student. For example, Ashley noticed the 

way she was teaching math was not working for her students and wanted to learn about how to 

shift her math instruction to better support her students. She stated: 

Um, so I think at that point I was looking for that because I could see students struggling 

with math and I was like, okay, this is not-- Like I know this is not the best way to teach 

them. So I was looking for other-other ways to teach it. (Ashley) 

In addition to this general curiosity about changing math instructional practices, teachers also 

expressed curiosity about specific pedagogical approaches to teaching mathematics, including 

the role of students within those practices. In describing a learning experience in coaching, 

Alejandra talked about how she had specific questions about and then received support in 

implementing a conferring practice, explaining: 

If I had questions about like," Oh, am I doing the launch? Okay. Like, how am I doing 

conferring or how should I do?" So she helped me with conferring, with the launch, with the 

solving math problems and with the debrief. (Alejandra) 

Roya also reflected on the particular pedagogical approach of re-engagement lessons and her 

curiosity and excitement about trying it with her students: 

I’m excited, I think I’m, I want to learn more about how to use student work more effectively 

in my classroom. Like one thing that I learned through the PDs last year were to try 

reengagement lessons and that was like, ‘Wow I need to get on that level, but like I'm not 
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there yet.’ So I think learning how to use student work for the entire class to reengage them 

in like some big ideas. (Roya) 

Finally, teachers described across interviews how their curiosity about the processes for their 

own learning or improving practice drove their learning in professional development and their 

work in coaching. Adeline gave multiple examples of how her curiosity lead the focus of her 

learning with her coach, and how powerful those learning and coaching experiences were. She 

elaborated:  

I could always talk to [coach] this year, just like you know, like, ‘I'm really confused about 

this hundreds chart, because it's kind of, you know, like, there's 15 and then there's 25, kids 

are, you know like, could be a little confusing.’ Like I always have questions about that, and 

then I just go to [coach], and we talk about it, and we sometimes we, just you know, we 

search, you know, we do some research together and just like a lot of, it’s really helpful. 

That's one and second is kind of, I think it was helpful like for her to come and model for me 

like how to do certain routines and observe me. She was observing my, you know, conferring 

sessions and then we'll like—I’ll confer with one student and then we go back to the main 

room, talk about it, and then go to the next group. We only tried that for two times, but that 

was very powerful too. We also tried, you know, recording lessons, so like I'll just record my 

lesson and then we kind of really think about like, what did I say and what did the students 

say? And then I realized, ‘Oh I talk a lot’ [laughs]. Just kind of, you know, that are, just 

really based on like my own practice and reflection was really helpful, I think. (Adeline) 

Conclusion 

In this analysis of a PD designed to cultivate teacher curiosity, teachers expressed curiosity 

about their students, their practice, and their own affective state while teaching student-centered 

mathematical inquiry, as well as expressed value in cultivating curiosity in others. While teachers 

described the act of being curious as complex and at times challenging, being curious and 

cultivating curiosity among students was also described in relation to feelings of joy and 

excitement. Curiosity also seemed to motivate teachers to get to learn more about a student and 

their mathematical thinking and wonderings, as well as to dig into their own teaching and its 

evolution toward more student-centered pedagogies. Our findings build on Anantharajan (2020), 

whose work focused specifically on teacher curiosity of students’ mathematical thinking, to show 

that cultivating such curiosity (a) can occur collectively in a teacher professional learning 

community and (b) can lead to other forms of curiosity, including curiosity about instructional 

practice and even one’s own affective experience teaching.  

All in all, curiosity seems to hold strong potential as a lever toward ambitious, reflective, and 

even joyful instruction. A key implication is that efforts to stimulate curiosity may be an essential 

feature of high quality PD not yet referenced in commonly cited frameworks, such as Desimone 

(2009). New work is needed to explore the pedagogical, humanizing, and even wellbeing 

possibilities of cultivating curiosity among teachers and, in turn, students. Our exploratory work 

is limited by the exclusive focus on teacher interviews, rather than curiosity in-situ or other 

contexts.  We see this small study as a jumping off point for further theorizing.  
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Despite copious evidence of the effectiveness of inquiry-oriented and student-centered 

instructional practices, many college instructors do not implement these instructional strategies. 

We report on a three-year project aimed at shifting instruction in College Algebra at one 

institution. This project established a professional learning community (PLC) of instructors 

around an incremental instructional improvement framework to guarantee instructor buy-in and 

increase the practicality of the development materials for use in the classroom. Preliminary 

results indicate that structural factors such as course coordination, dedicated PLC time, a 

lesson-study-like framework for improving course curricula and materials, and video clubs 

contributed to changes in both instructors’ thinking and practice of inquiry-oriented teaching.  

Keywords: Professional Development, Undergraduate Education, Instructional Activities and 

Practices 

Inquiry-oriented mathematics instruction can lead to increased student learning and 

conceptual understandings (Freeman et al., 2014; Deslauriers et al., 2011; Kogan & Laursen, 

2014). Additionally, there is evidence that students who report experiencing more student-

centered techniques in their classes are less likely to switch out of a STEM degree (Ellis et al., 

2014), and some studies suggesting that the benefits for underrepresented students in STEM are 

even higher (Kogan & Laursen, 2014). However, didactic lecture remains the most common 

form of instruction in STEM courses across the United States (Stains et al., 2018). Reasons for 

this include instructors’ lack of personal experience with student-centered instructional practices 

(e.g., Andrews et al., 2015), fear of losing control of their classroom (e.g., Hayward et al., 2015), 

and particular beliefs about teaching and learning (e.g., Aragón et al., 2018). Further, 

mathematics instructors at the college level may have had few opportunities to participate in 

focused professional development around teaching. As such, it is challenging for many 

instructors to make lasting instructional changes that focus teaching on student-centered 

practices and leverage inquiry-based materials. Although instructional change can be difficult to 

catalyze, professional development through professional learning communities (PLCs) can be 

one way to support instructors through this process (Hayward et al., 2015; Lee & Lee, 2018; 

Tam, 2015). Specifically, PLCs create opportunities for instructors to reflect on and refine their 

practice and to generate new knowledge (Harris & Jones, 2010). This can result in 

transformational change when the PLCs possess high levels of professional capital, which refers 

to “the capacity to transform existing resources and constraints into opportunities through 

collective action” (Lee & Lee, 2018, p. 466), as well as when they focus on student learning 

(Bolam et al., 2005).  
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Description of Professional Learning Community  

The goal of the federally-funded project described in this report was to empower College 

Algebra instructors at a large, Hispanic-serving southwestern university to improve instruction.  

The Practicality Ethic framework proposed by Doyle and Ponder (1977) helped us (the 

investigators) to structure the project, as it was originally designed to describe factors teachers 

consider when deciding whether or not innovative curricula was practical or deemed realistic for 

implementation in the context of an actual classroom. These factors are: 1) congruence: how 

compatible the change is with the instructor’s classroom, setting, and instructional goals, 2) cost: 

if the potential benefits (e.g., student outcomes, student attitudes) that outweigh the effort and 

other costs of implementation, and 3) instrumentality: if the changes consist of clearly articulated 

procedures for ease of implementation in the instructor’s classroom. Informed by the Practicality 

Ethic, we prioritized instructors’ agency in choosing the content and and form of their curriculum 

(re)development project. In order to encourage instructors to think carefully in advance of their 

facilitation of lessons about students’ opportunities to actively participate in the class, we 

leveraged the Continuous Improvement (CI) cycle (Berk & Hiebert, 2009), the incremental 

lesson improvement strategy informed by lesson study.  

Continuous Improvement Framework  

For each of the five “active” semesters of the project, during the time protected for PLC 

meetings, instructors chose specific focus lessons from the curriculum and implemented the CI 

cycle: (1) design a task that targets a particular student misconception or deepens understanding 

of a particular mathematical idea; (2) develop hypotheses about anticipated student responses; 

(3) collect data and analyze in the form of student work and classroom recordings; and (4) revise 

the task for use in subsequent iterations of the course. Our choice to use CI to guide course 

improvement was to seed gradual transformation made with smaller changes over time for 

sustained instructional improvement (Hiebert & Stigler, 2004), while also leveraging the 

knowledge, experience and priorities of instructors to guide these changes. We collected data in 

the form of instructor interviews, video-recorded class observations, recordings of PLC meetings 

(including each step of the CI cycle and video club meetings), and participant lesson plans. 

Structural Factors Contributing to Instructional Change  

We posit that the following structural factors contributed to meaningful instructional change 

in our context:  

1. Course coordination and vertical alignment of curriculum: two years before the start of 

this project, the department embarked on a concerted effort to coordinate large multi-

section courses. Instructors teaching the same course were strongly encouraged to meet 

regularly, align assessment across sections, and develop a list of student learning 

outcomes (SLOs) for their course. Course coordinators were similarly encouraged to 

meet with each other and discuss the progression of SLOs across subsequent courses.  

2. Dedicated PLC time: this project provided each College Algebra instructor (all of whom 

were instructional faculty with 100% teaching loads) with a course release in order to 

participate in the PLC. Instead of teaching four courses each semester, participating 

instructors only taught three. Additionally, after the first semester of the project, which 

was utilized as an establishing and planning semester, all instructors of College Algebra 

participated in the PLC.  
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3. Continuous Improvement framework: Using the CI framework allowed us as facilitators 

to provide a structure for discussions about student thinking and developing active 

learning materials while still allowing the instructors’ own priorities and ideas to guide 

the instructional improvement process.  

4. Video club: embedded into the PLC and as part of the CI cycle, instructors participated in 

a video club where they observed each other’s facilitation of the focus lessons for the 

semester. This gave instructors the opportunity to open up their practice to each other in a 

safe and structured way. As advocated by Berk and Hiebert (2009), we encouraged 

instructors during these video clubs to focus on instruction in their observations, not on 

the personal styles or quirks of the instructors. 

We report below on preliminary findings that support the importance of each of these factors in 

catalyzing instructional change.  

 

Preliminary Results  

As a result, we have multiple sources of evidence of instructional change on a number of 

levels. We summarize the results of three preliminary studies below.  

Study 1 

We investigated the instructors’ perceived barriers and drivers for implementing evidence-

based instructional practices, drawing on the work of Shadle, et al. (2019). A thematic analysis of 

the interviews with instructors revealed that most of the barriers to implementing evidence based 

instructional practices (EBIPs) identified by Shadle et al. (2019) did not resonate with this group 

of instructors. Specifically, we found that certain departmental policies (e.g., course 

coordination) mitigated some of the barriers and that the experience of teaching online during the 

COVID-19 pandemic resulted in the creation of video resources. These resources alleviated the 

time pressure to “cover” all the required material, making instructors more open to trying out 

EBIPs. Additionally, we found that the PLC central to this project served as a driver, enabling 

instructors to implement more EBIPs. For example, the PLC included opportunities for 

instructors to observe their peers, which provided some accountability and helped instructors to 

identify and (continue to) implement more innovative strategies in their teaching (Gehrtz et al., 

2022). 

Study 2.  

Next, we looked at instructors’ attention during the PLC meetings when each instructor 

showed video-clips from an observation video of another participant teaching one of the lessons 

collaboratively developed as part of this project (i.e., video club meetings). Informed by the work 

of Kelley & Johnson (2022), we used the Instructional Triangle (Cohen & Ball, 2001) as an 

analytic tool to characterize each instructors’ foci during the discussion. Preliminary analysis 

suggests that each instructor had a component of the instructional triangle that they tended to 

focus on for the initial observation, but then after participating in multiple video-club meetings 

and seeing what other instructors focused on in their presentations, the discussions tended to shift 

to focus more on teacher moves. We also noticed a shift from focusing on explanations of the 

content at the beginning of the semester to showcasing more clips that highlighted teacher 

actions to engage and support student learning at the end of the semester (Jones et al., 2023). 

Study 3.  
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Then, we looked at what was happening in each instructor’s class by using the Classroom 

Observation Protocol for Undergraduate STEM (COPUS; Smith et al., 2013) to analyze class 

video data, documenting what instructors were doing and what students were doing throughout 

the class period. We then grouped related codes and created radar plots with the percentage of 

class time spent with: Students Talking, Students Working, Students Receiving, Instructor 

Guiding, Instructor Presenting, and Instructor Guiding (Smith et al., 2014). This analysis 

revealed distinct changes within and across semesters with respect to how class time was spent. 

Specifically, we saw instructors spend less time lecturing while students were listening and 

taking notes. We also saw more opportunities in class for students to work individually or in 

groups and for students to talk in class. Additionally, this analysis allowed us to triangulate what 

was happening in class to what instructors were describing during interviews about their efforts 

to implement changes to their teaching by incorporating more evidence-based instructional 

practices (Gehrtz et al., 2024). 

 

Discussion  

Put together, these three studies show clear evidence of instructional change, at least during 

the period of the project. Moreover, interviews with instructors after they had been reassigned to 

other mathematics courses and were no longer participating in the PLC suggest that they wish to 

implement some of the lessons learned in the PLC with other courses. However, the dedicated 

collaboration time that was protected by the project is not available to instructional teams in 

other courses and instructor buy-in for implementing EBIPs varies across the department, 

making it difficult for the former College Algebra instructors to overcome the systemic barriers 

for inquiry-oriented learning that the structure of the PLC and the College Algebra course 

temporarily eradicated.  

However, instructors in the PLC are themselves thinking about the sustainability of the 

instructional improvements. At the end of the project, the College Algebra curriculum will have 

been completely revamped based on instructors’ interpretation of the evidence-based 

instructional practices. Additionally, College Algebra course coordinators have started to use the 

video club recordings of classes in the pre-course orientation meeting for new instructors. The 

current PLC members are also working on an instructor’s guide to the course that can preserve 

their accumulated knowledge and disseminate it to subsequent course team members. These 

actions speak to the dedication of these instructors to preserve and sustain the work of the 

project.  

Further Questions  

We are currently pursuing a number of other research questions and logistical considerations 

based on this project:  

1. What is the effect (if any) of these instructional shifts on student outcomes?  

2. Has participation in this project shifted instructors’ beliefs about or use of EBIPs? Is it 

possible to track these shifts by referencing their interviews, the PLC meeting recordings, 

or other sources of data that we have collected?  

3. How do we preserve the progress made during the project and sustain the work going 

forward, given the importance of the dedicated PLC time in shifting instructional 

practices?   
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Although the evidence of structural factors that influence instructional change may be of use to 

other investigators and facilitators of professional development for college mathematics faculty, 

the question of the lasting impact of this project remains open.  
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We examined three elementary teachers’ participation in a mathematics language routine (MLR) 

Collect and Display Studio Day, a modification of Japanese Lesson Study. Our study was guided 

by a theoretical framework of adaptive expertise. We collected video data from a Studio Day to 

understand the following: How did elementary teachers demonstrate adaptive expertise of the 

Collect and Display MLR within their participation during a Studio Day? We analyzed the data 

using three dimensions of adaptive expertise: flexibility, deeper level of understanding, and 

deliberative practice. We found that teachers demonstrated dimensions of adaptive expertise 

during the Studio Day Cycle and we share implications for practice and research.  

Keywords: professional development; equity, inclusion, and diversity; elementary school 

education 

Few mathematics teachers have had professional learning experiences that bridge both 

multilingual learners and mathematics (Ballantyne et al., 2008). This paper focuses on a 

professional learning experience that use Studio Days (Von Esch & Kavanagh, 2018), a modified 

version of lesson study, which allowed teachers to focus on language and mathematics 

simultaneously through the use of mathematics language routines (MLRs; Zwiers et al., 2017). 

These routines are meant to engage multilingual learners in rich instruction and curriculum; they 

allow students to access mathematics texts and to communicate mathematical reasoning. MLRs 

are scaffolded routines intended to lead to students’ independent participation in the mathematics 

classroom through supporting sense-making, optimizing output, cultivating conversation, and 

maximizing linguistic and cognitive meta-awareness (Zwiers et al., 2017). For example, students 

might engage in the MLR Collect and Display, the focus of this paper, in which teachers capture 

students’ oral words, ideas, phrases into a stable reference. The purpose of the routine is to 

stabilize students’ language in order to use their output as a reference for developing their 

mathematical language (Zwiers et al., 2017). While MLRs are becoming more ubiquitous in 

curricular materials (i.e., Illustrative Mathematics, 2019), the field’s understanding of how 

teachers make sense of these materials and use them with their students, such as within the 

Studio Day professional learning experience, is still unclear. As teachers make instructional 

decisions about how to teach MLRs, we should understand how they are making sense of this 

work. This paper seeks to describe how teachers made sense of how to work with a MLR, 

including how they made sense of how to work with the content they were teaching their 

students and how they made sense of how to attend to language they were working with within 

their classroom to engage in content simultaneously while working on that MLR. Our research 

question was: How did elementary teachers demonstrate adaptive expertise of the Collect and 

Display MLR during their participation within a Studio Day? 
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Adaptive Expertise 

Our theoretical framework uses the construct adaptive expertise (Hatano & Inagaki, 1984). 

We defined adaptive expertise as the ability to implement MLRs, with the flexibility to navigate 

a localized context without sacrificing ambition or complexity (Hatano & Inagaki, 1984). Hatano 

and Inagaki found that adaptive experts differed from routine experts in that that were: able to 

adapt to a desired outcome; able to demonstrate the usefulness of their skill, displaying the 

context in which the skill was used; and able to find value by the group members. Others have 

continued to build on this fundamental theory regarding adaptive expertise, in education and 

beyond. Von Esch and Kavanagh (2018) noted that adaptive expertise is being able to draw on 

and retrieve relevant existing knowledge. For example, citing Bransford et al. (2007), Von Esch 

and Kavanagh explained that “adaptive experts organize their knowledge within a conceptual 

framework of key concepts that guide that their thinking and facilitate use of that knowledge” (p. 

241). In this way, adaptive experts are able to flexibly use knowledge that they have developed 

around a framework they have developed. Additionally, Schwartz noted that people who are 

adaptive experts are able to rearrange their environments and their thinking, allowing them to 

acquire and access skills and knowledge. Notably, Schwartz et al. (2005) also explained the 

importance of being able to move away from efficiency (i.e., learning a single routine, to learn 

multiple routines and be flexible with them—this takes time and effort). 

Teachers with adaptive expertise are able to use their knowledge of their students as they 

adapt their practices and curriculum (Beltramo, 2017). Teachers who possess adaptive expertise 

are able to scaffold students’ mathematical development through the use of effective instruction 

and appropriate assessment tools, based on the content they are learning and the context of the 

students and school environment (Heinze et al., 2009). In this study, we are particularly 

interested in teachers’ development of adaptive expertise as related to MLRs, so as to better 

attend to multilingual learners. To operationalize our definition of adaptive expertise, we drew 

from Yoon et al. (2019), who identified three dimensions of adaptive expertise: flexibility, deeper 

understanding, and deliberate practice. These categories of adaptive expertise will be used for 

understanding how elementary teachers demonstrated adaptive expertise of the Collect and 

Display MLR within their participation during a Studio Day. 

Method 

Our study was situated in a school district in California that included a substantial number of 

multilingual learners. Teachers from a single elementary school, Alhambra Elementary School 

(pseudonyms are used for all proper names), participated in a single-year professional learning 

program organized around multilingual learner mathematics Studio Days (Von Esch & 

Kavanagh, 2018)—we focus on a single cycle for this paper, organized around the MLR Collect 

and Display, described above, examining just the Studio Day aspect of this cycle. A third grade 

teacher and two fifth grade teachers participated in the study, all self-identified as female, and 

two identified as white and one as Hispanic. This paper is a descriptive case study (Merriam, 

1998) of one Studio Day, and we examine the two teachers who conducted Studio Day lessons: 

two fifth grade teachers: Ms. Moreno and Ms. Butler. 

Data Collection and Analysis 

The larger project collected multiple sources of data; because of the brevity of this report, we 

focused on videotaped meetings with teachers, as well as videotaped classroom enactments of 

the Studio Day. We transcribed these videos using Otter.ai and then cleaned the transcriptions. To 
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analyze our data, we first coded data for instances of MLRs. We then coded these instances of 

MLRs using a priori codes of Yoon et al.’s (2019) three dimensions of adaptive expertise: 

flexibility, deeper understanding, and deliberate practice to code our multiple data sources. We 

then examined each occurrence within the Studio Day, as well as each adaptive expertise 

dimension to make sense of how elementary teachers demonstrated adaptive expertise of the 

Collect and Display MLR within their participation during a Studio Day.  

Findings 

We share key findings of the dimensions of adaptive expertise from the Studio Day. Our 

Studio Day model is organized around a common MLR. On this particular day, the teachers also 

planned to teach the same lesson. Following the first lesson, the second teacher, Ms. Butler, 

changed her lesson based on the observations of Ms. Moreno’s lesson. We found that the 

teachers’ lessons tended to include more instances of flexibility and deeper level of 

understanding. Opportunities to reflect on improving practice were present in the debriefs 

following the lesson included more instances of deliberate practice, which, we do not describe in 

this paper. 

Lesson 1 – Ms. Moreno 

Ms. Moreno’s enactment in the classroom of her Collect and Display MLR included evidence 

of the adaptive expertise dimensions of (a) flexibility because of her awareness to students, 

particularly multilingual learners, and her attending to students’ needs in real-time; as well as (b) 

deeper level of understanding because of her bringing in variations to the MLR. Ms. Moreno’s 

flexibility occurred as she engaged with the MLR and noted aloud to students what she was 

doing, such as, “So, I heard a couple of you say that you were multiplying,” she was aware of her 

students through her revoicing of students’ ideas (Moschkovich, 1999). With regards to a deeper 

level of understanding, Ms. Moreno explained to the students regarding the Collect and Display, 

“Remember, this was just a little refresher.” In this way, Ms. Moreno made the MLR a review for 

students and decided how she would implement the MLR with her students, bringing in a 

variation for how it would be used in her class. This illustrated a variation from how the MLR 

was originally shared in the Pre-Studio Day.  

Lesson 2 – Ms. Butler 

Ms. Butler similarly demonstrated the two dimensions Ms. Moreno exhibited in her lesson: 

(a) flexibility and (b) deeper level of understanding during her enactment of Collect and Display. 

Ms. Moreno and Ms. Butler had planned their lessons together, as noted above, and had 

originally planned to teach the same lesson. Additionally, because Ms. Butler made changes in 

the moment, her practice demonstrated (c) deliberate practice. with instances of revamping her 

practice in the moment. Students had difficulties with some of the unit fraction concepts in Ms. 

Moreno’s class, which were meant to be a review for students (the content had been taught 

earlier in the year). Ms. Butler’s changes illustrated her deeper level of understanding of the 

MLR because was able to assimilate information from an outside source (her observation of Ms. 

Moreno’s class) and make connections that built a deeper level of understanding (change the 

lesson to better meet the needs of her students). Ms. Butler, instead of teaching the second lesson 

in the unit, as Ms. Moreno had, taught the first lesson in the unit as a refresher for students.  

Ms. Butler’s attention to Ms. Moreno’s lesson also changed the mathematical terms that Ms. 

Butler highlighted in her Collect and Display. For example, within her Studio Day lesson, Ms. 

Butler shared the following with her students: 
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I was noticing some different words that you were saying. And, we were talking about the 

area of these fractions…But, I’m going to write on there the formula for area, because that’s 

really important…We were also talking about shaded. I heard that word a lot. 

Ms. Butler made sense of Ms. Moreno’s lesson and adapted her Collect and Display and 

highlighted being able to draw on applicable knowledge during the use of the MLR (Von Esch & 

Kavanagh, 2018). She also demonstrated flexibility in this instance through valuing students’ 

contributions, noticing what they said and writing those ideas up for other students to see that 

they were valued.  

In another instance, Ms. Butler shared her flexibility with her students, explaining,  

As you guys were working, I was listening to what you were talking about, and I was writing 

them down. And, so now, we have this ongoing, and this is going to be an ongoing chart of 

vocabulary that we’re going to use as we continue learning about fractions.  

She illustrated that she was listening and had an awareness of her students while they were 

working, which demonstrated her flexibility during the MLR. Her flexibility was illustrated 

through noting that she was “listing to what you were talking about.”  

Discussion  

We found that elementary teachers who participated in a Collect and Display MLR Studio 

Day demonstrated two of Yoon et al.’s (2019) dimensions of adaptive expertise—flexibility and 

deeper level of understanding. The Studio Day provided space for teachers to demonstrate these  

dimensions of adaptive expertise within the context of their classrooms. For example, Ms. 

Moreno and Ms. Butler were able to demonstrate flexibility and deeper level of understanding 

while highlighting particular terms on their Collect and Display MLR. These MLRs provided a 

context through which teachers could attend to the needs of their multilingual learners in real-

time, such as by revoicing their students’ ideas and by valuing their students’ contributions. 

Working with other teachers allowed the teachers to consider these future pedagogical practices, 

highlighting the value of working in the Studio Day space. For instance, Ms. Butler was able to 

make changes to her practice in real-time (deliberate practice). These examples of adaptive 

expertise highlight the value of the Studio Day as a supportive environment for teachers to 

demonstrate adaptive expertise of Collect and Display and to attend to and consider the needs of 

their multilingual learners.  

Implications 

This study provides both theoretical and practical implications to our understanding of 

adaptive expertise, MLRs, and Studio Days. We provided an application Yoon et al. (2019) to 

MLRs within a Studio Day context, bringing these three constructs together to help add to the 

limited research on multilingual learners, mathematics education, and professional learning 

research (de Araujo et al., 2018) while also helping the field understand how teachers make sense 

of MLRs, through the use of a frame of adaptive expertise. Research on MLRs is still quite scant 

even if they are becoming more visible in practice, and this research helps to add to the field’s 

understanding of their use. Practically, this research provides information about MLRs in 

practice in elementary schools. Currently, research (i.e., Zahner, 2021) has focused on the use of 

this pedagogy at the secondary level. This research provides a practical image of elementary 

teachers using MLRs, especially as they become ubiquitous in curricular materials. Additionally, 
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the Studio Day Cycle becomes a potential space for developing the adaptive expertise of MLRs, 

as seen with Collect and Display and other MLRs, with this study providing a practical image for 

doing so. 
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du 

We examined teachers’ development of adaptive expertise of mathematics language routines 

(MLRs) as they engaged in Studio Day professional learning focused on the MLR Compare and 

Connect. We collected video data from pre- and post-Studio Day meetings, as well as debriefs 

and their lesson enactments. We analyzed the data using three dimensions of adaptive expertise: 

flexibility, deeper level of understanding, and deliberate practice. We share a case study of a 

teacher exhibiting dimensions of adaptive expertise during the Studio Day Cycle through the use 

of a gallery walk. The teacher’s enactment of the MLR Compare and Connect provides an image 

of a teacher’s adaptive expertise of this MLR and helps us understand these MLRs and how 

teachers use and make sense of them in their instruction. 

Keywords: Professional development; equity, inclusion, and diversity 

This paper focuses on a professional learning experience for secondary mathematics teachers 

that used Studio Days model of professional learning (Von Esch & Kavanagh, 2018), which is a 

modified version of Japanese Lesson Study. Our Studio Day experience for teachers was focused 

on language and mathematics simultaneously through the use of mathematics language routines 

(MLRs; Zwiers et al., 2017), a unique experience for most mathematics teachers, as few 

mathematics teachers have had professional learning experiences that bridge both multilingual 

learners and mathematics teaching (Ballantyne et al., 2008). MLRs are scaffolded routines 

intended to lead to students’ independent participation in the mathematics classroom through 

supporting sense-making, optimizing output, cultivating conversation, and maximizing linguistic 

and cognitive meta-awareness (Zwiers et al., 2017). In this Studio Day Cycle, teachers learned 

about the MLR Compare and Connect, which engages students in comparing and contrasting 

different mathematical approaches through examining different mathematical representations, 

approaches, examples, or language (Zwiers et al., 2017). Students are meant to develop meta-

cognitive and meta-linguistic through their conversations with peers (Zwiers et al., 2017). 

Teachers need more than a cursory understanding of these MLRs to help their students to use and 

make sense of these routines in their classrooms (i.e., more than reading directions of how to use 

them off a page). Additionally, as a field, we need to understand how teachers use and make 

sense of these routines. Therefore, we saw Studio Day professional learning experiences as a 

space for teachers to develop adaptive expertise with MLRs. We define adaptive expertise as the 

ability to implement MLRs with the flexibility to navigate a localized context without sacrificing 

ambition or complexity (Hatano & Inagaki, 1984). Our research question was: How did a teacher 

make sense of the MLR Compare and Connect during a Studio Day Cycle in ways that 

demonstrated their adaptive expertise? 
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Adaptive Expertise 

Our theoretical framework uses the construct adaptive expertise (Hatano & Inagaki, 1984), as 

defined above. Adaptive experts differed from routine experts because they were able (a) to adapt 

to a desired outcome; (b) to demonstrate the usefulness of their skill; and (c) to find value in their 

work from their group members. Schwartz et al. (2005) explained the importance of being able 

to move away from efficiency. For example, it takes time and effort to move from learning a 

single routine to learning multiple routines and being flexible with them. Von Esch and 

Kavanagh (2018) also developed on Hatano and Inagaki’s concept of expertise and noted that 

adaptive expertise is being able to draw on and retrieve relevant existing knowledge. For 

example, adaptive experts are able to flexibly use knowledge that they have developed around a 

framework they have developed.  

Teachers who possess adaptive expertise are use their knowledge of their students as they 

adapt their practices, curriculum, and instruction (Beltramo, 2017), scaffolding students’ 

mathematical development through the use of effective instruction and appropriate assessment 

tools (Heinze et al., 2009). In this study, we were particularly interested in teachers’ development 

of adaptive expertise as related to MLRs, so as to better attend to multilingual learners. We 

operationalize our definition of adaptive expertise, drawing from Yoon et al. (2019), who 

identified three dimensions of adaptive expertise—flexibility: exhibits an awareness of students, 

particularly multilingual learners and context, as related to MLRs; deeper understanding: brings 

in variations related to the MLRs and considers affordances and constraints of the MLRs; 

and deliberate practice: demonstrates motivation, focus, and repeated effort to monitor their 

practice and devises and subsequently attempts improved implementation. These categories of 

adaptive expertise will be used for understanding how the secondary teachers demonstrated 

adaptive expertise of the Compare and Connect MLR within their participation during a Studio 

Day Cycle. 

Method 

Our study was situated in a school district on the West Coast that included a substantial 

number of multilingual learners. This paper focuses on the second of three Studio Day Cycles 

during the 2023-24 school year. 

Context: Studio Days Enactment of Multilingual Learner Principles and MLRs 

Each Studio Day Cycle involved three professional development meetings and targeted a 

single MLR, with this cycle attending to the MLR Compare and Connect, described in the 

introduction. During the pre-Studio Day, teachers learned about the MLR and prepared to 

implement a lesson that included this MLR. Teachers then enacted this lesson at their school 

during the Studio Day, with teachers observing each other’s implementation. During the final 

day of the cycle, the post-Studio Day, teachers examined and analyzed student work and video 

clips from the implementation, shared challenges and successes, and considered implications for 

their future practice.  

Participants  

Four junior high school teachers from the three junior high schools in the district participated 

in the study. This paper is a descriptive case study (Merriam, 1998) of one of these teachers, Ms. 

Severn. 

Data Collection and Data Analysis 
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The larger project collected multiple sources of data; because of the brevity of this report, we 

focused on videotaped pre-, post-, and Studio Day meetings with teachers, as well as videotaped 

classroom enactments. We transcribed these videos using Otter.ai and then cleaned the 

transcriptions. We examined the transcripts, and first coded for instances when there were 

instances of MLRs occurring within the data. Next, we coded these MLR instances for adaptive 

expertise related to the MLR within each aspect of the Studio Day Cycle transcripts. We used a 

priori codes of Yoon et al.’s (2019) three dimensions of adaptive expertise: flexibility, deeper 

understanding, and deliberate practice to code our multiple data sources. We then examined each 

occurrence within a single Studio Day component (i.e., only pre-Studio Day), as well as 

examined each adaptive expertise dimension (i.e., only flexibility) to make sense of how 

participants demonstrated adaptive expertise of the Compare and Connect MLR within their 

participation during a Studio Day Cycle. We looked for themes within the Studio Day 

components and the adaptive expertise dimensions and share these themes within our findings.  

Findings 

We found that one teacher, Ms. Severn, used a gallery walk (e.g., sharing student work) to 

make sense of and enact the Compare and Connect MLR with their students, thereby making the 

MLR their own and exhibiting their adaptive expertise of the MLR. We share key dimensions of 

their adaptive expertise from aspects of the Studio Day Cycle to illustrate the teachers’ process 

for this work. 

Pre-Studio Day 

Part of the initial work during the pre-Studio Day is to provide teachers an overview of the 

MLR. During this initial overview, the first author shared that there were multiple ways for 

teachers to “Compare” work during the Compare and Connect MLR. The author noted, “You 

could do a gallery walk and just have students put up work.” A few minutes later, Ms. Severn 

asked, “How would a gallery walk work in our classroom with filming students?” Because this is 

a research study, there are considerations regarding moving non-consented students out of sight 

during lessons. However, we were very mindful of keeping lessons flowing as normally as 

possible and let Ms. Severn know this. We highlight that Ms. Severn was already considering 

how to enact Compare and Connect before she had experienced the routine—simply after a brief 

overview of the routine. This is the beginnings of Ms. Severn’s deeper level of understanding, as 

she considered contexts in which to apply the MLR within her own classroom. Ms. Severn was 

using knowledge of her own students to begin to make the lesson her own (Beltramo, 2017).  

Studio Day – Ms. Severn’s Gallery Walk 

Ms. Severn taught the first lesson during the Studio Day. She provided an overview of her 

lesson during the pre-brief, then taught her lesson, and then had a debrief of her lesson. 

Pre-brief of Ms. Severn’s enactment. The group began the day with an overview of Ms. 

Severn’s lesson. Ms. Severn explained that the lesson would be focused on a proportional 

relationship, with each group solving with a specific representation. She explained: “So, I’ll 

assign them to use an equation and a unit rate, a table, or a graph…Then we’ll have them look at 

each other’s representations and compare how they solved the problem against each 

representation.” This task considered how Ms. Severn brought the MLR into her own classroom 

practice, within a specific mathematics task, illustrating a deeper level of understanding. Further, 

Ms. Severn shared that the MLR was meant to get the students talking to each other about 

mathematics, because the class was “really hesitant to talk at all.” Enacting the MLR as she did 
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employed Ms. Severn’s flexibility, or her awareness of her students, particularly her multilingual 

learners, as she worked to adapt to their needs, particularly getting them to talk about the 

mathematics in her class.  

Ms. Severn’s enactment of the gallery walk. Ms. Severn introduced the task and reminded 

them of the work they had already done related to the content: 

We’ve talked about tables this unit. We’ve talked about equations this unit. We’ve talked 

about graphs this unit. Each of your table groups is going to get randomly assigned one of 

those representations and then you’re only going to be able to solve the problem with that 

representation.  

She then told the students that “each group needs a poster.” Students then knew what was 

required of them within the task but notifying students of the work they would be doing also 

illustrated, as noted above, how she had made the MLR her own, highlighting her deeper level of 

understanding of the MLR. The structure of the MLR as enacted went beyond the first author 

suggesting, “You could do a gallery walk.” 

Approximately 22 minutes into the class, Ms. Severn further explained the class’ work to 

complete within the MLR, noting, 

We’re doing to do what’s called a ‘gallery walk’….I’m going to give you this graphic 

organizer here, and it says ‘ratio,’ ‘table of values,’ ‘graph,’ and ‘equation.’…And you are 

going to have four minutes to walk around the classroom and look at how other people 

solved this problem and write in the box describing how groups solved the problem. 

Ms. Severn, in providing students with a graphic organizer, attended to students’ linguistic 

and mathematical needs during the Compare and Connect MLR, highlighting her flexibility. A 

graphic organizer, such as this, provided a scaffold for multilingual learners, which allowed 

access to the content for multilingual learners (Echevarria et al., 2006). Further, Ms. Severn 

made the gallery walk her own, providing guidelines to students, moving from the broad strokes 

provided in the pre-Studio Day to fine-tuned details needed for enactment with students, 

exemplifying a deeper level of understanding. She further provided students with sentence 

frames and direction for how to engage in their discussions in pairs, for example, “If you’re the 

partner that’s sitting closer to the back wall…you are the partner that’s going to speak first.” 

These language supports provided ways for multilingual learners to engage in the discussions 

that she had wanted to support and had noted in the pre-brief, marking, again, her flexibility, 

particularly related to her multilingual learners. 

Discussion 

We found that a teacher made sense of the MLR Compare and Connect during a Studio Day 

Cycle in ways that demonstrated their adaptive expertise through the use of a gallery walk, 

exhibiting both her deeper level of understanding and her flexibility (Yoon et al., 2019). Ms. 

Severn was able to use this MLR to engage students in mathematical conversations around 

proportional reasoning through the gallery walk and more specifically through her graphic 

organizer—supporting students both mathematically and linguistically (Zwiers et al., 2017). Her 

flexibility illuminated her attention to multilingual learners. Ms. Severn’s enactment of the MLR 

Compare and Connect provides the field an image of a teacher’s adaptive expertise of this MLR. 

Such an imagine helps us understand these MLRs and how teachers use and make sense of them 
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in their instruction. Future research can then examine how students, particularly multilingual 

learners, use and make sense of these MLRs in their learning. 
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Our work uses Studio Day Cycles (Von Esch & Kavanagh, 2018) focused on the integration 

and development of mathematics language routines (MLRs; Zweirs et al., 2017). Our conceptual 

framework draws on two key ideas: communities of practice (Lave & Wenger, 1991) and teacher 

communities (CoP; Grossman et al., 2001). We discuss each and how they interact with each 

other. Therefore, our research question was: How, if at all, did a Studio Day Cycle establish a 

teacher learning community to support teachers to engage in reflection around use of the MLRs? 

Method 

Our study was situated in a school district on the West Coast that included a substantial 

number of multilingual learners as part of a larger, multi-year study focused on Studio Day 

Cycles. We focused on a single cycle that occurred during Fall 2023. We worked with five junior 

high school teachers and qualitatively analyzed their Google Form reflections using the 

dimensions of CoP: mutuality, joint enterprise, and shared repertoire.  

Findings 

Our study found evidence of all three dimensions of CoP. First, Ms. Ruth felt very supported 

by the “team of teachers” and welcomed their questions, evidencing mutuality. Second, teacher 

participants considered each other’s practice, thought about, and made plans to take what they 

had learned into their instruction (moving from the mutuality to considering their joint 

enterprise). Finally, established a shared repertoire around the MLRs by providing examples of 

what the MLRs looked like in practice and developing joint definitions and understandings of the 

MLRs that could be used for further reflection.  

Discussion and Conclusion 

The Studio Day Cycle supported the development of a teacher community of practice by 

supporting teachers to reflect on their use of the MLRs. As we seek to continue supporting 

teachers in their work of considering the needs of multilingual learners, it is important to 

establish spaces and communities where teachers are able to rely on and learn from each other. 
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One way to support first-year teachers (FYTs) to navigate tensions between their 

instructional visions and the realities of school culture while developing as critical educators is 

through a community of practice (CoP), which serves as the theoretical framework for this study.  

A thriving CoP can be a space for FYTs to reflect upon and share their experiences as they work 

to create elementary mathematics classrooms that honor all students’ mathematical thinking and 

strive to center equity and justice (Woods & Rupe, 2024). Through shared curiosity FYTs can 

think critically about their students as mathematical doers within the daily realities of teaching. 

Yet, we wondered how do FYTs’ visions of equitable and high-quality mathematics instruction 

serve as filters for the equity-based instruction they enact during their first year of teaching? 

 

Methods 

There are three CoPs in this study, with a total of 15 elementary FYTs. Two cohorts of FYTs 

graduated from the same Pacific Northwest university in 2022 or 2023. One cohort of five FYTs 

graduated in 2023 from the same university in the Midwest. Each FYT was individually 

interviewed before the CoP began and at the end of their first year teaching. They described their 

visions of high-quality and equitable mathematics instruction using the VHQMI and VEMI 

interview protocols (Munter, 2014; Haines et al., in preparation). Other data sources included 

transcripts of monthly CoP meetings and individual reflective journals. Thematic analysis was 

used to identify patterns in the data (Braun & Clarke, 2006). We began analysis by coding 

interviews and monthly CoP transcripts for semantic themes and then through a recursive 

process, moved to the latent level of analysis and identified (or examined) the underlying ideas, 

assumptions, and conceptualizations (Saldaña, 2021). 

 

Summary of Results 

Initial findings have shown numerous examples of FYTs grappling with and expanding on 

ideas from their interviews throughout the school year. For example, Halley shared in August, 

At the beginning of a lesson, I would look for ways the teacher is making the math lesson 

accessible for all students to start. Are there multiple entry points into the task or different 

ways for students to access the same idea? Are there places students know they can look for 

help, like across the room or among peers? I'd also look for a lot of sense making 

conversations and talk. Including the children's voices a lot, not just the teacher talking…  

These ideas of accessibility, emphasizing sense-making, and including students’ voices were 

revisited often by Halley in meetings, journals and other artifacts. This is only one example of 

how FYTs’ instructional visions acted as filters for enacted equity-based instruction. Analysis 

across the three cohorts is ongoing, yet the implications highlight the tensions FYTs faced (and 

the supports that they need during their coursework and in the first year of teaching) so that they 

mailto:dawnwoods@oakland.edu
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continue to critically think about their students as mathematical doers within the daily realities of 

classroom teaching.  
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We partnered with nine elementary teachers who were engaged in coaching cycles with their 

school-based coach to improve their mathematics instruction. We conducted 16 semi-structured 

interviews to better understand why they were motivated to engage in coaching, what they 

reported learning from the experience, and the extent to which there was parity between 

teachers’ motivating reasons to engage in coaching and their perceived learning. Qualitative 

analyses indicated that teachers frequently reported improved understanding of mathematics 

content and pedagogy as both the motivation to engage in coaching and their perceived 

learning. Furthermore, analyses showed five overarching trends when exploring motivation and 

perceived learning parity. Implications for practice and future research are discussed.   

Keywords: Instructional Leadership, Professional Development, Teacher Educators 

Since its inception in the US in the 1980s (e.g., Joyce & Showers, 1981), coaching has 

become a widespread mechanism to support improvements to mathematics teaching. We define a 

coach as someone who works directly with a teacher, or group of teachers, on instructional 

improvement issues in service of improving student learning (Baker et al., 2022a). The 

proliferation of coaching within mathematics education has spurred a body of research focused 

on understanding how coaches and teachers work together (e.g., Gillespie et al., 2024) and the 

outcomes of these interactions (e.g., Kraft et al., 2018).  

Existing research has tended to center on coaching outcomes such as enhanced student 

achievement (e.g., Campbell & Malkus, 2011), instead of teachers’ learning interests who initiate 

coaching interactions. As coaching is a responsive professional learning method, it is critical to 

understand what motivates teachers to engage in coaching and their desired growth. Furthermore, 

a teacher’s practice is a complex interaction of knowledge, skills, identities, and beliefs 

(Grossman et al., 2009). Coaching holds the potential to develop mathematics teachers’ 

instructional practice in unique and nuanced ways since a coach can engage a teacher in 

customizable interactions involving collaborative planning, teaching, and reflecting. Thus, 

coaches can support teachers in ways that extend beyond student achievement measures and 

deductive evaluation of pre-determined teaching practices which have been the focus of existing 

coaching studies. 

To this point, there has been no systematic analysis exploring (a) teachers’ motivation to 

engage in coaching to improve their mathematics teaching and (b) teacher’s perceptions of how 

they benefited from engaging with a coach. Furthermore, the field knows little about how 

teachers’ motivation to engage in coaching aligns with their perceptions about what they learned. 

In response, we designed an exploratory study in a context in which teachers had open access to 

one-on-one coaching cycles with school-based coaches to improve their teaching of 

mathematics. We pursued answers to the following research questions: (a) What motivates 

teachers to engage in coaching?, (b) What do teachers perceive they learn from their engagement 
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in coaching?, and (c) To what degree is there parity between teachers’ motivation to engage in 

coaching and what they perceive they learn? 

Method 

Context and Participants 

This study took place in Midtown and Southampton school districts, which had instructional 

and content-focused coaching programs (respectively). Across these two school districts, we 

partnered with nine elementary teachers who were currently engaged in one-on-one coaching 

cycles with their school-based coach. In both contexts, a coaching cycle was a three-part activity 

in which the teacher and coach collaboratively planned, taught, and reflected upon a mathematics 

lesson. All teachers identify as White females, and had 1-23 years of teaching experience across 

grades pre-kindergarten through 5th. 

Data Source 

This analysis rests upon 16 semi-structured interviews that were conducted one-on-one with 

each participant before and after their coaching cycle. In the interview before the coaching cycle, 

we asked participants questions to gauge their motivation to engage in coaching. In the interview 

after the coaching cycle had ended, we first asked our participants to remind us what motivated 

them to engage in coaching. Next, participants were asked questions to better understand what 

they perceived they learned. All interviews were audio recorded and transcribed. 

Analytic Technique 

Motivation and Perceived Learning 

All 16 interview transcripts were read multiple times to support the researchers in developing 

a holistic understanding of the teacher participants’ emic perspectives regarding their motivation 

to engage in coaching, as well as what they perceived they learned. Next, the broad codes of 

motivation and perceived learning were applied to interview excerpts to identify instances in 

which the participants discussed what motivated them to engage in coaching or what they 

reported learning. Then, all interview excerpts that had previously been coded with the broad 

codes of motivation or perceived learning were read again, and a sub-code was added through an 

open coding process to capture the specific motivating factor or learning that teachers noted 

(e.g., differentiation). Then, these sub-codes were inductively clustered into broader categories 

(e.g., pedagogy) based on their relationships with one another, until all sub-codes could be 

accounted for. Last, matrices with counts based on the total number of teachers who reported a 

particular motivation or perceived learning were generated to facilitate pattern detection. 

Parity 

Parity refers to the extent to which there was congruence between a teacher’s motivation to 

engage in coaching with what that teacher perceived they learned. We began by creating 

individual teacher profiles using a template. In the template, we recorded the specific motivation 

and perceived learning sub-codes (e.g., differentiation), as well as the broad category (e.g., 

pedagogy) under which each sub-code was nested, for each teacher. Next, we coded for parity, or 

congruence, and assigned one of two codes to each motivating and perceived learning sub-code: 

(a) paired, and (b) unpaired. Paired was assigned when a motivation sub-code reappeared as a 

perceived learning sub-code for an individual teacher. Unpaired was assigned when a motivation 

sub-code did not reappear as a perceived learning sub-code (Unpaired-M), or when a perceived 

learning sub-code did not appear as a motivation sub-code for an individual teacher (Unpaired-

PL). Hence, we assigned the codes paired and unpaired to each motivating and perceived 
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learning sub-code for each teacher and recorded these codes in the templates for each teacher 

profile. After this round of coding, we looked across all teacher profiles to develop generalizable 

cases of teacher parity to understand how teachers’ motivation to engage in coaching aligned 

with their perceptions of their learning. 

Findings 

Teachers’ Motivation and Perceived Learning 

Teachers described eight different topics when discussing what motivated them to engage in 

coaching (RQ1), as well as what they perceived they learned (RQ2). In Table 1, we report the 

number of teachers who mentioned these topics and highlight that the most common topics for 

both motivation and perceived learning were mathematics content and pedagogy.  

 

Table 1: Overall Teacher Motivation and Perceived Learning 

 

Topic Definition 

 

Motivation 

 

Perceived 

Learning 

Content Teachers were motivated to engage in coaching and/or reported 

learning about math content, which included deepening their own 

and/or students’ understanding of math, enhancing their own and/or 

students’ beliefs and attitudes towards math, changing their own 

beliefs about students’ math capabilities, and/or anticipating students’ 

thinking and/or misconceptions about math. 

6 7 

Pedagogy Teachers were motivated to engage in coaching and/or reported 

learning about pedagogical tools, including: strategies for 

differentiation, questioning, formative assessment, engagement and 

incorporating kinesthetic movement; new learning routines; and 

pacing issues. 

5 7 

Curriculum Teachers were motivated to engage in coaching and/or reported 

learning about curricular issues, including deepening their 

understanding of the district-provided curriculum, or finding high-

quality curricular resources. 

3 3 

Behavior 

Management 

Teachers were motivated to engage in coaching and/or reported 

learning about how to improve student behaviors in their classroom.  

3 1 

Professional 

Development 

Opportunity 

Teachers were motivated to engage in coaching and/or reported 

learning about professional development opportunities, in particular 

coaching, they could pursue to improve themselves as educators. 

2 1 

Policy Teachers were motivated to engage in coaching because of policy-

related reasons, such as being on an improvement plan and/or 

wanting to improve their evaluation scores. 

2 0 

Coaching 

Knowledge 

Teachers were motivated to engage in coaching because they 

perceived it would enable coaches to deepen their coaching 

knowledge by interacting with different teachers, thereby becoming 

more effective coaches. 

1 0 
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Relationship 

Building 

Teachers were motivated to engage in coaching because they wanted 

to strengthen their relationship with their coach. 

1 0 

 

Parity Between Teachers’ Motivation and Perceived Learning 

For third research question, we explored the extent to which there was parity between 

teachers’ motivation to engage in coaching and what they reported learning. We conceptualized 

five potential configurations relating the parity of motivation to perceived learning and then 

located each teacher profile within one of these five configurations (see Figure 2). The most 

common configuration involved partial parity (n = 5) in which (a) certain aspects of teachers’ 

motivations were also highlighted in their perceived learning and (b) teachers reported perceived 

learning beyond what initially motivated them to engage in coaching. For example, Barbara 

described improved questioning in both her motivation for coaching and her perceived learning. 

Barbara also reported learning about differentiation and anticipating students’ mathematical 

thinking which was not mentioned as a motivation prior to her interactions with her coach. 

 

 
 

Figure 2: Parity Trends 

Discussion and Implications 

One overarching contribution of this study is that it centers teachers’ voices in the coaching 

partnership. Given calls to dignify teachers as professionals by providing them with choice and 

agency regarding their own professional learning needs (Lieberman & Pointer Mace, 2008), we 

contend that coaching research must examine teachers’ voices, wants, needs, and perspectives. 

This exploratory, relatively small-scale interview study takes an important first step in that 

direction as we focus on teachers’ motivation to engage in coaching, as well as what teachers 

report they learn through. Through this work, we hope to pave the way for future coaching 

research to similarly center teachers’ voices in the coaching partnership. 

Overall, we found that mathematics content and pedagogy were prevalent motivating factors 

and perceived learnings for teacher participants. The prevalence of these categories highlight the 

importance of providing coaches with ongoing professional learning opportunities that will 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1405 

enable them to deepen their content knowledge as well as equip them with rich pedagogical tools 

to engage diverse student learners. Oftentimes, coaches’ professional learning needs are 

overlooked once they assume their new positions as they are “anointed and/or appointed without 

the proper background related to their content, pedagogical, and leadership knowledge and 

skills” (Fennell, 2017, p. 9). Hence, school districts must consider how they are providing job-

embedded support for coaches so they have opportunities for professional growth. Findings 

regarding partial parity between motivation and perceived learning provide new insights about 

the responsive nature of coaching as a professional learning activity. Mainly, coaches were able 

help teachers grow towards outcomes named at the outset of coaching interactions while also 

supporting professional development beyond these predetermined outcomes. 
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Teachers often have discretion in how they format their lessons (e.g., whole-class, groups), 

even if they are required to use specific textbooks, technology, or common assessments. 

Additionally, teachers have a choice in using combinations of whole-class discourse, 

independent, or group work time to engage students in mathematics (Otten et al., 2022). We 

hypothesize professional developers need to be cognizant of teachers’ lesson formats when 

offering instructional suggestions. For example, if a teacher does not use group work regularly, 

they may be hesitant to implement interventions designed for group work. These suggestions 

should be close to teachers’ current practices, small in grain size, and be something a teacher 

could easily take up (Litke, 2020; Star, 2016). We asked, how do teachers’ lesson formats impact 

how they take up instructional nudges provided in a professional development setting?  

We observed seven Algebra I teachers’ lesson formats as part of a larger study (Candela et al., 

2024). We utilized Year 1 observations to identify the percent of time dedicated to whole-class 

discourse, independent work, and group work. In Year 2 we deployed 16 instructional nudges 

that are small instructional suggestions, closely aligned to teachers' practices, and have potential 

to be high uptake (Authors). We aligned the design of the instructional nudges with different 

lesson formats. For example, One Paper is an instructional nudge that encourages a teacher to 

use group work and Rate and Review is designed for independent work time where students rate 

responses to worked problems, much like they would reviewing a product. Teachers selected 

instructional nudges and we used observations and interviews to capture which one’s teachers 

enacted.  

We identified relationships between the time spent in each lesson format and the instructional 

nudges enacted. One teachers’ instruction was typically whole-class discourse, short independent 

work time, more whole-class discourse, and finally independent work time. This teacher only 

implemented instructional nudges that fit in during whole-class discourse, and as the teacher 

spent most of their class time in this format, it follows they would take up nudges that fit in this 

format. This finding was similar across teachers. We will share visual displays of our results for 

all teachers and discuss the instructional nudges with the most uptake in relation to format. 

Implications suggest teachers are more likely to take up practices that are more closely aligned 

with their current practices and suggest those providing professional development should keep 

this in mind when planning interventions. 

mailto:mntkd@umsystem.edu
mailto:candelaa@umsl.edu
mailto:wonsavagef@coe.ufl.edu
mailto:wambuamitchelle@gmail.com
mailto:zdearaujo@coe.ufl.edu
mailto:ottensa@missouri.edu


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1407 

Acknowledgments 

This work was supported by the National Science Foundation (award #blinded) though any 

opinions, findings, and conclusions expressed here are those of the authors and do not 

necessarily reflect the views of the NSF.                                                                             

References 
Candela, A., Baah, F., Wonsavage, F. P., de Araujo, Z., & Otten, S. (2024, February). Nudging teachers and tasks to 

enhance students’ mathematical engagement and understanding. Presentation at the annual conference of the 

Association of Mathematics Teacher Educators, Orlando, FL. 

Otten, S., de Araujo, Z., Candela, A. G., Vahle, C., Stewart, M. N., Wonsavage, F. P., & Baah, F. (2022). 

Incremental change as an alternative to ambitious professional development. In A. E. Lischka, E. B. Dyer, R. S. 

Jones, J. N. Lovett, J. Strayer, & S. Drown (Eds.), Proceedings of the forty-fourth annual meeting of the North 

American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1445–1450). 

Nashville, TN: Middle Tennessee State University. 

Litke, E. G. (2020). Instructional practice in algebra: Building from existing practices to inform an incremental 

improvement approach. Teaching and Teacher Education, 91. https://doi.org/10.1016/j.tate.2020.103030 

Star, J. R. (2016). Improve math teaching with incremental improvements. Phi Delta Kappan, 97(7), 58–62. 

 

 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1408 

A CASE OF HOW AN ELEMENTARY MATH TEACHER ATTENDED REFERENT 

UNIT THROUGH PROFESSIONAL DEVELOPMENT 

Kun Wang 

Rethink Learning Labs 

kun.wang@rethinklearning.com 

Rachael Eriksen Brown 

 Penn State Abington 

reb37@psu.edu 

Chandra Hawley Orrill 

Rethink Learning Labs 

chandra.orrill@rethinklearning.com 

Alexa Betuel 

Penn State Abington 

aqb6252@psu.edu 

Keywords: Mathematical Knowledge for Teaching, Professional Development, Referent Unit 

Referent units in fractions are often overlooked by elementary and secondary math teachers. 

Research highlights the challenges teachers face in presenting fractions effectively (Copur-

Gencturk & Ölmez, 2022; Izsák et al., 2019; Wang et al., 2023). This study, grounded in 

Knowledge in Pieces (KiP) (diSessa, 2016, 2018), aims to provide insights into PD initiatives 

designed to enhance teachers’ attending of referent units, crucial for future fraction teaching. 

This intrinsic case study (Stake, 1995) focuses on Marcus, a middle school teacher with six 

years of experience. He participated in a weeklong PD including solving fraction problems and 

discussing referent units. Analysis centered on Marcus's intuitive (pre-PD interview data) and 

developed understanding of referent units (post-PD reflection data). 

Before the PD, Marcus intuitively partition a garden to rows and did not realize he used a 

row as his referent unit. Post-PD, he began connecting these intuitive methods with a clearer 

understanding of the referent unit. For example, in the Mathtopia problem, Marcus initially 

misinterpreted the referent unit (e.g., “Okra of 3/16”), but adjusted his thinking with facilitator 

guidance, leading to a better attending of the where the whole appears (e.g., “Okra is 3/64”). 

 

 

Figure: Mathtopia problem used in PD 

Our study aligns with existing research, revealing a notable issue among teachers struggling 

to keep track of referent units in fraction operations. This highlights the necessity for targeted 

support to help teachers like Marcus establish stronger connections between partitioning 

strategies and a consistent awareness of the referent unit. 
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One empirically supported way of improving elementary mathematics teaching is engaging 

teachers in developing and using knowledge of student thinking in their instruction (Carpenter et 

al., 2000). A significant challenge, however, is embedding these kinds of learning experiences in 

the day-to-day work of teaching, especially given the many constraints and pressures elementary 

teachers must navigate. In this project, we sought to understand how unit assessments might 

function as a site for such learning experiences, and how facilitated grade level team meetings 

might support teachers in developing and using knowledge about student thinking in their 

planning and teaching. 

The study was guided by a theory that acknowledges both individual and situated aspects of 

knowledge (Cobb & Bowers, 1999); in particular, we are interested in how knowledge 

development occurs within a group when the object of learning—knowledge of student 

thinking—is situated in an artifact of instruction—the unit assessment—that has substantial 

salience for elementary teachers.  The study was conducted in a school district that had adopted 

commercially published textbook with seven to nine units in each grade level. A team of teachers 

and leaders worked to adapt the unit assessments so that they would be open to a variety of 

strategies and created strategy rubrics based on the Cognitively Guided Instruction research 

project (e.g., Carpenter et al., 2014). Four schools were selected to participate in the study over 

the course of a school year.  The grade level teams for third, fourth, and fifth grade engaged in a 

series of meetings facilitated by an instructional coach in which they discussed the strategies 

students used on the assessments when given prior to the start of a unit (pre-test) and at the end 

of a unit (post-test).  Between these two meetings, there was a third meeting in which the group 

collectively planned a lesson, with the intention to use information about student thinking to 

guide their planning. Finally, the district also had purchased an online assessment program that 

ranked students in terms of their grade level (e.g., two grade levels behind). These were used to 

identify students, and eventually teachers, for interventions. We created charts showing the 

distribution of student strategies (Kazemi et al., 2016) on the unit tests and juxtaposed these with 

results from the district assessment program and shared these with teachers between meetings. 

We recorded all teacher meetings and analyzed them in terms of “teacher talk paths” (Murata 

et al., 2012). Specifically, we attended to how participants incorporated the information about 

student thinking embedded in the assessment materials into their conversations about students 

and about teaching. We also recorded meetings between the team facilitators.  

Early results show that teacher teams spent a substantial portion of their time in initial 

meetings discussing their students’ work on the assessments—determining what counted as 

evidence of which strategies, etc. Facilitators played a key role in connecting these conversations 

to information about student thinking more generally (sometimes in response to teachers’ 

statements about student deficiencies) and also prompting teachers to connect information from 

the assessments to their planning/teaching practices. In addition, the charts with the distribution 
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of student strategies provided a context for discussing differences in the how the unit 

assessments and the online assessment program supported instructional decisions. 
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The idea that professional development should be done with teachers, rather than to them, 

means professional developers should account for teachers’ perspectives as they design 

professional development (Desimone, 2009; Feiman-Nemser, 2001). Drawing on this, we know 

mathematics teachers have aspects of their instruction they are and are not pleased with. For 

example, a teacher may be pleased with how they go over homework, or they may not be pleased 

with how group work is facilitated in the classroom. It made us wonder, do teachers take up ideas 

from professional development based on self-identified areas of their teaching strengths, areas 

for growth, or somewhere in between? This study is set within the context of a professional 

development focused on teachers’ uptake of instructional nudges (de Araujo et al., 2022), where 

teachers were given choice as to what they engage with. Instructional nudges are small 

suggestions closely aligned with teachers’ practice that we hypothesize will have high uptake (de 

Araujo et al., 2022). In order to determine which of these nudges the teachers are taking up, we 

investigated the question of what instructional nudges do mathematics teachers select (or not 

select) and how do their choices relate to their identified areas of strength and growth?  

We surveyed 7 Algebra teachers to identify aspects of their instruction they were pleased 

with or not, from a list of 15 (e.g., going over homework, facilitating discussion, group work). 

During the school year, we provided a set of 16 instructional nudges aligned to various aspects of 

teachers’ instruction and provided choice as to which one(s) teachers might engage with. At the 

end of the school year, we interviewed each teacher about which instructional nudges they 

enacted in their classroom and the extent to which they loved or hated each instructional nudge. 

Preliminary findings suggest teachers were more apt to implement instructional nudges which 

aligned with aspects of their instruction they were pleased with. On the other hand, aspects of 

teachers’ instruction they were not pleased with had more in common with nudges that were only 

implemented once. During our poster presentation, we will share visual displays of our results 

and discuss the types of instructional nudges that had the most uptake in relation to aspects of 

teachers’ self-identified areas of strength and areas of growth in their classrooms. Discussion is 

welcome as we envision a future for mathematics professional learning opportunities for teachers 

and professional developers. 
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Numeracy has played an increasingly important role in schooling in recent years, with the 

recognition that individuals need to be numerate in order to cope with the mathematical 

demands of everyday life. One societal issue involving a great deal of mathematical information 

is climate change. We conducted a study to understand the Australian general public’s (n = 144) 

climate change views, practices, and numeracy capabilities. Based on our analysis of 

questionnaire data, we found that many participants lacked understanding of climate change 

information presented in stacked bar graphs. Furthermore, several participants seemed unable 

to focus on the mathematical content of the numeracy questions; instead, they responded in 

emotional, non-mathematical ways. Consequently, we argue that numeracy education needs to 

include a focus on the dispositional aspects of numeracy, per the Goos et al. (2014) model. 

Keywords: data analysis and statistics; mathematical representations 

It has long been argued that one of the purposes of mathematics education should be to 

prepare individuals to cope with the mathematical demands of everyday life (Paulos, 1988). In 

the past decade, increasing emphasis has been placed on the role of numeracy, or mathematical 

literacy (See Forgasz et al., 2017, for a discussion of terminology), in schooling. For instance, in 

Australia, numeracy is one of seven general capabilities that must be incorporated across the 

curriculum, in order to “equip young Australians with the knowledge, skills, behaviours and 

dispositions to live and work successfully” (Australian Curriculum, Assessment and Reporting 

Authority, 2023, para. 1). One key aspect of being a numerate citizen is the ability to understand 

data that are presented in popular media and other contexts. These data pertain to a variety of 

aspects of everyday life, such as health (e.g., COVID-19 data) and politics (e.g., polling data). 

Climate change is another topic for which data are presented using a variety of mathematical 

models and representations. The role of numeracy in the general public’s understanding of and 

responses to climate change issues is complex and often has implications for climate change-

related communication, governance, policy, and community education (Kahan et al., 2012). 

Numerate individuals can typically interpret and transform data into informed decisions and 

responses, aligning their perceptions with scientific concepts (Nurse & Grant, 2019). This 

capability, however, notably deviates in the context of climate change-related data, where 

individuals frequently resort to preferred interpretations that align with their ideological 

predispositions (Gilden & Peters, 2017; Nurse & Grant, 2019). Therefore, effective climate 

change education strategies need to focus not only on enhancing numeracy and scientific literacy 

but also on addressing the motivated reasoning influenced by psychological and ideological 

factors (van der Linden, 2021). 
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Recognising the significance of these climate change challenges, Monash University has 

identified climate change as a major focus area and has provided funding for research projects on 

this topic, such as our project. Given the limited research concerning the general public’s 

numeracy capabilities in the context of climate change, we focused on the Australian general 

public’s climate change views, practices, and numeracy capabilities. Here, we focus on our 

participants’ numeracy capabilities, sharing findings from our analysis of questionnaire data. 

Objectives 

As mentioned, the purpose of our study was to understand the Australian general public’s 

climate change views, practices, and numeracy capabilities. We also sought to understand 

participants’ views of climate change and education, as well as whether there were any 

differences between non-teacher and teacher participants’ responses. The research question that 

will be addressed in this paper is “What numeracy capabilities does the Australian general public 

demonstrate when interacting with climate change data?” 

Theoretical Framework 

We view numeracy in accordance with Goos et al.’s (2014) 21st Century Numeracy Model. 

Namely, context is central to numeracy: That is, numeracy involves mathematics being applied to 

a context, such as citizenship, work, and personal and social situations. However, numeracy is 

more than simply the application of mathematics to a real-world context: To be numerate, people 

need to have mathematical knowledge (e.g., problem-solving, estimation), positive dispositions 

toward the use of mathematics (e.g., flexibility, confidence), and the capabilities to use tools 

(e.g., representational tools like graphs, physical tools like rulers). The final aspect underpinning 

the model is critical orientation, which refers to the ability to consider the veracity of 

mathematical information, use mathematics to make decisions and support arguments, and 

question whether answers/outcomes make sense, particularly given the context. We used this 

model in the design of our numeracy questions, as well as our analysis methods.  

Research Design 

In the following sections, we describe the data collection instrument and issues encountered 

during data collection, share researcher positionality statements, provide participant information, 

and discuss our analysis process.  

Data Collection Instrument 

Our questionnaire, which contained both closed and open-ended questions, was posted on 

Qualtrics. There were approximately 20 questions (There were a few questions that were only 

asked of teacher participants), and the questionnaire took 10 to 15 minutes to complete. 

In the first section, Demographic Information, participants were asked to indicate their 

state/territory, age range (Note: Participants had to be 18 years of age or older), gender, and 

highest level of education completed (multiple-choice questions). The gender question also had a 

textbox where participants could enter their gender if the options provided (i.e., woman, man, 

non-binary, and prefer not to say) were not suitable. In the second section, Climate Change and 

Education, participants were asked about their views regarding teaching climate change 

generally, as well as about their own experiences as students. Teacher participants were asked 

about their experiences teaching about the topic. In the third section, Climate Change Views and 

Practices, participants were asked more general questions regarding their views (e.g., re: 
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government policies) and practices (e.g., re: information sources). 

The final section, Climate Change and Numeracy, is the focus of this paper. Participants were 

asked three levelled questions about a stacked bar graph (Figure 1) regarding youths’ views of 

the severity of climate change compared to 12 other global concerns (Kessler, 2019).  

 
 

Figure 1: Comparison of Global Threat Severity and Climate Change (Kessler, 2019) 

 

All three questions had multiple-choice response options, and the ‘medium’ question also had 

a text box where participants were asked to explain their answer. 

Data Collection Issues 

We advertised the study on Monash University’s Faculty of Education Facebook page. Soon 

after the advertisement was posted, climate change deniers bombarded the post with negative 

comments, expletives, and calls for their contacts to complete the survey and skew our dataset. 

We held an emergency meeting within a day of these issues arising, during which our faculty 

media contact was notified by Facebook that the advertisement was being taken down due to 

complaints that it was ‘political.’ 

Researcher Positionality 

Our research team comprises academics with expertise in mathematics and numeracy 

education (Hall), environmental education (Almeida and Arachchige), and STEM education 

(Kidman). We combined our knowledge and experience to design this multifaceted project. Hall 

and Almeida led the data collection phase, and thus faced the reactions from the climate change 

deniers firsthand. We reacted very differently to the trolling, based on our relationships to climate 

change. Namely, Hall had a generalized reaction of anger and frustration, whereas Almeida felt 

personally attacked, given her experience working in environmental education. 

Participants 
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In total, 144 participants completed the questionnaire. As hoped by the climate change 

deniers, the data were indeed very skewed: Most participants were older men (74.3% men; 

67.4% over the age of 60). Fewer than 10% of participants were under the age of 50. Despite the 

skewed age and gender profiles of the participants, the educational qualifications of the 

participants were broadly nationally representative (Australian Bureau of Statistics, 2023). 

Data Analysis 

The multiple-choice questions were analyzed via descriptive statistics (counts, percentages). 

More complex statistical analyses could not be completed due to the skew in the dataset. 

Responses to the open-ended question were analyzed through via emergent coding (Creswell, 

2014). That is, the responses were read several times to get a sense of the dataset. Initial codes 

were then created and applied. Following this process, codes were combined and refined. 

Results 

In the following sections, we discuss the findings for the three numeracy questions. Although 

144 participants completed the questionnaire, far fewer people responded to the multiple-choice 

numeracy questions, which may be indicative of people’s discomfort with mathematical content, 

or response fatigue, as the numeracy questions were near the end of the questionnaire. 

‘Easy’ Question (n = 78) 

The ‘easy’ question involved participants selecting which of four provided options had the 

lowest percentage of respondents (from Kessler, 2021) who selected ‘equal threat’; hence, only 

one piece of data from each bar on the graph was required to answer the question. Approximately 

two thirds of participants (65.4%) responded correctly.  

‘Medium’ Question (n = 76) 

The ‘medium’ question involved participants indicating which of the 12 threats was viewed 

most similarly to climate change (by the participants in Kessler’s study). Not only were there 

more response options than there were for the ‘easy’ question; the question’s wording was less 

direct. Consequently, a lower proportion of respondents (47.4%) selected the correct response. 

Participants were provided with a text box in which to explain their multiple-choice selection. 

Several participants took this opportunity to make non-mathematical comments, such as “STOP 

SCARING AND DEMORALISING OUR YOUTH WITH THIS RUBBISH!!” (P91). Notably, 

14 participants who had not responded to the multiple-choice question still wrote something in 

the textbox. Of the participants who answered the multiple-choice question correctly, half 

provided a mathematical explanation in the text box, compared to only 20% of the participants 

who answered the multiple-choice question incorrectly. 

‘Hard’ Question (n = 75) 

The ‘hard’ question was “Which of the following global threats has the most similar 

percentages of respondents who answered greater threat than climate change OR smaller 

threat than climate change?” An example of the percentages for these two categories was then 

provided for Overpopulation. As with the ‘easy’ question, participants had to select from four 

options; however, they had to utilize two pieces of information from each bar to respond to the 

‘hard’ question. Participants struggled with this question, with only 42.7% responding correctly. 

Discussion and Conclusions 

Numeracy is a crucial capability for adults to possess and develop, particularly as society 
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becomes more data-drenched. In our study, we sought to understand adults’ capacity to analyze 

graphs involving climate change data. Despite the questions being at an elementary school level, 

fewer than half of the participants were able to correctly identify the correct response to the 

‘medium’ and ‘hard’ questions. Concerningly, many participants seemed unable to focus on the 

mathematical concepts at hand due to their emotional responses to the topic. At the conference, 

we plan to share additional findings by participant group. 
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Data literacy promotes understanding of statistics about society (Engel, 2022) and as educators, 

we should arm students with data tools to form their opinions about phenomena in the world 

(Gal, 2002, 2023). An NSF project, Data Science Infused for Undergraduate STEM Education 

(DIFUSE), seeks to integrate data science into college introductory courses and develop 

modules that provide students with visualization tools that offload timely computation. These 

modules allow students to apply mathematics and statistics concepts to gain an understanding of 

data. A module was adapted for use with high school students. Our study investigates students' 

interests, experiences, and resources related to data science.  

Keywords: Data Analysis and Statistics; High School Education; Instructional Activities and 

Practices; Affect, Emotion, Beliefs, and Attitudes 

The 21st-century workforce is increasingly data-centric, emphasizing the importance of 

exposing students to data science, ideally starting from K-12 education (Franklin & Bargagliotti, 

2020). In an era dominated by data, the modern student needs education to focus on being both a 

producer and a consumer of statistics (Gould, 2017). Researchers suggest that media reports can 

motivate students and visualizations coupled with proper scaffolding aid conceptual 

understanding (Budgett & Rose, 2017). To address this imperative, we adapted a data science 

module developed in a college environmental studies class for use in high school classrooms. 

This original module was to cultivate students’ interest in data science, by showing practical 

applications of data science across various fields. We intentionally selected a module that did not 

require mathematics and statistics content beyond the high school level.  

 

Objectives 

We enacted a lesson with a module (DIFUSE Team, 2023) in high school classes to evaluate 

its use in high school and students' responses. Our research question is how are high school 

students’ interests, experience, and resources related to data science impacted through their work 

with a data science module? The module uses Louisiana COVID data with a focus on death rates 

and includes demographic, geographic, and environmental data such as air quality. It provides 

students with three visualizations (interactive map, correlation matrix, and regression) to aid their 

understanding. We made modifications to the lesson as appropriate for high school students. 

Recognizing that many students struggle with mastering key mathematical concepts such as 

proportional reasoning and geometry, we started the lesson with an activity aimed at clarifying 

the difference between the number of deaths and the death rate. We used CDC’s Data 

Visualization which allows worldwide analysis of COVID deaths and death rates. We discussed 
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adding a third quantitative variable to a scatterplot by using a bubble chart. We used The 

Learning Network’s What’s Going on in this Graph: Earthquakes to evaluate whether bubbles 

should be scaled by area or diameter. Given that Data Scientists vary in technical expertise and 

most high school students are not proficient in computer programming, we gave them the option 

to either review and modify the Python code or create a change request form to scale the bubbles 

correctly. Although lesson modifications were made for high school students, the data and 

visualization tools used remained the same. 

 

Framework 

As we designed the lesson, we used the DIFUSE framework to provide coherence throughout 

the data investigation (see Figure 1). Like many other data science frameworks, this simply 

granularizes some of the broader categories of the GAISE II statistical problem-solving process 

(SPSP) of (1) Formulate Statistical Questions, (2) Consider/Collect Data, (3) Analyze the Data, 

and (4) Interpret the Results (Bargagliotti et al, 2020).  

 

 

Figure 1: [Report] and [Project] Framework relationship 

 

SPSP was initially developed as part of the original GAISE Pre-K–12 guidelines (Franklin et 

al., 2007) to infuse statistics in Pre-K–12 education. These efforts to create data-literate high 

school students were used as a basis for probability and statistics within the Common Core math 

standards. The SPSP is not necessarily a linear process and curiosity should remain throughout. 

Analyzing data might prompt new questions that require additional data to be collected or 

considered. With the increased availability of data, one of the changes to the original GAISE 

SPSP was the addition of “consider” data, allowing an investigation to start with reviewing data 

before formulating a statistical investigative question.  

This data investigation allowed the students to start with the data and use some visualization 

tools to analyze data, continually question, and formulate a statistical investigative question. We 

scaffolded their work to encourage them to think more deeply and communicate the data in a 

way that answers the statistical investigating question they created. To complete the SPSP and 

communicate their results, the final product for each group was to complete a poster and submit 

it to ASA’s high school data visualization contest.  

 

Methods 

We utilized a mixed methods approach, blending qualitative and quantitative research 

techniques. This approach enabled us to thoroughly comprehend the research subject by 

https://www.nytimes.com/2023/02/16/learning/whats-going-on-in-this-graph-march-1-2023.html
https://www.competitionsciences.org/competitions/asa-data-visualization-poster-competition/
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incorporating diverse data types and viewpoints (Creswell & Creswell, 2017). This study focuses 

on an AP statistics class of 23 students in the southeast where students used the modified 

environmental studies module to understand relationships of quantitative variables. They had 

prior instruction on analyzing one quantitative variable and used CODAP, calculators, 

spreadsheets, and some applets to visualize data. 

To assess students’ interests, experiences, and resources and how they were impacted by this 

lesson, we created an adapted version of the DIFUSE Survey of Attitudes toward Data Science  

(SADS, Li et al, 2018). This included 14 items, both qualitative and quantitative questions (e.g., 

“I feel capable when measuring the relationship between two quantitative variables” and 

“Explain what you would consider when looking at the relationship between two quantitative 

variables”). Survey data were gathered as pre- and post-module deployment and the initial 

survey was given prior to any instruction on two quantitative variables, but after the students had 

worked with one quantitative variable (e.g., center, variation, distribution, z-scores). In the post-

surveys, students reflected on their experiences and responded whether they were interested in 

participating in an interview. We selected students based on their work and classroom discussions 

within their groups. We interviewed three students using a semi-structured approach, creating 

recordings and transcripts. Interviews included open-ended questions (e.g. “How was the process 

of working with the data science module?”). We employed emergent coding due to the broad and 

exploratory nature of our research question (Blair, 2015). 

 

Results 

The students held positive views regarding their attitudes and beliefs about data science both 

before and after the module. Most consistently valued data science, displaying interest in 

working with data and recognizing the importance of data science skills for their future. Most 

students report not getting too frustrated when working with data. An interesting shift from pre- 

to post-surveys was related to components of the SPSP: (3) Analyze Data and (4) Communicate 

Results. Although the students' strong desires to communicate with data increased substantially 

(by roughly 80%), their inclination to analyze the data decreased (see Table 1). 

 

Table 1: Pre- and Post-Survey Results for (3) Analyze Data and (4) Communicate Results 

 

 Pre-Survey Post-Survey Percent Increase 

(Percent Decrease) 

Strong desire to communicate with data 31% 56% 81% 

Inclination to analyze data (likely) 

(very likely) 

40% 

44% 

54% 

31% 

35% 

30% 
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This was a similar finding to what had been witnessed in DIFUSE modules at the college level. 

They appreciated having the computation offloaded and using the results of the visualization 

tools to gain insights and communicate findings.  

Our survey also included some open-ended questions and from a qualitative perspective, 

students were glad to have multivariate datasets and work through the entire statistical problem-

solving process. They specifically mentioned that it was “interesting” and “enjoyable” to analyze 

complex, multivariate data with visualization tools to complete an in-depth investigation. The 

frustration that students felt arose from not understanding certain aspects, making errors, or 

experiencing difficulties with tools and resources. There was a shift towards a more positive 

attitude and increased confidence in working through the statistical investigative process with a 

large multivariate dataset. From a skills perspective, students noticed an improvement where 

they no longer conflated analyzing one quantitative variable with analyzing more than one 

quantitative variable. Additionally, their descriptions of relationships were more refined, for 

example including strength, direction, and form.  

Our interviews confirmed the survey findings and provided some interesting feedback about 

their interests, resources, and experiences which students were asked to self-rate on a scale of 1-

10. Interest increased by 78% on average and was driven by the novelty of the interactive map 

and correlation matrix, working with multiple variables, and having to communicate results 

formally. One student stated, “I felt like a real data scientist”. Experiences increased on average 

by 133% and can be attributed to grappling with the new visualizations, seeing actual computer 

code, and completing an entire investigation (SPSP) using real data. Resources showed the 

largest increase of 162% on average. This was due to students continually questioning and 

iterating to include more variables in the explanation of the real-world phenomenon and gaining 

a better understanding of r-squared and p-values and how they connect to a graph. One student 

commented on his opportunity to (4) Interpret the Results: 

“…this project helped me to better communicate a couple of different statistics like the p-value. I 

learned how to interpret and communicate the data better”.  

Based on the findings of the analysis, it is evident that the data science module had a 

significant positive impact on students' interests, experiences, and resources related to data 

science. The majority of students valued data science, showing increased interest in working with 

data and recognizing its importance for their future. Overall, the data supports the effectiveness 

of the data science module in enhancing students' interests, experiences, and resources related to 

data science. 

 

Discussion and Conclusions 

Overall, high school students were able to work with a modified DIFUSE module which not 

only deepened their understanding of the content but increased their engagement and made them 

feel like real data scientists when completing an investigation. The positive shift in students' 

attitudes and beliefs towards data science highlights the importance of incorporating practical, 

hands-on experiences in data science education. By engaging students in real-world data analysis 

projects using the SPSP, educators can not only increase students' interest in the subject but also 

enhance their skills in data analysis (Hicks & Irizarry, 2018). By exposing students to a variety of 

data visualizations and analysis techniques, educators can help them develop a more 

comprehensive understanding of data science concepts and improve their analytical skills 
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(Bargagliotti, 2020; Keller et al., 2020). This study highlights the importance of incorporating 

practical, hands-on experiences in data science education to enhance students' interests, 

experiences, and resources in data analysis. By doing so, educators can better prepare students 

for careers in data science and related fields. Modules that provide students with data alongside 

tools that offer visualizations and offload computation might help students. This could aid their 

conceptual understanding and allow them to navigate throughout the SPSP asking more 

questions to tell more intricate stories. Future work might consider studying students’ conceptual 

change, implementing this module in other classes, and developing different modules for high 

school classes based on teacher and student interests. 
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Statistical reasoning is inherently different from mathematical reasoning because reasoning 

about data involves reasoning with uncertainty. In mathematics, deduction and induction are 

privileged, but abductive reasoning can be powerful when reasoning about data, especially when 

making inferences from sample data. This study examines three classic forms of inferential 

reasoning—deduction, induction, and abduction—novice statistics students employed during two 

task-based clinical interviews. All three forms of reasoning were evident, though not all were 

productive. Findings suggest that inductive reasoning is productive when estimating sampling 

variability and abductive reasoning is useful when estimating an unknown population parameter. 

Keywords: cognition, data analysis and statistics 

Understanding ideas of sampling, sampling distributions, and statistical inference are 

important for improving students’ statistical literacy and productive citizenship. Data are 

everywhere. Data collected from samples are often reported in the form of polls, medical studies, 

and advertisement information and an understanding of sampling distributions and statistical 

inference is important for evaluating data-based claims (Bargagliotti et al., 2020; Ben-Zvi & 

Garfield, 2004; Garfield et al., 2015; Saldanha & Thompson, 2007). Consistent with the 

conference theme of “envisioning the future of mathematics education,” it is important to 

acknowledge the growing prevalence of conflicting reports in the media and support students in 

becoming “critical consumers” of these statistically-based results (GAISE College Report ASA 

Revision Committee, 2016, p. 8).  

The concept of sampling distribution is a foundational concept in statistical inference, which 

is the main focus of introductory statistics courses, whether at the secondary, undergraduate, or 

graduate level (Ben-Zvi et al., 2015; Lipson, 2003). Despite the importance of understanding 

statistical inference and sampling distributions, research suggests that students struggle with 

these ideas (Saldanha & Thompson, 2002, 2014; Sotos et al., 2007). Although many students can 

carry out the calculations involved in formal inference procedures, such as confidence intervals 

and hypothesis tests, they often struggle to understand the underlying process and logic behind 

statistical inference (Chance et al., 2004). One reason for this difficulty stems from the complex 

and abstract concept of sampling distribution, which requires students to coordinate multiple 

ideas such as sample, population, distribution, variability, and repeated sampling (Noll & 

Shaughnessy, 2012). I argue that another source of difficulty is that the forms of reasoning that 

are expected and highlighted in statistics differ from those that are standard in mathematics.  

Theoretical Framework 

Statistical reasoning is inherently different from mathematical reasoning. Mathematical 

reasoning is often deterministic, emphasizing deductive reasoning and proof. In contrast, 

statistical reasoning lacks definitiveness and includes probability, randomness, and uncertainty 

(Groth, 2015). Reasoning is typically defined as a process of transforming given information to 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1444 

develop a conclusion or make an inference (e.g., Galotti, 1989; National Council of Teachers of 

Mathematics, 2009). Deduction, induction, and abduction are three classic forms of inferential 

reasoning and can be modeled with a triadic structure involving a case, rule, and result that are 

linked in a particular order (Peirce, 1878; Reid & Knipping, 2010). A case is a specific 

observation that a condition holds. A condition describes an attribute of something, or a relation 

between things. A rule is a general proposition that states that if one condition occurs then 

another one will also occur. A result is a specific observation, similar to a case, but referring to a 

condition that depends on another one linked to it by a rule. The order in which one links a case, 

rule, and result determines the kind of inference—deduction, induction, or abduction—needed to 

make a conclusion. In deductive reasoning, a rule and a case conclude a result. In inductive 

reasoning, a case and a result (or often, many cases and many results) lead to a rule. In abductive 

reasoning, a result and a rule infer a case. Consider the different ways case, rule, and result can 

be linked in Peirce’s (1878) original example about a pile of beans found on a table: (1) If I know 

that all of the beans in the bag on the floor are white (the rule) and that a pile of beans on the 

table is from the bag on the floor (the case), then I can deduce (with certainty) that all of the 

beans in the pile on the table are white (the result); (2) If I know that a pile of beans on the table 

is from the bag of beans on the floor (case) and that all of the beans in the pile on the table are 

white (result), then I can induce that (probably) all of the beans in the bag on the floor are white 

(rule); and (3) If I know that all of the beans in the pile on the table are white (result) and all of 

the beans in the bag on the floor are white (rule), then I may abduce that (possibly) the pile of 

beans on the table is from the bag of beans on the floor (case). 

Although mathematics and statistics can share similar forms of reasoning, the emphases in 

each field differ. In mathematics there is an emphasis on deduction and proof, arriving at 

conclusions with certainty, and establishing truth. Although deduction can occur in statistics with 

the application of general rules to particular sets of data, such as using a rule to determine 

outliers in a set of data, the emphasis in statistics is not on deduction. Instead, it is on reasoning 

with uncertainty, a feature of both inductive and abductive reasoning. Thus, it is productive to 

examine how students reason about foundational statistical ideas, such as sampling distributions, 

from this lens. 

Methods 

Participants for this study were eleven undergraduate students who recently completed an 

introductory statistics course. The data come from two clinical interviews, each 60-75 minutes in 

length, in which participants worked through a series of statistical tasks related to sampling 

distributions. I investigated the question: What forms of reasoning do novice statistics students 

employ when reasoning about sampling distributions? 

In the first interview, I gave participants information about students at a large university with 

a known parameter of interest (20% of the undergraduates are business majors). I asked them to 

do each of the following: provide an interval estimate for the outcome of any single random 

sample, predict the sample proportion for many hypothetical random samples of size 100, 

physically drew many samples from a large box of beads with proportions corresponding to the 

population, examine the collection of sample outcomes, and compare their predictions to their 

actual sample outcomes. Participants then used a web-based applet to simulate taking 500 

random samples of size 100 and provided an updated interval estimate for the outcome of any 

one single random sample. In the second interview, participants drew one sample from a second 
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box of beads, simulating all students at a second large university with some unknown parameter 

of interest (the box was covered so the contents were hidden from the participants). Based on one 

sample outcome, participants made an initial prediction for the unknown population parameter, 

tested and refined their prediction using the web-based applet, and ultimately provided a range of 

plausible values they believed captured the true population proportion. 

After checking and timestamping interview transcripts against the video recordings of the 

interviews, I identified reasoning excerpts—instances in which participants provided justification 

or explanation for a claim. For each reasoning excerpt, I identified case, rule, and result, then 

examined how the participant linked them to infer the form of reasoning they employed. At this 

time, I have analyzed interview data for nine participants. This paper reports preliminary results 

from my analysis for this subset of participants. 

Results 

When giving a range of percentages they would expect to get in any one single random 

sample of 100 drawn from a large university with 20% business majors, participants reasoned 

deductively prior to drawing any physical or simulated samples and inductively after drawing 

many physical and simulated samples. Prior to drawing any samples, six participants gave an 

interval estimate with a margin of error between 5% and 10% and provided various justifications 

for their choice of margin of error. Tami explained that “5 is a good number,” whereas Eric drew 

on his previous experience in chemistry: “If you're assigned a study and they have this number as 

the assumed...like when you cook this compound it should weigh about this…as long as you're 

within 5% of that, then you’re not wildly off.” Although their reason for choosing 5% as their 

margin of error differed, both Tami and Eric applied their rule (random sampling produces 

outcomes that vary from the population parameter by about 5%) to a case (a random sample of 

100 was drawn from a large university with 20% business majors) to deduce a result (the sample 

outcome should be between 15% and 25%). After drawing many physical and simulated 

samples, all but one participant updated their interval estimate based on similarities they 

observed in the samples they had drawn. For example, Jess updated her initial range (11% to 

29%) to 15% to 25% and referenced both the physical and simulated samples she drew: “I'm 

going off of the curve here and kind of off of the samples that I did…[there are] a lot of dots 

gathered around 15 and then around 25 and after that it kind of drops pretty dramatically.” 

Similarly, Lyla justified her range of 10% to 30% based on similarities she observed in the 

physical and simulated samples she had drawn: “From the samples we've taken so far…we've 

taken a lot…but I don't think we've gone above 30 and we haven't really gone below 10.” 

Although participants provided different ranges, they used multiple cases (all of these random 

samples were drawn from a population of undergraduates with 20% business majors) and 

multiple results (most of these samples produced outcomes between [lower bound] and [upper 

bound]) to induce a rule (I expect that any one single random sample of 100 drawn from this 

population to produce a sample outcome between [lower bound] and [upper bound]). 

In the second interview, participants made a prediction for the unknown population 

parameter based on their one sample outcome from the second box of beads. When asked how 

they could test their prediction, six participants reasoned inductively when they proposed 

drawing more samples from the box of beads to look for a pattern. However, when asked how 

they could use the web-based applet to test their prediction, all but one participant reasoned 

abductively to hypothesize and evaluate multiple populations (with different parameters) from 
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which their single sample could have been taken. Initially, Lorraine said, “Take a ton of samples 

to see what the actual proportion is. [Look for] the center of [the distribution], so the mean or the 

median, so we could see where the true proportion is.” Tyra also wanted to collect more samples 

from the box of beads to see “where they group up…where the center is.” Lorraine, Tyra, and 

others proposed using multiple cases (multiple random samples drawn from the population with 

an unknown parameter) and multiple results (observing where the sample outcomes are centered) 

to induce a rule (the true population proportion). Later, Lorraine tested 60% by constructing a 

simulated sampling distribution using the web-based applet, ultimately deciding it was a 

plausible value for the unknown population parameter: “It looks like [my sample outcome of] 52 

would be reasonable [because] there's a pretty significant number of results that are 52. And then 

past that is where [the distribution] tends to kind of taper out.” Lorraine used a result (one 

random sample of 100 produced a sample outcome of 52 business majors) and a rule (a 

population with 60% business majors produces several sample outcomes of 52) to abduce a case 

(the sample I drew could have come from a population with 60% business majors). Lyla 

reasoned similarly to decide that 30% was not a plausible value for the unknown population 

parameter based on her sample outcome of 46%: “Looking at this [dot plot], 46 doesn't seem 

very likely to occur…that probability is looking very low. I would expect a number not to exceed 

42. Based from this, I would say 0.3 isn't a good prediction.” Both Lorraine and Lyla continued 

to test multiple values, ultimately abducing a range of plausible values for the unknown 

parameter. Lyla’s abduction was particularly powerful for her, enabling her to make sense of the 

process and logic behind constructing an interval estimate for the unknown parameter:   

That was just really cool to go backward. When you take stat, it’s like oh, we have this 

confidence that this number is going to fall in blah, blah, blah, blah. But working backwards 

shows the logic behind it even more. I thought it make sense to me before…our rationale for 

drawing these conclusions. But going backwards, it’s another level of understanding. 

Discussion 

This study provides insight into novice statistics students’ existing ways of reasoning about 

sampling distributions. As reported in the results, each form of reasoning was evident in at least 

one participant’s thinking about sampling distributions. However, not all three are productive 

ways of reasoning. Inducing an interval estimate for a single random sample was productive 

because participants were able to estimate how far a sample statistic varies from the population 

parameter. In addition, participants later used their interval estimate to determine whether 

particular sample outcomes were surprising. Although productive in such cases, inductive 

reasoning may not be productive when making inferences from sample data to an unknown 

population of interest. Lorraine and others proposed drawing multiple samples from the 

population with the unknown parameter, and observing where the sample outcomes clustered to 

determine the true population parameter. Reasoning inductively in this way is productive if the 

population of interest is a box of beads from which samples are easy to collect. However, the box 

of beads represented students at a large university; it is not feasible to draw multiple random 

samples of students from a large university. Instead, reasoning abductively is productive in this 

scenario. Participants who reasoned abductively to hypothesize and evaluate multiple values for 

the unknown population proportion were successful in making an inference from one sample to 

the larger population from which it was drawn by estimating the unknown parameter. 
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Supporting students in reasoning abductively is especially important because this kind of 

reasoning differs greatly from the forms of reasoning students have experienced in their K-12 

years in mathematics classes that privilege deduction. Providing students with opportunities to 

make and test multiple predictions when drawing conclusions from data is one way to support 

students in reasoning abductively. Thus, this study has the potential to inform task development, 

specifically designing tasks that promote abductive reasoning. Supporting students to reason in 

this way can help them develop strong statistical reasoning skills to critically evaluate evidence 

and claims based on data, a crucial skill needed for living in a data-driven society. 
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This study enlisted a refutation text to foster conceptual change among 71 preservice teachers of 

mathematics education in situations that might elicit the use of the representativeness heuristic. 

Statistically significant differences were found between respondents’ pre- and post-tests, with 

more than half exhibiting normative reasoning after prior use of the heuristic. Analysis of their 

written explanations revealed differential patterns in their reasoning across two effect 

categories. Implications for misconception research and practice are discussed. 

Keywords: Conceptual Change, Probability, Refutation Text, Representativeness.  

Probabilistic misconceptions have been documented to differ in the extent to which they are 

amenable to change (Jones et al., 1997), with the representativeness heuristic being a prominent 

one. As the name suggests, it involves quantifying the occurrence of a random phenomenon “by 

the degree to which it: (i) is similar in essential characteristics to its parent population; and (ii) 

reflects the salient features of the process by which it is generated.” (Kahneman & Tversky, 

1972, p. 430). A variety of studies have been conducted to ascertain the prevalence of the 

heuristic among different populations, especially preservice teachers (PST). In Wilkins (2007), 

11 out of 15 PSTs relied on it. The rate was 17.5% in Kustos and Zelkowski (2013). 

Several efforts have been made for the jettisoning of misconceptions for normative ideas. 

They have mostly included programs involving predictions and data analyses through engaging 

in experiments and simulations (Fischbein & Gazit, 1984; Jones et al., 1997). Although these 

interventions have returned modest gains, the fruitfulness of conceptual change (CC) strategies 

in overcoming mathematical misconceptions (Lem et al., 2017) may offer a commensurate path 

to forging acceptable conceptions of probability. Consequently, this study adopts one CC 

approach—refutation text—as a probable mechanism to overcome the misconception involving 

the use of the representativeness heuristic among PSTs.  

Theoretical Framework 

Refutation texts: offering a switch from S1 to S2 

Misconceptions are known to be resistant to change because they portray beliefs about 

chance phenomena. And since beliefs are personal, subjective truths, the feeling of agency 

conditions the holder to stick to them irrespective of their source. With an alternative conception 

offering valid explanations in certain contexts (Savard, 2014), the automaticity and effortlessness 

(see properties of S1, Kahneman, 2003) characterizing alternative conceptions purports to be 

valid across contexts. Consequently, getting the holder toward CC will involve a radical shift 

from existing to new conceptions, abled due to at least three reasons: dissatisfaction, 

intelligibility, and plausibility (Posner et al., 1982). 

A refutation text (RT) offers an avenue for enabling this switch. By exposing the 

misconception, a cognitive conflict is created that might cause a person to attend to salient 

aspects of the problem they would otherwise not have. Based on the strengths of the belief, this 
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encounter with such explicit information prepares the ground for alternative explanations that 

might help resolve the conflict, setting the stage for an activation of a cognitive ecology that 

decontextualizes the problem, a feature of S2 thinking (Kahneman, 2003). 

Commonly used RTs are characterized by three properties: (1) description of a 

misconception, (2) refutation of the misconception, and (3) subsequent provision of a normative 

conception (Chi, 2008). Refuting a misconception comes with reasons why such beliefs are not 

viable, generalizable, or consistent, to—as Leron and Hazzan argue—bring “S2 to intervene in 

its role as critic of S1” (2006, p. 109). Consequently, it may be valuable to enlist a RT to answer 

the following questions: (1) What are the effects of a RT on PSTs’ use of the representativeness 

heuristic? (2) What qualitative affordances exist within and across the pattern of effects? 

Methods 

The study involved 71 PSTs of mathematics education at a university in south-western 

Nigeria. Following informed consent, they were issued a pre-test containing a question to elicit 

their use of the representativeness heuristic which was immediately followed with an issuance of 

the RT (without being told about a post-test which was administered after 2 hours).  

 

Table 1: Pre-test and Post-test on the Representativeness Heuristic 

 

Pre-test Post-test 

An experiment requires you to flip a penny 

100 times and record whether the penny 

comes up heads or tails. On the first 10 

flips the penny comes up heads. After 

flipping the penny 90 more times, how 

many heads would you expect to get out of 

the total 100 flips? Answer……….… 

(Please explain your answer below). 

Suppose you toss a fair coin six times, recording 

the result of each toss. For instance, if you toss a 

head and then five tails in a row, you would 

write H T T T T T. Which is the least likely 

result? (a) H T H T H T     (b) H H T H T T     

(c) H H H T T T    (d) T T T H T T     (e) All are 

equally likely.  (Please explain your answer 

below). 

 

Following the plurality of indicators of the representativeness heuristic (see Tversky & 

Kahneman, 1974), I adopted the hermeneutical position of content analysis (Mayring, 2015) to 

develop a RT—that largely attended to the misconception of chance indicator of the heuristic 

typified by less runs and more switches—with a goal of influencing S1 thinkers to interrogate 

their reasoning to fit into S2. The RT was content-validated by a professor of mathematics 

education who teaches a graduate-level probability methods’ course. The content of the RT is as 

shown in Table 2. 

 

Table 2: Refutation Text on the Representativeness Heuristic 

 

Refutation Text 
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In a game of Ludo3 between Ghufran and Imran, Ghufran threw three double sixes and a 3,4 

(i.e., 6-6, 6-6, 6-6, 3-4). When it was Imran’s turn, he threw a 4-5. After counting his scores, 

Ghufran again threw almost the exact same sequence (i.e., 6-6, 6-6, 6-6, 1-5). In protest, Imran 

said the game was rigged, threatening to opt out of it. While it may be difficult to convince 

him otherwise, the scenario does not in any way suggest cheating but a valid random process. 

Specifically, underlying such thinking is a misconception called representativeness. Because 

the throw of the pair of dice represents a random process, individuals often expect the 

outcomes to appear in a strictly random manner however short or long the sequence. Had 

Ghufran thrown a sequence like 6-6, 5-4, 3,2, 1-3, 4-4, 1-6, 1-1, 4-2 rather than 6-6, 6-6, 6-6, 

3-4 and 6-6, 6-6, 6-6, 1-5 on his first eight throws, Imran might not have alleged rigging. But 

both sets of outcomes represent valid random processes. As such, they have the same chance 

of occurring.  

 

To analyze the data, I coded the keys 1—for both pre- (55) and posttests (option e)—and 

other options 0, making the data suitable for analysis using the McNemar (Binomial) Test. To 

answer RQ1, the test was used to determine if an intervention effect existed as measured by 

changes either in the positive or negative direction. To answer RQ2, two respondents’ written 

explanations were described across positive and negative effects. 

Results and Discussion 

Quantitative 

The RT had a major influence on 48 PSTs (see Table 3). Specifically, 40 respondents 

switched from the heuristic use to normative conception. In contrast, a fifth of those that were 

positively influenced were impacted negatively by the intervention. The RT also had no effect on 

18 respondents. 5 respondents were consistent in their exhibition of the normative conception at 

the pre and posttests (reinforcing effect). Collapsing the rows (pretest) and columns (posttest) 

shows the prevalence of this misconception before (81.7%) and after (36.6%) the intervention. 

Similarly, 18.3% and 63.4% were without the misconception before and after. Overall, I 

documented a statistically significant change in PSTs’ responses (N=71, p<.001) associated with 

pre and post-test, suggesting that the RT had an effect in getting PSTs to undergo CC. 

 

Table 3: Prevalence and Changes in the use of the Representativeness Heuristic Before and 

After Intervention 

 

  All  

 0 1 T 

0 18 40 58 

1 8 5 13 

T 26 45 71 

 

 
3 Ludo is a boardgame played by 2 or 4 people. A turn is initiated when an opponent fails to throw a double six 

on a pair of dice. 
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Qualitative Differences 

In this section I provide excerpts from two respondents who made switches between S1 and 

S2 thinking as inferred from results of the quantitative analysis. 

 

Table 4: Excerpts Across Positive and Negative Effects 

 

Effects Excerpts 

 Pre Post 

Positive Since each flip of a fair coin is independent, 

the probability of getting heads remains 0.5. 

Therefore, you would expect to get heads 

approximately 50 times out of 100 flips, 

regardless of the outcomes of the first 10 flips. 

They are equally likely to have 

the same result because the 

probability of getting head or 

tail in each outcome is equal. 

Negative The chances of getting heads and tails are 

equal because you cannot determine how 

many heads will come up after the total 

experiment but since we have 10 flips already 

and the chances of the remaining 90 times 

flipping is equal, you can say 10+½(90) = 55. 

The least likely result of the 

tossing of a fair coin six times 

is getting three heads and three 

tails in a row as a possible 

outcome of an event. 

 

 

The explanations from the respondent (Opebe) who made a positive switch show an 

understanding of randomness at the pre and post-tests. Therefore, evidence for the influence of 

the RT in causing Opebe to engage in the slow, systematic thinking of S2 at the posttest lies in 

his jettisoning of the need to balance out the outcome, causing him to conceive of all the options 

as equally likely. In contrast, a scrutiny of Moladun’s excerpt presents unclear results even as I 

classified its effect negative. While she avoided the heuristic at the pretest by applying the base-

rate frequency, she initially claimed that the probability was indeterminate. It is possible her 

answer at the post test was more of an outcome approach (see Konold, 1989) than a desire to 

map the sample to population. For this reason, it is not clear if the RT really had a negative effect 

on her because a similar reasoning that masks misconception of chance (see Tversky & 

Kahneman, 1974) undergirds her explanations both before and after she engaged with the RT. 

Conclusions 

This study set out to ascertain the effects of a RT on PSTs use of the representativeness 

heuristic. Based on quantitative analysis, the intervention promoted CC although posing 

differential effects on the respondents. Qualitative analysis showed that the intervention was 

mostly effective when the RT matched with the specific representativeness indicator. Owing to 

the demonstrated potential of the intervention, it may be valuable to enlist CC strategies into the 

design of instructional programs for fostering normative probabilistic ideas. Therefore, textbook 

authors may find the structure of RTs useful as a complement, or alternative to the existing 

writing style that largely involves mere presentation of normative ideas. Overall, this study offers 

preliminary evidence for an approach other than experiments and simulations in building 

probabilistic conceptions, one that may especially be worthwhile in countries where students 

have little access to materials to conduct such experiments.   
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Limitation and Future Research 

Restricting the RT to a single indicator of representativeness (misconception of chance) is a 

major limitation of the study. For this reason, the RT better attends to the post test than the 

pretest whose normative reasoning owes to attending to the base-rate frequency. Future research 

might incorporate more indicators that would lend the RT to a broad array of chance situations. 
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En esta investigación se analiza cómo estudiantes de bachillerato avanzan en la 

conceptualización de la recta de mejor ajuste usando tecnología. Veintidós estudiantes 

participaron en parejas en un taller con tres actividades centradas en la relación entre dos 

variables. Las tareas incluyeron construir y analizar diagramas de dispersión, interpolar y 

ajustar una recta, y manipular una recta en GeoGebra para minimizar la distancia a los puntos. 

Los resultados se agruparon según similitudes en las respuestas, destacando el desarrollo de 

una comprensión global de los datos. Se identificaron tres fases clave en la conceptualización de 

la recta de mejor ajuste: usar el diagrama de dispersión, interpolar una recta en la nube de 

puntos, y entender los residuos y minimizar la distancia entre la recta y los puntos. Se concluye 

que el uso de dispositivos tecnológicos permite a los estudiantes formar conceptos para concebir 

la recta de mejor ajuste como un agregado. 

Palabras clave: Informal Education; Data Analysis and Statistics; Technology. 

Introducción 

La enseñanza de la estadística es crucial en la sociedad actual, donde la abundancia de datos 

requiere ciudadanos capaces de analizarlos y tomar decisiones informadas. La correlación y 

regresión son tópicos fundamentales de la estadística, y presentan desafíos educativos debido a la 

necesidad de articular aspectos matemáticos y estadísticos. Aunque se desarrollan en cursos 

universitarios, también se abordan en niveles educativos básicos y medios, con enfoques 

diferentes. En el nivel bachillerato, la correlación y regresión aun requiere enseñarse desde un 

enfoque informal por la carencia por parte de los estudiantes de las herramientas matemáticas 

necesarias. Para un enfoque informal los recursos tecnológicos, como CODAP y GeoGebra, 

ofrecen la oportunidad de apoyar a los estudiantes en dichas circunstancias para que adquieran 

las ideas centrales del tema.   

La idea de “agregado” es muy útil en la educación estadística para interpretar el nivel de 

comprensión de los estudiantes de conceptos estadísticos, pero también para señalar un objetivo 

de aprendizaje. Algunas investigaciones revelan que los estudiantes tienden a enfocarse en 

detalles individuales de los datos en lugar de considerar propiedades del conjunto completo de 

datos (Bakker y Gravemeijer, 2004; Konold y Higgins, 2002). Esta tendencia se observa en 

varios conceptos estadísticos, entre ellos, el de la recta de mejor ajuste, donde al trazarla con sus 

recursos intuitivos los estudiantes suelen centrarse en algunos datos específicos en lugar de 

buscar   combinar todos los datos para que estén representados por la recta resultante. Las 

actividades propuestas en este estudio utilizan la tecnología para propiciar que los estudiantes 

formen conceptos que les permitan entender como combinar los datos para dar lugar a la recta de 

mejor ajuste. El artículo propone actividades con CODAP y GeoGebra para responder la 
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pregunta ¿cómo los estudiantes de bachillerato conceptualizan la recta de mejor ajuste con ayuda 

de la tecnología?  

Antecedentes 

Los estudios con estudiantes universitarios revelan interpretaciones erróneas del coeficiente 

de correlación (Truran, 1995) y una mejor capacidad para estimar la correlación a través de 

diagramas de dispersión (Sánchez-Cobo et al., 2000). Sorto et al. (2011) identifican tres 

estrategias intuitivas que utilizan los estudiantes universitarios (tecnología industrial) y futuros 

profesores para trazar la recta de mejor ajuste: 1) una que divide los puntos de datos por la mitad, 

2) una que pasa por puntos medios, 3) una que une el primer y el último punto. Tales estrategias 

muestran que el criterio de minimizar las distancias de los puntos a la recta para obtener la recta 

de mejor ajuste no es intuitivo. En niveles de secundaria y bachillerato, Hourigan y Leavy (2021) 

hallaron que estudiantes de sexto grado a menudo tienen una comprensión local de la asociación 

estadística y enfrentan dificultades al crear gráficos de covariación, mientras Moritz (2004) y 

Watson y Moritz (2007) identifican distintos niveles de razonamiento en la interpretación de 

estos gráficos. En cuanto a la concepción de la correlación, Estepa y Batanero (1996) identifican 

visiones variadas, incluyendo visiones deterministas, locales y causales.  Casey (2014, 2015) y 

Nagle et al. (2017) observan estrategias similares a las de Sorto et al. (2011) con estudiantes de 

nivel medio básico. Varios estudios utilizan tecnología para enseñar estos conceptos (Medina et 

al., 2019; Gil y Gibbs, 2017). Biehler et al. (2018) proponen dimensiones para diseñar entornos 

de aprendizaje estadístico, enfatizando el uso de datos reales y herramientas tecnológicas. Este 

estudio retoma la centralidad del papel del software que enfatizan dichas investigaciones para 

apoyar la comprensión de la recta de mejor ajuste. 

Marco Conceptual 

El razonamiento covariacional estadístico aborda la relación entre dos variables estadísticas 

e incluye conceptos como datos bivariados, diagramas de dispersión y correlación y la recta de 

mejor ajuste (Zieffler y Garfield, 2009). Este estudio se centra en la recta de mejor ajuste y otros 

conceptos relacionados. Los datos bivariados son pares de observaciones de dos variables 

numéricas diferentes (cada pareja de datos corresponde a medidas tomadas sobre una misma 

unidad de análisis), mientras que un diagrama de dispersión es la representación de los datos 

bivariados en un plano cartesiano. La covariación estadística describe cómo varían 

conjuntamente dos variables, con el diagrama de dispersión proporcionando una visión general. 

La correlación mide la relación lineal entre dos variables, mientras que la recta de regresión de 

mínimos cuadrados es un modelo de cómo cambia una variable de respuesta en función de una 

variable explicativa (Moore, 2000). 

Un enfoque informal del razonamiento covariacional busca introducir los conceptos 

asociados a la regresión y correlación a un nivel de elaboración simbólica y matemática accesible 

para los alumnos. Se propone como una estrategia para introducir los conceptos desde niveles 

básicos y medios como antecedente para un tratamiento más formal en niveles universitarios. 

Makar y Rubin (2009) delinearon un marco para la inferencia estadística informal (IEI), que se 

puede aplicar de manera análoga al razonamiento covariacional informal. Este último implica 

juicios, razonamientos y procedimientos basados en los datos bivariados a la mano, pero con 

generalizaciones (ir más allá de los datos) y reconocimiento de la incertidumbre involucrada en 

tales generalizaciones. La evaluación de actividades se guía por esta caracterización, 
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distinguiendo entre enfoque intuitivo e informal; el primero es espontáneo mientras que el 

segundo es resultado de un aprendizaje e implica procesamiento de datos para la resolución de 

problemas (Rossman, 2008). 

La agregación es el proceso de combinar múltiples observaciones o medidas individuales 

para formar un objeto estadístico que los asimila y engloba; el objeto así obtenido es un agregado 

(Stigler, 2016). Aunque implica simplificación y generalización, la agregación revela tendencias 

y patrones generales en los datos, permitiendo hacer inferencias y afirmaciones sobre variables 

complejas. Desarrollar una “vista agregada” implica comprender y analizar los datos como un 

todo colectivo, pero esta perspectiva depende del tipo de agregado utilizado. La construcción de 

un agregado específico es crucial para obtener una visión global de los datos, ya que diferentes 

agregados revelan distintas propiedades globales del conjunto de datos. 

La revolución tecnológica ha transformado la educación estadística, proporcionando recursos 

para fortalecer el razonamiento de los estudiantes en el análisis de datos (Biehler, et al. 2013). La 

representación dinámica de datos bivariados en diagramas de dispersión y sus medidas 

estadísticas facilitan el desarrollo del razonamiento covariacional informal en las aulas. La 

tecnología permite explorar la relación entre la forma de una nube de puntos y su coeficiente de 

correlación, además de investigar el efecto de variar un punto en el conjunto de datos. También 

permite introducir conceptos como residuos y minimización de la distancia entre una nube de 

puntos y una recta de ajuste de manera comprensible para los estudiantes. Plataformas como 

CODAP y software como GeoGebra se utilizan para crear dispositivos educativos que 

promueven la comprensión sin requerir a los estudiantes habilidades matemáticas avanzadas, 

haciendo el tema accesible y dinámico para el aprendizaje estadístico 

Metodología 

El presente estudio empleó un método cualitativo y exploratorio que fomenta la resolución 

colaborativa de problemas con tecnología y guía del profesor. El análisis de relaciones entre 

variables con datos bivariados es un desafío para los estudiantes al carecer de un procedimiento 

establecido. Optamos por datos de nutrición, relevantes para la salud y la alimentación, lo que 

puede aumentar la motivación y la comprensión (Garfield y Ben-Zvi, 2008; Neumann et al., 

2013). La resolución colaborativa de problemas en parejas potencia el proceso, permitiendo el 

intercambio de ideas, negociación y expresión conjunta (Yackel et al., 1991; Webb y 

Mastergeorge, 2003), reflejando la dinámica del aula (Cobb et al., 2003). La tecnología, como 

CODAP y GeoGebra, ofrece nuevas oportunidades de aprendizaje, permitiendo manipular datos 

y visualizar conceptos en tiempo real (Biehler, et al. 2013). Esto facilita la comprensión de la 

relación entre variables y la construcción de la recta de mejor ajuste. Las actividades están 

diseñadas para que las parejas de estudiantes dejen evidencia de su razonamiento sobre la 

correlación y la recta de ajuste, con intervenciones del profesor para explicar el funcionamiento 

del software y aclarar la intención de la actividad, pero mínimas con respecto a la solución del 

problema en turno. 

El estudio involucró a 22 estudiantes de bachillerato, con edades entre 16 y 18 años, dirigidos 

por la autora y la profesora titular. Aunque no tenían conocimientos previos sobre correlación y 

regresión, contaban con experiencia en el plano cartesiano y funciones lineales y cuadráticas, 

proporcionando una base útil para el enfoque informal del tema. Se diseñaron e implementaron 

dos actividades.  
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Los datos se recopilaron de las hojas de trabajo de los estudiantes en parejas, con la autora 

como administradora de los instrumentos. La primera actividad utilizó datos nutricionales de 

productos de McDonald's y Burger King, obtenidos de las páginas web oficiales 

(https://www.mcdonalds.com, https://www.bk.com/menu/search-by-nutrition). La segunda 

actividad se basó en un escenario del libro de texto The Practice of Statistics de Starnes et al. 

(2010), con un applet digital de GeoGebra diseñado para su aplicación. A continuación, se 

describe cada actividad y el análisis previo de los elementos que las componen. 

La actividad 1 presenta una situación y preguntas diseñadas para explorar el razonamiento de 

los estudiantes sobre la relación entre variables (consulte la Figura 1). Destaca por su contexto 

familiar, preguntas abiertas y fomento del uso de tecnología. Los estudiantes enfrentan la tensión 

entre sus creencias previas y la información del diagrama de dispersión, lo que dificulta observar 

los datos de forma puramente cuantitativa. Se busca comprender los juicios que los estudiantes 

establecen sobre la relación entre variables en un contexto específico. La herramienta CODAP 

facilita la creación y visualización de la nube de datos bivariados. 

 

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1458 

 

Figura 1: Actividad 1 

 

La actividad 2 presenta una situación y preguntas centradas en el razonamiento sobre la recta 

de mejor ajuste en un contexto de nutrición (consulte la Figura 2). Las primeras preguntas de la 

actividad 2 buscan que los estudiantes establezcan la idea de informar que una relación se dice 

que es lineal si los datos en la nube de puntos se conglomeran formando una línea. Se utiliza un 

applet de GeoGebra para que los estudiantes comprendan las ideas detrás de la regresión lineal, 

enfocándose en la optimización de distancias.  
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Figura 2: Actividad 2 

 

Conviene notar que se evita el uso del concepto de distancia cuadrática para no complicar la 

construcción de la medida de distancia de un conjunto de datos a una recta. El applet de 

GeoGebra permite visualizar una recta movible y calcular automáticamente la distancia de la 

nube de puntos a la recta. La función definida muestra el error o residual de un punto como la 

distancia vertical entre el punto y la recta, se define la distancia de la nube de puntos a la recta 

como la suma de los residuales. Se compararon las respuestas de parejas de estudiantes para 

identificar patrones de respuesta, destacando los rasgos comunes en los procedimientos o 

razonamientos similares. La codificación de estos patrones simplifica la descripción y análisis de 

las respuestas. 

Resultados y Discusión 

Este análisis ofrece una visión general de las respuestas grupales y analiza sus procesos de 

razonamiento, complementándolos con comentarios analíticos para una mejor comprensión. En 

la actividad 1, los estudiantes abordan la relación entre gramos de grasa y calorías en dos 

enfoques: global-cualitativo y particular-cuantitativo. El primero evalúa la tendencia general de 

los datos y su descripción cualitativa (ver Figura 3-a); el segundo busca expresar los cambios 

específicos en cada dato a través de secuencias numéricas o funciones, aunque sin éxito (ver 

Figura 3-b). Ocho parejas ofrecen una valoración cualitativa, mientras que tres intentan un 

análisis cuantitativo. 

 

 
 

Figura 3: Ejemplo de respuestas que involucra juzgar la relación entre las dos variables en 

la actividad 1 

 

Utilizando CODAP, las respuestas se dividen en casi-linealidad e irregularidad en la 

distribución de datos (ver Figura 4). El uso del diagrama de dispersión facilita la percepción de 

una tendencia general y la irregularidad. Aunque los estudiantes prefiguran el agregado, no saben 

cómo combinar los datos para construirlo. En resumen, el diagrama de dispersión y la tarea de 

ajustar una recta permiten a los estudiantes pensar en combinaciones de puntos para construir un 

agregado, aunque requieren un método más preciso. 
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En la Actividad 2, se repiten preguntas similares a la relación entre las variables como en la 

Actividad 1. Cinco parejas describen una tendencia global entre cambio ANE (actividades no 

relacionadas con el ejercicio) y grasa, mientras tres reconocen una dependencia sin establecer 

una regla definida y tres basan sus respuestas en un modelo contextual sin obtener conclusiones 

de los datos. En la pregunta (b), ocho parejas identifican una relación inversa entre cambio ANE 

y grasa, mientras tres se centran en el contexto sin datos concretos. 

 

 
 

Figura 4: Ejemplo de respuestas al analizar la relación en el diagrama de dispersión en la 

actividad 1 

 

La diferencia con la actividad 1 es que ahora la tendencia es negativa y la variable cambio 

ANE es menos familiar para los estudiantes. Probablemente por esto, los resultados no son 

mejores que en la actividad 1, además de que hubo respuestas basadas en creencias previas sobre 

el contexto. El objetivo de esta parte es introducir a los estudiantes al problema y proponerles 

utilizar GeoGebra para centrarse en la idea de distancia de un conjunto de puntos a una recta y 

minimizarla. Por lo tanto, se presenta la actividad donde los estudiantes utilizan el programa 

GeoGebra para representar los datos del problema y una recta móvil que permite observar los 

residuos y su suma. La pregunta (a) es similar a la actividad anterior, pero ahora los estudiantes 

pueden mover la recta preconstruida en la pantalla y observar las distancias verticales de cada 

punto a la recta, así como la suma de estos residuos. Las respuestas de los estudiantes se 

clasifican en tres categorías: “Puntos en la recta”, “Cercanía” y “Minimización de residuos”. Las 

respuestas varían desde asociar la recta de mejor ajuste a la minimización de la distancia entre la 

recta y los puntos hasta simplemente medir la cercanía visualmente sin usar los recursos del 

software (ver Figura 5-a). Algunos estudiantes basan sus respuestas en la minimización de los 

residuos, relacionándola con la distancia de los puntos a la recta de ajuste (ver Figura 5-b). 
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Figura 5: Ejemplos de respuestas del criterio para la recta de mejor ajuste en la actividad 2 

 

Varios estudiantes muestran dificultad para entender la construcción del agregado al buscar 

minimizar cada residuo de manera particular y asumir que esto resulta en la distancia mínima de 

los puntos a la recta; esto no funciona, pues cuando un residuo se reduce otro aumenta. Es 

significativo que no encuentren natural minimizar la distancia (total) y entender que esto produce 

una distribución óptima de residuos. Ellos pretenden controlar los residuos particulares para 

minimizar la distancia global, pero no comprenden que este proceso funciona en sentido inverso. 

No obstante, más tarde, con la intervención oportuna del profesor conseguirán comprenderlo 

mediante preguntas que los invitan al descubrimiento y reflexión cómo: ¿Qué pasaría si hacemos 

que un residuo sea cero? ¿Creen que la distancia global sería mínima? Por favor, hagan que un 

residuo sea cero ¿Qué pasa? Una vez que se dan cuenta que no se logra minimizar ¿Qué pasa si 

la suma global de los residuos es mínima?  

En la pregunta (b), se busca que los estudiantes reflexionen sobre la relación entre la 

distancia de la recta a los puntos y el valor de cada residuo. Las respuestas se dividen en tres 

grupos: descriptivo, enfoque en lo particular y la recta centrada. Algunos estudiantes comprenden 

que al minimizar los residuos se minimiza la distancia de la nube de puntos a la recta, mientras 

que otros consideran que la posición central de la recta resulta en una menor suma de residuos. 

En la pregunta final, los estudiantes comparan la recta móvil con la recta de regresión obtenida 

por GeoGebra, destacando diferencias en la posición relativa de las rectas y en las distancias a 

los puntos. Se observa que las respuestas demuestran una comprensión de las propiedades 

generales de las rectas de mejor ajuste y muestran un avance hacia una vista agregada de las 

mismas. Sin embargo, no se aborda el criterio específico que utiliza GeoGebra para determinar la 

recta de mejor ajuste, es decir, el método de mínimos cuadrados. La actividad resulta difícil para 

los estudiantes porque deben coordinar dos variables para obtener la recta que minimiza la 

distancia. Las operaciones realizadas en GeoGebra corresponden formalmente a la optimización 

de una función de dos variables, lo cual se logra con precisión mediante técnicas de derivadas 

parciales. Es importante que el profesor comprenda la relación entre el enfoque informal con 

GeoGebra y el enfoque formal para abordar las dificultades de los estudiantes.  

Conclusiones 

La pregunta que impulsó esta investigación fue ¿cómo conceptualizan los estudiantes de 

bachillerato la recta de mejor ajuste con ayuda de la tecnología? Nuestra respuesta es que el uso 

de dispositivos tecnológicos permite a los estudiantes formar conceptos para concebir la recta de 

mejor ajuste como un agregado. El uso del diagrama de dispersión, a diferencia de la simple 

presentación de datos en una tabla, les permitió percibir tanto la tendencia general de los datos 

como la irregularidad entre los puntos. La tarea de interpolar una recta enfrenta a los estudiantes 

a estrategias diferentes para fijar una recta representativa, aunque estas siguen siendo intuitivas y 

visuales. La introducción de los conceptos de residuo y distancia de una recta a la nube de 

puntos, mediante el programa GeoGebra, permitió a los estudiantes operacionalizar su idea 

intuitiva de cercanía de una recta a los puntos y entender cómo se combinan los datos para dar 

lugar a la recta de mejor ajuste.  
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En resumen, los estudiantes conceptualizan transitando por experiencias que incluyen 

nociones de irregularidad, tendencia de la nube de puntos, residuos, distancia de una recta a un 

conjunto de puntos y minimización de dicha distancia, facilitadas por el uso de la tecnología. 

Aunque responden a diferentes niveles, la tendencia es captar la recta de mejor ajuste como un 

agregado. Además, este trabajo propone una trayectoria que ayuda a los estudiantes a 

comprender los conceptos que les permiten construir la recta de mejor ajuste, especialmente la 

idea de distancia basada en el concepto de residuo, facilitando así una vista agregada del 

conjunto de datos en relación con la recta de mejor ajuste. Queda pendiente desarrollar las 

componentes de variabilidad e inferencia en relación con la recta de mejor ajuste y explorar en 

futuras investigaciones una actividad similar, pero con distancias cuadráticas en lugar de lineales. 
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Short-term professional development courses with specific domain learning outcomes are 

useful to revise concepts that have changed and inform in-service teachers how they can exploit 

the affordances of technology to enhance their classroom practices (Ling, 2014). We investigate 

how teachers develop knowledge of students' reasoning about sampling distributions within a 20-

hour on-line course. Our research question is: how teachers' understanding of student reasoning 

through simulated sampling distributions emerges? 

Conceptual framework 

Informal Approach to Significance Tests for Proportions 

We utilize simulated sampling distributions (SSD) to model scenarios assuming the null 

hypothesis is true, thereby estimating p-values without complex formulas. This approach is 

feasible for high school students without advanced mathematical tools (Case & Jacobbe, 2018). 

Students’ Understanding of SSD 

High school students’ conceptions evolve from interpreting SSD as real samples to viewing 

SSD as a pattern of variation. This is an abstraction process (Sepúlveda & Sánchez, 2023). 

Methodology and Results 

The research was conducted with 16 experienced high school teachers during a 20-hour on-

line professional development course. Teachers analyzed typical student responses to 

significance testing problems to interpret their reasoning. Here we compare two activities, both 

designed to improve teachers' ability to understand student reasoning in the context of SSD. 

Problem 1: Teachers analyzed a student response where students misinterpreted SSD as 

representing real samples and based their conclusions on frequency without considering 

uncertainty. The analysis revealed that teachers' initial responses were mostly descriptive and 

evaluative, lacking deeper inference into students' reasoning. 

Problem 3: Teachers assessed a response where students correctly used SSD to estimate the 

p-value but made an incorrect decision about repairing a machine. Here, teachers showed 

progress by making more detailed inferences about student reasoning, though still struggled to 

fully explain students' incorrect decisions. 

Discussion and Conclusions 

The study shows that teachers' ability to interpret students' reasoning improves through 

targeted professional development. Initially, teachers focused on what was absent in student 

answers. However, with guided activities, they began to attend more to students' reasoning. This 

progress is attributed to the design of the course, which emphasized interpreting students' 

implicit judgments (Brandom, 2000). Two main lessons emerged: a) Interpreting students' 

reasoning with SSD is challenging for teachers due to a tendency to prioritize their own content 
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knowledge because of their lack of experience with this approach. b) Teachers can improve their 

ability to interpret student reasoning, but more extensive effort is needed to develop this habit. 
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To create opportunities for meaningful applications of data-science for diverse students, we 

developed and implemented an online learning module focused on engaging students at a 

Hispanic Serving Institution (HSI) in an analysis of authentic soil data. Development of the 

module occurred over three design iterations involving interviews with 10 undergraduate STEM 

students. We then implemented the finalized module in three undergraduate microbiology 

classrooms (N=118) using a pretest, posttest, comparison group quasi-experimental study 

design. Findings revealed that, after adjusting for key variables, the intervention group 

demonstrated significantly greater microbiology knowledge than the comparison group. Path 

analyses revealed indirect effects of the intervention through value and interest in STEM.  

In today’s world, data is ubiquitous and data literacy is essential across industries (Börner et 

al., 2019). However, traditional data science courses are not meeting students’ needs (Baumer, 

2015), and racial diversity in STEM is lacking (Cruz et al., 2018; Fry et al., 2021; NSF, 2015). 

This project aimed to enhance STEM learning among Hispanic students by leveraging their 

cultural resources (Gonzalez et al., 1995; Wilson-Lopez et al., 2016). We developed an online 

module on soil microbiology, utilizing data science tools to engage students at a Hispanic 

Serving Institution (HSI) and assess their impact on STEM learning and motivation.    

 

Theoretical Framework 

To frame how data visualizations can support science learning for Hispanic students, we 

integrate theories of Conceptual Change, Data Visualization Literacy, and Expectancy Value. 

Conceptual change theory posits that presenting people with novel information can shift their 

conceptions about science topics to be more aligned with the scientific consensus (Dole & 

Sinatra, 1998). For example, the Plausibility Judgments for Conceptual Change model (PJCC; 

Lombardi et al., 2016) suggests that people process information better if it is comprehensible, 

coherent with prior experiences, compelling, relevant, and stems from credible sources. People 

then judge the plausibility of associated claims and restructure knowledge as a result. Plausibility 

judgments involve more explicit processing depending on learners’ motivation, engagement, and 

emotion, which then predicts the likelihood that conceptual change will occur.  

The Expectancy Value Theory (EVT) helps frame motivational factors, and proposes that it is 

driven by learners’ expectancy for success and task value (Eccles et al., 1983; Wigfield et al., 

2017). According to EVT, there are four different types of task value: intrinsic value is when a 

learner values a task because they find the activity enjoyable for its own sake, attainment value is 

perceived personal importance of a task as it relates to one’s identity, utility value refers to 

perceptions that a task may be useful to a learner to achieve their present or future goals, and cost 

is the extent of time and effort that is perceived to complete a task. Utility value interventions— 

especially those that are personal and relevant to students—can significantly enhance value, 

interest, and learning, particularly for underrepresented students (Harackiewicz et al., 2016). 

The Data Visualization Literacy framework (DVL-FW; Börner et al., 2019) suggests that data 
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visualizations can help ground abstract concepts. Accordingly, a central process required to 

interpret data from visualizations is translating relevant problems of interest into problems of 

data. As such, our project aimed to leverage students’ knowledge to contextualize data.  

We synthesized these theories in a process model (see Figure 1) to inform our intervention 

development and that we also tested using path model analyses. The model predicts that an 

intervention intended to expose students to compelling and comprehensible microbiology data 

would trigger motivational processes (i.e., improve utility value, expectancy, attainment value, 

and reduced cost), which would activate mechanism variables (student interest and engagement), 

which would predict increased learning outcomes (i.e., microbiology knowledge). Furthermore, 

we sought to facilitate change by centering learning around compelling topics that students found 

relevant, and supporting data literacy to improve data comprehensibility.  

 

Figure 1. Intervention Logic Model of Conceptual Change, Motivation, and Data Literacy 

 
 

To test this theoretical model, we designed and tested an interdisciplinary learning experience 

for undergraduate students at an HSI. We addressed the following research questions:  

● RQ1. How can a learning intervention be developed to leverage undergraduate students’ 

motivation for the learning of soil microbiology and data literacy skills?  

● RQ2. To what extent will such an intervention support students’ microbiology 

knowledge, data literacy skills, engagement, interest, and task value in STEM? 

● RQ3. Will the hypothesized relationships between task value processes and achievement 

outcomes be mediated by mechanisms of interest and engagement? (See Figure 1) 

This project addressed these research questions through two studies. The first was a 

formative study focused on creating an online module and the second was a comparative study 

testing the effectiveness of this intervention using quasi-experimental research.  

 

Study 1: A Design-Based Research Study 

To answer the first research question, we used a design-based research (DBR) approach to 

guide the development and revision of an interactive online intervention (Hoadley & Campos, 

2022) on soil microbiology. The re-design, implementation, and revisions occurred over several 

iterations, resulting in an open-source module for undergraduate microbiology students. The 

module introduces students to the Tiny Earth Initiative (Hurley et al., 2021), which focuses on 

identifying new antibiotics in soil. It includes information on the antibiotic resistance crisis, 

microbial ecology, data visualization tools, and interpretation of soil data visualizations. 
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We conducted 10 recorded cognitive interviews (Desimone & Le Floch, 2004) via Zoom 

with a convenience sample of undergraduate students at an HSI in Summer and Fall 2023. 

Students self-identified as Female (70%), Male (20%), Nonbinary (10%), Hispanic (50%), White 

(40%), Black (10%), Asian (20%), and English Learners (30%). Interviews focused on student 

feedback to guide revisions of the module and surveys. Zoom recordings were transcribed and 

open-coded (Corbin & Strauss, 1990) to examine student engagement and learning.  

RQ1 Results: A Module for Soil Microbiology Data Exploration. Revisions focused on 

improving interactivity, engagement, visual appeal, and ease of data and text interpretation, 

especially for English learners. The finalized intervention and surveys can be accessed using this 

link: https://www.softchalkcloud.com/lesson/serve/34E2zGcmQxaWZl/html. Ultimately, this 

version of the module was used in the second phase of the study. 

 

Study 2: A Quasi-Experimental Study Testing Effects of the Design 

To answer the second research question, we recruited 118 undergraduate students from an 

HSI in a southern U.S. state. Students reported their year of study (1% first year, 13% second 

year, 38% third year, 38% fourth year, 10% other), gender (76% Female, 21% Male, 1.7% 

Nonbinary, 1.7% prefer not to say), ethnicity (56% Hispanic), race (1% American Indian/Alaska 

Native, 13% Asian, 6% Black/African-American, 10% Two or more races, 58% 

White/Caucasian, 11% Other race), and whether they were enrolled in a STEM major (78% 

STEM major, 15% not STEM, 3% plan to enroll in a STEM major, 4% Other). 

The intervention group consisted of 101 students from two undergraduate microbiology 

courses and the comparison group consisted of 17 students from a separate course. All 

participants first completed a 12-item pretest questionnaire on microbiology knowledge and an 

item that captured students’ perceptions of the relevance of data science. 

After the pretest, learners either completed the module (treatment group) or continued with 

“business as usual” (comparison group). All participants then completed an identical post-test of 

microbiology knowledge and data literacy. Participants also completed a microbiology-specific 

interest scale (adapted from Hulleman et al., 2010), a Data-Science-specific interest scale 

(adapted from Hulleman et al., 2010), the Cognitive Engagement scale (Greene, 2015), and a 

Task Value scale (Kossovich et al., 2015). Internal reliability for all scales at pretest and posttest 

were judged using Cronbach’s alpha, and are reported in Table 1.  

 

Table 1. Descriptive Statistics By Condition and Intercorrelations Between Key Variables  

 
Note: *p < .05; **p < .01; ***p < .001 

https://www.softchalkcloud.com/lesson/serve/34E2zGcmQxaWZl/html
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We assessed if baseline measures differed by condition. Chi-Squared analyses showed 

gender, ethnicity, race, English speaking status, and STEM status were independent of condition 

(all p > .117). However, year of study (p < .001) and pretest knowledge (p < .001) were 

significantly lower in the control group. Thus, we included these as covariates in all analyses. 

Raw means, standard deviations by condition, and intercorrelations are in Table 1. 

RQ2 Results: Module Effects on Learning & Motivation. To assess the module's effects 

on knowledge, data literacy, engagement, interest, and value in STEM, we used multiple 

regression with robust standard errors. Predictors included the treatment condition, pre-test 

scores, and covariates. We predicted the module would improve outcomes due to greater 

comprehensibility, compellingness, and engaging information (Dole & Sinatra, 1998; Lombardi 

et al., 2016). Findings showed significant effects on posttest knowledge (β = 1.67, p < .001) and 

data science relevance before adjusting for pretest knowledge and year (β = .66, p = .012). The 

intervention promoted situated interest (β = 0.73, p = .014), value of science (β = 0.66, p = .029), 

and reduced perceptions of cost (β = -0.70, p = .013), but effects on initial interest and utility 

value were marginal. No significant moderation effects of gender or ethnicity interactions were 

found. A summary of the standardized regression coefficients, standard errors, and p-values for 

analyses can be found in the Supplemental Materials, Table S1 and Table S2.  

RQ3 Results: Path Analysis. We tested a model predicting process variables (utility value, 

expectancy, attainment value, cost), followed by mechanism variables (STEM interest), 

engagement (cognitive, affective), and academic outcomes (microbiology knowledge). Pretest 

knowledge and year of study were covariates. The model had satisfactory fit (RMSEA=.081, 

SRMR=.073, CFI=.982, TLI=.943, AIC=2209, Chi-Square=35, df=20; Hu & Bentler, 1999). 

Figure 3. Path Model with Significant Paths Shown  

 
Note. Only paths that are significant at the .05 level are shown, blue paths are used when coefficients are negative. 

All variables shown represent values at posttest. All coefficients represent standardized βs.  
Figure 3 shows the full path model with all coefficients. The intervention influenced 

motivation processes, significantly affecting reported utility value, attainment value, and cost. 

These motivational process variables were associated with mechanism variables: utility value 

was positively associated with situated interest, individual interest, and cognitive engagement; 

expectancy positively predicted situated interest, initial interest, cognitive and affective 

engagement; attainment value positively predicted situated and initial interest; cost negatively 

predicted situated interest. Of the mechanism variables only individual interest significantly 

predicted microbiology knowledge.  

 

Significance 

We aimed to develop and test an online learning module for microbiology students at an HSI 

to enhance STEM learning and motivation. Students using the module had greater posttest 

https://docs.google.com/document/d/1VhdcyDy35aIaZi3pJnIB-hYJosFC6ZB1mrZgYi0X1yo/edit?usp=sharing
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knowledge, perceived data-science relevance, science interest, situated interest, utility value, 

decreased perceptions of cost compared with a comparison group. Findings support prior 

research showing that interventions supporting perceptions of utility can enhance motivation and 

achievement in STEM. We also tested predictions by Hulleman and Harackiewicz (2021), 

finding that value perceptions significantly predicted psychological mechanisms, which 

predicted achievement outcomes. The intervention had marginally significant indirect effects on 

achievement through attainment value and individual interest, indicating that interest and 

engagement may be important mechanisms for expectancy and value.  

In summary, this study supports a long-term agenda focused on interdisciplinary STEM 

applications for Hispanic students, contributing to theory and practice by testing conceptual 

change models, exploring mathematical reasoning in science learning, and producing a shareable 

intervention for science instructors and the public. 

 

References 
Baumer, B. (2015). A data science course for undergraduates: Thinking with data. The American Statistician, 69(4), 

334–342. 

Börner, K., Bueckle, A., & Ginda, M. (2019). Data visualization literacy: Definitions, conceptual frameworks, 

exercises, and assessments. Proceedings of the National Academy of Sciences, 116(6), 1857–1864. 

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. 

Qualitative Sociology, 13(1), 3–21. 

Cruz, A., Selby, S., & Durham, W. (2018). Place-based education for environmental behavior: a ‘funds of 

knowledge’ and social capital approach. Env. Ed. Res., 24(5), 627–647. 

Desimone, L., & Le Floch, K.(2004). Are we asking the right questions? Using cognitive interviews to improve 

surveys in education research. Ed. Eval. Policy Analysis, 26 (1), 1–22. 

Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. 

Educational Psychologist, 33(2-3), 109–128. 

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, 

values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives: 

Psychological and sociological approaches (pp. 75–146). San Francisco: W. H. Freeman. 

Fry, R., Kennedy, B., & Funk, C. (2021). STEM jobs see uneven progress in increasing gender, racial and ethnic 

diversity. Pew Research Center Science & Society. 

Greene, B. A., & Miller, R. B. (1996). Influences on achievement: Goals, perceived ability, and cognitive 

engagement. Contemporary Educational Psychology, 21(2), 181–192. 

Gonzalez, N., Moll, L. C., Tenery, M. F., Rivera, A., Rendon, P., Gonzales, R., & Amanti, C. (1995). Funds of 

knowledge for teaching in Latino households. Urb. Ed., 29(4), 443–470. 

Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2016). Closing achievement gaps 

with a utility-value intervention: Disentangling race and social class. Journal of Personality and Social 

Psychology, 111(5), 745. 

Hoadley, C., & Campos, F. C. (2022). Design-based research: What it is and why it matters to studying online 

learning. Educational Psychologist, 57(3), 207–220. 

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional 

criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. 

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest and performance 

with a utility value intervention. J. of Ed. Psychology, 102(4), 880. 

Hulleman, C. S., & Harackiewicz, J. M. (2021). The utility-value intervention. In G. M. Walton & A. J. Crum (Eds.), 

Handbook of wise interventions: How social psychology can help people change (pp. 100–125). The 

Guilford Press. 

Hurley, A., Chevrette, M. G., Acharya, D. D., Lozano, G. L., Garavito, M., Heinritz, J., ... & Handelsman, J. (2021). 

Tiny earth: a big idea for STEM education and antibiotic discovery. MBio, 12(1), 10–1128. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1472 

Kosovich, J. J., Hulleman, C. S., Barron, K. E., & Getty, S. (2015). A practical measure of student motivation: 

Establishing validity evidence for the expectancy-value-cost scale in middle school. The Journal of Early 

Adolescence, 35(5-6), 790–816. 

Lombardi, D., Nussbaum, E. M., & Sinatra, G. M. (2016). Plausibility judgments in conceptual change and 

epistemic cognition. Educational Psychologist, 51(1), 35–56. 

National Science Foundation (2015). Science and engineering degrees, by race/ethnicity of recipients: 2002-12. 

Arlington, VA. 

Wigfield, A., Rosenzweig, E.Q., & Eccles, J.S. (2017). Achievement values: Interactions, interventions, and future 

directions. In A.J. Elliot, C.S. Dweck, D.S. Yeager (Eds.), Handbook of competence and motivation (2nd 

ed.), Guilford, New York, NY (2017), pp. 116–134 

Wilson‐Lopez, A., Mejia, J. A., Hasbún, I. M., & Kasun, G. S. (2016). Latina/o adolescents' funds of knowledge 

related to engineering. J. of Engineering Education, 105(2), 278–311. 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1473 

STATISTICAL LITERACY OF UNDERGRADUATE STUDENTS IN MEDIA 

CONTEXTS 

Samuel Waters 

University of Northern Colorado 

samuel.waters@unco.edu 

Statistical and mathematical products in the news take on many forms, requiring inter-related 

skills to appropriately comprehend and evaluate (Gal & Geiger, 2022). This study used task-

based interviews to investigate how students in an introductory statistics course utilizing a 

simulation-based curriculum apply statistical concepts when critiquing statistics in the news 

media. Analysis identified students wanting more information, using intuition over statistical 

thinking, and challenges in connecting statistical ideas to critical questioning. Findings support 

the inclusion of media items in discussions and activities in introductory statistics courses. 

Keywords: Data Analysis and Statistics, Undergraduate Education 

With the pervasiveness of data in everyday life and ongoing uncertainties about the quality of 

information found in the media, statistics educators are concerned about how to prepare students 

to engage with data in meaningful ways (Burrill & Pfannkuch, 2023). Simulation-based curricula 

(SBC) have grown in popularity in introductory statistics courses (Tintle et al., 2015). Example 

applications in an introductory course include generating confidence intervals from bootstrap 

distributions and simulating null distributions to calculate p-values for hypothesis tests instead of 

using theoretical distributions (Lock et al., 2021). Advocates of simulation-based methods assert 

the methods allow students to see the logic and power of statistical interference (Tintle et al., 

2015). Researchers identified consistent improvements in students’ statistical literacy when they 

engage with SBC compared to engaging in more theory-based curricula (e.g. Chance et al, 2022; 

Maurer & Lock, 2016).  

While research calls for increased use of SBC in introductory statistics courses (Tintle et al., 

2015), research is less clear about how simulation-based methods help prepare students to 

engage with statistics in the increasingly complex media environment. This study brings together 

research on statistical literacy, SBC, and statistics in media to understand how students in 

introductory statistics courses engage with statistical information in media settings. Specifically, 

this study addresses the research question: what statistical topics do students in an introductory 

statistics course utilizing a simulation-based curriculum apply when critiquing statistics in the 

news media and at what level of statistical literacy? 

Methods 

This study adopted Watson and Callingham’s (2003) construct of statistical literacy, 

grounding statistical literacy in the need for understanding, interpreting, and communicating in 

real-word contexts such as the news media. Watson and Callingham developed a six-level 

statistical literacy construct. Each level is characterized by the types of task steps students take 

while engaging with statistical tasks. Progressing to higher levels requires more detailed use of 

statistical terminology and topics in connection with deeper engagement with the task’s context. 

Levels 1 and 2 involve mostly non-statistical thinking, instead relying on personal experiences 

and intuition. Levels 3 and 4 utilize statistical terminology and arguments with increasing 
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amounts of justification and connections to the task’s context. Level 5 and 6 incorporate critical 

questioning and engagement concerning the data and conclusions. 

Five undergraduate students (one male, four female), representing diverse academic 

programs, participated in one, 25 to 45-minute task-based interview. Participants were enrolled 

in an introductory statistics course utilizing materials which incorporated simulation-based 

methods (Lock et al., 2021). Each participant completed three tasks; each task had two parts. 

First, participants received a mock news headline and were prompted to consider how someone 

might arrive at the stated conclusion and discuss any questions or concerns. Headlines were 

provided separately because previous research suggested headlines are particularly important in 

communicating news and can influence the reading of an article (Adams et al., 2017). Following 

discussion of the headline, participants received a short article containing information about the 

statistics and evidence behind the claim made in the headline. Participants evaluated the statistics 

presented and considered questions or concerns they had.  

Designed tasks focused on statistical topics prevalent in the news (e.g., sampling and data 

collection) and topics related to simulation-based methods (e.g., variation, p-values, and 

hypothesis tests) (Chance et al., 2022). Each task incorporated multiple categories of statistical 

and mathematical products (StaMPs) in the news identified by Gal and Geiger (2022) to ensure 

tasks represented a range of statistical demands present in the media. Tasks incorporated five of 

the nine categories of StaMPs: (a) descriptive quantitative information; (b) models, predications, 

causality, and risk; (c) data quality and strength of evidence; (d) demographics and comparative 

thinking; and (e) critical demands.  

All interviews were transcribed and coded by the researcher. First-cycle coding involved a 

combination of descriptive coding to identify statistical topics, In Vivo coding to highlight 

participant thinking, and magnitude coding to assign a level on Watson and Callingham’s (2003) 

construct of statistical literacy. Second-cycle coding first identified ideas for each participant and 

then used pattern coding for cross-case analysis to develop major themes. 

Findings 

Participants (all names pseudonyms) mentioned the statistical topics of sampling, study 

design, and hypothesis testing at various levels of statistical literacy across the three tasks. 

Within the topics, additional themes included: wanting more information, relying on non-

statistical arguments, and struggling to connect statistical ideas to critical questions. Assigned 

statistical literacy levels are included in parentheses following any quotes. 

Participants frequently noted the lack of data, details, and numbers in the headlines and 

articles. For example, in the Blue Light task, which described two experiments with conflicting 

results, students had trouble evaluating the article’s claim with limited information. Requests for 

more details often focused on a lack of specific numbers, such as when Erich stated, “because the 

only statistic here is ‘over 200 participants,’ they’ve come to no conclusion” (1). Participants did 

not always recognize or acknowledge non-numerical information about study design and data 

collection as relevant to evaluating the statistical claims. Furthermore, participants rarely 

indicated the information they wanted. For example, in the Birth Rates task, Violet noted “I think 

they just have lack of data” (2). When asked about what additional data would be helpful, Violet 

responded “I think… probably more specificities like… I don’t know” (2). 

Participants’ initial reactions to the headlines often drew on intuition and personal 

experience. For example, Emma said “I wear blue light glasses when I’m studying” (1) before 
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sharing she thought they helped her. In most instances, these initial statements about the headline 

aligned with participants’ subsequent task responses after reading the article. For the GPA task, 

several participants were willing to accept the results being reported without engaging in 

statistical thinking. All participants demonstrated higher levels of statistical literacy when 

prompted by task questions and/or researcher but connections to initial reactions continued. 

Participants relied on their intuition more than statistical reasoning when evaluating the 

difference in GPAs between the two groups reported in the GPA task. Many quickly wrote off 

this difference as not significant without statistical justification (3), such as when Alex said, 

“point two is like one better exam basically” (3). Other participants used the word significant 

more colloquially as opposed to in a statistical way, even after being asked what significance 

meant to them. No participants questioned how much variation existed in the measures or 

connected significance to other conversations around hypothesis tests. Since participants did not 

find the difference to be meaningful to them, they appeared less critical of the results. 

While participants rarely used explicit statistical terminology, each participant touched on the 

topics of causation and confounding variables by offering alternative explanations for the 

reported relationships. For example, in response to the GPA task’s claim that breakfast improves 

student GPA, Claire pondered “does this have to do with when people actually wake up? Does 

this have to do with the nutritional aspect of actually eating breakfast… or just the internal factor 

of having the motivation to do things” (3). Alex (5) and Erich (5) demonstrated higher levels of 

statistical literacy on this topic by connecting their concerns about causation to the design of the 

study. Although participants appropriately questioned the causal claim made in the GPA task, 

participants used similar strategies for the Birth Rates and Blue Light tasks even when no causal 

claims were made or the study utilized a randomized controlled design. 

Without prompting, participants rarely commented on specific methods of statistical analysis 

such as conducting a hypothesis test. When asked how the conclusions in the headlines could be 

determined, participants offered comments about data collection such as “take a regular person 

without blue light glasses, and then take someone that uses blue light glasses and determine the 

effects” (Violet, 4) but comparison groups were not always discussed when prompted about 

hypothesis tests. Emma, Erich, and Alex described an appropriate null and alternative hypothesis 

when prompted, with Erich also connecting their hypothesis tests to the idea of a p-value, 

describing “when you really look at how big that difference is, it seems like it would really fall 

well within a standard of error of just an average null hypothesis” (5).  

Participants rarely mentioned ideas of simulation. One notable instance occurred with 

Violet’s work on the GPA task. After the researcher asked Violet about assessing the difference in 

GPAs from a statistical approach, Violet mentioned statistical significance, sketched a bell-curve, 

and marked an area that could represent a p-value. However, Violet was unable to connect her 

statistical knowledge to the context, stating, “it’s different because it’s on a graph and everything 

though” (3). Alex was the only participant to fully utilize ideas of simulation when during the 

Blue Light task, she explained a randomization distribution “accounts for all of the statistics that 

appear by random chance or coincidence if the null hypothesis is true….and if it’s outside the 

certain area, then it would be unlikely that is due to coincidence” (5). 

All five participants consistently implemented critical questioning when addressing sampling 

but not always backed by statistical reasoning. Many remarks addressed sample size, such as 

Claire noting “so you have 200 participants. That seems like a pretty good number” (3). While 
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most participants stated larger samples were better, not all could articulate why. For example, 

Erich explained, “it’s just a good rule to go with. When you can, always have more data to help 

support the evidence” (3). Alex responded at Level 6 regarding sampling, using it during the 

Blue Light Task as a possible explanation for the different findings, stating “so if [researchers] 

previously used less participants, then they had less data and the data that they received was 

probably more coincidental.” Alex did not utilize this reasoning during the birth rates tasks while 

Emma and Claire both explained how a smaller number of births could explain the difference in 

birth rates. Other comments on the sample related to how representative or generalizable the 

sample was, such as Emma stating, “because it’s at one college, it’s kind of dependent on just 

students at that college” (4). However, none of the participants mentioned the randomization of a 

sample in relation to representativeness. 

 

Table 1: Range of Statistical Literacy Levels by Task 

 Alex Claire Emma Erich Violet 

Birth Rates Task 2-6 (3) 2-6 (4) 3-6 (5) 2-5 (3) 2-4 (2) 

Blue Light Task 1-6 (5) 2-4 (4) 2-5 (4) 1-4 (4) 1-4 (2) 

GPA Task 1-6 (4) 1-5 (3) 1-5 (3) 1-5 (4) 1-4 (3) 

 

Table 1 identifies the range in the levels of statistical literacy for each participant’s task steps 

for each task. The number in parentheses following the range represents an overall level for the 

task determined by considering the levels of all the task steps across statistical topics. 

Discussion and Conclusion 

The study found students in an introductory statistics course demonstrated varying levels of 

statistical literacy across multiple statistical topics when engaging in critiquing statistics in the 

news media. Participants consistently demonstrated higher levels of statistical literacy regarding 

sampling. However, participants were far less consistent in connecting their understanding of 

study design, hypothesis tests, and causation to the context for critical questioning. Instead, 

participants frequently relied on intuitive, non-statistical thinking. Additional statistical reasoning 

was often made after specific prompting, suggesting participants had understandings of relevant 

statistical topics that were not initially applied. This finding aligns with previous research 

identifying that students demonstrate lower statistical literacy on assessment items that heavily 

incorporate relevant contexts (Phadke et al., 2022). 

Notable aspects of the media-based tasks contributed to participants’ display of statistical 

literacy during the interviews. Participants’ views about a headline frequently carried over into 

the critiquing of the article, sometimes including participants being less critical of information 

that aligned with their initial ideas. Adams et al. (2017) similarly noted how headlines can have 

an ongoing influence on readers. Participants identified the lack of details and specific numbers 

as a challenge to evaluating the statistical evidence behind the articles’ claims. Dealing with the 

uncertainty resulting from missing or vague information highlights the critical demands of 

statistical and mathematical products in the news (Gal & Geiger, 2022). 

The results have implications for future research and instruction. Researchers could consider 

adjustments to media-based tasks for richer discussion of statistical topics. Larger differences 
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between groups may elicit richer discussions since participants will not immediately dismiss 

results. Task development should consider balancing the amount of numerical information and 

vagueness so that tasks allow for application of statistical thinking while still representing 

realistic media contexts. Instructors and course developers of introductory statistics courses 

should consider incorporating media-based tasks into class activities and assessments. Doing so 

can highlight the use of statistics in real-world environments and provide opportunities to 

critically question claims using statistical thinking. Developing statistical literacy in media 

contexts is crucial to preparing an informed, critical citizenry ready to tackle a data-filled future. 
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In this paper we present findings from a design research study of an activity designed to engage 

teachers in critically reading a relevant data visualization. To help us capture the ways that the 

teachers were reading the data visualization we created a new framework for reading data 

visualizations from a critical statistical literacy perspective building from prior research. The 

two-dimensional framework is designed to capture types of reading (i.e. reading the data, 

reading between the data, reading beyond the data, and reading behind the data) intersected 

with layers of reading the word and the world with data (i.e. reading the word, reading the world 

personally and culturally, and reading the world socio-politically). We found participants 

engaging in every type and layer of reading data visualizations from our framework. However, 

they most frequently engaged in reading at the sociopolitical layer.    

Keywords: Data Analysis and Statistics, Teacher Educators, Design Experiments. 

Choice of Problem 

The reading of graphs of data has been often associated with statistical literacy (Gal, 2002), 

which has been included in the school mathematics curriculum of the U.S. over the past several 

decades (Scheaffer & Jacobbe, 2014). Past scholarship (i.e., Curcio, 1987; Friel et al., 2001; 

Shaughnessy, 2007) synthesized different ways that people engage in reading graphs and also 

shaped curriculum and guided scholarship on people’s understanding of reading graphs. 

However, the ways data is visualized has changed significantly over the past few decades due to 

technological advances and new forms of media. Wilkerson and Laina (2018) describe data 

visualizations as those that “use context rich and interactive methods to create narratives and 

allow users to explore data for themselves” (p. 1). This definition expands beyond traditional 

graphs to include new forms of data visualization, such as dynamic and interactive spatial 

displays of data or scrolly-telling, where data visualizations change as a person scrolls down an 

article on a device. With such advances in how data is visualized and presented to the public, we 

see a need to revisit old frameworks with new data and lenses to consider the realities of how 

people encounter data in the world today.  

Teachers, who are entrusted to enact the mathematics curriculum that students experience 

directly (Remillard & Heck, 2014), are at the forefront of curricular shifts such as updating how 

we teach and learn about data visualizations. As a result, in this study, we focus on a design 

research study of supporting mathematics teachers’ in critically reading data visualizations. 

Studying mathematics teachers reading of data visualizations is particularly important not just 

because they can shift the types of experiences students have with statistics, but because they 

themselves have often had few if any prior experiences learning statistics themselves 

(Shaughnessy, 2007). Additionally, past work has found that mathematics teachers are not 
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confident in their ability to teach the statistics concepts required in their state standards (Lovett 

& Lee, 2017, 2019). The emergence of data science entering the K-12 curriculum in many states 

(Drozda et al., 2022) has only increased the demand on mathematics teachers to incorporate data 

visualization into their curriculum.  

In this paper, we study the research question: How do mathematics teachers read a relevant 

data visualization? To help us capture the ways that the teachers were reading the data 

visualization, we created a new framework for reading data visualizations from a critical 

statistical literacy perspective (Author, 2017) building from prior research. We discuss 

implications for the design of data visualization activities for teacher education. This study 

addresses the theme of the conference, envisioning the future of mathematics education in times 

of uncertainty, by considering new ways of engaging in the reading of data visualizations, which 

is increasingly a crucial practice as a member of democratic societies that have become 

increasingly dominated by data in our current information age.     

Theoretical Framework 

Our framework is composed of two dimensions. One dimension is types of reading (i.e. 

reading, reading between, reading beyond, and reading behind), drawing from past scholarship 

that focused on people’s reading of graphs and supporting graph comprehension (Curcio, 1987; 

Friel et al., 2001; Shaughnessy, 2007). We found this dimension alone was insufficient to capture 

the different ways people read data visualizations, as past scholarship only took a disciplinary 

and objective look at graphs. From our critical statistical literacy perspective, what was missing 

was a critical epistemological perspective, which more recent literature has considered. Drawing 

from Lee et al.’s (2021) Call for a Humanistic Stance in Data Science Education, where they put 

forth three layers of such an education including personal, cultural, and sociopolitical layers, we 

added a second dimension of layers of reading practices where one layer captures the more 

technical disciplinary practices that we refer to as reading the word drawing from Paulo Freire’s 

(1970) literacy work and then two more layers that center on reading the world with one layer 

focusing on personal/community practices and the other is focused on sociopolitical factors. We 

also liken this perspective to the key aspects of culturally relevant pedagogy, where academic 

excellence maps to reading the word, cultural competence maps to reading the world with 

personal/cultural practices, and sociopolitical consciousness maps to reading the world 

sociopolitical practices (Ladson-Billings, 1995).   

To unpack the specific practices of our two-dimensional framework we first drew upon past 

scholarship on reading graphs (Curcio, 1987; Friel et al., 2001; Shaughnessy, 2007). Curcio 

(1987) created three types of reading graphs for educators to consider as they formulate tasks and 

questions aimed at improving students’ graph comprehension – reading the data, reading between 

the data, and reading beyond the data. The descriptions of these can be found in Table 1. 

Shaughnessy (2007) extended these reading levels to incorporate a fourth level – reading behind 

the data – to highlight the causes for variation in data represented in graphs and to make 

connections between the context of the data and the graph. Since then, numerous studies have 

used the reading levels framework to analyze news stories and student work with graphs, 

statistical tables, and maps (da Silva et al., 2021; Rubel et al., 2016). There is also important 

work from statistical literacy on reading in statistics such as considering how data is collected to 

determine what type of claims are warranted, when common forms of bias are present in the 

methods and other common methodological issue such as sample size (Bailey & McCulloch, 
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2023; Gal, 2002; Utts, 2003). These practices focus on disciplinary practices which we mapped 

to the reading the word layer of the framework.  

Reading the world facilitates an individual’s understanding of themselves, their culture, and 

their community (personal/cultural layer) as well as analyses of power, oppression, and structural 

inequities (sociopolitical layer; Freire, 1970; Gutstein, 2006). For example, Rubel et al. (2016) 

discuss how students often try to locate themselves in the data they are investigating. Rubel et al. 

(2021) extends their previous work by further considering the practices of narrating, formatting, 

and framing involved in taking critical reads of data visualizations. These practices describe 

considering the author's message in a data visualization and how they have highlighted certain 

aspects of the visualization to convey a message. Bailey and McCulloch (2023) also discuss 

practices such as acknowledging alternate explanations of the data and recognizing gaps in one’s 

knowledge of the context being explored that is needed to interpret the statistical message. Kahn 

et al., 2022) also went beyond previous work and additionally included the consideration of 

feeling and emotions in the reading of data visualizations. It is important to note that though we 

developed categories in our framework that we differentiate we see them as deeply interrelated 

where expertise consists of coordinating between different types of reading of data visualizations 

to read the word and the world. 

 

Table 1: Framework for Critically Reading Data Visualizations  

Reading Types  Reading the Word Practices   Reading the World   

Personal/Community 

Practices  

Reading the World    

 Sociopolitical Practices  

Reading the 

data  

  

Extract 

information 

from the data 

(Friel et al., 

2001)  

  

To recognize the components of 

graphs, the interrelationships 

among these components, and 

the effect of these components 

on the presentation of 

information in graphs (Friel et 

al., 2001)  

 

To speak the language of specific 

graphs when reasoning about 

information displayed in 

graphical form (Friel et al., 

2001)  

Looking for oneself in the data 

(Rubel et al., 2016)  

Look for source of data  

 

Look for author/affiliation 

of visualization  

 

Questioning why an 

author has highlighted 

particular aspects of a 

graph or left them absent   

Reading 

between the 

data   

  

Find 

relationships in 

the data (Friel 

et al., 2001)  

  

To understand the relationships 

among a table, a graph, and the 

data being analyzed (Friel et al., 

2001).   

 

Finding relationships or trends in 

the data visualized  

 

Recognizing the types of 

relationships (correlational or 

causal) can be claimed based on 

the data collection methods 

(Utts, 2003)  

Making sense of the data 

visualization in relation to one’s 

own personal experiences  

Questioning how and why 

the author has highlighted 

particular relationships in 

the graph (Rubel et al. 

2021)  
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Identifying the relationships 

highlighted in the graph 

(Framing; Rubel et al. 2021)  

Reading 

beyond the 

data  

  

Move beyond 

the data (Friel 

et al., 2001) to 

consider 

interpretations, 

inferences, and 

predictions/ 

extrapolations 

   

Interpreting information in a 

graph and answering questions 

about it (Shaughnessy, 2007)  

 

Predicting outcomes based on 

reasonable claims made from the 

graph (Shaughnessy, 2007)  

 

Making claims/inferences based 

on patterns and trends in the data 

to a population beyond what is 

represented in the data   

Making predictions/ claims/ 

inferences from the data 

visualizations by drawing upon 

one’s own personal 

experiences  

 

Recognition of one’s bias and 

its impact on interpreting data 

(Bailey & McCulloch, 2023; 

Author, 2017)  

 

Acknowledging possible 

Alternate Explanations (Bailey 

& McCulloch, 2023)  

 

Drawing upon personal 

experiences facing inequities in 

the interpretation of the data 

visualization (Bailey & 

McCulloch, 2023)   

 

Connecting to one’s 

feelings/emotions related to the 

data visualization (Kahn et al. 

2022)  

Making connections 

to  alternate explanations 

of others (Bailey & 

McCulloch, 2023)  

 

Recognizing the story, the 

author is trying to tell 

with this data (Rubel, 

2021)  

 

Questioning the author’s 

motives for telling this 

story (Rubel et al., 2021)  

 

Identifying structural 

inequities at play in the 

interpretation of the data 

visualization (Bailey & 

McCulloch, 2023)  

Reading behind 

the data   

  

Making 

connections 

between the 

context and the 

data 

(Shaughnessy, 

2007)  

Looking for possible causes of 

variation (Shaughnessy, 2007), 

based on the context being 

measured and the way the data 

was collected  

 

Looking for relationships 

between variables based on the 

context  

 

Recognizing appropriate graphs 

for a given data set and its 

context (Shaughnessy, 2007)  

 

Recognizing Appropriate 

Statistics & Appropriate 

Representations (Bailey & 

McCulloch, in 2023)  

Using your knowledge of the 

context of the data to interpret 

why particular patterns exist in 

data as well as data generation 

process   

 

Using knowledge of one’s 

community to interpret why 

particular patterns exist in the 

data to question aspects of the 

data generations process   

 

Questioning the investigative 

process undertaken based on 

personal experiences/identity  

 

Recognition of the gaps in 

one’s knowledge of the context 

needed to interpret the 

statistical message. (Bailey & 

McCulloch, 2023)   

Questioning sample size 

and methods (Bailey & 

McCulloch, 2023) and 

their impacts on 

inferences (i.e. practical 

significance vs. statistical 

significant; effect vs. no 

effect) (Utts, 2003)  

 

Recognizing when 

common sources of bias 

are present in the data 

collection (Utts, 2003)  

 

Recognizing and 

questioning the source of 

the data including what is 

quantified and how it was 

measured (Rubel et al., 

2021; Author, 2017)  
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Mode of Inquiry  

Research Design 

This qualitative study is part of a larger design-based research project (Bakker, 2018; Cobb et 

al., 2003) studying mathematics teacher’s development of critical statistical literacies for doing 

and teaching statistics. The work reported here is our fourth iteration of this framework. The 

seven participants in our study are high school math teachers recruited from a school district in 

the southeastern U.S. One of our participants was a district administrator. Six participants 

identified as a woman, and one identified as a man. Five participants identified as Black or 

African American, and two identified as white. The teachers’ years of experience include: two 

people with 4-7 years of experience; one person with 8-10 years of experience; and four people 

with 16+ years of experience. 

Design Activity 

The activity the participants engaged in was a modified notice and wonder activity on a data 

visualization that was published by the North Carolina Department of Public Instruction (see 

Figure 1). 

 

 

Figure 1: Data visualization published by the North Carolina Department of Public 

Instruction.  

Data Collection and Procedure 

Data sources included video recordings of the professional development session, daily 

written reflections by participants, and ongoing work samples. This comprehensive approach 

allowed us to capture the nuances and variations in how teachers engage with and interpret data 

visualizations. The data was collected over a two-week period of the professional development 

during the summer of 2023. This pilot study focuses on the first 15 minutes of a single 

introductory activity where the participants are given three questions to consider about a data 

visualization (see Figure 1): What do you notice? What do you wonder? How does this impact 

your community? Three members of the research team were present and helped facilitate the 

professional development and took on a researcher/participant role during the activity. 

Analysis 
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Participant and researcher utterances during the session were coded based on the critical 

reading data visualizations framework outlined in Table 1.. Three of the authors independently 

coded the responses, and a comparison was conducted. Differences in coding were discussed 

until the coders reached 100% agreement. This rigorous coding process enhances the 

trustworthiness and dependability of our analysis, providing a solid foundation for understanding 

the diverse ways in which teachers read and interpret data visualizations (Lincoln & Guba, 

1985). After coding, we then looked at the frequency of each reading type and layer represented 

in the data. We identified the patterns in the frequencies for further exploration. We arrived at our 

findings by looking at themes in the data analysis across reading type, layer, and participant. 

Once we identified patterns across the themes to develop our findings, described in further detail 

below.  

Findings 

We identified two main findings that answer our research question: How do mathematics 

teachers read a relevant data visualization? In our first finding, we discovered that teachers 

exhibited engagement across all reading types, with a noticeable emphasis on reading behind the 

data. Additionally, our analysis revealed that teachers engaged with all three layers of reading, 

with a predominant focus on the sociopolitical layer. For our second finding, we noticed that 

different participants engaged in different frequencies.   

Table 2 demonstrates the ways teachers engaged with the reading types and layers. Some 

reading types were taken up less often. For example, reading between the data was 

underrepresented at the word and personal layers, and no teachers engaged in the reading beyond 

the data at the word layer.  

 

Table 2: Counts and Precents of Code Occurrences for Each Dimension of the Framework 

for Reading Data Visualization  
 

Reading The 

data 

Reading 

Between the 

Data 

Reading Beyond 

the Data 

Reading Behind the 

Data Row Total 

Word 9 (16%) 1 (2%) 0 (0%) 3 (5%) 13 (23%) 

Personal 1 (2%) 1 (2%) 5 (9%) 5 (9%) 12 (21%) 

Sociopolitical 3 (5%) 9 (16%) 10 (18%) 10 (18%) 32 (56%) 

Column Total 13 (23%) 11 (19%) 15 (26%) 18 (32%) 57 (100%) 

Note: Percentage values have been rounded to the nearest whole number for clarity and ease of interpretation. 

The values in parentheses are the counts of each code’s occurrence. All percentages are out of the total of 57 

occurrences.  

 
In analyzing the various reading types, regardless of the layer (considering one dimension of 

our framework), we observed that teachers notably engaged in reading behind the data (18/57; 

32%), surpassing the percentages of other reading types such as reading the data (13/57; 23%), 

reading between the data (11/57; 19%), and reading beyond the data (15/57; 26%). For example, 

Leona's statement, "you see that important. It's also the vocabulary of median and average 

because if the community doesn't understand the differences," serves as one instance of reading 

behind data (from sociopolitical perspective) and that reflects her acknowledgment of the 
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significance of statistical terminology and the importance of understanding small differences in 

data analysis. By emphasizing the need for clarity and comprehension among community, she is 

making a connection between the data and its relevance to the community's knowledge and 

understanding in a way that it is important for everyone in the community to understand the 

numbers, so they know how that affects them.  

In examining the different layers, irrespective of the reading types (considering the alternate 

dimension of our framework), we found that teachers engaged in reading the data visualization in 

sociopolitical ways more than any other layer (32/57; 56% overall), compared to the personal 

layer (12/57; 21%) and the word layer (13/57; 23%). The reading practices in the sociopolitical 

layer focus on considering the sociocultural context of the data visualization, which the teachers 

have firsthand experience and background knowledge of. To illustrate this, consider the 

following statement from Nancy where she questions the relationships the author of the data 

visualization is highlight, “But glossing over the fact that we have the small print that says 

average and then, yeah, median and you're wanting me to compare those two.” Nancy goes on to 

read the data in a sociopolitical way combining her knowledge of the content with her 

knowledge of her community to point out that this approach is taking advantage of a common 

misunderstanding of the differences of means and medians and how the shape of a distribution 

impacts them, “they say the middle income the middle of this and they don't realize that, that 

middle is usually the median because we know the distribution is not going to be a symmetric or 

roughly symmetric right.” Teachers also read beyond the data unpacking the story they thought 

the author of the data visualization was trying to make and questioning the authors motives. For 

example, Anna stated, “I think this is designed to show that teachers are making more than most 

North Carolina incomes.” Some participants also began to make connections between the data 

visualization they were reading and how they could use it in their own teaching. For example, 

Melody said, "So I would have used this as a perfect example to my students of how we can 

make statistics say anything we want," where she is connecting issues of the story being 

presented how she could use this in her teaching.  

We also found that the teachers engaged in reading the data visualization in different ways. 

Three of the teachers did not engage in verbally describing their reading of the data visualization 

throughout the fifteen-minute activity. Interestingly, these were the teachers with the least prior 

teaching experience in the group, though all three had at least four years of prior experience so 

they were by no means novices. Of the five teachers that did verbalize their reading of the data 

visualization, three out of the five used sociopolitical more than any other reading type. Table 3 

provides a breakdown of each participant’s reading type and layer.  

 

Table 3 Instances of teacher engagement with data visualization activity 
   Nancy Anna Leona Natalie Melody 

Reading the 

Word 

Reading the data 2 3 2 2 0 

Reading Between the data 1 0 0 0 0 

Reading Beyond the data 0 0 0 0 0 

Reading Behind the Data 1 0 0 1 1 

Reading the data 1 0 0 0 0 

Reading Between the data 1 0 0 0 0 
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Reading the 

World 

Personal 

Reading Beyond the data 2 0 1 1 1 

Reading Behind the Data 3 0 0 1 1 

Reading the 

World 

Sociopolitical 

Reading the data 1 1 0 1 0 

Reading Between the data 3 4 0 2 0 

Reading Beyond the data 2 3 1 2 2 

Reading Behind the data 0 0 3 2 5 

Note. The columns in this table exclusively represent data for teachers who actively engaged in verbal 

communication during the activity. There were also three teachers who did not engage in verbal discourse during 

the specified period. 

 

Out of all the participants, Nancy used the most variety of reading types throughout the entire 

activity. Nancy’s engagement is significant because she engaged in almost every type of reading 

at every layer, which was not typically as evidenced in Table 2. For example, she was the only 

participant that engaged in reading the data and reading between the data at the personal layer 

evidenced in her statement: 

That's the question, does the data represent you? So you subscribe to an identity or something 

of that nature and but when you look for the data on that identity or whatever it is that are 

you representing it in that, like does it represent you, It's supposed to represent population or 

something like that. 

Nancy’s ability to clearly verbalize her reading of the data visualization was found across the 

activity and contributed to why so many of her utterances were coded from our framework. This 

also points to a limitation of our study in that we don’t know how the participants who were not 

as good at communicating their reading of the graph or chose not to communicate at all were 

engaged in reading the data visualization. This has implications for our design and pedagogy, 

which we discuss in the next section.   

Conclusions and Implications 

In this study we sought to explore how mathematics teachers read a relevant data 

visualization. Drawing from data collected from a larger design research project, we were able to 

begin to investigate our question and further refine a framework for reading data visualizations. 

Our framework allowed us to find interesting patterns in the video data we analyzed from the 

first 15 minutes of a design activity where teachers were engaged in a modified notice and 

wonder activity with a data visualization we specifically selected because it’s sociopolitical 

relevance to the teachers in our study. One finding was that the teachers engaged in reading both 

the word and the world in many different ways and in particular heavily engaged in sociopolitical 

readings of the world through the data visualization. This finding has implications for future 

design in that we hypothesize the reason for the participants’ reading predominantly through the 

sociopolitical layer was because of the relevance of the data visualization itself. The teachers 

demonstrated a desire to critically examine data beyond its surface level and show interest in 

uncovering underlying patterns, causes of variation, identifying biases in data collection 

methods, and understanding contextual factors.   

Another finding from this study was that the teachers engaged in reading the data 

visualization in different ways. Of particular concern for us was that three participants did not 
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engage in verbalizing their reading of the data visualization. As a contextual note this activity did 

occur early on in our larger study while we were working on building community amongst the 

participants and the participants that did not engage in this activity did so in future activities. 

However, moving forward, we see it as important to consider how to engage more of the 

participants in the discussion. We also noticed related to this that finding that of the five teachers 

engaged in the activity – four had 16+ years of experience. The people with the least experience 

engaged the least. This points to possible power dynamics that might be at play in the discourse, 

which was beyond the scope of our analysis, but we believe should be considered in future work.  

As data visualizations have become increasingly common in the media today, we see an 

increased need for teachers to engage in such data visualization activities and to translate them 

into meaningful experiences for their students as well. Furthermore, we believe our framework 

can be useful in helping research not only design activities in the future but to analyze the ways 

in which people engage in reading data visualizations. 
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Embodied learning pedagogy emerges as a promising approach in STEM education, but there 

remains a gap between experiments in the lab and practices in real classrooms. In particular, 

when learners come into the class for an embodied learning experience, their understanding of 

the concepts differs. We posit the Perform First Hypothesis, suggesting that performing physical 

activities benefits learners with less prior knowledge more than those with more knowledge. 

Results from a longitudinal classroom experiment that compares the effects of observing versus 

performing embodied learning activities in students with different levels of prior knowledge 

supports this hypothesis. We found a significant interaction between the levels of embodiment 

and learners’ prior knowledge. The findings shed light on the design of embodied learning 

experiences for learners with different levels of prior knowledge in real classrooms. 

Keywords: Curriculum Development, Embodied Learning, Statistics and Data Science Education 

Objectives of the Study 

Embodied learning pedagogies has emerged as a promising approach to fostering transferable 

knowledge. Yet, questions remain about the practical application of embodied learning in real-

world classroom settings. First, even if there is laboratory evidence that embodied pedagogy 

facilitates better learning of a single construct, what is its applicability and impact in a 

longitudinal course, encompassing a multitude of concepts? Second, with an increasing number 

of students traditionally outside the STEM sphere enrolling in STEM-related courses, could 

embodied learning be an effective strategy to help students with low prior knowledge?  

To begin answering these questions, we build up a theoretical framework based on current 

literature looking for clues about how embodied pedagogy might impact long-term learning of 

diverse learners. Then we detail the results of an in-class intervention experiment that exposed 

students to embodied learning activities for nine weeks. 

 

Theoretical Framework 

Embodied cognition frameworks assume that concepts are grounded in action and perception 

(Barsalou, 1999; Borghi & Pecher, 2011; Clark, 2008; Golonka & Wilson, 2012). Physical 

actions observed and performed during learning and encoding influence our mental 

representations as well as subsequent retrieval, reasoning, and problem-solving (Barsalou, 2008; 

Fu & Franz, 2014). Thus, it is crucial for classroom instruction to consider embodied pedagogies. 
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Although past research has demonstrated that an embodied pedagogy (e.g. gesture) is more 

effective than a non-embodied one (e.g. no gesture), we are early in our understanding of how 

and when embodied pedagogies influence learning (Goldin-Meadow & Wagner, 2005; Johnson-

Glenberg & Megowan-Romanowicz, 2017; Zhang et al., 2021, 2022). One important element is 

the treatment of prior knowledge, which is often controlled by random assignment or treated as a 

covariate in the lab. However, when learners come into a class, their understanding differs. This 

raises a critical question: How do interventions with different levels of embodiment impact 

learners with different levels of prior knowledge and experiences in the domain? 

To answer this question, we posit the Perform First Hypothesis: performing bodily actions 

will benefit learners with no or low prior knowledge in the domain more than learners with high 

prior knowledge. In other words, whereas traditionally in educational interventions, students’ 

prior knowledge of the concepts positively correlates with their performance after the 

intervention, performing embodied activities might mitigate or even eliminate this correlation.  

Our hypothesis is grounded in the perceptual symbols system theory: when people first have 

a perceptual experience, it activates neurons that are mentally stored as multimodal frames of 

perceptual symbols (Barsalou, 2008). Later, these frames can be activated and function as 

simulators that enable people to reactivate the same neural connections and simulate the original 

experience without bodily actions (Glenberg, 1997; Pezzulo & Calvi, 2011). However, if learners 

lack the prior experience to develop the simulator, they need to first perform the actions to gain 

the perceptual experience necessary for the multimodal representations to develop. 

Although how prior knowledge and the type of embodied intervention interact over time has 

not been directly examined for performing versus observing actions, past research has shown that 

low-prior-knowledge learners benefited more (1) from physical than virtual manipulation 

(Zacharia et al., 2012); (2) from concrete than abstract gesture (Congdon & Goldin-Meadow, 

2021); (3) from object manipulation than gesture (Congdon et al., 2018). In all cases, the more 

embodied pedagogy seemed to be more contributive for learners with low prior knowledge. 

However, those are highly controlled lab experiments. Because developing expertise in STEM 

domains is a prolonged process, a single intervention may not fully elucidate this interaction. 

The Current Study 

In the current study, we use embodied pedagogies to develop a lab curriculum of a college-

level introductory statistics course. Participants were randomly assigned to a partner. Within each 

dyad, one was randomly assigned to be a performer, who would perform hands-on activities, and 

another was assigned to be a recorder, who would observe and record their partner. We 

hypothesized an interaction between the types of embodied intervention (i.e. condition) and 

participants’ prior knowledge such that low-prior-knowledge performers would outperform low-

prior-knowledge recorders, but high-prior-knowledge performers would not. 

 

Methods 

Participants 

Participants were students enrolled at a large public research university, taking an 

introductory psychological statistics course. The course taught statistics from a textbook 

employing a modeling approach with R programming (Son & Stigler, 2023), delivered through a 

technology platform called CourseKata.org. The class was structured as two weekly lectures and 

https://www.sciencedirect.com/science/article/pii/S0732118X09000336?casa_token=Uudl7F8BpH8AAAAA:MrGzqgz3iOENIn6G-OOKGm6OCHlygjMEVxT52BlUhZQZF_5b46MkZdoXEGdZgVx3u0a8dof78tA#bib25
https://link.springer.com/chapter/10.1007/978-3-030-78471-3_23#auth-Eliza_L_-Congdon
https://link.springer.com/chapter/10.1007/978-3-030-78471-3_23#auth-Susan-Goldin_Meadow
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a lab session. The experimental interventions took place during the 50-minute lab sessions for 

nine weeks. Students were allowed to miss one session without losing participation points. 

Among the final sample size of 227, 171 students self-identified as female (75%), 49 as male 

(22%), and 7 as non-binary (3%). The self-reported race and ethnicity were as follows: 100 Asian 

or Asian American (44%), 8 Black or African American (4%), 47 Hispanic, Latino or Spanish 

origin (21%), 13 Middle Eastern or North African (6%), 46 White (20%), and 13 mixed/multi 

races (6%). 

Design and Procedure 

Each randomly assigned dyad were further randomly assigned to either the perform condition 

(n = 113) or the observe/record condition (n = 114). The performers were expected to perform 

embodied instructional actions designed to enhance learning. The observers observed and 

recorded these actions using their phone or tablet. Their role and partner stayed the same for the 

entire course. If a student’s partner could not make it to a lab, the student would be temporarily 

paired with another student while maintaining their role. Using a cover story, students were 

informed that we wanted to use their hand movement video to design a pedagogical agent. 

Starting Week 2, each lab starts with a set of “practice questions.” Students were given 6-10 

minutes to complete the questions through a Qualtrics survey. Half questions functioned as a 

delayed posttest, to measure what students have learned from the previous week. The other half 

functioned as a pretest to assess what students might already know about the to be taught 

concepts. Week 2 only had pretest questions, because Week 1 was a general introduction to the 

lab without embodied activities. After taking the survey, students engaged in a lesson that 

incorporated embodied activities consisted of object manipulation, gesture, and drawing. One 

activity example is cutting out a piece of paper with a dataset and used the pieces to perform 

“shuffling” and “resampling” (i.e. sampling with replacement). Based on assigned condition, 

they either performed or observed and recorded their partner performing these activities. 

Materials 

Each week, students received a paper worksheet and a Jupiter Notebook with coding 

activities. A description of the lab schedule and activities is available through Open Science 

Framework: https://osf.io/ntsr2/?view_only=ce650267f407451a9ea26abcb428d8f7. 

Measures 

Pretest performance / Prior knowledge. Participants’ pretest performance was measured 

using half of the practice questions administered to students at the beginning of each lab. There 

were four trained coders, and every question was coded by two coders to ensure inter-rater 

reliability. The rubric was jointly determined with the four coders and the lead researcher. Each 

question was worth one point, with half points given to correct but incomplete answers or those 

with minor misunderstandings. All coding was conducted blind to condition. 

Delayed post-test performance. Participants’ delayed post-test performance was measured 

using the other half of the practice questions. It was coded the same way as the pretest. 

 

Results 

Transparency in Data, Analysis, and Materials 

The deidentified data and analytic syntax are available through the Open Science 

Framework. The study design, hypotheses, and analytic plan were not pre-registered. 

Missing Data Handling 
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When students did not come to a lab, or if their partner was switched during a lab, their data 

for that week was treated as missing. We imputed the missing data using the Markov Chain 

Monte Carlo (MCMC) algorithm as implemented in the Blimp application (Enders, 2017). 

Three-Level Multilevel Modeling (MLM) 

We specified a three-level MLM. Level-1 was the repeated measures (the intraclass 

correlation coefficient (ICC) for the post-test performance = 68.8%). Level-2 was the students 

(ICC = 23.8%), who are nested in partners/dyads (i.e. Level-3, ICC = 7%). Below, we show the 

equation for the overall model (Raudenbush & Bryk, 2002): 

𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑖𝑗𝑘 = 𝛾000 + 𝛾010𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗𝑘 + 𝛾020 𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑗𝑘
𝑏.𝑐𝑔𝑚

+ 𝛾030𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗𝑘

∗  𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑗𝑘
𝑏.𝑐𝑔𝑚

+ 𝛾100 𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑖𝑗𝑘
𝑤 + 𝛾110 𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑖𝑗𝑘

𝑤 ∗ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗𝑘

+  𝛾200𝑇𝑖𝑚𝑒𝑖𝑗𝑘 + 𝛾210𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑗𝑘 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗𝑘 + 𝑢00𝑘 + 𝑟0𝑗𝑘+𝑒𝑖𝑗𝑘 

In above, 𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑗𝑘
𝑏.𝑐𝑔𝑚

 is the variation between each student’s average pretest performance, 

and  𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑖𝑗𝑘
𝑤  is the variation within each students’ pretest performance. Because the variation 

in pretest has both level-1 and -2 variation, the interaction between pretest performance and the 

condition was partitioned into the interaction between condition and each student’s average 

pretest performance (i.e. 𝛾030), which we will refer to as the level-2 interaction, and the 

interaction between condition and the variation within each individual’s pretest performance (i.e. 

𝛾110), which we will refer to as the cross-level interaction. 

We used maximum likelihood estimation and fit the model using Blimp 3. There was no 

significant level-2 interaction between condition and pretest performance (median = 0.09, 95% 

credible interval = [-0.15, 0.34], yet there was a significant cross-level interaction between 

condition and pretest (median = -0.12, 95% credible interval = [-0.22, -0.01]).  

We next probed the significant cross-level interaction at each condition. For observers, the 

correlation between pretest performance and delayed posttest performance was statistically 

significant (median = 0.11, 95% credible interval = [0.03, 0.18]). However, for performers, the 

correlation was not (median = -0.01, 95% credible interval = [-0.08, 0.07]). 

 

Discussion 

In the current project, we designed and implemented an embodied lab curriculum in a 

college-level introductory statistics course, testing how different embodied interventions impact 

learners with different levels of prior knowledge. We put forward the Perform First Hypothesis, 

which posits that learners who had low prior knowledge need to perform the activities to reap the 

most benefit out of the hands-on instruction whereas high prior knowledge learners can benefit 

similarly from observing a hands-on demonstration. The results supported our hypothesis: there 

was a significant correlation between prior knowledge and posttest performance in the Observe 

condition, but this correlation was not significant in the Perform condition. 

The findings also suggest a new research direction for the field of embodied learning. 

Beyond investigating merely the efficacy of embodied interventions, the current study informs 

the field to ask nuanced questions of what and when - what type of embodied pedagogies are the 

most effective, and are they the most effective? 

The contrast between performing and observing hands-on activities is not the only important 

comparison. We started with this distinction because they are both commonly seen in research 

and practice. The idea that “performing” is unique and foundational is not new. Piaget argued 

https://www.sciencedirect.com/science/article/pii/S0005796716301954?casa_token=bhXjcsYNZQEAAAAA:WMGHtOHAz8U5kz5MJdN1OZpfLoumrsOY-af6wxU0BHDsDCESvjKvy0yaA9blvoUpBAvVRR1HZQ#bib30
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that the sensorimotor stage of development is foundational to later higher-order thinking with 

abstract concepts (Piaget, 1983; Piaget & Inhelder, 1969). However, embodiment came likely 

through a continuum from purely abstract to highly embodied instead of distinct categories. We 

urge future studies to investigate other forms of embodied pedagogies to fully elucidate the 

question of “what” and “when.” 

Lastly, our findings have crucial implications for instructional design. Although teacher 

demonstrations are easier to implement in class, novices seem benefit more from performing 

physical activities. After giving students meaningful hands-on experience, teachers can then give 

demonstration or even more abstract instructions. Future research should continue exploring the 

nuanced ways in which different embodied pedagogies impact learners at different time points of 

their knowledge development, catering to the diverse needs of learners in in STEM domains. 
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In this era of big data, data science education involves immersing students in the context 

where data originates, profoundly influencing their interaction with data (Wilkerson & Polman, 

2020). As students encounter data not only within the confines of the classroom but also in the 

real world, this contextual immersion renders data science education inherently interdisciplinary. 

One way to explore this interdisciplinarity is to integrate data science education with the arts. 

Previous research has shown the potential enhancement of students' data science learning 

through the integration of arts  (Bhargava et al., 2016; Matuk et al., 2022). Despite this, the 

specific intersection of data and arts remains underexplored. Our research seeks to address this 

gap by investigating how students connect data and arts when creating artistic data 

visualizations. 

In light of the promising intersection of data science education and arts education, we 

designed a 14-week data-art inquiry program in an afterschool setting. 23 middle and high 

students, referred to as “data artists” (DAs), participated in this program. The program was 

structured in three phases: weeks 1 to 3 involved DAs reimagining and reinterpreting existing 

data visualizations to learn fundamental data science concepts; weeks 4 to 7 saw DAs creating 

their initial artistic data visualizations using data from local agencies; in the last segment of this 

program, DAs selected their topic, collected data, and created their own unique data 

visualizations.  

To answer our research question, we interviewed six groups of DAs to investigate how they 

incorporated data into their art creation after the program ended. Using an inductive coding 

method (Saldaña, 2009), we analyzed the interview transcripts to gain insights into their methods 

of integrating data and art. Our preliminary findings revealed three key insights. Firstly, DAs 

employed color coding to represent their data in their data visualizations, such as the left picture 

of Figure 1, where a group of DAs investigated people’s preferences for school lunch items, 

calculated preference scores, and used different colors for each item. Secondly, the sizes of 

artistic elements were used to signify differences in data sets, as seen in the middle picture of 

Figure 1, where a group of DAs explored the salary disparities between baseball coaches of two 

local universities and used logos with different sizes to show the difference. Lastly, the format of 

source data influenced the format of their artistic data visualization, exemplified in the right 

picture of Figure 1, where a group of DAs transformed qualitative data on text messages during 

an active shooting into a visualization format that resonated with its source. 
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Figure 1: School lunch, college coach pay, and gun violence 
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This paper explores how two undergraduate students come to the existential moment of 

expressing mathematics as magic. The “Experience” of a mathematical transitional moment 

might include feelings; however, our experience is normally considerably richer in content than 

simple feeling. This study investigates how undergraduate students face disequilibrium when 

they are involved in problem solving situations that call for exponential modeling. Further, it 

explores whether there is an alignment between experiencing disequilibrium and a conceptual 

accommodation to a new contextual situation. The analysis is guided by a concept projection 

perspective (diSessa & Wagner 2005; Wagner 2010). The results suggest that there is alignment 

between experiencing a cognitive disequilibrium and the process of conceptual accommodation 

as a form of learning.  

Keywords: Phenomenology, Knowledge Elements, Cognitive State, Concept Projection 

Introduction 

“What is mathematics?” This is a deceptively simple question that does not have a simple 

answer. To understand the philosophy of mathematics, we need to dig into the philosophy of the 

mind and the philosophy of language. The main goal of this research is to explore the 

epistemological foundations of the understanding of mathematics within a specific mathematical 

topic, focusing on individuals’ internal mathematical and linguistic reasoning processes. In this 

study, I aim to observe the moments in which individuals make sense of their activity and come 

to understand mathematical ideas. By understanding these moments, we might comprehend the 

epistemic forms of knowledge that learners activate and perceive through specific linguistic cues 

embedded in the context.  

The impetus for my dissertation study originated in my experience over six semesters of 

teaching Algebra II at a mid-western university. I observed that students were struggling to 

model exponentially in half-life type problems. However, I observed that in some problems that 

required a deeper conceptual understanding of the problem, there appeared to be a greater 

possibility that students would appropriately model exponentially. For example, students 

appeared more open to appropriately using exponential modeling in situations that involved 

interest rates or population growth/decay. These observations made me interested in studying 

how contextual variation can influence learners’ understanding of exponential modeling. 

 

Background 

Exponential functions are a difficult, yet essential, mathematical concept that play an 

important role in the study of advanced mathematics (Ellis et al. 2016; Weber 2002). Weber 

(2002) focused on students’ initial understandings of exponential functions. Weber’s main result 

from the work was that, although all students in their study could compute exponents in simple 

questions, only few students could reason about the process of exponentiation as a pattern of 

mailto:E-allahyari@wiu.edu
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change. Confrey and Smith (1994, 1995) introduced the idea of “splitting” structure as a 

multiplicative pattern, which opened an avenue for its application as a rate-of-change perspective 

and “covariation”. Building upon the notion of “covariational” thinking, Ellis et al. (2016) 

introduced an Exponential Growth Learning Trajectory (EGLT), which identified three stages of 

students’ conceptual development: pre-functional reasoning, the covariation view, and the 

correspondence view.  

Recognizing covariational thinking, which originated from the idea of split, is important for 

designing tasks to explore students’ understanding of exponential functions. However, a major 

gap in the study of exponential functions concerns how we can develop an understanding of 

exponential growth specified through contexts that are only associated with exponentiation. For 

example, as it is explained above, Ellis’ stages of developing an understanding of exponential 

growth lacks specificity with respect to the type of function. Covariational thinking is important 

for the learning of any function, not just exponential functions, and thus the question is: What 

features of a context can provoke exponential modeling?  

The results of Weber’s (2002), Confery and Smith (1994, 1995), and Ellis et al.'s (2016) work 

creates some essential questions in understanding exponential functions: Why do students 

encounter difficulty with reasoning about the process of exponentiation? Can contextual 

variations steer learners’ thinking specifically towards understanding the use of exponential 

models? How does students’ thinking in this domain confront cognitive conflicts 

(disequilibrium)? How do they move through the disequilibrium and equilibration of a new 

understanding? And how do learners experience these transitional moments?  

In this study, I attempt to investigate the moment at which students perceive mathematics as 

magic as a phenomenological experience. Phenomenology, not as a method but as a theory of 

studying experience in the stage of consciousness, is the study of phenomena as they appear in 

our experience of things and thoughts. Phenomenology studies the structure of various types of 

experiences, including embodied actions and linguistic activity, as different forms of social 

activities (Smith & Thomasson, 2005). For exploring students’ experiences of special transitional 

moments, we need to explore the appearance of knowledge resources as learners activate them. 

We need to investigate moments at which learners find mathematical validation for their 

reasoning, as well as identify and investigate different forms of embodied cognition to explain 

how students reach mathematics as magic.  

In the field of mathematics education, the epistemological descriptions of moments of 

disequilibrium, resolution, and satisfaction after a conceptual accommodation and new 

equilibration should be mathematical. Studying how students activate the knowledge resource of 

exponential modeling helped me to observe some moments in which, I believe, students 

experienced a certain type of cognitive disequilibrium and conceptual accommodation. 

Wondering about the following two questions led me to perform this study: 

 

1. How do students react to a possible disequilibrium between prior experience with linear modeling 

and their new understanding of exponential modeling?  

2. How do students undergo a process of conceptual accommodation when they are establishing or 

modifying a new existing scheme? What is the role of cognitive disequilibrium in the process of 

conceptual accommodation? 
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Theoretical Perspective and Conceptual Framing 

I sought a modern theory of learning that fits in with my overarching constructivist 

perspective, in which individuals’ internal process of actively constructing knowledge is 

foregrounded. In addition, I attempted to cover a phenomenological perspective to capture the 

whole mathematical experience resulting in the experience of cognitive disequilibrium and 

conceptual accommodation. Knowledge in Pieces (KiP) is a heuristic epistemological framework 

that is informed by Piagetian constructivism and cognitive modeling (diSessa, 1993; 2018). 

Moreover, knowledge activation and use in the KiP perspective is highly contextual, based on 

students’ perceptions of features of contexts.  

In further development of the KiP perspective, diSessa and Wagner (2005) describe the 

knowledge as a construct of concept projection. Wagner (2010) provided an extension of the 

theory of concept projection, which demonstrated Piagetian processes of assimilation and 

accommodation as compositional stages of concept projection. “Concept projections are 

collections of assimilatory and interpretive knowledge elements associated with some concept, 

and the construction of new concept projections reflects a process of conceptual accommodation 

to new contextual situations” (Wagner, 2010, p.451). I used this conceptual frame to investigate 

how students activate different resources of knowledge, especially when they attempt to reflect 

on a process of conceptual accommodation. In exploring how students come to model 

exponentially, it appeared that learners could build new knowledge elements—exponential 

understanding—which was the result of passing through multiple disequilibrium and 

accommodating the knowledge elements to particular contexts (Allahyari, 2023).  

Specifically, in this study, I analyze different cognitive states that include several transitional 

moments as well as show how context variation can influence learners’ knowledge activation. 

The unit of analysis in the current study are moments at which learners perceived context as an 

external cue and experienced different cognitive states, which are the collection of assimilatory 

and interpretative knowledge elements and a process of conceptual accommodation to new 

contextual situations. In other words, the core of my conceptual framework is to observe 

students’ mathematical experience through specific types of knowledge activation that might 

pass through disequilibrium and new concept projections that reflect a process of conceptual 

accommodation. 

 

Method 

This study is part of a larger study in which 14 students participated in at least one round of 

interviews. They participated in a problem-solving situation with four problems in the first 

round, which was the main problem-solving session. Data for this research was collected through 

the first rounds of interviews (45-100 minutes of problem solving). The interviews included 

screen sharing a specially designed set of slides I created through Desmos Activity Builder 

(DAB). Participants were undergraduate students who enrolled in an Algebra II at a large public 

midwestern university. I recorded with audio and video while they worked in DAB or a paper-

pencil situation in which they described their thoughts aloud as they worked on contextual 

problems involving exponential modeling.  

I observed and analyzed moment-by-moment thinking and reasoning processes in order to 

see fine-grained ideas of how students moved through experiencing a certain type of cognitive 

harmony, from experiencing a possible disequilibrium, to the possible process of conceptual 
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accommodation. There was special attention paid to capturing the moments in which learners’ 

patterns of knowledge activation were changed, the type of knowledge resource, the observation 

of confronting possible disequilibrium, a moment-by-moment report of facial expressions during 

the process of concept projection, and the recording of gesture expression.  

I asked participants to solve the problems in Table 1 and to explain their reasoning aloud. An 

analysis of explanatory language used during the interviews enabled me to recognize the pattern 

of reasoning and how learners experienced assimilatory cognizing moments or conceptual 

accommodation of different knowledge resources. I recognized a possible alignment between 

experiencing disequilibrium and new concept projections in context that call for exponential 

modeling.  

 

Table 1. Exponential Problems That Participants Worked on During the Interviews 

 

Title of Tasks Description of Contextual Tasks 

Baseline problem 

 
What does the function 𝑓(𝑥) = 𝑏𝑥mean to you? What do you 

think of when you see this function? 

People Diagnosed with 

Covid-19 in City A 

 

In City A the number of people who have Covid-19 increases by 

11% every 10 days. The initial population of people who are 

diagnosed with Covid-19 in City A is 1500. Create an equation 

that models this situation. 

People Diagnosed with 

Covid-19 in City B 

 

In City B the number of people who have Covid-19 decreases by 

11% every 10 days. The initial population of people who are 

diagnosed with Covid-19 in City B is 1500. Create an equation 

that models this situation. 

 

Analysis 

Coming to solve the problem of City A is the heart of this study, where we can see how 

students face multiple disequilibrium, attempt to find a local resolution through returning to the 

context and genuinely playing with the linguistic cues of the mathematical context, then 

accommodating a new understanding of the context. Out of fourteen participants of the larger 

study, three students stuck with linear modeling in all problems and did not experience any 

disequilibrium. Three other students already knew the exponential model (without deep 

reasoning, they modeled the problem as an exponential model, more like memorizing the 

exponential model for the specific population growth context). Eight students experienced some 

transitional moments, including a certain type of disequilibrium, when they ended up modeling 

exponentially in City A and City B problems. I observed that the first reaction to the City A and 

City B problem was expecting a linear model: 

 

Ken:                      After 10 days the population is 1500 times 0.11 plus 1500 which is 1665 

Interviewer:          Great! How about after 20 days? 
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Ken:                      It should be the same, but 2 times zero point 11; like this  

 1500 + 2 × 0.11 × 1500 

 

She continued to do the problem the same after 30 days before making a linear model. Before 

I felt that she was completely satisfied with the model, I asked her a question: “I just have one 

question, I can see that in each step you are going back to the original population (1500), but is it 

like 11 percent of the new population or the original one?” After she received the question, she 

stopped, looked around, then started to read the problem one more time, crossed out whatever 

she wrote, and then started from a new page, rewriting the information of the problem from the 

beginning and whispering important information as she was writing. As she was finding the new 

pattern for calculating the population growth, she was talking with me (or it was a laud self-talk):  

 

I can see that it should be the 11 percent of the new population…because it is increasing 

every 10 days, it means it should increase on an already increased population, not the original 

one. For example, the new increase for 20 days should happen on an already increased 

population.  

 

She eventually found the base of 1.11 by doing some mathematical procedures; eventually, 

she could generalize to an exponential model of 𝑓(𝑥) = 1500 × (1.11)𝑥. In the City B problem, 

I did not create a contradictory question to see if she could figure out the exponentiation process 

more independently. I could see that she was facing multiple disequilibrium when it was a 

declining situation. I believe she was experiencing two different cognitive state simultaneously. 

She was recognizing the similarities between the City A and City B problems. She knows that for 

20 days she should start from 1335—recursive dependency knowledge elements (Allahyari, 

2023); however, a declining situation as multiplicative/exponential process was violating her 

expectation. It seems that there is expectation of growth for a multiplicative situation for her. 

From one side she was activating assimilatory and interpretative knowledge elements 

(recognition of recursive dependency), form the other side she was experiencing a new 

disequilibrium:  

 

I know the population after 20 days should be 1335- 0.11 times 1335 which is 1188…I’m 

lost a little bit! I am not sure I am right, are we multiplying? Can we multiply, then it decreases? 

But the pattern should be multiplying by 0.89; there is no other way! It is 0.89 square times 

1500, so it is like the inverse of the City A problem, but a square is increasing or decreasing? I do 

not know! I think my brain is processing still! 

 

She was simultaneously reacting differently; like experiencing different feeling at the same 

time: Happy to recognize the similarity that has been explored enough in the previous context, 

while, not expecting multiplicative situation in a declining process. For a moment she closed her 

eyes and she said, “I am totally lost!”. I could not let her to stay in the very contradictory 

cognitive states. I realized that she needs a reliance point, a form of confirmation from the 

similarities she is recognizing. 

 

Interviewer:          So how is that multiplying after 20 days? 
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Ken:                      It is another 0.89 times the new population (1335) 

Interviewer:          And what is that? 

Ken:                      It is 1188 

Interviewer:          Do you want to check your model for 20 days? 

Ken:                     You mean (0.89)2 × 1500? 

Interviewer:         That’s the model you found, isn’t it? 

Ken:                     Yes! Let’s see! It is 1188! Oh Gosh! It feels like magic! Learning math is 

so interesting, why is it like this? For a moment I feel completely lost, but 

in a moment one thing makes sense then everything makes perfect sense 

and proves each other. I am serious! This is a major breakthrough. 

(Covering her eyes with both her hands, then whole her face). 

  

 I have observed that sometimes it is hard for students to expect a declining population to be 

modeled exponentially. Not only should they conquer their linear expectation, but they need to 

overcome expecting an exponential model that cannot show a declining situation. That is why I 

call this situation facing multiple disequilibrium. As I observed and watched students’ videos 

over and over, I realized experiencing disequilibrium is actually experiencing a “violation of 

expectation” that is usually experienced when learners attempt to accommodate a new concept 

projection. Here, the already settled expectation is a linear expectation, yet it is not satisfied by 

the linguistic cues of the contexts–City A and City B problems that should be modeled 

exponentially. I called this violation of expectation, when the context does not fit, experiencing a 

cognitive disequilibrium.   

Tom was a student who showed the manifestation of experiencing disequilibrium. When he 

was very close to seeing the exponential model in the City A problem, he instead strongly 

expressed his proportional expectation. In the middle of making sense of the structure, he left all 

his findings and faced a huge disequilibrium with satisfying a systematic and already established 

proportional scheme. He even saw 1.11 times 1.11 times 1500, but then instead of seeing 1.11 

squared times 1500 he stopped and said wait a minute and started to work on his paper: 

 

Tom:                      Am I doing so wrong? (very sad and disappointed) 

Interviewer:           Why? What did you find?  

Tom:                      I found 1.321 when I divided 1848 by 1500  

Interviewer:           What about the first 10 days 

Tom:                      That works well. 
1665

1500
  is 1.11 which makes a lot of sense.  

Interviewer:           What did you expect? 

Tom:                       I thought 
1848.15

1500
 should be 1.22 because it increases 11% each time 

 

I asked him to believe in himself because he was going to be surprised how smart he was. He 

found the population after 30 days and he multiplied 1.11 three times; then he could see the 

exponential model. “The Multiplicative Recursive Dependency well-imbedded in the context task 

appeared to help Tom to prefer working with his understanding of context rather than sticking 

with his proportional expectation” (Allahyari, 2023). He eventually could coordinate his 

perception of the situation with his strategy for calculating an increasing Covid19 population in 
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each step and to resolve an apparent contradiction in his thinking. He was so happy after seeing 

the model; it was like a cry of joy, but I went even further! I needed him to find a way to 

compare the exponential process with his expectation.  

 

Tom:                      So! f (x) would be: 𝑓(𝑥) = (1.1)𝑥 × 1500 Right? Cool. 

Interviewer:           Wonderful! Now, do you want to calculate what you find for 1.11 square?  

Tom:                      Sure! It is 1.321! What? What is that? Is it magic?  

 

He saw 1.321 again, but instead of being devastated like the first time, he was joyfully asking 

if it was magic! This time, 1.321 was affirmation that his understanding of the context fit very 

well with the model that he created. When he found the exponential model, he stood up, and then 

sat; he shook his head three times and said: “Oh - that is so cool! I made it - I found it!''; then, 

seeing 1.321 completed his joy. He was laughing loudly, asking, “Is it magic?” I call this moment 

an existential moment resulting from a mathematical change. He eagerly got validation for what 

“he found'' from the second problem, City B.  

For the City B problem, it seems to me that Tom was in an assimilatory situation in which he 

needed to assimilate the situation to his vision about exponentiation. He did not experience any 

major disequilibrium; he was productively struggling to find 0.89 as the base, but that struggle 

was not like an “earthquake” to violate his expectation. He was expecting an exponential 

situation, but it was challenging to find the base. Eventually, he could find the model in this 

problem too, but there was not a cry of joy after he modeled exponentially. He was clearly happy, 

his eyes were shining, but he did not ask about any magic; it was more an assimilation of a 

projected concept.  

 

Discussion  

This study is part of a larger study in which eight undergraduate students came to experience 

productive disequilibrium, accommodate new understandings of the situation, and generalize 

problems to make abstract models. Among all eight undergraduate students, Tom and Ken stated 

a specific form of expression in the final steps of modeling situations: “Is it magic?” They both 

showed specific types of cries of joy and happiness in their facial and body gestures. I believe 

they were experiencing the moment of mathematical eureka through coming to understand and 

activate knowledge resources of exponential modeling. Tom participated in one round of 

interviews, while Ken participated in two rounds of interviews. 

Tom was the first student in whom I observed a special harmony in his resistance to the 

population growth problem (Table 1). For the City A problem, Tom experienced a disequilibrium 

(expecting a linear proportion), resolved the disequilibrium by genuinely working with context 

and refining the linguistic cues, accommodated a new understanding of the situation, and finally 

generalized the problem to make the abstract models. Ken was one of six students who went 

through problem solving with seven problems and two rounds of interviews. There is enough 

evidence that she experienced cognitive states that resulted in expressing mathematics as magic, 

including conceptual accommodation of a new concept projection at the end of the City B 

problem. After facing multiple disequilibrium, she said the same as Tom: “Is it magic or 

something? It seems I am doing magic, and you just light up to show me how I did it.”  
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When the concept projection and the interpretative knowledge element are more in the 

construct of new reflection as a process of conceptual accommodation, there is more possibility 

for a learners’ cognitive pathway that include facing cognitive disequilibrium. In other words, 

there is strong alignment between experiencing disequilibrium and a new concept projection. I 

believe we need to further explore what makes mathematics so interesting that students might 

joyfully express, “Is it magic?” One thing that this study proves is that passing through a 

cognitive disequilibrium seems a necessary step before a conceptual accommodation to the new 

contextual situation and realizing the beauty of mathematics.  

All eight students of the larger study who could model exponentially at the end of the City A 

or City B problems (in the first interview) first expected a linear model, but the linear model did 

not fit well with the context they were understanding. This was the moment at which they 

experienced disequilibrium, and it was manifested in Tom’s interviews very transparently: He 

was devastated when he divided 1843 by 1500. He needed to accommodate the new concept 

projection (exponential model); and a well-embedded Multiplicative Recursive Dependency 

(Allahyari, 2023) helped him to resolve the disequilibrium locally. Tom played genuinely with 

the context until he could model in a way that was confirmed with the context (conceptual 

accommodating to new contextual situations).  

 

Implication 

In the mathematics education field, such revelations about the interplay between context and 

students’ experience of context (the whole experience, which involves the knowledge resources 

participants activate and not just students’ feelings) is an important line of work that has practical 

significance with respect to teaching and learning. Besides exploring a dialectical movement 

between the epistemological investigation of learners’ cognitive development and the ontological 

exploration of specific features of linguistic contexts, this type of study can underscore the need 

for more epistemological investigations across disciplinary topics that may lend insight into the 

organization of learners’ perceptions and inferences.  
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Learning and teaching mathematics are crucial yet challenging, with racial and ethnic 

disparities persisting in academic success. White and Asian-American children often outperform 

minorities. Early math education is vital for national development, but many low-socioeconomic 

children lack numeracy skills. Framed by sociocultural theory, this study investigates parent-

child math experiences across four ethnic groups. Interviews with 20 pairs reveal themes like 

parental support and communication impact on children's interests. Parental experiences 

profoundly shape children's math interests, passed down through generations. Diverse parental 

attitudes prompt efforts nurturing mathematical curiosity. Communication, beyond verbal, 

bridges linguistic barriers and enriches parent-child bonds. This study adds to literature on 

parental involvement in math education and emphasizes collaboration among parents, children, 

and schools. Insights offer a basis for future research, promoting effective communication and 

equitable math proficiency. 

Keywords: Early Math Interest, Mathematics Learning Experiences, Parent Impact on Student 

Learning, Parent's Mathematics Learning Experience. 

The foundation of a child's initial math experience and identity is established within the 

home (Gozel & Toptas, 2018). According to the report by the National Mathematics Advisory 

Panel (NMAP, 2008), mathematical abilities in children develops during their early years, even 

before they enter kindergarten. Notably, when cultural values and parental involvement are 

acknowledged and integrated into classroom teaching methods, students, particularly those from 

marginalized cultures, tend to perform better (Hill, 2018). Consequently, parental involvement is 

a variable, among others that have a positive impact on children’s mathematics education 

(Dinkelmann & Buff, 2016; Kung & Lee, 2016; Temur et al., 2018). However, despite these 

factors, students in the United States continue to struggle with mathematics learning, as reported 

by the National Assessment of Educational Progress (NAEP, 2015). The strength of mathematics 

knowledge during kindergarten and a positive self-perception of mathematics serves as strong 

predictors of students' career choices in mathematics, science/math teaching, and STEM fields of 

study (Cribbs, 2012; Morgan-Smith, 2019). Understanding the variables that contribute to 

positive mathematics learning, particularly at a young age, remains crucial in fostering students' 

engagement in mathematics and related fields of study (Cribbs, 2012; Hren, 2015; Kiss, 2018). 

Thus, this study aimed to examine the role of parents' mathematics learning experiences in how 

they engage their young children in mathematics learning at home.  

Theoretical Framework 

Drawing from various theoretical perspectives, including Vygotsky's Sociocultural 

Perspective, Culturally Responsive Theory, and the Concept of Interest and Learning, this study 

aimed to explore how parental discussions about mathematics shape young children's 

mailto:kudiratt@aol.com
mailto:jiwonson@buffalo.edu
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mathematical interests (Bikner-Ahsbahs & Presmeg, 2015). Research suggests that parental 

attitudes and past experiences with mathematics significantly influence children's engagement 

with the subject, with memories and feelings about mathematics learning dictating parental 

views of themselves as mathematics learners (Antolin Drešar & Lipovec, 2017). Moreover, 

children's interest in learning mathematics is influenced by the opinions conveyed by their 

parents, highlighting the importance of parental communication in fostering a positive learning 

environment (Hand, 2003; Franke et al., 2007). Through a qualitative design, this study sought to 

delve deeper into what parents are saying about mathematics and how these messages are 

interpreted by young students, particularly in light of parents' past mathematics learning 

experiences. Furthermore, this study assumed that young children's interest in mathematics can 

be influenced by their perception of their parents' attitudes toward the subject.  

Grounded in Vygotsky's sociocultural perspective, the Concept of Interest and Learning, and 

culturally responsive theory, the research aimed to uncover the dynamics of parent-child 

interactions regarding mathematics (Rosa & Tudge, 2013; Eccles, 2014; Gay, 2018), these 

theories acceded to the crucial and significant role the home environment plays in a child’s early 

life development and learning (John-Steiner & Mahn, 1996; Rosa & Tudge, 2013; Vygotsky, 

1978); supporting the trajectory that human development, growth, and learning are ‘formally and 

informally’ impacted by their environment (Artigue et al., 2007, as cited in Lester, 2007, p. 

1025). Within these structures, social and cultural practices and identities are formed. Knowledge 

of mathematics that gradually crystalize in human/cultural practices and interactions as they 

occur in homes, (Artigue et al., 2007, as cited in Lester, 2007, p. 1025) give credence to how 

mathematics understanding is shaped during early life and development (Mohr-Schroeder et al., 

2017). Mathematics educators have the responsibility therefore, of understanding parents’ 

mathematics learning experience, how this experience is communicated, and its impact on young 

students’ mathematics interest; creating a deeper enabling environment for young students’ 

mathematics learning (Hand, 2003, as cited in Franke et al., 2007). 

However, despite the existence of the abundance of empirical studies on parental 

involvement of different constructs, little to no study exists in the body of literature on the 

construct of parental mathematics learning experience. The broad spectrum of the pedagogy on 

parental involvement captures the “home-based and school-based activities through which 

parents transmit their own skills, knowledge, attitudes, and values to their children. As a result of 

the complexity and multidimensional nature of the concept of parental involvement, parental 

experience appears absorbed in this construct. These constructs in research can be fully 

understood and captured with narrative (in-depth semi-structured or structured) interviews 

(Antolin Drešar & Lipovec, 2017). By understanding the role of parental communication in 

shaping children's mathematical interests, the study sought to contribute to the existing literature 

on mathematics education and inform strategies for promoting positive attitudes towards 

mathematics among young learners (Krapp, 1999; Renninger & Hidi, 2017). 

Methods 

Narrative inquiry allows for a nuanced exploration of parent-child interactions within the 

familial context (Bates, 2004; McMullen & de Abreu, 2011; Mruk, 2006; Mueller, 2019). 

Adopting a qualitative narrative design approach, drawing from a socio-cultural perspective and 

employing narrative inquiry methodology, this study sought to examine how individuals 

construct meaning from events in their lives, through meticulous examination of parents' stories 
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about their experiences with mathematics. The use of episodic interviewing techniques enables 

participants to recount specific events and experiences, providing detailed insights into the 

dynamics of parent-child discourse regarding mathematics. Narrative inquiry offers a 

comprehensive exploration of parent-child interactions within the family microsystem. 

Additionally, narrative inquiry addresses gaps in prior studies by offering a qualitative 

exploration of parent-child discourse, which quantitative measures alone cannot capture (Mohr‐

Schroeder, 2017). Grounded in theoretical frameworks such as Bronfenbrenner's Ecological 

Systems Theory and Vygotsky’s socio-cultural perspective (John-Steiner & Mahn, 1996; Rosa & 

Tudge, 2013; Vygotsky, 1978), and by analyzing narratives, this research aimed to deepen the 

understanding of the factors that shape young children's interest in mathematics, thereby 

contributing to the literature on mathematics education.  

Building on a previous pilot study, this research employs both deductive and inductive 

approaches to understand the relationship between parents' mathematics learning experiences and 

their children's interest in mathematics (Alli-Balogun, 2022; Bates, 2004). The pilot study 

identified key themes, providing a framework for the analysis in the present investigation. By 

addressing limitations identified in the pilot study and deepening our understanding of parent-

child dynamics in mathematics education, this research also aimed to contribute to the existing 

literature and inform strategies for promoting positive attitudes towards mathematics among 

parents and young learners (Smith & Johnson, 2010). 

Participants.  Kindergarten experiences can shape future math attitudes, impacting career 

success in STEM fields. Early math interventions benefit all children, especially those from 

underrepresented minorities and low socioeconomic backgrounds. To ensure diversity, this study 

recruited kindergarten children aged 4-6 and their parents. Participants included parents and 

children from African-American, White, Asian, and Hispanic/Latinx backgrounds. Forty 

participants, including 20 parents and 20 kindergarten children, participated in the study (see 

table 1). 

 

Table 1: Gender Distribution by Race/Ethnicity 

 

 

Race/Ethnicity 
Parents Children 

Female Male Female Male 

Asian/Pacific Islander 2 (5.0%) 3 (7.5%) 3 (7.5%) 2 (5.0%) 
Black or African American 4 (10.0%) 1 (2.5%) 4 (10.0%) 1 (2.5%) 
Hispanic/Latinx 5 (12.5%) 0 (0%) 1 (2.5%) 4 (10.0%) 
White 3 (7.5%) 2 (5.0%) 5 (12.5%) 0 (0%) 

 

Data Collection. This qualitative study employed narrative data collection methods to delve 

into the complex dynamics of parental experiences and children's perceptions of mathematics. 

The research methodology centered on semi-structured interviews, strategically designed to elicit 

rich narratives from participants. To ensure diverse representation, a stratified purposeful 

sampling approach was adopted, targeting participants from four racial and ethnic backgrounds. 

Efforts to recruit participants involved both word-of-mouth referrals and targeted outreach in 

public spaces frequented by families, such as parks and eateries. Interview sessions, conducted 

either in-person or over the phone, were tailored to accommodate the attention span and 
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comprehension level of both parents and children. Children's interviews were relatively brief, 

lasting approximately 10-15 minutes, while parents engaged in more extensive discussions 

lasting around 30 minutes. Throughout the interview process, meticulous attention was paid to 

maintaining participants' comfort and confidentiality. Audio recordings were used to capture 

participants' responses verbatim, allowing for thorough analysis. Additionally, follow-up 

prompts and post-interview communications were employed to clarify any ambiguities and 

ensure the accurate representation of participants' perspectives. Anonymity was preserved 

through coded identification numbers assigned to each participant, safeguarding their privacy 

throughout the research process. 

Instruments The interview protocol employed in this study adhered to established qualitative 

research methodologies, drawing on semi-structured questioning to facilitate in-depth 

exploration of participants' experiences and perspectives. A primary instrument utilized is the 

episodic narrative interview technique, comprising six steps outlined by Mueller (2019), which 

guides researchers in eliciting detailed narratives. This protocol, validated through a process 

involving parents and kindergartners not included in the study, enabled the collection of nuanced 

accounts regarding parental experiences with mathematics learning and children's interpretations 

of these experiences. The interviews are carefully designed to ensure clarity and depth, 

incorporating prompts and questions adapted from previous research studies and validated 

instruments such as the Mathematics Interest Inventory (MII) by Stevens and Olivárez (2005). 

Interviews with parents and children are conducted with sensitivity to their comfort and 

engagement, with children's interviews deliberately kept shorter to accommodate their attention 

spans. Thematic analysis, conducted using NVivo coding software, facilitated the identification 

and exploration of patterns and themes within the collected data, contributing to a comprehensive 

understanding of the research questions at hand. 

Data Analysis The analytical framework of this study was anchored in thematic analytical 

techniques developed by Braun and Clarke (2006), emphasizing the generation of in-depth data 

to foster a deeper understanding of early childhood mathematics learning. Through semi-

structured interviews and meticulous transcription processes aided by Wreally transcription 

services and Nvivo coding software, each interview was thoroughly analyzed to identify 

emerging patterns and themes. The study's objective was to amplify the voices of both young 

learners (kindergarteners) and their parents, exploring the impact of parents' mathematics 

learning experiences and discussions on their children's interpretation and development of an 

interest in mathematics. Thematic analysis, following Braun and Clarke's phases, allowed for the 

identification and exploration of significant themes within the collected data, offering insights 

into parental roles, children's interpretations, and the dynamics of math-related conversations 

within families. By engaging in this comprehensive analysis, the study sought to address 

overarching research questions regarding parental experiences, intergenerational transmission of 

attitudes towards math, and its implications for children's attitudes and interests in the subject. 

During the coding phase, meaningful patterns emerged, such as the importance of math 

education, the use of manipulatives, and parental involvement in understanding math concepts.  

Table 2 provides an excerpt of some of these codes generated from the data. 

 

Table 2: Sample Codes 

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1509 

Codes Quotes 

Math was taught as important “I think my parents teach me that [math] is 

very important.” 

Using toys as manipulatives “Counting blocks, toys sometimes.” 

Nurturing children's strengths and 

working on weaknesses 

“My parents were very supportive and 

nurtured us where our strong suits are, 

[and] recognized where maybe we were 

weaker.” 

Parents helped in understanding math “My dad would help me. He would help 

me try to figure out the equation.” 

 

These codes were clustered based on similarities, leading to the identification of initial themes. 

An example of an initial theme is shown in Figure 1.  

 

 

Figure 1:  Sample Cluster 

 Subsequently, the initial themes underwent a higher level of abstraction, forming broader 

categories of meanings reflective of common experiences among participants. The hierarchical 

organization of codes facilitated by NVivo software enabled the formation and management of 

initial themes. Thematic maps were created to visually represent the relationships among 

identified themes, contributing to a cohesive narrative of participants' experiences. Through this 

rigorous coding and thematic analysis process, the study aimed to provide clarity and precision 

in understanding the complexities of parent-child interactions regarding mathematics learning, 

shedding light on the factors shaping children's attitudes and interests in mathematics. 

Summary of Findings 

An analysis of the data after repeated reading emerged seven themes. Through semi-

structured interviews, participants shared their personal narratives with mathematics learning. 

Braun and Clarke’s (2006) phases of thematic analysis were used on the interview data, from 

which the themes emerged. The first research question resulted in three themes: (a) Supportive 

Environment, (b) Own Math Ability, and (c) Perceived Usefulness. The second research question 

revealed two themes: (a) Indirect Conversations through Parental Motivation and (b) Indirect 

Conversations through Parental Support. The third research question resulted in two themes: (a) 
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Parental Influence and (b) School Environment Influence. The themes and their definitions are 

presented in table 3 below. 

 

Table 3: Themes and Definitions 

 

Themes Definition 

Supportive Environment: 

Having support contributed to 

parents' experiences in learning 

math 

Parents who received support from parents, 

teachers, tutors, other family members and peers 

while learning math typically enjoyed the learning 

experience, while parents who did not receive or 

lacked support typically did not enjoy learning 

math 

Own Math Ability: 

Math ability contributed to 

parents' experiences in learning 

math 

Parents who perceived themselves to be good in 

math generally enjoyed learning math as a student, 

while parents who perceived themselves to lack 

analytical skills generally expressed disliking math 

when they were students 

Perceived Usefulness: 

Perceived usefulness of math 

contributed to parents' 

experiences in enjoying math 

Parents who perceived math was useful for their 

future careers and continued to apply math in their 

current careers generally liked math, while parents 

who did not find math useful generally disliked 

math 

Parental Motivation: 

Parents motivate their children 

to learn math 

Regardless of racial and cultural backgrounds, 

parents typically wanted their children to do well in 

math and help them become encouraged to learn 

math 

Parental Support: 

Parents support their children's 

math learning 

Regardless of racial and cultural backgrounds, 

parents generally provided the same or more 

support for their children while learning math than 

they received when they were students 

Parental Influence: 

Children's interest in math is 

influenced by parents 

Children typically expressed feeling good about 

math when their parents helped them with 

homework and integrated math activities in their 

everyday lives, and when they perceived that their 

parents liked math 

School Environment Influence: 

Children's interest in math is 

influenced by their experiences 

at school 

Teachers’ support for children in understanding 

math while at school influenced the students’ drive 

to remain engaged in learning math 
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Discussion and Implications 

It is widely understood that decisions, policies, curriculum are designed and developed in 

response to research findings and the significance of parents’ own mathematics learning 

experience on students’ mathematics learning and identity is not an exception which hitherto has 

little to no evidence in literature. The thematic findings of this study supported the theoretical 

notions of Vygotsky and Bronfenbrenner on human development, sociocultural perspective and 

learning (Bronfenbrenner, 1992; Vygotsky, 1978; 1995), and Epstein’s theoretical Model of 

School-Family-Community Partnership (Epstein, 1995). Vygotsky’s theory stipulated that, 

though a child can be “spontaneous”, meaning to understand or learn something on their own, 

there are other learnings a child gets only within an instruction, also known as “nonspontaneous” 

(Clarà, 2017, p. 55). Vygotsky described this type of child-adult collaboration as ‘Intellectual 

Imitation’, in which the adult forms a meaning, new for the child, and the child imitates that 

meaning (Clarà, 2017, p.55; Vygotsky, 1987, p. 210). Inferring to the type of parental 

involvement in kindergarteners’ mathematics learning as suggested by the thematic findings, this 

study draws attention to how teachers and the mathematics community can be guided in support 

of parents in advancing mathematics learning of young scholars.  

Further, the themes that emerged revealed that parent’s mathematics learning experience 

influenced their role in their young children’s development of mathematics interest. Parents’ own 

positive experiences of learning mathematics in school and their own parents' influence on their 

mathematics learning impacted their perceptions of the need to develop their children’s 

mathematics skills. Intellectual imitation does not always result in the formation of non-

spontaneous meaning (p.55). Subsequently, in this study, when the parent participants 

acknowledged that their role in encouraging and supporting mathematics learning of their child 

originated from their own positive mathematics learning experiences, influenced by their own 

parents, it could be identified as intellectual imitation. Further, it was stipulated by Vygotsky 

(Clarà, 2017) that a child attains a higher level of development when a series of spontaneous 

meaning is formed by the child from a non-spontaneous meaning that the child gathered from an 

intellectual imitation of adult-child instruction. This higher level of development is referred to in 

Vygotsky’s theory as the Zone of Proximal Development (ZPD) (Clarà, 2017) within which lives 

the possibility of the child attaining a higher level of development from a non-spontaneous 

encounter.  

The parents in this study generally perceived that their children needed to learn mathematics 

and that mathematics was an important life skill. The themes generated from the data revealed 

that parents may not necessarily orally communicate their mathematics learning experiences to 

their kindergarten children, however parents often helped their children become familiar, 

interested, and comfortable with mathematics.  

Limitations and Areas for Future Study  

The investigation into parents' discussions about math with their kindergarteners was framed 

within a socio-cultural lens, drawing on key theoretical perspectives such as Vygotsky's 

sociocultural theory and Bronfenbrenner's ecological systems theory. These frameworks 

provided a rich foundation for comprehending the dynamic interactions between parents, 

children, and their socio-cultural contexts. However, the generalizability of the research findings 

is inherently constrained by several factors, including geographical location, sample size, and the 

subjective nature of participants' responses, which may be susceptible to bias. While the study's 
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sampling strategy was purposive and incorporated a stratified random selection method to ensure 

representation of the socio-economic and ethnic diversity within the target population, its scope 

is inherently delimited to the specific context of kindergartners and their parents, rendering 

expansion of the results to broader populations questionable. Future research endeavors of this 

nature should consider designs integrating parent-child observations to mitigate the impact of 

subjective bias arising from self-reported accounts. 

The implications of this study extend to various stakeholders, including parents, educators, 

policymakers, and researchers. For parents and educators, fostering engagement in math learning 

through collaborative efforts and culturally responsive approaches is essential. Parental attitudes, 

both conscious and subconscious, are undeniably shaped by their historical encounters with 

learning mathematics, and enhancing parental involvement in their children's mathematical 

education could be achieved through rudimentary training programs. Additionally, educators 

should develop and implement culturally responsive mathematics curricula that recognize the 

impact of socio-economic disparities on students' math interest and integrate diverse cultural 

perspectives to create an inclusive learning environment. Policymakers should support the 

establishment of parent engagement programs and allocate resources for comprehensive 

professional development programs for teachers to address the diverse needs of students within a 

math classroom. Furthermore, future research directions should focus on promoting 

mathematical literacy, incorporating diverse math role models, and developing early intervention 

initiatives to nurture math interest among young children from various socio-economic 

backgrounds. Through collaborative efforts, stakeholders can create a supportive ecosystem that 

nurtures mathematical curiosity and enthusiasm, ultimately creating a more inclusive and 

equitable mathematics education environment. 

Conclusion 

This narrative inquiry, rooted in Vygotsky's sociocultural perspective, culturally responsive 

theory, and the nexus of interest and learning, delved into the intricate dynamics shaping 

kindergarteners' mathematical trajectories. Conducted with 20 parent-child pairs from diverse 

ethnic backgrounds, the study explored parental discussions about mathematics and their impact 

on children's perceptions and interests. It sought to bridge racial and ethnic disparities in these 

conversations, aiming to nurture curiosity and reverse declining minority participation in STEM 

fields. Key themes emerged, highlighting the profound influence of supportive environments, 

intergenerational transfer of mathematical skills, and the perceived usefulness of mathematics. 

These insights emphasized the critical role of parental engagement in fostering robust 

educational foundations and equal opportunities, illuminating pathways for collaborative synergy 

between parents, children, and schools to shape effective learning experiences and scholarly 

achievement. Moreover, the study revealed how parents creatively communicated their 

mathematical experiences to their children, surpassing verbal exchanges and embedding a legacy 

of positive mathematical attitudes for future generations.  
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“Sometimes I feel disappointed in myself, but I know I can always try again and get better.” 

Here, third grader Torrin described contradictory feelings about making mistakes in math; he felt 

disappointed and saw potential for improvement. His nuanced take reflects a dichotomy not often 

seen in adolescents’ relationships with mathematical mistakes (Bray, 2013; Cohen, 1990; Radatz, 

1980; Santagata, 2004). Teachers’ perceptions and use of errors in math class often lead middle 

and upper grade students to internalize errors as reflective of their capabilities (Son & Sinclair, 

2010). In turn, mistakes become detrimental to students’ mathematics identities (Martin, 2006; 

Steele, 1997) instead of being opportunities to learn. Research shows that when teachers do 

leverage mistakes as valuable sources for inquiry (Borasi, 1987; Kramarski & Zoldan, 2008), 

adolescent students are more willing to engage with difficult problems and explore their own 

errors publicly (Leatherwood, 2022). However, teachers often shy away from this model and 

instead avoid error exploration in fear of damaging students’ self-esteem or encouraging the 

reproduction of incorrect computations (Bray, 2013; Ma, 1999; Schleppenbach et al., 2007). 

Though literature has explored how young children learn mathematics (e.g. Kilpatrick et al., 

2001) and their dispositions towards mathematics (e.g. Beyers, 2011), young children’s feelings 

towards errors have not been extensively studied. This led us to ask, “How do early elementary 

school students feel about making mathematical errors?” 

The data for this study come from a dissertation project (Altshuler, 2022). Thirty 1st-3rd grade 

Chicagoland students participated in semi-structured interviews (Spradley, 1979) over Zoom in 

November 2020. As identified by their caregivers, 18 of the participants were female, and 12 

were male. Five were African American/Black, 5 were Asian, 2 were Hispanic/Latinx, 15 were 

white, 2 were multiracial, and 1 self-identified as Middle Eastern. Our conversations addressed 

students’ experiences with and feelings towards math; this study involved analysis of interview 

questions that focused specifically on students’ responses to mistakes. Using the identify-and-

eliminate (Radatz, 1980) and error-for-inquiry (Borasi, 1987) theoretical frameworks, we 

engaged in qualitative analysis, which included line-by-line investigation of students’ quotes, 

clustering of students’ responses by theme, and identifying patterns across the data set. 

Aligned with an identify-and-eliminate model, preliminary findings show that early 

elementary school students often experience negative emotions when they make mathematical 

mistakes. These negative sentiments are commonly directed at themselves–for not understanding 

the material, not completing the work accurately, or for facing consequences like receiving a low 

grade–and are similar to what is seen in the literature on adolescents’ feelings towards errors. 

However, unlike adolescents, the young students in this study also acknowledged their potential 

to change and grow, often expressing that they had the opportunity to try again after making a 

mistake. These sentiments are more aligned with an error-for-inquiry model. If teachers leverage 
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these sentiments and emphasize the opportunity to learn from mistakes, we can support students 

to build resilience, perseverance, and positive identities as mathematical sense-makers. 
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Global models of climate often consist of computer simulations that represent climate using 

mathematical equations carrying scientific meaning (Skovsmose, 2021). The mathematical and 

scientific foundations of climate models can provide opportunities to integrate mathematics and 

science instruction, fostering a deeper understanding of both subjects (Barwell, 2013). The North 

Atlantic circulation system, for example, has been modeled using systems of nonlinear 

differential equations, which are based on the salinity and temperature differences across the 

North Atlantic (e.g., Stommel, 1961). This model shows how ocean currents can slow due to 

rising temperatures and freshwater influxes from melting ice, limiting the flow of warmer water 

traveling to higher latitudes. With less warm water traveling to polar regions, equatorial regions 

remain warm as the polar regions become colder. To understand how students conceptualize such 

models, we examine undergraduate students’ mathematics and science sensemaking processes 

while working on a model of the North Atlantic current. 

We employ the Sci-Math framework (Zhao & Schuchardt, 2021) to understand how students 

engage in mathematical and scientific sensemaking during a climate modeling task. Scientific 

sensemaking can encompass how students interpret the meaning of variables and equations, as 

well as understanding the trends or patterns among such variables. Scientific sensemaking also 

includes how students point to mechanisms that explain how or why a scientific phenomenon 

occurs. Mathematics sensemaking can include how students complete mathematical procedures 

and identify mathematical rules to guide their calculations. It also includes how students make 

sense of the structure of an equation, the quantitative relationship between variables, as well as 

the underlying mathematical concepts behind an equation. 

We examine how undergraduate students enrolled in a biology course make sense of a model 

of Earth’s climate. During the climate model task, students adjust the initial values for 

temperature and salinity differences across the two regions of the North Atlantic, which affect the 

rate of ocean flow. Through discussing the stark contrast between initial conditions that create 

high and low water flow between two regions of the North Atlantic, students can make sense of 

the nonlinear behavior of climate systems by recognizing that the increasing global average 

annual temperatures do not always lead to higher temperatures everywhere on the planet. 

We collected data from students working in small groups on the climate modeling task. Data 

include written student materials and video-recordings of their group work. To analyze the data, 

we use a priori coding schemes from the Sci-Math framework (Zhao & Schuchardt, 2021). 

Preliminary results indicate that individuals notice patterns both qualitatively (i.e., general 

understanding of science concepts) and quantitatively (i.e., make sense of the rates of change and 

covarying variables). These results provide a springboard into understanding how the nonlinear 

dynamics of climate change can be taught in mathematics and science classrooms.  
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Math-anxious students exhibit physical, mental, and emotional symptoms. These symptoms often 

have short-term and long-term impacts on students’ mathematics learning. This research sought 

to understand the effect of inquiry-based learning versus lecture-based instruction on Calculus I 

students’ math anxiety. Findings revealed that the activities, such as collaborative work, 

optional and ungraded work, and the instructor’s caring nature decreased IBL students' anxiety, 

whereas the instructor’s readiness to explain the material in class when students asked 

decreased lecture-based students’ anxiety. However, the tests and exams and responding to the 

instructor’s questions in front of their peer increased groups anxiety. 

Keywords: Math anxiety, inquiry-based learning, collaboration.  

Math anxiety significantly affects students’ mathematics learning and academic performance. 

Students who are highly anxious exhibit physical, mental, and emotional symptoms. Physical 

symptoms include nausea, sweaty palms, and increased cardiovascular activity (Ashcraft, 2002; 

Chang & Beilock, 2016). Mental symptoms include an inability to concentrate and mind 

blanking (Plaisance, 2009; Ruffins, 2007). Emotional symptoms include extreme nervousness 

and apprehension (Mattarella-Micke et al., 2011). As a short-term consequence of these 

symptoms, students may dislike mathematics and take fewer mathematics courses, and in the 

long term, they tend to avoid mathematics and mathematics-related courses (Godbey, 1997; 

Hembree, 1990). Due to such impacts of math anxiety on students’ mathematics learning and 

performance, this research investigated the root causes of math anxiety and explore the potential 

interventions to alleviate it. As such, this study explored students’ perceptions and experiences of 

learning Calculus I via inquiry-based learning (IBL) versus lecture-based instruction and the 

impact of these instructional approaches on respective groups’ math anxiety. 

Literature Review 

Math anxiety has been a part of the human experience for a long time. The verse, 

"Multiplication is vexation ... and practice drives me mad," can be traced back to at least the 16th 

century (Dowker et al., 2016). However, it wasn't until 1957, when Dreger and Aiken introduced 

the concept of "number anxiety," that math anxiety began to receive increased attention. 

Subsequently, Richardson and Suinn (1972) conducted the first formal study of math anxiety, 

defining it as "feelings of tension and anxiety that interfere with the manipulation of numbers 

and the solving of mathematical problems in a wide range of everyday life and academic 

situations" (p. 551). Since then, research on math anxiety has been extensively investigated. 

Traditional lecturing, which is a predominant mode of instruction in college mathematics 

courses across the United States (Stains et. al., 2018) and is ineffective in helping students learn 

mathematics (Boaler, 2008), could be one of the possible reasons for evoking math anxiety 

among students. The lecture-based does not offer substantial opportunities for students to share 

each other’s ideas and experiences with their teachers and peers. On the other hand, IBL, which 
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is an active learning pedagogy, provides extensive opportunities for students where they can 

work in pairs or groups to make conjectures, gather information for problem-solving, and present 

their work to groups and to the whole class (Kogan & Laursen, 2014). Through a comparative 

study, Laursen et al. (2014) reported that students in IBL math-track courses achieved greater 

learning gains than their non-IBL peers in cognitive, affective, and collaborative areas. Similarly, 

Laursen et al. (2011) found that the IBL students were involved more in interacting with each 

other and with the instructor, and they were more involved in setting the course pace and 

direction. It is also reported that IBL enhances students’ conceptual understanding (Jensen, 

2006), communication skills, confidence, and self-efficacy (Laursen et al., 2011). Considering 

such benefits of IBL, this study examined the relative changes in the anxiety scores of Calculus I 

students’ using an abbreviated version of the Mathematics Anxiety Rating Scale (MARS-S).  

 

Methodology 

Research Background and Participants 

The sample of this study comprised of students who were enrolled in the Calculus I course 

and were taught using either IBL or lecture-based instruction during Spring 2021 at a university 

located in the Midwestern United States. Students who received IBL instruction were in the IBL 

group, and those who received lectures were in a lecture-based group. 

The IBL instructor usually began the class by welcoming students and briefing them on the 

activities for the day. When he had to introduce a new lesson, he would begin the class with an 

interactive lecture; otherwise, he directed students to work collaboratively in Teams breakout 

rooms, where they usually shared each other’s ideas and solved assigned problems. The 

instructor would visit each group and monitor their work. At the end, the students would return to 

the main room, where the instructor facilitated a whole class discussion.  

On the other hand, the lecture-based instructor began the class by asking if the students had 

any questions from the previous class. If they had questions, the instructor explained the 

concepts as needed. Then, the instructor usually began the lecture by solving preselected 

examples using the Notability app from his iPad. Occasionally, the instructor paused during the 

lecture and asked some questions to the entire class. Students were never sent to breakout rooms 

and were never provided opportunities for group discussions. 

Data Collection and Analysis 

This study was conducted in two phases. First, data were collected from 15 students in the 

IBL group and 23 students in the lecture-based group using the MARS-S as a pre- and posttest. 

Based on the change in anxiety scores from pre to posttest, 9 students from the IBL group (3 

greatly increased, 3 greatly decreased, and 3 did not change much) and 3 students from the 

lecture-based group (1 student from each category) were interviewed using semi-structured 

questions such as "Could you please describe your reactions when you felt anxious (e.g., sweaty 

palms, inability to concentrate, increased heartbeat)?" The data thus collected were transcribed 

using NVivo, a qualitative data analysis software, and several open codes were generated. Then, 

the codes were combined to identify various emergent themes. The results were then organized 

based on these themes. 

Results 
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In the following sections, I present the major findings from the analysis of the data obtained 

from the class observations and student interviews. In so doing, I compare the results from the 

cross-analysis of the IBL and lecture-based group’s data. 

The in-class group work and lecturing reduced IBL students' anxiety; out-of-class 

group chats reduced lecture-based students’ anxiety. IBL students experienced about 20% 

lecturing and 80% collaborative work in each class, while lecture-based students were fully 

lectured in each class, but some students managed to communicate via the GroupMe chat 

application. An IBL student said, “I think doing the task in a group reduced it for sure, and ... 

watching the videos in class, like that does not stress me out or anything.” Because of the 

collaborative learning opportunities, IBL students became closer to each other and were 

comfortable asking questions, responding to groupmates’ questions, proposing their solution 

strategies, and listening to their peers’ different perspectives. Such activities made them feel 

relaxed and also helped to reduce their anxiety. On the other hand, lecture-based students 

initiated out-of-class collaboration via GroupMe. A lecture-based student said, “We all try to help 

each other out [on GroupMe] so I would say it's very collaborative.” They maintained this 

throughout the semester, where they felt comfortable asking questions and responding to each 

other. The cooperation and mutual support received by these students during the chat reduced 

their anxieties and frustrations while learning Calculus I. 

Instructors' readiness to meet and help students at any time decreased IBL students’ 

anxiety; the long wait for the instructor’s email replies increased lecture-based students’ 

anxiety. The IBL instructor’s readiness to meet with students at any time and discuss their 

questions, concerns, or problems in and out of class decreased IBL students’ anxiety. IBL 

students felt comfortable asking questions to the instructor at any time—during class, at the end 

of class, right after class, or by scheduling a virtual meeting—and discussing their problems. 

They could approach the instructor at “eleven o’clock at night or 7:00 am that morning;” he was 

always ready to meet and talk with them. Students could also send their questions or concerns 

via email, to which he replied promptly. This kind of flexibility from the instructor made students 

calm down and reduced their anxiety. Alternatively, although the lecture-based instructor 

encouraged students to reach out to him with their questions, students had to wait for long hours 

for his email responses. Students were disappointed and frustrated by not receiving a response to 

their emails for several days. Liz, for example, mentioned, “We have an assignment that's due on 

Friday, and I need help. And I can't afford to wait three days for you [the instructor] to email me 

back because this piece of information is necessary for me to do 60 percent of the assignment.” 

Optional tasks and ungraded assignments decreased IBL students’ anxiety, and the 

overwhelming number of online homework problems, especially at the beginning of the 

semester, increased lecture-based students’ anxiety. In addition to the midterms, the IBL 

instructor engaged students in both optional and mandatory work, which was rarely graded. His 

pretasks were optional and ungraded but recommended for students to complete before each 

class. A student stated, “I know they're just used for practice and prep for the exams and for 

class. So, I don't feel as stressed about them.” However, the tasks, mock exams, and group 

competitions were mandatory and required to be completed during class but were rarely graded. 

Students did not feel stressed working with the optional and ungraded tasks and activities 

because they did not impact their grades; rather, these activities reduced IBL students’ anxiety by 

developing confidence and problem-solving ability. 
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Lecture-based students, on the other hand, experienced stress, frustration, and anxiety when 

they confronted so many online problems as homework assignments during the first week. A 

student stated, “He gave us homework assignments that had eighty-seven problems. ... But that 

was really the only thing that made me feel anxious about the assignments.” Students were 

anxious, thinking that they might continue receiving problems in the same manner. However, 

their anxiety reduced as the online homework problems decreased as the semester progressed. 

Both IBL and lecture-based students felt anxious about being called on during the 

lectures and whole-class discussions. Students in both groups experienced anxiety, specifically 

during whole-class discussions, thinking that the instructor might randomly call on them for a 

response at. An IBL student, Camila, stated, “The rest of the time, I am comfortable until he 

directly calls on me.” These students were worried about their colleagues’ judgments when they 

could not respond to the instructor's questions correctly and instantly. Likewise, lecture-based 

students were worried about being called on during the lecture for similar reasons. Unlike the IBL 

students, lecture-based students were usually busy “trying to write everything down” that the 

instructor wrote, and they experienced nervousness when they did not respond quickly to the 

instructor’s abrupt questions. One of the lecture-based students, Liz, stated, “Occasionally he 

would … call on someone, and if they wouldn't know, he'd be like, you should know this. I would 

be, like, woo, I should know this by now, which would freak me out a little bit.” 

Tests and quizzes, online learning, and proctored-track exams increased both IBL and 

lecture-based students’ anxiety. Both IBL and lecture-based students were anxious about 

learning online virtually and taking proctored-track exams. Although midterms and final exams 

were cumulative for IBL students, they were more anxious about taking the final exam than the 

midterms. “I was very confident going into it [exam]. And then, I started the test, and I felt like 

my mind just went blank, and I couldn't think.” Likewise, the lecture-based students were 

anxious about taking the tests and the final exams because they weighed the largest proportion of 

the overall grades. A lecture-based student reported, “I get anxious, especially when I'm taking a 

test; my heart races, and I feel like my throat sort of closes a little bit.” Also, lecture-based 

students were anxious to see a few questions on the exams because they would lose huge points 

if they did even a single problem incorrectly. 

Online learning was another aspect that induced anxiety among both groups of students. IBL 

and lecture-based students occasionally missed part of or the entire class due to poor Wi-Fi 

connections, which added extra pressure on students. Moreover, proctored-track exams caused 

anxiety among both groups of students. They were anxious about being watched by someone 

remotely and hearing a loud noise when someone asked clarifying questions to the instructor. 

Instructors’ questions increased both IBL and lecture-based students’ anxiety. Instructor 

questions—either during lectures or whole-class discussions—increased both IBL and lecture-

based students’ anxiety. Three out of nine IBL students said that they feared the instructor’s 

questions, specifically when they were unsure of the answers and were still processing the 

information. Maria said she is terrified of instructor questions, thinking of giving an incorrect 

answer in front of her colleagues who were not from her small collaborative group. A lecture-

based student said, “I was a little stressed out because he would call on people, and I was scared 

that he would call on me.” Although lecture-based students experienced similar types of anxiety 

in responding to instructor questions, they were also anxious about the instructor’s verbal 

pressures, such as, “There's been a couple of times when he [the instructor] said, you should 
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know this, and I did not know it, and that made me very anxious,” Liz from the lecture-based 

class said. 

Discussion 

Results show that factors such as the instructor’s amicable and cordial nature, extended help 

for students at all times, in-class group work, and optional and ungraded homework decreased 

IBL students’ anxiety. However, factors such as responding to the instructor’s questions and 

asking questions in front of their peers increased these students’ anxiety. On the other hand, 

activities such as an overwhelming number of online homework problems that were due every 

week, thinking of being called on for a response in class, responding to the instructor's questions, 

and fast-paced teaching increased lecture-based students’ anxiety. However, the instructor’s 

readiness to explain the materials in class reduced the lecture-based students’ anxiety. 

Based on the findings from the present study, I recommend that although some factors of the 

instructional environment, student behaviors, and instructor behaviors have been found to 

increase anxiety among both groups of students, many other factors have lessened their stress, 

frustration, and anxiety. It is suggested to the instructors of Calculus I and other similar 

mathematics courses to implement IBL in their classes or at least transition toward student-

centered approaches to instruction because of the benefits of such instructional practices on 

students’ critical thinking, reasoning, and problem-solving abilities. It is also suggested to avoid 

the instructional activities that have been found to increase students’ anxiety. 
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Affective state may play a significant role in shaping what students value in mathematics. This 

study examines how high school students’ attitudes, anxieties, and images of mathematics may 

affect their values toward mathematics. A quantitative survey was conducted with 208 grade ten 

students from 6 randomly selected high schools in Kathmandu, Nepal. The survey data was 

analyzed with factor analysis and structural equation modeling. The results revealed that 

students' overall attitudes toward mathematics significantly affected their perceived values of 

mathematics. Students’ anxieties and images of mathematics did not significantly affect their 

values of mathematics. The pedagogical implications of the findings have been discussed. 

Keywords: Images of mathematics, Math Anxiety, Attitude toward Mathematics, Values of 

Mathematics. 

Introduction 

There is a growing interest in the affective constructs of mathematics learning, such as 

images, anxieties, and attitudes toward mathematics. Several past studies focused on students’ 

decisions to learn and use mathematics in everyday life (Wilkins, 2003), students' images of 

mathematics (Jankvist, 2015; Sam, 1999), mathematics anxieties (Ma & Kishor, 1997), attitudes 

toward mathematics (Niepel et al., 2018), and value of mathematics (Österling, 2013; Wakhata et 

al., 2022). Past studies interrelated students' anxieties and attitudes toward mathematics to their 

achievement (Ma & Kishor, 1997) or highlighted the importance of these affective variables in 

shaping students' interest, motivation, self-esteem, and perseverance to learn mathematics. 

However, most of these studies focused on images, anxieties, confidence, and attitudes toward 

mathematics and their relation to students' performance, but not in an integrated way to examine 

how they affect each other (Belbase, 2013). In this context, there are a few studies on the values 

of mathematics concerning students' images, anxieties, and attitudes toward mathematics (e.g., 

Lamichhane & Belbase, 2017; Paudel, 2019; Thapa & Paudel, 2020). Students’ images, 

anxieties, attitudes, and values in mathematics have been a general concern in Nepal because 

many students either fail or perform poorly at the school level and national exams (Education 

Review Office, 2015 & 2020). It is the interest of teachers, students, and educators to know how 
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these four constructs interact and influence each other. In this context, the research question for 

this study was: How do the affective constructs of mathematics anxiety, attitude, image, and 

value predict each other? 

 

Images, Anxieties, Attitudes, and Values of Mathematics 

The term image of mathematics has been studied from different perspectives, for example, 

teachers’ images of mathematics (Mura, 1993), public images of mathematics (Sam, 1999), and 

students’ images of mathematics (Jankvist, 2015; Lamichhane & Belbase, 2017). This 

perspective views mathematics differently, demonstrating different images of mathematics, for 

example, symbolic images, utilitarian images, and absolute images (Sam, 1999). Students' 

images of mathematics can be depicted with different metaphors as a useful tool to understand 

students' images of mathematics (Osman et al., 2010). These metaphors were solving riddles, 

using a calculator, considering bank manager as a profession, and mathematics as numbers. On 

the other hand, mathematics anxiety can be considered one of the negative factors that may cause 

“feelings of tension and anxiety that interfere with the manipulation of numbers and the solving 

of mathematical problems in a wide variety of ordinary life and academic situations” 

(Richardson & Suinn, 1972, p. 551). Therefore, mathematics anxiety may also cause them to 

realize that they are "powerless, out of control, lacking in self-esteem" (Zaslavsky, 1994, p. 19). 

The attitudes result from positive, neutral, or negative experiences developed over a long period, 

seemingly directed to act and behave differently upon any object, event, problem, or human 

being (Elci, 2017; Utsumi & Mendes, 2000). Students' attitudes toward mathematics are 

associated with value, self-confidence, enjoyment, and motivation (Primi et al., 2020; Tapia & 

Marsh, 2004). In this context, students' success or failure in mathematics may depend upon their 

attitudes and beliefs toward the importance, worth, and usefulness of mathematics (Elci, 2017; 

Kunwar, 2020). In contrast, students' values of mathematics focus on what they consider as a part 

of the subject matter and learning it in social, historical, cultural, and technological contexts 

(Baba et al., 2012; Tang et al., 2020). These values also connect with relationship, power, and 

identity (Guitérez, 2010; Österling, 2013; Skovsmose, 2009), and demonstrate one's normative 

and historical viewpoints about mathematics and its processes (Baba et al., 2012; Ernest, 1991). 

Therefore, students' value of mathematics may also relate to their mental, social, and cultural 

wellbeing (Clarkson et al., 2010; Bishop, 2012), which may provide them with confidence and 

positive thought about it. 

 

Method 

A quantitative cross-section survey design was used in this study to explore the high school 

students’ affective states in terms of images, anxieties, and attitudes toward mathematics and 

how these states may influence students’ values of mathematics. The study design was based on 

a Likert-scale questionnaire distributed to a sample of students studying at grade ten in public 

and private schools in Kathmandu. The tool was based on the theoretical construct of images, 

anxieties, and attitudes toward mathematics (Belbase, 2013; Fennema & Sherman,1976) and 

methodological assumptions of survey design (Cohen et al., 2018). The study site was 

Kathmandu, Nepal. A sample of 208 grade-ten students from six secondary (three private and 

three public) schools in Kathmandu was randomly selected for the study. A questionnaire was 

administered in the sample schools by visiting the schools by two researchers. Informed consent 
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was obtained from the schools, mathematics teachers, and students in grade ten classrooms in the 

respective schools. The data were transformed into Statistical Package for Social Sciences (IBM 

SPSS 28) and AMOS 28 for analyses and interpretations. The overall reliability of the instrument 

was measured with a sample of 208 students, and Cronbach's alpha was found to be 0.932 for 41 

items (Cohen et al., 2018). Confirmatory factor analysis was performed in IBM SPSS 28, and it 

was validated with a structural equation model in IBM AMOS 28 considering image, anxiety, 

attitude, and value toward mathematics as exogenous (independent) and endogenous (dependent) 

variables turn by turn to discover the best predictor model (Kline, 2005). 

 

Results 

A path analysis was performed in the structural equation modeling (SEM) to determine if 

students' affective constructs of anxieties, attitudes, images, and values of mathematics influence 

each other. The iterative processes of path analysis were performed for anxieties, attitudes, 

images, and values to validate the items in models 1 to 3. Fit indices of CMIN/DF, GFI, CFI, and 

RMSEA were used to validate the confirmatory factor analysis and the direct impact of 

independent variables on independent variables. The analysis of fit indices showed that the 

model fit was robust in the third iteration with CMIN/DF = 1.477, GFI = 0.861, CFI = 0.916, and 

RMSEA = 0.048. These results were acceptable (West et al., 2023). The structural equation 

models were fitted for each of these variables, considering them dependent variables one by one 

and others as independent variables in different models (Table 1, Figures 1- 4).  

Results showed that mathematical attitude was a significant predictor of students’ values of 

mathematics, but anxieties and images were not significant at 0.05 level of significance (Table 1 

and Figure 1). Likewise, attitude significantly predicted students' mathematics anxiety at a 0.01 

significance level (Table 1, Figure 2). Anxiety was also a significant predictor of students' 

attitudes toward mathematics (Table 1, Figure 3). None of the three variables, anxieties, attitudes, 

and values, were significant predictors of students' images of mathematics (Table 1, Figure 4). 

The model to predict attitude was the strongest among the four models, with the largest R-

squared value. Results of Models 4-7 are presented in the Table 1 and Figures 1-4. 

 

Table 1: Maximum Likelihood Estimates Standard Regression Weights (SRW) and R2 

Model 4 Model 5 Model 6 Model 7 

Varia

bles 

SR

W 

Varia

bles 

SRW Variab

les 

SRW Variab

les 

SR

W 

VAL

←AN 

0.0

78 
AN←

IM 

0.103 AT←
AN 

0.670*

* 
IM←

 AN 

0.28

0 

VAL

←AT 

0.5

76* 
AN←

AT 

0.792*

* 
AT←

VAL 

0.270* IM←V

AL 

0.32

8 

VAL

←IM 

0.2

17 
AN←

VAL 

0.043 AT←I

M 

0.038 IM←A

T 

0.12

3 

R2 0.6

42 

R2 0.801  R2 0.832  R2 0.45

9  

Note: *Significant at 0.05 level of significance. ** Significant at 0.01 level of significance. 
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Figure 1: Model 4 for Impact of Images, 

Anxieties, and Attitudes on Values 

 
Figure 2: Model 5 for Impact of Images, 

Values, and Attitudes on Anxieties  

 
Figure 3: Model 6 for Impact of Images, 

Anxieties and Values on Attitudes 

 
Figure 4: Model 7 for Impact of Values, 

Anxieties, and Attitudes on Images
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Discussion, Conclusion, and Implication 

The four components of affective states in students’ mathematics were—anxiety, image, 

attitude, and value. The structural equation models demonstrated an impact of students' attitudes 

toward mathematics on values. These values are associated with self-efficacy, mathematical 

tasks, and its application in life and career has been studied and used to predict such 

mathematical behavior of learners (Gjicali & Lipnevich, 2021). Students’ attitude toward 

mathematics significantly predicts their intention to study mathematics, their behavioral 

engagement as mediated through intention, and their mathematics achievement when mediated 

with intention and behavior (Gjicali & Lipnevich, 2021; Wang et al., 2020 & 2022). These 

studies and others related students' attitudes toward their value of mathematics regarding their 

intention, role, and action to perform or improve in mathematics. However, students' 

mathematics anxiety and image of mathematics were not good predictors of value. School and 

classroom context may significantly shape and interact among these psychological and affective 

constructs (Akey, 2006). The students may feel that mathematics is easy or difficult and that high 

or low anxiety should not affect their value toward mathematics (Lamichhane, 2020; Sam, 1999). 

Likewise, anxieties and attitudes toward mathematics seem to be strong predictors of each other, 

which is also supported by literature (Elci, 2017; Primi et al., 2020; Zaslavsky, 1994).  

In conclusion, the results of this study showed that four constructs- images, anxieties, 

attitudes, and values may interact and influence each other. Students’ attitude toward 

mathematics can predict their value of the subject positively. Attitude and anxiety can predict 

each other. However, the image of mathematics is a general construct that may not be predicted 

by attitude, anxiety, and value of mathematics. Mathematics teachers and educators may use 

students' mathematics attitude as a predictor of what they value and what is their anxiety level 

that may influence the quality of their mathematics learning. These psychological constructs may 

promote better mathematics classroom learning experiences (Everingham et al., 2017). 

Therefore, mathematics teachers should consider them while teaching students so that they are 

interested and motivated. Hence, mathematics teachers may focus on students' wellbeing through 

positive psychological development with images, anxieties, and attitudes for a greater value of 

mathematics learning (Hill & Seah, 2023). The study had some limitations due to the sample size 

of 208 students, which may influence the findings' generalizability in the larger student 

population in Nepal and elsewhere. Future studies should be conducted with a larger sample size 

and more sophisticated analyses to generalize results at national and international levels. 
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Executive functions (EFs) are related to mathematics achievement, yet much is still unknown 

about how or why these relations exist. Improved measurement of EFs in students’ math learning 

is needed to answer such questions equitably. Further, if research is conducted with the goal of 

informing teaching and learning, the EF assessments should focus on students’ strengths and 

provide data that is useful and understandable to educators and students. In this paper, we 

explore how interdisciplinary teams of educators, developers, and researchers have assessed EFs 

in the mathematics context. We present strategies for assessing EFs more equitably and discuss 

implications for measuring EFs on various partners’ activities within the research and 

development and implementation of mathematics curricula. 

Keywords: Cognition; Equity, Inclusion, & Diversity; Assessment 

Introduction 

Executive functions (EFs) are a set of cognitive processes important for directing our 

thoughts and actions to what is necessary for achieving our goals. One popular model of EFs 

categorizes them as three separable, but overlapping functions known as working memory, 

inhibition, and cognitive flexibility (Miyake et al., 2000). Mathematics requires all three of these 

cognitive processes: thinking flexibly, holding and updating important information in working 

memory (e.g. Raghubar et al., 2010), and inhibiting misconceptions and irrelevant information or 

rules (e.g., Cragg et al., 2017). EFs are related to performance on mathematics tasks, and have 

been shown to predict mathematics achievement longitudinally (Cragg & Gilmore, 2014; Ribner, 

2020). Teachers have also noticed that EFs are important for math learning based on their 

observations in the classroom (Gilmore & Cragg, 2014). However, there are few educationally-

relevant causal studies of these relationships (Clements et al., 2016). We need better theory and 

measurement of executive functions in mathematics to understand why these relationships exist 

and whether executive functions should be intentionally targeted through math interventions 

(Medrano & Prather, 2023; Scerif et al., 2023; Wilkey, 2023; Younger et al., 2023). 

EFs measured during a numerical task are more strongly related to math achievement than 

EFs measured during tasks that do not explicitly include math-related information (Gilmore et 

al., 2015; Wilkey & Price, 2019). This suggests that the mathematical learning context should be 

considered when investigating relationships between EFs and mathematics (Gilmore, 2023; 

Medrano & Prather, 2023; Niebaum & Munakata, 2023). Moreover, a more strengths-based 

approach to measuring executive functions is needed that reflects the diverse environments in 

which children are learning (Miller-Cotto et al., 2022). However, there is a large disconnect 

between research in math education and research in math cognition (Berch, 2016; Bruce et al., 
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2017). Math education researchers have long argued cognitive researchers should better consider 

the educational context in which math learning occurs (de Freitas & Sinclair, 2015; Verschaffel, 

Lehtinen, Van Dooren, 2016). Researchers in cognitive science and education often use different 

terminology to refer to similar constructs, which contributes to the divide across fields, and the 

gap between research and practice (Berch, 2016). For example, one study found that only 20% of 

teachers were familiar with the term executive functions (Cragg & Gilmore, 2014). EFs are 

typically assessed by having children complete cognitive behavioral tasks that measure accuracy 

and response time, or by having parents or teachers complete a rating scale of a child’s everyday 

functioning, and these different measurement formats are not equivalent or interchangeable 

(Toplak et al., 2013). There is a building consensus that EF assessments need to account for 

individual differences and contexts; however, there is a dearth of practical solutions at this time. 

It therefore remains unclear exactly how or why teachers should assess and support executive 

functions in the mathematics classroom. 

 

Context and Purpose of this Research 

The EF + Math Program was developed to explore the core hypothesis that math intervention 

approaches which contain support for developing EFs can lead to improved mathematics 

achievement. EF + Math enlisted a portfolio approach, which entails multiple project teams 

designing and studying interventions which test this core hypothesis, along with other project 

teams focused on developing effective and equitable assessments and technologies to support 

measurement of EFs in mathematics. Each project team is interdisciplinary, with educators, 

researchers, and developers coming together to mitigate challenges that can arise in bridging 

research to practice (Uncapher, 2018). 

The project teams established their approaches to answering the core hypothesis of the EF + 

Math Program through collaborative discussions, which allowed for the designed interventions 

and assessments, and their theories of action to be situated not only within the research base, but 

within the needs of real classroom contexts, educators, and diverse student populations. 

However, this inclusive approach to research and development raises tensions about the 

relationships between researchers’ assessment of cognitive constructs and the ways that data 

informs educator practice and student learning (Uncapher, et al., 2022). We elevate one of those 

tensions in relation to our focus on executive functions in the mathematics contexts: to what 

extent is the assessment of EF in the mathematics contexts useful, and for which partners? Each 

project team encountered this tension in their work, and addressed it through different 

approaches, based on their conceptualizations of EFs in mathematics contexts and the ways that 

EF supports were incorporated into their interventions. In this paper, we ask, “how have project 

teams navigated the needs of researchers, developers, educators, and students in assessing EFs in 

math contexts? How can EFs be assessed in ways that inform both educational practice and 

mechanistic cognitive research questions?” 

Conceptual Framework: Inclusive Research And Development 

We examine this research question through the lens of inclusive research & development 

(iR&D; EF + Math, 2023). The IR&D model is part of the larger movement toward educational 

participatory research methodologies and partnerships (Amiel & Reeves, 2008; Vaugh & Jaquez, 

2020). In these methodologies and partnership models, researchers, developers, and educators 

are positioned as collaborative partners and actively work to deconstruct hierarchies of power. 
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However, even in iR&D-driven projects, tensions can arise regarding the role and purpose of 

conducting research on interventions, especially given the relations different team members may 

have to the data. For example, researchers collect and analyze data to provide findings to 

developers and educators, as well as answering more generalizable research questions. 

Developers use data to inform future development of the interventions, including improving data 

collection mechanisms or structures to share data findings and implications with teachers and 

students within the intervention itself. Finally, teachers collect and use data to inform the 

supports they provide students, future adaptations of curricular materials, and other implications 

for practice; teachers also provide valuable context and interpretations of data to support 

researchers and developers in their work. Equity not only means that these different purposes and 

goals for engaging in research can cause project teams to take a particular approach to their 

assessment strategies, such as this paper’s focus on EFs in math. Equitable approaches to 

assessment center the lived realities, needs, and assets of students, particularly students of color.  

 

Data and Methods 

The research questions and related findings presented in this paper are part of a set of larger, 

ongoing research studies. Each project team has conducted several cycles of inclusive R&D. 

Across these cycles, project teams created and updated study design documents, research plans, 

and measurement plans. For this analysis, our data sources included these documents, as well as 

notes taken during conversations about measurement and data collection with project teams 

throughout the inclusive R&D cycles. We have conducted initial analyses of the project team 

documents and conversation notes; as the teams’ are actively engaged in inclusive R&D cycles, 

future analyses will include additional data sources and updated themes. To answer our research 

questions, we first identified sections of text that referred to the measurement or assessment of 

EFs. Within these sections, we coded for the “how” a project team assessed EFs and the “why” 

for their decisions. We looked for shifts across time for each project team to identify key 

moments for analysis. Finally, we looked to see how the methods for assessing or the 

justification for those methods were in response to researcher, teacher, or developer needs and 

uses of data. The themes presented in this paper represent two types of equitable EF assessments 

developed and refined through inclusive R&D.  

 

Results: Equitable Approaches to Assessing EFs in Mathematics Contexts 

Defining EFs within Mathematical Activity 

Assessments do not always provide discipline-specific approaches to measuring EFs; given 

research on the role of context (Medrano & Prather, 2023; Niebaum & Munakata, 2023), it is 

essential for researchers to continue developing assessments that capture EFs in mathematics. 

Measuring EFs in the mathematics context can be approached by capturing in-the-moment data 

on student activity while actively doing mathematics. The Project teams worked to develop new 

assessments involving technological features and varied data sources to define EFs in the 

mathematical context more equitably and in ways that honor students’ epistemic diversity. 

One project team’s intervention focused on the role of EFs in middle school students’ 

collaborative problem solving practices (Kuchynka, et al., 2023). They developed a qualitative 

coding scheme that identifies what EFs look like in student talk or student actions during 

problem solving (Renninger, et al., 2023). This assessment strategy leverages qualitative data 
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sources, such as transcripts or observations. Researchers are still able to conduct analyses on the 

relationships between EFs and math learning; such a coding scheme is also supportive of teacher 

use to develop an understanding of what EFs look like, noticing of when students are engaging 

their EFs, and cultivating awareness of how teaching practices or curricular materials can create 

opportunities for students to engage their EFs within a task.  

Another team conceptualized EFs within the context of rational number learning, with an 

embodied cognition approach driving their intervention design and implementation. Their team 

developed a rational number knowledge assessment that requires students to engage their EFs to 

shift across strategies, filter information, and manipulate quantities flexibly. Administering this 

assessment allowed teachers to focus on assessing mathematical task performance and gathering 

rational number knowledge evidence, while still providing researchers with relevant and useful 

data on EFs.  

Measuring EF Fluctuations and Communicating Findings Effectively 

Traditional measures of EFs often provide static snapshots of student performance on EF 

tasks. In reality, students’ engagement of EFs on a given day or within a task is dependent on a 

variety of factors, including social and cultural contexts, affective factors, and personal 

differences. Equitable assessments of EFs should be more flexible and dynamic to mirror this 

reality and disrupt static labeling practices common in schooling. Approaches to measuring 

student EFs can include more regular assessments, but also involve the communication of 

assessment data back to students and teachers to inform adaptations of teachers’ practice, as well 

as supports for developing student agency. 

One team has focused on the development and iteration of a machine-learning assessment 

tool that collects “in the moment” data on students’ engagement of EFs and other metacognitive 

processes (Zhang, et al., 2022). This tool provides an asset-based approach to understanding the 

variability in students’ EFs within problem solving tasks; the assessment aims to promote more 

accurate understandings of what students are able to do. This team’s technology takes in large 

amounts of qualitative data and presents summaries of data trends to educators through a 

dashboard view. The teachers are able to view key information about students and classes, as 

well as implications for their pedagogy, use of particular materials, or scaffolds that may be high 

leverage supports for students based on their EFs needs that day. 

Another project team is developing an app that can quickly and easily assess daily 

fluctuations in students’ EFs (Ghil, et al., 2022). They are developing an adaptive technology that 

can optimize the EF assessment items students should complete each day; this capacity will 

allow researchers to model EF trends using minimal data and limiting teacher burden (Katsumba, 

et al., 2023). Additionally, this team has worked to develop a dashboard that displays these 

fluctuations to students and educators in positive, asset-based ways. The dashboard, which was 

co-designed with students themselves, presents data in understandable amounts, and includes 

recommendations for students to enact agency over their learning based on their data for the day.  

 

Implications and Conclusions 

The project teams have continued to iterate upon their approaches to assessing EFs as part of 

inclusive research and development processes. As the approaches are implemented in additional 

educational environments, new information is collected regarding their effectiveness and 

applicability. Further, researcher, educator, and developer goals for understanding EFs in math 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1536 

contexts will continue to evolve as part of the broader fields of math education and math 

cognition. The EF + MathProgram and its project teams will continue to explore the question, “to 

what extent is the assessment of EF in the mathematics context useful, and for whom?” 

In collaborative partnerships, each party may require or prioritize different data sources or 

varied granularity to be able to achieve their own goals. Navigating these tensions and creating 

strategies for assessment in inclusive R&D cycles is non-trivial activities. By documenting the 

strategies developed by EF + Math’s project teams, we hope to encourage continued 

conversation and exploration of the role of assessment and measurement in iR&D activities. We 

envision a future for mathematics education where multiple partners are able to effectively 

collaborate to design and test solutions that address the challenges educators face in their 

mathematics classrooms in order to support all students in achieving their full potential as 

brilliant mathematicians. 
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The literature using psychological constructs like “interest” has rarely been brought together 

with the robust and developing literature of sociocultural perspectives on math identity in K-12 

classrooms. Similarly, work on hobbyist communities and other non-academic pursuits has yet to 

make consistent contact with the literature on developing STEM identities in school. In this 

study, we look at retrospective interviews following women who consider themselves lifelong 

knitters, and compare the processes of identification in both knitting and mathematics through 

the lens of lines of practice as developed by Azevedo (2011). We find that while women describe 

consistent and flexible preferences across both domains, they are often met with two limiting 

factors that impede identification: binary thinking about math ability, and a highly 

circumscribed participation structure.  

Keywords: Gender, Informal Education, Integrated STEM / STEAM, Ethnomathematics 

Objectives and Purpose of the study 

While research on mathematics identity has been located almost exclusively in schools, 

clearly not all mathematics learning experiences are the same, and there is reason to question 

whether school is anywhere close to ideal. Ethnographic research on student learning has 

demonstrated that the practices of mathematics are locally constituted, and can transform the 

nature of mathematical activity. Early work conducted by anthropologists and cultural 

psychologists (Saxe, 1988; Lave, Murtaugh, & de la Rocha, 1984), enhanced our understanding 

of mathematical activity as a socially mediated process that connects to history, tools, and other 

people. This work demonstrated that school mathematics is a peculiar enterprise that has a 

profound influence on what people ultimately think about mathematics (Boaler & Greeno, 2000; 

Nasir, 2002; Schoenfeld, 1989). Other versions of mathematics could potentially transform the 

kinds of relationships to the discipline that we generally observe in school (Taylor 2009; 

Gonzalez et al 2001). The goal of this paper is to build on this literature in order to explore how 

identities are tied to local practices in different domains.  

In this study, we use an interactionist perspective to explore the question of how school 

mathematics might be productively reorganized to invite broader participation among a more 

diverse group of students, particularly women and girls. In order to investigate what kinds of 

experiences might promote lifelong engagement with STEM, we look to textile crafting, which is 

a hobby often pursued by women across the lifespan, and which is frequently said to involve 

elements of mathematics. Our work builds on Azevedo’s lines of practice (2011), combining 

psychological accounts of interest development with interactionist ideas about the inextricability 

of individual identities and the opportunities they have to develop in social practice.   

Methods of inquiry 

Participants were identified through participation in an online survey about mathematics in 

textile crafting. From over 1,500 responses, we interviewed roughly 40 participants. We 

conducted semi-structured, retrospective interviews to explore the connections and contrast 
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between women’s experiences with knitting and their experiences with K–12 mathematics. From 

those interviews, we chose eight women who represented an even balance across two 

categories—four who rejected a math identity in relation to school (though they considered 

themselves knitters, and agreed that knitting involves mathematics), and four who said that they 

enjoyed math in school and generally considered themselves “math people.” These interviews 

were chosen for the depth of their answers to our questions.  

Using a grounded theory approach, we build from data toward a theory of how long-term 

engagement is built and sustained that pulls together previous work using the constructs of 

interest and identity (e.g. Ames & Archer, 1988; Anderman et al., 2001; Gee, 2000; Hand & 

Gresalfi, 2015; Holland et al., 2001; Meece, Anderman, & Anderman, 2006; Murayama & Elliot, 

2009; Wenger, 1998; Wigfield & Eccles, 2000). After our initial rounds of theory development, 

we consulted the relevant literature and found that our emerging theory fit well with Azevedo’s 

observations of hobbyist communities. Thus, this preliminary analysis attempts to situate our 

grounded theory in relation to that framework.  

Briefly, Azevedo’s “lines of practice” framework describes how individual “preferences” and 

broader “conditions of practice” weave together to create “lines of practice” that support and 

sustain participation in a broader social practice over time. Any given individual may have one or 

many different lines of practice that constitute their participation in a community of practice, and 

two participants may have lines of practices that are similar or different from one another’s. 

Thus, lines of practice are constitutive of broader social practices, but not wholly determinant of, 

or determined by, other definitions of those social practices.  

Preliminary results 

Reject Math Group 

Although the knitters who shared a dislike of school math described a range of preferences 

for what they liked about knitting, they collectively described overlapping conditions of practice 

that nevertheless supported their ultimate identification with the craft. Rather than seeing knitting 

as a set of practices that are interesting only for some people, instead they described how 

practices were inviting and supportive of a range of ways of engaging. Indeed, most knitters 

identified more than one line of practice that supported their continued engagement. In contrast, 

the practices of school math, as described by the knitters, failed to support those very same 

preferences. Overall, what is most clear is that having access to assistance and an understanding 

of the “discipline,” that is, why things work as they do, was widely supportive of a range of 

preferences for knitting. This same lack of access to understanding was uniformly what turned 

these women off to mathematics, even though for some of them, understanding mathematics was 

something that became more common and accessible for them later in life.  

Identify with Math  

Knitters in our sample who identified with math described very similar lines of practices to 

those who did not identify with math. These knitters widely had a preference for being able to 

figure things out for themselves, a preference that was met by conditions of practice that 

supported such independence, either through the fabric that knitters create or through the myriad 

resources available. These knitters also expressed preferences in mathematics that were 

consistent with their stated preferences in knitting, but here very different lines of practice 

emerged, which, for these women, ultimately led to identification. This largely appeared to be 

due to finding a different set of conditions of practice in their mathematics classes, either in the 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1540 

form of supportive or innovative teachers, support from home, or just a tendency to find that 

mathematics makes sense. Thus the difference between those who identified with math and those 

who did not identify with math did not seem to be based on a difference in preference, but rather 

based on a difference in conditions, with those who ultimately identified with math finding that 

the conditions of practice they encountered supported their preferences for engaging.  

Participants express consistent preferences across domains 

One possible explanation for the difference in identification between math and craft is that 

people who like both disciplines are simply more flexible, or that there are other factors that 

mediate their enjoyment, such as self-efficacy or confidence. Perhaps what people get from 

crafting is different from what they get from mathematics, and people who identify with math 

simply have a more favorable attitude toward what they are offered in that domain than others.  

In contrast to this theory, we find remarkable consistency in the preferences people express in 

each domain. This finding suggests that people know what works for them—at least in 

retrospect—and that failing to provide opportunities to engage in their preferred way can lead to 

disidentification. Refusing to guide someone who prefers to defer to a trusted other is potentially 

just as damaging as telling someone who prefers to be her own locus of authority to memorize an 

algorithm for the sake of time. Just as importantly, however, when offered choices, people are 

often not limited to a single mode of engagement.  

Across all eight interviews, while there was a fair amount of diversity in stated preferences 

throughout the group, we saw remarkable consistency within each interview across the two 

domains. In other words, we saw some people who preferred to be the locus of authority, and 

others who preferred to trust an expert, but anyone who stated a clear preference had the same 

preference in both knitting and math.  

Rather than people being more flexible, our findings suggest that it is the disciplines 

themselves that appear to offer more or less flexibility to participants. This finding suggests that 

while people may have a primary preference, they are nevertheless willing to engage differently 

if the circumstances call for it. This observation also anticipates objections to the implications of 

our finding that there are "better" ways to engage in mathematics and people should be pushed to 

adopt these, despite their underlying preferences. Though it is beyond the scope of this paper to 

either agree or disagree with such a normative statement, other findings suggest that supporting 

people in their preferred method of engagement does not lock them into only that method, but 

rather supports a more diverse set of engagement patterns.  

Stated preferences do not alone explain identification with a domain 

Given that math was described by most participants as being relatively monolithic, one 

possible explanation for the diverging identification patterns is simply that while math and craft 

have some overlapping content, that overlap has little to do with the aspects of each practice that 

draw people to the disciplines. Were this the case, we might expect to see a profile of preferences 

that leads to identification in each discipline, or at least a subset that is required for liking math. 

Instead, we find multiple different “kinds of people” who found their way into each discipline. 

Thus, as many scholars have noted, the identification process must be a more complex interplay 

between individual preferences and the environment.  

Of the four people who said they liked math in school, one said she preferred to focus on the 

experience, and on learning; one said she preferred to focus on learning, and preferred a different 

locus of authority depending on the task; one said she wanted to be the locus of authority and to 
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focus on learning; and one said she preferred to trust either an expert or the discipline more 

generally. Of the four who said they did not like math in school, one said she preferred to be the 

locus of authority, but focused on either the experience or the outcome, depending on the project 

(Alicia); one said she preferred to be the locus of authority and focused on outcome or learning 

depending on the project (Carol); one said she preferred to trust an expert, and to focus on either 

the experience or the outcome, depending on the circumstances; and one said she preferred to be 

the locus of authority, though she never got that chance in math. In other words, there is no 

profile of preferences that would predict whether a person might come to love math or to hate it. 

Identifying narratives on a longer timescale explains identification across lines of practice.  

We found, to our surprise, that there were some people for whom the same conditions of 

practice in math and knitting seemed to elicit different interpretations of themselves, and 

ultimately, led to different patterns of identification. In looking more closely, it appeared not that 

our interviewees had different preferences in relation to these conditions, but rather, different 

interpretations of these conditions, which seemed to be attributable to a set of different cultural 

narratives about math and knitting. These included several well-known ideas, such as: math is an 

innate talent (that you either have or you don't have); speed is indicative of skill, and math 

involves creativity, but only once you've mastered the building blocks. Some of these narratives 

had parallels in knitting, though with noticeable amendments: crafters come in all types (and 

they're all valid); what is satisfying about knitting is open to personal judgement; crafting 

experience is learned/earned; and crafting is a learnable talent, but artistry is innate.  

Discussion and Conclusions 

Narratives about domains are hugely influential in how interactions are made meaningful in 

identity development. For example, struggle alone (either a lack of it, or some individual 

preference for it) does not explain how people come to view mathematics. Whether a person 

struggles or not interacts with prevailing cultural narratives about what that struggle means. In 

knitting, throughout our sample we hear reference to the idea that crafting expertise is 

learned/earned and that what is satisfying about knitting is open to personal interpretation. In 

math, however, the dominant cultural narrative is that math ability is a thing you either have or 

you don’t, though occasionally this is mediated or replaced by the idea that academic 

achievement takes effort. It is in the context of these narratives that personal struggle in math 

classes is seen as either evidence that you don’t belong, or a challenge that can be overcome with 

hard work. 

As Azevdeo (2011) has observed, identity development in hobbyist communities often relies 

on a collection of lines of practice that sometimes overlap and occasionally conflict, rather than a 

single unifying experience. For our participants, this finding holds true in knitting, and appears to 

allow individuals to carve out an idiosyncratic path through the identification process that 

actually binds them to the community rather than splintering. In school math, however, binary 

thinking pervades—students are often told you’re either a math person or you aren’t—innately 

smart and talented, or not—and they are not given alternative ways to engage with the discipline 

that still “count” as math. The exception that proves the rule is often women who come to like 

math after they’ve left school, when they are afforded new and different opportunities to reclaim 

a math identity in a more flexible narrative environment.   
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We unpack the fraction understanding of a neurodivergent student in the context of equal 

sharing tasks by considering three frameworks: equipartitioning (Confrey et al., 2009), mental 

actions in fraction schemes (Steffe & Olive, 2010), and persistent understandings (Lewis, 2014). 

During a teaching experiment guided by the equipartitioning learning trajectory (Confrey et al., 

2014), the student, Macey, evidenced unanticipated fraction understandings across fraction 

representations (symbolic, discrete contexts, single and multiple continuous wholes). Each 

framework offers implications for Macey’s thinking. We discuss how applying the frameworks to 

these data surfaces connections across them and numerous questions with implications for future 

research. 

Keywords: Students with Disabilities, Cognition, Rational Numbers, Learning Trajectories and 

Progressions 

The complexity of fraction understanding is evident in the numerous frameworks used to 

study it. It is also evident in the extensive literature describing challenges students face in 

developing rich conceptual understanding in this area. To date, a limited number of studies have 

investigated the conceptual understandings that neurodivergent students construct around 

meanings for fractions (e.g., Crawford, 2022; Hunt & Empson, 2015; Lewis, 2014). In the spirit 

of the theoretical and methodological shifts recognized by PME-NA 2024 conference organizers 

and expressed in the theme, “Envisioning the future of mathematics education in uncertain 

times,” we center a neurodivergent student’s thinking about fractions. We unpack this student’s 

thinking by applying multiple conceptual frameworks, aiming to profit from the complexity and 

uncertainty that emerges. We claim that by embracing the potential of difference in centering 

neurodiversity and in interpretations across frameworks, we can move the field forward toward 

richer, deeper knowledge of student learning. Our goal is to engage in dialogue with the 

mathematics education community, bringing multiple perspectives together to collectively enrich 

understanding of the learning of fractions. 

Conceptual Frameworks 

We identified three frameworks which potentially provide insights into how a neurodivergent 

student, Macey, has constructed understandings of fractions: equipartitioning (Confrey et al., 

2009), mental actions that make up fraction schemes (Steffe & Olive, 2010), and persistent 

understandings of fractions (Lewis, 2014).  

The first framework we consider is equipartitioning. Equipartitioning is the foundational 

concept in a learning trajectory for developing understanding of fractions as ratios (Confrey et 

al., 2014). Equipartitioning combines the ideas of equivalence and partitioning in the creation of 

equal-sized groups through splitting, a cognitive operation grounded in awareness of the 

multiplicative relationship between partitions and the whole (e.g., given a ¼ share, the whole is 

four times larger; Confrey et al., 2009). The fraction meaning associated with splitting and 
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equipartitioning is many-to-one, that is, understanding of fraction as ratio (Confrey, 1994). The 

idea of many-to-one is a relational idea applied to fractional shares of collections of discrete 

objects, single continuous wholes, and multiple continuous wholes (Confrey et al., 2014). 

Macey’s development of relational thinking and multiplicative reasoning in the equipartitioning 

learning trajectory is described in depth in a previous publication (Crawford, 2022). 

The second framework is mental actions within fraction schemes. This framework uses 

similar terms as the equipartitioning framework but there are subtle differences in meanings for 

fractions. This framework takes a contrasting many-as-one approach by focusing on partitioning 

and iterating a continuous whole unit, often represented as a bar model (Steffe & Olive, 2010). 

Attention is given to iterating and counting the shares that are part of a whole (e.g., a ¼ share 

would be iterated four times to create a one). The fractions schemes are cognitive structures used 

for operating with parts and wholes (Steffe & Olive, 2010), and there are hypothesized 

progressions in which these schemes are constructed (Hackenberg, 2007; Steffe & Olive, 2010; 

Wilkins & Norton, 2018). The schemes coordinate mental actions recognized by the student as 

operations for completing the mathematical task. These mental actions are: partitioning (creating 

equal-sized parts), iterating (repeating a unit of length to produce a connected whole), 

disembedding (taking out parts while maintaining awareness of the relationship to the whole), 

splitting (combining partitioning and iterating as inverse actions), and units coordination 

(maintaining relationships among levels of units). These mental actions can be applied in part-

whole contexts (Olive & Vomvoridi, 2006; Steffe & Olive, 2010) or in measurement contexts 

(Wilkins & Norton, 2018). 

The third framework we include is Lewis’s (2014) “persistent understandings” of fractions. 

This framework attends explicitly to difference across individuals as they construct fraction 

understanding. Persistent understandings are theorized to have been constructed by 

neurodivergent individuals within socio-cultural interactions, recognizing the diverse ways 

learners interpret and construct meaning around representations (Lewis, 2014). Persistent 

understandings are those that are: a) likely qualitatively different from their peers, b) present 

challenges to the individual’s ability to make sense of more complex fraction concepts, and c) 

not easily resolved through intervention. Some persistent understandings Lewis identified were: 

viewing fractions as “taking” the shaded part away (and attending to the fraction complement); 

applying a discrete set model to continuous models; viewing fraction representations as 

comprising two parts rather than part of a whole; understanding fractions as the number of pieces 

rather than the size of the piece; and comparing fractions based on the number of pieces. Lewis 

describes these understandings in symbolic representations and part-whole contexts. 

Purpose 

The goal of this analysis was to carefully examine Macey’s fraction naming to characterize 

understandings that she had constructed. We present Macey’s thinking for consideration in light 

of the three frameworks for describing fraction understanding: equipartitioning, mental actions in 

fraction schemes, and persistent understandings. We bring these frameworks into conversation 

with one another, and consider how, in combination, they might help to further our knowledge 

regarding the ways in which fraction understandings develop. 
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Method 

Participant 

At the time of this study Macey was in the summer between Grade 5 and 6 and was 11 years 

old. Macey attended a public school in the United States and received special education services 

in a pull-out program (“resource room”) and private tutoring. Cognitive testing indicated Macey 

had strengths in visual-spatial, fluid, and deductive reasoning. She had difficulty with language 

processing, integrating information, abstract reasoning, and executive functions. All sessions 

took place at Macey’s home with one of Macey’s parents present. 

Context 

After two diagnostic meetings, a teaching experiment with Macey comprised 11 sessions, 

each ranging from 35–50 minutes. The teaching experiment was guided by the equipartitioning 

learning trajectory (Confrey et al., 2014). The first author, Angie, conducted all of the teaching 

experiment sessions. Angie has 18 years of experience teaching math in grades 1—8, including 

working in whole class, small group, and one-to-one settings with neurodiverse students. Angie 

designed a planning protocol with goals and tasks based on the learning trajectory, anticipated 

thinking and strategies that would emerge, and scripted teacher questions. Angie implemented 

tasks as described in research literature with supports planned to be enacted as needed. Angie 

also used a reflection protocol with prompts for summarizing Macey’s activities, teacher 

responses, adjustments made to plans and rationale for these adjustments.  

Data Sources and Analysis 

Data sources were videos, transcripts, and Macey’s written work from four tasks. The tasks 

elicited Macey’s fraction understandings using different representations: symbolic only (i.e., ¾), 

fractional share of a collection (discrete representation), fractional share of a single whole 

(continuous representation), and fractional share of multiple continuous wholes (continuous 

representation). 

Retrospective analysis of these data was completed using a three-level analysis (Simon, 

2019). The first level of analysis remained close to the data, by descriptively coding student 

activity, representations used, features attended to, language used, etc. The second level of 

analysis involved making inferences across tasks. Codes across tasks were compared to look for 

patterns in fraction naming (including correctness of response) across forms of representation. 

The third level of analysis involved broad inferences to describe patterns not directly visible in 

the data (Simon, 2019). These are abductive inferences which, if true, can explain the data and 

speak generally to the topic under investigation. Thus, claims about Macey’s understanding are 

abductive inferences supported by the patterns identified in the second level of analysis. These 

inferences led us to ask questions pertaining to the three frameworks.  

Findings 

We present Macey’s responses to a series of tasks and provide our interpretations of her 

activity for each. In each of the tasks, Macey’s strategy of distributing shares demonstrates the 

fundamental requirements of equipartitioning: creating a correct number of shares, ensuring 

shares are of equal size, and exhausting the whole. This leads her to creating “fair shares.” As we 

progress across examples, we draw attention to aspects of her responses which are indicative of 

difference in her thinking. Finally, we offer the abductive inferences we make about Macey’s 

understanding of fractions. Because Angie was the teacher-researcher in the interactions with 

Macey, Angie is referred to as “I” or by name in the findings. 
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Task 1: Meaning for a Symbolic Fraction 

During our first meeting, I gave Macey an index card with ¾ written on it, and I asked, 

“What do you think of when you see this fraction?” Macey’s response was, “I think like…I think 

like…three rows of four [draws a 3 x 4 array of dots],” (see Figure 1). I asked her what makes 

her think of four rows. She replied, “Like, say you have umm…13 cookies and they’re in three 

rows of four. And you have three friends. And you give four cookies to each friend. And then you 

would have zero left over. So, three rows of four…would each…three rows… Yeah. Three rows 

of four makes… It’s like 3 [gesturing over the rows] plus 4.” 

Macey represented the fraction with discrete objects within a collection. We note that Macey 

viewed the fraction as a sharing situation, in this case sharing cookies among friends, which is 

consistent with equipartitioning and mental actions within fraction schemes. Disregarding her 

statement of 13 cookies as a counting error, we note that shares were equally divided. The 

numerator was a count of the number of rows, or the number of sharers. The denominator was 

the number of items in the row, that is, the number of cookies. The fraction was not described as 

part in relation to a larger whole. Thus, Macey did not demonstrate many-to-one or many-as-one 

thinking. Rather, the fraction was two numeric and separate values in a multiplication context.  

 

 

Figure 1. The image on the left shows Macey’s drawing of three rows of four to illustrate 

the fraction ¾. The image on the right shows Macey’s partitioning of 20 gold coins among 

five pirates. 

 

Task 2: Fractional Shares of Collections 

I presented Macey with the task of using 20 connecting cubes that represented gold coins in a 

treasure chest and asked her to share the coins evenly among five pirates. Macey distributed the 

cubes one by one into five piles (see Figure 1). I asked her how much each pirate received, and 

she answered, “Four.” Then I asked what fraction of the whole treasure that was, and she replied, 

“1/4.” I asked her to count out the fractional shares, and she counted “¼, 2/4, ¾, 4/4, 5/4.”    

Like the symbolic task, Macey appeared to have identified the numerator as the count of the 

shares (corresponding in total to the number of sharers). Also like the symbolic task, the 

denominator was not determined based on a referent whole. Instead the denominator reflected 

the size of the individual share, its quantity. This might be explained by the previous question 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1547 

directing her attention to how many each received or by the discrete nature of the cubes. 

However, in light of her response to the symbolic task, another interpretation of her thinking is 

that she understood the denominator as the quantity in the share (similar to the number of 

cookies in each row). That is, she may have been seeing five groups, each the “size” of four. This 

again indicates she may not be viewing the part in relation to the whole as is the focus of 

equipartitioning and or as disembedded from a whole as in the mental actions framework. We 

also note that her final count resulted in an improper fraction which did not seem problematic for 

Macey. If this fractions as counts is a persistent understanding similar to Lewis’s (2014) fraction 

quantities as counts of partitions, it is not constrained to unit fractions or by the number of 

partitions in a whole. 

Task 3: Fractional Shares of a Continuous Whole 

I gave Macey a long strip of yellow construction paper and told her it was a giant french fry 

that friends could share (see Figure 2). Each time I asked her to create shares for a number of 

friends, she used her fingers to estimate a piece of the fry and iterated across the strip. When it 

was too big, she went back and made the distance between her fingers smaller and iterated again. 

Once she verified the size she was estimating would fit within the whole, she repeated the 

process again, marking the strip and then cutting it into parts. I asked her to name the unit 

fractions and to count the fractional amounts. She named and counted the partitions correctly 

(e.g., “⅓, ⅔, 3/3”). 

Macey demonstrated awareness that the number of pieces create a connected whole, an idea 

that is part of the mental action of iteration. As evidenced previously, Macey identified the 

numerator as counts of the shares. Unlike the cookies in an array and the pirates’ treasure 

contexts, the value Macey identified for the denominator was based on the number of partitions 

to the whole, mapping to the number of sharers. In this context, of equipartitioning a single, 

continuous whole, Macey was able to give the mathematically correct answers. 

We also worked with Cuisenaire rods and bar models without context. Told that a rod 

represented ¼, Macey iterated and traced each iteration, counting with fractions as she went. She 

continued beyond the whole, counting “5/4, 6/4” before stopping. I asked her if she could keep 

going, and she said, “Yes, but I will run out of paper.” 

Based on this activity, we infer Macey understood the numerator not just as a counting 

number but also as the number of iterations. This activity also indicates she had little trouble 

with the idea that one can iterate a partition beyond a whole. Considering this in light of the 

evidence that she was not attending to the referent whole with discrete representations, we 

suggest Macey was not disembedding the ¼ rod or viewing the rod as ¼ the size of the whole. 

Rather she may have considered this as a new quantity emerging from the partitioning and, as 

such, the original whole does not place limits on the number of iterations.  
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Figure 2. The image on the left shows the shares of a french fry created for a changing 

number of sharers. The image on the right shows Macey’s solution to the task of four 

children sharing three licorice ropes. Circles representing each child are shown on the right 

and bottom center in four circles, labeled 1–4, and each containing three tally marks and 

the inscription, “¼”. 

 

Task 4: Sharing Multiple Continuous Wholes  

I presented Macey with three long strips of red construction paper and told her they 

represented long licorice ropes. I then asked her to share the licorice among four children. Figure 

2 shows four circles labeled 1-4, representing each of the four children (additional notations on 

the page are related to a previous task). The circled 4/4 in the bottom right of the picture is her 

final answer to how much licorice each child gets. Macey’s response contains errors that are 

potentially informative about her understanding. Her solution process is presented in the 

following transcript: 

So, let's take and put them together [lining up one end of each strip].  

That would be about even. So [marks the middle of each strip to generate halves].  

So, one, two, three, four, five, six [counting halves].  

One, two, three, four, [pointing to each of the circles as she counts, pauses] five, six 

[returning to point at the first two circles].  

Each of these [unintelligible] again [marks halves of halves on the construction paper strips]. 

So, one, two, three, four, [pointing at the circles on paper, looking back and forth from circles 

to construction paper strips] five, six, seven, eight [pointing again to each of the four 

circles] nine, ten, eleven, twelve [pointing again to each of the four circles]  

So, one two, three, four, five, six, seven, eight, nine, ten, eleven, twelve [putting a tally mark 

in each circle one-by-one as she counts].  

Each of them get a ¼, 2/4, ¾, 4/4 [pointing to the partitions in the first strip of construction 

paper].  

So, so ¼, ¼, [pointing to the first circle and second circle, then writing ¼ in each circle]. That 

equals 4/4. 
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When Macey found halves did not distribute evenly across sharers, she used her knowledge 

that halves of halves create fourths. She ensured the pieces would distribute equally across 

sharers and then marked tallies for each piece given. Her activity of guess-and-check with halves 

and then fourths does not indicate that she recognized she could partition each whole into fourths 

to match the number of sharers. We note this is in contrast to the case of a single continuous 

whole when she seemingly could map the number of sharers to the number of partitions needed.  

Regarding naming of the fractional share, Macey said each gets “a ¼, 2/4, ¾, and 4/4” and 

then writes ¼ in each circle, and in doing this she appears to be repeating her process of 

distributing the four partitions of the first licorice rope. With the statement, “That equals 4/4,” 

Macey pointed only to the first licorice rope and appeared to be referencing the 4/4 in a single 

rope. Macey disregarded or did not notice that she had three tally marks within each circle.  

We noted some similarities with Macey’s responses to previous tasks. Macey’s gestures 

indicate the numerator was identified by counting partitions in one licorice rope, but she had 

distributed these pieces one by one to each sharer. In both tasks her numerator corresponds to the 

number of sharers. Regarding the denominator, there was no reference to the other two licorice 

ropes as she named the fractional shares, and there is no indication she understood one rope as 

the referent whole. Given responses in previous tasks did not show attention to a referent whole, 

we suggest the denominator in this case is the number of partitions in a group she perceives as 

salient, something consistent with her naming of fractional shares of cookies and gold coins. 

Again, there are similarities in Macey’s response to the persistent understanding of fractions as 

numbers rather than indicators of size 

Abductive Inferences 

We infer Macey held these fraction understandings based on these equal sharing tasks: 

• Awareness of equipartitioning (number of shares, equal size, exhaust the whole) 

• The part represented a new, iterable quantity that was not seen in relation to the whole 

• Numerators identified counts of shares, corresponding to iterations in the context of a 

single continuous whole 

• Denominators were understood as “size” meaning quantity, as in the number of parts 

within a single whole or a single salient object/group 

Discussion 

We consider our abductive inferences through the three frameworks – equipartitioning, 

mental actions in fraction schemes, and persistent understandings. We are unpacking Macey’s 

responses in the spirit of exploration from multiple perspectives and welcome the uncertainty we 

find. Our purpose is to engage conversation with the mathematics education research community 

about connections and questions across these frameworks about fraction understanding. Next, we 

identify our questions about the abductive inferences clustered around three topics: discrete 

representations of fractions, continuous representations of fractions, and numerators and 

denominators. Finally, we pose questions related to Macey’s neurodivergence. 

Questions about Discrete Representations of Fractions 

When Macey was working with models of discrete objects (e.g., cookies or gold coins), she 

attended to clusters of these objects (e.g., dots or cubes) rather than to the larger whole. 
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● Does this indicate Macey has yet to construct a part-of-a-whole and/or a part-to-whole 

(Confrey, 1992) understanding of fractional shares of collections? What are the 

implications of this as it represents the first level of the equipartitioning learning 

trajectory (Confrey et al., 2014)?  

● Persistent understandings are constructed by neurodivergent students in socio-cultural 

interactions (Lewis, 2014). Given the perceptual saliency of counts groups and partitions 

within groups (as opposed to counts of shares and number of shares in a whole), how 

might Macey’s naming have arisen in the context of instruction? What does this suggest 

about tasks and instruction involving fair shares of collections? 

Questions about Continuous Representations of Fractions 

When Macey was working with a single continuous whole, she was able to iterate and re-

create a whole as well as create improper fractions.  

● Does Macey understand what a whole is? If asked to iterate a ¼ piece seven times, she 

would likely draw a bar of length 7/4, but would she indicate 4/4 as the whole? 

● Macey seems to regard parts as new quantities that add up to the same amount as the 

original whole but not as part of the whole. Does this confirm that Macey does not yet 

disembed (Steffe & Olive, 2010)?  

● Does her understanding of fractional shares facilitate an understanding of improper 

fractions without the mental actions of disembedding and units coordination 

(Hackenberg, 2007; Steffe & Olive, 2010; Wilkins & Norton, 2018), and if so, how might 

this be useful in supporting her subsequent learning?  

● Given that a student with understandings such as Macey’s may provide correct answers 

for fractional parts of a continuous whole, when are these persistent understandings 

reinforced by instruction and when do they become problematic (Lewis, 2014)? How can 

they be identified? 

Questions about Numerators and Denominators 

When we try to characterize Macey’s thinking about numerators across tasks, we infer Macey 

understood numerators as the count of the number of shares or iterations. We infer Macey 

understood denominators as the quantity of partitions. These understandings worked for her in 

some situations and not in others.  

● In what ways will these understandings impact her development at more advanced levels 

of equipartitioning and fraction schemes? 

● This seems to be consistent with the “more pieces” understanding identified by Lewis 

(2014), one in which the understanding of the denominator is as the number of pieces 

rather than the size of the piece. The student in Lewis’s (2014) study applied this only to 

unit fractions. Macey applied this thinking to non-unit fractions. Is this an understanding 

that other students construct?  

● Is this understanding precipitated by instruction that focuses on counting the partitions 

and does not attend adequately to the relative size of the partitions, a lack of clarity about 

size as quantity and size as dimensions? 

Questions about Neurodivergence 

Macey was able to complete each of the tasks she was given by using additive reasoning, 

applying counting, partitioning, and iterating actions. She did not evidence activity indicative of 

understanding fractions as either part-to-whole or part-of-a-whole relationships. 
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● Given the perceptual saliency of counts groups and partitions within groups (as opposed 

to counts of shares and number of shares in a whole), how might Macey’s naming have 

arisen in the context of perceptual processes? 

● Macey reached solutions to each task presented to her, though she did not evidence using 

anticipatory thinking to do so. How did Macey’s visual-spatial, fluid, and deductive 

reasoning strengths serve as assets when solving fraction tasks? How can these assets be 

used to support her in recognizing fractional parts in relation to a whole? 

● How might a persistent understanding of fractions as counts–that is as uncoordinated 

numbers rather than a size–be related to Macey’s issues with executive function or 

abstract reasoning? Might other cognitive processes be implicated? 

● How might this persistent understanding be constructed based on perceptual saliency of 

representations and instruction which leaves ideas of multiplicative relationships or 

disembedding implicit (Lewis, 2014)?   

Finally, we wonder more generally which of Macey’s understandings might be 

qualitatively different from those more typical of students in the learning of fractions. If they are 

qualitatively different, but emerge in the socio-cultural use of representations, how many other 

students develop similar understandings? And if they persist and contribute to future difficulty 

with more sophisticated fraction operations and relational thinking, how might we design tasks 

and instruction to address these persistent understandings?  

Conclusion 

We center the thinking of a neurodivergent student, viewing this as an opportunity for our 

learning as researchers and educators. We consider the student’s thinking from a diversity of 

perspectives–three conceptual frameworks for fraction understanding, and in doing so we find 

numerous areas of uncertainty. This represents a unique approach to exploring the fraction 

understandings of students. This is of benefit to the field by considering how frameworks can 

come into conversation with one another and surface questions which offer productive lines for 

research. Further, this exploration aims to provide evidence that explicitly positioning difference 

at the center of a study, in this case a neurodivergent student’s thinking, can provide a valuable 

contribution to knowledge development around how fraction understandings emerge. 
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We explored how background factors and mathematics-related beliefs were predictive of 5th 

through 12th grade students’ mathematics identity through regression analysis. Results indicate 

both background factors (age, honors placement, tutoring received) and mathematics-related 

beliefs (mindset, anxiety, agency, nature of math, rules) were all predictive of students’ 

mathematics identity. Student age, receiving tutoring, and mathematics anxiety were all negative 

predictors, while the rest of the variables in the model were positive predictors. This study 

highlights the variety of factors that play a part in a student’s mathematics identity development 

and could provide insight into specific experiences or interventions that might be used to support 

students’ identity development. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Middle School Education; High School 

Education 

Research notes the important role that mathematics identity has on students’ achievement 

(Bohrnstedt et al., 2021) and persistence, as shown through career choice (Cribbs et al., 2021a, 

2021b). However, limited research explores how various background factors and mathematics-

related beliefs influence students’ mathematics identity. This is partly due to the limited 

quantitative research in the field (Graven et al., 2019) and also due to the small sample sizes that 

are often used to explore the complexities of identity development such as through discourse 

analysis and/or positioning (Bishop, 2012; Sfard & Prusak, 2005). It is the purpose of this study 

to fill a gap in the literature by exploring connections between various factors and students’ 

mathematics identity to provide a picture of potential overarching patterns that could inform the 

field. This is particularly beneficial given the growing number of calls by the field for teachers to 

attend to students' mathematics identity development (NCTM, 2018, 2020a, 2020b).  

Theoretical Framework 

This study draws upon prior work in the field aligned with core identity (Cobb & Hodge, 

2011; Gee, 2001). From this perspective, identity is viewed as thickening over time (Holland & 

Lave, 2001), allowing for a snapshot of students’ identity to be taken at a point in time, such as 

through a survey. Initial work in the field provides validity evidence for measuring mathematics 

identity with undergraduate (Cribbs et al., 2015) and 5th-12th grade students (Cribbs & Utley, 

2023). That work supports the inclusion of three sub-factors for measuring mathematics identity: 

Interest (a student’s desire or curiosity to think about and learn mathematics), Recognition (how 

students view themselves and how they perceive others to view them in relation to mathematics), 

and Competence/Performance (students' beliefs about their ability to understand and perform 

mathematics). In combination, these factors capture students’ mathematics identity.  

Mathematics identity and background factors 

Given that mathematics identity is informed by social and cultural norms and experiences 

(Holland & Lave, 2001), it is important to consider students’ gender, racial, and ethnic identities 
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when exploring their mathematics identity. A wealth of literature highlights the ways that gender 

(Cribbs et al., 2016; Damarin, 2000; Mendick, 2005), race (Berry, 2008; Martin, 2000), and 

ethnicity (Adams, 2018; Gonzalez et al., 2023) inform how students position themselves or are 

positioned by others as a math person. In addition, other background factors, such as grade level 

are important to consider when examining mathematics identity development. Research has 

consistently shown that as students progress through K-12 their dispositions regarding 

mathematics declines (Musu-Gillette et al., 2015). Other research found that Honor’s placement 

positively influences changes in academic identity and school belonging (Legette & Kurtz-

Costes, 2021). In addition to these background factors, specific family background/experiences 

have been shown to relate to students’ identity. For example, research shows a connection 

between STEM identity and students' participation in informal STEM experiences (Dou et al., 

2019). Additionally, research indicates receiving mathematics tutoring could have a negative 

effect on students’ mathematics identity (Cribbs et al., 2021a). Another important connection to 

explore further is the number of student’s family members who are in a STEM field. With 

literature noting the role that parents have on their child’s beliefs and decisions (Turner et al., 

2017). Other work notes that while the level of influence by peers may be less for individuals 

pursuing mathematics-related fields, career choice is still strongly influenced by family members 

(Sasson, 2019). However, much of this work focuses on females due to the potential stereotypes 

that might influence students' decisions. Given that little research explores mathematics identity 

quantitatively, little is known about how these factors might relate to students’ mathematics 

identity for groups of students or cross-sectionally across K-12.  

Mathematics identity and mathematics beliefs 

Other work provides evidence of connections between mathematics-related beliefs and 

mathematics identity. For example, mathematical mindset and mathematics anxiety were both 

predictive of mathematics identity (Cribbs et al., 2021b). However, that study was with 

undergraduate students, which leaves a gap in our understanding of how these constructs might 

be correlated for K-12 students. Literature proposes a strong connection between mathematics 

identity and mathematical agency (Aguirre et al., 2013; Atabas et al., 2020; Turner, 2012). 

However, until recently a measure for mathematical agency was not available for exploring this 

relationship quantitatively (Cribbs & Utley, under review). Another important aspect of students’ 

mathematics identity is their perceptions of mathematics as a subject. Boaler and Greeno (2000) 

make this clear stating that “It is possible that many able students who could become world-class 

mathematicians leave mathematics because they do not want to author their identities as passive 

receivers of knowledge” (p. 189). This statement highlights how students' beliefs about what 

mathematics is as a subject might influence their mathematics identity. By exploring beliefs 

about the nature of mathematics along with mathematics identity, this relationship can be further 

explored. In addition to these other beliefs, students’ perceptions of the type of support they 

receive in the classroom are important to consider. Fredricks et al. (2018) found that both teacher 

and peer support positively associated with students’ mathematics engagement. Given the social 

aspects of identity development, teacher and peer support is likely to have an influence on 

mathematics identity as well. In combination, exploring mathematics identity along with these 

mathematics-related beliefs can provide a better understanding of their influence on students' 

identity development.  
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Methods 

A cross-sectional survey design was used to collect data from 5th-12th grade students to 

explore their mathematics identity and other mathematics-related beliefs. 

Participants 

Data were collected from two districts in a mid-western state in the United States. Students in 

grades 5th-12th grade were asked to participate, resulting in 1,655 surveys. After data was cleaned 

and responses with large portions of missing entries removed, the sample included 1,394 

participants. With regard to gender, 46% identified as Male and 54% as Female. Participants 

were between the ages of 9 and 18. Twenty percent of the sample indicated they were of 

Hispanic origin. With regard to race, 56% indicated they were White, 24% Native American, 6% 

multicultural, 5% were uncertain, 3% Black or African American, 2% African American and 

White, 2% Asian, and 1% Other. In terms of grade level distribution, 18% were in 5th grade, 13% 

6th grade, 10% 7th grade, 10% 8th grade, 12% 9th grade, 20% 10th grade, 11% 11th grade, and 5% 

12th grade. In the state where the data was collected, a fourth year of mathematics is not required 

for high school graduation, which aligns with a smaller percentage of students represented from 

12th grade in the sample.  

Data Collection and Analysis 

A survey was administered to participants in late spring of 2022. In addition to background 

factors (e.g., gender, race, age), the survey included items for a variety of mathematics-related 

factors, which will be detailed in the subsequent sections. 

Background Variables. Two types of background variables were collected for the study: 

demographic variables and family background variables. The demographic variables include 

gender (0=female; 1=male), age, Hispanic, race, grade level (1=5th; 8=12th), and advanced math 

class. Family background variables include English is the primary language at home, family 

working in the STEM field (total number of male guardian, female guardian, and other family 

working in STEM), math and/or science as a family hobby, family help with math schoolwork, 

family arranged tutoring in math (0=no; 1=yes), and number of STEM camps or programs in 

which participants participated (scale from 0 to 5+).   

Mathematics Identity. Mathematics identity was measured through a 16-item Likert-scale (1-

Strongly disagree; 5-Strongly agree). The factor is comprised of three sub-factors (interest, 

recognition, and competence/performance; Cribbs & Utley, 2023). Although the instrument can 

be used to explore the three sub-factors separately, it can also be used to create an overall mean 

for mathematics identity, taking a snapshot of students’ mathematics identity at the time the 

survey is administered. This scale included items such as “I see myself as a math person” and “I 

look forward to taking math.”  

Mathematical Agency. Mathematical agency was measured using three sub-scales: 

Discipline/Conceptual (7-items; e.g., “I can correct or fix my math errors when solving 

problems”), Collective (4-items; e.g., “In math class, we listen to each other’s math ideas”), and 

Critical (7-items; e.g., “Math has helped me make sense of the world around me.”). Given that 

the sub-factors for mathematical agency are theoretically and statistically distinct, they will be 

explored separately in this study (Cribbs & Utley, under review). Items were on a Likert-scale 

with 1-Strongly disagree and 5-Strongly agree. 

Mathematics Mindset. Mathematical mindset drew on Dweck’s (2008) work. However, only 

the incremental beliefs subscale was used (Blackwell et al., 2007; De Castella & Byrne, 2015) 
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and adapted to be mathematics specific as in other research (Degol et al., 2018). The mean of the 

four items was used to measure the factor. This scale included items such as “No matter who you 

are, you can significantly change how smart you are in math” and “You can always change even 

the basic level of how smart you are in math considerably.” Items were on a Likert-scale with 1-

Strongly disagree and 5-Strongly agree. 

Mathematics Anxiety. Two different scales were used to measure mathematics anxiety as the 

scales measured different aspects of the factor. The first measure of anxiety used the Single-Item 

Math Anxiety Scale (SIMA) asking students to respond to the prompt “On a scale from 1-10, 

how math anxious are you?” Prior research provides validity and reliability evidence for the 

scale (Nunez-Pena et al., 2014), and the scale was a way for us to efficiently assess students’ 

overall mathematics anxiety. The second scale used was the modified Abbreviated Mathematics 

Anxiety Scale (mAMAS), which has validity and reliability evidence from prior work (Carey et 

al., 2017) and was used to assess two sub-factors of mathematics anxiety. The first sub-factor is 

Mathematics Evaluation Anxiety (MEA) and includes four items asking participants to rate their 

level of anxiety in response to items such as “Thinking about a math test that day before you take 

it” and “Taking a math test.” The second sub-factor is Learning Mathematics Anxiety (LMA) and 

includes five items such as “Having to complete a worksheet by yourself” and “Starting a new 

topic in math.” Items were on a Likert-scale with 1-Not anxious and 5-Extremely anxious. 

Nature of Mathematics. Beliefs about the Nature of Mathematics was measured using items 

from the Teacher Education and Development Study in Mathematics (TEDS-M; Tatto et al., 

2012). This factor included two sub-scales: Mathematics as a set of Rules and Procedures (6-

items; e.g., “Mathematics is a collection of rules and procedures that prescribe how to solve a 

problem”) and Mathematics as a Process of Enquiry (6-items; e.g., “Mathematics involves 

creativity and new ideas”). These sub-factors are considered separately as “it is quite possible for 

them [respondents] to endorse both sets of propositions” (Tatto et al., 2012, p. 155). All items 

were on a Likert-scale with 1-Strongly disagree and 5-Strongly agree. 

Teacher and Peer Support. Teacher and Peer Support was measured using four sub-scales: 

Teacher Academic Support (4-items; e.g., “My math teacher cares about how much I learn”), 

Teacher Person Support (4-items; e.g., “My math teacher thinks it is important to be my friend”), 

Peer Academic Support (5-items; e.g., “Other students in math want me to do my best 

schoolwork”), and Peer Personal Support (4-items; e.g., “In math class, other students like me 

the way I am”). Consistent with how the factor was used in literature (Odoy, 2018), the sub-

factors were considered separately in analyses. Items were on a Likert-scale with 1-Never true 

and 5-Always true. 

Regression analysis was used to create a model examining how demographic variables, 

family background variables, and mathematics beliefs were predictive of students’ mathematics 

identity. Prior to data analysis, simple random imputation was used to create a complete dataset, 

which is a better option than using listwise or mean imputation (Schlomer et al., 2010).    

Results 

A stepwise regression analysis was conducted in blocks, where background (demographic 

and family background) variables were regressed on mathematics identity first. After all non-

significant items were removed from the model, mathematics-related beliefs were regressed on 

mathematics identity (also retaining the significant background variables). Items were removed 

from the model until only significant variables remained.  
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Table 1 shows that the only significant demographic variables were students’ age and 

advanced/honors placement for mathematics class. Estimates indicate that students’ age was a 

negative predictor, and honors placement was a positive predictor of mathematics identity. Only 

one family variable was a significant predictor for mathematics identity. Students indicating that 

their family arranged for them to get tutoring in mathematics negatively predicted their 

mathematics identity.  

 

 

Table 1: Background Variables and Mathematics-Related Beliefs Predicting Mathematics 

Identity 

N=1,394 Estimate SE t-statistic Sig 

Intercept 0.82 0.16 5.17 *** 

Student Age -0.03 0.01 -3.52 *** 

Honors 0.35 0.05 7.50 *** 

Tutoring in math  -0.14 0.05 -2.56 * 

Math Mindset 0.08 0.02 3.93 *** 

Overall Math Anxiety -0.02 0.01 -3.26 ** 

Math Evaluation Anxiety -0.08 0.02 -4.39 *** 

Learning Math Anxiety -0.05 0.02 -2.03 * 

Math Agency – D/C 0.54 0.03 21.21 *** 

Math Agency – CR 0.17 0.02 7.81 *** 

Nature of Math – Rules 0.11 0.02 5.48 *** 

Teacher Academic Support 0.04 0.02 2.03 * 
*p<0.05  **p<0.01  ***p<0.001 

 

In terms of mathematics-related beliefs, eight factors/sub-factors remained in the final model. 

Mathematics mindset, the discipline/conceptual and critical sub-factors for mathematical agency, 

rules sub-factor for nature of mathematics, and teacher academic support sub-factor for teacher 

and peer support were all positive predictors for mathematics identity. As one might expect, all 

three mathematics anxiety scales were negative predictors for mathematics identity. As a check 

for multicollinearity, the variance inflation factor (VIF) was assessed. The highest VIF was 2.3, 

well below the recommended value of 4 (Hair et al., 2010). Thus, all items were retained in the 

model.   

Discussion 

Results provide evidence for a variety of background and mathematics-related beliefs 

influencing students’ mathematics identity.  

Background Factors 

Student age being a negative predictor for mathematics identity aligns with prior work noting 

a decline in students’ beliefs and/or attitudes as they progress through school (Musu-Gillette et 

al., 2015). However, the estimate was relatively small (β = -0.03) indicating that this relationship 

might not be as strong as with other affective measures. This finding could be due to core 

identity being more stable over time (Cribbs et al., 2022) than other aspects of identity or a 
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mediating relationship that was not tested in this study. Perhaps more targeted interventions for 

mathematics identity development are needed. Research found that changes in identity can occur 

when targeted practices are employed (Hima et al., 2019). However, little is known about 

interventions employed with large groups of students. Honors placement was a positive predictor 

for mathematics identity which aligns with prior work exploring academic identity (Legette & 

Kurtz-Costes, 2021). Students who are in honors courses might get reinforcing messages 

regarding their competency in mathematics as well as recognition by family, teachers, and peers. 

Additionally, the family background variable, tutoring in mathematics, had a similar result from 

prior research (Cribbs et al., 2021a), which might be indicative of students feeling they are not 

competent with mathematics because they are receiving tutoring. However, that study also found 

that students who tutored others positively predicted mathematics identity, so the act of tutoring 

supports identity development, but not vice versa. It is worth noting the non-significant variables, 

which were gender, race, ethnicity, English as the primary language spoken at home, number of 

family members working in a STEM field, math and/or science as a family hobby, family helped 

with schoolwork, and participation in STEM camps or programs. It is possible that exploring 

mediating relationships or interaction effects, not tested in the current study, could provide a 

more nuanced understanding of the role these variables might have on students’ identity 

development.  

Mathematics-Related Beliefs 

Given that mathematics mindset was a significant predictor for mathematics identity for 

undergraduate students (Cribbs et al., 2021b), it was not surprising to see a significant 

relationship with 5th-12th grade students. Further work is needed to better understand the 

direction of this relationship. All three measures for mathematics anxiety were negative 

predictors for mathematics identity, similar to prior research with undergraduate students (Cribbs 

et al., 2021b). Although the estimates are relatively small, it is interesting to note that 

Mathematics Evaluation Anxiety had the largest estimate (β = -0.08), potentially highlighting the 

negative effects of assessment on students’ anxiety and subsequent identity. This study hints at 

the potential negative ramifications student assessment has that goes beyond immediate 

performance as previous research highlights (Barroso et al., 2021) to mathematics identity, which 

impacts students’ future choices (Boaler & Greeno, 2000; Cribbs et al., 2021a, 2021b). Two of 

the sub-factors of mathematical agency were significant predictors of mathematics identity. 

Discipline/Conceptual agency had the largest estimate in the model (β = 0.54), indicating a 

strong correlation between mathematics identity and the sub-factor. This could be partly due to 

the alignment between elements of the competence/performance sub-factor of mathematics 

identity. Critical agency was also a positive predictor for mathematics identity. Turner (2012) 

described critical mathematical agency as involving “students’ capacity to: understand 

mathematics; identify themselves as powerful mathematical thinkers; [and] factor and use 

mathematics in personally and socially meaningful ways” (p. 55). Results from this study align 

with prior work (Aguirre et al., 2013) noting that agency plays an integral part in students’ 

mathematics identity development. Interestingly, collective agency was not a positive predictor, 

particularly given the quorum effect that interest has on career choice in STEM (Hazari et al., 

2017). The Rules sub-factor for nature of mathematics was a positive predictor for mathematics 

identity; the inquiry sub-factor, however, was not. This sparks some points for consideration. As 

many students are likely to experience direct instruction in their classroom as opposed to inquiry 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1559 

instruction, could this be indicative of students’ experiences in their classrooms? Does this 

perception of mathematics potentially act as a barrier to students who might otherwise develop a 

mathematics identity? Finally, only one sub-factor of support was significant, teacher academic 

support. This finding highlights the important role that teachers have in students' identity 

development, as noted in multiple calls by the field (NCTM, 2018, 2020a, 2020b).  

Connecting to the Conference Theme 

In line with the conference theme, this line of research endeavors to use a different 

methodological approach to exploring mathematics identity than is commonly used (survey vs. 

positioning and/or narrative) by the field. This approach builds on theoretical perspectives from 

the field and provides a way to better understand how identity is being influenced by larger 

groups of students in varying contexts and backgrounds.   
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In transition to proof courses for undergraduates, we conducted teaching experiments supporting 

students to learn logic and proofs rooted in set-based meanings. We invited students to reason 

about sets using three representational systems: set notation (including symbolic expressions and 

set-builder notation), mathematical statements (largely in English), and Euler diagrams. In this 

report, we share evidence regarding how these three representations provided students with tools 

for reasoning and communicating about set relationships to explore the logic of statements. By 

analyzing student responses to tasks that asked them to translate between the representational 

systems, we gain insight into the accessibility and productivity of these tools for such instruction.  

Keywords: Logic, multiple representations, Euler diagrams, undergraduate 

Introduction 

Using multiple representations to support student reasoning and problem solving has long 

been acknowledged as a cross-cutting theme in mathematics education (e.g., NCTM, 2000). 

Working within and across representations is often a productive means of supporting student 

reasoning and promoting communication in the classroom. In the realm of mathematical logic, 

there is a long tradition of developing various visual and symbolic representation systems (e.g., 

Venn diagrams, Euler diagrams, truth tables, logical calculus), which would suggest this is a ripe 

space for using visual and symbolic representations to support student learning. However, in our 

experience, the use of spatial representations such as Euler or Venn diagrams to teach 

undergraduate transition to proof (TTP) students is rare (see Dawkins et al., 2022). One 

explanation for this is that diagrammatic representations of logic generally rely on set 

relationships (Mineshima et al., 2012), but common approaches to teaching logic in 

undergraduate TTP courses generally base logical concepts on truth-values rather than sets 

(Dawkins et al., 2022). This is the case despite a body of evidence supporting the power of visual 

representations for student reasoning in logic (e.g., Stenning, 2002; Sato & Mineshima, 2015).  

Based on a series of experiments (e.g., Dawkins & Cook, 2017; Dawkins & Roh, 2024; 

Dawkins et al., 2023; Eckman et al., 2023) involving a cycle of modeling student reasoning 

about logic and task design to support learning of logic, our team has developed a teaching 

sequence to foster learning of logic using set relationships. We use three primary representation 

systems (Goldin, 1998) to engage students in reasoning about set relationships: set theoretic 

symbols including set-builder notation, mathematical statements (rendered in English), and Euler 

diagrams. Figure 1 portrays how a subset relationship between two properties 𝑃 and 𝑄 might be 
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alternatively portrayed in the three representations. As Thompson (1994) explained regarding 

different representations of a function, we should not assume that students always see all of these 

as different representations of the same underlying object, even if that is our goal.  

 

 
Figure 1: Expressions of a subset relationship in the three representations  

 

As with much teaching using various representations, in our teaching experiments our 

research team did not want these representations to be the focus of instruction during most of the 

unit in which we taught logic. Rather, after they were introduced, we wanted them to be means 

by which students could reason and communicate about set relationships and the logic of 

statements. In two undergraduate TTP whole-class teaching experiments, we encouraged 

students to communicate within and across the three representational systems to learn set 

relationships, logic of statements, and proof techniques. We assigned a number of tasks in which 

students translated between the representations or generated new objects in one or more 

representations. In this report, we share our analysis of student work on such tasks to consider 

whether these three representations served as accessible and mathematically productive ways for 

students to reason about and communicate about set relationships. In particular, we share 

whether student use of these representations was normative – meaning the claims students made 

were mathematically accurate – and whether they were consistent – meaning a student’s various 

claims for related tasks agreed, even if the interpretations or claims were non-normative. Our 

goals in this analysis are twofold: 1) to investigate the efficacy of teaching logic using these three 

representations for supporting student inquiry (as evidenced by the conditions in the previous 

sentence) and 2) pending positive evidence, to portray the potential of using these representations 

for instruction on logic and proof techniques (as it stands in contrast to common practice).  

 

Relevant Literature 

This section reviews literature relevant to our project before briefly reviewing our own line 

of research that informed the instructional approach employed in the teaching experiments.  

Sets, diagrams, and the teaching and learning of logic 

While Venn diagrams are perhaps the most well-known visual system for representing and 

reasoning about logic, a variety of such systems were developed, primarily in the 19th century. 

Research on how people reason with and learn from such systems is much more recent. Sato et 
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al. (2010) compared how people solve syllogism tasks using a few different representation 

systems (see also Bronkhorst et al., 2022). In particular, they compared verbal solution methods 

(no diagrams), Venn diagrams (in which regions always overlap and regions are shaded), and 

Euler diagrams (in which possibilities are displayed by the overlap/non-overlap of regions, as in 

Figure 1), each with a short period of training in each diagram system. They found that the 

college student participants performed better with diagrams than with only verbal representations 

and performed better with Euler diagrams than with Venn diagrams. Those authors explain the 

value of diagrams by claiming, “we may plausibly assume that the semantic primitives of 

quantificational sentences in natural language are relations between sets, and that people’s 

inferences with quantified constructions are sensitive to such a relational structure” (Sato et al., 

2011, p. 2183). They assume that treating statements as relations among sets (as is portrayed in 

Venn and Euler diagrams) rather than relations quantified over ranges of individual objects (as is 

done in most standard treatments of logic, such as truth tables) is more consistent with natural 

language. Sato et al. (2010) further claims that Euler diagrams fostered better performance since 

they are in some sense “self-guiding” (p. 20) for minimally trained learners. We do not endorse 

such an interpretation of representational transparency as though learners must not engage in 

some constructive process of making meaning of the diagrams, but the evidence suggests that 

students find Euler diagrams easier to use with minimal training nevertheless.  

Mathematics education studies of sets, diagrams, and logic 

Deloustal-Jorrand (2002, 2004) provides a strong antecedent to the present work as she 

argued that student understanding of conditional statements should be built upon three 

viewpoints: formal logic (truth table definition and quantification), sets (represented by spatial 

diagrams), and implication (the conclusion can be inferred from the hypothesis). She 

hypothesized that “it is necessary to know and establish links between these three points of view 

on the implication for a good apprehension and a correct use of it” (Deloustal-Jorrand, 2002, p. 

4). Similarly, Durand-Guerrier et al. (2012) emphasized that logic must be taught with attention 

to semantic and syntactic aspects. While they do not endorse spatial diagrams in particular, such 

diagrams are classically viewed as a representation of the semantics of statements which 

supplement the syntax of formal statements or symbolic expressions. These authors support the 

claim that students should reason about sets, likely expressed through spatial diagrams, to learn 

about the logic of statements and proofs – however, how students bridge between these 

representations has been explored less. In a forthcoming paper, Antonides et al. (in press) explore 

how students link spatial and logical structures, recognizing the challenge and opportunity posed 

by operating across these representational systems4.  

Our approach to teaching logic is consistent with these other studies, but only indirectly drew 

upon them. Our focus on sets arose from observations of productive student reasoning about 

mathematical statements (Dawkins, 2017). This led us to depart from the common truth 

conditions for statements defined by truth tables, and to adopt truth conditions based on sets. 

Specifically, the truth of a conditional corresponds to a subset relationship between the truth sets 

 
4 Both Sato et al. (2010) and Antonides et al. (in press) use Euler diagrams in which regions do not have 

existential significance. This means that in Figure 1, the left-hand diagram could represent both the case where 𝐴 ⊂
𝐵 and 𝐴 = 𝐵. We do not adopt those conventions, but rather use the two diagrams in Figure 1 to separately express 

the two cases. This creates a two-to-one mapping between the diagrammatic representation and the symbolic and 

sentential representations in the way we teach, as portrayed in Figure 1.  
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of the two predicates, as portrayed in Figure 1. As we explored how to use sets to support 

students to reason about the logic of statements and proofs (e.g., Dawkins et al., 2023; Dawkins 

& Roh, 2024), we saw the need to more directly teach basic set theory beforehand (Eckman et 

al., 2023, provides examples motivating this need for instruction). The three-representation 

approach investigated in this report arose as a tool for enacting this teaching sequence. Two other 

aspects of our approach worth mentioning are that 1) we focus on sets defined by mathematical 

properties, not arbitrary sets such as {1, 𝜋, Ford Taurus} and 2) we focus on mathematical 

statements rather than everyday, nonsense, or purely symbolic statements.  

 

Methods 

As part of a larger project investigating student abstraction of logic (NSF DUE #1954768 and 

#1954613), we conducted two whole-class teaching experiments (Steffe & Thompson, 2000) in 

undergraduate TTP courses. These courses occurred at two large Southwestern, public 

universities and were taught by the first and second authors. The data gathered consisted of 

videos of all class meetings in which sets, logic, and proof techniques were covered, student 

homework and exams, group interactions in target small groups, task-based interviews on logic 

with members of the target groups both before and after instruction, and pre- and post- logic 

assessments delivered online. Consistent with teaching experiment methodology, outside 

observers were present at all class meetings and the research teams at the two sites met weekly to 

discuss and conduct iterative analysis and planning.  

All students were invited to provide informed consent to participate in the study. The data 

analyzed in this report is limited to homework and exam work from students who opted into the 

study (13 students in each class), which represents 87% and 100% of the students in the two 

classes. This portion of the data was deemed most appropriate for analyzing all participating 

students’ use of the three representations. The homework and exam tasks were not the same 

across the two classes, though some tasks were shared. This creates an asymmetry in the 

available data at the two sites. While this might be a problem if we tried to make claims about 

student learning over the course of the teaching sequence, our goals in this report are more 

modest. We want to consider the extent to which the three representations provided accessible 

and mathematically productive ways for students to reason and communicate about set 

relationships. We provide an example to illustrate what we mean below.  

To answer this question, the third and fourth authors analyzed all homework and exam tasks 

from the portions of the courses on sets, logic, and proof techniques. We looked for all the tasks 

that invited students to operate between representations, often providing input in one and asking 

students to respond in one or both of the others (see Fig 2 for an example). The research team 

then selected a subset of these tasks for student response analysis, giving preference to those 

tasks used in both classes. The third and fourth authors then analyzed all consenting student 

responses to these tasks. Responses were coded for whether the response 1) made normative 

claims in the representation, 2) was internally consistent, and 3) exhibited any recurring feature 

observed in other responses and salient to translation between representations. As allowed by the 

structure of each task, we attended to whether students were internally consistent in the claims 

they made about sets across the representations. In other words, we sought to discern whether 

they used different representations as ways to express the same underlying relationship. Though 

many of the tasks in the courses were in a particular mathematical context (e.g., quadrilaterals), 
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many of the tasks we analyzed dealt with arbitrary sets and properties. Such tasks were assigned 

to support student abstraction. These tasks are useful for this study to see how students related 

the three representations without underlying reference to the specifics of some underlying 

mathematical context.  

Consider the task in Figure 2 to illustrate our coding. The normative responses for the first 

question were 11a – true-true, 11b – false-true, and 11c – false-true. To us, the three statements in 

question 12 corresponded to the set relationships in question 11: 11a~12b, 11b~12c, and 

11c~12a. Since we know one of the two diagrams is the case, but we are not sure what is the 

precise state of affairs between these properties, the normative answers to question 12 are that 

statement b must be true while statements a and c may be true or may be false. Even if students 

did not give those normative answers to these questions, their answers to question 11 may be 

consistent with their answers to question 12. We interpret this to mean that they linked the 

statement and the set relationship normatively, but they might have read the diagram non-

normatively. This is an example of what we would have called consistent, though not normative 

responses. These codes were then tallied to provide descriptive summaries that allowed us to 

survey student use of the three representations, as we shall share in the following sections. Since 

it is not our goal to compare the two classes, we aggregate all of the codes across the two classes 

for tasks used at both sites.  

 

 
Figure 2: Translation between representations task from a midterm exam 
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Results 

In this section, we present our findings from analyzing student responses to three tasks 

(though each is multi-part). The first two tasks were given in both classes. The third (in Figure 2) 

was only given at one site. While we identified other tasks relevant to our investigation, space 

does not permit us to report more in this conference paper. When possible, we share instances of 

interesting student thinking to support the claim that the three representations were productive 

for student inquiry into logic.  

Task 1: Building sets containing the given set 

Figure 3 presents Task 1 in which students were asked to build sets containing the given set. 

This was both an opportunity to use set-builder notation and to think about how properties 

influence the membership of a set. While this task did not include either statements or Euler 

diagrams, we consider the coordination of properties and sets of objects another key aspect of 

constructing set relationships. Table 1 presents the results of the coding analysis. Most students 

used set builder notation as intended. Furthermore, more than 81.7% of the responses identified a 

superset of the given set (even if equal to the given set). Set D proved to be the most challenging 

for many students because there are no familiar sets of quadrilaterals that contain all trapezoids. 

Student responses tended to lean heavily on familiar conditions (i.e., those taught in school) to 

construct their supersets. One interesting pattern in some of the non-normative responses is 

illustrated by the student whose response for set 𝐷 was the set of quadrilaterals in which all four 

sides are parallel. This produces a subset of 𝐷, but the student was likely thinking about how 

having two parallel sides is “contained in” having four parallel sides. This way of reasoning 

arises on other tasks, such as when students think the set of equilateral triangles contains the set 

of isosceles (defined inclusively) since three equal sides contains two. 

 

 
Figure 3: Task 1, which invites students to use set-builder notation  

Table 1: Features of student responses to Task 1 (n=26) 
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Task 2: Constructing diagrams and new set relationships from them 

Task 2 (see Figure 4) invited students to translate a set expression into Euler diagrams and 

then to use those diagrams to produce new set expressions. We had noted in our previous 

experiments that students often struggled to think about complement sets as the inside of regions 

in Euler diagrams. For this reason, we purposefully asked them to draw diagrams where the 

given information contained a complement and chose to provide them a diagram where the 

complement was inside of an oval region. There are two normative diagrams for this 

arrangement similar to those in Figure 1, but a range of other diagrams may be drawn if students 

represent 𝑆 as the inside of a region or if they imagine any sets to be empty or universal. 

Accordingly, as displayed in Table 2, some students produced three diagrams. About one quarter 

of students could only produce one normative diagram.  

 

 
Figure 4: Task 2, which asks students to connect set notation and Euler diagrams  

Table 2: Features of student responses to Task 2 

 
 

The intended answers to part b (based on what was discussed in the classes) were that 𝑇𝑐 ⊆ 𝑆 

and that 𝑆𝑐 ∩ 𝑇𝑐 = ∅ since these are both logically equivalent to the given condition, though 

other statements were possible. As the third column of Table 2 displays, 88.5% of students 

generated a set relation that was consistent with at least one of their diagrams. We interpret this 

as evidence of some fluency between the representations. The lower performance indicated in 

other cells points to the challenge of this task caused both by the presence of the complement and 

the many-to-one pairing between diagrams and set relationships. Less than 60% of student 

responses presented a set relation that matched all of their diagrams (according to our 

interpretation thereof). Since student diagrams were either non-normative or did not capture all 

of the possibilities, this meant that almost half of their given set relationships were non-

normative (not necessarily true given 𝑆𝑐 ⊆ 𝑇).  

We want to highlight two types of responses reflected in this data. One student only drew a 

diagram in which 𝑆 and 𝑇 are complements of one another. This is consistent with the given 

information but does not show all possibilities. As a result, her first set relation, 𝑆 ∩ 𝑇 = ∅, is 

consistent with her diagram, but is not normative since it is untrue when 𝑆𝑐 ⊂ 𝑇. Her other set 

relation, 𝑆 ∪ 𝑆𝑐 = Ω, is a tautology. It is consistent with the given information, her diagram, and 
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is normative, but it would be true of any set and does not depend upon the given information. A 

second type of response we noticed was when students generated other types of equivalent 

conditions, such as 𝑆𝑐 ∩ 𝑇 = 𝑆𝑐. We had not taught these other conditions equivalent to a subset 

relation, so we infer that the Euler diagrams supported students in noticing new, normative 

relationships. Both these equivalent conditions and the tautologies suggest that the Euler 

diagrams were productive for students’ ability to identify new set relationships.  

Task 3: Evaluating set relationships and statements from given Euler diagrams 

Task 3 appeared in Figure 2. As with Task 2, we purposefully introduced complement sets 

into this task to see if students could reason about them as sets much like any other set. Table 3 

below presents how frequently student responses were normative and consistent with 

corresponding other responses. The codes group the parts of question 11 and question 12 that 

correspond according to normative logic. The data show that students frequently gave normative 

answers to most tasks, though responses to 12c were often neither normative nor consistent. We 

interpret this to suggest that the language of “if and only if” was still not being coordinated with 

the other representations in the manner intended. On the other tasks, students were consistent 

with their diagrams on nearly 4 out of 5 responses, suggesting relatively strong fluency between 

the representations.  

 

Table 3: Student responses to Task 3 

 
 

Discussion 

This paper analyzed how students in two undergraduate TTP courses, which were designed to 

foster set-based meanings for logic and proof, used the three representations of set relationships 

to reason about and communicate about logic. This was done by analyzing student responses to 

tasks that particularly asked them to operate within and across the representations. Student 

responses were coded both in terms of whether they were, first, normatively correct and, second, 

internally consistent with students’ responses to other parts of the task. Third, we also noted 

when students gave responses that were mathematically accurate even if logically less 

interesting, such as tautologies. While we are pleased by normative responses, we take consistent 

and tautological responses as supporting evidence that the three representations were productive 

for student reasoning and communicating.  

Much of the data shows that a majority, but not all, student responses were normative and/or 

consistent. We draw two implications from this. We claim that operating in the representations 

was accessible and productive for students since most of them were able to demonstrate 

productive reasoning about set relationships on these tasks. By reasoning within and across the 

representations, we hoped students could construct and abstract set relationships both between 

particular properties and arbitrary properties. The second implication we draw is that reasoning 

between representations is non-trivial. By contrast, Sato et al. (2010) claim that Euler diagrams 

are self-guiding and certain inferences can be read directly from diagrams. We agree that they are 

facilitating, but we claim learning to operate in these representations is a meaningful 
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accomplishment. Further, our tasks reveal how task features such as complement sets, 

coordinating different cases, and needing to generate non-familiar sets all increase the challenge 

of student reasoning about logic. We hope that future work will continue to explore student 

learning in this arena and future instruction will seek to make use of these three representations 

to support student progress.  
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For many college students, mathematics poses a significant academic challenge, particularly in 

courses like Calculus, which can become gatekeepers hindering their pursuit of STEM-oriented 

degrees. To address this issue, we advocate for innovative pedagogies such as Specifications 

Grading that we posit promote Latina/o students' mathematics identity development. In this 

study, we examine the mathematics identity development of  350 Latina/o students enrolled in 

Specifications Grading Calculus I compared to traditional grading. Using a validated survey 

and Repeated Measures ANOVA, we explore changes in recognition,  and overall mathematics 

identity. The study highlights the impact of alternative grading systems, such as Specifications 

Grading, on Latina students' mathematics identity . 

Keywords: Calculus, Instructional Activities and Practices, Undergraduate Education, 

Assessment 

Purposes of the Study 

The primary objective of this study is to investigate the influence of Specifications Grading 

on the development of Latina/o students' mathematical identity and contribute to the field of 

mathematics education by offering informed perspectives on pedagogical practices that 

positively shape students' mathematical identities. By comparing Calculus 1 students in 

Specifications Grading and traditionally graded classes, we aim to provide insights into the 

relationship between grading methods and their impact on self-concept, confidence, and 

motivation in mathematics. Specifications Grading, an alternative grading method, is 

characterized by transparent learning outcomes and assessment criteria (Nilson, 2015). The 

following research question guided our study: What impact, if any, does a specifications-graded 

Calculus 1 course have on students’ mathematics identity development in comparison to students 

enrolled in a traditionally graded Calculus 1 course? 

Theoretical Framework 

The study adopts a theoretical framework emphasizing the importance of mathematics 

identity in students' academic journeys. Drawing on Cribbs et al.'s (2015) model, we focus on 

two  of the four key constructs: recognition and mathematics identity   (See Figure 1). In our 

study, Specifications Grading is posited as a pedagogical tool fostering stronger mathematical 

identities.  For a qualitative study of the development of these four key constructs on a student 

taking Specifications Grading and a student in a traditionally-graded Calculus course, see the 

work by Fernandez, et al. (2023). 
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Figure 1. Cribbs et al. (2015) Establishing an Explanatory Model for Mathematics Identity 

 

Methods 

During two semesters, we implemented Specifications Grading to a subset of Calculus 1 

classes consisting of 8/13 (or 62%) in-person sections in Fall 2022 and 11/14 (or 79%) in-person 

sections in Spring 2023; the remaining sections were taught in-person and considered 

traditionally-graded classes.   We identified 27 learning outcomes/targets  and grouped into 10 

core, 11 supplementary, and 6 non-testing learning targets. Assessments consisted of weekly 

worksheets, four exams, and online homework associated with the learning targets. Worksheets 

and exams were graded on a pass/no-pass scale. Full credit for a learning target was earned by 

obtaining credit on the associated worksheet and exam problem. Worksheets could be 

resubmitted for full credit. If students failed to pass a learning target on an exam, retesting 

periods were available weekly on Fridays if they attended tutoring. Students from the 

Specifications Grading classes and traditionally graded classes who completed both the pre-

survey during the second week of classes and the post-survey during the last week of the 

semester served as the participants of this study.  In essence there were a total of 350 participants 

with 43.1% identifying as sophomores and 24%-25% identifying each as freshmen or junior 

students.  For this study we adopted a comprehensive statistical methodology that included 

Structural Equation Modelling (SEM), specifically Confirmatory Factor Analysis (CFA) and 

Repeated Measures Analysis of Variance (ANOVA) to analyze the data collected from the 

participants. In this study, CFA was used to verify the mathematical identity construct, which 

was based on the work of Cribbs et al. (2015). The comparative fit index (CFI) was used as the 

metric to measure the accuracy of the construct, and it had a value of 0.941, indicating the 

goodness of the construct. Repeated Measures ANOVA was used to compare the means of the 

same group of subjects under different conditions at different times (Girden, 1992, as cited by 

Beins, 2017). Repeated Measures ANOVA was used to analyze the Mathematical Identity pre- 

and post-survey scores of students to determine whether there were statistically significant 

differences in the development of mathematical identity before and after taking the Calculus I 

course. ANOVA also helps to evaluate whether the differences observed are related to the 

intervention (Specifications Grading) or if they could be attributed to chance. 
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Results 

Recognition: Specifications Grading vs Traditionally Graded Groups  

Preliminary findings show that even when the Specifications Grading and traditionally 

graded groups started at different estimated marginal means in the pre-timeframe, participants 

from the Specifications Grading group had a slightly higher measure of recognition (that is, 

students’ perception of being seen as a math person by others) in comparison to those in the 

traditionally graded group (See Figure 2). Although the observed differences between the two 

groups are not statistically significant as indicated by a p-value of 0.922, further investigation is 

needed to determine the factors that influenced these changes. 

  

Figure 2. Comparison of Recognition among Specifications Grading and Traditionally 

Graded Groups 

 

Mathematical Identity: Specifications Grading vs Traditionally Graded Groups  

Preliminary findings indicate that even during the pre-timeframe, both groups have distinct 

estimated marginal means, with the traditionally graded group showing a slightly higher sense of 

math identity (that is, students identifying themselves as a math person). However, during the 

post period this group showed a notable decline in Math Identity, while the Specifications 

Grading group exhibited a slight increase (See Figure 3). Although the changes are not 

statistically significant, further investigation is needed to determine the factors influencing those 

changes. Studying math identity is important as it is correlated with student mathematics 

achievement (e.g., Fernández et al., 2022; Gonzalez et al., 2022; Matthews, 2020).   
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Figure 3. Comparison of Math Identity among Specifications Grading and Traditionally 

Graded Groups 

Recognition: Specifications Grading Male vs Female 

Preliminary findings indicate that from the students enrolled in Specifications Grading 

classes, both male and female students show a slight increase in their recognition levels (See 

Figure 4) with female students showing more gains. 

 
Figure 4. Comparing Recognition among Males and Females in the Specifications Grading 

Group 

 

Mathematical Identity: Specifications Grading Male vs Female 

Preliminary findings indicate that from the students enrolled in Specifications Grading 

classes, male participants showed a slight decrease in their math identity.  On the contrary, 

female participants showed a notable increase in math identity (See Figure 5).  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1576 

 

 

 
Figure 5. Comparing Math Identity of Males and Females in the Specifications Grading 

Group 

Discussion and Conclusion 

This research contributes to the ongoing dialogue on equitable mathematics education for 

Latina/o students, particularly in gatekeeper courses like Calculus I. The adoption of 

Specifications Grading emerges as a promising pedagogical strategy to positively influence 

mathematics identity development. The observed differences in, recognition, and overall 

mathematics identity between Specifications Grading and traditionally graded groups underscore 

the potential of innovative grading approaches in creating a more supportive learning 

environment. 
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Language serves as a crucial tool for communication, comprehension, and problem-solving. 

People use language as a resource when they approach new problems, including in mathematics 

classes. In this study, we examined the language resources used by five college students as they 

solved a mathematics word problem in a language unknown to them. We found the most 

commonly used resources among the students were contextual (e.g., scaffolds provided by the 

teacher), cognitive (e.g., their background knowledge), and social (e.g., meaning co-constructed 

with their peers).  

Keywords: Equity, Inclusion, and Diversity; Affect, Emotion, Beliefs, and Attitudes; 

Instructional Activities and Practices  

Classrooms in North America are becoming increasingly multilingual (He & Yu, 2017). As 

mathematics education researchers envision a future for our field, we must continue to explore 

the ways in which language can be used as a resource in mathematics classrooms (Adler, 2000; 

Moschkovich, 2012; 2021). This is particularly crucial for multilingual learners (MLs) who may 

need to access additional language resources if they do not yet have access to the language of the 

classroom (Moschkovich, 2012). When asked to participate in a mathematics lesson in a 

language they do not speak, many teachers would assume their students would not be successful 

(Gallo et al., 2014). However, if language is viewed as a resource, and if the teacher supports 

comprehension appropriately (Krashen, 1992), then students may be able to be successful. The 

purpose of this study was to explore the language resources used by college students when 

solving a mathematics task in a language they do not know. The following question guided this 

study: What language resources do college students use when solving a mathematics word 

problem in a language they do not know?  

Perspectives 

Language and Mathematics 

There is a robust body of research on the role of language in the mathematics classroom, 

especially with regard to MLs’ mathematics learning (Barwell et al., 2016; Barwell et al., 2017; 

Halai & Clarkson, 2015; Moschkovich, 2010; Prediger & Schüler-Meyer, 2017). These studies 

take different views of language as a resource in the mathematics classroom, but overall have 

found that multilinguals, especially in classrooms where the language of instruction is not their 

home language, draw on what they know about language to interact with their peers and their 

teacher and make meaning (Moschkovich, 2008).  

Many researchers have taken up the perspective of language as a resource in mathematics 

learning to counter deficit narratives about students whose home language is different than the 

language of instruction (e.g., Adler, 2000; Barwell, 2018; Planas & Civil, 2013). Here we take up 

Moschkovich’s (2015) conceptualization of the multiple resources that MLs use in the 

mathematics classroom, which draws on a sociocultural perspective, including “not only oral and 

written text, but also multiple modes, representations (gestures, drawings, tables, graphs, 
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symbols, etc.), and registers (school mathematical language, home languages, and the everyday 

register)” (p. 44).  

In contrast to Moschkovich’s work, which was largely situated in English medium 

classrooms and focused on students who had at least some English language proficiency, our 

objective was to investigate the resources students would use to make sense of and solve a 

mathematics task in a language unknown to them. One critique of Moschkovich’s work is that 

her definition of language as a resource is all-encompassing to such an extent that it is 

challenging to discern the specific resources students accessed (Barwell, 2018).  

Language Resources 

Language resources can refer to external material and technologies, such as dictionaries, 

online translators, and writing resources (Oh, 2020) or the individual’s language-related 

resources (i.e., learners’ skills and strategies used to access and produce language). These latter 

resources include strategies that can be classified into cognitive, affective, social, and contextual 

resources (see Figure 1). Additionally, researchers have recently argued for the positive 

association between metacognitive (Hulstijn, 2015, 2019; Teng & Zhang, 2022) and 

metalinguistic awareness in students’ language learning. Thus, we consider these as resources too 

(see Figure 1). 

 
Figure 1: Individual Language-Related Resources as Reported in the Literature  

The purpose of this study was to examine how the participants’ language resources allowed them 

access to a mathematics word problem in an unfamiliar language. 

Methods 

Participants 

We invited undergraduate college students enrolled in a Southern urban university to 

participate in this study. We had five participants, four of whom identified as females, and one 

identified as a male. Two participants were sophomores, and three were juniors. Two participants 
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identified as West African, two as Hispanic, and one as Asian. All five participants described 

having significant exposure to multiple languages and cultures in their lives. Participation 

included attending (a) an in-person mathematics session and (b) a focus group interview. 

We had two in-person, video recorded, 30- minute mathematics sessions: three participants 

attended the first, and two attended the second. During the sessions, we presented a word 

problem in Arabic (a language none of them spoke) to the participants and asked them to try to 

solve it. Following this task, we led a 30-minute focus group interview for the participants to 

reflect on their feelings, thoughts, and strategies used during the task. The task– the population of 

Midtown is three times that of Karburg. The difference between the two populations is 2184. 

How many people live in each of the cities? (see Figure 2)– was presented in Arabic. The teacher 

spoke and wrote in Arabic throughout her presentation. 

The participants were allowed to access any materials in the room (e.g., manipulatives, 

calculators, each other) apart from translation technology to solve the problem. Slowly, the 

teacher presented additional scaffolds, such as pictorial vocabulary instruction (see Figure 2), 

manipulatives, and a number translation sheet. We recognize that translanguaging– the ability to 

seamlessly transition between languages and a teaching approach where educators foster this 

skill (García & Kleifgen, 2020)– is a key practice to leverage students’ language resources, and 

we allowed translanguaging among the students, but we chose not to have the teacher 

translanguage in order to emulate the situation in many classrooms where the teacher speaks the 

majority language and students’ dominant languages are minority languages. 

 

 

 

Figure 2: The word problem as presented to the students with math and vocabulary 

representations. 

Data Analysis 

We coded the transcripts of the videos for the language resources the participants either 

demonstrated as they worked on the problem or those that they told us they used during the focus 

group interview. We began with a priori codes derived from the literature review (see Figure 1). 

Together, both authors coded the entire dataset over multiple sessions. We maintained a code 

book and a data analysis log, which we referred to when making coding decisions. After 

applying these high-level a priori codes, we went through the excerpts within each code and 

open-coded them more descriptively. For example, some of the excerpts under social resources 
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were coded “co-constructing a strategy” and “co-constructing understanding.” All coding at this 

level was done together so that 100% consensus was reached. 

Findings 

We observed the participants utilize cognitive resources such as “background knowledge” 

and “mathematical knowledge.” For example, Tiwa mentioned that because the second author 

introduced herself as an Arabic speaker at the beginning of the session, she was able to recognize 

that the task was in Arabic. That allowed her to deduce that since writing in Arabic goes from 

right to left, then perhaps numbers follow the same rules. Additionally, metalinguistic resources, 

such as “knowledge of the written form” and “metanumeric awareness,” were strongly present. 

For instance, Elena recognized the place value table that the researcher used during the 

presentation. Although the table showed the Arabic numbers, Elena made the connection and 

realized the similarities between the rules of place value as she knew them in English and in 

Arabic as they were presented. Making a connection between two different number systems 

demonstrates metanumeric awareness (Gallagher, 2021). These findings underscore the 

importance of language resources in providing access to mathematics tasks.  

Additionally, we found that the participants relied most heavily on social resources. Indeed, 

“co-constructing understanding” was an ongoing activity between all team members. They did 

that by listening to each other’s thinking and discussing clues. For example, Salman said,  

I find that it's easier when you have a group to do it with, right? Because we build up on 

other people's ideas, right? So, she knew something that I didn't know. And when she told 

me, it started making sense to me. So, you know, it's good to work with the group. 

Additionally, we observed the participants “co-construct strategy” together. The following 

exchange presents an example of this particular resource.  

Tiwa:  So, I think we set up a proportion to figure out how many people live in Midtown 

compared to the other places. So the first number would be 2184 over … 

because… I’m not good at proportions. Do you guys know how to set up the 

proportion? 

Valeria:  So, are you … are you thinking like one-third equals 2184? 

Tiwa:  Yes, but also no, but yes, something along that line. 

Valeria:  Like that structure?  

Tiwa: Yeah, because the two is … 2184. So, we need to figure out that one to get the 

total and then compare it to the other city. 

Valeria:  [pointing at the problem in the sheet] So, if that number is 2184, then wouldn't 

that 2184 be 2/3? 

Despite none of the participants speaking Arabic or having experienced the language in an 

academic setting before, they supported each other’s learning by co-constructing their 

understanding and strategies. Through their use of these multiple strategies, especially 

contextual, cognitive, and social resources, the participants were all able to make sense of the 

task and solve the problem, both arriving at a correct mathematical answer and writing that 

answer using Arabic numerals. 
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Discussion and Limitations 

The purpose of this study was to examine the language resources that college students use to 

help them access mathematics tasks in a language unknown to them. Our findings echoed 

previous research on students’ use of cognitive resources (de Araujo et al., 2018; Peng et al., 

2020); metacognitive resources (Jessner, 2018); metalinguistic awareness (Reder et al., 2013); 

contextual resources, such as scaffolding (Noh et al., 2013); and social and contextual resources 

(Klang et al., 2021). The small sample size poses a limitation for this study. Additionally, we 

recognize that college-age students may have had more experience needing to make sense of new 

situations and therefore may have more resources than younger students. We hope to expand the 

study in the future and encourage researchers to examine the language resources used by students 

in mathematics classrooms across schooling, K-16. 
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Researchers in mathematics education and educational studies have argued from post-

positivist, constructivist, and emergent epistemological vantage points that understanding 

students’ interactions is central to understanding their cognitive experiences in mathematics 

classrooms (e.g., Cobb & Yackel, 1996; Cohen et al., 2003; Mok & Clarke, 2015; Nuthall, 

2007). In this poster, I explore how another epistemological perspective, enactivism, can further 

unify this body of work with implications for the conceptualization and design of mathematics 

classroom research. Enactivists posit that cognition is an interaction between an individual and 

one’s environment, as cognition is an enacted phenomenon consisting of perceptually guided 

actions (Maturana & Varela, 1992; Reid & Mgombelo, 2015; Varela et al., 1991). Although 

enactivism has been applied in mathematics education research previously (see Simmt & Kieren, 

2015), I seek to distill concepts and premises for researching students’ cognition in mathematics 

classrooms to inform an interactive paradigm for mathematics classroom research. Indeed, 

paradigms “provide frameworks that describe, interpret, analyze, and in some cases explain both 

the knowledge that is being produced as well as the processes that are used to produce it” 

(Collins, 2019, p. 52). Thus, the articulation of an interactive paradigm for mathematics 

classroom research has implications for both the content of what one can conceive of researching 

as well as the methodologies and approaches one applies in investigation. 

In this theoretical poster, I explore the following research question: What does enactivist 

epistemology imply for how we might conceive of researching students’ cognition in mathematics 

classrooms? I will present an interactive paradigm in response, including my definitions for three 

core concepts—students, environment, and cognition—united around two guiding premises: 

1. Classroom environments are actively constructed by each student as they relate to 

other actors and features of their environments. 

2. Students’ cognition is both agentic and interdependent with their classroom 

environment. 

To contextualize the concepts and premises described above, I will draw connections not 

only to the extant literature but also to the research methodology and preliminary results of a 

case study I conducted in alignment with this interactive paradigm. I designed the case study to 

focus on the cognition and mathematical interactions of three eighth-grade students with their 

environment (including one another) in an algebra classroom during an instructional unit about 

linear equations (Premise 1). Through an embedded case structure and targeted analysis of 

transcript data, I sought to produce findings about algebraic cognition reflective of students’ 

agency and interdependence (Premise 2). Through this poster, I will discuss how an interactive 

paradigm in this case study contributed to results around student cognition in classrooms that 

differ from non-enactivist research centering interactions. Importantly, by highlighting how an 

interactive paradigm might be applied as well as what it might contribute, this poster will share 
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affordances of incorporating enactivist epistemology explicitly into mathematics classroom 

research agendas. 

References 
Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of 

developmental research. Educational Psychologist, 31(3–4), 175–190. 

https://doi.org/10.1080/00461520.1996.9653265 

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational 

Evaluation and Policy Analysis, 25(2), 119–142. https://doi.org/10.3102/01623737025002119 

Collins, P. H. (2019). Intersectionality as critical social theory. Duke University Press. 

Maturana, H. R., & Varela, F. J. (1992). The tree of knowledge: The biological roots of human understanding 

(Revised ed.). Shambhala. 

Mok, I. A. C., & Clarke, D. J. (2015). The contemporary importance of triangulation in a post-positivist world: 

Examples from the Learner’s Perspective Study. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), 

Approaches to qualitative research in mathematics education: Examples of methodology and methods. 

Springer. 

Nuthall, G. (2007). The hidden lives of learners. NZCER Press. 

Reid, D. A., & Mgombelo, J. (2015). Survey of key concepts in enactivist theory and methodology. ZDM, 47(2), 

171–183. https://doi.org/10.1007/s11858-014-0634-7  

Simmt, E., & Kieren, T. (2015). Three “moves” in enactivist research: A reflection. ZDM, 47(2), 307–317. 

https://doi.org/10.1007/s11858-015-0680-9  

Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. The 

MIT Press. 

  

https://doi.org/10.1080/00461520.1996.9653265
https://doi.org/10.3102/01623737025002119
https://doi.org/10.1007/s11858-014-0634-7
https://doi.org/10.1007/s11858-015-0680-9


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1585 

FACTORS INFLUENCING WOMEN’S SENSE OF BELONGING IN 

UNDERGRADUATE CALCULUS 

Casey R. Griffin 

University of La Verne 

cgriffin2@laverne.edu  

Keywords: gender; affect, emotion, beliefs, and attitudes; calculus; undergraduate education 

Women continue to be underrepresented in undergraduate STEM majors, and this gender gap 

is due at least in part to women’s decisions to major in STEM (Carmichael, 2017). Fewer women 

than men enter into STEM majors and women leave STEM majors at a higher rate than men, 

especially after taking Calculus I (Chen et al., 2013; Eagan et al., 2016; Ellis et al., 2016). One 

major reason for women’s decisions to leave STEM is that they feel a low sense of belonging 

(Seymour & Hunter, 2019; Shapiro & Sax, 2011). Sense of belonging is the extent to which one 

feels like an accepted member of an academic community, whose presence and contributions are 

valued (Good et al., 2012). Scholars have identified characteristics of sense of belonging such as 

its malleability (Anderman, 2003; Griffin, 2023), as well as factors that influence one’s sense of 

belonging, including perceived competence, social connectedness, and learning environment 

(Anderman, 2003; Rainey et al., 2018; Rainey et al., 2019). Perceived competence is the extent 

to which one feels like they understand the material. Social connectedness is the extent to which 

one has relationships with their classmates and/or instructor. Learning environments have 

features such as classroom climate and classroom activities. 

This report aims to explore the roles that perceived competence, social connectedness, and 

learning environment play in influencing women’s sense of belonging in Calculus. This study 

takes place at a mid-Atlantic research university during the Fall 2022 semester. The university 

offers a year-long Integrated Calculus course that covers both Pre-calculus and Calculus and was 

designed to incorporate frequent opportunities for students to engage in active learning. In the 

Fall 2022, two sections of the course were offered, with 63 and 64 students enrolled in each. The 

sample for analysis was narrowed to students who self-identified as women, N=41. Participants 

were surveyed twice during the semester. They were asked to rank the following constructs from 

most to least impactful on their sense of belonging in mathematics: social connectedness with 

classmates, social connectedness with instructor, perceived competence, classroom climate, and 

classroom activities. They were then asked to describe why they chose their top two most 

impactful constructs. Frequencies of rankings were calculated to explore which constructs were 

most impactful for women’s sense of belonging. Descriptions were analyzed using open coding 

to explore how and why these constructs impacted women’s sense of belonging. 

Results show that women consistently included social connectedness with classmates and 

perceived competence as one of their top two most impactful constructs on their sense of 

belonging. While classroom activities was not the most popular construct, when women did 

include this in their top two, they described its impact on social connectedness and perceived 

competence rather than its direct impact on their sense of belonging, suggesting that perhaps 

participants viewed classroom activities as farther removed from sense of belonging than social 

connectedness and perceived competence. These findings suggest that while students’ 

perceptions of their own social connectedness and perceived competence have much influence 
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on their sense of belonging, instructors may be able to influence students’ social connectedness 

and perceived competence, and in turn their sense of belonging, via their pedagogical choices.  
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Metacognition (MC) has been found to be a critical component of mathematical problem solving 

(PS; Rhodes et al., 2023). We report on the results of a study that employed an ANCOVA to 

examine the impact of a PS intervention that included MC supports (e.g., journaling) on 

students’ objective MC within a sample of 276 middle school students. The results suggest that 

the intervention group significantly improved in their MC. 

Keywords: Metacognition; Problem-Solving 

Research has suggested that mathematical problem solving (PS) should be embedded within 

core instruction and should not be isolated from other factors such as content and metacognition 

(MC; Cai & Lester, 2010). Moreover, MC has been found to be a crucial factor influencing PS 

proficiency (Rhodes et al., 2023; Lester, 2013). Specifically, MC is thought to support problem 

solvers in nearly every aspect of the PS process, such as making sense of the problem, selecting 

and applying strategies, and reflecting and revising their thinking (Tan & Limjap, 2018).  

Given these findings, it is unsurprising that interventions that include metacognitive training 

have been found to significantly improve students’ PS performance (e.g., Kramarski et al., 2002). 

Metacognitive training is operationalized here-in as any support designed to help students utilize 

MC in the moment (e.g., being more intentional in heuristic selection, self-generating feedback 

based on their progress, etc.). Indeed, research has suggested that it is ineffective to attempt to 

isolate instruction on PS from the cognitive and metacognitive factors that influence it (e.g., Cai 

& Lester, 2010; Lesh & Zawojewski, 2007). However, few studies have explored whether 

interventions that interweave PS instruction with metacognitive supports result in improved MC. 

Thus, the purpose of the present study was to examine the effects of a web-based application, 

CueThinkEF+, that intentionally integrated scaffolds and supports that targeted MC, executive 

functions, and PS, on students’ MC as operationalized by miscomprehension accuracy (the 

degree to which a person is able to accurately predict performance on a given task or measure). 

Learning strategy use emerges from both contextual, cognitive, and personal factors 

(Panadero, 2017). Research differentiates between types of learning strategies that are 

hypothesized to improve metacomprehension accuracy, such as when judgments of 

comprehension are delayed (Shiu & Chen, 2013), individuals receive feedback (Brannick et al., 

2005), and learners receive practice (Bol et al., 2005; Gutierrez & Schraw, 2015; Gutierrez & 

Price, 2017; Hacker et al., 2008; Thiede et al., 2012). Similarly, Nietfeld and Schraw (2002) and 

Gutierrez and Schraw (2015) found that students who received learning strategy instruction 

showed superior learning and more accurate monitoring. In the Nietfeld and Schraw (2002) 

study, which involved performance on probabilities, participants received an instructional 

sequence of five learning strategies (e.g., self-generated feedback, planning, self-questioning, 

etc.) discussed during instruction. Gutierrez and Schraw (2015) adapted these strategies and 
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added others. The CueThinkEF+ intervention employs, among others, prompts that encourage 

self-questioning and intentional planning and reflection.  

Additional work such as that of Nietfeld et al. (2006) found that distributed learning strategy 

instruction with feedback produced higher performance, confidence, and metacomprehension 

accuracy among college students, while Huff and Nietfeld (2009) found that strategy instruction 

with 5th grade students improved performance and metacomprehension accuracy. Bensley and 

Spero (2014) demonstrated that the direct infusion of learning strategies increased students’ 

posttest metacomprehension accuracy while Schleinschok et al. (2017) reported that students 

who were taught to diagram as a learning strategy improved their metacomprehension accuracy 

of how well they thought they learned. However, students in the control condition also showed 

improved monitoring at posttest, although smaller than the treatment condition. This research 

supports the hypothesis that diagramming, as an example of a specific learning strategy, can 

improve metacomprehension accuracy. Furthermore, Miller and Geraci (2011) found that 

strategy instruction was only successful at improving metacomprehension accuracy for lower-

performing students because higher-performing students already exhibited high 

metacomprehension accuracy. Taken together, these findings uniformly supported the hypothesis 

that metacomprehension accuracy was trainable and could be improved because of learning 

strategy instruction in various contexts and levels of specificity, including math. 

Given the literature surveyed, the purpose of the present study was to answer the following 

research question: what is the effect of the CueThinkEF+ intervention on middle school students’ 

metacognitive monitoring accuracy?  

Conceptual Framework 

Efklides (2011) devised the Metacognitive and Affective Model of Self-Regulated Learning 

(MASRL) in which metacognitive and motivational processes are key, centered on task, person, 

and task by person levels. The present study employs Efklides’ (2011) MASRL as a theoretical 

guide because this model focuses on the central role metacognitive monitoring and control 

processes play in learning. More specifically, this model helps us better understand how person-

level characteristics (e.g., motivation, engagement, interest, autonomy, task value, etc.) interact 

with the task (in this case, the CueThinkEF+ platform) and how metacognitive skills like 

monitoring and control help the moderate this interaction.  

Method 

Description of the Intervention 

Over the course of one academic year, students in the control group continued with business-

as-usual instruction while the intervention group used CueThinkEF+ approximately 5-7 times. 

Incorporating elements from the research noted above, CueThinkEF+ intentionally targeted MC 

during each phase of the PS process. Exemplifying this several of the supports, students were 

asked to: 1) consider what they noticed and wondered; 2) restate the question being asked in their 

own words; 3) create a journal of their plan for solving each problem which could then be 

updated or revised as they solved the problem; 4) record themselves explaining how they solved 

the problem, showing their work on a digital whiteboard including various tools and 

manipulatives; 5) watch the recordings of their peers and write annotations (e.g., “My strategy is 

like yours because…”).  

Participants 
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Three middle schools from a suburban school district participated in the study with one 

school serving as the intervention group and the other two schools serving as the control group. 

The district was located on the West Coast and all mathematics teachers at the three participating 

schools who taught grades 6-8 were invited to participate in the study. Ten teachers signed up to 

participate in the study and all students of participating teachers were then invited to participate 

in the study. Of the participating students, 278 students had complete data on the measures 

utilized within the present analyses. Given that only two of the students with complete data were 

8th graders, the present analyses were confined to students in grades 6 and 7. Of the 276 

remaining students, 188 students were in the intervention group and 88 students were in the 

control group. Within each group, the students were evenly split between 6 and 7th graders. 

Additional demographic data on the students is provided in Table 1 and Table 2 below.  

 

Table 1: Number of Participants by Group and Gender 

 

 n Female Male Non-binary Other/Did not 

Specify 

Intervention 188 106 73 1 8 

Control 88 36 39 2 11 

 

Table 2: Participants by Group and Ethnicity 

 

 Asian Black/ 

African 

American 

Hispanic/ 

Latin(x) 

Middle 

Eastern 

White 2 or More 

Races 

Other/Did 

not 

Specify 

Intervention 7.4% 4.3% 33.5% 24.5% 1.6% 16.5% 12.2% 

Control 4.5% 4.5% 22.7% 36.4% 3.4% 17.0% 11.4% 

 

Instruments and Materials 

Problem Solving. PS items were compiled from items written by Illustrative Mathematics 

(IM) and aligned by the researchers to district pacing guides. For each grade level, three 

cognitively demanding items were selected with the only modification being that directions were 

added to require students to show or explain their thinking, when needed. Each item was scored 

for correctness using answer keys that were developed by IM. The interrater agreement on 

scoring was calculated using Fleiss’ kappa and was .961 for 6th grade and .880 for 7th grade. 

Metacognition. Prior to completing the PS measure, students were given a list of the 

mathematical topics that would be covered by the problems on the measure. Students were then 

asked to predict how well they would do by writing a numerical answer between 0 and 100, 

inclusive. Prediction accuracy scores were calculated by comparing participants’ confidence in 

performance judgments before the performance assessment against their actual performance. 

Comparing prediction confidence in performance judgments against actual performance yielded 

continuous, absolute accuracy scores, as described by Schraw (2009). A score of “0” indicates 

perfect monitoring; conversely, the further a score is from “0,” the greater the inaccuracy.  

Data Analysis 
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Data were first tested for requisite statistical assumptions and tested for univariate outliers 

using box-and-whisker plots. The data met the assumptions of normality using skewness and 

kurtosis metrics, homogeneity of variance, and homogeneity of regression slopes. Further, the 

data did not contain any extreme outliers that would otherwise undermine the trustworthiness of 

the findings. Hence, data analysis proceeded without making any statistical adjustments. 

To answer our research question, we employed a one-way analysis of covariance 

(ANCOVA), with condition (intervention, control) serving as our fixed factor, pretest prediction 

accuracy scores serving as the covariate, and posttest prediction accuracy scores serving as the 

outcome. The results of this analysis demonstrated that pretest prediction scores did not 

significantly influence posttest prediction scores, and hence, the analysis reverted to a one-way 

analysis of variance (ANOVA). Eta square (η2) served as the metric for effect size estimate. 

Cohen (1988) was used for interpretative guidance on effect size within the present study. 

Results 

Results of the one-way ANOVA revealed a statistically significant main effect for condition 

on posttest prediction scores, F(1,273) = 13.23, p < .001, η2 = .045, indicating a small-to-

moderate effect size. Table 1 contains the descriptive statistics for the intervention and control 

groups, and it indicates that the intervention group manifested significantly higher posttest 

prediction monitoring accuracy compared to the control group.  

 

Table 1: Descriptive Statistics of Posttest Prediction Monitoring Accuracy for the 

Intervention and Control Groups 

 

 M SD 

Intervention (n = 188) 32.19 22.09 

Control (n = 88) 41.98 22.77 

Discussion and Limitations 

The purpose of the present study was to investigate the effect of CueThinkEF+ on students’ 

metacognitive monitoring accuracy in math. Results revealed a small-to-moderate effect of 

CueThinkEF+ on students’ prediction accuracy when compared to business-as-usual instruction. 

These results extend the extant literature on metacognitive monitoring accuracy in a math 

context. They are also congruent with the body of literature that concludes that learning strategy 

interventions are successful at improving not only learners’ performance, but also their 

monitoring accuracy using control processes to adjust their confidence in performance judgments 

(e.g., Gutierrez & Price, 2017; Nietfeld and Schraw, 2002; Thiede et al., 2012).  

Moreover, the results of the present study provide additional evidence that MC and PS 

instruction should be intertwined in instruction (e.g. Lesh and Zawojewski, 2007). Specifically, 

the present study demonstrates that the intervention led to improvements in students 

metacognitive monitoring accuracy, extending prior analyses showing that the intervention also 

resulted in increases in student’s PS proficiency (Rhodes et al., in preparation). Thus, it is 

possible that intentionally intertwining metacognitive training and supports with PS instruction 

may lead to meaningful gains in both areas.  
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Despite these promising results, the generalizability of the findings is limited by the fact that 

the study only included samples of students from grades 6 and 7 from a single district. In 

addition, the present study operationalized MC as metacomprehension monitoring accuracy. 

Future research should consider using additional measures of MC as well. 
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This paper explores the relationship between bilingualism and children's self-efficacy in 

mathematics from a sociocultural perspective. Utilizing an explanatory sequential mixed 

methods approach, the study examines how diverse cultural contexts and experiences, related to 

varying language uses and community affiliations, influence children's self-efficacy beliefs in 

mathematics. Quantitative analysis of TIMSS 2019 data indicates that bilingual children exhibit 

significantly higher self-efficacy in mathematics than the nonbilingual students, even when 

controlling for other factors such as academic achievement. Grounded theory analysis of four 

bilingual families in the U.S. suggests that a bilingual, multicultural identity fosters a positive 

learning identity across subjects, enhancing self-efficacy in mathematics. Bilingual children also 

appear to encounter more meaningful challenges and mastery experiences, which strengthen 

their learning beliefs. Additionally, their unique contexts provide more opportunities to connect 

and compare diverse cultural perspectives in mathematics, and they receive more interest, 

attention, and support from parents, teachers, and communities, aiding in overcoming obstacles 

and developing positive beliefs. 

Keywords: Affect, Emotion, Beliefs, and Attitudes, Equity, Inclusion, and Diversity, Culturally 

Relevant Pedagogy, Early Childhood Education, Self-Efficacy in Mathematics  

Children's perceptions of their abilities significantly influence their motivation, performance, 

and achievement across various domains (Bandura, 1997; Schunk & Pajares, 2002; Wigfield & 

Eccles, 2000; Barroso, Ganley McGraw, Geer, Hart, & Daucourt, 2021). The self-efficacy 

beliefs, “the belief in one’s capabilities to organize and execute the courses of action required to 

produce given attainments” (Bandura, 1977, p. 3), drive the 'will' to succeed, motivating 

individuals to invest time and energy in areas where they believe they can succeed.  

Inevitably, self-efficacy is crucial for maintaining motivation in mathematics, enabling 

students to persist in skill development until reaching their potential (Bandura, 1977, 2012; 

Pajares & Miller, 1994; Zimmerman & Schunk, 2001). Instead of focusing on its significance of 

further potential development and growth, however, a prominent trend in self-efficacy research is 

the investigation of its role as a predictor of students’ future academic achievement, course 

choices, and career trajectories, especially in context of  science, technology, engineering, and 

mathematics (STEM) education (Lee & Stankov, 2018; Muenks et al., 2017; Pajares & Miller, 

1995; Wang, 2013; Zeldin & Pajares, 2000). In young children, particularly, self-efficacy’s 

significance extends beyond predictions for future outcomes to understanding how positive 

beliefs can be cultivated and solidified to thrive their potential. These beliefs, characterized by a 

future-oriented and malleable nature, hold theoretical and operational importance, emphasizing 

perceived confidence over competence (Bong & Skaalvik, 2003; Zimmerman, 2000). Therefore, 

this study aims to deepen the understanding of children's self-efficacy development within their 

sociocultural contexts, particularly in the circumstances of bilingual children. 
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Theoretical Perspectives 

Traditionally, self-efficacy beliefs are seen as internal mental representations (Gee, 2008), 

with psychological perspectives emphasizing universal human functioning and mental processes. 

This view posits that well-designed sources of self-efficacy generally enhance these beliefs. 

However, the assumption of uniform internalization contradicts observed variations in children's 

learning and thinking (Gee, 2008; Usher, Weidner, Liem, & McInerney, 2018). Self-efficacy 

beliefs emerge from the interplay between personal and environmental factors, where situational 

and cultural elements lead individuals to interpret information uniquely, shaping their self-

perceptions. Therefore, developing self-efficacy involves integrating information from multiple 

sources (Oettingen, 1995; Usher, 2009; Usher et al., 2018). 

Mastery experiences are the most powerful source of self-efficacy beliefs (Bandura, 1986; 

Butz & Usher, 2015; Zimmerman, Schunk, & DiBenedetto, 2017; Sheu et al., 2018; Joët, Usher 

& Bressoux, 2011). However, it is not merely the existence of mastery experiences but students' 

interpretations of these experiences within specific contexts that shape their self-efficacy. 

Additionally, the circumstances under which a student gains mastery experiences can influence 

the interpretation, evaluation, and weight of these experiences (Gao, 2020; Usher, 2009; Usher et 

al., 2018). Usher and Pajares (2008) called for further studies to "capture the personal, social, 

situational, and temporal conditions under which students cognitively process and appraise their 

beliefs and experiences" (p. 784). This study emphasizes the importance of sociocultural 

influences in developing self-efficacy beliefs in mathematics. 

Focusing on language as a significant construct of children's sociocultural circumstances, this 

study examines bilingual children. Language is fundamental to cognitive growth and mediates 

higher-order thinking (John & Brader-Araje, 2002). Vygotsky's sociocultural theory posits that 

language significantly mediates sociocultural forces, influencing mediated activity and 

experiences (Fernyhough, 2013; Rubik, 2017). Thus, modifying the cognitive tools accessible to 

a child, such as language, can fundamentally reshape their mind (Vygotsky, 1978). This paper 

investigates bilingual children's self-efficacy beliefs in mathematics through a sociocultural 

perspective, emphasizing the role of language as a cognitive and sociocultural mediator. 

Research on students' self-efficacy has largely focused on high school and college-aged 

individuals in predominantly White settings. However, some studies highlight the significant 

impact of contextual and demographic factors, such as gender, ethnic background, and learning 

domain, on self-efficacy outcomes (Usher, 2009; Britner & Pajares, 2006; Lent, Lopez, & 

Bieschke, 1991; Usher & Pajares, 2006). Limited research has explored these factors' influence 

on efficacy beliefs, emphasizing the need to consider cultural dimensions in diverse settings 

(Klanssen, 2004). Klanssen’s (2004) study of 270 Grade 7 students (Indo Canadian and Anglo 

Canadian) found that Indo Canadian students displayed a more hierarchical orientation in 

mathematics efficacy beliefs, influenced by social comparison. The study did not explicitly 

address language but suggested it as a factor. Clifton-Sprigg's (2015) research on bilingualism’s 

impact on early childhood performance found bilingual and monolingual children performed 

comparably, with parental background contributing to variations in cognitive and non-cognitive 

skills development.  

Methodology 

This research employs an explanatory sequential design, starting with a quantitative phase 

followed by a qualitative phase to delve deeper into notable results (Creswell et al., 2011). 
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In the quantitative study, data from American 4th-grade students in the 2019 TIMSS is 

analyzed, focusing on the United States. To address missing data, all variables, primary sampling 

unit, strata variables, and appropriate weights were included in the imputation models. The study 

uses the Students Confident in Mathematics (SCM) scale from TIMSS as the dependent variable. 

Bilingualism is determined by students’ use of the test language at home, with 23% identified as 

bilingual. Control variables include gender, achievements, engagement, and socioeconomic 

status. The quantitative phase examines the relationship between bilingualism and children's self-

efficacy beliefs in mathematics, comparing variables between bilingual and non-bilingual 

students, followed by OLS regression to predict math self-efficacy beliefs. 

In the qualitative phase, data is collected through interviews with two Spanish-English 

bilingual families and two Korean-English bilingual families, involving one 45-minute parent 

interview and two 30-minute child interviews per family. Parents discuss their family’s identities, 

values, beliefs about language, culture, math, and their child's experiences. Children are 

interviewed about their understanding of family values, language and mathematics, and self-

efficacy. Semi-structured interviews and grounded theory analysis explore how children interpret 

sources of their self-efficacy beliefs and how their environment and experiences influence these 

beliefs. The study investigates why bilingualism positively relates to children’s self-efficacy in 

mathematics and how bilingual children develop higher self-efficacy in mathematics. 

Results 

In the quantitative phase, bilingual students score lower than non-bilingual peers (Table 1), 

yet there is no significant difference in self-efficacy beliefs. Bilingual children, often from 

socioeconomically disadvantaged backgrounds, reflect this in school SES. This socioeconomic 

disadvantage potentially impacts their math self-efficacy as prior achievement influences self-

efficacy development. 

 

Table 1. Means and standard errors of the estimates, for all variables5 

 
5 Means and standard errors of the estimates, for all variables. * p < 0.05; ** p < 0.01; *** p < 0.001 

 
All Children Bilingual Children Non-Bilingual Children Difference 

 Mean Std. Mean Std. Mean Std. 

Achievement 534.49 (1.89) 515.13 (2.52) 539.77 (2.07) −24.64*** 

Self-Efficacy 

Beliefs 
9.96 (0.02) 9.95 (0.05) 9.97 (0.03) −0.02 

Female 0.49 (0.01) 0.53 (0.01) 0.48 (0.01) 0.052*** 

Number of Books at Home 

1 (0–10) 0.17 (0.01) 0.21 (0.01) 0.15 (0.01) 0.06*** 

2 (11–25) 0.24 (0) 0.3 (0.01) 0.22 (0.01) 0.09*** 

3 (26–100) 0.32 (0) 0.28 (0.01) 0.32 (0.01) −0.04** 

4 (More than 100) 0.28 (0.01) 0.2 (0.01) 0.3 (0.01) −0.1*** 

School SES  

Disadvantage 0.55 (0.02) 0.66 (0.04) 0.53 (0.02) 0.13*** 

Middle 0.21 (0.02) 0.17 (0.03) 0.22 (0.02) −0.05*** 
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The OLS analyses (Table 2) confirm a statistically significant positive correlation between 

bilingualism and children's self-efficacy in mathematics. Model 2 reveals significant associations 

between gender, achievements, interactions with math teachers, and school SES with children's 

self-efficacy, aligning with existing research. Initially, the link between bilingualism and self-

efficacy appears negative but not statistically significant. However, when controlling for 

achievement, the relationship shifts to a significant positive correlation, indicating that 

bilingualism positively affects self-efficacy when accounting for achievement. 

 

Table 2. Results in Descriptive Analysis 

 Model 1 Model 2 

Coef. Std. Coef. Std. 

Bilingual −0.02 (0.05) 0.29*** (0.04) 

Female      − 0.31*** (0.05) 

Achievement   0.01*** (0.00) 

Interactions with Math Teachers   0.12*** (0.02) 

Number of Books at Home   0.06*** (0.02) 

School SES       −0.20*** (0.03) 

 

From the qualitative study aiming to find how bilingual, multicultural students' experiences 

influence their self-efficacy beliefs in mathematics, the impact of bilingualism on children's self-

efficacy in mathematics cannot be simply attributed to individual factors like prior proficiency, 

observational learning, social influences, or emotional attitudes towards math, typically seen as 

key determinants in Bandura’s social cognitive theory. Instead, it must be understood in the 

broader context of their upbringing and environment within families, communities, schools, and 

societies as bilingual individuals. Essentially, the connection between bilingualism and self-

efficacy in math goes beyond mere direct experiences with the subject; it is intertwined with their 

familial and self-identities, cultural values and expectations, and overall disposition as bilingual 

children in specific settings. One interesting theme that emerged among the bilingual, 

multicultural children in my cases is that they see their families and themselves as special and 

valuable because they are different from other monolingual families or friends. They appreciate 

the challenges they have encountered and the effort and resilience they have demonstrated in 

various situations. These values and appreciations are initially supported by their parents at home 

and solidified by teachers and peers. Based on these wholistic beliefs and values in their families 

and themselves, bilingual students’ self-efficacy beliefs in mathematics are shaped. Cognitively, 

bilingual students tend to use both languages to understand mathematics, which might give them 

more flexibility. Culturally, they likely have access to more contexts and resources that come 

from different languages and cultures. 

Affluent 0.24 (0.02) 0.17 (0.02) 0.25 (0.02) −0.08*** 

Interactions 3.99 (0.02) 3.97 (0.03) 3.99 (0.02) −0.03 

Observations 10115 2333 7782  
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Conclusions and Educational Implications  

While the qualitative analysis had a small sample size and may not fully represent the entire 

population of the quantitative phase, this study revealed a significant link between bilingualism 

and children's self-efficacy beliefs in mathematics. It provides insights into how and why 

bilingual children develop positive self-efficacy beliefs within specific sociocultural contexts. 

The study underscores the importance of understanding how children's environments and 

experiences influence their self-efficacy beliefs, not just focusing on achievements.  
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Simon and his colleagues’ (2010, 2018) development of Learning Through Activity (LTA)  

offered a theory for explaining a mechanism for mathematics conceptual learning and an 

approach to the instructional design to foster it. LTA was an empirically based framework that 

was developed studying mainly rational number concepts. Taking a step forward, in this paper, 

we elaborate on and exemplify LTA instructional design principles using an advanced 

mathematics topic. For this purpose, we share an articulation of the Cartesian form of complex 

numbers as a mathematical concept and a task sequence to learn this concept. Also, we share an 

example of the reflective abstraction of this concept with data from teaching experiments with a 

prospective secondary mathematics teacher. Providing ways to utilize the LTA framework for an 

advanced mathematical topic, we discuss implications for teaching and learning.  

Keywords: Mathematics Learning, Learning Through Activity, Complex Numbers  

Conceptual mathematics learning for all students is the main goal of mathematics instruction 

(Common Core School Mathematics, 2010). Planning effective instructional designs is at the 

heart of conceptual learning (Gravemejier, 2004; NCTM, 2000; Simon & Tzur, 2004). Over the 

last three decades, Simon postulated the construct of hypothetical learning trajectory (HLT) for 

describing key aspects of planning mathematics lessons for promoting conceptual learning from 

a constructivist perspective (Simon, 1995) and extended it by postulating a mechanism for 

mathematics learning and instructional design principles for students’ learning of mathematics 

through their own activity (Simon & Tzur, 2004; Simon et al., 2010; Simon et al., 2018).  

Learning Through Activity (LTA) design principles deepen and extend HLT steps by further 

explicating the reciprocal relationship between tasks and learning goals. LTA design principles 

allow the teacher, first, to delineate “..an activity that students have currently available that can 

be the basis for the abstraction specified in the learning goal (Simon et al., 2018, p. 104). The 

activity refers to students’ two or more goal-directed mental actions (Simon et al., 2018). 

Secondly, the teachers design or choose a task sequence intended to foster the particular activity 

and abstraction on the part of students. The tasks based on LTA design theory are as such: “… the 

learner can already solve that causes the learner to coordinate actions corresponding to prior 

concepts in such a manner that the intended new concept is inherent in this coordination” 

(Dreyfus, 2018, p. 217). In addition, the tasks neither explain nor mention the intended learning 

goal; however, they have the underlying goal of leading the students to grasp the logical 

necessity of the learning goal on their own (Dreyfus, 2018). Therefore, for both research and 

teaching purposes, researchers took attention to two important aspects of the instructional design: 

1) an awareness and articulation of the learning goals through students’ own activity, and 2) the 

creation or choice of tasks that have the potential to foster such activity based on which 

mathematics conceptual learning might be promoted (e.g., Dreyfus, 2018; Simon et al., 2018; 

Tzur, 2018). Further research is suggested to investigate the applicability of LTA to other levels 

of mathematical learning (e.g., advanced mathematics) (Dreyfus, 2018; Simon et al., 2018). 

Taking this as a challenge, in this paper, we elaborate on and exemplify LTA instructional design 
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principles to promote conceptual learning of an advanced mathematics concept, the Cartesian 

form of complex numbers. Thus, we attempted to answer the following theoretical and empirical 

questions: What might be a possible example of LTA design principles used with respect to 

learning goals for the Cartesian form of complex numbers? What might be a possible learning 

goal for a Cartesian form of complex numbers as a mathematical concept? What might be a 

possible sequence of tasks affording the learning goal through one’s own activity for a Cartesian 

form of complex numbers?  

Learning Through Activity and Complex Numbers  

Learning Through Activity instructional design is composed of four steps: The first two steps 

for the generation of HLT are determining students’ current knowledge and identifying a learning 

goal. The third step is specifying “…an activity that students have currently available that can be 

the basis for the abstraction specified in the learning goal… The fourth step is the design of the 

task sequence” (Simon et al, 2018, p. 104). In particular, the trajectory for complex numbers is 

based on the assumption that, at the outset, the students currently can define any quadratic 

function with real coefficients and graph them on the Cartesian coordinate systems and know 

that given any quadratic equation, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 where 𝑎, 𝑏, 𝑐 𝜖𝑅, 𝑎 ≠ 0 the two roots of the 

quadratic equation are of the form 𝑥1,2 =
−𝑏

2𝑎
±

√∆

2𝑎
,  where ∆= 𝑏2 − 4𝑎𝑐 and is called the 

discriminant (Δ). They also know that 𝑥1 and 𝑥2 can be located on the Real number line, as  

(
−𝑏

2𝑎
−

√∆

2𝑎
 ,0) and (

−𝑏

2𝑎
+

√∆

2𝑎
, 0) respectively. Here, the component 

−𝑏

2𝑎
  indicates ( 

−𝑏

2𝑎
 ,0), the 

abscissa-of-the-vertex (as well as the symmetry axis) and has a distance to the origin and a 

distance to the roots, that is 
√∆

2𝑎
 (Hedden & Langbauer, 2003). Regarding the learning goal, we 

first elaborate on the following: Mathematically, any complex number z= x+iy is an ordered pair 

(x,y) of real numbers x and y, with i= √−1. However, mathematical definitions or theorems are 

not necessarily the same as mathematical concepts (Vergnaud,1997). Simon (2017) defined a 

mathematical concept as “ a researcher’s articulation of intended or inferred student knowledge 

of the logical necessity involved in a particular mathematical relationship” (p. 123). So, we 

concur that a researcher’s articulation of such a learning goal might be as follows: “Complex 

numbers, located in the complex plane as the solutions of a quadratic equation f(x)=0 with a 

fixed apsis of the vertex, vary continuously with the coefficients of f(x) such that the continuous 

changes in directed distances of the solutions to the apsis of the vertex and to the origin result in 

the changes in the locations of the solutions in the complex plane”. In the LTA design, the third 

step starts with asking the question, “What activity, currently available to the students, might be 

the basis for the intended learning?” (Simon & Tzur, 2004, p. 96). Thus, for the learning goal, we 

identify the specified activity as continuously varying the locations in the complex plane of the 

roots of any quadratic equation with the same apsis of the vertex. For the fourth step in LTA, 

Simon et al. (2018) stated, “The task sequence must both elicit the intended student activity and 

lead to the eventual coordination of actions on the part of the students” (p.104). Thus, we 

generated the following tasks: The first set of tasks: 1) How many parabolas are there with the 

same abscissa of the vertex? 2)Draw what you imagine in the first question. 3) What changes and 

remains invariant in the parabolas you have drawn given the algebraic form, 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 +
𝑐? Why?  3a) How are the distances of the roots to the-apsis-of-the-vertex changing or not 
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changing? The second set of tasks: 1) Given a set of quadratic functions such as 𝑥2 + 2𝑥 -8, 

𝑥2 + 2𝑥 -4, 𝑥2 + 2𝑥 -1, 𝑥2 + 2𝑥, and 𝑥2 + 2𝑥+1 and their graphs as parabolas on a) Desmos 

and b) colored copy, what changes and what remains invariant? Why? 2) How are the distances 

of the roots and the abscissa-of-the-vertex changing or not changing? 3) Locate the roots on the 

Real number line from #1. How do the changes in the distances of the roots to the abscissa of the 

vertex relate to the different forms of ∆? 3a) How do you relate the changes in the distances of 

the roots to the abscissa of the vertex when the increment is bigger than zero, is zero, and is 

smaller than zero? 4) How could you re-write and locate the roots when the value of  ∆= 𝑏2 −
4𝑎𝑐 becomes negative? 

Methods 

We report results from a teaching experiment (Steffe and Thompson, 2000). The first author 

acted as the teacher-researcher in the teaching experiment, which consisted of three 75- to 120-

minute sessions. Data sources included transcripts formed from the video data and written 

artifacts. The study’s participant was one prospective secondary mathematics teacher, Esra, who 

was in the fourth year of her five-year undergraduate program. Following the teaching 

experiment methodology, analysis was both ongoing and retrospective (Steffe & Thompson, 

2000). Ongoing analysis occurred during data collection and involved formulating hypotheses of 

student thinking between sessions and designing subsequent sessions to test those hypotheses. 

For the retrospective data analysis, we followed three-level approach to abductive process 

(Simon, 2019). For the first level, we read the transcripts line-by-line, focusing on sequences in 

which Esra’s actions and utterances provided information about her thinking. Then, “we use the 

results of the first level as the “data” for the second level, making inferences for chunks of these 

new data” (Simon, 2019, p. 119) by answering the questions such as what understandings Esra 

seems to have and how we can characterize her thinking. The third level involved our use of 

explanatory constructs, such as learning as a reflection on the activity.  

Results 

In lieu of space, we describe Esra’s evolvement of ideas on the second set of tasks. For the 

second set of tasks, 1 and 2, given the examples on Desmos, Esra stated that the values of ‘𝑎’ and 

‘𝑏’ and so, 
−𝑏

2𝑎
, remained invariant in the examples and the values of ‘𝑐’ changed, decreasing the 

roots’ distances to the abscissa of the vertex (from out to inwards). She also commented on the 

roots, stating, “…with respect to the symmetry axis, they [the different roots] have the same, 

umm, they [the roots] are symmetric, exactly”. Also, she further commented on the roots’ 

distances to the abscissa of the vertex as changing. For 3 and 3a in the second set of tasks, Esra 

drew the following (See Figure 1). She did not use the exact values of the roots, but she marked 

some of the roots on the real number line as (𝑥1,0), (𝑥2,0), (𝑥1′,0), (𝑥2′,0), (𝑥1′′,0), (𝑥2′′,0), 

(𝑥1,2′′′,0).  

 

 

 

Figure 1. Esra’s showing the roots on real number line she drew 
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   a    b    c 

Figure 2. Esra’s pointing to the real numbers as possible roots, re-writing the roots of the 

quadratic equations and plotting the roots of the quadratic equation on the plane 

 

Furthermore, Esra re-wrote the roots for 4 in the second set of tasks (See Figure 2b) and  

stated: “Let's say there are infinitely many [quadratic] functions, and the abscissa-of-the- 

vertex of any quadratic function is 𝑡...and 𝑚 is the distance from one of the roots to the 

abscissa-of-its-vertex…” Then, albeit with struggle, she positioned the roots on the plane(See 

Figure 2c) and commented on what (t,m) represented: 

E: Umm, the root of the equation. The roots. They are the roots of the equation, quadratic 

equation. Umm, when they are not real, the delta is smaller than 0. Umm, when they are 

real, delta is greater than 0. 

R: What do you call the algebraic expressions when delta is smaller than 0? 

E: Umm complex numbers. 

R: Okay. Where do you get those complex numbers? 

E: From real numbers. All real numbers, on the real 𝑥-axis…Umm, I obtain them from the 

real roots of quadratic equations. If they are umm...okay, I obtain them from their real 

roots. Okay, I obtain from non-real ones as well […] Yes, they are complex numbers. 

The numbers obtained from the roots of all quadratic equations are complex numbers. 

Exactly. They give complex numbers. 

Importantly, the data showed that Esra enacted the activity several times, such as in the first 

set of tasks, on the examples provided on Desmos and the colored-print copy (See Figure 2a), 

and when placing them as points on the real number. This way, her repeated mental runs through 

the activity of varying continuously the roots’ locations on first the real number line and then on 

the plane allowed her images to become operative such that reflecting on the activity with the 

three cases of discriminant allowed her to anticipate that all the roots constituted the elements of 

a set of the roots of quadratic equations with real coefficients.  

 

Conclusion and Discussion  

We presented learning through activity design principles focusing on an advanced 

mathematical topic, the Cartesian form of complex numbers. Tasks designed with the principles 

of the LTA framework are distinguished from other task designs (e.g., Smith & Stein, 1998) in 

explaining the relationship to students’ learning processes. Data indicated that engaging in the 

task sequence, Esra’s enactment of the activity of varying continuously the locations of the roots 

of any quadratic equation allowed her to anticipate the logical necessity that any quadratic 

equation having both two real and two non-real number roots constitutes the elements of the set 

of complex numbers. Results suggest that the LTA design principles might be used to study 

advance mathematical concepts. We also argue that the learning goal shared in this paper might 
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constitute a considerable change in students’ conception of complex numbers. Previous research 

suggests that learners from different stages of schooling seem to struggle with the idea that any 

real number is a complex number (Nordlander &Nordlander, 2012). Thus, we argue that the 

aforementioned learning goal with the design of the tasks might allow to conceptualize real 

numbers as a subset of complex numbers.    
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CHILDREN’S EXPOSURE TO MULTI-DIGIT MULTIPLICATION ALGORITHMS 

AND ITS EFFECT ON THEIR MULTIPLICATIVE REASONING 

Karl W. Kosko 

Kent State University 

kkosko1@kent.edu 

Multi-digit multiplication is an important, yet understudied, topic in mathematics education. 

There are numerous algorithms that children may be exposed to, but it is commonly 

recommended that children transition from the area model to the box model to the partial 

products model before leaving the primary grades. The current study reports on pilot data 

exploring the effect of students’ self-reported exposure to these algorithms on their multiplicative 

reasoning. Results reveal that participants in this sample were exposed to these algorithms in 

isolation of each other, and this led to negative effects of certain algorithms on their 

multiplicative reasoning.  

Keywords: Elementary School Education; Number Concepts and Operations. 

Students begin to learn multi-digit multiplication in the later primary grades (ages 9-11). 

There are numerous algorithms and approaches (Fuson, 2003; Hickendorff et al., 2019; Schulte, 

2015)—many of which are largely unchanged from their development in India nearly 2000 years 

ago (Datta & Singh, 1938). Pedagogical innovations, such as the area model (using pictorial & 

concrete representations) and modifications to existing algorithms have emerged over the past 

century as means to facilitate meaningful understanding of the standard algorithm (Giles, 1975; 

Fuson, 2003). Despite the wide variety and history of algorithms and models for multi-digit 

multiplication, study of children’s engagement with such algorithms is lacking (Amborse et al., 

2003; Fuson, 2003; Izsàk, 2001). Rather, “there is little research into children’s solution 

strategies use in multi-digit multiplication (Hickendorf et al., 2019, p. 553), as well as 

examination of how exposure to such algorithms affect children’s multiplicative reasoning. 

Given the repeated calls for additional scholarship on multi-digit multiplication, the present 

paper reports on an exploratory study examining fifth-grade students’ self-reported exposure to 

specific algorithms and this exposure’s effect on their multiplicative reasoning.  

Review of Literature 

Multiplicative Reasoning via Scheme Theory 

Multiplicative reasoning is a key mathematical concept for children’s development of latter 

mathematics (Harel & Confrey, 1994; Norton et al., 2015). This study adopts Hackenberg’s (2010) 

description of three multiplicative concepts to describe how multiplicative reasoning develops and may be 

characterized. Students operating at the first multiplicative concept (MC1) can anticipate one level of 

units while coordinating two levels of units in activity. Such students may solve 4×15 by repeatedly 

adding four 15s  until they get to 60 (Steffe, 1994). The second multiplicative concept (MC2) involves 

anticipating two levels of units while coordinating three levels of units in activity (Hackenberg & Tillema, 

2009). A student at MC2 may solve 8×15 by recognizing that 2×15 is 30 and 8×15 includes four sets of 

2×15 (so it would be 4×30). The third multiplicative concept (MC3) involves coordinating three levels of 

units, but all levels of units are anticipated (Norton et al., 2015). Thus, a student at MC3 solving 8×15 is 

more likely to consider it by partial products (i.e., 8×10 + 8×5). This is because such children can 

consider multiple composite numbers simultaneously (Kosko, 2019).  

mailto:kkosko1@kent.edu


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1606 

Multi-Digit Multiplication 

Children learn multi-digit multiplication in a variety of settings, using various algorithms. 

However, students’ algorithm use tends to follow what is emphasized by a particular curriculum 

or teacher (Hickendorff et al., 2018). While recall of basic multiplication facts is advocated as a 

prerequisite by some (Lin & Kubina, 2005), Hurst and Hurrell (2016) observed that despite 

“facility to recall  multiplication facts was not an indicator that the students had a conceptual 

understanding of multiplication” (p. 37). Indeed, students need to develop an understanding of 

partial products to move beyond basic multiplicative reasoning (Ambrose et al., 2003; 

Hickendorff et al., 2019; Lampert, 1986).  

 

Area Model Box Model Partial Products Algorithm 

 
  

Figure 1: Three Algorithms for Multi-Digit Multiplication 

 

Various scholars have advocated for the use of area and array algorithms, paired with the box 

and/or partial products algorithms for developing conceptual understanding of partial products 

(Fuson, 2003; Izsàk, 2001; Young-Loveridge & Mills, 2009). Working with a small group of 

fifth-grade students, Izsàk (2001) found that beginning with an area algorithm that included 

arrays in the visualization and then transitioning to a box model before using a partial products 

algorithm supported students’ understanding of partial products. Others have proposed the same 

pedagogical approach (Fuson, 2003; Kristen, 2021; Young-Loveridge & Mills, 2009). Although 

such scholarship is useful in characterizing a recommended pedagogical approach, there is little 

scholarship evaluating the effect of children’s exposure to these algorithms. The present paper 

reports on a pilot project assessing this phenomenon. Specifically, the purpose of this paper is to 

evaluate students’ self-reported exposure to the area model, box model, and partial products 

algorithm on their multiplicative reasoning.  

Methods 

Sample and Measures 

Participants included 55 fifth-grade students (age 10-11 years) from two teachers’ classes. 

The sample included 47.3% self-identified females and 52.7% self-identified males. Participants 

completed the Multiplicative Reasoning Assessment (MRA) and a brief survey rating their 

familiarity and use of the three multi-digit multiplication algorithms of focus in the present study 

(area model, box model, partial products algorithm). Results indicated that all students had 

exposure to the box model. Interestingly, only 14.5% of participants had seen and used all three 

algorithms. Given this low percentage, exposure to these algorithms were examined as separate 

variables.  
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The MRA is a 21 item measure designed to assess children’s multiplicative concepts at-scale. 

Validity evidence has been collected across multiple studies including, but not limited to, 

psychometric data for test content and internal structure, cognitive interviews  on the items, and 

correlation of scores to other metrics for concurrent validity (Benjamin & Kosko, 2019; Kosko & 

Singh, 2018; Kosko, 2019; Kosko, 2020). MRA raw scores were transformed via a Rasch model 

to provide a continuous scale. Participants’ scores in the current study were lower than average 

(M=-1.08, SD=2.45) indicating 50.9% operated with pre-multiplicative (count-by-1s) schemes, 

16.4% at MC1, 20.0% at MC2, and 12.7% at MC3. A sub-sample of 16 students participated in 

clinical interviews to examine their strategy use for multi-digit multiplication, with findings 

planned to be reported elsewhere after analysis.  

 

Table 1: Student-Reported Exposure to Multi-Digit Multiplication Algorithms 

 

 Area Box Partial Products 

Never Seen/Used 48.0% 0.0% 18.0% 

Seen/Not Used 14.0% 3.8% 34.0% 

Seen & Used 36.0% 96.2% 48.0% 

 

Analysis & Results 

Multiple regression was used to examine the effect of students’ self-reported exposure to 

multi-digit multiplication algorithms on their multiplicative reasoning. The regression model is 

illustrated below with students’ Rasch-based MRA scores as the outcome. Independent variables 

include a series of dummy-coded variables to model the statistical effect of having seen and 

used, or seen but not used, specific algorithms. Self-identification as male was included as a 

covariate. The illustrated model meets basic assumptions for regression: a predicted probability 

plot confirms normality of residuals and distribution of residuals meets criteria for 

homoscedasticity. Thus, linearity is assumed. Variance inflation factor (VIF) statistics were 

calculated to test for multicollinearity in the model. VIF statistics ranged from 1.123 to 2.091 

across all independent variables. Thus, risk of collinearity was minimal and these variables were 

retained for analysis.  

The final model is presented below. The intercept of the model, 𝛽0, can be interpreted as the 

average MRA score for a female student who reported never having seen nor used the area model 

partial products algorithm, and who had seen but not used the box model. All other coefficients 

are interpretable as the effect of being male or having a certain form of exposure to these 

algorithms. 

 

𝑀𝑅𝐴 𝑆𝑐𝑜𝑟𝑒𝑠𝑖 = 𝛽0 + 𝛽1 ∙ (𝑑𝑀𝑎𝑙𝑒)𝑖 + 𝛽2 ∙ (𝐴𝑟𝑒𝑎𝑆𝑒𝑒𝑛 & 𝑈𝑠𝑒𝑑)𝑖 + 𝛽3 ∙ (𝐴𝑟𝑒𝑎𝑆𝑒𝑒𝑛 𝑁𝑂𝑇 𝑈𝑠𝑒𝑑)𝑖 + 
                          𝛽4 ∙ (𝐵𝑜𝑥𝑆𝑒𝑒𝑛 & 𝑈𝑠𝑒𝑑)𝑖 + 𝛽5 ∙ (𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑆𝑒𝑒𝑛 & 𝑈𝑠𝑒𝑑)𝑖 + 

                          𝛽6 ∙ (𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑑𝑐𝑢𝑡𝑠𝑆𝑒𝑒𝑛 𝑁𝑂𝑇 𝑈𝑠𝑒𝑑)𝑖 + 𝑟 

 

Results from the regression model were statistically significant (R2=.293, F[5, 41]= 2.768, 

p=.024), and are presented in Table 2. Three independent variables were found to be statistically 

significant at the .05 level and one at the .10 level. Specifically, seeing, but not using, the area 
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model (B=-2.271, p=.019) and using the box model (B=-3.936, p=.025) were both found to have 

a statistically significant and negative effect on children’s multiplicative reasoning. By contrast, 

use of the partial products model had a positive effect on multiplicative reasoning (B=1.868, 

p=.052). To put these results in context, these Beta coefficients are unstandardized and represent 

changes in the logit-based scores on the MRA. A change of 1.00 logits is roughly equivalent to 

the difference between two adjacent multiplicative concepts. Thus, results here suggest that use 

of the box model, without exposure to either the area model or partial products algorithm, has a 

very large and negative effect on children’s multiplicative reasoning. Similarly, exposure to the 

area model, but without actual use, also has a large and negative effect. Use of the partial 

products algorithm was the only algorithm found to have a positive effect associated with 

children’s multiplicative reasoning. One surprising finding was that self-identified male 

participants demonstrated higher multiplicative reasoning in this sample than their peers 

(B=1.592, p=.017). This finding has not been observed in other administrations of the MRA and 

no data was available to explain the finding in the present study.  

 

Table 2: Results from Multiple Regression 

 

  B Std. Error p 

Intercept  1.333 1.627 .417 

d_Male  1.592 .638 .017 

Area Model 
Seen & Used -.848 .683 .222 

Seen not Used -2.271 .928 .019 

Box Model Seen & Used -3.936 1.689 .025 

Partial Products Algorithm 
Seen & Used 1.868 .932 .052 

Seen not Used 1.338 .949 .166 

Discussion 

“Multi-digit multiplication is an important, though underrepresented, area of research” 

(Izsàk, 2001, p. 187). One key aspect of facilitating children’s multiplicative reasoning in multi-

digit multiplication is supporting their learning of partial products (Fuson, 2003; Hickendorff et 

al., 2019). The most commonly advocated approach is to introduce multi-digit multiplication 

with array-based area models before transitioning to a box model and then a partial products 

algorithm (Fuson, 2003; Izsàk, 2001; Young-Loveridge & Mills, 2009). To be clear, the present 

paper does not evaluate this approach. Rather, results presented here evaluate the isolated use of 

particular algorithms that can be used to facilitate the recommended pedagogy. Only eight of 55 

participants surveyed reported having seen and used all three algorithms (area model, box model, 

partial products algorithm), with 32.0% of participants having only used the box model of the 

three. Thus, isolated exposure to these algorithms was the norm and there was no evidence of a 

sequenced progression from concrete to abstract. Results should be interpreted with this feature 

of the sample in mind. Thus, implications of these results suggest that isolated use of the box 

model, as well as demonstration of the area model without actual use, have a negative effect on 

children’s multiplicative reasoning. By contrast, the partial products algorithm was found to be 
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beneficial in the current sample. These results suggest further research is needed to better 

understand not only the appropriate pedagogy for teaching multi-digit multiplication, but the 

pitfalls of teaching particular algorithms without connections to other mathematical 

representations. Additionally, the present paper reports on an exploratory analysis of a pilot 

project and is limited due to sample size both regarding number of students and the classrooms 

they are sampled.  
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Research Background 

Flexibility has garnered significant attention in educational practices as a crucial element of 

students' higher-order thinking skills and creativity (Star et al., 2022). To explore and explain 

flexibility, researchers have examined the correlation between flexibility and various factors 

from different perspectives. In particular, evidence has shown that flexibility is related to a 

variety of factors, including task factors, personal factors, and environmental factors (Hong et al., 

2023; Verschaffel, 2024). This paper aims to explore the relationship between learners' self-

regulated learning and flexibility from a psychological perspective to better understand 

flexibility. 

Research Questions and Procedures 

Research Questions: What is the relationship between self-regulated learning and flexibility 

in solving ratio tasks? What are the self-regulated learning characteristics of problem solvers 

with different levels of flexibility?  

Research Procedures: (1) Methodology: A mixed-method research design was employed. 

Learners' flexibility level was measured across three dimensions: multiple strategies generation, 

appropriate strategies identification and appropriate strategies switching. Learners' self-regulated 

learning characteristics were measured using the Motivated Strategies for Learning 

Questionnaire (Wang et al., 2023). (2) Convenience sampling was used, in a middle school in 

eastern China, with students in grades 7-9. (3) Math content: ratio problem solving. 

Data Analysis and Conclusions 

Data analysis examined the self-regulated learning characteristics of students across different 

flexibility levels. Structural equation modeling was used to explore the relationship between 

flexibility and self-regulated learning. The research results indicate that the relationship between 

flexibility and self-regulated learning is complex, intriguing, and worthy of continued 

investigation.  
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In this presentation, we examine the theoretical underpinnings of how young children reorganize 

their whole number understandings to construct fraction understandings (Steffe, 2001). By 

examining these reorganizations, we aim to inform instructional approaches in early childhood 

education, as well as build early forms of collaborative efforts between scholars with expertise in 

upper elementary mathematics education and early childhood mathematics education. 

Discussions focus on the conceptual resources that children carry into their mathematics 

activity, and, how, by taking up an asset-based frame, early childhood educators are better 

positioned to design equitable instruction for their children.   

Keywords: Early Childhood Education, Learning Trajectories and Progressions, Learning 

Theory. 

Often, early childhood educators must differentiate their instruction to support wide degrees 

of children’s early number development. These efforts are often guided by curricula materials, 

locally developed resources, or national research-to-practice initiatives (e.g., U.S. Mathematics 

Recovery Council). In response to these efforts early elementary aged children may experience 

different instructional approaches in mathematics, some focusing on narrow ranges of 

mathematical content (Ginsburg et al., 2008). Many posit that learning differences are not only a 

reflection of children’s cognitive differences, but the societal constraints we have in our school 

system to differentiate our instruction effectively for all young children (Baroody & Purpura, 

2017).  In this theoretical contribution, we push back on these societal constraints to discuss the 

significance of examining the underpinnings of children’s whole number knowledge in terms of 

their construction of fraction understandings. Our objective is to emphasize and inform this 

developmental focus to be at the center of the early childhood classroom planning and 

instructional practices. 

Theoretical Foci 

To examine students’ conceptual resources and the developmental process, we situate our 

work under Steffe’s (2001) reorganization hypothesis which draws from a recognition template 

described as scheme theory; explaining how the conceptual resources within a child’s 

mathematical reality are utilized to develop fraction understandings. Steffe and Olive (2010) 

describe scheme theory as drawing from a four-part model: an experiential situation, an 

overarching goal, an anticipated action(s), and an expected result(s). When the actual result(s) 

and expected results(s) do not align, a child will accommodate their scheme to change one of the 

four components within their model. An accommodation of a scheme explains learning, as an 
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individual reorganizes their scheme to make sense of this misalignment. Scheme theory explains 

that as a student reorganizes their scheme, they also revisit earlier developed components of their 

schemes with the implicit goal to extend these components in new experiential situations. For 

instance, when introduced to equal sharing tasks (i.e., How much of this chocolate bar would 

each person receive if shared by three people?), children have the potential to use their activity 

from their whole number schemes to develop fraction schemes (Steffe, 2001). To better 

understand how scheme theory can frame children’s reorganization of their conceptual resources, 

we examine the literature focusing on children’s units construction and coordination. 

 

Theoretical Framework: Units Construction and Coordination 

We frame our discussion with constructs embedded in the units construction and coordination 

literature with regard to whole number schemes, fraction schemes, and relationships between 

them both. Hackenberg and Sevinc (2024) define units as, discrete 1s or lengths. Essentially, 

young children first construct units by isolating sensory-motor activity (i.e., motor activity, 

verbal utterances), providing them discrete units to carry into their earliest whole number 

activity. Children then construct length units through a similar unitizing process for fraction 

development, where experiential units are developed with length models (i.e., string, lines in 

sand). Children use partitioning to construct units and then iterate or copy units to create new 

units (Hackenberg & Sevinc). Children’s organization of units provides constant relationships 

which can be coordinated for operation development, better positioning themselves with 

assimilatory structures for whole number to develop fraction schemes. Steffe (1992) also 

describes units coordination as the distribution of elements from one set of units across the 

elements of a second set of units. This is explained in more detail in the next section. As 

children’s number understanding becomes more sophisticated, children progressively develop 

abstract units to facilitate coordination forming assimilatory structures described as a “units of 

units of units” (Steffe, 1992; Ulrich, 2016). Elementary-age children reorganize their 

assimilatory structures to develop fraction schemes and revisit their earliest activity informing 

educators of children’s underlying activity developed in their the early childhood years.  

Whole Number Scheme Development 

Framing counting and number sequence development in the units construction and 

coordination literature, Steffe and Cobb (1988), describe counting as a scheme, whereby a 

student will approach a situation (e.g., perceiving items to count), develop an overarching goal 

(e.g., determine “how many altogether”), decide on an action (e.g., pointing at items in 

correspondence to number words stated in sequence), and decide upon an expected result (e.g., 

the final number in the counting sequence). This describes the process through which young 

children may construct, engage with, and reflect upon pre-numerical units (e.g., perceptual units, 

figurative units, motor units, and verbal units) before developing abstract units, marking an 

understanding of number as a quantity. Olive (2000) explains that once children strip away the 

contextual features of an operation, they interiorize number and develop abstract units. Once 

children interiorize their whole number units, they re-interiorize their number schemes by 

producing operations (e.g., partitioning, iterating, unitizing, and disembedding), with which to 

inform the results of their actions associated with their number schemes. For instance, children 

counting items can take the counting action and apply it to the result by understanding these 

items are “something to be counted” (Olive, 2000, p 5). Through a process of interiorization and 
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re-interiorization, children develop assimilatory structures whereby “units of units of units” are 

understood. These three-level structures of number explain children’s coordination of three units, 

such as, six twos relative to 12 (Olive, 2000, p. 7). Here children may be coordinating 

relationships between six, twos, and 12. By coordinating three levels of units, children anticipate 

the relations between three arithmetic units prior to constructing a solution of a mathematical 

task (Hackenberg & Sevinc, 2024). Additionally, when developing assimilatory structures, 

children rely primarily on their partitioning or iterating development. These operations can 

inform educators of meaningful conceptual resources to elicit for future mathematics instruction 

(see Figure 1).  

 

 

 

 

 

 

 

 

 

 

Figure 1: On the left, how children may iterate discrete units. On the right, how children 

may partition sets of discrete units.   

While some children may have a “units of units of units” structures, other children may not 

yet have developed three levels of units, evidencing a reliance on pre-numerical units through a 

counting all strategy, a reliance on internalized number sequences through a counting on strategy, 

or a reliance on skip counting by keeping track of the third unit in activity (Olive, 2000; Ulrich, 

2016). Examining these wide degree of variances found in early childhood classrooms allow 

educators insight into children’s developing actions, which can be used for future instruction. 

Reorganization for Fraction Scheme Development 

When children develop three levels of units, they are much more capable of accommodating 

their whole number schemes to develop fraction schemes. Due to the inverse relations between 

whole number units and fractional units, children revisit some of their earliest actions when 

developing fractions (Olive, 2000; Steffe, 2001). In short this means children assimilating a three 

level units structure of units of units of units reorganizes their assimilatory structures and 

associated operations to develop units in units understandings. For instance, Olive (2000) 

explains that a student coordinating three levels of units with whole numbers is only able to carry 

in an assimilatory structure to solve a fraction of fraction activity (e.g., what is one-half of one-

fourth? – see Figure 2). This is often because children developing fractional units coordination 

require inverse understandings of their whole number units coordination. For most children, this 

can be a rich and meaningful opportunity to examine the inverse relationships between whole 

number and fractional units. Children not yet coordinating three levels of units can oftentimes 

struggle understanding fractions. Yet, we posit children not yet coordinating three levels of units 

are still developing meaningful activity, which can inform their fraction development in a variety 
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of ways. This activity can also inform the design of early childhood mathematics learning 

trajectories. 

Contributions to Early Childhood Mathematics Learning Trajectories 

Developmental learning trajectories, or representations of “learning that shed light on how 

children might engage with tasks, reflect on tasks, and develop knowledge through work on 

tasks” (Weber et al., 2015, p. 254) are effective tools when establishing early childhood 

curricula. We posit by examining children’s reorganization of their assimilatory structures, early 

childhood educators gain insight into children’s earliest operations. For example, when a student 

solves the task, how many fives does it take to make 30? They may first create a line of 30 

counters before grouping them into random-sized groups before determining they need to create 

a group of five each time and then count the groups. This suggests the student relies on an 

internalized number sequence because they can produce 30 items, but their partitioning of these 

items is emergent, meaning they can reflect on their partitioning and the total number of items, 

but cannot do this along with their unitizing, evidenced in their unequal group development 

before reflecting on the size of the groups. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: On the left, how children may iterate fractional units. On the right, how children 

may partition referent wholes and fractional units.   

 

When reorganizing this to solve fraction tasks, educators would expect to see this emergent 

partitioning when the student solves the task, such as: “How much of this fry would each person 

receive if shared by three people?”. We would also see the student resort to their pre-numerical 

units when applying their partitioning to the fry and the other materials and activity (e.g., auxiliary 

items, drawings, cutting, folding). As such, this can be used for future activity with fractions. By 

examining this activity with many students, educators are also given “typical” activity associated 

with children’s earliest activities and operation development. For instance, if educators teaching 

eight and nine-year-olds see children partitioning or iterating but struggling with their unitizing, 

they may be able to discuss with their early childhood educator colleagues varying ways they can 

leverage more sophisticated grouping tasks, allowing children opportunities to use their 

partitioning or iterating to construct, engage, and reflect on their unitizing activity. By observing 

this reorganization, early childhood educators have the possibility to use this activity to design 

curricula materials and resources grounded in child-centered learning trajectories.  

Discussion and Conclusion 
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Young children develop meaningful activity through their units construction in the early 

childhood classroom. By taking up scheme theory, educators and researchers are better 

positioned to revisit this activity by observing the children’s conceptual resources that they use 

when solving whole number and fraction tasks. Observations of children’s scheme 

reorganization, has the potential to design intentional discussions among educators and 

researchers in a variety of different fields (e.g., early childhood, upper elementary). Through 

these partnerships, educators can design trajectories that are student-centered and purposeful. By 

differentiating instruction in this way, early childhood educators can utilize an asset-based frame 

to differentiate and widen their classroom mathematics for all children. 
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Background and Objectives 

Previous studies have documented the benefits of learning in flipped instruction over the 

traditional lecture method (Akçayır & Akçayır, 2018; Nielsen, Bean, & Larsen, 2018). Some 

researchers attributed the successes to other factors rather than the pedagogical approach itself 

(Backlund & Hugo, 2018). For example, Kay and McDonald (2016) reasoned that the students 

learn more in flipped instruction because the model incorporates active and collaborative 

learning techniques.  While Backlund and Hugo (2018) described the teaching method as multi-

dimensional or a combination of multiple strategies. Thus, this study contrasted learning 

opportunities in flipped instruction (FI) with another non-passive method, identified as 

customized-direct instruction (CDI). This poster investigated whether students who received FI 

perform better than students taught using CDI on all assessments given in two introductory 

college mathematics courses after controlling for prior achievements and peculiarities.  

Flipped instruction allowed learners to interact with all or part of the instructional activities 

independently outside the classroom. Then the grouped space is used to for cooperate and higher-

order learning (Akçayır & Akçayır, 2018). While CDI encourages active participation 

(Voskoglou, 2019) by utilizing explicit instruction and group work for content presentation and 

learning. We focused on precalculus and calculus because of their gate-keeping roles for many 

college students (Rasmussen et al. 2019).  

Methods and Data Analysis 

We created a structural model (Figure 1) explaining how teaching methods, motivation 

beliefs, and past experiences contributed to learning retention and achievement. Model 

construction followed recommended standards by Schumacker and Lomax (2016). The 

participants were ninety undergraduates; 33 from FI and 57 who received CDI in precalculus at a 

four-year college. Students covered same topics, took 

same midterms and final exams, similar but different 

homework and quizzes, and had different instructors.   

Two-steps structural equation modeling (SEM, 

Schumacker & Lomax, 2016) and MANCOVA were 

used to analyze and interpret collected data, which 

included students’ precollege assessment reports, 

course grades, and self-reported end of semester course 

evaluation.  
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Results and Implications 

Findings showed moderate to strong relationships 

between most of the variables considered. While a 

modified version of the theorized structural model 

indicated that no one instructional method is superior 

to the other for learning retention, the MANCOVA 

results show that the flipped model supports short-

term learning achievement, while the direct 

instruction facilitates learning retention (see Tables 1 

and 2).  

Any active learning method and/or combinations 

of teaching approaches have the potential to increase 

learning retention and the achievement of desired 

goals. 
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Math anxiety is pervasive in our society, and it is causing problems for students who want to 

enter a science, technology, engineering and mathematics (STEM) pathway. Recent research has 

suggested that math anxiety, and not math ability, is a better predictor of performance and 

perseverance in STEM. Interventions to mitigate this anxiety must get to the root of the problem 

and provide students tools to help ease these feelings when they come to disrupt performance. 

Our approach uses techniques from mindfulness and self-compassion, which have been linked to 

reducing anxiety. We have developed modules that can be used in a math (or science) courses to 

help students understand the anxiety they face. In this paper we examine one of the interventions 

used, the pre-exam writing, and how it showed a 75 percent increase in statements of confidence 

and a doubling of statements of positive feelings over the semester.  

Keywords: math anxiety, self-compassion, mindfulness 

Tobias (1976) coined the phrase “math anxiety” to describe the feelings of panic, anxiety, 

paralysis, and mental confusion that occur when people face computational challenges. Math 

anxiety is a major barrier to broadening participation in STEM. First year college mathematics 

(math) courses are a gateway to STEM majors (Schleicher, 2018) and nearly one third of STEM-

intending students in the U. S. enroll in remedial math courses at the college level (Chen & 

Simone, 2016). Math is a major source of stress and anxiety for many college students (Ramirez 

et al., 2018). Many students have the cognitive ability to carry out mathematical tasks 

successfully, but their fear and anxiety regarding math gets in the way (Tobias, 1976; Beilock & 

Maloney, 2015: Brunyé et al., 2013; Henslee & Klein, 2017; Samuel & Warner, 2019). 

Neuroscience research has established that the worries and anxiety that arise in math-anxious 

students usurp cognitive resources needed for thinking, reasoning, working memory, and 

maintaining focused attention (Beilock & Maloney, 2015; Brunyé et al., 2013). This causes 

students to perform below their actual ability and affects their motivation and interest in math 

(Brunyé et al., 2013). 

Researchers have been examining ways to address math anxiety through non-academic 

interventions (Beilock & Maloney, 2015; Brunyé et al., 2013). Factors such as grit, mindfulness, 

self-compassion, and self-efficacy have been studied and are associated with anxiety, resilience, 

and academic achievement (Jarukasemthawee et al., 2021; Neff et al., 2005; Neff & Germer, 

2013; Tubbs et al., 2019). In addition, research findings have indicated an inverse relationship 

between grit and math anxiety in college students (Holtby, 2018; Darrah et al., 2023) suggesting 

that increasing grit may foster resilience and perseverance by reducing math anxiety.  

Our research team, including mathematics professors and a counselor who specializes in 

mindfulness and self-compassion, has developed and implemented modules aimed at reducing 

math anxiety in college students enrolled in entry level mathematics courses. The seven student 

modules focused on three main topics (math anxiety, mindfulness, and self-compassion) and 

were titled:  Math Anxiety Introduction, Introduction to Mindfulness, Mindfulness as a 
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Superpower, Math Anxiety Writing, Introduction to Self-Compassion, Self-Compassion (Part 2), 

and Reflection. This research is part of a larger study (Leppma & Darrah 2022; Darrah et al., 

2023) and in this paper, we focus on the Math Anxiety Writing assignments and the last module 

Reflection.  We were interested in how student engagement with these modules influenced how 

students felt about their ability to learn mathematics. Our research questions for this paper were 

as follows:  

 

1. How did student perceptions of themselves as learners of mathematics change over the 

course of the semester? 

2. What was the students' reaction to the Math Anxiety Modules? 

 

Background 

Math anxiety not only interferes with academic performance, but may contribute to STEM 

attrition (Ahmed et al., 2017; Ramirez et al., 2018). Students who earn lower grades in STEM 

courses in their first year of college are more likely to switch to non-STEM majors or drop out of 

college altogether (Chen & Soldner, 2013). Recent research (Daker et al., 2021) suggests that 

math anxiety is a better predictor of students’ participation and perseverance in STEM majors, as 

well as performance in math classes, than actual math ability. Results indicated that higher math 

anxiety was associated with avoidance of STEM courses and lower grades in STEM courses 

when tracking students over a four-year period.  

Research demonstrates that mindfulness-related practices are effective in cultivating internal 

resources as protective factors against the distress associated with math anxiety, which may help 

attract more students to pursue and persist in STEM-related majors (Ahmed et al., 2017). 

Mindfulness – the intentional and nonjudgmental awareness and observation of the present 

moment, including thoughts, feelings, and physical sensations one is experiencing – is positively 

associated with improved emotional regulation (Meyer, et al., 2019) and inversely related to 

depression, anxiety, and severity of anxiety symptoms (Tubbs et al., 2019).  

A related construct, self-compassion, is the ability to show kindness and caring toward 

oneself in the face of discomfort, failure, or suffering. Self-compassion encompasses three 

components: self-kindness, common humanity, and mindfulness. Rather than being critical and 

judgmental toward oneself when making mistakes, self-compassionate people recognize that 

personal failures are part of the human experience and recognize their negative internal states 

without judgment or overidentification (Neff, 2003).  

Students who develop internal resources, such as perseverance, grit, hope, emotion 

regulation, and motivation can overcome math anxiety and persist in math classes (Beilock & 

Maloney, 2015; Duckworth, et al., 2007; Snyder et al., 2002). Mindfulness and related self-

compassion practices have been shown to alleviate anxiety, including math anxiety, and improve 

resilience, grit, hope, well-being, and emotional and cognitive functioning (Beilock & Maloney, 

2015; Doorley et al., 2022; Leppma & Darrah, 2022; Weed et al., 2021). Mindfulness and self-

compassion practices help to develop valued skills in academic achievement, such as 

concentration, memory, focus, and test performance. They also cultivate skills associated with 

occupational success and wellbeing, such as resilience, emotion regulation, interpersonal skills, 

grit, and hope for goal attainment (Chiesi et al., 2022; Leland, 2015; Shapiro et al., 2015; 

Strohmaier et al., 2022). Moreover, mindfulness diminishes the experience of stress and fear 
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(Tubbs et al., 2019), and self-compassion increases intrinsic motivation to learn and improve 

(Akin, 2008; Manavipour & Saeedian, 2016; Neff et al., 2005). Thus, higher levels of 

mindfulness and self-compassion are associated with higher levels of grit and hope, and lower 

levels of math anxiety. 

 
Methods 

The research took place at a large public research university upon institutional review board 

approval. The participants in the project were a convenience sample of 59 students who were 

enrolled in an entry-level college algebra course and a college algebra co-requisite support 

course in the spring semester of 2022. Student placement into college algebra courses (with or 

without co-requisite support) is based on their SAT/ACT Math scores or how they performed on 

a Math Placement Exam (ALEKS). The co-requisite course focused on prerequisite skills 

including operations on real numbers and simplifying algebraic expressions, and metacognitive 

skills such as mindfulness, coping with math and test anxiety, and self-compassion. The co-

requisite course was mainly taught by graduate assistants under the supervision of the course 

coordinator. The coordinator provided training on how to implement the modules mentioned in 

the Introduction. 

For this paper, we focused on the Math Anxiety/Mindfulness pre-exam writings and the last 

student module titled Reflection. The purpose of the Math Anxiety/Mindfulness pre-exam 

writings was to help students acknowledge their thoughts as they prepared to take an exam. 

These writings were designed to help students practice mindful writing to bring awareness and 

clarity to their thoughts prior to taking an exam. These writing assignments took place before a 

practice exam given in the co-requisite support course but coincided with three exams taken in 

their 3-credit algebra course. Data collected were student responses on these three writing 

assignments. The prompt students were given was “Please take the next 7 minutes to write as 

openly as possible about your thoughts and feelings regarding the math problems you are about 

to perform.” These writings were completed in February, March and April (before algebra exams 

2, 3, and 4).  

The researchers used the Content Analysis method to look for common ideas and themes in 

the student response data. Analyses began with the preliminary reading of the responses, 

followed by the development of preliminary codes based on ideas and themes that emerged 

within the responses to the writing prompt. The development of codes was also guided by the 

overarching research ideas of the student’ perceptions of their ability in math and feelings of 

anxiety. The codes were grouped into three major categories: (1) confidence or lack of 

confidence in mathematical knowledge or ability to succeed on the pre-assessment, (2) specific 

feelings of anxiety or stress, and (3) positive feelings. The writing was not mandatory, so 97 

students completed at least one of the writings, with 45 students completing all three writings. 

These 45 students were used as the analysis group, since we could compare across all three 

writings for changes.  

Additionally, to determine students’ perceptions of the modules themselves, we presented the 

student responses from the last module, Reflection. This module asked students to reflect on the 

experience of learning about these ideas and practices (mindfulness and self-compassion) 

throughout the semester. Forty-seven students completed the final Reflection module at the end 

of the semester. Questions included “Will you continue to utilize some of the practices discussed 
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in the modules in the future?  If not, why not?”, “What is your reaction to the series of 

modules?” The researchers used descriptive statistics to determine the percentage of students 

who found the modules useful and considered the open-ended responses for information about 

student perceptions and to extract ways to improve the modules or make them more useful to the 

students.  

 

Discussion  

We summarize the findings based on our two research questions. 

Research Question 1: How did student perceptions of themselves as learners of mathematics 

change over the course of the semester?  

For the 45 students who completed all three Math Anxiety/Mindfulness pre-exam writings 

we looked for change from February to April. Figure 1 below shows a summary of the analysis 

of the coding. We found that the number of students who made statements of confidence in their 

ability had a 75 percent increase. The number of students who made statements about positive 

feelings more than doubled, showing a 110 percent increase over the semester. On the flipside, 

the number of students expressing specific feelings of anxiety had a 34 percent decrease. For 

these 45 students, by April, they were making as many positive statements as negative statements 

about their feelings and more of them had statements of confidence than had statements of lack 

of confidence. 

 

 
Figure 1: Summary of Coding of Math Anxiety/Mindfulness Pre-Exam Writing 

 

Table 1 below is a sample of a few student responses that show the changes in the students’ 

perceptions of themselves as learners. From the matched responses in the table, it can be seen 

that students took these few minutes before the exam to really think through what they were 

feeling. They talked about what was going on in their lives, sometimes mentioning other 

situations not related to math that were troubling them. This activity gave them a mechanism to 
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let go of these thoughts and then to focus on the task at hand: taking the math test. Note the “VL” 

in the comments in the table stands for Video Lectures. 
  

Table 1: Example Student Responses to Math Anxiety/Mindfulness Pre-Exam Writing 

 

PROMPT: “Please take the next 7 minutes to write as openly as possible about your thoughts 

and feelings regarding the math problems you are about to perform.” 

February March April 

I feel like I am struggling 

because I don't really know what 

is going on. The word problems 

confuse me. And the VL are not 

anything like what the problems 

are, they do not help me when I 

do homework. They are 

completely different.  Most of it 

does make sense to me at all and 

I am really not good at math or 

understand it. 

I am struggling so bad in 

math.  I do not like it 

because it is hard.  I don't 

understand anything we are 

doing I literally do not 

comprehend it.  The VL do 

not help me at all and I feel 

like it is not the same as the 

stuff we learn in class. 

I feel confident because 

when I did the VL I actually 

understood what I was 

doing.  I thought I 

understood though and then 

in math 126 I was so 

confused because he taught 

it a different way.  I am not 

nervous because I felt 

comfortable and now I am 

not really sure. 

I do not feel as prepared as I 

would like to for this upcoming 

assessment. I don't feel very 

confident in my knowledge on 

the current problems and 

material we are working on in 

Math 126. Though I am 

beginning to pick up how to do 

partial aspects of current 

material, I don't think I know 

enough to perform as well as I 

could on this diagnostic. 

I definitely feel more 

confident going into this 

next diagnostic test than the 

previous ones. Before others 

I felt certain I would not do 

well at all and was very 

worried about how it would 

affect my grade. I am 

hopeful that this one will 

have a better outcome and 

relieve some of that stress 

regarding my grade. 

I feel prepared and good 

about the math diagnostic 

that I am about to complete. 

Other times I have been 

quite anxious for the 

diagnostics because I didn't 

feel that I would score well 

on them and was worried 

about the effect that it 

would have on my grade in 

the class. 

I am kind of confident but also 

nervous at the same time to do 

the math problems because there 

are parts that I am super familiar 

I am a bit nervous but also 

a bit confident as I kinda 

know how to do the 

problems but I also am just 

am unsure of them. I think 

I feel okay about it as I am 

going to be able to know the 

majority of what is on this. 

I honestly have no idea what is 

going on, the second you get one 

second behind with a specific 

topic regarding the material we 

have went over thus far, you are 

just SOL. You just get behind so 

fast, if you struggle with one 

little thing it is honestly 

I barely understand 

what’s going on with 

anything we are going over 

in 126 right now, and 

honestly 106 doesn't help 

whatsoever. 106 is 

repetitive and we get lil to 

no help in either class. Feels 

I feel better about this 

module than I have any 

other, it still scary because 

were getting close to the 

end of the semester. I feel 

like I should have felt better 

about this math a lot sooner. 
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impossible to continue with 

anything else. … 

very pointless 

 

Research Question 2:  What was the students' reaction to the Math Anxiety Modules? 

Forty-seven students completed the final reflection module at the end of the semester. When 

students were asked if they will continue to utilize some of the practices discussed in the modules, 

81% of students said “yes”. When asked, “What was your reaction to the modules?” students 

elaborated on their thoughts and feelings regarding the modules. Some example quotes included:   

● “I felt like I learned a lot from these modules this year whether it was my least favorite or 

my absolute favorite. I felt like learning all these unique ideas and lessons, I can use them 

to make myself a better student, etc.” 

● “These modules made me improve my math scores throughout the semester. I kept 

improving as a student, and I will continue to do these practices.”  

● “I found the information in the modules more useful than expected. Learning not only about 

anxiety, mindfulness, and self-compassion, but how to apply them to real life made a huge 

difference. While one would not think the modules would not have a huge impact when 

coming to learning math, it created a difference mentally, and how one begins to think.” 

● “I loved them, I actually tried to apply what they were teaching me into my life.”  

Student responses from those who said that they would not continue to utilize these practices 

included: 

“Probably not as I'm confident in my ability to work out math problems and I'm confident in 

my abilities already and don't need self-help.” 

“They all felt the same as they seem to just be about how I feel about math even though I enjoy 

math.” 

“Self-compassion felt silly, but I enjoyed the ted talk like videos.” 

Student feedback will be used to redesign modules or better explain their purpose to students. This 

feedback will also help inform professional development for instructors who will be implementing 

the modules. 

 

Conclusion 

Math anxiety is a problem for many students in our college courses (Tobias, 1976; Beilock & 

Maloney, 2015: Brunyé et al., 2013; Henslee & Klein, 2017; Samuel & Warner, 2019) and is 

causing a problem in our STEM pipeline (Ahmed et al., 2017; Ramirez et al., 2018). While the 

authors understand that these modules are not a silver bullet that will eradicate math anxiety in all 

students, we were pleasantly surprised by the number of students who took them seriously and 

who said they benefited from them. Over the years, we have not seen many resources that address 

the idea of anxiety in the math classroom and feel we have developed something to offer instructors 

who are faced with the student who suffers from math or test anxiety. We have also found through 

this research and reviewing the comments from the writing modules that the overwhelming 

majority of students in the co-requisite course started out with negative feelings, even though it 

may not have shown on their faces. We also note that these feelings, if addressed, can change 

throughout the course of the semester. The introduction of mindfulness techniques and self-

compassion can make a difference in their perceptions of themselves as a learner.  
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We are continuing to redesign and improve the modules based on student feedback. Another 

aspect of the work is to create and provide professional development for faculty who would like 

to use the modules as part of their course. These modules can help instructors learn more about 

math anxiety and equip them with tools they can use to help their math anxious students persist in 

their studies. Lastly, we will continue the process of testing all the modules with students to 

determine their effectiveness at reducing math anxiety and increasing student persistence and 

performance. Future research will explore mechanisms, interventions, and effectiveness in a 

broader population. 
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In this research report, the author draws on her diverse experiences in research and teaching to 

present an emerging theoretical framework for integrating comics storytelling as a pedagogical 

tool in K-8 mathematics education. The framework, deeply rooted in mathematics identity and 

funds of knowledge, serves as a bridge between students’ mathematical experiences outside and 

inside the classroom. This framework carries significant potential to cultivate a supportive 

environment that fosters collaborative problem-solving, encourages students to share their 

unique stories, and enhance mathematics identity development. Through sharing insights from 

her learning experiences and her vision for comics storytelling, this research report aims to 

contribute to the ongoing discourse on creating inclusive learning spaces in mathematics 

education.  

Keywords: Elementary School Education; Middle School Education; Integrated STEM/STEAM; 

Classroom Discourse. 

Drawing from my experiences in research and teaching, I propose a theoretical framework 

that leverages comics storytelling to bridge the gap between in-school and out-of-school 

mathematics learning and to shape students’ mathematics identities. This emerging framework 

has the potential to create a supportive environment that encourages students to share their 

unique stories, promotes collaborative problem-solving, and enhances the development of 

mathematics identity. Additionally, this report seeks to contribute to the ongoing discourse on 

fostering inclusive learning spaces in mathematics education. 

Researcher’s Positionality 

I observed a recurring challenge among my students as a mathematics tutor in Nigeria – the 

challenge of connecting mathematical problems with their real-life experiences. To address this, I 

turned to the power of storytelling, specifically utilizing comics stories as a medium to intertwine 

mathematical concepts with indigenous lived experiences. Incorporating indigenous terms and 

characters in these comics stemmed from recognizing that many available mathematics resources 

were entrenched in western perspectives, featuring characters, language, and settings unfamiliar 

to the average child in my community. This led to the initiative “Learning Mathematics Through 

Storytelling (LEMATS)” (Oliwe & Chao, 2022). The foundation of this report rests upon my 

experiences with LEMATS and my ongoing theorizing of comics storytelling in K-8 

mathematics education. 

Conceptual Frameworks 

Mathematics Identity 

Researchers have indicated the significance of students’ identities, especially in mathematics 

(Martin, 2000). Mathematics identity is defined as “the dispositions and deeply beliefs that 

students develop about their ability to participate and perform effectively in mathematical 

mailto:oliwe.1@osu.edu
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contexts and use mathematics in powerful ways across the contexts of their lives” (Aguirre et al., 

2013). In mathematics education, the focus should extend beyond the development of essential 

skills and conceptual understanding to encompass the support for students in perceiving 

themselves as legitimate and capable participants in mathematics (Aguirre et al., 2013). 

Recognizing the identities that students bring into the learning environment provides 

educators with valuable insights into the reasons behind students’ positive or negative 

connections with mathematics. This understanding enables educators to implement necessary 

improvements, offering support and reinforcing a student's mathematical learning and their role 

as a mathematics learner. Also, students’ experiences with mathematics in their classrooms 

significantly influence their perceptions of mathematics and their self-identification as 

mathematics learners and doers (Aguirre et al., 2013).  

As mathematics identities can expressed through storytelling (Aguirre et al., 2013), I argue 

that the way students encounter mathematics in the classroom and connect these experiences 

with their home and community environments plays an even more substantial role in shaping 

their perspectives on mathematics and their self-perception as mathematics learners and 

practitioners. In fact, Sfard & Prusak (2005) proposed a correlation between mathematics and 

storytelling, asserting that identity formation is influenced by impactful narratives that provide 

understanding into one’s experiences in learning mathematics. These identities comprise intricate 

and adaptable narratives individuals construct about themselves, rooted in diverse life 

experiences such as education, family, and media. 

Funds of Knowledge 

The concept of funds of knowledge in teaching recognizes the significance of “historically 

accumulated and culturally developed bodies of knowledge and skills essential for household or 

individual functioning and wellbeing” (Moll et al., 1992, p. 133). It acknowledges that students 

consistently bring these bodies of knowledge into the classroom and honors students’ families, 

communities, and the knowledge they contribute to classroom mathematics. In the context of my 

work, these bodies of knowledge are mathematically enriched resources that can address the 

challenge of bridging out-of-school mathematics with in-school mathematics. Students’ 

motivation to learn mathematics increases as they bring in their identities into the learning space 

and establish connections between the mathematics evident in their families and communities 

and the mathematics encountered in the classroom (Aguirre et al., 2013; Oliwe & Chao, 2022). 

However, the question arises: What kinds of opportunities and channels are available for students 

to share this wealth of knowledge they possess or to make meaning of it in relation to 

mathematics during their lessons? 

Rehumanizing Mathematics 

Gutiérrez (2018) outlines eight key dimensions that can contribute to the rehumanizing of 

mathematics education. These dimensions encompass (1) fostering inclusive participation and 

positioning, (2) valuing diverse cultures and histories, (3) providing windows into unfamiliar 

experiences and mirrors reflecting personal identities, (4) recognizing mathematics as a living 

practice embedded in everyday life, (5) encouraging creative expression and innovation, (6) 

broadening the scope of mathematical topics and perspectives, (7) acknowledging the role of the 

body and emotions in mathematical learning, and (8) empowering individuals to take ownership 

of their mathematical journey.  

Connecting the above conceptual frameworks to inform the theoretical framing of comics 
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storytelling in K-8 mathematics education, there is the emphasis that educators ought and should 

be encouraged to actively contribute to shaping positive mathematics identities among students 

by recognizing and acknowledging the various identities students develop, the wealth of 

knowledge they bring into a learning space, and creating opportunities for students to take an 

active role and ownership of the mathematics they are learning as they share their stories, engage 

in rich mathematical thinking and strategies dialogues with one another, and eventually create 

their own math comics creations. 

Key Elements in the Emerging Theoretical Framework for Using Comics Storytelling in    

K–8 Mathematics Education 

Definition  

According to Eisner (1992), comics are a form of sequential art. McCloud (1993) elaborates 

on this definition by describing comics as images juxtaposed in a deliberate sequence to 

communicate an idea and/or evoke an aesthetic response, providing clarity to the expansive term 

“art.” Notably, Abel & Madden (2008), addressing the absence of the term “text” in previous 

definitions, incorporate text in their working definition of comics.  

My current working definition of comics storytelling in mathematics education is – a form of 

storytelling that involves using images and text to create stories in a juxtaposed sequential layout 

that not only give educators the leverage to create opportunities for students to explore, interpret, 

and solve mathematical problems but also invites the students to connect and share stories from 

their homes and communities wherein their mathematics thinking is situated, engage in rich 

problem-solving conversations, and visually represent their mathematical thinking through 

comics. These stories may be lived experiences, fictional, or a mix of both. The 

representation of these stories may be aesthetically pleasing or in simple format. 

The Comics Structure  

In the scope of my research, I find Eisner’s (1995) narrative structure, encompassing the 

introduction/setting, problem, addressing the problem, solution, and conclusion, along with Chao 

et al.’s (2021) “Math in My World” model rooted in the Funds of Knowledge Theory (González 

et al., 2001), to be valuable structures for introducing both students and teachers to the art of 

storytelling and its connection to mathematics. Using this model not only positions students as 

learners and doers of mathematics but also gives them a sense of ownership of the mathematics 

they are learning. Furthermore, taking into consideration McCloud (2006) storytelling goals, 

educators and students should aim to (1) develop stories rooted in lived experiences and 

perspectives of oneself or the reader’s (2) ensure authenticity in the creation of characters and 

their roles within the story’s world (3) captivate readers by introducing them to unfamiliar 

places, cultures, and strategies (4) potentially evoke emotions by tapping into shared heritage and 

experiences, and (5) instill a sense of care and engagement in the readers toward their narrative. 

Reading Between the Gutter 

Reading between the gutter in comics storytelling involves two techniques – closure and 

transitions. McCloud (1993) defines “closure” as the phenomenon of perceiving the whole by 

connecting and making sense of individual parts. It occurs when a reader seamlessly links two or 

more comics panels into a continuous story (Abel & Madden, 2008). According to McCloud 

(1993), readers actively engage in the storytelling process by making decisions and filling in the 

gaps between depicted moments and perspectives chosen by the author (Figure 1). Closure, as 

described by McCloud (1993), can be a powerful force within individual panels and as well as 
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between panels – known as the gutter, an empty area between panels (Abel & Madden, 2008). 

Embracing McCloud’s (1993) concept of closure in comics storytelling in mathematics 

education, I argue that this presents an opportunity to invite students to contribute their 

perspectives and insights to the ongoing conversations by filling in the narrative gaps. Educators 

play a pivotal role in this closure process. To encourage students to actively participate by 

sharing their stories or strategies, educators must determine the extent of information expected 

from students to fill in and the types of mental jumps the students will need to make between 

panels. These jumps are referred to as “transitions” (Abel & Madden, 2008). 

Looking at Figure 1, we can envision potential approaches an educator might tailor additional 

prompts or classroom activities to align with the intended lesson objectives, elicit students’ funds 

of knowledge and perspectives, and facilitate mathematical dialogues. 

 

 
 

Figure 1: Example of a 4-panel Math Comics 

Story Circles 

In my previous teaching and research endeavors, students primarily engaged in independent 

work or collaborated with their immediate seat partners. However, this approach had its 

limitations, particularly considering my aim to cultivate collaborative conversations within the 

learning space. Reflecting on these experiences, the story circle is central piece to my theoretical 

framing of comics storytelling as a pedagogical tool in K-8 mathematics education. 

Story circles, characterized by small groups that emphasize active listening, provide a safe 

platform for individuals to share their evolving stories and offer feedback to one another 

(Lambert, 2013). Through this process, feedback from fellow participants aids in shaping and 

deepening the narratives until the central focus of their stories becomes evident. The goal of 

story circles is to empower all participants to embrace their roles as storytellers and cultivate 

collaborative conversations within the learning space. Additionally, story circles in mathematics 
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education inspire educators and students to perceive and weave their mathematics stories 

uniquely, expressing their mathematical stories in their own voices (Chao, 2023).  

Data Interpretation 

In examining the students’ comics stories, the data analysis concentrates on these elements: 

(1) the story plots, focusing on the central theme and setting; (2) characterization, which includes 

the names, personalities, physical traits, and expressions of the characters; (3) mathematics, 

identifying the types of mathematical problems and concepts present in the comics and analyzing 

how students use storytelling to showcase their understanding of mathematics; (4) the nature of 

dialogues; and (5) the relationships depicted in the comics. This approach enables one to identify 

and articulate significant patterns and themes that emerge from the analysis. 
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Simply stated, STEM needs creativity. From equity to the economy to the environment, 

addressing major global issues demands both “deep creativity” and STEM knowledge and skills. 

Innovative solutions to address these large-scale problems can be derived through creative 

processes fundamental to scientific thinking (Cropley & Cropley, 2010). However, creativity is 

almost absent from mainstream approaches to STEM learning. If we do not resolve the 

disconnect between creativity, innovation, and the sciences, STEM graduates will be ill-equipped 

to tackle the most critical and persistent global issues. The “Stretchy Minds” project brings 

together elementary math teachers and researchers working in mathematics education, creativity, 

and embodied and emergent design to resolve this disconnect. Conceived with an eye toward 

some imagined future, this poster unveils this novel project and shares its findings. 

Deep creativity yields novel forms of change, which have both quantitative and qualitative 

dimensions. Change-in-degree is an incremental quantitative change. Change-in-kind is a wholly 

and genuinely novel qualitative change. Configurations of Speks magnetic toys in Figure 1 

demonstrate these forms of change using “number of loops” and as the criteria for equivalence 

(i.e., sameness in kind) and “size of loops” as the criteria for difference in degree. Shapes A-C 

are different in kind, since they each contain a different number of loops. Shapes B and D are 

different in degree in that the loop in D is larger than the loop in B, and size is a matter of degree. 

 

 
Figure 1: Configurations of the Speks toys express differences in kind and degree. 

 

The Stretchy Minds project is undertaking design-based research (Brown, 1992; Collins, 

1992) to produce responsive (Jacobs et al., 2011) curricular experiences (Dewey, 1925; Pinar, 

2012) that engage and develop learners’ thinking about deep creativity. We have conducted two 

pilot studies with elementary-age children to explore whether we could support the development 

of deep creativity through qualitative difference. The findings of these pilot studies have 

1) established that qualitative geometry (Greenstein, 2014, 2018) is a viable context for research 

into children’s thinking about qualitative difference; 2) determined that the Speks toys can be 

effective for mediating children’s thinking towards more sophisticated understandings of 

differences in degree and in kind; and 3) revised initial tasks into game-based learning activities 

(Nguyen, 2020) that support even the youngest children’s agentive and creative explorations. 

These findings have convinced us of the viability of a game-based approach to nurturing 
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children’s deep creativity for novel innovation. They will also enable us to contribute to the 

expansion of the theoretical understanding and instructional practice of creativity in the space of 

elementary mathematics education, and in STEM education more broadly. 
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First-year college mathematics courses serve a wide population of students with various 

mathematical backgrounds and experiences. Students’ experiences shape the way they view 

themselves as mathematical learners and their mindsets toward mathematics. In this study, we 

analyzed reflections written in Fall 2023 by students in a college algebra course. We report our 

findings on students’ mathematical perspectives and past mathematical experiences. Our work 

sheds light on students’ dispositions towards mathematics at the start of a first-year mathematics 

course and provides valuable insights for practitioners and researchers. 

Keywords: Affect, Emotion, Beliefs, and Attitudes 

First-year college mathematics courses serve a wide population of students with various 

mathematical backgrounds and experiences. These experiences shape the way students view 

themselves as mathematical learners and their mindsets toward mathematics. The research 

presented here is part of a larger study that examines students’ experiences in a first-year college 

mathematics course. As part of this work, we first sought to understand students’ mathematical 

experiences and their perceptions of their mathematical abilities at the beginning of the semester. 

The research question we address is: What prior experiences and perceptions of mathematics do 

students have at the beginning of a first-year college mathematics course? 

The primary data in this proposal come from written student reflections, which we call 

“mathographies.” The prompts used in the mathographies were based on work done by Drake 

(2006) and offer insights into how students view themselves as individuals in the classroom. As 

described by Sawyer and Buckmeyer (2024), mathographies offer a human-centered perspective 

on students and their past encounters with learning and practicing mathematics that can 

contribute to the creation of a learning setting that is more inclusive. Moreover, writing a 

mathography often evokes emotions in students, particularly those students who identify as 

having struggled in the past (Sawyer and Buckmeyer, 2024). This research is critical to better 

understand how students’ perceptions about mathematics have been shaped by recent challenges 

such as COVID-19 and mental health issues. By assigning and analyzing mathographies, 

instructors can better understand the circumstances under which students walk into a first-year 

college mathematics course and use this information to inform how they interact and support 

students in the classroom. 

Theoretical Framing 

Our work draws on the theoretical framework of students’ mathematics-related beliefs set 

forth by Op’t Eynde et al. (2002). Their framework describes how students’ beliefs about 
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mathematics fall into three categories: beliefs about the discipline of mathematics and 

mathematics education, beliefs about themselves, and beliefs about the social context of learning. 

These beliefs are present in the student mathographies we discuss in this proposal and underlie 

their past experiences and perceptions of mathematics.  

Methods 

Data for this study come from a written mathography reflection that was assigned to 611 

students enrolled in 15 sections of a corequisite college algebra course at a large, Midwestern, 

metropolitan university during Fall 2023. The assignment was graded based on completion and 

included math-specific prompts such as “What do you think it takes for a student to be good at 

math?” as well as more general questions such as “What are your strengths as a student or as a 

person?” In this proposal, we report on 55 of those mathographies, which were selected based on 

responses from a Qualtrics survey with items from Cribbs et al. (2021) relating to mathematics 

mindset and self-efficacy. Mathographies were analyzed using MAXQDA 2022 (VERBI 

Software, 2021). To establish a preliminary set of codes, deductive coding was conducted with 

an initial set of codes based on previous work (Uhing & Bennett, 2023; Uhing et al., 2021; 

Wright & Uhing, 2023). At least two researchers tagged each response to prompts in the 

mathographies. Researchers then met to discuss and reconcile until agreement was reached. 

Excerpts were then sorted by initial codes and open, data driven coding (Saldaña, 2016) was 

used to create sets of themes for each of the codes that illustrate the mathematical mindsets and 

beliefs students have entering a first-year college mathematics course. 

Findings 

Mathematical Perspectives 

In their mathographies, many students wrote about their beliefs about themselves and 

their abilities to do mathematics, relating to self-efficacy and control beliefs (Op’t Eynde et al., 

2002). By the time students arrive in a first-year college mathematics course, these beliefs have 

been shaped by several years of past education. As one student wrote, “In general, my experience 

with math has been pretty poor. My intelligence favors the English [or] Reading side of 

education by a vast margin.” Another student expressed a similar viewpoint remarking, “I do not 

enjoy math it makes me frustrated how it doesn’t come easy to me and how I can’t understand 

it.” Other students described a common belief about the discipline of mathematics: “I believe 

that there are people who understand math more easily than others.” Similarly, another student 

said, “I know that some people are just ‘naturally’ good at math.” While many student 

mathographies that we analyzed had a somewhat negative outlook on the discipline of 

mathematics, there were a few students who had more positive dispositions. One student wrote, 

“I will use a positive attitude toward math and keep an open mind when I don’t understand 

something.” Another student commented, “I try my best in math courses, simply because math 

has always been a more difficult subject for me rather than others.” These quotes illustrate a 

growth-oriented mindset towards mathematics and students' learning abilities. 

While analyzing students’ mathematical perspectives, we noticed that some students used 

passive language to describe what it takes to excel in math, while others used more active, first-

person language. For example, one student discussed what makes someone successful at math: “I 

think anyone can be successful at math, I just really think it depends on the student. Are they 

patient? Do they understand it? If they are not, are they asking for help? Are they going to 
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tutoring?” The passive language in this example shifts the focus away from the student and 

emphasizes beliefs and actions indirectly, referencing a third party (i.e. “anyone” and “they”). 

While many students used this passive language, there were a few who spoke in first-person 

terms. One student wrote, “especially in math, it has taught me that you’re going to make 

mistakes. It’s taught me how to accept these mistakes, learn from them, move on, and ask for 

help next time.” Another student reflected, 

For me being good or decent at math has always required me to ask questions, understand 

every step to a problem, and practice. Because I am the type of person who is not the best at 

math but has applied themselves. 

Overall, it was much less common for students to use this active, first-person language. The 

students who did, however, seemed to have growth-oriented mindsets towards their abilities to 

learn mathematics. 

When discussing their mathematical perspectives, students also often discussed limitations of 

mathematical abilities. For example, one student wrote, “I think that anyone can be successful at 

math to an extent, but I do feel like if you enjoy math, you are more likely to succeed.” Another 

student stated, 

I used to think that some are born with the ability to do math and some aren’t. Although I feel 

that still applies to a certain extent, it’s not that black and white. It’s true that for some 

people, it just clicks and for others it doesn’t. 

Both students in these examples used the word “extent” to describe the ability to succeed and 

learn mathematics. This language may suggest a deeper belief about potential limits to a person’s 

ability to grow in their mathematical understanding. 

Past Mathematical Experiences 

While sharing their perspectives on mathematics, students also often described their past 

experiences with learning mathematics. Many students wrote about their previous assessment 

experiences, specifically describing high stakes testing as a source of anxiety. For instance, one 

student discussed their disappointment after taking the ACT, “My low point in my math career 

was taking the ACT. I had always done good in math and gotten all A’s. I took the ACT only one 

time because of COVID.” This student went on to say, “I was very disappointed in myself after I 

got my score back and I did not perform to the level that I thought I would in math.” Other 

students expressed similar sentiments, highlighting how standardized testing often has negative 

effects on students entering first-year college mathematics courses. 

In addition to assessment, some students discussed how their mathematical experiences had 

been characterized by rigid, formulaic approaches to learning. For example, one student wrote, 

“public school has a very rigid, one-way-to-get-an-answer of doing things which caused some 

struggle for not only myself but a few classmates I’ve had throughout school.” This student went 

on to compare this experience to their current course saying, “I do very much enjoy how in this 

Algebra class it is encouraged to seek different ways of getting an answer and to inquire to others 

as to how they got an answer especially if that process differs from yours.” Thus, as illustrated by 

this example, past mathematical experiences shape students’ beliefs about mathematics education 

and the social context (Op’t Eynde et al., 2002), which can affect their expectations for college 

mathematics courses.  
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Another reoccurring theme in many students’ reflections about their past mathematical 

experiences was the disruptions in their education due to the COVID-19 pandemic. One student 

described how they were turned off from math because of COVID: 

It was during Covid-19, and we were at home doing online class. I remember that I was 

taking algebra and to me it was so hard […] I did not understand but I didn’t want to tell my 

teacher so for the first time even I got a F on my report card. When I looked at that F and 

looked at what class it was, I was so sad because I have always been good at math. I was 

thinking that math has changed so much and now I don’t feel the joy about math anymore. 

Unfortunately, this student’s experience was not unique, with several students citing COVID as a 

low point in their mathematical trajectories. 

Discussion 

Students’ beliefs about their abilities in mathematics are shaped through their myriad 

experiences with learning mathematics. These beliefs can be categorized in various ways, 

including beliefs about mathematics, beliefs about themselves as learners, and beliefs about the 

social context (Op’t Eynde et al., 2002). As it relates to students’ beliefs about themselves, we 

found that students in a first-year mathematics course often described self-perceived limitations 

using language such as “...can be successful at math to an extent...” and compared themselves to 

“people who are just ‘naturally’ good at math.” This comparison of themselves to other, more 

gifted, mathematicians suggests that students may view themselves as being behind others when 

beginning a first-year college mathematics course. Moreover, when asked, “What do you think it 

takes for a student to be good at math?” some students responded in a passive second- or third-

person voice rather than a more active first-person. While the way the question was phrased may 

have contributed to this effect, it is interesting to note that some students did use first-person 

language. This phenomenon warrants more investigation and further analysis is ongoing.  

Experiences in previous mathematics courses lay a foundation for students’ beliefs about 

mathematics education. Often students talked about how their assessment experiences were 

negative, causing many of them to have test anxiety. Students also discussed how meaningless 

formulas and rigid “one-way-to-get-an-answer" methods plagued their previous mathematical 

experiences. For some students, these inflexible ways of thinking and expectations caused them 

to lose interest and struggle with learning the material. Students’ beliefs about mathematics 

education have been further shaped by the COVID 19 pandemic. Multiple students talked about 

how the shift to virtual learning was detrimental for them. Students described how they felt 

disengaged and how COVID-19 affected their enjoyment of mathematics. As one student said, 

“...I don’t feel joy about math anymore.” Students felt isolated and were often left to teach 

themselves the complexities of the mathematical content they were learning. Overall, these 

experiences shed light on the negative consequences that the COVID-19 pandemic had for many 

students in their beliefs and perspectives towards mathematics. These findings elicit questions 

regarding the widespread, continued impact of COVID-19 on student learning. 

Students arrive in their first-year college mathematics courses with a variety of past 

experiences and perceptions of mathematics. These educational and emotional experiences affect 

their views about mathematics, themselves and the social context of learning (Op’t Eynde et al., 

2002). Assigning mathographies at the beginning of the semester can help instructors better 

understand the students in their classroom and help foster a more comfortable, creative, and 
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supportive environment. Indeed, one of the goals of the corequisite college algebra course that 

these mathographies were collected from was to help students develop into confident, flexible 

problem solvers. Future research aims to assess how students’ mathematical perspectives and 

beliefs may have changed over the semester using these initial perceptions as a reference point 

for comparison. 
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In this theoretical report, we leverage a radical constructivist perspective to explain how 

designing learning environments in which students work towards making sense of others’ 

mathematical solutions may support learning. We elaborate on radical constructivist 

constructs—social goals, cognitive perturbations, and reflective abstraction—and use these 

constructs to model how engagement with others’ mathematical solutions may engender 

learning. We illustrate our model with a task we designed to promote students’ meanings for 

spatial coordinate systems. We conclude with implications for research and teaching.  

Keywords: Learning Theory; Cognition; Problem-based Learning 

Students working to make sense of worked examples (e.g., Barbieri et al., 2023) or 

classmates’ solutions to mathematical problems (e.g., Webb et al., 2014) have been positively 

associated with mathematics achievement. Although researchers have described reasons why 

such activity may translate to achievement gains (Brown et al., 1992; Webb et al., 2023), they 

have not provided explanatory mechanisms for how such learning occurs for an individual. As a 

theory of learning focused on ways individuals develop knowledge, radical constructivism can 

provide such explanations (von Glasersfeld, 1995). In this report, we consider how students’ 

working to make sense of others’ mathematical solutions may support learning from a radical 

constructivist perspective. Additionally, we consider implications of our analysis for task design. 

 

Learning in Radical Constructivism and Connections to Social Interactions 

In this section, we present radical constructivist constructs and coordinate them to yield 

explanatory mechanisms through which a student may learn from others’ solutions. First, we 

conceptualize that in a classroom, a student prompted to interpret a solution can experience a 

disturbance to their settled cognitive state (i.e., a perturbation). Second, as the student works to 

understand a solution, they can enact schemes relevant to their understanding of, and goals for, 

interpreting the solution. If the student experiences a cognitive perturbation, they may modify or 

reorganize their schemes to neutralize the disturbance. Such reorganizations can result in 

learning at a higher cognitive level (i.e., reflective abstraction). Next, we offer more detail about 

each construct and how they relate in the context of students examining others’ solutions. 

Schemes, Goals, and Perturbations 

To begin, as students engage with others’ solutions, we posit they would draw upon schemes, 

which entail “a situation, an activity triggered by how the person perceives the situation, and a 

result of the activity that a person assimilates to her or his expectations” (Hackenberg, 2014, p. 
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87). Any interaction prompting the student to draw on one or more schemes is a disturbance to 

the student’s settled (equilibrated) state. A student uses their schemes as part of their goal-

directed activity. Moreover, in classrooms where sharing solutions is prioritized, the student may 

conceive they are working toward a social goal with others (see Steffe & Thompson, 2000, for 

criteria to determine if a student is working towards a social goal). We note that even if other 

students are working toward a different goal (i.e., only intending to obtain a correct solution), a 

student’s perception of a social goal can drive their goal-directed activity. 

If a student works to interpret classmates’ solutions, they have experienced a disturbance to 

their equilibrium; von Glasersfeld (1980) broadly defined a perturbation as any input that creates 

a disturbance in a student’s equilibrium. Not all perturbations are cognitive perturbations. 

Students might be able to neutralize some perturbations with their current schemes without 

experiencing any discrepancies as they activate and anticipate the results; such perturbations are 

not cognitive perturbations. Neutralizing other perturbations may involve a student experiencing 

discrepancies in their use of a scheme (Steffe & Olive, 2009; von Glasersfeld, 1995). Such 

perturbations are cognitive perturbations. Cognitive perturbations are important because they can 

lead to a student reorganizing or modifying their existing schemes to achieve an equilibrated 

state (Steffe, 1991a, 1991b; Tillema & Gatza, 2024; von Glasersfeld, 1995).  

When a student experiences a cognitive perturbation through engagement with others’ 

solutions, they may experience a minor or major cognitive perturbation. Many researchers have 

equated perturbations with major cognitive conflict or the individual experiencing a ‘problem’ 

(e.g., Booker, 1996; Lerman, 1996; Simon et al., 2010). Although cognitive conflict is one type 

of cognitive perturbation, students can also experience minor cognitive perturbations without 

(consciously) experiencing cognitive conflict or a problem (Steffe, 2011; Steffe & Olive, 2002, 

2009). To exemplify this distinction, we again turn to a student working to make sense of others’ 

solutions. A student might experience a minor cognitive perturbation when a solution has some 

feature or way of reasoning that is novel for the student and the student is able to neutralize the 

perturbation with minor modifications to their current schemes. If an observer infers that the 

interpreting student undertakes a major modification or reorganization of their schemes, then the 

observer could characterize the perturbation as major. Finally, the student may experience a non-

neutralizable cognitive perturbation if the student’s current schemes do not support them in 

satisfactorily interpreting (from the student’s perspective) the solution.  

Reorganization of Schemes and Reflective Abstraction 

To further describe the reorganization of schemes that may occur after a perturbation, we use 

Piaget’s (2001) notion of abstraction. Abstraction is a mechanism explaining an individual’s 

modification of their schemes toward greater cohesion and generality. In this report, we use the 

concept of reflective abstraction. In broad strokes, reflective abstraction entails two processes: a 

projection of actions or schemes to a higher level of thought and a reorganization that occurs at 

this higher level (Ellis et al., 2024; Piaget, 2001; Steffe, 2024; Tallman & O’Bryan, 2024; 

Tallman & Uscanga, 2020; von Glasersfeld, 1995). The reorganization can involve the creation 

of a coherent relationship or network of relationships between existing schemes as well as with 

new schemes (Piaget, 2001; Tallman & Uscanga, 2020). Such a reorganization involves taking 

prior meanings as input for further operating and thus can be considered a “higher” level. We 

note the cognizing subject need not be consciously aware of any reorganization.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1642 

Other researchers have argued for the importance of supporting reflective abstraction and 

have provided suggestions for doing just that. First, offering students repeated opportunities to 

develop schemes relevant to particular meanings can support their connecting their schemes and 

reasoning across similar (and different) contexts (Tallman & O’Bryan, 2024; Thompson, 2013). 

Second, offering explicit occasions for students to compare activity across tasks can support 

reflective abstraction (Ellis et al., 2024; Piaget, 1976, 2001; Tallman & O’Bryan, 2024). Taken 

together, we conjecture students’ repeated opportunities to create solutions, consider others’ 

solutions, and to explicitly reflect on solutions can also create opportunities for reflective 

abstraction. We illustrate these considerations with the following task design.  

 

Exemplifying the Constructs: X-marks the Spot 

We designed the X-Marks the Spot Task leveraging the above radical constructivist constructs 

to support students’ work with spatial coordinate systems (described below). Our conjecture was 

that multiple rounds of describing (to classmates) and interpreting descriptions (written by 

classmates) of locations in space could occasion major or minor cognitive perturbations. Further, 

we offered deliberate opportunities for students to reflect on location descriptions at a higher 

level of thought. We intended these experiences to support students in engaging in reflective 

abstraction as they reorganize their meanings for organizing space. 

Task Background: Spatial Coordinate Systems and Conventions 

In this report, we focus on a task designed to support students’ developing meanings for 

spatial coordinate systems (Lee, 2017; Lee & Hardison, 2016; Lee et al., 2020; Paoletti et al., 

2022). A spatial coordinate system is a coordinate system (CS) that entails either mentally 

overlaying a CS onto some perceived space or overlaying a space onto an already established 

CS. In either case, objects within the space can be located via coordinates. Radar on a ship and 

GPS are different examples of spatial CSs (i.e., polar and Cartesian CSs, respectively).  

We note conventional coordinate systems involve choices often developed or adopted for the 

purposes of efficiency and communication (Moore et al., 2019; Zazkis, 2008). Given the 

communicative value of such conventions, we conjectured that we could support students in 

developing a social goal by offering them repeated prompts to describe locations in space, with 

the anticipation of classmates’ interpreting it, and to interpret classmates’ descriptions of 

locations. This goal could lead to activity that supported students in reorganizing their schemes 

for organizing space towards more clear and efficient strategies.  

The Design of the X Marks the Spot Task 

In the X Marks the Spot Task (Figure 1), we provide students with the map and buttons 

shown in Figure 1a with the prompt, “Play with the different overlays. In the next slides you will 

use the overlays either (a) to describe the location of an X or (b) interpret classmates’ 

descriptions.” Students can try each button and observe different overlays. 

After exploring the different overlays, we task students (individually or in groups) with 

marking an X on the map. To support the creation of a social goal, we prompt students to use the 

overlays to provide a written description for the location of their marked X that classmates will 

interpret to determine the location of the X. In particular, a student may assume their classmates 

have the same shared goal of marking two Xs in the same location. To achieve this social goal, a 

student may try to write a description that is clear enough for their classmates to follow while 
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also being descriptive enough to mark a precise location for the X. The student assumes their 

classmates will try to interpret the description and mark an X in the described location. 

The act of interpreting real and hypothetical classmates’ responses may result in a student 

experiencing a cognitive perturbation. We conjecture students would be able to interpret many 

descriptions using their current schemes (i.e., without cognitive perturbation). We also conjecture 

interpreting vague descriptions or observing discrepancies in the location of marked Xs for the 

same description could create cognitive perturbations for students. Further, we task students to 

provide feedback to the author of each description as we conjecture such activity can engender 

reflective abstraction as students reorganize their meanings for organizing space.  

  
(a) (b) 

Figure 1: (a) The initial map and (b) the map with Wave and Vertical overlays in the X 

Marks the Spot Task. 

 

Contribution, Implications, and Areas for Future Research 

In this theoretical report, we described how radical constructivist constructs can explain how 

a student’s engagement with others’ solutions can support their learning. We elaborated on our 

understanding of social goals, cognitive perturbations, and reflective abstraction. Given the 

emphasis on collaborative group work in mathematics education, such learning is likely to occur 

in classrooms where students interpret others’ responses positively and reorganize their own 

meanings as a result of these interpretations.  

We described how we designed the X Marks the Spot Task to support students in creating a 

social goal that could occasion cognitive perturbations. We conjecture that the use of classmates’ 

descriptions to potentially provoke cognitive perturbations can be productive in this task due to 

the communicative nature of the mathematics at hand. We conjecture offering students repeated 

opportunities to first generate their own descriptions and then interpret (real and hypothetical) 

descriptions that communicate more or less effectively and efficiently increases the chances 

students would experience cognitive perturbations that could result in reorganizations of their 

schemes for organizing space. We conjecture there are other mathematical concepts that rely 

heavily on communicative goals such as conventions, in which students could be supported in 

learning via the use of (real or hypothetical) student solutions. We call for additional research 

exploring this possibility. This and other research could build on prior work showing how 

examining others’ solutions to mathematical problems (Barbieri et al., 2023; Webb et al., 2014) 
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can support learning. Further, such research could leverage the constructs outlined in this 

theoretical report to provide explanations for how examining others’ solutions can lead to 

learning. 
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Abstract: This paper takes data from the Proofs Project which was designed to address 

epistemological obstacles (Sierpińska (1987), Brousseau (1997)) related to mathematical 

induction and logical implication and uses Toulmin’s model for argumentation to compare the 

structures of a proof presented in class from the instructor and the students. Under the 

assumption that math instructors set norms for and model ideal mathematical behavior, it is 

reasonable to look at how closely students adhere to the implicit or explicit norms set by the 

instructor. 

Keywords: Undergraduate Education, Reasoning and Proof, Advanced Mathematical Thinking 

In this report, we draw on the framework developed by Fukawa-Connelly (2014) and Inglis 

et al. (2007) to analyze the structure of verbal proofs toward answering the following research 

question: How are the proofs of math students similar or different from the proofs of their 

instructor? This report is also meant to contribute to an emerging interest in the role of mimicry 

in mathematical learning.  

The data comes from a class part of the second cycle of a design-based research (DBR) study 

called the Proofs Project (Kokushkin et al. 2023). From the first cycle, the researchers replicated 

findings from existing literature (Brown, 2008; Dubinsky,1986; Dubinsky, 1990) emphasizing 

the difficulty of mathematical induction specifically from the induction hypothesis. A graded 

assignment for each student was the presentation of their proofs. Presentations consisted of a 

formal presentation and subsequent feedback from the instructor. So our use of the phrase 

“verbal proofs” refers to both the spoken and digitally displayed components of their 

presentations. Our unit of analysis is the proofs formally presented to the whole class represented 

by Toulmin diagrams, as it is hypothesized that the norms the instructor models for presenting 

proofs and his prior feedback are what the students emulate and the norms the students develop 

for their group work are more distinct from what the instructor models.  

While Fukawa-Connelly (2014) used the Toulmin model to analyze only a teacher’s 

arguments in an abstract algebra course, this paper uses the model to compare both the teacher’s 

arguments and his students’ arguments. For consistency’s sake in both the wider study the data 

comes from and comparisons of proof, we look at their arguments regarding mathematical 

induction.  

Literature Review & Methods 

Toulmin’s model was specifically adapted to a math education context around the turn of the 

century. While it was originally developed by Toulmin (1969), Inglis et. al. (2007) attribute 

Krummheuer (1995) for adapting it for a math education context. It was specifically adapted for 

the presentation of mathematical proofs by Fukawa-Connelly (2014) and additionally adapted for 

an evaluative context by Hancock (2019). 

The paper from Fukawa-Connelly (2014) showcases an application of the model in 

understanding an instructor’s proof while looking at both verbal and written forms of proof 

mailto:mfpark@vt.edu
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representation. Fukawa proposes that Toulmin’s model of argumentation could be used to 

improve undergraduate proof teaching by detailing the constructions of the instructor’s proofs. 

From his data, particularly the observations that the instructor implemented an “inconsistent use 

of backing and warrants” (p. 86), he distinguishes between proofs that convince and proofs that 

explain. Unlike Fukawa-Connelly's (2014) data, the episodes I analyzed consist of consciously 

distinguished proofs, whereas Fukawa-Connelly’s (2014) study considered the presentation of 

proof as a more spontaneous affair. 

We report on the similarities and differences between the following statements, with 

pseudonyms in parenthesis: 

1. If the kth, k+1th, and k+2th terms of the Fibonacci sequence are odd, odd, and even 

(respectively), then so are the k+3th, k+4th, and k+5th terms. (F) 

2. If k lines in the plane (none parallel and with no three intersecting at a point) form 

1+(k(k+1))/2 regions, then k+1 such lines form 1+((k+1)(k+2))/2 regions. (P) 

3. If the sum of the first k odd numbers is k^2, then the sum of the first k+1 odd numbers is 

(k+1)^2. (I) 

4. If k!>2k, then (k+1)!>2k+1. (S) 

5. A valid formula for the sum of the first n integers is n(n+1)/2. (Instructor, M) 

 

Methods 

I adopt and modify the methodology employed by Fukawa-Connelly (2014) to determine 

which aspects of a given proof correspond to the Toulmin components. As I am comparing the 

proofs of both instructor and student, we then compare the corresponding components of their 

resulting Toulmin diagrams or look for what common arguments arise as different components. 

Although the proofs were written, because they were presented verbally, I also infer qualities 

of their modal qualification from implicit factors (Alcock & Weber, 2005) such as if they use 

hedging language in their delivery, including phrases such as “I think” or “It should follow 

that…”. As the Toulmin diagram includes transcribed speech, but not the nuances of the speech, 

aspects such as inflection will be ignored. I also took their counterarguments to feedback from 

the instructor as rebuttals, but not the feedback itself.  

 

Analysis 

The instructor started his proof by commenting on a prior student’s board work as data for his 

argument, pictured below in Figure 1. In linking the data to his final claim, he pointed out “the 

only thing you're adding is this k+1th term.” Although his data was detailed algebra, the 

instructor did not explicitly break down every step. His modal qualification contained little 

information in terms of mathematical statements, but might be understood better in terms of his 

role as the instructor when he ended his commentary with: “That's how these arguments work. 

This is the whole creative part of mathematical induction.” Finally, his argument was not 

followed by questions and thus had no verbalized rebuttals. 
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Figure 1: Writing Used in Instructor’s Proof 

 

Students L, M, and S presented similarly to the instructor in that they spoke with absolute 

mathematical certainty and were not pressed to provide a rebuttal. The students spoke with 

absolute authority in that they were reading directly from their presentation in contrast with the 

instructor who was speaking evaluatively. As they were questioned by neither their peers nor the 

instructor, their backing was nonexistent. Since their presentation was written as formal proof, 

we also assign them maximal certainty in terms of modal qualification. On the other hand, the 

other students, M and P, had backings or warrants in terms of entire alternate proofs, and thus 

required second Toulmin models to describe their proofs in full. 

P’s second proof functioned as a backing since it provided an additional interpretation to his 

warrant. Although M also uses a second proof to her claim, it is not related to the warrant of the 

first proof and is closer to a warrant to her claim than a backing, nor was it presented to the class. 

Their backings and warrants also used illustrations, while L had neither despite his statement 

admitting a geometric proof. The proof from P was also notable as it was the only one that 

included a backing in the form of a non-algebraic illustration, shown below. This is despite the 

statements from M and I also admitting geometric proofs. It also meets the definition of a modal 

qualifier as it utilizes the base case(s) to understand the inductive step.  

The proofs by L and F lacked backing in their written portion. There was a rebuttal in F’s 

argument motivated by a question from a fellow student, but only to clarify the parity of the sum 

of successive Fibonacci numbers. 

  

 

 
Figure 2: Illustrations from P’s Backing 
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Finally, a common backing in all proofs was a claim that the warrant followed from that "you 

can kinda see how it works out through algebra." Verbal proofs use handwaving justifications via 

algebraic manipulations even if the written proof shows it explicitly (in the case of F) suggesting 

that the norms for speaking a proof, writing a proof, and reading off a proof may be subtly 

different. It is possible that a tendency to “handwave” algebraic manipulations was influenced by 

the instructor’s proof from the prior class session. 

Regarding induction proofs specifically, it is notable that although the class and the wider 

project were about the proof schema of induction and the assigned proofs were only about the 

induction step, one student, S nevertheless presented a full induction argument of the base case, 

inductive case, and the relationship between them and still claimed to only prove the inductive 

step. Although he claimed that the property holds for integers greater than 4 and not all integers, 

this is still a claim about the set of integers, not about an implication. Generally, students would 

use the universal statement as backing for an inductive implication. During the presentations 

from S and P, they argued using the full universal statement as a backing for the induction step. 

However, this could also be understood in terms of both a mimicking strategy and a theme from 

Kokushkin et al. (2023) who found “students must develop an intellectual need to generalize the 

logic involved in building the quasi-inductive chain of inferences” (pg. 5) as the quasi-inductive 

arguments (Harel, 2002) in P’s proof aligned backing of a full induction argument and 

instructor’s illustration from the prior class session, recreated in Figure 3.  

P’s proof gives another similarity between student and teacher. Compare the backing from 

P’s proof (Figure 2) to the class discussion from the prior class session, where the instructor drew 

Figure 3 in discussion a proof of the statement “If 3 lines in the plane (none parallel and with no 

three intersecting at a point) form 7 regions, then 4 such lines form 11 regions.”After drawing 

this diagram, he uttered “And this is the kind of thing you have to explain.” It is plausible that an 

emphasis on illustrations for geometric proofs from an instructional authority pushed P to 

provide illustrations as a backing even with a valid algebraic proof.  

 

 
Figure 3 

Conclusion 

 In his original study, Fukawa-Connelly (2014) suggests that Toulmin’s model and its 

application in his study could help instructors improve on proof teaching by examining their 

instructions concerning expected student outcomes. This report contributes to this suggestion by 

extending findings from Hazzan et al. (2003), who argued for the significance of proof mimicry 

by pointing out the abstract nature of many Linear Algebra concepts. As found by Zhou & Guo 

(2016), math students rely on the imitation of their teachers to support their learning more than 

students of other subjects. Zhou (2012) also argues that imitation is a cognitively sophisticated 
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technique both students and teachers employ to support students’ learning. Mimicry by both 

students and teachers can positively affect students’ learning outcomes, as demonstrated by Zhou 

(2012), who found broad, positive, and statistically significant effects on student outcomes, 

especially among math and science students. Students were seen to mimic their instructor in a 

variety of ways, such as their language. But the Toulmin model also allowed us to identify that 

both parties refer to algebraic manipulations as a backing. The familiarities we observed in terms 

of similarities of backings, and modal qualifiers, support our main hypothesis that students 

mimic proofs to support their learning. Our work also shows a need to expand the theory from 

Zhou (2012) as mimicry seemed to occur not only between student and teacher in both directions 

but between students. And our methodology is not powerful enough to determine if mimicry was 

occurring, or if all the students were practicing the same sociomathematical norms. Generally, 

the boundary between norm adherence and mimicry should be investigated further. 
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Developing students’ data literacy skills through an integrated place-based curriculum is 

important for creating informed citizenry as well as building student confidence around 

mathematical and statistical thinking. Initial results from attitude and assessment surveys from 

74 sixth-grade students in a rural, coastal school district in the Northeastern United States 

reveal that students entered the school year with positive attitudes towards mathematics. While 

students hold more novice conceptualizations of what constitutes “data,” their confidence in 

their math skills and performance offer an opportunity to sustain these positive attitudes as they 

encounter more challenging statistical thinking tasks across math and science classrooms. 

Keywords: Middle School Education, Integrated STEM, Data Analysis & Statistics 

Purpose of the Study 

The oceans define our planet and are central to many challenges human populations face; 

addressing these challenges requires citizens who are ocean literate and data literate. We 

established a research-practice partnership (RPP) with teachers and community members from 

rural coastal communities in the Northeastern U.S. to promote integration of ocean science, data, 

and technology-related competencies into science curricula. This study reports initial findings 

regarding middle school students’ conceptualizations of data, and characterizes their attitudes 

towards STEM (Science, Technology, Engineering, Math) subjects at the start of the school year. 

Theoretical Framework 

While many research studies indicate that integrated STEM instruction can benefit students 

and teachers alike, educators face significant challenges in implementing integrated instruction 

(Mayes, 2019; Ríordáin et al., 2016). Considerable research also supports the idea that STEM 

subjects should be taught in an integrated, authentic way that reflects the day-to-day practices 

and competencies of experts and scientists (Kelley & Knowles, 2016; NGSS Lead States, 2013; 

Roehrig et al., 2021). We draw upon the data science framework proposed by Lee and colleagues 

(2022) and the positioning of data literacy at the intersection of data science, authentic context, 

and quantitative reasoning proposed by Kjelvik & Schultheis (2019). These frameworks guide 

our investigation of students' reasoning when working with data and their conceptualizations 

about data, specifically regarding variability, measures of central tendency, and interpretation of 

data visualizations, aligning with the GAISE report principles (Bargagliotti, 2020). 

Furthermore, we position our project within a marine context to make it relatable and 

accessible for students in a state with a substantial "blue economy." Linking learning to 

initiatives such as Powering the Blue Economy (PBE; Office of Energy Efficiency & Renewable 

Energy, n.d.) helps ground students’ data literacy development in real-world applications that can 

focus on the innovative yet sustainable use of ocean resources to boost economic growth while 

preserving ocean ecosystems, which has direct impacts on their local communities. 

mailto:franziska.peterson@maine.edu
mailto:christina.siddons@maine.edu
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Methods 

This study took place in the context of a large grant-funded RPP exploring ways to integrate 

authentic research and technology into grade 6-12 classrooms, with a particular focus on marine 

science and data literacy. Key objectives include (a) providing professional learning for teachers 

to support the development of community-relevant, authentic student research, (b) studying the 

impacts of authentic research infused with technology on diverse students’ knowledge of and 

engagement with the material, and (c) expanding students’ career knowledge and awareness by 

establishing local community partnerships. Following the first series of professional learning 

sessions in Summer 2023, teachers developed lessons based on existing classroom instruction 

that incorporated these elements into instruction for the 2023 - 2024 academic year. 

Participants 

Student participants were recruited from grade 6-12 classrooms enrolled in the project; 

Institutional Review Board approval was obtained prior to any recruitment and data collection 

activities. This study focuses on pre-instruction data from participating 6th graders. Pre-

instruction survey responses were collected from 74 6th grade students enrolled in Earth Science; 

post-instruction surveys will be deployed by the end of the 2023-2024 school year. Respondents 

include 38 females, 21 males, and 15 students who left the gender question blank or preferred not 

to answer. 

Data Collection and Analysis 

Data was collected using two pre-post surveys targeting both student reasoning about data 

and their attitudes towards STEM. Student attitudes were assessed using the Student Attitudes 

Towards STEM (S-STEM) survey (Friday Institute, 2012). The S-STEM survey conceptualizes 

student attitudes as representing both student self-efficacy and expectancy-value beliefs (Unfried 

et al., 2015). The research team created a Data Assessment survey that included a mix of Likert 

items and multiple-choice items drawn from previously published instruments (e.g., Gormally et 

al., 2012; Zoellick et al., 2016) aimed at understanding students’ views on what “counts” as data 

(Bargagliotti et al., 2020) and how they think about data in their lives.  

Survey data was analyzed using SPSS statistical software (IBM, version 28.0.0.0). S-STEM 

analysis focused on the Math subscale and associated career/course question items. Likert 

answer choices to subscale items were scored from 1-5, with 5 representing the most positive 

views; averages and standard deviations from subscales are reported based on the 

recommendations by the survey developers (Friday Institute, 2012). For the survey item 

predicting class performance, simple contrast coding was used to run linear regression with 

categorical predictors to determine if responses were associated with Math subscale scores. 

Responses to the Data Assessment were summarized using descriptive statistics. Further analysis 

examining both classroom observation notes and artifacts for evidence of student thinking and 

reasoning is currently underway and will be complete by July 2024. 

Results 

Student Attitudes: Middle School S-STEM Results 

Middle school students’ attitudes were the most positive on the 21st Century Skills subscale, 

with a pre-instruction mean of 3.82 (SD = 0.50), followed by Math (3.47, SD = 0.69), 

Engineering (3.25, SD = 0.65), and then Science subscales (3.17, SD = 0.65). A one-way 

ANOVA revealed there was no significant difference between scores by gender (F2,71 = 0.762, p 

= 0.514). Subscale items around future plans for pursuing careers in math and/or doing advanced 
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math had less positive student views than those about students’ current mathematical self-

efficacy. For example, only about 30% of students Agreed/Strongly Agreed with the statement “I 

would consider choosing a career that uses math,” whereas “I am good at math” had over 70% of 

students Agreeing/Strongly Agreeing.   

Students also predicted how well they expected to do in the current school year in their math, 

science, and ELA classes. Math had the highest percentage of students predicting they would do 

very well (31%), followed by ELA (28%), and Science (20%). Only 8% of students predicted 

“Not at all well” for both math and science; ELA only had 4% of students predicting such. 

Categorical linear regression analysis revealed that students’ expectations for performance in 

math class was a significant predictor of their attitude score on the Math subscale (Adjusted R2 = 

0.513; p < 0.001). Students in the “Not at all well” prediction category scored an average of 1.75 

points lower on the Math subscale than those who thought they would do “Very well,” while 

those in the “OK/Pretty well” category scored an average of 0.84 points lower (p < 0.001). 

Student Thinking: Middle School Data Assessment Results 

Data Assessment responses (n = 70) to Likert statements indicated 70% of students agreed 

with statements characterizing data as useful for understanding the environment; 67% 

acknowledged descriptions/observations and 63% said stories from people with local/historical 

knowledge as useful data. Only 34% agreed data were part of their everyday life, and the 

remaining statements regarding data collection and analysis had large percentages (36–53%) of 

students selecting the neutral answer choice.  

 

 
 

Figure 1: Percent of Students Within Each Response Category Who Identified Numeric vs. 

Non-Numeric Examples as “Data” 

 

Students were shown six different images containing both numerical and non-numerical 

marine data sources and asked to choose all images they would classify as “data.” Numerical 
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examples included a satellite image of sea surface chlorophyll-a concentrations (Chl-a), a time-

series plot of sea surface temperature and salinity (T-S Plot), and a table of temperature and 

salinity data at three locations (Data Table). Non-numerical examples included a map of a local 

bay (Map), a photo of a phytoplankton cell (Plankton), and a journal entry detailing intertidal 

observations (Journal Obs). The most popular images selected by students were the numerical 

sources: Data Table (81.4%), T-S Plot (72.9%), and Chl-a (55.7%). Less than half of the students 

(41.4%) chose Journal Obs as a kind of data; few chose Map (24.3%) or Plankton (18.6%). 

Because of the small number of students who classified the non-numerical examples as 

representing types of data, we investigated their responses to this item in light of how they 

answered the Likert statement “Data are only useful if they are associated with a number” 

(Figure 1). 64 students responded to this survey question; 18 disagreed, 33 were neutral, and 13 

agreed. Students who disagreed (i.e. held a more expert-like view of what “counts” as data) were 

more likely to choose non-numeric data examples over those who were neutral or agreed. For 

example, 44% of the Disagree students (black bars) identified the Map as a type of data, as 

compared to only 12% of Neutral students (gray bars) and 31% of Agree students (white bars). 

Because students could choose multiple options, percentages add up to more than 100%. In the 

final series of questions around handling hypothetical data dealing with outliers and variability, 

54.3% of students correctly answered how to handle outlier data in a dot plot, but only 28.6% 

chose the correct description of variability in non-technical terms. 32.9% of students chose the 

distractor choice “The number of different values in the data set” for describing variability. 

Discussion & Conclusions 

We conclude that the average Math subscale score of 3.47 indicated more positive views 

towards math than science, when considering both subscale averages and prediction of 

performance in both classes in the coming year. Since participants were enrolled in their first 

standalone science class of their academic careers, uncertainty about what this course looks like 

could contribute to less confident attitudes towards science. The overwhelmingly positive 

responses to self-efficacy-type Math items were encouraging and suggest that younger middle 

school students may hold a more positive mathematical mindset than expected.  

With the regression analysis indicating significant differences observed in overall math 

attitudes between the performance prediction groups, our results reinforce recommendations 

from previous work (e.g., Boaler, 2015) that building confidence and self-efficacy amongst the 

students who have negative performance predictions is critical to future success, especially as 

studies continue to demonstrate math anxiety having negative impacts on performance (Barroso 

et al., 2021). Efforts to build positive, growth-mindset oriented mathematical attitudes need to 

happen beyond math classrooms. More explicit opportunities for students to engage with 

mathematical thinking and reasoning in other subjects (like Earth Science) may help break down 

stigmas students have towards math and allow these practices to be more accessible.   

Students’ responses to the Data Assessment Likert questions had several statements with 

which students neither agreed nor disagreed; these may reflect more uncertainty than a true 

neutral stance. Modifying the survey to eliminate the neutral option and/or following up with an 

open response question or individual student interviews could be a way to better understand 

these responses. Despite students’ agreement that data did not have to be numeric, Figure 1 

shows that the majority of students still gravitated to data examples that had quantities attached 

to them, which may be a result of their familiarity with these types of representations. 
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Se presenta el análisis de los resultados de una investigación cualitativa relacionada con la 

modelación de una actividad cercana a la realidad por estudiantes de bachillerato. Se describen 

los modelos desarrollados por las estudiantes al abordar la actividad titulada “Deforestación en 

Jalisco”. El marco teórico fue la Perspectiva de Modelos y Modelación, por lo que la actividad 

fue diseñada con base en los seis principios de diseño de una MEA (Model Eliciting Activity). 

Participaron dos estudiantes de sexto semestre de bachillerato quienes abordaron la MEA 

mediante la plataforma Zoom. Como resultado se observó que las estudiantes tuvieron 

oportunidad de conectar su conocimiento matemático con la situación de deforestación y 

reflexionaron sobre la importancia de los recursos forestales en términos de las implicaciones 

de su pérdida. 

Palabras clave: Modeling, High School Education, Algebra and Algebraic Thinking, Online and 

Distance Education. 

Introducción 

Uno de los objetivos del acuerdo de París, adoptado dentro de los Objetivos de Desarrollo 

Sostenible (ODS) es contrarrestar la deforestación debido al impacto que la superficie forestal 

terrestre tiene como regulador climático natural (Organización de las Naciones Unidas [ONU], 

2023). La Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura 

(UNESCO, 2021) señala que es necesario tomar medidas al respecto y el aula es un espacio 

donde se puede iniciar la sensibilización. Los ambientes de aprendizaje de matemáticas basados 

en la modelación promueven no sólo que los estudiantes desarrollen conocimiento matemático y 

habilidades para modelar (Corum & Garofalo, 2019; Lesh, 2010; Garfunkel & Montgomery, 

2019), sino que también promueven la reflexión sobre la problemática del contexto (Vargas Alejo 

& Montero Moguel, 2023). En este estudio se describen los modelos generados por estudiantes 

de bachillerato al resolver una actividad cercana a la vida real diseñada en el contexto de la 

deforestación. La pregunta de investigación fue ¿qué conocimiento matemático sobre la función 

lineal, habilidades y reflexiones exhiben las estudiantes de bachillerato al enfrentarse a la MEA 

“Deforestación en Jalisco”? 

Marco teórico 

De acuerdo con la Perspectiva de Modelos y Modelación [MMP, por sus siglas en inglés 

Models and Modeling Perspective] los estudiantes deben aprender matemáticas de manera que su 

aprendizaje no se reduzca a su utilidad al aula (Lesh, 2010). Las matemáticas que aprenden 

deben apoyarlos a reflexionar sobre situaciones que trasciendan al salón de clases para entender 
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su entorno (Lesh & Doerr, 2003). En lugar de enfocarse en la memorización o la mecanicazación 

de algoritmos, se debe priorizar el desarrollo de conocimientos y habilidades para usar ese 

conocimiento en la interpretación, descripción, explicación y predicción de fenómenos. Se 

considera que el proceso de aprendizaje es más relevante que el producto en sí, es decir, el 

modelo mismo. Lo importante es propiciar el proceso de refinamiento de conocimiento por los 

estudiantes al diferenciar, integrar, modificar y reorganizar conceptos (Lesh & Yoon, 2004) a 

través de ciclos de modelación donde los estudiantes usualmente matematizan. 

En este sentido, la MMP propone el uso de actividades basadas en situaciones cercanas a la 

vida real, conocidas como MEAs, las cuales se diseñan con base en seis principios (Lesh et al., 

2000; Sevinc, 2021; Sevinc & Lesh, 2018): el principio de realidad, el principio de construcción 

de modelos, el principio de documentación, el principio de autoevaluación, el principio de 

generalización de modelos y el principio de prototipos. Las MEAs permiten que los estudiantes 

desarrollen sus propias ideas matemáticas, teorías, procesos y habilidades para dar una respuesta 

ante un problema cercano a la realidad (Doerr, 2016), por lo tanto, el contexto es relevante, dado 

que influye significativamente en la matemática que se emplea, y por ende forma parte de los 

modelos que los estudiantes construyen. 

Metodología 

La metodología empleada en esta actividad fue un estudio de caso, participaron dos 

estudiantes de 18 años aproximadamente, quienes estaban cursando sexto semestre de 

bachillerato en una escuela privada. 

La MEA “Deforestación en Jalisco” se diseñó con base en los seis principios de diseño 

(Sevinc & Lesh, 2018). Se implementó en un ambiente virtual mediante la plataforma Zoom. Las 

fases de implementación fueron las siguientes: a) Sesión virtual síncrona de una hora, para la 

lectura de la nota periodística de la MEA “Deforestación en Jalisco”, b) Resolución de la MEA 

“Deforestación en Jalisco” mediante una carta, como tarea extraclase, c) Sesión virtual síncrona 

de una hora para discutir la carta y d) Refinamiento de la carta como tarea extraclase. 

La MEA solicitaba a los estudiantes apoyar a la Comisión Nacional Forestal (CONAFOR) 

con la elaboración de una carta que incluyera una descripción del cambio del territorio forestal 

en Jalisco en los últimos años y para ello se les proporcionaba una tasa de deforestación 

constante curiosamente tomada de fuentes gubernamentales. También se pedía que la explicación 

sirviera a la CONAFOR para describir en el futuro cualquier otro territorio forestal con 

condiciones similares. 

Los instrumentos de recolección de datos fueron videograbaciones de las sesiones, las cartas 

elaboradas por los estudiantes y la bitácora del docente. El análisis se realizó tomando en cuenta 

los modelos construidos por las estudiantes. Se codificó la información tomando en cuenta el 

conocimiento matemático exhibido, habilidades de modelación y reflexiones de las estudiantes 

sobre la problemática. La primera autora del artículo implementó la actividad e hizo un primer 

análisis el cual fue discutido con las dos siguientes autoras, lo cual permitió refinarlo. 

Resultados 

La evolución del conocimiento matemático, habilidades y reflexiones que exhibieron las 

estudiantes al enfrentarse a la MEA “Deforestación en Jalisco”, se describe a través de las cuatro 

fases de la implementación. 

Fase a 
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Durante la primera sesión virtual síncrona las estudiantes leyeron la MEA en voz alta. Se 

percibió gran interés y conocimiento en las alumnas respecto a la importancia de los territorios 

forestales para la conservación de la biodiversidad y, también, sobre acciones que se pueden 

tomar para evitar que se extienda el daño. En los siguientes extractos se observan algunas de sus 

reflexiones sobre la problemática. 

E1:  Se debería hacer un poco más de conciencia a la sociedad, bueno a los mexicanos, 

para saber el daño que se hace a los árboles por algunas empresas para su beneficio 

propio 

E2:  Se deberían hacer campañas para reforestar las áreas afectadas … iniciativas como 

por ejemplo con La Primavera, de tal manera que el espacio quemado no se pueda 

fincar en 10 años … para restringir el daño con estas reglas 

En esta sesión las alumnas señalaron la necesidad de buscar más información sobre el 

territorio forestal en Jalisco en los años 2019, 2020 y 2021.En esta fase se observa cómo las 

estudiantes reflexionaron con base en su conocimiento del bosque cercano La Primavera. Esto 

concuerda con los hallazgos de Lesh y Doerr (2003) quienes señalan que cuando los estudiantes 

empiezan a resolver las MEAs, generalmente, hacen referencia a experiencias personales. 

También se relaciona con el principio de realidad (Sevinc & Lesh, 2018). 

Fase b 

Las estudiantes elaboraron su carta, solicitada en la MEA, para apoyar a la CONAFOR. En 

ella utilizaron el territorio forestal de Jalisco de 226,581 ℎ𝑎, 174,190 ℎ𝑎 y 167,811ℎ𝑎 

correspondiente a los años 2019, 2020 y 2021, respectivamente. Realizaron cálculos 

comparativos para obtener el decrecimiento en porcentaje. Por ejemplo, para obtener el 

porcentaje de deforestación en el año 2020 con respecto al año 2019 realizaron la siguiente 

operación: 

𝑃𝑜𝑟𝑐𝑒𝑛𝑡𝑎𝑗𝑒 𝑑𝑒 𝑑𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑐𝑖ó𝑛 =
174,190ℎ𝑎 ∗ 100%

226,581ℎ𝑎
 = 76.87% 

Con este dato calcularon la disminución porcentual de deforestación. 

𝐷𝑖𝑠𝑚𝑖𝑛𝑢𝑐𝑖ó𝑛 𝑝𝑜𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙 𝑑𝑒 𝑑𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑐𝑖ó𝑛 = 100% − 76.87% = 23.12% 

De manera análoga, procedieron para obtener el porcentaje de deforestación para el año 2021 

(74.06%) y la disminución porcentual de deforestación (25.93%). Enseguida obtuvieron la tasa 

de deforestación de 17,104.42 ℎ𝑎/𝑎ñ𝑜 correspondiente al periodo 2001-2021 y la compararon 

con la tasa de deforestación de 15,997 ℎ𝑎/𝑎ñ𝑜 indicada en la nota periodística, señalando que 

afortunadamente la deforestación había disminuido en 0.01%. 

El conocimiento matemático utilizado fue razones, proporciones y porcentajes. Exhibieron 

habilidad para relacionar datos de manera multiplicativa y tomar decisiones. La MEA permitió a 

las estudiantes analizar matemáticamente la situación lo cual se relaciona con los principios de 

construcción y documentación del modelo (Sevinc & Lesh, 2018). 

Fase c 

Durante la fase c las estudiantes leyeron su carta a la profesora. Se concentraron en describir 

de manera cuantitativa la problemática de la deforestación en Jalisco y en la necesidad de 

difundirla, mediante una campaña. Reflexionaron sobre la importancia de incluir en su campaña 
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las cifras obtenidas, ya que habían identificado un alarmante decrecimiento en la cantidad de 

hectáreas de bosque. Decidieron comparar estas cifras con el área de estadios de fútbol, de 

manera que fueran más significativas para la población.  

E2: Aunque sí bajó, está bajando muy poco, y aunque es una diferencia que se escucha 

como 0.01%, en territorio son 2,000 ha, que son no sé qué tantos estadios de fútbol.  

Adicionalmente, las estudiantes consideraron que para que la información generara un mayor 

impacto, las personas debían relacionar las cifras con acontecimientos negativos. Por ejemplo, 

debían conocer el tiempo restante para que los recursos forestales se agoten.  

E2: Podríamos sacar estimaciones… [para mostrar que] podríamos perder en tanto 

tiempo toda nuestra diversidad forestal. Como el reloj de NatGeo, creo, o 

GreenPeace. Ellos tienen un reloj biológico de que en tantos años llegaremos al 

punto de no retorno… Que sean datos más fáciles de digerir para el público. 

Fase d 

Después de la sesión virtual síncrona las estudiantes refinaron su carta como tarea extraclase. 

En ella se observaron las dos reflexiones siguientes. 

• Una comparativa de las hectáreas perdidas en promedio en el 2021 en relación con el área 

de una cancha de futbol soccer (100𝑚 ∗ 50𝑚), que corresponde a 34,208 canchas 

(171,040,000𝑚2 /5000𝑚2) 

• El comunicado del reloj climático en Nueva York para recordar el tiempo que nos queda 

para actuar, antes de que los cambios climáticos nos afecten irreversiblemente 

El conocimiento matemático utilizado en las fases c y d siguió siendo razones, proporciones 

y porcentajes, conocimientos asociados a la función lineal; también realizaron estimaciones para 

describir el decrecimiento del territorio forestal en términos de estadios de fútbol. Las estudiantes 

en cada paso autoevaluaron sus procedimientos, lo cual se relaciona con el principios de 

autoevaluación (Sevinc & Lesh, 2018). Las alumnas tenían claro qué era lo que estaba 

cambiando (la cantidad de hectáreas de bosque), cómo estaba cambiando (constante y de manera 

decreciente) y cuánto estaba cambiando (0.01%). De acuerdo con investigadores como Carlson 

et al. (2002) saber qué cambia, cómo cambia y cuánto cambia son elementos fundamentales que 

permiten a los estudiantes profundizar en el concepto de variación y de función. 

Discusión y conclusiones 

Respecto a la pregunta de investigación ¿qué conocimiento matemático sobre la función 

lineal, habilidades y reflexiones exhiben los estudiantes al enfrentarse a la MEA “Deforestación 

en Jalisco”? En el primer modelo se observó el uso de razones, proporciones y porcentajes así 

como habilidades para buscar información en internet, identificar datos y relacionarlos mediante 

comparaciones multiplicativas para describir la deforestación. En el segundo modelo, el 

conocimiento matemático utilizado fue de nuevo razones, proporciones, y estimación. Las 

estudiantes identificaron una variación decreciente. Las reflexiones sobre la problemática y la 

necesidad de hacer una campaña de difusión fueron determinantes para abordar la situación y 

que surgiera en el segundo modelo la necesidad de realizar estimaciones para describir el 

decrecimiento del bosque en términos de estadios de fútbol.  
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Tal como menciona Lesh y Doerr (2003) las estudiantes durante el proceso de descripción de 

la situación lograron diferenciar e integrar información y datos, así como desarrollar un modelo 

el cual no solo contempló datos, sino también información sobre la problemática. La MEA 

“Deforestación en Jalisco” posibilitó que las estudiantes matematizaran de manera simultánea a 

su reflexión sobre la problemática, lo cual es importante ante el llamado de la UNESCO (2021) 

para apoyar la sensibilización sobre los problemas ambientales. El análisis cuantitativo permitió 

a las estudiantes corroborar la existencia de la problemática y pensar en acciones para afrontarla. 
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This research project aims to investigate the relationship between specific emotional skills and a 

student's ability to solve mathematical tasks in the presence of math anxiety. The study 

concentrates on primary school students, particularly those in the 3rd and 4th grades, as 

research indicates that math anxiety could appear in these age groups. Math anxiety hinders 

academic and professional development and has long-term implications for decision-making and 

daily activities. A pilot study using a mixed quantitative-qualitative methodology design was 

used to test various instruments to measure the involved variables. The sample consisted of 103 

children from a school in Mexico City. This initial study is the first step towards conducting 

further research on a larger scale to determine the strength and direction of the relationships 

between emotional skills, the construct of math anxiety, and its effects on performance. 

Keywords: Affect, Emotion, Beliefs, and Attitudes. 

The construct of math anxiety and its dimensions 

Learning mathematics can be challenging and stressful for many individuals, often leading 

them to avoid subjects related to numbers and problem-solving. This aversion can adversely 

affect professional development and the ability to manage everyday tasks (Ashcraft, 2002). 

Math anxiety is a construct that can account for these blockages and negative attitudes 

toward mathematics. It is “a feeling of tension and anxiety that interferes with manipulating 

numbers and solving mathematical problems in everyday and academic situations” (Richardson 

& Suinn, 1972). The difficulties associated with learning mathematics are not solely due to 

learning problems but also negative emotional factors (Dowker et al., 2016; Mammarella et al., 

2019). It has been observed that adults experience mathematical anxiety while performing simple 

numerical tasks like counting and estimating magnitudes. This suggests that the anxiety may 

have developed before the sixth grade (Maloney et al., 2015). 

I conducted a systematic literature review on mathematical anxiety and its two defining 

dimensions to develop the theoretical framework. The cognitive dimension directly impacts 

executive functioning and is linked with learning mathematical concepts or topics that require 

greater utilization of working memory and attentional control (Ashcraft & Kirk, 2001). The 

emotional dimension, on the other hand, considers socio-emotional skills, such as self-regulation 

and perceived self-efficacy (Kaskens et al., 2020; Luttenberger et al., 2018), as well as intrinsic 

motivation, which can interact with mathematical anxiety (Karamarkovich & Rutherford, 2021). 

There is a strong connection between the cognitive and emotional factors involved in 

learning mathematics and the generation of anxiety, which can affect mathematical performance 

(Barroso et al., 2021; Hembree, 1990; Namkung et al., 2019). This situation can result in poor 

academic performance (Rossnan, 2006), impacting students' interest levels, values, self-concept, 

and self-esteem (Gabriel et al., 2020). Therefore, developing specific emotional skills can 

provide children with the tools to manage anxiety while working on math tasks. Regarding the 

emotional dimension of math anxiety, a cyclical behavior has been observed wherein students 
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experiencing continuous failures develop significant insecurity, which subsequently generates 

anxiety. Pekrun's (2006) reciprocal model explains this behavior, suggesting that control and 

value appraisals towards learning can predict academic anxiety, thereby affecting performance. 

The literature provides extensive support for using the Cognitive-Motivational Model of 

Achievement Emotions (Pekrun et al., 2018) and the Control-Value Theory (Pekrun et al., 2007) 

as theoretical frameworks.  

Research Objective 

The pilot study aims to evaluate the tools and techniques used and obtain initial results to 

address the research question: "How do specific emotional and cognitive abilities influence the 

relationship between math anxiety and mathematics performance?" Additionally, the study seeks 

to confirm the hypothesis that low emotional skills increase math anxiety and negatively affect 

math performance. 

Method 

An exploratory sequential design with a mixed methodology approach was implemented for 

the project, starting with a pilot study conducted at a private school in Mexico City. It included 

103 students from third and fourth grades, comprising 71 girls and 32 boys, with an average age 

of 10.3 years and a standard deviation (sd) of ±0.65 years. The parents or tutors provided written 

consent for their participation in the study. Prior to the program, cognitive focus group assessed 

the duration and structure of the instruments, confirming their sustainability in terms of length 

and clarity. The program consisted of two sessions, conducted in separate days. The students 

were not informed about math anxiety to avoid bias. 

Session one: Emotional Dimension. An instrument comprising five different tools to measure 

the abilities was designed using a Likert scale from 1 to 5 with emojis to answer. It was applied 

simultaneously to all students per group with a duration of 35-40 minutes:  

1. Perceived Self-Efficacy: The Self-Efficacy for Self-Regulated Learning Scale, developed 

by Zimmerman, Bandura, and Martínez-Pons (1992). 

2. Beliefs and Expectations Related to Mathematical Competence: The questionnaire 

developed by Wigfield and Eccles (2000). 

3. Intrinsic Motivation: measured with the Spanish adaptation of the "Academic Self-

Regulation Questionnaire" (SQR-A) developed by Conesa and Duñabeitia (2022). 

4. Emotional Intelligence: measured with the Brief Emotional Intelligence Scale (BEIS-10) 

developed by Davies et al. (2010).  

5. Mathematical anxiety was measured using the SEMA scale by Wu et al. (2012), 

translated into Spanish by Sánchez-Pérez et al. (2021), where responses ranged from no 

nervous to very nervous.  

Additionally, general anxiety was measured to exclude students with trait anxiety using the 

Child Anxiety Scale (Gillis, 2003). Consequently, nine students were excluded from the study, 

and the sample size was reduced to 94. 

Session Two: Cognitive Dimension. Children were individually assessed in a private room. 

The session included an interview with eight questions about their attitudes towards math, which 

took 5 minutes, and a performance test with ten items, which lasted 15 minutes. The test was 

developed in-house using items from the ENLACE standardized test (SEP, 2013). The sample 

size was reduced to 91 due to the absence of three students. 
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Interviews were transcribed and analyzed qualitatively. Responses were structured in tables 

to compare themes and students. Open and axial coding were conducted, and a comparative 

analysis observed differences and similarities. The emotional skills five-section instrument was 

scored and analyzed descriptively and statistically.  

Results 

I administered all tests to 91 students over the course of three weeks. Below is Table 1, which 

displays the main statistical data of the instruments and their results. 

 

Table 1: Variables and Measurement Instruments Data 

Variable 
Mean 

(n=91) 

Standard 

deviation 

% 

students 

above 

average 

Likert 

Scale Level 

Cronbach's 

𝛂 

Self-efficacy 38.4 ±6.58 52% 3.8 0.833 

Perceptions and 

beliefs 

46.3 ±5.37 54.8% 4.2 
0.823 

Motivation 43.0 ±6.81 52% 3.9 0.755 

Emotional 

intelligence 

44.1 ±6.10 54% 4.0 
0.788 

Math anxiety 33.7 ±10.94 40% 1.7 0.896 

 

Based on the collected data, the participants obtained high emotional skills, with an average 

score of 4 on the Likert scale. On the other hand, the respondents reported a level of math 

anxiety, 1.7 on the Likert scale. In addition, the average score obtained on the math test was 7.4 

out of 10, with a sd of ±1.52. It is important to notice that, in the case of math anxiety, the mean 

obtained is similar to the one achieved by Wu et al. (2012) in designing the SEMA scale, equal to 

33.79 points (sd = ± 10.22) and by Sánchez-Pérez et al. (2021) equal to 27.92 points (sd = ±8.08) 

for 3rd-grade and 29.15 points (sd = ±8.54) for 4th-grade children. 

A correlation matrix analysis using Spearman’s correlation coefficient identified significant 

associations between factors related to math anxiety. Self-efficacy, perceptions and beliefs, 

motivation, and emotional intelligence were negatively correlated with math anxiety, indicating 

that higher emotional skills are associated with lower math anxiety. Specifically, self-efficacy (ρ 

= -0.527, p < 0.001), perceptions and beliefs (ρ = -0.392, p < 0.001), motivation (ρ = -0.268, p < 

0.05), and emotional intelligence (ρ = -0.244, p < 0.05) showed significant negative correlations 

with math anxiety. 

In addition, it was possible to identify certain concepts that posed challenges for students 

when solving problems. Third graders struggled with fractions and division reasoning, while 

fourth graders found problems involving fractions most difficult. 

In the interviews, it was found that most students like mathematics but also feel nervous 

about it. The questionnaire revealed that only 9% of the students reported feeling nervous about 

math. However, during the individual interviews, students could differentiate between fear, 

nerves, and stress related to mathematics. Out of the 91 children who were evaluated, 33% 

reported that they did not feel any fear or nervousness. 43% of the children acknowledged 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1665 

feeling nervous, 17% indicated they felt stressed in different situations, and 7% admitted feeling 

fear. These results indicate that 67% of the children experience an emotion that generates 

nervousness or fear, whether termed nerves, stress, or fear. 

The children perceive themselves as competent in performing mathematical tasks. Even 

when they found tasks difficult or their grades were not very good, their initial response was that 

they were good at math. Also, it was rare to find children who valued math for its real-life 

applicability or intrinsic pleasure, although there were exceptions as a 4th grader expresses: "...if 

you need a building, you can use them (math), for a video game as well." A pattern of 

disconnection with the practical relevance of mathematics also emerged, with children 

expressing that math problems seemed distant and unrelated to their personal experiences. A 3rd 

grader describes: "Reasoning is boring; they are not my problems." 

Discussion 

The pilot study collected quantitative and qualitative data about children's attitudes and 

perceptions towards math. Researchers spoke with the children before the study, creating a 

trusting environment that made them feel at ease in expressing their true feelings. The children 

showed interest and enthusiasm, sometimes admitting to not liking math. 

Specifically, the situations that cause nerves in students are primarily related to exams, new 

class topics, difficulty understanding or knowing how to solve a problem or operation, time 

pressure or the required response speed, and the fear of failure. These findings align with what 

Hunt et al. (2014) report about the situations that can generate math anxiety. Some children have 

trouble paying attention in math class, especially if there is noise or their peers speak loudly. As 

Eysenck et al. (2007) note, attentional control is affected by the presence of math anxiety due to 

intrusive thoughts or external stimuli that cause worry and distract working memory. 

According to the results, children find two-digit division, fractions, word problems, and 

reasoning the most challenging concepts in mathematics. This coincides with the literature 

suggesting that these concepts require more working memory and may increase math anxiety 

(Ashcraft & Krause, 2007). Also, it was observed that children tend to focus on basic 

mathematical operations and mechanization. This suggests that the mathematical topics covered 

in class may be limited to the basics, resulting in boredom and frustration. (Boaler, 2016). 

However, according to the beliefs and values appreciation results, students gave mathematics an 

average rating of 4.5 points. This indicates that they believe that mathematics is both useful and 

interesting, and they also consider it to be an important subject. So, one way to increase their 

interest in mathematics could be to link it with real-life problems that are relatable and relevant 

to them. This approach might help reduce their perception of the subject as difficult. 

Upon investigation, emotional competencies such as perceived self-efficacy, intrinsic 

motivation, and emotional intelligence were found to be high among the children of the focal 

school. Scores averaged around four, indicating that the children are emotionally well-adjusted. 

This study's findings also show a negative correlation between mathematical performance and 

math anxiety, consistent with previous research (Ashcraft & Moore, 2009). This pattern suggests 

that a strong emotional foundation can alleviate math anxiety, improving students' mathematical 

performance. Therefore, the research hypothesis can be supported. 

Limitations 

Participants might have minimized their true math anxiety to fit social norms, possibly 

underestimating their actual anxiety levels due to desirability bias. Exam conditions were not 
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included to avoid pressure biases. Although informal interviews were conducted to ease tension, 

they may not fully reflect real evaluation settings. Therefore, the findings should be interpreted 

cautiously, considering the differences from actual performance situations. 

Conclusion 

The pilot test was successfully conducted, allowing for the trial of all instruments with 

numerous students. Gathering their feedback was crucial for refining the final version, enhancing 

the quality of the content and the clarity of instructions and questions. The results from this pilot 

have strengthened the motivation to proceed to a scaling phase, aiming to broaden the research to 

include a more diverse sample with varying socioeconomic and academic backgrounds. This 

next phase will help verify whether a lack of emotional skill development is linked to a higher 

prevalence of math anxiety. 
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Past studies on children’s spatial language have focused on block play or guided play with a 

focus on monolingual English speakers. In our study, we engaged preschoolers in shape 

composition guided play tasks with shape blocks. In particular, we present results for five 

emergent bilingual preschoolers who told stories using tangram puzzle pieces and played a 

tangram copycat game with a puppet. Results indicate that preschoolers’ spatial language 

focused on different elements between the two tasks, and they code-switched their language 

mostly when naming shapes or when describing locations or the spatial features of their design. 

Keywords: Geometry and Spatial Reasoning; Communication; Early Childhood Education. 

As efforts to increase the diversity of STEM professionals continue, attention has turned to 

the importance of spatial reasoning, particularly with younger students (Taylor & Hutton, 2013). 

Much of our knowledge about preschooler’s spatial reasoning comes from studies that focus on 

their engagement with blocks and puzzles, demonstrating a correlation between these 

experiences and their spatial development (e.g., Jirout & Newcombe, 2015; Levine et al., 2012; 

Verdine et al., 2014). Block and puzzle play naturally encourages the use of spatial language and 

terminology and gives students tangible experiences with spatial concepts (Ferrara et al., 2011; 

Levine et al., 2012). Further, these experiences facilitate the formation of mental representations 

and transformations of spatial relationships among objects in the world (Levine et al., 2012; 

Reifel, 1984). The use of pattern blocks and tangrams (blocks that emphasize mathematical 

shapes and are used in shape puzzles) offers additional opportunities for building and supporting 

spatial reasoning, while also promoting the composition of shapes and the application of shape 

language, underscoring the importance of language in these educational interactions (Clements & 

Sarama, 2009; Hallowell, 2020). This research engaged five preschoolers (emergent bilinguals), 

in two types of shape composition and guided play tasks with tangrams. Our study takes an 

initial step toward deeper exploration into language and shape composition and seeks to offer 

unique insights into the co-development of language and spatial thinking in emergent bilingual 

preschoolers. 
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Theoretical Framework 

Composing Shapes and Spatial Language 

In their analysis of spatial language across tasks with caregivers and children, Cannon et al. 

(2007) developed a system for analyzing spatial language across a series of dimensions, 

including spatial dimensions or sizes, shape names, locations and directions, deictics (e.g., this, 

that), orientations and transformations, amounts, spatial features or properties, and pattern words. 

Ferrara et al. (2011) compared caregivers’ and preschoolers’ spatial language depending on if 

they freely played with blocks, followed a set of directions to make a specific block structure, or 

played with a model made out of blocks. Caregivers and preschoolers used significantly more 

spatial language when building based on directions than when freely playing. Further, the 

preschoolers tended to use more location and deictic words across all conditions, while shape 

and orientation words were used the least (Ferrara et al., 2011). 

Instead of having students work with caregivers, Cohen and Emmons (2017) investigated 

monolingual English students’ (ages 4-5 and 8-12) language while they built predetermined types 

of block structures. For example, they might have to build something a certain number of inches 

wide and tall with a specific number of blocks. Similar to results found by Ferrara et al. (2011), 

students used location words the most; however, their second most references were to continuous 

amounts. Further, students rarely used shape and orientation words, and they also did not refer to 

spatial features much. 

Use of Storytelling in Mathematics 

In her analysis of storytelling in mathematics, Rodríguez (2007) asserts that storytelling in 

mathematics initiates early in childhood, influenced by cognitive development, language 

modeling, and expressive opportunities. She suggests that storytelling concurrently enhances 

literacy and mathematical skills by providing structured narratives with recognizable characters 

and language patterns, fostering crucial imagination and abstraction. This method in math 

education offers various benefits including contextualizing concepts, fostering connections, 

developing competencies, and motivating young learners aged 3 to 6.  

Furthermore, Julca Fernández (2019) utilized storytelling alongside tangram puzzles to 

assess geometric skill development in Peruvian kindergarten students. Twenty participants were 

equally divided into experimental and control groups. Following the story presentation, 

experimental group students employed tangram shapes to recreate story scenarios. While pre-test 

results indicated moderate geometric skills in the experimental group, post-test outcomes 

demonstrated significant improvement, particularly in recognizing, representing, and 

distinguishing two-dimensional shapes, along with problem-solving related to object positions 

and movements. Notably, advancements were observed in identifying and graphically 

representing object positions relative to others.  

Code Switching and Translanguaging 

English immersion programs often adhere to the "two solitudes" assumption, favoring 

exclusive instruction in the target language (L2) while overlooking students' first language (L1) 

(Cummins, 2008). However, extensive research by Baker (2011), Creese & Blackledge (2010), 

Cummins (2008), and Lindholm-Leary (2006) underscores the transferability of literacy-related 

skills across languages, particularly affecting literacy development and math education. 

Recognizing emergent bilingual students' oral language development in STEM subjects is pivotal 

for favorable academic outcomes, yet their language practices are frequently marginalized, 
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stifling their authentic voices (Flores, 2013). To counteract this, Flores advocates for embracing 

the fluidity of language to mitigate "linguistic Othering." This project adopts an ecological 

perspective on multilingualism (van Lier, 2004; Hornberger, 2002) and the Dynamic Model of 

Multilingualism (Herdina & Jessner, 2002), viewing emergent bilingualism as a cohesive 

dynamic system rather than distinct populations. Furthermore, García's (2009) notion of 

languages as dynamic processes informs the exploration of how translanguaging strategies 

correspond to mental imagery, spatial analysis, and verbal explanations in shape composition and 

embedding among emergent bilingual students.  

Translanguaging acknowledges the utilization of various modalities and semiotic resources 

beyond linguistic signs, facilitating the "resemiotization" process (Iedema, 2003), where actions 

are reconceptualized across different semiotic modes, perpetually generating new meanings. 

Adopting a transmodal approach, which involves the movement of ideas across different 

communication modes (Murphy, 2012), challenges traditional cognitive-centric views of learning 

by recognizing the holistic nature of language acquisition, incorporating physical, emotional, 

linguistic, and artistic dimensions. This perspective promotes a dynamic construction of 

meanings through simultaneous engagement with multiple modalities, allowing learners to 

flexibly navigate diverse modes and enhance adaptability and expressiveness in constructing and 

conveying meanings (Newfield, 2014).  

Current Study 

We build on prior research by focusing on preschoolers’ spatial language when working with 

two different types of shape composition tasks. In particular, we focus on emergent bilinguals 

whose home language is Spanish, Mandarin, or other languages. Our research questions include 

the following: (1) How do preschoolers’ use spatial and shape language in a storytelling versus 

shape creation task? (a) In what ways does background knowledge support their explanations? 

(b) How does code switching play a part in emergent bilingual use of language in the tasks? 

Method 

Participants and Setting 

We recruited 18 preschoolers between the ages of 3 and 5 from a midwestern city, targeting 

preschoolers who speak home languages known by our researchers: English, Spanish, or 

Mandarin. We chose 5 of these preschoolers to focus on to represent those whose home language 

is Spanish (2 preschoolers), Mandarin (2 preschoolers), and Hindi (1 preschooler). Notably, of 

the six researchers, two speak Spanish, two speak Mandarin, but none speak Hindi.  

Preschoolers whose home language was Mandarin and Hindi were part of a daycare program 

that offered an English-only curriculum. Preschoolers whose home language was Spanish were 

part of a daycare that centered on free-play. Because the Spanish-speaking preschoolers were not 

yet part of an English-only curriculum, they resorted to speaking Spanish. To investigate a wide 

range of language situations, the researchers used English and the preschoolers’ home language 

in different ways. For instance, our Spanish speaker researchers would begin implementing the 

tasks in Spanish but would switch to English if the preschooler would begin using English. They 

also would use English strategically if they suspected the preschooler did not know the Spanish 

vocabulary. In addition, both researchers speak a different variety of Spanish (Argentinian and 

Mexican) and adjusted the language to the one used by the preschooler. Our Mandarin researcher 

also used languages strategically. She used both English and Mandarin, often switching to 

Mandarin if the preschooler was not verbally responding. 
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Design and Materials 

Overall, we worked with each preschooler across four sessions. In Session 1, we worked with 

them individually on tasks to help us understand their spatial reasoning and initial strategies and 

language around composing shapes and solving tangram puzzles (Figure 1). In Session 2, they 

worked with a partner to make different shapes from the tangram pieces and play a copycat game 

where one child would make a design and explain to the other child how to make it. In Session 3, 

preschoolers listened to the story Three Pigs, One Wolf, and Seven Magic Shapes and created 

their own version of the story by making additional objects from the tangram pieces to protect 

the pigs from the wolf. In Session 4, preschoolers did similar activities as in Session 1.  

 

 
 

Figure 1: Pieces of a Tangram Puzzle 

 

The focus of this paper is on the storytelling activity in session 3 and puppet task from 

session 4. For the storytelling task, preschoolers listened to the story Three Pigs, One Wolf, and 

Seven Magic Shapes. The Mandarin and Hindi speaking preschoolers heard the story in English, 

as was typical at their daycare. However, the Spanish speaking preschoolers wanted to hear it in 

Spanish, so the Spanish researchers translated it while reading. In this story, three pigs receive 

tangram pieces from a “magical creature” that instructed them to create an object to protect 

themselves from the wolf. The first and second pigs create a “cat” and a “candle,” respectively, 

and are not successful at protecting themselves. The third pig, however, defends himself from the 

wolf by constructing a house and later sails away with his wife by creating a “sailboat” using the 

magical tangram pieces. At the end of the reading, the preschoolers used the tangram pieces to 

create more objects to protect more pigs from the wolf.  

For the “puppet task,” preschoolers created a design using the tangram pieces and then 

explain to a hand puppet (controlled by a researcher) how to copy their design. The puppet asked 

them prompting questions in order to do its design. In both tasks preschoolers were able to use 

whichever language they felt most comfortable, which resulted in researchers sometimes 

switching between languages to accommodate the preschoolers’ linguistic choice. At times, some 

of our English-only researchers worked with emergent bilinguals, in these situations preschoolers 

were only using English during their explanations. 

Analysis 

To analyze the language the children used during the tasks, we used the framework 

developed by Cannon et al. (2007) but added additional codes. During our analysis, we nested 

their Spatial dimension and Spatial features codes into one Spatial Features/Properties code to 

better capture any reference in our particular tasks that would be intrinsic to the properties of the 

shapes we gave the preschoolers. To capture names that they gave to either individual shapes or 

composites of shapes that did not align with standard 2D or 3D shape names, we created a 

background knowledge code. This code also captured additional details preschoolers provided 

about the shapes that were descriptive (e.g., it shoots fire) but not standard shape features. We 

also added subcodes within each category so that we could capture their gestures, corrections, 
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and references to the materials we used (e.g., storybook, paper with colored blocks). Because we 

were working with emergent bilinguals, we also included code switching and translanguaging 

codes to indicate when they switched between languages and/or used a dynamic and transmodal 

use of language. Finally, we included leading and misleading codes to help us locate points 

where the researchers were prompting for more information either by asking directly or 

purposely saying or doing the wrong thing in order to get preschoolers to correct them with 

additional language. See Figure 2 for descriptions of the codes.  

We coded the first transcript together, then transcribed and coded all other transcripts, and 

went back through them together to address any questions. We coded the transcripts using a 

computer assisted qualitative data analysis software program (Dedoose). We included a coding 

scheme drawn from Cannon et al. (2007) as well as themes emerging from the data in the 

codebook. The codebook included 15 major categories and 41 subcodes.  

 

 
 

Figure 2: Language Codes (based on Cannon et al., 2007) 

 

Results 

The preschoolers’ use of spatial language varied drastically between the two tasks 

(Storytelling and Puppet) we analyzed. First, we present results for preschoolers’ language use in 

the two tasks, highlighting specific examples of their language use. Finally, we discuss results 

related to their code-switching and translanguaging. 

Storytelling Task 

In line with the descriptive nature of the storytelling task, the preschoolers mainly focused on 

using names for the shapes that were not standard shape names but reflected their background 

knowledge of objects (Rodríguez, 2007). For example, Mister used the shapes to make a house to 
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protect the pig. She then pointed to the parallelogram and said, “This is a chimney.” Next, she 

pointed to the medium triangle and explained, “This is the roof” (See Figure 3A).  

Preschoolers also discussed spatial features of their shapes more in this task, often to explain 

the objects that they created. Rosa did this when she decided to create “manos fuertes” (strong 

hands) to defend the pig from the wolf, later adding that she wanted to make “una mano larga” (a 

long hand) and then “una mano gigante” (a gigantic hand) to her spatial features descriptions. 

When asked by one of the researchers to describe how her design looked like a hand (prompting 

her use of background knowledge), Rosa replied by stating that the shapes were “los huesos” (the 

bones) while the invisible/transparent part of her design (“transparente”) was the actual hand, a 

feature that would allow the pig to trick the wolf who would be unable to see the hand 

approaching (See Figure 3B).  

 

A.  B.  C.  

 

Figure 3: Mister’s (A) and Rosa’s (B) Storytelling Pictures and Snow’s (C) Fox for Puppet 

 

Puppet Task 

In the puppet task, compared to storytelling, preschoolers more frequently utilized specific 

shape names, location words, and language related to spatial orientations to guide the puppet in 

replicating their design. They complemented their spatial language with gestures for clearer 

expression. They recognized all shape names from session 1, except for the more complex 

parallelogram. For instance, when prompted, "What’s this?" Snow responded, "The big one, the 

big triangle" while pointing to it.  

They expressed abundant spatial feature words to explain their pieces and designs. For 

example, they used dimension words like small, medium, big to distinguish different sizes of 

triangles as well as color words. For example, Snow said, “This orange one goes here.” It's 

noteworthy that the researchers’ leading language included more deictics in this task too, which 

may have encouraged the students to speak more deictically. In fact, while they used fewer 

spatial orientation words, many of their orientation instructions combined deictics with gestures.  

Some preschoolers used numerous location words. For example, Mister utilized a 4-color mat 

to clarify locations to the puppet, stating, "You need to put it at the middle" (glancing at the mat), 

then correcting to "At the bottom…no…at the top…" finally deciding on "No, at the middle top," 

and "put next to…" followed by "you make closer to these."  

Their use of deictics was rich in spatial meaning, aiding the puppet's understanding of their 

references, going beyond just spatial orientation and location. They were also more likely to 

draw on deictics as they tried to get the puppet to move shapes “here” or “there” or “like this” or 

“that way.” When referencing specific shapes such as "parallelogram," they used "this" along 

with gestures to enhance their instructions. For example, Snow made a “fox” design for the 

puppet to copy. She placed the parallelogram and two big triangles and then said, “Then the two 

small triangles, one goes here, and one goes like this” (she used her finger to draw the outline of 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1674 

the triangle’s orientation). She used “small” to distinguish which triangles to use but used 

deictics to help explain their location and orientation (along with hand gestures, Figure 3C).  

Preschoolers’ exploration of spatial descriptions was not confined only to the manipulation of 

the tangram shapes. Rather, they demonstrated a heightened awareness of positioning in 

reference to themselves and others. For instance, Rosa guided the puppet (handled by R3) on 

where to stand even before beginning the task. Employing deictic expressions such as "párate 

aquí" (stand here), Rosa showed her proficiency in conveying spatial instructions to have the 

puppet move next to her, thus sharing her vantage point. Additionally, she displayed her 

knowledge of location and direction by instructing the puppet to move "más cerca" (closer) when 

dissatisfied with the position chosen by R3 for the puppet.  

Language Features 

Code switching. We decided to identify as code-switching every time preschoolers alternated 

between two or more languages or varieties of language in conversation. For instance, Figure 4 

shows part of the storytelling task when Mister is describing the houses she created to protect the 

pigs from the wolf. Here (Lines 4-6), Mister describes her houses as a strong house and a stick 

house. R4 (Lines 7-10) wants Mister to be more specific about what she means by “stick house” 

and prompts her to use and think in Chinese. Mister responds “wooden house” which provides 

more detail as to the way the house is built and adds to the Spatial features/ Properties of her 

design.  

 

 
 

Figure 4: Wooden House 

 

Translanguaging. Just like we coded for instances where speakers alternated between 

languages, we also identified instances where translanguaging instances were observed, where 

preschoolers drew upon different linguistic, cognitive, and semiotic resources to make meaning 

and make sense of the world around them.  
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Figure 5: “Los Triangles” 

 

Figure 5 shows how Olivia used both code-switching and translanguaging in order to explain to 

the puppet (handled by R3) how to copy her design. We observed that Olivia code-switched 

between Spanish and English mostly when referring to Shapes (Lines 1, 7, 8) and Spatial 

Features/Properties (Line 8). Since Olivia does not receive any formal Math instruction in her 

daycare, we are uncertain as to how she has acquired her English vocabulary, and we hope to be 

able to explore this further by performing parent interviews regarding home practices. 

Nevertheless, Olivia would display translanguaging elements by making use of semiotic 

resources, such as specific hand gestures and movements [Lines 12 & 14], in order to make 

meaning and be able to better express her answers. Therefore, to comprehend the task and 

communicate effectively, Olivia would not only utilize her linguistic/bilingual abilities but would 

also draw upon her complete range of semiotic resources.  

Discussion and Implications 

In examining preschoolers' engagement with storytelling and puppet tasks, we observed 

distinct uses of spatial language. The storytelling task saw the creative labeling of shapes based 

on background knowledge, enriching narratives with imagination. In contrast, the puppet task 

saw a more precise use of spatial language, with children employing specific shape names and 

location words, often accompanied by gestures, to guide a puppet in replicating a design. This 

contrast underscores the adaptability of young learners in applying spatial reasoning and 

language differently across contexts, moving from imaginative storytelling to detailed, 

instruction-based communication.  

Overall, preschoolers’ use of spatial language was closely aligned to the perceived needs of 

the tasks. As found by Ferrara et al., (2011), our preschoolers did not use shape names as much 

when storytelling because they were more focused on describing the resulting object (coded as 

background knowledge) that they composed with the shapes, which falls in line with the 

descriptive nature of the storytelling task (Rodríguez, 2007). Further, they named parts of their 

objects using this background knowledge rather than the individual shape names (e.g., chimney 

instead of parallelogram). This suggests that investigations into spatial language need to account 

for these contextual differences. At the same time, the preschoolers were very excited to share 

about their objects, leading them to provide more context for the object and description of the 

spatial features. Therefore, their background knowledge supported additional language use, even 

if the language did not focus on specific spatial terms. Future storytelling tasks could encourage 
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more shape and location language in two ways. First, we could modify the story to include more 

language about which shapes the pigs used and how they composed them to make the objects to 

defend themselves from the wolf. Second, we could have preschoolers narrate a manual for 

creating their object so that other pigs could make the same thing. Similar to the puppet task, 

creating a manual could encourage preschoolers to use more location and shape names.  

In this study, we also adopted a dynamic and fluid perspective on bilingualism, framing 

translanguaging as a bilingual approach focused on observable practices where linguistic features 

from different languages intertwine (Garcia, 2009). Translanguaging encompasses various 

discursive practices through which bilingual individuals navigate their linguistic realities, 

surpassing mere code-switching and translation, and involving the performance of bilingualism 

across diverse modalities (Garcia, 2009). Consequently, we categorized instances of 

translanguaging as any occurrences where preschoolers utilized different linguistic, cognitive, 

and semiotic resources to construct meaning and interpret their environment. Throughout our 

project, we observed numerous instances of code-switching and translanguaging practices 

among emergent bilingual preschoolers, particularly when paired with researchers who shared 

their native language. Preschoolers would often switch between languages when naming or 

describing shapes or designs, with researchers following their lead by continuing in the chosen 

language. Alternatively, researchers sometimes encouraged the use of the preschoolers’ native 

language if they encountered difficulty in naming or describing something specific. This 

approach is significant, especially in language immersion settings like ours, where preschoolers 

are typically encouraged to respond only in English. By adopting a translanguaging pedagogical 

lens (Cenoz & Gorter, 2022), we aimed to soften the boundaries between languages and support 

the development of all languages utilized by the preschoolers.  
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In recent years, mathematics app use (e.g., DreamBox, Prodigy, Reflex) has continued to become 

more prevalent in K-12 and most math app research has examined achievement-related 

outcomes. The present study is part of a larger exploratory multiple-case study examining 

students’ mathematical identity as it relates to math app use. Utilizing Cribbs et al. (2015) 

framework for math identity, I analyzed one student’s math identity separated from technology 

(math identity) and related to technology (math technology identity). This paper introduces the 

case of Sarah, a third grader whose math identity, particularly her view of math, is impacted by 

her weekly use of math apps. 

Keywords: Technology; Online and Distance Education; Affect, Emotion, Beliefs, and Attitudes. 

Introduction 

In recent decades, the adoption of blended learning (BL) has increased both nationally and 

globally (Barbour, 2018). BL has evolved into a comprehensive term encompassing programs 

that incorporate online learning (Hrastinski, 2019). Among the technologies commonly 

employed in BL programs, math apps have become particularly prevalent (Cleveland-Innes, 

2018) and have been acknowledged as an influential part of learning mathematics (Griffith et al., 

2020; Laato et al., 2020). Math apps have gained substantial popularity worldwide with over 14 

million students using IXL worldwide (IXL, n.d.), one in four elementary students in the U.S. 

using Zearn (Zearn, n.d.), and six million students in the U.S. engaging with DreamBox 

(DreamBox Learning, 2022). A 2022 national survey of U.S. teachers revealed that more than a 

third of the additional instructional materials used for teaching math were comprised of math 

apps (Doan et al., 2022). Existing literature indicates that identity is an important aspect of 

students’ learning experiences as it impacts their success and well-being in the classroom, and 

identity “play[s] a fundamental role in enhancing (or detracting from) [students’] attitudes, 

dispositions” (Bishop, 2012, pp. 34-35; National Research Council, 2001; McCarthey & Moje, 

2002). Presently, there exists only one research paper on the relationship between math identity 

and math apps. Crossley et al.'s (2020) yearlong investigation of upper-elementary students’ use 

of the math app Reasoning Mind revealed no substantial evidence indicating a change in math 

identity throughout the study period. This suggests that (a) little is known about the ways widely 

used math apps such as Reflex and Prodigy may influence identity, and (b) consequently, my 

proposed study can fill an important gap in the literature. The following research question guided 

this study: What is the relationship between math apps and a student’s mathematical identity? I 

now describe my theoretical framework and the literature that guided my study. 

Literature Review and Framing 

The focus of the current study is to examine the relationship between math app technology 

and students’ mathematical identities. My working hypothesis is that technology, a key part of 

students’ learning environment, impacts the way students relate to mathematics and others in 

their class. Thus, technology impacts students’ mathematical identity development and 
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formation. It follows that I view identity as situated—that is, identity is a product of being, 

learning, and interacting within one’s environment (Holland et al., 2001; Lave & Wenger, 1991; 

Wenger, 1998). This view of identity is also related to one’s membership in a community (Lave 

and Wenger, 1991; Wenger, 1998) and the shared experiences of this group. Thus, I utilize Cribbs 

et al.’s (2015) framework for mathematics identity and view of mathematics identity as 

composed of the three interrelated factors of interest, recognition, and introspection (Figure 1). I 

chose Cribbs et al.’s identity framework because a key component of their framework focuses on 

how students perceive others to view them in relation to mathematics (Recognition). Their 

framework not only places an emphasis on recognition as a key factor of mathematics identity, 

but it also explicitly links Recognition to students' views of themselves related to mathematics—

what is labeled Introspection in Figure 1—and students’ view of math (what is labeled Interest in 

the figure).  

In utilizing Cribbs et al. (2015) framework for mathematics identity, I use their factors of 

interest and recognition without any alterations or modifications to how they define these 

constructs (see Figure 1). However, I combine their factors of competence and performance, into 

one factor that I rename Introspection. Cribbs and colleagues define competence as “students’ 

beliefs about their ability to understand mathematics” (p. 1051) and performance as students' 

“beliefs about their ability to perform in mathematics” (pp. 1051-1052). I combine Cribbs et al.’s 

factors of competence and performance into the single term Introspection for simplicity and ease 

of operationalization and broadly define this term as a student’s view of themself related to math. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cribbs et al. (2015) mathematics identity framework with Introspection in place 

of competence/performance. 

Methods 

This preliminary report was part of a larger exploratory multiple-case study that examined 

third graders’ math identity and motivation related to their weekly use of math apps. The 

multiple-case study consisted of eight cases that were carefully chosen from a pool of 

participants in a classroom, each representing diverse mathematical identities and motivations. 

The focus of this preliminary investigation was on Sarah's case due to her insightful reflections 

and the revelatory nature of this case (Yin, 2016). Particularly, Sarah clearly articulated how the 

different utilized math apps related to her view of math, view of self, and how others viewed her 

while other third graders had a harder time expressing their math identity as it related to math 

app use. The two math apps utilized every week in Sarah’s class were Reflex and Prodigy. 

Sarah’s classroom is a part of X Elementary School, a large public elementary school located in 

Introspection

InterestRecognition
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the southern United States. X Elementary School has an economically disadvantaged student 

enrollment of 16% and over 70% of the school’s students scored at or above the proficient level 

on the state math test. Drawing on the three components of math identity outlined by Cribbs et 

al. (2015), I used interest, introspection, and recognition as a priori codes (Miles et al., 2014) to 

analyze Sarah’s responses to two sixty-minute semi-structured interview protocols (Rubin & 

Rubin, 2011). The first interview took place in the fall of semester 2023 while the second 

interview was conducted in the spring semester of 2024. Using interest, introspection, and 

recognition to serve as column heads of the math identity profile I created for Sarah, I analyzed 

her two interviews by creating a meta-matrix (Miles & Huberman, 1994) to keep track of her 

math identity separated from technology (math identity) and related to technology (math 

technology identity). 

Findings 

I start by summarizing Sarah’s math identity and math technology identity (see Table 1). 

Several features of the math apps Reflex and Prodigy afforded varying opportunities for self-

recognition, recognition, and shaping Sarah’s view of math. In the sections that follow, I further 

explore Sarah’s math identity and her math identity related to math apps. 

 

Table 1. Overview of Sarah’s Math Identity and Math Technology Identity 

 

 Sarah’s Math Identity 

 Interest Introspection Recognition 

 

Interview 

1 

Sarah felt math 

was frustrating when 

she struggled, but 

experienced joy from 

getting correct 

answers. 

Sarah viewed herself 

as good at math and a 

mathematician, but “not 

the best person at math.” 

Sarah believed her 

teacher, friends, and 

parents view her as good 

at math, but was clear she 

would not be voted as the 

best at math. 

 

Interview 

2 

Sarah believed 

doing math meant 

solving problems you 

may have not seen 

before. 

Sarah expressed 

confidence in her ability 

to do math, but no 

longer viewed herself as 

a mathematician. 

While Sarah felt 

many people in her class 

are better than her at 

math, her peers would 

still view her as good at 

math. 

 Sarah’s Math Technology Identity 

 Interest Introspection Recognition 

 

Interview 

1 

Reflex and Prodigy 

made doing math more 

fun, but Sarah 

acknowledged there is 

little math on Prodigy. 

Prodigy and Reflex 

did not affect how Sarah 

saw herself as a math 

student. 

Prodigy has a 

multiplayer game feature, 

but Sarah felt seeing 

avatars made it harder to 

understand her 

classmates’ emotions. 

 Sarah felt 

frustrated that math 

Sarah felt good 

about her math ability 

Prodigy is an app 

Sarah does not play when 
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Interview 

2 

was too much of a 

game when playing 

the math app. 

when playing Prodigy 

but felt stressed by the 

timer on Reflex. 

given the change and 

feels math apps have no 

bearing over how she is 

recognized. 

 

Sarah’s Math Identity 

Sarah’s view of math, or interest, was tied strongly to her performance and success. When 

asked what it meant to do mathematics, she responded, “to be fluent on most of your addition 

and subtraction facts.” She also described the “feeling when I finish, um, a math question of get 

it correct” as the moment that mathematics is most enjoyable. During the second interview, 

Sarah’s view of math had shifted to reflect an algorithmic and computational view of 

mathematics similar to that of the math played on Reflex. Sarah said, “I do not like showing my 

work when I could do the algorithm easily.” Her enjoyment was still rooted in her success, and 

she said, “I like solving math problems because I’m good at it.” Sarah’s view of herself, or 

introspection, remained largely unchanged from the first to the second interview. In both 

interviews, she expressed viewing herself as good at math but was quick to point out there were 

several students better than her. However, during the first interview, Sarah considered herself a 

mathematician, but by the second interview, this was no longer the case. While her grades 

indicated she was good at mathematics and gave her confidence in her ability, she no longer felt 

she was a mathematician. Sarah was recognized by her classmates, teacher, and parents as good 

at mathematics in both interviews. She noted that while her peers all recognized her as good at 

mathematics, they also wouldn’t vote her as the class mathematician at the end of the year. 

Sarah’s Math Technology Identity 

During the first interview, Sarah expressed the math apps as having a significant role in how 

she viewed mathematics. Prodigy and Reflex made doing math more enjoyable, but by the 

second interview, she seemed to no longer enjoy the math apps. Further, she was frustrated by 

how much they had transformed math into games, saying “Math apps just kind of make it too fun 

when math is supposed to work. I kind of like, I like work.” Sarah’s view of herself remained 

unchanged by doing math on Prodigy and Reflex. This was in part due to the math apps not 

“really having that much of an effect on learning,” but also because of Sarah’s unchanging 

confidence in her ability to do math. However, certain attributes of the math apps such as the 

problem timer on Reflex stressed Sarah out and caused her to feel more anxious about doing 

mathematics. A multiplayer game feature of Prodigy allowed students to recognize each other but 

for Sarah, the avatars made it harder to understand the emotions of her classmates. She said, 

“Some of the avatars, they're just frowny faces the whole time, and then like mine just has the 

same expression.” Because of these virtual characters, Sarah felt Prodigy allowed for fewer 

opportunities to genuinely interact and be recognized by classmates. 

Discussion and Conclusion 

While these results are preliminary, they suggest features of math apps relate differently to 

components of a student’s math identity. For Sarah, the gamified nature of Prodigy and Reflex 

was at odds with how she viewed mathematics. This caused her distress as she experienced 

dissonance between how she was experiencing mathematics and what she believed mathematics 

was. Sarah also detailed features of Reflex and Prodigy that related to her views of herself and 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1682 

how others viewed her, but she felt neither app impacted her learning. One limitation of this 

study is its singular focus on the math identity of a single student, which precluded a 

comparative analysis of math identity across multiple participants. Future investigations and 

reports might expand their scope to include a broader range of participants, such as additional 

elementary students or individuals from diverse grade levels. I view research concerning 

elementary students' math identity in the context of math app usage as a crucial yet insufficiently 

explored domain within K-12 mathematics education. Given the growing prevalence of such 

technology, it is essential to persist in exploring various facets of students' math identity. 

Acknowledgments  

This material is based on work supported in part by the National Science Foundation (NSF) 

under grant number DGE-2235199. Any opinions, findings, and recommendations expressed in 

this material are those of the author and do not necessarily reflect the views of the NSF. 

References 
Barbour, M. K. (2018). A history of K-12 distance, online, and blended learning worldwide. Handbook of research 

on K-12 online and blended learning, 2, 21–40. 

Bishop, J. P. (2012). “She's always been the smart one. I've always been the dumb one”: Identities in the 

mathematics classroom. Journal for Research in Mathematics Education, 43(1), 34–74. 

https://doi.org/10.5951/jresematheduc.43.1.0034 

Cleveland-Innes, M. (2018). Guide to Blended Learning. Commonwealth of Learning. 

https://doi.org/10.56059/11599/3095 

Cribbs, J. D., Hazari, Z., Sonnert, G., & Sadler, P. M. (2015). Establishing an explanatory model for mathematics 

identity. Child development, 86(4), 1048–1062. https://doi.org/10.1111/cdev.12363 

Crossley, S. A., Karumbaiah, S., Ocumpaugh, J., Labrum, M. J., & Baker, R. S. (2020). Predicting math identity 

through language and click-stream patterns in a blended learning mathematics program for elementary students. 

Journal of Learning Analytics, 7(1), 19–37. https://doi.org/10.18608/jla.2020.71.3 

Doan, S., Eagan, J., Grant, D., Kaufman, J.H., & Setodji, C.M. (2022). American Instructional Resources Surveys: 

2022 Technical Documentation and Survey Results, RAND Corporation, RR-A134-14, 2022. 

https://doi.org/10.7249/RRA134-14 

DreamBox Learning. (2022, September 20). School districts nationwide accelerate student math and reading 

achievement with DreamBox Learning®. DreamBox Learning - Online Math & Reading Solutions for Students 

K-12. https://www.dreambox.com/press/school-districts-nationwide-accelerate-student-math-and-reading-

achievement-with-dreambox-learning 

Griffith, S. F., Hagan, M. B., Heymann, P., Heflin, B. H., & Bagner, D. M. (2020). Apps as learning tools: a 

systematic review. Pediatrics, 145(1). https://doi.org/10.1542/peds.2019-1579 

Holland D., Lachicotte W. Jr., Skinner D., & Cain C. (2001). Identity and agency in cultural worlds. Cambridge, 

MA: Harvard University Press. 

Hrastinski, S. (2019). What do we mean by blended learning?. TechTrends, 63(5), 564–569. 

https://doi.org/10.1007/s11528-019-00375-5 

IXL. (n.d.). Our story. IXL Learning | Our story. 

https://www.ixl.com/company/story#:~:text=IXL%20is%20now%20used%20by,at%20home%20by%20familie

s%20worldwide 

Laato, S., Lindberg, R., Laine, T. H., Bui, P., Brezovszky, B., Koivunen, L., ... & Lehtinen, E. (2020). Evaluation of 

the pedagogical quality of mobile math games in app marketplaces. In 2020 IEEE International Conference on 

Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–8). IEEE. 

https://doi.org/10.1109/ice/itmc49519.2020.9198621 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge university press. 

McCarthey, S. J., & Moje, E. B. (2002). Identity matters. Reading research quarterly, 37(2), 228–238. 

https://doi.org/10.1598/rrq.37.2.6 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1683 

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook. Sage. 

National Research Council. (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, J. Swafford, 

and B. Findell (Eds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral 

and Social Sciences and Education. Washington, DC: National Academy Press. 

Rubin, H. J., & Rubin, I. S. (2011). Qualitative interviewing: The art of hearing data. sage. 

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge university press. 

Yin, R.K. (2016). Qualitative Research from Start to Finish, Second Edition. The Guilford Press. 

Zearn. (n.d.). Transformative results for all kids. Zearn. 

https://about.zearn.org/research#:~:text=Zearn%20is%20the%20501(c,kid%20is%20a%20math%20kid 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1684 

USING DESIGN-BASED RESEARCH TO EXPLORE HIGH SCHOOL STUDENTS’ 

INFORMAL LEARNING OF MATHEMATICS 

Xiaohui Wang 

University of Texas Rio Grande Valley 

xiaohui.wang@utrgv.edu 

Sergey Grigorian 

University of Texas Rio Grande Valley 

sergey.grigorian@utrgv.edu 

Mayra Ortiz Galarza 

University of Texas Rio Grande Valley 

mayra.ortizgalarza@utrgv.edu 

Aaron Wilson 

University of Texas Rio Grande Valley 

aaron.wilson@utrgv.edu 

As the demand for STEM jobs increases, central to the success of STEM education and careers is 

a strong foundation in mathematics. However, students’ interest in mathematics is often very 

low. Thus, it is imperative to cultivate interest in mathematics among high school students. To 

promote students’ interests and positive attitudes in mathematics, we implemented informal 

learning using design-based research (DBR).  We show that DBR is a compelling and suitable 

methodology for our research aims. Then we report how DBR can extend from previous studies 

in using informal learning for mathematics and foster motivating learning ecology in a school 

setting. Our DBR project has completed four iterations.  

Keywords: Informal Education; Design Experiments; Affect, Emotion, Beliefs, and Attitudes; 

High School Education 

It is well known that global job growth will be mostly concentrated in the high-skilled areas 

of healthcare and STEM (McKinsey & Company, 2023). For example, the US Bureau of Labor 

Statistics (2023) projected a 15% overall growth of computer and mathematical jobs in the next 

eight years, with jobs in data science and statistics experiencing 35.8% and 32.7% increases, 

respectively. However, education statistics imply that the supply of mathematicians and scientists 

entering those fields may soon be insufficient to satisfy the demand. The awarded mathematics 

and statistics bachelor's degrees growth rate is significantly lower than other STEM fields, 

despite an increasing trend of the overall STEM fields. According to Digest of Education 

Statistics (2023, Table 322.10), over the past decade, the annual growth rate of awarded 

bachelor’s degrees in computer and information sciences was 22 times higher than that of 

mathematics and statistics, engineering growth 12 times higher, and biological and biomedical 

sciences growth 9 times higher. The number of high school students completing advanced 

mathematics courses (i.e., calculus) declined in the decade of 2009-2019 (NCES, 2022). Thus, it 

is imperative to cultivate interest in mathematics among high school students, which will 

eventually align the number of college students pursuing STEM degrees with workforce needs.  

Informal learning, a type of less classroom-bound, free-choice education (Falk, 2001), has 

recently gained traction for improving STEM learning and for improving engagement in 

mathematics (Denson et al., 2015; Pattison, Rubin, & Write, 2017; Waldock et al., 2016). The 

"informal" and "free-choice" characteristics of informal learning make it an ideal medium for 

delivering education in uncertain times, offering a "free-choice" approach to engaging with 

information and knowledge. Cultivating positive mathematics or STEM identities is often a 

central focus for designers of informal learning experiences (Bell & Bevan, 2015; Feder et al., 

2009; Zimmerman & Bell, 2012). We suggest that design-based research (DBR) from the 
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learning sciences is a compelling and suitable methodology for exploration of both informal 

learning of mathematics and its outcomes measurement among high school students. In this 

paper, we report how DBR can extend previous studies in using informal learning for 

mathematics and foster motivating learning ecology in school settings. To exemplify, we briefly 

report on an NSF-sponsored DBR project that completed four iterations. 

Theoretical Framework and Research Aims  

Drawing on theories of experiential learning (Kolb, 1984) and related to active learning 

programs that have been shown to increase performance and motivation in STEM (Freeman et 

al., 2014; Weinberg et al., 2011), informal learning, as a type of less classroom-bound and more 

free-choice education (Falk, 2001), includes a wide array of experiential learning instances that 

happen when students actively engage in learning opportunities outside of the traditional context 

of teacher and classroom. Much of the research on informal learning emphasizes identity, 

seeking to influence identity as well as to understand identity development (Bell et al., 2009; 

Pattison et al., 2017). Math identity is believed to be an important component of students’ 

achieving success in mathematics (Allen & Schnell, 2016; Bohrnstedt et al., 2020; Gonzalez et 

al., 2020). Identity work can be conceptualized as a process of alignment, drawing upon 

Anderson’s (2007) four-dimensional model of mathematical identity as well as Wenger's (1998) 

three modes of being – alignment, imagination, and engagement. Furthermore, studies have 

shown that peer and near-peer led activities have a strongly positive impact on students 

(Brownell & Swaner, 2010; Carrell & Sacerdote, 2013; Cracolice & Deming, 2001; Quitadamo 

et al., 2009; Trujillo et al, 2015; Williams, 2009). In our project, we combined the processes of 

mathematical identity alignment with the supporting structure of near-peer mentoring. 

Differing from many existing educational studies on informal learning that focused on 

activities held mainly in certain out-of-school or after-school settings, we seek a design scheme 

or solution for the infusion of near-peer, informal learning of mathematics for high school 

students in the school setting.  

DBR – Literature Review and Why  

Brown (1992) defined DBR in her seminal paper, followed by many literature references to 

DBR, including earlier ones focusing on the “what” and more recent papers shifting to the “how” 

of DBR (Puntambekar, 2018). Extending Anderson and Shattuck’s (2012) review of the potential 

of DBR, of the characteristics of good DBR studies, and of the growing popularity of DBR 

approaches in educational research, Fowler et al. (2022) reviewed DBR studies completed in the 

decade up to 2011. Beyond being a specific research method, DBR is an approach that centers a 

series of iterative (often educational) designs as the unit of investigation, and frequently employs 

mixed research methods and tools. Two recent studies (Hoadley & Campos, 2022; Scott et al., 

2020) demonstrated DBR’s implementations in online learning and biology education. Scott et 

al. (2020) summarized what DBR is and pointed out four differences between DBR and 

experimental approaches, which deserves readers’ special attention because most researchers and 

scientists are well trained for experimental approaches rather than DBR method. 

Why We Chose DBR? 

Design-based research (DBR) from the learning sciences, although considered a relatively 

young (about three decades old) educational research methodology, is compelling and suitable 

for our research aims. DBR has no solid requirements of instructional intervention form or 
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evaluation measurements. Rather, the intervention design as well as outcome measurements can 

be developed or employed during the design process (Anderson & Shattuck, 2012; Sandoval, 

2014). DBR focuses on investigating what the design process is and how it can be generalized 

(Cobb et al., 2003). Due to these features of DBR, it is suitable for innovative research in certain 

learning scenarios, such as ours. Tailoring the intervention and implementation process needs 

multiple iterations instead of a one-shot deal. Furthermore, the DBR approach enables a flexible 

methodology that accommodates specific situations, proving resilient and robust even in highly 

uncertain times. Notably, our project commenced amidst the COVID pandemic, and the DBR 

approach facilitated the customization of each iteration to suit the unique circumstances of each 

time period, as well as the progressing of our research agenda. 

Our DBR Project 

Following preliminary explorations and a smaller scale pilot study (Wilson and Grigorian, 

2018) showing that near peer interventions have the potential to positively affect attitudes to 

mathematics, we carried out an NSF-funded project on informal learning of mathematics. Over 

the course of three years, this project involved 1,258 students from four high schools in two 

majority-Hispanic school districts in South Texas. 

DBR Iterative Redesign Process 

The DBR iterative redesign process is visually represented in Figure 1. In each iteration, the 

evaluation of both the delivery of the experiences and the data collection processes provided 

insights that informed the subsequent iteration’s design. This resulted in a continuous cycle of 

innovation, evaluation, and refinement that ensured the experiences and the associated research 

methodologies remained responsive and adaptable to the unique learning contexts and challenges 

encountered throughout the project duration. To illustrate our design process for informal 

learning of mathematics in a school setting, we summarize the iterations. 

 

 
 

Figure 1: Iterative Informal Learning and Research Design Processes 

 

The 1st iteration. We started in spring 2021 with fully online, synchronous MathShows 
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presented to groups of classes via Google classrooms. The online modality was precipitated by 

COVID-19 pandemic restrictions. Viewing of brief pre-recorded video scenes produced by 

college student near-peers followed by live interactions with same near-peers via video and chat.  

The 2nd iteration. An easing of COVID restrictions and resumption of in-person schooling 

required changes in the program design in Fall 2021. For this iteration, live, in-person 

MathShows were performed in a large school auditorium, with multiple classrooms in attendance 

simultaneously and combined viewing of pre-recorded video scenes and interactive activities 

with near-peer mentors.  

The 3rd iteration. Live, in-person MathShows were performed in a large school auditorium, 

with multiple classrooms in attendance simultaneously. There were no pre-recorded video 

scenes, with more audience interaction, more prize opportunities for students, and more scripted 

acting by near-peers.  

The 4th iteration. Live, in-person MathShows were performed by a smaller cast of near-peer 

mentors in individual classrooms, not in an auditorium. This allowed much more direct 

interaction between students and near-peer mentors, but each MathShow was shorter.  

DBR-Iterative Instrument Design 

DBR experiments are resource intensive (Scott et al. 2020). For the research aims of our 

DBR project, we collected large amount of qualitative and quantitative data via mixed methods. 

We hereby spotlight one instrument item for its iterative design process. During the 1st and 2nd 

iterations, as one of the main quantitative measures, this study used a mathematics identity 

survey item that was adapted from well-established attitude surveys. Students were asked to 

choose from a Venn diagram to describe how much they align with being a mathematician. In the 

focus group studies during the 1st and 2nd iterations, high school students shared their various 

perceptions of a mathematician. We followed up by asking them the reason for their response to 

the math alignment question. These qualitative studies revealed to us that when respondents saw 

the Venn diagram, the circle of “Mathematician” may have different meanings to them and also 

students have different reasons for making their choice. To capture these differences in 

perception, based on students’ focus group input and using some of their exact words, we 

developed two novel items for surveys for subsequent DBR iterations to collect students’ 

understanding of mathematician and reasons for their alignment choices.  

Discussion and Conclusion 

Our project shows that by employing DBR for designing and studying learning interventions, 

mathematics educators can develop both theory and practices for the informal learning of 

mathematics. For instance, the identity-measurement instruments developed in our DBR process 

exemplify how DBR invites utilization of mixed methods synergically. An example in this study 

of qualitative research informing quantitative research is that focus group interviews (qualitative 

research) captured students’ perceptions of who a mathematician is. We then developed two more 

survey items (quantitative research) with choices written based on those high school students’ 

words. On the other hand, as an example of quantitative research informing qualitative research, 

in later iterations, focus group studies consisted of participants pseudo-randomly recruited with a 

stratified sampling method based on certain quantitative data to ensure the inclusiveness of 

different types of students in the focus group. In addition, the design scheme developed in our 

DBR project is generalizable to broader learning settings. Middle and elementary schools are 

potential places for informal learning of mathematics. Moreover, math teachers may also be able 
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to incorporate short and attention-catching informal learning components in their classrooms that 

nurture students’ positive academic emotions. Similar expansion can be made to colleges as well. 
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Choice of Problem 

There have been calls for decades in mathematics education to make curriculum relevant to 

students (Civil, 2007; Gutstein, 2006; Ladson-Billings, 1995). In this study we focus on a case of 

written instructional materials created with the mission of providing “free, nonpartisan, relevant 

math lessons that prepare all students to think critically as citizens” (Skew the Script, 2024). The 

following research questions guide this investigation: 1) How do AP statistics students view the 

relevance of the issues investigated in Skew the Script? 2) How do AP statistics students view 

the partisanship of the topics investigated in Skew the Script lessons? 

Theoretical Framework and Modes of Inquiry 

Priniski et al. (2018), drawing from a wide range of theories including culturally relevant 

pedagogy, defines relevance as, “a personally meaningful connection to the individual” (p. 12) 

and exists on a continuum from personal association to personal usefulness to identification. We 

used this framing to understand how students view the relevance of lessons. 15 secondary AP 

statistics teachers and their respective statistics students were recruited with data collection 

conducted post-AP exam administration with 70 students responding. To gauge students’ views 

of lessons, the survey also included items asking students to rate the level of relevance of each 

lesson with a 5-point Likert scale. To collect data on partisanship we asked students, “on a scale 

of 1 to 5 how would you rate the overall partisanship of the topics in the curriculum,” and also 

“of the topics you covered in class which topics, if any, did you find right leaning, …left 

leaning?” We used exploratory data analysis and qualitative coding to analyses the data.    

Findings and Discussion 

The issues students found most interesting where those related to issues of race/racism and 

sports. There were followed closely by gun violence/control, then policing and politics. Several 

also explicitly mentioned anything relevant or related to the real world. When asked to rate the 

relevance of each lesson they experienced, a majority of students rated most lessons ‘relevant’ or 

‘very relevant.’ No lessons were rated as not relevant by students. Only 12 of 70 students 

referenced a topic in response to being asked which ones they would consider right leaning, all 

others could not think of one. Of those found right leaning the only common topics were polling 

examples. In contrast, 35 out of 70 stated at least one topic to be left leaning. 51.4% of students 

rated the partisanship of the lesson overall as neutral (51.4% of respondents) with 40% reporting 

a left lean. The students in this study felt the wide scope of lessons, ranging from politics to the 

environment, were insightful and significant to their lives. In many cases, the topics were not 

directly related to them, but students still rated lessons such as these as relevant. This finding 
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suggests that these students responded favorably to lessons that were both “windows” and 

“mirrors,” to better understand both the world and themselves (Gutiérrez, 2012). 
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Researchers have positioned introductory algebra as a determinant of future academic 

success, and thus, it serves as a gatekeeper to more advanced courses in secondary mathematics 

(Stein et al., 2011). There is a general consensus among mathematics education researchers that 

algebra should move beyond rote symbol manipulation to a focus on concepts, and yet students 

still revert to procedural thinking (e.g., Christou et al., 2022; Liang & Moore, 2021; Tondorf & 

Prediger, 2022; Wilkie, 2022). This procedural emphasis is reflected in most instructional videos 

available for K-12 learning, which are similarly procedural in nature and lack student voices 

(Bowers et al., 2012; Klinger & Walter, 2022). One solution is to turn to an alternative video 

tool— the dialogic mathematics video—-that is conceptually oriented and features student-

student interactions. 

Empirical studies indicate that students evidence higher learning gains when viewing 

dialogic videos compared to expository videos (e.g., Chi et al., 2017). These studies demonstrate 

the potential for dialogic videos to enhance learning but have predominantly been situated in 

science contexts and in laboratory settings. In mathematics contexts, studies have utilized a 

qualitative approach but have focused on investigating the experience of students’ engagement 

(Lobato et al., 2019, Lobato et al., 2023). There is a need to explore the role of dialogic videos as 

an instructional tool for learning in a classroom setting. For these reasons, this study aims to 

investigate how dialogic videos as an instructional tool influences students’ reasoning in an 

algebra classroom context. Specifically, this study uses videos from Project MathTalk.  

This study draws on the theoretical construct of instrumental genesis. Broadly, instrumental 

genesis (Artigue, 2002) is the process by which an artifact moves from being a human-made 

object to something that is meaningful to the learner. Within a mathematical context, a 

mathematical artifact becomes a mathematical instrument (i.e., the artifact becomes valuable and 

useful) as the learner develops the skill to express mathematical ideas with it. In this study, I 

interpret instrumental genesis to mean the mediation of an artifact into a meaningful instrument 

(à la Alqhatani & Powell, 2017). Hence, the guiding research question is: in what ways does the 

artifact of dialogic mathematics videos mediate secondary school students’ ways of reasoning 

about algebraic expressions and equations? 

The study employed a classroom teaching experiment methodology (Cobb, 2000) with 

thirteen 9th grade students. To capture the ways in which the video artifact was influencing 

student reasoning in the classroom, whole-class video-taped observations, whole-class 

inscription, and participants’ written work was collected. Data was analyzed using a Thematic 

Analysis methodology (Braun & Clarke, 2006). The results of this analysis will report on themes 

that relate to specific ways that the video mediated students’ reasoning during key moments in 

the teaching experiment. This study contributes to the literature on learning from dialogic videos 

by documenting the mediational role of dialogic mathematics videos in shaping students’ 
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reasoning. Understanding how these videos shape students’ learning trajectories can inform 

instructional practices and curriculum development in secondary mathematics education.  
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This case study uses embodied cognition and universal design for learning to help three students, 

one with a visual impairment, understand the concept of function transformations. To 

accommodate students’ learning, a group activity used tactile representational tools to give 

meaning to function translations on a coordinate plane. Results show that the learners 

constructed a conceptual and integrated notion of function transformations. In this paper, we 

illustrate how mathematical knowledge was understood and communicated through verbal 

discourse and gesturing and raise theoretical questions about embodied ways of knowing for 

both blind and sighted students in learning pre-calculus concepts. We propose these pedagogies 

be used with all students reflective of universal design principles. 

Keywords: Algebra and Algebraic Thinking, Cognition, Students with Disabilities.  

The use of interactive algebra and geometric systems to graph functions is well-researched in 

mathematics education to foster an integrated understanding of relationships between algebra 

concepts, graphs, and symbolic notation. While there has been progress in making this 

technology accessible to students with visual impairments (VI), learning experiences for students 

with VI are not equitable and often inadequate compared to opportunities for sighted students 

(Stone & Brown, 2023). There is a need to critique and rethink how to make mathematics 

accessible to all students using principles of Universal Design for Learning (UDL) in planning 

and implementing mathematics lessons (Abrahamson, et al., 2019; CAST, 2018). Mathematics 

educators have begun to understand mathematical experience as embodied; that is, mathematical 

ideas, physical objects, the environment, and our bodies are entangled in learning mathematics 

(de Freitas & Sinclair, 2014; Yu & Oslund, 2023) with gesturing as an enactment of embodied 

learning experience (Healy & Fernandes, 2011; Hostetter & Alibali, 2008). This case study looks 

at a lesson on algebraic transformations using tactile representational tools conducted with one 

student with VI and two sighted students in a collegiate precalculus course. In this paper, we 

report episodes from the lesson, describe students’ emerging and integrated understanding of 

algebraic transformations on functions, describe the role of UDL, and connect these to the 

students’ embodied learning experiences through tactile interactions and gesturing. 

Theoretical Framework 

This research study is grounded in Universal Design for Learning (UDL) (Gully, 2021) and 

embodied cognition (Alibali & Nathan, 2012; Healy & Fernandes, 2011; Lakoff & Nuñez, 2000). 

UDL principles include providing multiple means of representation, action, and expression 

(CAST, 2018); not all bodies have access to all representations or actions, therefore, multiple 

representations provide access to more students. The goal of UDL in mathematics classrooms is 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1695 

not to accommodate students with disabilities but to create learning environments benefitting all 

students (Gulley, 2021; Abrahamson et al., 2019). This can be particularly challenging for 

postsecondary instructors with limited exposure to UDL principles (Stone & Brown, 2023). In 

the case of students with VI learning precalculus mathematics, increasing use of computer 

algebra systems and interactive graphing technology poses a challenge given the visual acuity 

necessary. Abrahamson et al. (2019) suggest a reconceptualization of what it means to visualize 

that encompasses nonvisual learner experiences and provides necessary representational tools for 

students with VI. UDL considers how representational tools, visual, tactile, or technological, may 

benefit sighted students beyond the status quo curriculum and pedagogy.  

Research has started to understand the mathematical learning of students with VI. Gerofsky 

and Zebehazy (2022) used motion to help elementary students with VI notice mathematically 

important features of graphs. Drawing from cognitive science research using fMRI techniques, 

Lakoff and Nunez (2000) suggest that visual systems in the brain are not restricted to visual 

input, stating, “...congenitally blind people, most of whom have the visual system of the brain 

intact, can perform visual imagery experiments perfectly well, with basically the same results as 

sighted subjects, though a bit slower,” (34). They explicitly connect motor control and 

mathematical ideas; an aspect schema is a neural structure that controls both complex body 

movements and rational inferences about events and actions (Lakoff & Nunez, 2000). Of interest 

to this study are continuative, iterative, and imperfect aspect schemas (Lakoff & Nunez, 2000). 

In linguistics, aspect refers to expressions that denote temporal actions that may be perfect as in 

‘yesterday I rode my bike,’ or imperfect as in ‘when I was a kid, I rode my bike every day’ 

(Smith, 1997). Specifically, we wondered how tactile representations of functions and students’ 

associated gestures activate and mediate the aspectual nature of mathematics in a student with VI 

and sighted students. In keeping with the notion that bodies and their environments are not 

separate but influence one another (Chomney et al., 2019), we use gestures to refer to motions 

made by students as they learn, including those that involve manipulation of tactile materials. 

Research on gestures in mathematics education has sought to understand the relationship 

between gestures and mathematical understanding (e.g. Healy & Fernandes, 2011; Hostetter & 

Alibali, 2008). Hostetter and Alibali (2008) sought to understand mechanisms that give rise to 

gestures. They posit that gestures are based on mental images and actions. Nathan (2021) points 

out that gestures both reveal and influence the speaker’s cognition. Lakoff and Nuñez (2000) 

described mathematics as arising from bodily experience. Although not specifically about 

mathematics, Johnson (2007) has posited that through movement we construct conceptual 

understandings, and the qualities of movement matter to the development of those concepts. The 

questions this study addresses are: (1) How does a UDL environment with tactile and other 

representational tools used in a novel way support mathematics learning for students with VI and 

sighted students? (2) How can the embodied notion of aspectual systems describe connections 

between physical action and conceptualization of mathematical ideas? (3) What role does gesture 

have in the communication and construction of mathematics in students with VI and sighted 

students? 

Methodology 

A naturalistic (Moschkovich & Brenner, 2000), multitiered teaching experiment (Lesh & 

Kelly, 2000) was conducted in an undergraduate precalculus course (n = 30) at a medium-sized 

Midwestern university. The professor of the precalculus course collaborated with one of the 
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researchers, meeting once a week to discuss ways to provide instruction to a student with VI and 

sighted students using technology and manipulatives. The data consist of field notes and videos 

of whole class sessions, videos of individual student work sessions, and videos of selected small 

group sessions. The individual and small group sessions met once a week outside of regular class 

meetings and were led by the collaborating researcher, who assumed the role of teacher-

researcher (Ball, 2000) and is identified as the instructor in this paper. There were nine video-

recorded sessions, each session lasting approximately one hour. 

This paper looks at one of the small group sessions, which was chosen for analysis because 

of the collaborative nature of the learning due to the use of the physical manipulatives and 

Instructor moderation of classroom discourse. This session included three STEM majors in the 

pre-calculus course (pseudonyms): Ian, Lexi, and Madelyn. Ian was a legally blind, male 

international student from Central Asia in his second year as a computer science major at the 

university. He was totally blind in one eye and had very limited vision in the other. Lexi was in 

her first year as an engineering major. Madelyn was in her first year as a secondary mathematics 

education major.  The video was analyzed using iterative refinement cycles for video analysis 

(Lesh & Lehrer, 2000). The first iterative cycle was the transcription process. The second 

iterative cycle was a review of the video data with the transcripts by the first author to establish 

initial themes and time code those sections of video data for deeper analysis. The third iterative 

cycle was a review of the video and transcript data, by at least two researchers at once. The use 

of transcriptions with repeated viewing of the video, by multiple researchers, provided a means 

to obtain an increasingly reliable narrative (Gulley, 2021). This allowed for a deeper analysis of 

emergent themes, including the qualities of the participants’ gestures, interactions with tactile 

materials, and the relationships between participants’ movements and the group’s discourse. For 

example, we noticed whether a student traced a tool with their fingers or tapped it into a certain 

position on their paper, the tentativeness or certainty of these motions, and how gestures either 

stood alone or were accompanied by verbal descriptions. The third iterative cycle was a review 

of video data by individual researchers to provide a deeper analysis of identified themes, 

including developing and refining written descriptions of the motions under study.      

The Focal Episodes 

In this section, we present two connected episodes from a small group lesson on exponential 

functions and transformations (translations). Before this small group session, in their precalculus 

class, students investigated function transformations. They used Desmos (Desmos, n.d.), a 

computer-based interactive graphical-algebraic system, to investigate how y = f(x) + c would 

vertically shift the graph of f(x) up or down by c units. Similarly, they used Desmos to explore 

function reflections in which y = -f(x) and y = f(-x) reflects f(x) over the y-axis and x-axis 

respectively (Boelkins, 2019). Ian, being blind, was not able to do the Desmos-based lesson, 

which required the ability to visually perceive the movement of a thin-lined graph as different 

numerical values were input into the function using a ‘slider’ feature, which changes numerical 

values by dragging the onscreen slider left and right. At this point, Ian had limited understanding 

of the concept of function transformations. While Madelyn and Lexi had completed the Desmos 

activity, they had an emerging notion of the concept of function transformations.  

This small group lesson used tactile graphs to explore how exponential functions would be 

affected by algebraic transformations. Each student was given large sheets of embossed graph 

paper (16” x 22”) with Wikki Stix, which are made from yarn coated in wax, making them 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1697 

flexible and easily manipulated (Wikki Stix, n.d.). They can be made into sculptural elements or 

stuck onto paper to ‘draw’ 2D images and are typically used by children as a creative tool. Using 

principles of UDL, Wikki Stix provided a tactile representation to make graphing accessible to 

Ian while providing Lexi and Madelyn with an alternate representational tool to explore graphing 

and function transformations. Google Jamboard, a 55-inch digital touch screen and an online 

whiteboarding application, that allows for simultaneous group collaboration, was also used to 

record students’ mathematical ideas. Ian had enough sight though the outside corner of one eye, 

allowing him to write and read large block letters written on the 55-inch Jamboard digital touch 

screen. Lexi and Madelyn could also access, write, and read the Jamboard on digital tablets using 

the Jamboard application. 

Episode 1 – Initial graph and finding the equation of Y =A BX 

When the instructor initially took out the large sheets of embossed graph paper and 

introduced the Wikki Stix, Lexi said, “These are my favorite when I was a kid… this is so 

exciting” indicating affective familiarity. Madelyn had also used Wikki Stix in elementary school 

art classes, and Ian had used Wikki Stix in a previous mathematics course. However, this was the 

first-time students had used Wikki Stix this semester so there was a brief acclimation period as 

they made sense of the tools. During this time, Ian ran his fingertips over the embossed graph 

paper feeling the physical boundary of the paper and locating the physical center.  

The instructor put a Wikki dot at the physical center of Ian’s paper saying, “So the point right 

there is (0,0), OK?” Seeing where the dot was placed on Ian’s paper, Lexi and Madelyn drew 

their origin points at a similar spot on their graph papers. The instructor began by giving 

directions to the group, “Vertically on the Y-axis, pick a number either two or three [for the Y-

intercept]. It's your choice, OK? [Then] go over to where X is equal to 10. And then you pick a Y 

value. The coordinate is going to be 10 comma, and your Y value can be anywhere from 6 to 10. 

So, you could do (10,6), (10,7), (10,5) ... then take one of the Wikki Stix and I want you to put 

what you think is an exponential growth graph through those two points.” The design of this 

activity allowed for each student to pick their own Y-intercept and point thru (10, y) so that each 

of their graphs were particular to their choice of points. The intent was to have three different, 

but similar exponential functions. Using his fingertips, Ian carefully placed the Wikki Stix 

through his points (0, 3) and (10, 6) (see Figure 1). The tactile nature of Wikki Stix made it 

possible for Ian to work at the same rate as Madelyn and Lexi. Ian and Lexi’s Wikki Stix graphs 

spanned both the first and second quadrant while Madelyn’s graph was only in the first 

quadrant.   
 

 

Figure 1: Ian’s placement of his graph on embossed graph paper with Wikki Stix 
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As they were simultaneously completing their graphs, the students were then instructed to 

find the exponential function that would go through their respective y-intercept and point (10, y), 

with the instructor saying, “[All three of you] get to your Jamboard [file]. Ian’s on [page] 2, 

Madelyn, you can go to page 3. Lexi, you can go to page 4, and find the exponential function 

that goes through [your two] points. Get the formula for [your respective exponential 

functions.]” Each student spent 10 minutes working individually on algebraic calculations on the 

Jamboard to find the equation of their respective exponential functions. During this time, they 

were also instructed to use their exponential function to evaluate more points on their graph. The 

instructor said, “So now what you should be able to do is [to] use those [calculate coordinate] 

points to plot a few more of points on your graph…so you can really kind of dial [your Wikki 

graph] in…. Now we're done with the calculation, right? But try and make your graph as smooth 

exponential looking as possible.” As Madelyn completed her calculations to find additional 

points on the graph, she reconfigured her Wikki graph so that it spanned both first and second 

quadrants. All three students used the coordinates from their algebraic calculations to create 

refined graphs for their exponential functions.  

In this episode, we see the benefits of UDL in many ways (Gulley, 2021; Abrahamson et al., 

2019). First, was the unintended, but positive affective response by Lexi and Madelyn in their 

recollection of using Wikki Stix as young children in creative and artistic contexts. For Ian, his 

familiarity with embossed graph paper and Wikki Stix provided a means for him to graph the 

functions at the same rate as the sighted students and with access to the same salient features of 

the representational tools as the sighted students. As a result, Ian’s ability to reason 

mathematically was not hindered by the visual nature of graphing functions using traditional 

pencil and paper or digital technology. For all three students, the Jamboard provided a 

collaborative space to do mathematical calculations. In interviews, all three students have shared 

the benefits of Jamboard. Ian commented on how Jamboard was ‘game changing’ in providing a 

thinking space for his calculations. Lexi and Madelyn commented on how they like that all work 

done by their professor, small group instructor, and peers can be accessed via the Jamboard. 

Furthermore, this Jamboard became a mutual thinking space for all the students, which contrasts 

with working on scratch paper with pencil which would be inaccessible to a legally blind student 

like Ian. By thinking space, we mean a physical or cognitive space to wonder, postulate, 

calculate, or conceptualize. Thus, the Wikki Stix and Jamboard are reconceptualizations of ways 

to visualize emerging mathematical ideas for all learners (Abramson et. al., 2019). 

Episode 2 – Moving the graph up two units to find Y =A BX + C 

For the next mathematical task, the instructor said, “translate the whole [exponential 

function] vertically 2 units up. But I want it to be as precise as possible.” Ian took a second 

Wikki Stix, and starting at x = -14, and began to lay it adjacent to the original Wikki Stix 

function graph, but two units up. In doing so, his gestural motions were done in an artistic or 

sculptural way as he used his fingertips to ‘feel’ the two-unit difference, or space, between the 

two Wikki Stix. He carefully moved his hands from left to right along x = -14 to x = 14. By 

sculptural, we mean a wholistic and careful gestural motion, but mathematically intentional in 

preserving the two-unit distance. As he worked in the first quadrant, Ian was intentional about 

checking the two-unit distance at discrete points between the two Wikki Stix graphs. Lexi used a 

similar gestural motion, but more iterative. Starting from right to left, she tracked the two-unit 

difference at different points along the function with her fingers while looking at the graph paper, 
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thus setting the second Wikki Stix a constant two-units vertically shifted up. After initially 

setting the second Wikki Stix, Lexi double-checked and refined her translated graph to be as 

precise as possible making incremental adjustments to the Wikki Stix graphs. Madelyn began her 

translated graph by starting at the y-intercept and setting the second Wikki Stix two units up from 

the original function at that point. Stretching the Wikki Stix, she then visually ‘jumped’ to a point 

on the first graph around x = 6 and translated that point up two-units. She then ‘jumped’ to a 

point around x = 10 and translated that point up two units as she stretched and placed the Wikki 

Stix to make her graph. She was very intentional about making sure that the point-to-point 

distance was two -units as she twice ‘pulled up’ the Wikki Stix along sections and reset it on the 

graph paper. In contrast, Lexi’s revisions were more incremental, and Ian did not revise his 

translated graph due to his more deliberate gestural process.  

In a few minutes, the instructor asked students to describe their process and thinking behind 

it. Lexi began, “I just took every unit and moved it two upward from wherever it was...so since 2 

units is 1 box, first I just mirrored it. Not mirrored, but put it in the same place [two units up].” 

Madelyn said, “I looked at the Y value [of the original function] and then added two and then 

put [the Wikki Stix] on the same X line.” When asked how many points she checked, she replied, 

“Oh I looked at all of them, I only had seven points that I calculated but I looked at all of them.”  

When asked how he translated the graph, Ian said, “I looked at it, how wide is [it] with my 

fingers, and just go through, shoosh.” Using his index and middle fingers as a measuring tool, he 

ran them together in the space between the two graphs in a smooth sweeping motion (See Figure 

2). 

The instructor commented to Ian, “OK. Yeah. You kind of did it almost [like] Desmos, 

almost like dynamically, right?”   

 

 

Figure 2: Ian’s two fingered ‘shoosh’ motion 
 

In this section, gesturing provided the means for all three students to both explore and 

explain their mathematical ideas.  The students’ mathematical reasoning related to translating the 

exponential function vertically two units can be explained using the aspectual structure 

framework (i.e., the structure of events) as described by Lakoff and Nunez (2000). An aspectual 

action is temporal and may be continuous or iterative. If the aspectual action is unending, or 

implies an infinite nature, it is considered an imperfect aspect. An example of an imperfect 

continuous aspect in this episode was when Ian described his approach of graphing the translated 

function, “I looked at it, how wide it is with my fingers, and just go through ‘shoosh’,” as he 

verbalized his gesture. His conceptualization of translating the function was through motor 

movements (gesturing and replacing the Wikki Stix) and being satisfied with the completion of 

the task. His gesture also had an imperfective aspect in that it was a continuous, unbounded, 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1700 

motion in which the ‘shoosh’ implied space between the Wikki Stix functions continuing to 

infinity. Mathematically, this imperfective aspect schema suggests that Ian had developed a 

notion of vertical translations to be holistic, smooth, continuous, and infinite. Lexi also used a 

gestural motion but was more incremental as if moving point by point along the x-axis from left 

to right on her Wikki graphs, which suggests an incremental imperfect aspectual structure. In her 

mathematics she was aware of a ‘plus 2’ relationship. This suggests Lexi had developed a notion 

of vertical translations to be discrete, incremental, and infinite. However, Madelyn’s gestural 

motion as she placed the vertically translated Wikki Stix seemed more intentional at specific 

points along the graph, as she seemed to be intentionally translating specific points of the 

function. This indicates she had developed a notion of vertical translations to be structurally 

related to the values of the function. As suggested by Lakoff and Nunez (2000), students' motor 

movements reflected their mathematical conception of function translations, an imperfect 

aspectual structure for Ian and Lexi. Madelyn’s gestures seemed to reflect the algebra of adding 

two units to each Y-value. 

Then to the group, the instructor asked, “So that idea of how you added two to each one, 

right? What is the equation of that [second translated] function right there?”  

Ian began by saying, “Whatever the Y is double +2? There is no formula because....”  

Lexi added, “Well the rate of change [of both functions] is the same, so B is the same as what 

it was before, and A would be... plus two [to] whatever…A…so add two to you’re A-value.” 

Both Lexi and Ian concluded that the A value in their exponential equation would be 5.  

The instructor then asked students to produce full formulas for their translated functions. Ian 

immediately said, “5 times 1.07 to the X power.” Lexi affirmed that, saying her function would 

be 5 times 1.1 to the X power.   

Madelyn then shared her idea saying, “I feel like you would just add [the 2] because it's a 

vertical shift and if you're adding...If you're multiplying by a large number, isn't your exponential 

going to be like? Messed up? Don’t you just add 2 to the value that you get for Y?” As she said 

this, she gestured with her right hand tracing an exponential graph in the air.  

Ian suggested, “What about if we do the reverse?” Placing his hands on his Wikki graph, Ian 

touched the Y-intercept of the translated graph, “It's already 5. Here in this point, it's already 5, 

not 3. We have nothing to do with the three, let's say, and we start from the five. What do we 

get?”  

Realizing that the Y-intercept was a special case that afforded varied mathematical 

possibilities, the instructor said, “OK, let's go out to some arbitrary point…other than the Y 

intercept. There's two ideas, right? You could either multiply by 5 or we could add 2 to the 

whole thing.” He then spoke to Madelyn saying, “and you said add 2 to which one?” 

She replied, “Just add 2 to like the whole thing, because then your Y value would be up by 

two and then to be vertically translated up by two… So, I think you just add 2 to the end of the 

equation.”   

Touching the original graph at (14, 7.74), Ian said, “So you mean like the result of mine [the 

y-value of the original function at x = 14 is] 7.74, so [the y-value of the translated function would 

be] 9.74.” 

Madelyn confirmed, “Yeah, that's what I'm thinking.” 

Lexi added, “So mine would be 3 times 1.1 to the X power + 2.”  
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The instructor said, “Now you can check values if you want, you can take a minute and like 

plug in values and verify it. But let's think about it conceptually… and seeing the function as the 

object itself… So, every single one of those points is representing your functional value and what 

you just physically did is you just kind of shifted [all of] them up [2 units] …You added two to 

each value.” 

Madelyn concluded, “So it's function plus two,” with the instructor affirming her conclusion.  

An important element of UDL in this episode is the discourse between students (Gulley, 

2021; Abrahamson et al., 2019). All students could fully participate in the group’s construction 

of functional transformation. When students were asked to define the equation for the translated 

function, Ian offered, “Whatever the Y is of them, +2. Minus. there is no formula because…” At 

that moment in time, his graphical reasoning has been completed and he could not conceptualize 

a different approach (e.g., symbolic) of representing the translation. Lexi’s explanation focused 

on various aspects of the exponential function, like rate of change, initial value ‘A’, and growth 

factor ‘B.’ Lexi also had the concept of adding two to some part of the function and settled on 

adding two to A. Madelyn’s concept of the exponential function equation centered on adding two 

to ‘the whole thing.’ Through discourse, elements of Ian’s explanation of his motor movements 

and graphical explanation seemed to transfer to his conceptual development of symbolic 

representation. For example, later during group discussion, he used the word “reverse” indicating 

elements of his aspectual structural thinking-- taking the concept he already formulated and 

reversing it as a counterexample to explain his approach to translating the function. Towards the 

end of the discussion, in response to Madelyn’s suggestion to add two to the end of the equation, 

Ian concluded, “So, you mean the like result of, like mine got 7.74. so, it's 9.74...So then we 

don't have to touch the A then, right?” His use of “result” (to mean the solution for Y) and 

“touch” (to mean not changing the function’s initial structure) seemed to support him to structure 

his conceptual understanding of the symbolic representation of the function translation. 

Similarly, Lexi and Madelyn progressed in their symbolic formalization as they both reached a 

point of mathematical certainty, that the translated function was the original function plus two. 

Conclusion and Implications  

The purpose of this study was to investigate a UDL lesson with tactile representational tools 

(Abrahamson, et al., 2019) to understand embodied ways of learning mathematics. The questions 

we considered are: (1) How does a UDL environment with tactile representational tools support 

mathematics learning for students with VI and sighted students? (2) How can the embodied 

notion of aspectual systems describe connections between physical action and conceptualization 

of mathematical ideas? (3) What role does gesture have in the communication and construction 

of mathematics in students with VI and sighted students? 

The UDL environment with novel tactile and technological representational tools supported 

mathematics learning for students with VI and sighted students. By the lesson’s end, all students 

were engaged in meaningful discourse to generalize their varied embodied ways of 

understanding function transformations into a symbolic representation. Interestingly, throughout 

the lesson, there was no mention or indication that one student had a visual impairment, nor did 

it appear to limit their participation. Activities focused on the mathematics task, interaction with 

tools, discourse with group members, and constructing mathematical knowledge.  

The embodied notion of aspectual system (Lakoff & Nunez, 2000) was used to describe 

connections between physical actions with Wikki Stix and conceptualization of the mathematical 
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concept of function transformations. Some aspect schemas of function transformation observed 

in this lesson were the before and after function transformation graphs, movement to get from 

one function graph to the translated function graph, and the mathematical conclusion that the 

resulting translated function is ‘function plus two.’ Ian and Lexi’s initial imperfect aspectual 

structures did not initially lead to the correct algebraic function formulas but did provide an 

experiential context that mediated the correct algebraic function with the help of Madelyn’s 

mathematical observation of adding two to the whole function.  

The role of gesture in communication and construction of mathematics with VI and sighted 

students may be seen in the manipulation of the Wikki graphs and how those manipulations 

informed the student’s mathematical language (Alibali & Nathan, 2012) and mathematical 

understanding (e.g. Healy & Fernandes, 2011; Hostetter & Alibali, 2008). Moreover, the 

students’ gestural interactions with Wikki Stix gave insight into and influenced the students’ 

mathematical thinking (Nathan, 2021) in a manner we suggest differs from what might be 

elicited with interactive digital technology or pencil and paper graph construction alone. 
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Abstract: In this study, we designed a concreteness fading intervention that taught middle 

schoolers vector addition. Our intervention allowed the participants to experience informal 

vector addition, solve the same problem in a simulation game, work on similar issues on a 

worksheet, and present their learning in a story creation activity. We examined their use of 

gestures during the intervention and discovered pointing and representational gestures mainly 

were used. The participants used pointing gestures to index objects related to the task and 

indicate the following representations, and their representational gestures simulated their 

actions, reflected their mathematical thoughts, replaced their speech, and performed abstract 

pointing. Our study provided a scrutinized way to inspect learning in a concreteness fading 

intervention. 

Keywords: Cognition, Informal Education, Middle School Education 

Introduction 

Secondary mathematics educators often introduce mathematical concepts through formal 

notations (a "formalisms first" approach; Nathan, 2012) that often impede students' grounded 

meaning-making and transfer. Among various mathematical topics, Gubrud and Novak (1973) 

discover that vector addition causes learning difficulties for middle schoolers as they fail to 

develop a clear and stable concept of it. If students only learned those symbols of vector 

arithmetic from their math class, they would probably struggle with college-level vector 

arithmetic (see Knight, 1995). Therefore, developing an intervention that empowers students to 

gain a grounded understanding of vector addition is critical to secondary-level education. 

Another point worth mentioning is that most mathematical learning studies observe the 

participants' learning by comparing the performance of their pretest and posttest. Since 

mathematical understanding is usually embodied (Lakoff & Núñez, 2000), we think observing 

gestures in a vector addition learning intervention can enable us to understand better how 

students develop their mathematical thoughts. 

Theoretical Framework 

A vector is a highly conceptual idea and inaccessible in daily life. Bruner (1966) proposes 

three stages –enactive, iconic, and abstract–for learners to understand new concepts. Inspired by 

these three stages, there is an instructional approach called concreteness fading (CF) that refers 

to a learning process in which students start learning a new concept or skill with concrete 

learning materials related to their previous knowledge that gradually transitions to more 

symbolic learning materials (Fyfe et al., 2014). In a CF intervention, students will first encounter 

something that they are relatively familiar with, and then the same learning content will be 

presented to them in a way that gradually becomes more idealized so that it "involves the least 

effort of an agent to infer the invariant relation as part of generalization and transfer" (Fyfe & 

Nathan, 2019, p.6). Finally, formal notations can be introduced to students without intimidating 
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them. With a CF learning process, students are expected to develop their understanding of the 

intervention. Previous studies explore the efficacy of the CF technique in teaching the equal sign 

(McNeil & Fyfe, 2012), basic circuits (Jaakkola & Veermans, 2018), and complex systems 

thinking (Goldstone & Son, 2005). Studies applying CF to vector addition among secondary 

students may have potential though it has not been researched before. 

Regarding estimating students' understanding during a CF intervention, observing their use 

of gestures can be a good approach since people's developing ideas can be expressed by gestures 

(e.g., Hostetter & Alibali, 2019). Furthermore, focusing on gestures in an instructional 

intervention can reveal learners' mental representations of a concept (Nemirovsky & Ferrara, 

2009) and indicate how learners ground the meaning of unfamiliar concepts and formalisms 

(Koedinger et al., 2008). For systematic analysis, McNeill (1992) categorized gestures into four 

types: 1) pointing, 2) iconic, 3) metaphoric, and 4) beat. Except for beat gestures, all the other 

three types of gestures convey semantic information relevant to learning contexts. Based on 

McNeill's categories, Alibali and Nathan (2012) distinguished between pointing gestures, which 

reflect grounded cognition in a physical environment; representational gestures, which 

demonstrate mental simulations of actions and perceptions; and metaphoric gestures, as a 

subcategory of representational gesture, which indicate body-based conceptual metaphors.  

Previous research has discovered that iconic gestures can better help students embody 

mathematical concepts than pointing gestures (Swart et al., 2017) in a CF intervention. However, 

how different types of gestures allow students to construct mathematical thinking remains further 

examined. In this paper, we will use Alibali and Nathan's taxonomy to analyze the gestures in a 

CF intervention. Thus, our research question is how students use different gestures during a 

"concreteness fading" intervention that teaches vector addition. 

Methods 

Participants 

We recruited six volunteer 8th graders (pseudonyms: Alice, Kevin, Jason, Emily, Anne, and 

Chris) from a charter school in a large Midwestern city in the U.S. Students' math performance in 

this school was below the state average, according to U.S. News & World Report. They had 

learned the coordinate plane in 7th grade and had never learned the concept of vectors before. 

According to our pre-study screening, none of them could conduct vector addition. They were 

randomly divided into two groups of three for this study. 

Study Design 

In this study, we designed an intervention to teach students vector addition using the vector 

components method. Reflecting Bruner's (1966) three stages of perceiving new concepts, the CF 

intervention has three stages (Enactive, Iconic, and Abstract), with one task per stage. After the 

three stages, we added an extra task (Constructionist Problem Design) to examine students’ 

knowledge application in another setting. 

Enactive stage. The task in the Enactive stage is called Physical task. The researcher will 

first ask the participants to tile the floor with cardboard tiles in two colors. Then, two students 

will step onto the tiles and randomly select two points to stand on and discuss how to describe 

their positions. After they come up with an approach to describe positions on the tiles, the 

researcher will give one participant a foam football and ask the participant to walk along the tiles 

to deliver the football to the other participant. Next, the researcher will ask the third student to 

use red sticks to measure the tiles that students walked leftwards or rightwards and blue sticks to 
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measure the tiles that walked frontwards and backward. Then the researcher will ask the student 

who delivers the football to directly pass the football to the other student and ask the third 

student to measure the distance with yellow sticks (see Figure 1 left). 

 

  

Figure 1: Physical task in Enactive stage (left) and Depictive task in Iconic stage (right) 

 

Iconic stage. The task in the Iconic stage is called Depictive task. Students will play a 

football passing simulation game developed by the researcher (see Figure 1 right). In this game, 

students need to decide the units to add along the x and y axes (red and blue arrows) to make the 

quarterback pass the football to the wide receiver on a grid football field. If the ball is 

successfully delivered to the wide receiver, the wide receiver will move to a random place 

toward the end zone, and the quarterback will move to the place where the wide receiver stays 

before moving. Otherwise, the ball will be returned to the quarterback. Also, there is a button by 

clicking which students can see the projected trajectory (yellow arrow). The winning condition 

of this simulation is to have a touchdown pass. Each group will play two to three rounds. 

Abstract stage. The task in Abstract stage is called Symbolic task. In this stage, students will 

have a worksheet that includes questions in a football context (see Figure 2). In addition, they 

will encounter formal vector notations on the Cartesian coordinate plane. Students will work 

separately on the questions first and then have a group discussion to share their answers and 

thoughts. 

 

 

Figure 2: Symbolic task in Abstract stage 

 

Task constructionist problem design. After three CF learning stages, there is an extra 30-

minute task called "constructionist problem design" (CPD), in which participants built a story 

together to demonstrate their learning. The participants start with rough ideas by considering one 

of the learning objectives and selecting one of the contexts in the conceptual story design sheet 

we provided (see Table 1). They then use the materials–crafting sticks, IKEA artist's figures, 

color markers, and blank paper–to build a story related to the learning objective. When the 

participants make a rough story, the researcher will ask some prompt questions (e.g., how to 

describe the positions of your characters?) to let the participants iterate their story by adding 
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more mathematical concepts. After they complete their iterative story building, the researcher 

asks every participant to retell the story and inform the mathematical concepts in their story. 

 

Table 1: Conceptual Design Tool 

 

Item Option 

Learning objectives a. How to describe the movement (resultant) in terms of x and y? 

b. What are the most important things about vectors? 

c. What does your friend need to know about the coordinate system? 

Contexts a. Robotics 

b. Fashion 

c. Bicycling 

d. Soccer 

e. Basketball 

 

Data Collection and Analysis 

The researchers went to the middle school and conducted two study sessions in spring 2022. 

Each study session lasted approximately 2 hours after regular school hours. Alice, Kevin, and 

Jason were in the first study session, and Emily, Anne, and Chris took part in the other study 

session. Before each study session, we obtained consent from the participants’ parents and the 

participants. During each study session, two video recorders were set up from different views to 

capture video and audio data. 

We conducted a video analysis to analyze students’ speech and gestures. We first captured 

every gesture in the videos and then segmented the videos into “clips” at the boundaries of verbal 

topic changes. If the participants had a couple of gestures when talking about one topic, these 

gestures were grouped but would be analyzed separately. Based on Alibali and Nathan's (2012) 

taxonomy, we developed a coding scheme (see Table 2) that included gestures. We first 

determined whether a video clip contained a pointing or representational gesture. For pointing 

gestures, we documented the object the participant was pointing to. For representational gestures, 

we examined whether it was metaphoric or iconic. If no clear metaphor was involved, we 

identified what the gesture depicted. If there was a metaphor, we identified the body-based 

concept this gesture represented. 

 

Table 2: Gesture Coding Scheme 

 

Gestu

re Type 

Pointi

ng 

Gesture 

Target 

Representatio

n 

Metaphor

ic 

Metaph

or 

Pointi

ng or 

Represent

ational 

Specifi

c target 

Specific 

representations 

Yes/No Specific 

metaphors 
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Results 

Pointing Gestures 

This study analyzed 262 gestures from 248 segments. In response to our first research 

question, we discovered that students’ pointing gestures were tightly associated with the 

surrounding physical environment and the undergoing learning materials. Most pointing gestures 

were used to link students’ speech to referents. Concerning the concreteness level of referents, 

Fyfe and Nathan (2019) suggest examining the referent from three dimensions: physicality 

(whether an object is three-dimensional or two-dimensional), perceptual richness (how an object 

appears), and narrative context. During the Enactive stage (see Figure 3 left), participants pointed 

to the items of high physicality and perceptual richness (e.g., tiles and sticks they used) and real-

world space (e.g., one side of the tile) highly contextualized in their conversation. When they 

were playing the football simulation game during the Iconic stage (see Figure 3 right), they still 

pointed at objects of high perceptual richness, such as buttons on the screen, but they also 

pointed at the arrows or the parameters of X and Y on the screen, which they realized had a 

relationship with the ball movement in the game. The targets the participants pointed to in the 

Abstract stage (see Figure 4) were mostly formalisms such as lines, axes, and dots on the 

coordinate plane. These gesture referents reveal that participants got more comfortable talking 

about idealized symbols on a coordinate plane across the CF stages. The similar contexts and 

problems across stages helped them transition from tangible physical learning to conceptual 

abstract reasoning. 

 

  

Figure 3: Pointing Gesture in Enactive Stage (left) and Pointing Gesture in Iconic Stage 

(right) 

 

Another noticeable use of pointing gestures is to help the participants explain mathematical 

thoughts in the Abstract stage. It might be because they lack accurate mathematical language and 

tend to use pointing gestures to assist their explanations. For instance, Figure 5 (left) shows the 

participant first used her pen to point at the red arrow and move to the location on the coordinate 

plane where she wanted the red arrow to move to and did the same thing to the blue arrow. In 

this excerpt, the participant had the idea of how the two arrows would impact the resultant, yet 

she did not have the concept of parallel vectors in mind, so she used pointing gestures to explain 

how to “copy-paste” arrows here. 

The other function of pointing gestures is to index representations. This function of pointing 

gestures often takes place in the Abstract stage. For example, in Figure 5 (right), the participant 

pointed at 6 on the x-axis and then traced the grid line to point (6,2). In this example, his pointing 

at 6 was not referring to the number on the x-axis but helping him locate the coordinate point 
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(6,2) as he knew the number on the x-axis is a component of the coordinate space (6,2). Pointing 

at the axis and tracing the grid line helped him locate a position on the coordinate plane more 

easily. 

 

 

Figure 4: Pointing Gesture in Abstract Stage 

 

 

Figure 5: Pointing Gesture - Assisting Explanation (left) and Indexing Representations 

(right) 

 

Representational Gestures 

For representational gestures, we discovered four main functions. The first was to simulate 

actions. Hostetter and Alibali (2019) state that people automatically use gestures to reflect the 

motor activity that they are thinking about and speaking about, which is defined as Gesture as 

Simulated Action (GSA). GSA was also observed in this study. For instance, when Emily, Anne, 

and Chris were designing their own story to describe the movement in terms of x and y on a 

coordinate plane, they had a lot of details about how to pass a bouncing ball on a basketball 

court. When Chris said he needed a perfect angle and strength to pass the ball, he raised his hand 

and arm and gestured to throw a ball (see Figure 6).  

 

 

Figure 6: Throwing Gesture 

 

The second was to simulate the behavior implied by a mathematical object. This type of 

representational gesture appears in every stage of the intervention. For example, in Figure 7, the 
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participant was asked about the relationship between the yellow arrow and the red and blue 

arrows in the game. He waved his hand and said it was the diagonal line. In this example, the 

participant’s waving his forearm to represent the yellow arrow meant he knew the direction of 

the yellow arrow was impacted by the blue and red arrows and it was like a diagonal line. 

 

 

Figure 7: Representational Gesture-Mathematical Objects 

 

The third was to replace their speech. Sometimes, when the participants would omit their 

words but had a gesture, this gesture delivered a clear message to others about what this 

participant intended to say. For example, in Figure 8, when asked about the relationship between 

the two vectors on the worksheet, Kevin used his pen to trace the right-angle symbol he drew 

between the two vectors and said, “it looks like...” His tracing of the right-angle symbol implied 

he wanted to say there was a right angle between the two vectors.  

 

 

Figure 8: Representational Gesture–Replace Speech 

 

The fourth was to have abstract pointing. Since the intervention in this study had three stages 

and an additional task, the participants sometimes would refer to some items that appeared 

before. They tended to point at the place where the item used to be. This was not a pointing 

gesture but a representational gesture, as their pointing represented the item they had 

encountered before. For example, in Figure 9, the participant was pointing at the table and said 

the question on the worksheet was like the game they did. He was paralleling the question and 

the simulation game, and this representational gesture indicated students made mutual referents 

among tasks. 

 

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University. 

1711 

Figure 9: Representational Gesture-Abstract Pointing 

Discussion 

As mentioned above, the participants’ use of pointing gestures is associated with the learning 

environment and the undergoing learning materials. This association leads the participants to a 

common ground. Common ground refers to knowledge, beliefs, and assumptions mutually 

shared by a group of people (Clark & Schaefer, 1989). When the participants worked on the tasks 

together, their brains established “a shared understanding” by temporally constructing a conjoint 

space in their social interaction (Gallese, 2003). In a learning setting, gestures can maintain the 

common ground among a group of people by referring to objects that are both physically 

present/non-present and introduced through language (Nathan et al., 2017). Thus, in every task of 

this intervention, the participants attempted to use pointing gestures to refer to the objects in the 

current learning context and created a common ground in their group to ensure everyone was on 

the same page. 

The other two functions of pointing gestures are related to distributed cognition in their 

learning environment. Since pointing gestures for assisting mathematical explanation and 

indexing representations mostly emerged in the Abstract stage, the participants leveraged the 

learning environment and the elements in it (e.g., the coordinate plane grid on the worksheet) to 

help them develop their ideas and express their thoughts. Students’ development of mathematical 

thinking is likely to be enhanced when they participate in mathematical activities that involve 

reasoning with tools and allow them to interact with the environment (Cobb, 2011). Moreover, 

by interacting with the learning materials and environment, they started to set up the prerequisite 

of developing a grounded understanding of the meaning and utility of generic symbolic 

representations. 

The affordance of representational gestures was to communicate their ideas and demonstrate 

their mathematical thoughts precisely. Plausibly, the simulated action and abstract pointing 

gestures were for better communication during the intervention. In the CPD task, the participants 

had more representational gestures as simulated actions, and they had abstract pointing gestures 

in every task other than the first one. It was because they needed a clear image to let their 

teammates know what they were talking about by either acting it out or connecting to previously 

encountered elements. In addition, when the participants started to have gestures that implied 

mathematical objects, this could be the moment when they showed their grounded understanding 

of the concept they learned from the intervention. Because the topic in this study was fresh new 

to 8th graders, they lacked sufficient mathematical language to express thoughts and needed 

gestures as auxiliaries to help them precisely deliver their mathematical thoughts, which also led 

to their use of gestures to replace their speech. Sometimes, the learner cannot produce the exact 

mathematical word, so s/he uses a representation gesture to replace the speech, defined as direct 

consequence (Alibali & Nathan, 2012).  

For the theoretical contribution of this study, we inspect CF learning through an innovative 

lens. There is no previous CF study incorporating gesture analysis to understand students’ 

learning, so this study implies that examining learning in a CF study can be at a micro level 

besides assessing learning through a knowledge test (e.g., the content knowledge questionnaire 

in Jaakkola & Veermans, 2018). After identifying the way of using gestures in a CF intervention, 

the next step is to trace the train of reasoning of every learner and understand what 

representations are built during and after the course of a CF intervention. As for the practical 
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contribution, we realize that students are uncomfortable with unfamiliar mathematical symbols. 

By asking them to explain their thoughts and observing their use of representational gestures, we 

can capture their trouble spots (see Alibali et al., 2013) and provide necessary scaffolding to help 

them get used to those symbols.  

This study has several limitations. First, it is hard to capture every gesture when videotaping 

the learning process. Second, there is significant individual variability of gestural production. 

Third, due to the limited resources, this study only has two groups and six participants, making it 

hard to generalize a quantitative pattern to determine the relationship between the use of gestures 

and the different stages of a CF intervention. 

Conclusion 

Concreteness fading can be seen as a powerful and flexible instructional approach for 

teaching about vectors, which is an essential conceptual domain for mathematics and science. 

Gestures provide a rich window into children’s intellectual development as they move through 

the stages of concreteness fading. By inspecting pointing and representational gestures in a 

concreteness fading intervention, we can better understand how students interact with the 

learning materials and environment and how they develop their mathematical thoughts. Future 

studies may consider conducting similar micro-level analyses to scrutinize learning in CF 

interventions. 
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This study explores students’ perceptions of ChatGPT in a university-level calculus course and 

how their perceptions influence their actual use of the tool for calculus learning. Based on the 

Technology Acceptance Model (TAM), this study focused on how two students with contrasting 

perceived usefulness (PU) and perceived ease of use (PEU) engaged with ChatGPT. This study 

showed that with higher PU and PEU, the students are more likely to use ChatGPT in their 

calculus learning. We suggested that fostering positive perceptions of students is important to 

promote ChatGPT's potential as a learning aid.  

Keywords: Calculus; Technology; Instructional Activities and Practices; Undergraduate 

Education.   

The integration of artificial intelligence (AI) into education marks a significant turning point 

in the academic landscape. ChatGPT, a sophisticated AI chatbot launched by OpenAI in late 

November 2022, has demonstrated its innovative utility as an educational resource by answering 

academic queries, providing explanations, and generating both text and images (Lo, 2023). To 

date, research on the potential of ChatGPT in mathematics education is limited. Available studies 

suggested that ChatGPT’s performance in solving mathematical problems varies based on the 

complexity of the questions and the specific subject area, with a tendency towards higher 

accuracy in simpler inquiries (Dao & Le, 2023; Wardat et al., 2023). In addition, ChatGPT was 

found to struggle with mathematical word problems, particularly when required to show its 

solving process (Shakarian et al., 2023). Research also found that ChatGPT’s performance in 

mathematics is unsatisfactory compared to other subjects (Lo, 2023) and significantly below the 

level of a graduate student (Frieder et al., 2023). However, studies by Patero (2023) and 

Zafrullah et al. (2023) emphasized ChatGPT's positive impact on student attitudes and 

engagement in learning mathematics.  

Previous studies have mainly focused on ChatGPT’s performance in mathematics and there is 

a lack of research on students' perceptions regarding the use of ChatGPT in mathematics 

learning. Researchers (e.g., Chan & Hu, 2023; Kostka & Toncelli, 2023) have called for further 

exploration into students' perceptions and experiences with ChatGPT. This study explored how 

students’ perceptions of ChatGPT influence their actual use of the tool in mathematical learning. 

The guiding research question for this study is: How do two college students with contrasting 

perceptions of ChatGPT engage with the tool for calculus learning? 

Theoretical Framework 

The Technology Acceptance Model (TAM) (Davis et al., 1989) has become a widely 

accepted framework for investigating the acceptance of learning innovations by various 

stakeholders in educational contexts (Abuhassna et al., 2023; Granić & Marangunić, 2019). TAM 

posits two primary factors that predict an individual's behavior towards accepting or rejecting 
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technology: perceived usefulness (PU) and perceived ease of use (PEU). PU is defined as the 

degree to which a person believes that using a certain technology will enhance their performance 

(Davis, 1989). PEU denotes the degree to which a person believes that the benefits of technology 

outweigh the effort required to use or learn it (Davis, 1989). According to TAM, both PU and 

PEU are significant predictors of an individual's attitude towards, intended use of, and actual 

usage of a specific learning technology (Davis, 1989). Empirical studies in the educational 

domain have shown that PU and PEU can effectively predict the actual usage of learning 

technologies across various contexts (Hsu, 2012; Luan & Teo, 2009; Nagy, 2018; Teo et al., 

2008; Ubaidillah et al., 2020), including in the study of mathematics (Zogheib et al., 2015). 

Researchers have reported that PU and PEU can significantly affect learners' acceptance of 

ChatGPT in education (Iqbal et al., 2022; Tiwari et al., 2023). However, there's a gap in the 

literature regarding how PU or PEU impacts students' actual usage of and interactions with 

ChatGPT, especially within mathematics learning contexts. In our study, we utilized the TAM 

model to explore how contrasting perceptions of PU and PEU among two college students 

influenced their actual use of ChatGPT for learning calculus. 

 

Methods 

This study was conducted in a university-level calculus course, which serves as the 

introductory class in a three-course calculus series offered by the mathematics department. 

During the semester, students were required to complete six lab assignments with topics such as 

derivative rules and related rates. These labs were designed to integrate ChatGPT 3.5 to support 

college students’ conceptual understanding of calculus. Students were also required to use a 

validation framework (for more details, see Zhuang, 2020, 2023; Zhuang & Conner, 2022) to 

assess the correctness of ChatGPT’s solutions to foster a rational and critical thinking approach 

when using AI tools for learning. 

This critical case study (Yin, 2018) followed two undergraduates, Amy and Sue 

(pseudonyms), who had contrasting perceptions of ChatGPT as revealed by their attitude 

surveys. Both participants were White females majoring in STEM, with Amy receiving an A and 

Sue receiving a C at the end of the course. The data in this study included three attitude surveys, 

six lab assignments, ChatGPT chat history, and participants’ assessment data. To fully understand 

participants’ perceptions of ChatGPT’s effectiveness and usability in calculus learning, we first 

reviewed survey results to assess students’ PU and PEU of ChatGPT. Then, we conducted a 

constant comparative analysis (Corbin & Strauss, 2014) to analyze participants' lab assignments 

and chat history with ChatGPT. To examine participants’ actual interactions with ChatGPT, we 

focused on the following three aspects: (1) the total number of interactions they had with 

ChatGPT, offering a quantitative measure of their engagement level; (2) their responses and 

evaluations when ChatGPT provided correct solutions to calculus problems; and (3) their 

responses and evaluations when ChatGPT generated incomplete or partially incorrect problem-

solving solutions.  
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Results 

This section presents the contrasting perspectives of the two participants on using ChatGPT 

for calculus learning and details of their actual use of the tool.  

Case 1 – Amy 

Amy's engagement with ChatGPT throughout the semester demonstrated a consistently 

positive attitude toward ChatGPT. According to the survey, she rated the usefulness of ChatGPT 

in learning calculus (PU) as 5 out of 5 at the beginning of the semester and 4 out of 5 at the end 

of the semester. As for the perceived ease of using ChatGPT (PEU), Amy rated 4 out of 5 at the 

beginning of the semester and 5 out of 5 at the end of the semester. For instance, after the first 

interaction with ChatGPT in first lab, she was surprised by the capability of ChatGPT in calculus 

(PU): “I think this thing has more power than I thought” (Survey 1). At the end of the semester, 

when we asked her about the biggest takeaway from using ChatGPT to learn Calculus, she stated 

in the survey, “I have been very impressed. I think overall, ChatGPT can help a lot of people 

with their calculus if you have a certain topic you are struggling with.” (PU). Her lab reflections 

further revealed her intention to use ChatGPT for future calculus problems: “This is crazy…I am 

very surprised this [ChatGPT] worked so well. I might have to use it on some problems I get 

stuck on in the future!” (Lab 1 assignment).  

Throughout the semester, Amy had 54 interactions with ChatGPT across six lab assignments. 

When ChatGPT provided a correct solution, Amy often followed up with requests beyond the 

solution generated by ChatGPT for additional supportive knowledge to deepen her understanding 

of calculus concepts and theorems. For instance, after ChatGPT used the intermediate value 

theorem to demonstrate that a function has a root, Amy asked, “Could you draw the graph of the 

function?” (Lab 1 chat history) to help her visualize the solution. After GPT3.5 indicated its 

limitation on graphic drawing and suggested she use a graphic calculator, Amy adapted her 

approach and attempted to achieve the same goal with a follow-up inquiry: “How can I put the 

interval in my graphing calculator?” (Lab 1 chat history). Moreover, Amy often asked ChatGPT 

to explain and demonstrate the additional problem-solving process to help her understand the 

application of certain calculus theorems. For example, she asked ChatGPT, “Can you show a 

more detailed version of step 4?” (Lab 5 chat history) to gain a clearer explanation of using the 

second derivative test in an optimization real world problem. When Amy noticed minor 

calculation errors in ChatGPT's solutions, she typically acknowledged the correct logic behind 

the problem-solving process without overly criticizing the errors in her evaluations. As she wrote 

in her evaluation, “The calculation was incorrect in finding the derivative using the chain rule. 

This was the only inaccurate part. All other steps were correctly applied…” (Lab 3 assignment). 

These comments showed that even though ChatGPT made mistakes in some instances, Amy was 

still willing to use ChatGPT to scaffold her learning in calculus.  

Case 2 – Sue 
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Sue's engagement with ChatGPT throughout the semester showed a consistently conservative 

stance as she rated the usefulness of ChatGPT in learning calculus (PU) as 3 out of 5 at the 

beginning of the semester and 2 out of 5 at the end of the semester. In terms of the perceived ease 

of using ChatGPT (PEU), Sue consistently rated 1 out of 5 throughout the semester.  Sue 

questioned the efficacy of using ChatGPT for calculus learning from the start: “I do not think this 

is a good tool for people trying to learn calculus.” (Survey 1). She emphasized the limitation of 

using ChatGPT for calculus learning, as she commented, “ChatGPT understands the steps of how 

to do the math problem, but the actual algebra and easy math is where ChatGPT struggles.” 

(Survey 1). Her conservative attitude towards ChatGPT did not change throughout the semester 

even though she gained more experience of using the tool for calculus learning through lab 

sessions. In her conclusion, Sue acknowledged that ChatGPT might be useful (PU) “for someone 

who knows the basics and needs more practice problems, this [ChatGPT] could be a helpful 

resource, but you must remember that the answer is often incorrect, and the theorems and 

definitions might also be incorrect.” (Lab 6 assignment). Overall, Sue was reluctant to use 

ChatGPT for calculus learning: “I honestly did not enjoy these [ChatGPT] labs, but maybe they 

were helpful to others.” (Survey 3). 

Throughout the semester, Sue had a total of 38 interactions with ChatGPT. Sue often used 

minimal prompts that were provided by the instructor and asked limited follow-up questions 

when ChatGPT provided a correct solution. Her inquiries typically sought clarification on 

specific solution steps, such as: “Can you show and explain your work for step 5?” (Lab 5 chat 

history), rather than exploring broader conceptual understandings or the application of theorems. 

In addition, Sue's tolerance for calculation errors in ChatGPT's solutions was relatively low.  Sue 

often provided critical feedback for simple calculation mistakes by ChatGPT, rating GPT-

generated responses as partially correct even though the ultimate output showed the correct 

answer. For example, she commented “ChatGPT had the correct steps to solve the problem, 

however, they missed a simple math problem on the 3rd step. After I asked them to recheck this 

step, they replied with another incorrect answer. I told them the answer that I had gotten for step 

three, and then they finally agreed.” (Lab 1 assignment). Sometimes when ChatGPT's overall 

problem-solving process was correct, excluding minor calculation errors or omissions in the final 

step, Sue expressed dissatisfaction with the tool's performance: “Although most of the work was 

done correctly, ChatGPT did not give a final answer. Although volume was given in the question, 

it left volume as V…” (Lab 5 assignment).  

 

Discussion and Conclusion 

We found that Amy, with higher PU and PEU, was more accepting of using ChatGPT for 

calculus, whereas Sue, with lower PU and PEU, showed less acceptance. These results are in 

coherence with the previous studies using the TAM model, which indicated that PU and PEU are 

valid predictors of actual usage (Poellhuber et al., 2018), learner satisfaction (Nagy, 2018), and 

learning motivation (Hsu, 2012). Our findings also extend previous research on the acceptance 

and utilization of AI-assisted tools in education to the context of mathematical learning. Learners 

with higher PU and PEU of ChatGPT engaged more frequently with the tool, tolerated its errors 

better, and showed greater motivation to use it for further support. 

Our study revealed how students' perceptions towards ChatGPT affect their approaches to 

using it as an educational tool. Sue, who showed a conservative perception, posed fewer follow-
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up questions for understanding concepts or theorems and rarely inquired beyond the provided 

prompts for extra knowledge. In contrast, Amy, who holds a positive perception of ChatGPT, 

demonstrated more active uses of ChatGPT to support her learning of calculus. She often asked 

for further guidance from ChatGPT, including requests for geometric representations of solutions 

and definitions of specific mathematical concepts (e.g., critical points). In addition, Amy 

achieved a higher final course grade than Sue, indicating that Sue lacked a thorough 

understanding of certain calculus concepts and theorems. She strongly preferred to seek help 

from the instructor during office hours compared to asking ChatGPT for guidance despite the 

tool offering more convenience and flexibility regarding time and location. The cases of Amy 

and Sue suggest that fostering positive PU and PEU is important to help students maximize the 

potential of ChatGPT. Future research should explore teaching strategies to cultivate a productive 

disposition among students towards ChatGPT, thereby fully leveraging its power as an 

educational tool. 

This study explored how two college students’ approaches to using ChatGPT in a calculus 

class were influenced by their contrasting perceptions of the tool. When students possess a higher 

PU and PEU of ChatGPT, they are more inclined to use it for learning support. The contrasting 

case of Amy and Sue underscored the necessity for students to have a comprehensive 

understanding of both the capabilities and limitations of ChatGPT. The study also highlighted the 

importance of supporting students in developing an open-minded perception of ChatGPT as they 

integrate the tool into their mathematics learning. 
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The purpose of this study is to investigate the effect of using a play-dough fraction circle cutter 

manipulative in helping children partition circles into eight or fewer equal parts. Recognizing 

the challenges children face in partitioning circles, especially with odd numbers, this study 

leverages innovative tools to enhance understanding of partitioning. The study used a quasi-

experimental, pretest-posttest design with children aged 5 to 6 years. Findings show significant 

improvement in partitioning skills post-intervention, particularly in dividing circles into odd 

numbers. The implications of this study for both teaching and learning partitioning are 

discussed.  

Keywords: Rational Numbers; Geometry and Spatial Reasoning; Elementary School Education; 

Technology 

When it comes to learning about fractions, elementary school students experience difficulties 

(Barbosa & Vale, 2021; Fazio et al., 2016; Sidney et al., 2019; Tunç-Pekkan, 2015). The ability 

to understand and work with fractions is not just a requisite for mathematical literacy at this stage 

but is also seen as predictive of success in higher mathematical pursuits, including algebra and 

calculus (Siegler et al., 2013; Soni & Okamoto, 2020). A lack of proficiency in fractions can 

significantly hinder a student's ability to grasp more complex mathematical concepts such as 

algebra and calculus, especially as they progress through higher grades (Flores et al., 2020; 

Wilkie et al., 2022). 

In this context, partitioning – the ability to divide a whole into equal parts – is fundamental to 

learning fractions. However, many children encounter difficulty with this concept, particularly 

when they cannot grasp equity-related issues from the earliest years of primary education 

(Castro-Rodríguez et al., 2022). Recognizing this challenge, studies have established that 

innovative manipulatives are important to teaching fractions and they support children with 

learning mathematical procedures while also being more enjoyable in learning fractions (Fazio et 

al., 2016; Furman, 2017; Moyer, 2001).  

This paper aims to leverage these insights, exploring how children used a 3D-printed play-

dough fraction circle cutter that scaffolds children’s use of radii as partitioning tools. Rather, the 

study investigated how such a manipulative can facilitate children’s learning to partition in the 

context of circles. Through this exploration, the study seeks to contribute to a broader 

understanding of effective methods for teaching and learning fractions and partitioning in early 

mathematics education. 
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Review of the literature 

Children develop an intuitive understanding of fair sharing at an early age (Empson, 1995). 

This understanding often emerges through practical activities like one-to-one correspondence 

and “dealing out” real-life objects among friends (Empson, 1995; Hunting and Sharpley, 1988). 

These experiences with fair sharing play an important role in introducing children to the basic 

principles of fractions, particularly the concept of partitioning. In the context of fractions, 

partitioning generally is defined as “the ability to divide an object or sets of objects into equal 

parts” (Pothier & Sawada, 1990, p.12). However, partitioning (also known as equal portioning) is 

not just about part-within-the-whole reasoning, but the ability to see the equal parts out of the 

whole and also recreating the whole by iterating the parts (Steffe and Olives, 2010; Hackenberg 

et al, 2016). Partitioning is also seen as a recursive process (Confrey et al., 2009), It is about 

breaking down a whole into equal parts and the process of reassembling these parts back into the 

whole. In the context of early fraction development, partitioning is concerned with two elements, 

number theory and geometric shapes (Pothier & Sawada, 1990). Several studies have been 

conducted on how children develop partitioning reasoning, either focusing on one of these 

aspects or on their combination (Hackenberg et al., 2016; Maloney &Confrey,2010; Pothier & 

Sawada, 1990; Steffe & Olives, 2010) 

In the context of partitioning reasoning and number theory, research has identified different 

learning patterns among children. A number of studies have suggested that the process of 

learning partitioning is not necessarily numerically sequential. These studies highlighted that 

children typically find partitioning into halves and quarters more intuitive than partitioning into 

other fractions (Zolfaghari, 2023; Confrey et al., 2009; Gabriel et al., 2013; Pothier & Sawada, 

1990).  Pothier and Sawada's five-level theory illustrates a progression from basic sharing and 

halving concepts to more complex ideas of evenness and oddness, and eventually, to a 

multiplicative algorithm. Similarly, Maloney and Confrey’s (2010) equipartitioning learning 

trajectory outlines a similar path, starting with simple 2-splits and evolving through more 

complex stages, including powers of two, even, and odd splits. 

On the other hand, other studies contribute to a different perspective, suggesting that 

children's initial efforts at partitioning lengths can be sequential (Hackenberg et al., 2016; Steffe 

& Olives, 2010). These scholars have noted that children partition length into two or three parts, 

which might not be of equal size. As they progress, children develop the ability to create equal 

parts and exhaust the whole with a greater numbers of parts, eventually advancing to handling 

any number of parts and multiple wholes. 

Children’s partitioning development is also associated with the geometric shapes partitioned. 

A vast majority of research highlights the significant role of geometric shapes in teaching early 

fractions and partitioning (Cramer et al.,2008; Larson, 1980; Lesh et al.,1987; Ni, 2001). This 

approach is also prominently used in many elementary mathematics textbooks using different 

geometric shapes, but predominantly pre-partitioned (Pothier, 1991). According to Ni (2001), the 

most frequently used shapes in early fractions education are circles, rectangles, and length 

models. Of these, the circle is found to be more challenging for children to partition (Confrey & 

Maloney, 2010), despite being the easiest to recognize (Fisher, 2009). This paradox might stem 

from what Pothier (1991) observed in analyzing children’s partitioning behaviors. Pothier (1991) 

found that children, when faced with various shapes tend to adopt specific partitioning 

techniques such as halving, drawing vertical or horizontal slicing, rather than focusing on the 
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shape itself to determine the number of partitions. “The counting algorithm quickly focuses 

children on the parts, making the geometry of the whole ostensibly irrelevant” (Pothier, 1991, 

p.96). The issue of not attending to the whole geometric shape seems to be more evident with 

circles. Circles, in contrast to polygons (particularly rectangles), do not offer clear starting and 

ending points that might facilitate successful partitioning. This absence of clear linear guides in 

circles necessitates a greater emphasis on understanding the holistic shape, thus posing a greater 

challenge in partitioning tasks. 

Given the challenges highlighted, especially those associated with partitioning circles, as 

well as the complexities involved in partitioning using different types of numbers (larger 

numbers or odd numbers), it becomes essential to investigate how children approach the task of 

partitioning circles and explore effective ways to support their learning process in partitioning 

circles. One of the important tools to scaffold children in partitioning development or 

mathematics, in general, is manipulatives. While models of manipulatives are diverse, physical 

and pictorial visual models have been argued to be crucial for scaffolding children's 

understanding of fractions (Martin et al., 2012; Wilkie et al., 2022). Moyer-Packenham et al. 

(2012) compared the use of static pictorial representations and dynamic virtual fraction 

manipulatives with 19 third graders with lower mathematics achievements scores, with evidence 

suggesting students using both manipulatives demonstrating growth. In contrast, Martin et al. 

(2012) observed that, when compared to picture models, the use of concrete manipulatives was 

more beneficial to students’ mathematics learning since the children could directly engage with 

how to arrange the materials. Similarly, physical manipulatives help children to have a deeper 

understanding of mathematical concepts including fractions while also being more enjoyable 

(Furman, 2017; Laski et al. 2015). Stigberg (2022) conducted a study on digital fabrication in 

mathematics education and claimed that manipulatives, primarily made of 3D printing, are a 

means of giving abstract mathematical concepts or operations in geometry, algebra, and fractions 

a more real experience. 

 

   

Figure 1: The Play-Dough Fraction Circle Cutter  

 

Despite extensive research on the effectiveness of manipulatives and the best practices for 

their use, there remains a gap in developing specific manipulatives for defined instructional 

purposes (Zolfaghari, 2023). To address this gap, we designed a manipulative that can be 3D 
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printed and used with play-dough (Kosko et al., 2024). The play-dough fraction circle cutter is a 

3D-printed circle with one fixed radius and several radii that may be inserted and then moved 

along the circle’s edge. An additional circle cutter is included that cuts a circle template with the 

center marked by an indention. Thus, there are two primary ways children can employ this tool: 

they can press the radius-based cutter onto play-dough to create imprints of the partitions 

directly, or they can use the center-of-circle cutter to create a circle with only the center marked 

and then replicate these divisions (from the radius-based cutter). This latter approach is 

illustrated by a child in the right-hand image in Figure 1. Two arrangements with the radius-

based cutter are illustrated in Figure 1. The radii on the circle can be adjusted by children to 

divide the circle into given equal parts.  

With the design of this fraction circle cutter, we aimed to explore how children interact with 

and learn the concept of partitioning circles. Rather, the manipulative was designed with 

manipulatable radii to help scaffold children’s use of the radius as a partitioning tool, and help 

young children intuitively understand the need to partition between the center and edge of the 

circle, instead of all the way across the shape. Specifically, the study aims to ask the following 

research question: 

 

How does the use of manipulatable radii, in a fraction circle cutter, affect children's ability to 

partition circles into different numbers of parts? 

Method 

The study involved 15 children, aged 5 to 6 years, enrolled in kindergarten in a childcare 

learning center within the mid-western United States. Among the participants, 7 self-identified as 

boys and 8 as girls. These children were divided into two groups for this study: an experimental 

group and a control group. The experimental group participated in teaching sessions focused on 

partitioning circles, utilizing innovative manipulative tools. These sessions were designed to 

enhance their understanding and skills in this area. Meanwhile, the control group students 

continued with their regular kindergarten curriculum and classroom activities during this period. 

Pre-Experiment 

Initially, students were asked to complete a survey with 7 questions about partitioning a 

circle into different parts (See Figure 2). The purpose of these open-ended questions was to 

assess whether students could equally partition circles into 2 to 8 parts. The survey items were 

designed based on previous studies and literature that explored children’s understanding of 

partitioning (Confrey et al., 2014; Hackenberg et al., 2016; Hunting & Sharpley, 1991). 
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Figure 2: Example of Designed Items for Circle Partitioning Survey 

 

To code students’ responses to the survey, we utilized a transparent template that represents 

the acceptable range for partitioning circles into equal parts. This template was developed by 

Zolfaghari (2023) and helped determine the acceptable range to the extent to which students’ 

partitioning could be considered equal. Utilizing this template, we assessed children’s 

partitioning skills and assigned scores based on their accuracy: scores of 2 represented circles 

equally partitioned into the requested number of parts; scores of 1 represented circles partitioned 

into the correct number of parts but not equally sized; scores of 0 represented circles incorrectly 

partitioned either into incorrect number of parts. 

Based on their survey scores, the first two authors selected two groups of four children each 

for the teaching sessions. The selection criteria for these students were based on their survey 

responses and encompassed the wide range of ability to partition, from unsuccessful to 

successful partitioning into various parts. 

During the Experiment (Teaching Sessions) 

In examining how children are involved with partitioning circles into different parts, we 

conducted a series of teaching sessions using an innovative manipulative (play-dough circle 

cutters), as shown in Figure 1.  Eight sequential teaching sessions (Steffe & Thompson, 2000) 

were conducted over four weeks (two sessions per week). The intervention methodology is 

detailed in another study, as the current study’s focus is on assessing the effectiveness of the 

manipulative and the emerging patterns in students’ partitioning skills by looking only on their 

responses to the survey. 

Post-Experiment 

Upon completion of the teaching sessions, the same assessment was administered to the 

students. Of the children who participated in the teaching sessions, 5 were present and able to 

complete the post-survey. All 7 students from the control group were present and responded to 

the questions. Students’ responses were scored using the same method explained above.  

Analysis and Results 

A Mann-Whitney U test statistic was computed to compare pre- and post-test scores between 

children who participated in teaching sessions using manipulatives and those in the control 

group. A Mann-Whitney test provided an appropriate statistical approach due to the small sample 

size (n=12) in this study as well as the ordinal nature of data for students’ responses (Siegel & 

Castellan, 1988). Results indicated a statistically significant difference between the two groups 
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(U = 5.00, p = .039), indicating that the experimental group (Median = 11) was more likely to 

equally/successfully partition the circle into different parts than the control group (Median = 7). 

Results yielded a medium to large effect size (r = 0.586), suggesting a notable difference in 

partitioning between the two groups. However, it is important to note that these findings should 

be interpreted with caution due to the small sample size. 

To further investigate how much change occurred within the experimental group due to 

having teaching sessions with the fraction circle cutter, a Wilcoxon signed-rank test was used to 

compare pre- and post-test scores for each group. For the experimental group, results indicated 

that there was a statistically significant improvement in the ability to partition circles post-

intervention (Z = -2.201, p = .028), reflecting a significant positive effect of the scaffolding 

technique on the children's development of this skill. Such improvement was not observed in the 

control group in post-intervention (Z = -1.16, p = .246). We were also curious to know about the 

variation across different partitioning tasks and whether there was a specific pattern in students' 

responses to these tasks with and without the treatment. Figure 3 illustrates pre- and post-test 

scores for students in the control and experimental groups, but disaggregated by task (i.e., 

number of partitions requested for a paper-based circle). Recall that a score of 2 represents 

equally partitioned, a score of 1 was partitioned and 0 was incorrect number of parts or not 

partitioned. 

 

 
 

Figure 3: Changes in Task Partitioning Performance Before and After an Intervention for 

Control and Experimental Groups 

 

Visual analysis of Figure 3 regarding responses from both experimental and control groups of 

students indicates a trend in their ability to partition circles. Tasks involving partitioning into 2 

and 4 parts were the most successfully completed, as reflected by the highest mean scores. This 

suggests an initial comfort or familiarity with simpler partitioning tasks. Following these, tasks 

involving partitioning into 5, 6, and 8 parts showed moderate success. This is characterized by 

mean scores that range from .42 to 1.6. Lastly, partitioning into 3 and 7 parts proved to be the 

most challenging for students, as evidenced by the lowest mean scores (see Table 1). 

The post-intervention data from the experimental group reveals a significant shift in trends 
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from pre-intervention. The tasks of partitioning into 2 and 4 parts, which were already high, saw 

growth, with all children in this group demonstrating equal partitioning (M = 2.00, SD = .00). 

Interestingly, the task of partitioning into 3 parts, which was previously one of the least 

successful tasks for Kindergarteners, improved to become the second highest scoring task for 

students in the intervention (M = 1.6, SD = .54). This demonstrates a significant positive impact 

of the intervention on this specific skill. Tasks involving partitioning into 6 and 8 parts also 

showed noticeable growth. Tasks of partitioning into 5 and 7 parts, while still showing 

improvements, remained relatively more challenging for the students, as seen by the lower mean 

scores and higher standard deviations compared to other tasks. 

Data for the control group on the post-intervention data did not exhibit growth in the way that 

the experimental group did. Specifically, in tasks involving partitioning into 2 (M = 1.71, SD = 

.75) and 4 parts (M = 1.71, SD = .75), the control group’s mean scores did increase (from 1.57 to 

1.71 and from 1.42 to 1.71, respectively), but not to the level of the experimental group. In other 

words, many Kindergarteners in the control group did improve in partitioning into 2 and 4 parts, 

but there were still students who could not partition into equal parts or even into the requisite 

number of parts requested on such tasks. The performance on tasks involving partitioning into 3 

parts also improved (mean score from 0.28 to 0.57), but this was significantly lower than that of 

the experimental group (mean score from 0.5 to 1.6). This pattern was consistent across tasks, 

with the control group showing some improvement post-intervention but not to the extent of the 

experimental group. 

Overall, results indicate that most Kindergarteners in both groups were capable of either 

partitioning or equally partitioning circles into two and four parts. However, when students were 

exposed to using the fraction circle cutter, they were much more likely to partition a circle into 

other requested number of parts. This was particularly the case with partitioning into three parts, 

with all students in the experimental group either partitioning or equally partitioning a circle into 

three parts, and very few of students in the control group doing so (see Table 1). In examining 

students’ written work on the post-test, children in the experimental group focused more on using 

the center of the circle in attempting their partitioning whereas students in the control group did 

not use this property of the circle. This comparison highlights the effectiveness of using 

manipulatable radii on a play-dough fraction circle cutter in enhancing students' skills in 

partitioning circles. 

 

Table 1: Mean Scores of Students on Partitioning Tasks Before and After Intervention 

 

 Pre-intervention Post-intervention 

 Experimental 

group 

Control group Experimental 

group 

Control group 

 M SD M SD M SD M SD 

Partitioning 

into #2 

1.87 0.33 1.57 0.72 2 0 1.71 .75 

Partitioning 

into #3 

0.5 0.5 0.28 0.45 1.6 .54 .57 .53 

Partitioning 

into #4 

1.37 0.85 1.42 0.72 2 0 1.71 .75 
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Partitioning 

into #5 

0.5 0.5 0.71 0.45 1.2 .7 .71 .48 

Partitioning 

into #6 

0.5 0.5 0.57 0.49 1.4 .54 .71 .75 

Partitioning 

into #7 

0.12 0.33 0.28 0.45 .8 .44 .71 .48 

Partitioning 

into #8 

0.62 0.48 0.42 0.49 1.6 .89 .57 .53 

 

Discussion 

The purpose of this study was to explore the effectiveness of using a fraction circle cutter 

with manipulable radii in scaffolding children to partition circles into equal parts and to explore 

emergent patterns in their partitioning skills. Prior research has indicated that while circles are 

one of the first and easiest shapes for children to recognize (Ni, 2001), partitioning them into 

equal parts, particularly with odd numbers, is extremely challenging (Malony & Confrey; 2010). 

In this study, we used an innovative manipulative to help students focus on the task of 

partitioning and to examine the development of their skills in this area. The results showed a 

significant improvement in the experimental group's ability to partition circles into equal parts, 

aligning with prior research on the efficacy of manipulatives in education (Martin et al., 2012; 

Stigberg, 2022). 

What sets this manipulative apart is its targeted design, which actively engages children in 

attending to the shape as they adjust the radii to create equal parts. This addresses a critical 

aspect identified by Pothier (1991), where students often neglect the geometry of the whole 

shape itself in determining the number of partitions. We believe that this tool helps students to 

focus simultaneously on both the counting algorithm (number of parts) and the geometric aspect 

of the circle, thereby integrating both aspects of the task. This integration suggests that types of 

representations that press students to interact with the geometry of the circle may provide a 

resource for teachers and students as they learn to partition shapes before formal instruction on 

fractions.  

We observed distinct patterns in students' abilities to partition circles in both the experimental 

and control groups, before and after the intervention. Before the intervention, our observations 

revealed specific patterns in students' difficulties with partitioning circles into eight or fewer 

parts. Initially, students found it easiest to partition shapes into halves and quarters. This was 

followed by the challenge of partitioning into numbers that are powers of 2 (such as 6 and 8), 

and subsequently, they faced greater difficulty with odd numbers (3, 7). These observed patterns 

in students' abilities to some degree align with the patterns suggested by previous researchers 

(Pothier & Sawada, 1990; Maloney& Confrey, 2010). However, after the introduction of the 

fraction circle cutter, with manipulatable radii, this pattern changed significantly. While 

partitioning into halves and quarters remained the easiest tasks, dividing into thirds became the 

second easiest task for students in the experimental group. After this, tasks involving powers of 2 

(such as 6 and 8) came next, and finally, the more challenging tasks were partitioning into the 

larger prime numbers 5 and 7. We conjecture that the changes with partitioning, especially with 

partitioning the circle into three parts, highlight the effectiveness of manipulatable radii in 

guiding students to focus not only on counting parts but also on engaging with the whole 
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geometric shape of the circle. We believe this approach fosters out-of-the-box thinking, enabling 

children to conceptualize the circle in new ways. It encourages them to understand the 

limitations of common partitioning methods (Pothier & Sawada, 1990) and to explore alternative 

starting points (i.e. the center of the circle). This is a practice not typically emphasized in 

conventional school instruction for teaching fractions or partitioning. By focusing on such 

scaffolds—especially given that circles are commonly used to teach fractions (Ni, 2001)—we 

believe teachers can establish a strong foundation for students' partitioning in the early grades 

and better prepare them for learning fractions more effectively.  

Despite these promising findings, we are still in the exploratory phase of examining this 

manipulative and pedagogical approach. Recognizing limitations, such as the small number of 

students involved, further investigation is needed to explore the broader effectiveness of this tool, 

especially when used by different teachers. Additionally, more data is needed to confirm the 

observed patterns. Ensuring the consistency of these patterns across a wider student population 

will provide a more comprehensive understanding of the tool's effectiveness in teaching and 

learning partitioning.  
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Group work is widely employed in mathematics classrooms to foster communication and 

enhance students’ mathematical thinking. Drawing on principles of participatory equity, this 

study explores the role of group roles in promoting equitable participation. The study highlights 

the benefits and challenges of group work, foregrounded by the importance of culturally 

responsive teaching and open-ended tasks. Specifically, we attended to how group roles 

influence participation in a graphing scenario task conducted at a summer math camp. Data 

analysis reveals insights into students’ communication patterns and the impact of group roles on 

participation. The findings suggest that group roles offer opportunities for students to engage 

and express their ideas, contributing to more inclusive mathematics classrooms. 

Keywords: Middle School Education, Communication, Culturally Relevant Pedagogy, Equity, 

Inclusion, and Diversity 

Group work is a common strategy to utilize in mathematics classrooms for students to 

communicate their ideas. Communication is one of the process standards in the National Council 

of Teachers of Mathematics’ Principles and Standards for School Mathematics as a means for 

students to reflect on and modify their mathematical thinking (NCTM, 2000). However, a path 

forward to envision equitable participation in group work is a complex goal to achieve due to the 

nature of the social aspect that plays out. Yet, the National Council of Teachers of Mathematics’ 

Principles to Actions: Ensuring Mathematical Success for All advocates that mathematics 

programs should aim to have access and equity in their classrooms (NCTM, 2014). That is, all 

students need to have the necessary support so that they reach their full learning potential 

(NCTM, 2014). However, the real question becomes how to translate such access and equity into 

a groupwork task where human interactions vary depending on the social dynamics of the group.    

Shah and Lewis (2019) noted that inequity in collaborative learning tends to increase or 

decrease depending on the circumstances, but they recommended striving for participatory 

equity, when all students have an equal opportunity to participate in a learning interaction. That 

is, the authors emphasized that when two or more people enter a joint endeavor, factors, such as 

group norms, task structure, and the distribution of authority, can either promote equitable 

participation or reinforce inequitable opportunities (Shah & Lewis, 2019). One way to target 

productive groupwork and equal opportunities to participate among students is to develop 

different group roles that value different skills and interdependence (Cohen & Lotan, 2014).  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1732 

Literature Review & Theoretical Framing 

Many researchers have investigated the implications for learning and equity in using small 

groups in mathematics classes. Cohen et al. (1999) recorded gains in achievement for students 

who participated in small group classrooms, specifically on higher-order questions where 

students were asked to demonstrate more abstract knowledge beyond recalling facts. Cohen 

(1994) observed that students in groups who often take on the task of explaining to their peers 

have especially benefited in terms of achievement. Additionally, researchers have studied 

participation patterns and opportunities for students to be positioned as mathematically 

competent within their groups (e.g., Campbell & Hodges, 2020; Langer-Osuna, 2011; Esmonde 

& Langer-Osuna, 2013). For example, Esmonde and Langer-Osuna (2013) observed a student, 

Dawn, positioning herself with more power than she previously had opportunities to, by inserting 

her social talk to shift the figured world of the classroom and engaging in productive 

mathematical practices in the process. 

While the literature has seen promise in group work, it is not a guarantee of positive 

outcomes. Cohen (1994) examined the complications of reaching productivity in group work as 

obtained “only under certain conditions” (p. 2); Esmonde (2009) also highlighted complexities 

such as classroom context, status indicators, task design, and the teacher’s role. Even when group 

work seems to be leading to gains in participation, rich learning opportunities can be sacrificed. 

Campbell and Hodges (2020) identified “co-construction” group structures that allowed all group 

members to insert valued ideas, but meanwhile, in favor of agreement, students were not able 

take up productive mathematical debates with each other. Other researchers have also noted that 

students need to be guided in group work to work together as intended and these skills are not 

automatic, that is, “something must be done to provoke the desired behaviors” (Cohen, 1994, p. 

7), and benefits will never be straightforward when students are “left to their own devices” (Heck 

et al., 2019, p. 437).  

Moreover, researchers have studied the assignment of group roles as a provided structure in 

students’ participation in groups. Heck et al. (2019) illustrated how reinforcement of group roles 

aided students in “enhancing the group’s mathematical discourse” and “protecting” their 

contributions when others in the group attempted to be more dominant (pp. 439 – 440). While 

group roles are not enough to ensure equity, as several factors are at play (e.g., Langer-Osuna, 

2011), they can be a start in guiding students to engage in group work in a purposeful way, as 

teachers continue to monitor and address group dynamics (Esmonde, 2009). 

Throughout our design and implementation of our graphing task, we adopted the theoretical 

ideas of “culturally responsive teaching” to guide us (Gay, 2010; Ladson-Billings, 1994). 

Culturally responsive teaching asserts that to open opportunities for rich learning in diverse 

students, teaching should draw on students’ own strengths by leveraging their cultural 

knowledge, prior experiences, and performance styles. In creating our task, we strived to include 

access for students to insert their personal experiences into the activity by creating our task to be 

open-ended and designing purposeful group roles (see Methods for the explanation of the task). 

Researchers have emphasized that open-ended tasks that have properties of uncertainty with no 

single right answer are beneficial for group work (e.g., Lotan, 2014; Heck et al., 2019), as they 

“increase the need for interaction since they force students to draw upon each other’s expertise 

and repertoire of problem-solving strategies” (Cohen et al., 1999, p. 83). However, we 

acknowledge that even with culturally responsive teaching at the forefront of our design, there 
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are many factors that could still impact student participation and ability to express their personal 

ideas into the task, including authority structures within the group (Cobb et al., 2009).  

In this report, we share an analytical perspective on how group roles intertwine with the 

participation of group members’ ideas and contributions in a graphing scenario task, where 

students alternated group roles three times but stayed in the same group. We are guided by the 

research question, “How do designated group roles influence the types and frequency of 

participation among middle school students during a collaborative graphing task?” 

As the aforementioned literature has addressed many complexities to “participation” while 

students work in small groups, we kept this in mind and operationalized participation by 

considering students’ engagement throughout the task in two main ways. We attended to 

students’ patterns of contributions of idea proposals within each group role, but we also 

investigated participation by attending to the types of responses group members provided to 

these proposals. To do so, in our analytical choices, we adapted the coding frameworks for 

proposals and group member responses Barron (2003), Campbell and Hodges (2020), and 

Langer-Osuna (2011) developed and applied for investigating these participation dynamics 

within small groups.     

Method of Study 

The data for this study was gathered from a 2023 summer math camp in the southern United 

States, which provides a distinctive mathematical learning community for elementary and middle 

school students. The camp places students into one of five levels depending on their age and 

mathematical knowledge for a 2-week, half-day program. That is, the first level consists of 

students from grades third through fourth, while the fifth level consists of middle school students 

in grades seventh and eighth. Depending on the level, the mathematical content ranges from 

beginning concepts in algebra to advanced problem solving and discrete math.   

Data Collection 

To explore how students may participate within their groups, we designed a graphing 

scenario task with group roles (Table 1), in which students had to create an original story from 

suggested scenarios (e.g., pet following you to school), along with a sketch of the graph that 

aligns with the story. One thing to note is that students were building a distance versus time 

graph with no implied numerical values on the axes.  

 

Table 1: Group Roles 

 

Storyteller Creates their own story to build the graph from suggested scenarios. 

Screen 

Writer 

Writes notes in their index card or sheet of paper on what the group notices 

about distance and time from the story and graph, which can include rate of 

change, constant speed/velocity, acceleration, or stationary conditions. 

Grapher Creates the graph on the poster from the storyteller and can ask the group if 

the graph aligns with the story. 

Director Presents the graph along with the storyline to the class. 

 

This report focuses on one group of students from level five (seventh and eighth graders) 

working on the graphing scenario task. On the day of the activity, students were first introduced 
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to standard nonnumerical graphs by having a class discussion on certain differences between the 

graphs. Namely, there was a discussion highlighting concepts like rate of change, constant speed 

or velocity, acceleration, and when the object is at a standstill. This took about 20 to 30 minutes 

before beginning the graphing scenario task. After the class discussion, students were placed into 

groups of four that were preplanned. Each group received written instructions for each group 

role, a large sticky sheet, a small white board, and markers. The Grapher used a large sticky sheet 

to sketch their graph, while the Screen Writer used a small white board to take notes. During the 

group activity, there were three rounds in which the group rotated different group roles. In other 

words, each group member had the opportunity to participate in three different group roles (Table 

1) in the graphing activity. We video and audio recorded the groups as they worked on the 

graphing scenario task. The group of students focused on in this report consisted of three female 

students (Taylor, Katy, and Natalie) and one male (Chris). The dialogue during the group activity 

for the three rounds was transcribed to analyze.        

Data Analysis 

Each of the four authors acted as a coder. Three of the authors initially watched the video of 

the first round of the group activity to gain familiarity with the interactions. As a foundation, we 

started with the coding scheme proposed by Barron (2003), where codes recognize when a group 

member proposes an idea or contribution. However, we expanded the coding scheme with more 

codes and distinctions to reflect on specific types of student responses to a group member’s idea 

or suggestion from our data; for example, we added a “resistant uptake” once noting properties 

of it in the videos and referring to Langer-Osuna (2011)’s codes of this. Additionally, completely 

new codes emerged such as distinctions in the type of “discussion” responses. We later brought a 

fourth author to code with us on the second round of video interactions to discuss some 

commonality in the code book and make minor modifications to be more concise. This resulted 

in a total of 9 codes (Table 2). Although the fourth author came into the coding of the second 

round of the group activity, we coded the first round of the group activity again to stay consistent 

with the modifications and to include the fourth coder.  

 

Table 2: Coding Scheme for Student Responses & Examples 

 

Code Definition Example 

(1) Idea/ 

Contribution 

A student verbally proposes a 

suggestion to include in the task. 

Taylor: We should do murder 

mystery. 

(2) Successful 

Uptake 

A group member accepts the idea 

without any complaint. 

Chris: Forgets how to get 

home. [Chris acknowledges 

the idea while writing down 

story.] 

(3) Resistant 

Uptake 

A group member accepts the idea 

with a complaint or hesitation. 

Natalie: I’m not gonna do the 

line. Actually, I’ll do it with a 

pencil. This is great. 

(4) In Task 

Discussion 

A group member who did not 

propose the new idea but initiates a 

discussion with the intention of 

Katy: Yeah. Oh my God. 

That’s what we should do. 

Draw an airplane and stick it to 
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advancing the idea. a pencil. Just have it go [hand 

motion]. 

(5) Clarification 

Discussion 

A group member who did not 

propose the new idea but requests 

further information about the new 

idea or inquires about the rationale 

for considering it. 

Natalie: He’s late for school 

and his school is far away from 

home, right? 

(6) Rejection A group member verbally refuses 

the idea or requests another 

suggestion. 

Taylor: No, normal stories are 

boring. 

(7) Ignore A group member was verbally (or 

non-verbal) switching the topic or 

not adding to the idea. 

Katy: You should draw a 

thunderstorm. That’s why 

turbulence happens. (code 1) 

Natalie: I’ve never been to an 

airport either. Actually, I have. 

(code 7) 

(8) Individual 

Role- 

Reference 

A group member comments or asks 

for directions about the task with 

explicit reference to their own group 

role. 

Natalie: I know but I have to 

write it down. Do I make my 

graph already? 

(9) Peer Role- 

Reference 

A group member explicitly directs 

or reminds another peer to partake 

into the task in respect of the peer’s 

group role. 

Chris: You’re the Grapher. 

You’re the one that has to 

design the whole graph. It’s 

none of our job. 

  

In the coding phase, initially, each coder read the three rounds of the small group transcripts 

and independently assigned an appropriate code(s) on certain talk turns. Moreover, we did not 

code turn talks from the teacher or when conversations were off topic. Once every coder was 

finished coding one round of transcripts, we gathered to discuss everyone’s codes to arrive at a 

consensus. As a group, we had a discussion to lay out the reasoning for everyone’s code and to 

convince all coders of what the appropriate code was. During the deliberation, we either 

rewatched the small video segment as a group, reread the previous lines of dialogue to gain more 

context, and/or revisited the codebook to emphasize what the code is targeting. Once all four 

coders agreed on a single code, we moved on to the next coded turn talk. The unit of analysis 

was when a student introduced a new idea or contribution to the graphing activity (code 1). 

Codes 2 through 7 acted as consequential responses, following that idea code from other group 

members who did not initiate a contribution. This means the turn talks focused on the proposed 

idea or contribution (code 1) from the one who initiated the conversation were not coded, mainly 

because we were interested in how the other group members verbally responded to such 

suggestions. For example, the following conversation occurred during the third round of small 

group work: 

Natalie:   We should write Kobe with signs and then 

Chris: Why are we doing basketball players. We did it. Michael Jordan Now on...Kobe 

Katy: Stop 
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Natalie proposed a contribution to the group activity by suggesting a character in the 

storyline. This turn talk was coded as 1 by all coders, so there was already a consensus, and no 

further discussion was needed. Chris then inquired for justification for the continuation of a 

basketball player to be included in the story. Two coders coded that as 5, while the other two 

coders coded the turn talk as 3. We then discussed our reasoning and eventually came to a 

consensus for code 5. For Chris’s turn talk, we agreed on a code of 5. As for Katy’s turn talk, two 

coders had it as 6, while the other two coders had it blank. We then deliberated and agreed that 

Katy’s turn talk was reflected as a code of 6. One thing to note is that we did not code turn talks 

from Natalie centered on her inclusion of Kobe with codes 2 through 7. We wanted to see how 

everyone else responded when certain group members initiated a contribution, given their group 

roles. As for codes 8 and 9, we were interested in parts of the conversation that were motivated 

by the students’ group roles.  

Findings 

We organize our results first by reporting on findings for each of the three rounds in terms of 

how group roles intertwined with the participation of group members’ ideas and contributions to 

the graphing scenario task. We then examine all three rounds and observe similarities or 

differences in the rounds as students changed their roles. We examined 93 total ideas proposed 

during the three rounds with 50 ideas from Round 1, 25 from Round 2, and 18 from Round 3.  

Round 1 

In Round 1, the story that evolved was about a cat that traveled from home to school at a 

certain distance away, taking breaks then running along and having incidents such as the loss of a 

wallet along the way. Figure 1 provides a visual representation of the participation for each role 

in Round 1 in terms of ideas suggested and responses contributed to others’ ideas. Among the 

four roles of Storyteller (ST), Screen Writer (SC), Grapher (GR), and Director (DI), ST proposed 

the most ideas with code 1, followed by the SC, then the GR, and lastly DI. On the other hand, 

responses were those turn talks coded as 2 through 7. As indicated in Figure 1, SC contributed 

the most responses. The responses most frequently occurring for SC included agreeing with the 

idea (code 2) six times and seeking clarification (code 5) seven times. The GR followed with the 

most rejection (code 6) six times and seeking clarification (code 5) six times with only one 

agreement to an idea. DI’s responses included seeking clarification (code 5) six times followed 

by rejection (code 6) four times. Lastly, the responses from ST were the least frequent with 

mainly agreement (code 2) four times and resistant uptake (code 3) twice.    
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Figure 1: Round 1 Ideas and Responses by Roles 

 

Round 2 

For Round 2, the story was developed around Spiderman saving MJ, Michael Jordan, from a 

burning building. The story involved Spiderman going up to get MJ to bring him back down, and 

the time associated with those tasks. Figure 2 breaks down the number of new ideas suggested 

and responses to others’ ideas from Round 2. Like Round 1, the ST contributed the most ideas in 

Round 2. However, in this round, the GR offered the next most new ideas followed by the DI, 

and then the SC. As responses to ideas went in this round, the DI led the number of responses 

with five of those being coded 2 and three codes of 5 and 6 each. Next was the ST largely 

coming from three successful uptakes and two rejections. Finally, the SC and GR responded to 

ideas the same number of times where all five of SC’s where coded 5 and GR had two coded 2, 

two coded 5, and one coded 4.  

 

 
 

Figure 2: Round 2 Ideas and Responses by Roles 
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Round 3 

The third and final round’s story revolved around an airplane crashing due to turbulence and 

a thunderstorm. Figure 3 displays the number of new ideas and suggestions from each group 

member and their role. Again, in this round, the ST suggested the largest number of new ideas, 

followed by the SC and GR. The ST shared the lead in the responses category, primarily coming 

from three coded 2 and two ignore codes. GR had the same number of responses as ST where 

three clarifying questions were coded as the largest portion of responses. Lastly, DI responded 

the least with only one coded 5.  

 

 
 

Figure 3: Round 3 Ideas and Responses by Roles 

  

Role Acknowledgement 

We noticed that acknowledging one’s role (code 8) or another’s role (code 9) were more 

prominent in round 1 and 2 with little being referenced in round 3. We did not consider this an 

explicit response to the idea but more to the group participation. However, there seemed to be an 

awareness that everyone’s contribution was important in the ways defined by the roles. In round 

1, there were 13 mentions of roles, two being code 8 and 11 code 9. Meanwhile, round 2 had 

eight mentions of other’s responsibility and role (code 9) and ten mentions of one’s own role 

(code 8). In the last round there was just one instance of code 8 and one of code 9. We conjecture 

this reduction in the final round is due to the development and understanding of each role from 

each group member as they progress through the rounds. 

Discussion 

The goal of the study was to gain insights on how middle school students communicate in a 

designed task, given group roles. Furthermore, we addressed the type of responses students 

engaged in and in what ways the group roles played a part in their participation. For instance, the 

Storyteller had the obligation to create a scenario for the group to sketch a graph, which 

contributed to the Storyteller having the highest number of proposed ideas/contributions on each 

of the three rounds. Although the other three group roles had distinct duties, there was not a 

specific group role that consistently had the highest number of responses (codes 2 through 7) to 

group members’ proposed ideas/contributions. Round 1 had SC with the most, round 2 had DI 

with the most, and in round 3, there was a tie between ST and GR. 
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We also note that while we observed patterns discussed in the previous section, we maintain 

that these patterns interact with more than simply group roles. For instance, we hypothesize that 

group dynamics throughout the rounds and broader social factors could have impacted 

participation moving forward, such as in Langer-Osuna’s (2011) work. We encourage future 

research for this complexity. Although there are some limitations this study holds, such as the 

focus on one group and not investigating the deeper social dynamics that also can influence 

participation, there are certain implications that the findings can inform educators to pursue 

equitable participation. Since literature suggests that at times mathematics classrooms create an 

atmosphere influenced by gender and race (Battey & Leyva, 2016; Leyva, 2021), our data 

indicates that a group role that positions students to constantly propose ideas can give those 

students who come from marginalized communities a chance to express their voice and “protect” 

their contributions (e.g., Heck et al., 2019). The role of the ST pushed students to take on the 

responsibility of sharing ideas with the group while the other members responded to them. 

Nevertheless, our study suggests that group roles can provide unique affordances for 

participation, which can pave the way to integrating students who typically do not express their 

ideas in a mathematics classroom. Such affordances for participation could be related to the 

design of the task being grounded in culturally responsive teaching via allowing opportunities for 

open-ended participation through the activity and given group roles. For example, stories in this 

group consisted of references to popular athletes, while created graphs incorporated students’ 

own pictorial additions to the ST’s created story. Our limited knowledge of the individuals’ 

backgrounds prevents us from making strong arguments, but we anticipate that task design and 

group role choices could impact students’ opportunities to insert their own personal experiences 

into the mathematical activities at hand. 
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This study explores how inclusive and differentiated instructional practices, specifically focused 

on designing and implementing mathematical tasks, influence student learning outcomes in 

mathematics education across Nigeria, Kenya, Ghana, and the USA. By integrating insights from 

prominent research in each context, the research aims to uncover the transformative potential 

inherent in mathematical tasks. Drawing from established concepts like higher-order thinking, 

problem-solving, scaffolding, and differentiated instruction, the study navigates diverse 

educational contexts, emphasizing the impact of socioeconomic contexts, inclusivity, and 

collaborative learning environments. The findings aim to offer practical guidance for educators 

and policymakers, contributing valuable insights to enhance mathematics learning 

environments. 

Keywords: Instructional Activities and Practices, Problem-Solving, Mathematical 

Representations 

 

Previous studies, such as those by Gravemeijer (1994) and Masingila (1993), emphasize the 

importance of aligning mathematical tasks with students' backgrounds and surroundings. This 

principle is not universally applied, yet research consistently shows significant differences in 

mathematics instructional practices between developed and developing countries. Educators in 

developing countries often face resource constraints that limit opportunities for scaffolding, 

problem-solving, and student-centered learning, leading to more teacher-centered approaches 

(Amoah, 2018; Ampadu & Danso, 2018; Fletcher, 2010). In contrast, developed countries offer 

various resources, such as computational tools, curated textbooks, and extracurricular facilities, 

enabling enriched mathematical tasks that foster creativity. 

Mathematical tasks are essential for promoting problem-solving, critical thinking, and 

mathematical reasoning. However, Bature et al. (2016) observed that many developing countries 

prioritize rote memorization and procedural fluency over conceptual understanding. This 

underscores the need for interventions to ensure all students, regardless of location or 

socioeconomic status, receive high-quality mathematics education that encourages deep 

conceptual understanding and critical thinking skills. 

In developing countries, mathematical tasks often emphasize algorithmic procedures and 

standardized test preparation. For example, in Kenya, educators design tasks based on 

standardized test items and assess students through high-stakes exams (Nandwa et al., 2015). 

Similarly, in Nigeria, traditional practices significantly impact student performance (Falebiba & 

Olofin, 2020; Ojonubah, 2016). Addressing diverse learning needs requires adopting 

differentiated, student-centered instruction that promotes conceptual understanding and problem-

solving (Njagi, 2014; Amoah, 2018; Ampadu & Danso, 2018). 
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Conversely, developed countries prioritize student-centered approaches in mathematics 

instruction. These approaches actively engage students through hands-on activities, collaborative 

problem-solving, structured curricula, and real-world applications (Stecher et al., 2016; 

McGaffrey et al., 2001). Numerous studies highlight the significant influence of instructional 

practices on mathematics achievement (McDonald et al., 2013). Teachers in these contexts 

employ diverse mathematical tasks, from open-ended investigations to structured problem-

solving, to deepen students' understanding of mathematical reasoning and concepts (Anderson, 

2003; Henningsen & Stein, 1997). 

Our study conducts a comparative analysis of mathematics instructional practices across 

Nigeria, Kenya, Ghana, and the USA, focusing on inclusive and differentiated approaches. The 

investigation aims to uncover how socioeconomic contexts create disparities that impact student 

learning outcomes. By examining these differences, this research seeks to inform educators, 

policymakers, and researchers about the contextual factors shaping instructional practices and 

student outcomes in various national settings. Our guiding question is: How do inclusive and 

differentiated instructional practices, particularly in the design and implementation of 

mathematical tasks, impact student learning outcomes in mathematics education across Nigeria, 

Kenya, Ghana, and the USA? 

 

Mathematical Instructional Practices 

Mathematical fluency and conceptual development are essential for students to navigate 

complex problems and real-world applications confidently. A comparative analysis of 

instructional practices in Nigeria, Kenya, Ghana, and the USA highlights the diverse approaches 

to mathematics education. In Nigeria, Bature et al. (2016) emphasize the importance of inclusive 

instruction, showing its positive impact on student outcomes through tailored tasks. Similarly, 

Nandwa et al. (2015) highlight structured instruction and collaborative activities in Kenya, 

fostering a dynamic learning community. 

Teachers' attitudes toward differentiated instruction play a crucial role in shaping 

instructional practices. In Kenya, teachers' favorable attitudes toward differentiated instruction, 

evidenced by varied tasks catering to different readiness levels and learning styles, contribute to 

a supportive learning environment (Njagi, 2014). Teachers who tailor instruction to 

accommodate diverse abilities create an inclusive environment where all learners feel valued and 

supported, this aligns with Mayer (1999) emphasizes intentional task selection to enhance 

students' mathematical experiences. Effective mathematics instructional practices in the United 

States involve differentiated and individualized approaches, particularly benefiting students with 

difficulties (Morgan, Farkas, & Maczuga, 2015; McKinney et al., 2009). Emphasizing 

conceptual understanding over rote memorization is linked to higher student achievement, with 

innovative practices showing positive outcomes (O'Dwyer, Wang, & Shields, 2015; Osborne, 

2021; Herbst & Chazan, 2020). 

Challenges such as language barriers and individual differences necessitate a spatial justice 

lens in mathematics education (Larnell & Bullock, 2018). Khalo et al. (2022) and Gee (1999) 

discuss how language difficulties can hinder problem-solving, highlighting the need for practices 

that accommodate linguistic diversity. Mereku & Cofie (2008) and Rubel & Nicol (2020) 

advocate for spatial justice to address individual differences and ensure equitable access to 

learning opportunities. Recent research, such as Amoah (2018) in Ghana, focuses on practical 
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tools like the AKIOLA Core Mathematics Series and Enriched Mathematics textbook to enhance 

instructional practices. Studies by Shultz (2022) and Villanueva & Prudente (2022) further 

contribute to the conversation on effective mathematics education by exploring teachers' 

knowledge, attitudes, and practices. These findings highlight the importance of evidence-based 

practices and continuous professional development to improve instructional quality and student 

outcomes globally. 

 

Methods 

The study utilizes a comprehensive comparative analysis approach to examine mathematics 

instructional practices in the USA, Nigeria, Ghana, and Kenya. Content analysis, as outlined by 

Bowen (2009), serves as the primary method for reviewing documents to extract meaningful 

passages. Leveraging the researcher's firsthand experiences in these countries adds a distinctive 

perspective to understanding instructional challenges and the influence of socioeconomic factors 

on mathematics education. Merriam (2009) and Krippendorff (2004) emphasizes the 

methodological rigor of employing content analysis for making replicable and valid inferences 

from textual data to their contexts. 

Thematic coding and analysis were conducted on a curated selection of peer-reviewed 

publications, standards/practice documents, and curriculum frameworks. This process involved 

coding raw data and categorizing them into themes based on the content characteristics. Major 

themes identified included higher-order thinking (HOT), problem-solving activities (PSA), and 

open-ended assessment techniques (OEAT), emphasizing their significance in shaping student 

mathematical learning. This approach captures diverse perspectives on instructional practices 

and provides valuable insights into the challenges and contextual factors influencing 

mathematics education. The methodological approach ensures a comprehensive exploration of 

the subject matter, facilitating a deeper understanding of the diverse landscapes of mathematics 

instructional practices across the selected countries. 

 

Findings and Discussion 

The findings from an in-depth analysis of a curated selection of peer-reviewed publications, 

standards/practice documents, and curriculum frameworks from Nigeria, Kenya, Ghana, and the 

USA underscore the pivotal role of mathematical tasks in shaping student learning outcomes in 

mathematics education (Bature & Jubrin, 2015; McGaffrey et al., 2001; Spillane & Zeuli, 1999). 

While the curriculum standard documents are well-articulated, with clear content and learning 

objectives, there is a discrepancy observed in the curriculum objectives enactment and 

development and use of enriched mathematical tasks among teachers in Ghana, Nigeria, and 

Kenya compared to their counterparts in the USA. This difference may be attributed to varying 

access to necessary resources and ongoing professional development opportunities for 

instructional improvement. 

Thematic coding reveals recurring themes such as higher-order thinking (HOT), problem-

solving activities (PSA), and open-ended assessment techniques (OEAT), highlighting their 

influence on student mathematical learning. These findings resonate with Bature & Jubrin's 

(2015) emphasis on the importance of tasks stimulating higher-order thinking skills in Nigeria, 

facilitating meaningful connections between various mathematical concepts. Similarly, 

McGaffrey et al. (2001) in the USA advocate for activities of varying difficulty levels, fostering 
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students' understanding and enhancing their ability to generate diverse solutions, aligning with 

the universal pedagogical goal of promoting critical thinking and creativity in mathematics 

education. 

Furthermore, the significance of problem-solving activities, recognized across diverse 

educational contexts (McGaffrey et al., 2001; Spillane & Zeuli, 1999), plays a crucial role in 

developing students' mathematical proficiency. This aligns with the observations of McGaffrey et 

al. (2001) in the USA, highlighting the positive impact of presenting students with activities that 

involve varying levels of difficulty. The emphasis on problem-solving is consistent with Spillane 

& and Zeuli's (1999) exploration of patterns of practice in the context of national and state 

mathematics reforms. 

Open-ended assessment techniques, implemented in Kenya and the USA (Nandwa et al., 

2015; McGraffrey et al., 2001), encourage personalized, critical responses, fostering a 

comprehensive understanding of mathematical concepts. Nandwa et al.'s (2015) research in 

Kenya aligns with McGraffrey et al.'s (2001) insights, both emphasizing the importance of open-

ended assessments in promoting a deeper understanding of mathematical concepts. These themes 

collectively underscore the global importance of adopting inclusive and differentiated 

instructional practices, particularly in the design and implementation of mathematical tasks, to 

enhance student learning outcomes. 

 

Conclusion 

Through an exploration of various studies conducted across diverse countries, including 

Nigeria, Kenya, Ghana, and the USA, this paper seeks to unpack the impact of such practices on 

student learning outcomes. The studies across Nigeria, Kenya, Ghana, and the USA collectively 

stress the importance of designing and implementing diverse mathematical tasks that 

accommodate diverse learning needs, foster collaboration, and create engaging student-focused 

environments. The design and execution of mathematical tasks are highlighted, emphasizing 

their function in meeting a range of learning goals, encouraging teamwork, and creating 

stimulating learning environments for students. the transformative role of scaffolding emerges as 

a critical factor in shaping students' understanding of moral mathematical knowledge. Through 

scaffolded support, educators can guide students towards mastery, providing the necessary 

assistance while gradually fading it as students become more proficient. This gradual release of 

responsibility empowers students to take ownership of their learning, ultimately leading to 

improved learning outcomes. 

 

Implication 

The insights gleaned from these studies have significant implications for mathematics 

educators worldwide. It emphasizes how crucial it is for teachers to intentionally construct tasks, 

taking into account the varied requirements and backgrounds of their students. Teachers may 

establish inclusive learning environments where all students feel valued and encouraged by 

including a variety of mathematical exercises that accommodate varied learning styles and 

abilities. Moreover, teachers are urged to use scaffolding as a teaching tactic to aid in their 

students' mathematical progress. Teachers can scaffold students' learning journeys and give them 

the confidence to tackle increasingly difficult mathematical concepts by offering focused support 

and coaching. 
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This report presents initial findings from a project aimed at enhancing equitable group work in 

undergraduate proof classes. The study explored student perceptions of these tasks compared to 

traditional group work, addressing questions about engagement and collaboration. Quantitative 

analysis, utilizing the Assessing Student Perspective of Engagement in Class Tools (ASPECT) 

instrument, indicated overall positive perceptions of the tasks. However, qualitative analysis 

signaled that structured task designs acted as a key factor in supporting collaboration and 

understanding. However, varying attitudes towards assigned roles suggest the need for further 

investigation into their impact on participation. This research underscores the importance of 

intentional task design in creating equitable learning environments in proof-based courses. 

Keywords: Undergraduate Education, Reasoning and Proof, Equity, Inclusion, and Diversity 

Overview & Purpose 

In this report, we share some initial findings from the project Structuring Equitable 

Participation in Undergraduate Proof (STEP UP) aimed at supporting more equitable groupwork 

in undergraduate proof classes. Groupwork is becoming an increasingly common part of 

undergraduate proof classes with professional organizations (Saxe & Braddy 2015; the MAA 

Instructional Practices Guide, 2018) advocating for more student-centered approaches in 

undergraduate instruction. In fact, a recent survey of abstract algebra instructors found that over 

90% used groupwork at least once in their course (T. Fukawa-Connelly, personal 

communication; Johnson et al., 2019). While groupwork can support richer student engagement, 

it is also a space where participation can be very imbalanced and students perceived as having 

higher status may dominate (e.g., Cohen et al., 1999; Esmonde, 2009). Proof-based courses have 

high potential to amplify status differences as students are enculturated into a new language and 

form argumentation (Weber & Melhuish, 2022) and where competence may be misperceived as 

unidimensional: ability to produce a formal proof (Hanna, 1991). Thus, there is a need to think 

about not just the quality of mathematics in tasks, but the nature of the activities and how the 

tasks may be designed to better support equitable participation.   

During the first year of the project, we supported 10 mathematics instructors in designing 

tasks using principles of Complex Instruction (Cohen et al., 1999; Featherstone et al., 2011). For 

the scope of this report, we focus primarily on group worthy features of interdependence and 

individual responsibility.  During the fall, four mathematicians implemented between 1 and 3 of 

these tasks designed for Topology, Linear Algebra, Analysis, and Introduction to Proof, 

respectively. To explore how students experienced these tasks, we take a mixed methods 

approach. The students took a brief Likert-scale survey, the Assessing Student Perspective of 
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Engagement in Class Tools (ASPECT) (Wiggins et al., 2017), designed to capture group work 

experiences. We then interviewed 11 students to both better understand their survey responses 

and get more in-depth information about their groupwork experiences. For the scope of this 

paper, we focus on the following research questions: 

• RQ 1 In general, how do students perceive the STEP UP tasks in their proof classes? 

• RQ 2 How do students perceive differences between their typical group work and STEP 

UP task days?   

Background Literature & Theoretical Perspectives  

There is a lot of potential for active learning and groupwork to support students in 

developing rich understanding and engaging in mathematical practices. However, the literature is 

mixed on the relationship between inquiry and equity in proof-based courses. For example, 

Laursen et al. (2014) showed more affective gains for women in inquiry-based classes; Johnson 

et al. (2020) found that inquiry-oriented abstract algebra was associated with men, but not 

women, outscoring a national sample on a conceptual assessment. Johnson et al. (2020) 

conjectured that groupwork may lead to a gendered hierarchy where men engage in a 

disproportionate amount of the mathematics. Brown (2018) further illustrated the ways that 

group work may serve to marginalize certain students in an inquiry class in which two women 

were “excluded” from participating in the group work. From our preliminary work, we have 

found that men may hold more authority during group work tasks (Hicks et al., 2020; Melhuish, 

Dawkins et al., 2022). Ernest et al. (2019) identified explicit instances in which student discourse 

was overtly sexist as well as implicitly aggressive towards women during small-group 

interactions in an inquiry setting. These scholars problematize the notion that group work 

necessarily creates equitable learning spaces, when in fact “small-group work can provide fertile 

ground for inequities to emerge” (p. 168). These results are consistent with K-12 literature 

establishing the presence of group work in classrooms as insufficient for fostering more equitable 

learning environments (Cohen et al., 1999; Esmonde, 2009a; Langer-Osuna, 2016; Shah & 

Lewis, 2019). When students discuss mathematics in small groups, status hierarchies may form, 

positioning some students as more expert helpers and others as novices in need of help 

(Esmonde, 2009b). 

With these results in mind, we take the position that status, which is influenced by societal 

factors such as race and gender and comprised of both academic status (perceived mathematical 

ability) and peer status (social status and popularity) impacts opportunities to engage and learn in 

the classroom (Cohen & Lotan, 2014). If groupwork does not include features that may disrupt a 

status hierarchy, then it is likely that high status students will participate the most and thus learn 

the most. However, specific structures built into group work tasks have the potential to mitigate 

problematic status hierarchies from forming (Cohen & Lotan, 2014; Dunleavy, 2015; Esmonde, 

2009a), which can reduce (rather than amplify) inequities in inquiry settings (Shah & Lewis, 

2019).  

In our work, we have emphasized a series of principles to support tasks being group worthy 

in proof classes stemming from complex instruction (e.g., Cohen et al., 1999; Featherstone et al., 

2011) and an expansive view on proof activity (Melhuish, Vroom, et al., 2022; Weber & 

Melhuish, 2022). We consider a task to be group worthy if it allows for multiple access points 

and strategies, foster a sense of positive interdependence among group members, and have 
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structures to hold the group responsible for the participation and learning of each team member 

(Cohen & Lotan, 2014). In the context of a proof-based class these structures need to be paired 

with opportunities for competency to expand beyond proof construction to include activities such 

as comprehending proofs, building and reasoning from examples, and comparing and modifying 

proofs (Melhuish, Dawkins, et al., 2022). That is, not only should tasks include social structures 

(such as group roles or different students being provided with different information), but the 

nature of the tasks needs to allow for students to engage in mathematics in different ways to 

support the recognition of different strengths at play. We conjectured that these features could 

support more positive group experiences that are less dominated by pre-existing status 

perceptions.  

Methods 

This data comes from a larger project STEP UP supporting proof-based instructors in 

designing and implementing more equitable group tasks. In general, the project borrows heavily 

from complex instruction and notions of group worthy tasks (e.g., Cohen et al., 1999; 

Featherstone et al., 2011). During summer workshops, instructors who teach different courses 

collaborated to design tasks where students engaged in theorem and proof comprehension, 

theorem and proof comparison and analysis, and proof construction (via conjecturing a major 

theorem and developing lemmas from visual representations.) The tasks were designed to elicit 

an array of mathematical strengths. They were all embedded with specific roles (e.g., definition 

manager) and/or responsibilities (e.g., become an expert on proof A, lead discussion about the 

focal question on your index card). The tasks were designed so each student had mathematical 

responsibility for components of the activity and that different needed knowledge was distributed 

throughout the group. 

Sample and Procedure  

The central research design for this study is an exploratory mixed method (Creswell & Plano 

Clark, 2011). The purpose for this method is for the qualitative data to explain the quantitative 

results. We include a quantitative instrument: Assessing Student Perspective of Engagement in 

Class Tools (ASPECT; Wiggins et al., 2017) and follow-up interviews to better understand and 

explain the student responses to the ASPECT instrument. 

Students were recruited to participate in this study after their instructor (Fall 2023 and 

beginning of Spring 2024) agreed to run these group work activities in their proof-based courses. 

In all, we had 76 students consent to participate. Students who consented were recorded (all but 

one class) in their group work and asked to complete the ASPECT survey either directly after 

their groupwork task or the following class day. One class, Topology, completed 3 groupwork 

tasks, the Fall Intro to Proof course completed two tasks, and the Linear Algebra and Real 

Analysis completed one task. Thus, some students took the ASPECT survey three times. For this 

analysis, only their first ASPECT scores were analyzed.        

Quantitative Measure and Validity Evidence. ASPECT is a 16-item construct with three 

factors: 1) value of activity (9 items), personal effort (3 items), and instructor contribution (4 

items). The measure was designed to assess a student’s perception of engagement in an active-

learning classroom on a Likert scale (1 = Strongly Disagree to 6 = Strongly Agree). In this case, 

ASPECT was used to measure a student’s perception of engagement regarding the STEP UP 

tasks. Only the first factor (value of activity) was utilized. The instrument has been previously 

validated in an introductory biology course.  We used Rasch modeling to assure the validity of 
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the tool in our context focusing on the value of the activity subdomain.  An initial item analysis 

from the first survey responses (n = 77) indicated a slightly less than acceptable item reliability 

of .72 (above .80 is considered a high reliability index) and an item separation of 1.62 (less than 

2.00 suggests a lack of breadth in item difficulty) for the 9-item sub-construct. However, as the 

score is over 1.5, it is not demeaning (Ariffin at al., 2010) even though it may not distinguish to 

the desired degree. Despite this, the psychometric results indicate that the data fits the model 

from the average infit (𝑀𝑁𝑆𝑄 = 1.00, 𝑍 =  −.20) and average outfit (𝑀𝑁𝑆𝑄 =  1.03, 𝑍 =
 .00). Our person reliability was slightly above the ideal threshold (above a .80) with a .85, but an 

ideal person separation (greater than 2 suggests a range in abilities of the students) of 2.34 

(Linacre, nd).  The Wright Map (Figure 1) displays the spread of the participants (top) on the 

horizontal scale illustrating the variability in responses.  

Follow-Up Interviews. Towards the end of the semester, we sent a survey to all three 

courses asking students who would volunteer to participate in individual interviews about their 

interactions with groupwork. We conducted 11 semi-structured interviews with all who 

volunteered: 5 students from the Introduction to Proof course, 4 students from the Topology 

course, and 2 students from the Linear Algebra course. We conducted interviews after their finals 

and interviewed students online via Zoom. During the interview session, there was one 

researcher leading the interview while a second researcher was taking notes.  

The interviews lasted close to an hour, and we had an interview protocol composed of three 

major parts. The first part asked students to describe their experiences with typical group work, 

such as their description of the group work that happened in class and their interactions with their 

group members. The second set of questions in the interview were almost identical to the first 

part but were focused on the group work from the STEP UP tasks (e.g., thinking back to the tasks 

on the video recorded days, how do you think this group work was the same or different 

compared to a typical day?). The last part of the interview centered on asking the participants to 

elaborate on their reasoning for their score on certain survey items (e.g., could you elaborate on 

what you meant by this score to the statement: I made a valuable contribution to my group 

during the Proof Activity?). We shall note that all 11 interviewees were present on at least one 

day when the STEP UP tasks occurred. 

Analysis methods 

We report on the results of the Rasch analysis and present some descriptive statistics from the 

survey. We situated our interview participants based on the scores. For the qualitative portion, the 

first stage of analysis involved using the interview notes and going back to the video-recorded 

interviews. For each interview, one member of the research team identified all the instances that 

a student described a typical workday and instances of explaining the groupwork on the project 

day. For each individual, a set of key quotes were selected from the transcripts that provided 

insight into how group work was perceived and how project groupwork days were seen as 

similar or different. The next stage involved condensing themes (Braun & Clarke, 2006) based 

on whether the students were discussing either cognitive (learning) or social (participation) 

features. Additionally, we attended to whether the sentiment was positive or negative based on 

linguistic cues used to signal appraisals (Eggins & Slade, 2004).   
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Analysis and Findings 

Quantitative Results 

Rasch modeling was chosen over a classical approach due to Rasch transforming raw data 

into continuous data via a logistic transformation (Bond & Fox, 2015). The Rasch model utilizes 

the response patterns from the item and participants to create a logistic model to transform the 

data into logits (Bond & Fox, 2015). The visual spread of the logits can be seen in Figure 1 on 

the Wright Map. To note, typically a Wright Map is displayed as a vertical scale, here we report 

the map on a horizontal scale. The students on the right of the map (top squares and triangles) are 

interpreted as more favorable or seeing more value towards the STEP UP tasks. As seen on the 

Wright Map, the logit score of the students (M = 1.21, SD = 1.38) are higher, on average, than 

the items (M = 0.0, SD = 0.29). This suggests that most of the students are scoring these items 

highly (Likert scale value 4 or above) and agreeing to the value of the STEP UP tasks. As for the 

items, we see that the items are clustered together towards the left end of the horizontal scale. In 

Rasch, this means that these items are easier to endorse or agree with by the participants. In other 

words, all items are interpreted as agreeable. Since there are no items toward the right of the 

horizontal scale, this suggests that there aren’t any items, as a whole, that are predicted by the 

model to illicit a disagreeable response. While ideally the mean Logit scores of the items and the 

participants are meant to be near each other, this suggests that the students are favorable of the 

[BLIND] groupwork tasks created and implemented in these courses. 

 

 

 

Figure 1. Wright Map  

For this subscale, there were two items we focused on which were Q4 (group discussion 

during [the activity name] contributed to my understanding of the material) and Q9 (I would 

prefer to take a class that includes [group activity] over one that does not include this group 

activity). As seen from the Wright Map (Figure 1), item Q4 lies in the middle of the cluster 

which indicated that this item is agreeable (M = 4.59, Mdn = 5, SD = 1.38) but not as agreeable 

as item Q7 (the left most item on the horizontal scale). Item Q9 is the right most item on the 

horizontal scale. This means that item Q9 (M = 4.26, Mdn = 4, SD = 1.51) is not as agreeable or 

as likely to endorse as Q4. However given its position on the Wright Map, the Likert statement is 

still likely to be agreed with by the majority of the participants but less favorable than others 

with a median response of a 4 (neutral to agree). 

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1752 

Table 1: Interview Participants 

 

Participant Gender Race/Ethnicity Course Score 

Alexis Woman White Topology 3.88 

Lily Woman Hispanic Topology 1.99 

Lee Man Asian/Mongolian Linear Algebra 1.96 

George Man White Intro to Proofs 1.60 

Crocodile Man Hispanic/Latino Intro to Proofs 1.60 

Karli Woman Not Provided Intro to Proofs 1.30 

Gabi Woman Mixed/Latina Intro to Proofs 1.30 

Joy Woman Hispanic Intro to Proofs 0.67 

Julia Woman White Topology 0.56 

Joe Man Spanish Topology 0.45 

Marla Woman Not Provided Linear Algebra 0.33 

 

To understand some of the results from the ASPECT survey, we interviewed 11 students 

(Table 1). Our sample of students had a higher ASPECT logit average (M = 1.43, SD = 1.02) than 

the whole samples group (M =1.21, SD = 1.36), but still represented a true subset as seen by the 

Wright Map (Figure 1). On the Wright Map, the interviewed students are represented by the 

squares and the rest of the participants are represented by the triangles. More about the 

participants and their ASPECT scores can be found in Table 1. 

Qualitative Results 

Our goal with the qualitative analyses was to both validate the survey responses and provide 

more explanatory insight for students reported positive or negative experiences. We subdivide 

these results into two sections: cognitive-focused and participation-focused. 

Cognitive-Focused: Understanding and Activity. None of the interviewed students 

reported any negative impact of the tasks on their cognitive understanding of the content.  Five 

students identified overtly positive distinctions for the project tasks they felt resulted in 

differences in understanding the material. Students commented on the structured nature of the 

tasks with Lily further elaborating, “I honestly just really liked the activity. I felt like it really 

helped my understanding... that was one of the concepts in the class that I felt like, really, like 

confident about” with Gabi similarly commenting on structure and the role of having a goal: “So, 

like in a typical group work, you didn’t necessarily have a goal. It was just more like talking.” 

Two other students commented on the nature of the activity with Alexis noting that the activity, 

“made me look at proofs differently, and made me understand a little bit more about like what 

like a professor or other mathematician might be seeing when they are reading a proof,” and 

George explaining that their groups helped “explain things in a way that made sense” and 

supported visualizing.  

We see these comments as focusing on three elements: the structured and goal-oriented 

nature of the tasks, the atypical type of activity (e.g., proof comprehension), and the role of 

peers. We highlight that the students explicitly noted the “structured” nature of the task in 

supporting understanding and contrasted it with “just talking.” While structuring the task was an 

initial design element, this is language students spontaneously introduced during the interview. 
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Finally, we note that not all students had positive reflections about supporting understanding. 

Several students still preferred lecture over any group work (although this did not impact their 

understanding of the material.) Joe indicated that he read the material in advance and suggested 

he did not benefit in the activity to the degree that students who had not prepared may have.  

Participating-Focused: Collaboration and Contributions. Nearly all of the students 

mentioned differences in participation. Many of the students commented on roles and 

responsibilities supporting more equalized and collaborative involvement where Joy noted, “I 

think it [participation] was well spread out because we followed the jobs [group roles]. I think 

they helped with making sure [we were] learning the entire thing and making sure …we all stuck 

to contributing. I think if there weren't roles, one of us would have definitely wanted... to step up 

[meaning take over the work] after seeing how lost all of us were at the beginning.”  Other 

students commented that the group work was “more collaborative (Marla)” and that the roles led 

to “everyone getting involved (Karli).”  Students again noted how the tasks were structured 

differently with Lily explaining how in typical group work they just have a set of exercises to 

finish, but the structure of the [blind tasks] meant they had to “share it with each other and 

compare, and all of that stuff that made, you know, made me have to share it-- made others have 

to listen to what I have to say as well.” 

A few commented on people who tended to share a lot on typical days, but who did not share 

as much on project task days. Marla described a “leader” who would tell others what to do, they 

would do it, and he would check their work. She noted that on the project task day, this student 

was given a non-leader role and when the group members traded out roles he did not want the 

leader role. It is possible he felt some relief from an unintended role he fell into and then didn’t 

know how to navigate away from on his own. 

Some students suggested they liked certain structures more than others. “I really loved the 

first and the third one a lot, a lot, a lot, a lot. The second one-- I think the structure was 

confusing, and so I felt like we had to slog through a little more. But I actually don't remember 

the activity very much. I remember the roles, and that they were confusing (Alexis).” Lily 

compared “free range” group work to “not as much freedom” in the project tasks due to the roles. 

She further elaborated that because they each had different information (via their roles) and they 

had to combine it to find an answer, she “didn’t mind” and compared it to solving a mystery.    

In contrast, there was one student who voiced a negative reaction to the task structure. 

George explained, “It was frustrating that I couldn't contribute, because I might have already 

known the answer.”  Other students noted that they stepped back during some role activities or 

wished they had a larger role or a different role (one student said her group switched up roles 

right away so everyone got what they wanted). However, George was the most direct about 

feeling the structured task roles held him back. In that interview he commented that he’d hear a 

groupmate say something wrong and would want to correct them, but didn’t feel his role allowed 

for that. The same student also noted, “Yes, yes, I’ve never had an issue with respect in the class. 

I would hope that I properly respected everyone in the class as well. Again. It's hard for me 

sometimes to tell if I'm being disrespectful. It's not something I'm very good at.” He did not 

elaborate and it's entirely possible he has some differences in interpreting social cues and nuance 

in how others perceive statements. It also may be helpful for this student to practice restraining 

from correcting others—however, it is not a task design intent to ban anyone, despite group role, 

from speaking up or commenting on others’ thinking. 
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Discussion and Conclusion 

This study provides initial evidence that structures from K-12 group work can be 

successfully integrated into undergraduate proof-based contexts. As group work becomes an 

increasingly common part of advanced mathematics, it is crucial that we consider how we 

implement it to not amplify status issues that are particularly prevalent in proof-based classes. To 

address this issue, we developed task templates (stemming from an earlier exploratory abstract 

algebra context, Melhuish, Dawkins et al., 2022) that disrupted what types of activities students 

are asked to engage in by moving away from traditional proof construction as the primary task, 

and integrated intentional structures to support interdependence and personal responsibility.  The 

quantitative results from this study suggest that across four classes, students by-and-large 

reported positive experiences with the STEP UP tasks. The interviews then shed light on what 

students perceived as key differences between typical group work days and STEP UP tasks and 

the ways the STEP UP tasks did or did not support learning and collaboration. In this way, we are 

contributing to Adiredja and Andrews-Lasron's (2017) call to better understand student 

experiences in active learning to gain insights into what circumstances may support positive 

experiences. 

All students noted at least one difference between project task groupwork and regular 

groupwork—almost all had something to do with the structured nature, which they contrasted 

with “just talking” in typical groupwork. Students who appreciated this structure suggested it led 

to more collaboration, better understanding, and appreciated having a clear goal in mind.  Most 

students indicated they felt the structures did equalize participation in terms of different student 

contributions. However, we note that the roles were most divisive and most brought up in the 

interviews. The students who were explicit about usually being chatty, not having any problem 

jumping into conversations, or self-identified as strong mathematically commented either an 

ambivalent relationship to the roles (liked them here; not there) or did not like them (the one 

student who described them as frustrating).  It may be that some students like roles because they 

have a harder time jumping into discussion and others feel less positive because they did not 

usually have a hard time. Our theoretical view on status may provide insight into this 

relationship.  We conjecture that the “high status” students may feel more constrained when not 

left to dominate conversation. 

Because the data in this study is all self-reported, we are limited in terms of making 

conclusions about actual participation rates and nature of collaboration. In future research, we 

plan to consider empirically the contribution rates in groups to examine the degree that status 

appears to predict or not predict contributions. Additionally, we are bringing positioning lenses in 

to explore not just participation rates, but how students are engaging with each other and the 

mathematics. This initial phase of the research points to several promising avenues for continued 

work in developing more equitable group work situations in proof-based classes. We suggest 

other researchers who engage in design of classroom tasks at this level consider not just how to 

support cognitive and activity goals, but also what structures may support increased involvement 

and collaboration of all students in small groups.   
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In this paper, we consider who leads and who follows when a classroom community engages in 

collective mathematical activity—we describe this as mathematical authority. Building from 

theoretical writings on authority by Benne and Weber, we advance an activity-based perspective 

of mathematical authority which we exemplify through vignettes of middle-grades classrooms. 

Using data from 117 hours of video of 129 math lessons, we employ Loglinear models to identify 

relationships among the co-occurring authoritative activities of authoring, speaking, and 

representing. Results extend our understanding of the ways mathematical authority is negotiated 

during whole-class interaction and the importance of representing and speaking as high-

leverage opportunities to foster students’ mathematical authority. 

Keywords: instructional activities and practices, classroom discourse, middle school education  

Social groups and group activity are core to our experiences as learners and teachers, and, 

sociologists would argue, to making sense of lived experience in general. Social activity almost 

always involves some form of leading and following. Whether its playing peek-a-boo with a 

young child, listening to an orchestra perform, children playing a game at the park, or students 

learning in classrooms, someone is leading, directing, and planning these collective activities. In 

this paper, we consider who leads and who follows when a classroom community engages in 

collective mathematical activity—we describe this as mathematical authority. We believe that 

authority is an ever-present but overlooked feature of mathematics classrooms. In this paper we 

build from theoretical writings on authority by Benne (1970) and Weber (1947) to advance an 

activity-based perspective on mathematical authority which we exemplify using vignettes from 

middle-grades classrooms. Using data from over 117 hours of video of 129 math lessons, we 

employ Loglinear models to identify significant relationships among co-occurring authoritative 

activities. These results extend our understanding of the ways mathematical authority is 

negotiated during whole-class interaction and the importance of representing and speaking as 

high-leverage opportunities to foster students’ mathematical authority. 

Theoretical Perspectives & Related Research on Authority 

Sociologist Max Weber and educational philosopher Kenneth Benne each framed authority as 

a feature of social groups that arose from the need for coordinated social action. As a macro-

sociologist, Weber focused on broader institutional, historical, and societal structures. Thus, he 

alluded to social action in a general way as commanding and obeying in service of maintaining 

group order (the norms, values, behaviors, and roles of the group). For Weber (1947), authority 

was “the probability that a command with a given specific content will be obeyed by a given 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1758 

group of persons” (p.152), and the action of commanding established a hierarchical relationship 

between the head and followers. Benne, too, framed authority in terms of directing and obeying:  

[Authority] operates in situations in which a person or group [subjects], fulfilling some 

purpose, project, or need, requires guidance or direction from a source [bearer] outside 

himself or itself. The need demarcates a field of conduct or belief in which help is required. 

The individual or group grants obedience to another person or group … (1970, p. 392). 

A key distinction here, one that Benne himself highlighted, was his attention to the field, or 

context, of authority relations. His explicit identification of the field as a constitutive feature of 

authority suggests, to us, a more dynamic and transient view of authority wherein the roles of 

bearer and subjects are fluid and determined by mutually-negotiated purposes that can shift over 

time and situations. We draw on both Benne’s and Weber’s work in our conceptualization of 

authority to further clarify the field within which mathematical authority exists. We define 

authority as a dynamic and negotiated relationship within a given field in which one party agrees 

to lead, while another party agrees to follow that lead. (The words “lead” and “follow” are from 

Pace & Hemmings, 2007). Further, we suggest that within any field, there is a collection of 

activities through which a member of the field can hold authority by leading one or more of 

those activities. Mathematical authority, then, is the authority relevant to the field of doers of 

mathematics that is accessible to all within a classroom and determined by who leads 

mathematical activities valued by the community.  

Much of the authority research consists of classroom studies focused on aspects of 

instruction related to authority to understand how mathematical authority is constituted in those 

contexts. For example, in their collaborative body of research Herbel-Eisenmann and Wagner 

documented how authority was encoded implicitly in our often unconscious linguistic choices in 

math classrooms (Herbel-Eisenmann & Wagner, 2010; Wagner & Herbel-Eisenmann, 2014a, 

2014b.) Their work is part of a growing body of authority research that studies how interactional 

and discursive routines can constrain or support students as mathematical authorities (Arnensen 

& Rø, 2022; Engle, et al., 2014; Hamm & Perry, 2002; Kinser-Traut & Turner, 2020; Langer-

Osuna, 2016; Langer-Osuna et al., 2020; Solomon et al., 2021). Talk moves such as the types of 

questions posed, validating activities, wait time, and the appropriation of student ideas can 

support students to take responsibility, ownership, and authority for classroom mathematics.  

In general, we can describe much of this research as linking mathematical authority to certain 

discursive forms or features of interaction. We agree that authority is indeed at work in the 

details of micro-level interaction as the extant literature clearly shows, but argue that these 

interactions are, in part, constituted by and given meaning from the larger activity or goal of a 

situation. Thus, in this paper we take a different methodological approach and operationalize 

authority through the lens of leading and directing mathematical activity, drawing from both 

Benne and Weber’s focus on collective social action as a key driver of authority relations. This 

perspective allows us to describe who has authority for what; to document how authority changes 

from one situation to another as participants’ roles in different mathematical activities change; 

and to do so in ways that clearly connect to existing theory.  

To operationalize our activity-based perspective of authority, we reviewed the authority 

literature with a focus on mathematical activities. The majority of research emphasized a specific 

activity as the primary marker of mathematical authority: the authoring of mathematical ideas 
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(Arnensen & Rø, 2022; Gerson & Bateman, 2010; Langer-Osuna et al., 2020; Otten et al., 2017; 

see also Cobb et al.’s [2009] “making mathematical contributions”). That is, who is responsible 

for generating the mathematical ideas that are taken up in the classroom. We agree that authoring 

ideas is a core mathematical activity but propose the consideration of other valued mathematical 

activities. For example, authoring a mathematical idea does not always entail communicating 

that idea publicly (e.g., Goffman’s [1981] distinction between authoring and animating). In fact, 

this distinction is seen in NCTM’s (2000) process standards which differentiate the mathematical 

activities of communication and problem solving. Communication, for us, is the way in which 

mathematical ideas are publicly expressed so they are accessible to the group. In many cases 

authoring and communicating mathematical ideas coincide, but not always. Although the 

dominant mode of communication in K-12 classrooms is oral, we consider two types of public 

communication in this study: speaking and representing. Speaking is our term for oral 

communication whereas representing is the visual communication of a mathematical idea, 

including written and gestural forms. Representations include graphs, diagrams, written notation/ 

symbols, as well as physical models that capture “a mathematical concept or relationship in some 

form” (NCTM, p. 67). We suggest that students’ opportunities to produce and engage with 

various forms of written text, graphs, and models—what we term representing—is a key aspect 

of learning mathematics and developing proficiency with mathematical discourse in addition to 

being an important marker of mathematical authority (Arcavi, 1994; Pimm, 1987; Solomon & 

O’Neill, 1998; Staples, 2007). Thus, in this study, our focus is on who has authority for the 

mathematical activities of Authoring, Speaking, and Representing during whole-class instruction 

though we recognize other important mathematical activities are present (e.g., authority for 

justifying a claim). The research questions we sought to answer are: (1) How is mathematical 

authority negotiated among teachers and students in middle-grades classrooms?, and (2) How are 

the different authoritative activities of Authoring, Speaking, and Representing related? 

Methods 

Setting, Participants, and Data 

This study is part of a larger research program investigating productive mathematics 

discourse in middle-grades classrooms. The participants were 11 grades 5-7 teachers and their 

students. Participating classrooms were located in four states across the US, and all teachers had 

at least 6 years of experience. Teachers were recommended by administrators, math coaches, and 

professional development trainers as good mathematics teachers, but they had different styles of 

teaching which led to varying instructional routines during whole-class instruction (e.g., some 

were more lecture-based and others more discussion-based). Data was comprised of video 

recordings and transcripts of 57 algebra and 72 fractions lessons, comprising a total of 117 hours 

of instruction. At least 9 lessons per classroom were filmed in a single academic year, with a 

minimum of 3 lessons filmed in each content area within a classroom. We chose the topics of 

algebra and fractions because these are common topics across the grade levels in our study and 

because of their significance in secondary curricula and overall academic success. 

Analysis 

Unit of analysis. In our definition of authority, the field is more than the setting, group, and 

group activities; it also incorporates the mathematical focus, participation format, and who has 

authority for leading each mathematical activity in a given interaction. We account for the field 

of authority relations in our unit of analysis—a segment. A segment is a series of turns of talk 
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with a common focus (e.g., task, strategy) and a consistent form of participation (whole-class, 

independent work, etc.). Boundary markers for segments were indicated by a change in the 

problem, task, or topic often indicated by changes in intonation, resources or materials, physical 

orientation, participants, or the use of particular phrases or linguistic markers. We note that our 

analysis was restricted to segments of whole-class instruction only. The transcript below 

illustrating our coding framework is an example of a segment. There were a total of 1688 whole-

class, mathematical segments coded across the 129 lessons (an average of 14 per lesson). 

Coding. Within each whole-class segment, holistic decisions were made about who led each 

of the activities of Authoring, Speaking, and Representing which are defined in Table 1. One of 

the mutually exclusive codes of Teacher, Students, Both (the students and teacher co-lead an 

activity), or None (the activity did not occur) was assigned on the basis of who led, or had 

mathematical authority, for each activity in a segment. When coding, we considered students’ 

collective mathematical activity rather than individual students’ actions because individuals were 

often not possible to identify from video. We double-coded over half of the 129 lessons (44 

algebra and 25 fractions lessons; 954 segments). Coding discrepancies were discussed until 

coders achieved consensus. Values for Cohen’s kappa for Authoring, Speaking and Representing 

were κ = .71, .76, and .86, respectively, which indicate substantial agreement. 

 

Table 1: Mathematical Authority Analytic Framework 

 

Mathematical Activity 

Authoring Generating the mathematical idea that is the focus of the segment. 

Speaking Orally communicating mathematics in a way that is publicly accessible. 

Representing Visually communicating mathematics within a segment in a way that is 

publicly accessible, visually observable, and mathematically meaningful. 

Includes writing, gesturing, and modeling. 

 

Exemplifying the analytic framework. To exemplify our analytic framework for authority, 

we share a segment from a 6th-grade class and explain our coding. The class had been working 

on writing equations to represent generalized solutions. Students worked independently on the 

following task: As a contractor, you specialize in outdoor brick stairwells. How many bricks will 

you need to build a 10-brick-high stairwell? (See Figure 1 below.) Consider how you would code 

authority for each of the activities of Authoring, Speaking, and Representing.  

Teacher:  Anybody else have another strategy they want to share? Kelli.  

Kelli:  (Walks to doc camera.) Mine’s kind of like Danica’s. So, I found that the, um, 

tallest part of the brick stairwell is ten (points to the rightmost column), the 

shortest is one (points to the leftmost column). So I added those together and I got 

eleven. And the second shortest and the second tallest got eleven. And I kept 

doing that until I got that (gestures to the five 11s written diagonally in her work). 

I had five elevens, and I added them together and I got 55. 

Student:  That’s a good one. 

Kelli:  Oh, you can’t really see. I should make it darker. 
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Figure 1: Kelli’s written work for the staircase problem 

Teacher:  Yeah, it’s hard to see. Let me zoom in. (Teacher helps with document camera.) 

Zoom just on your picture. … Alright, one more time now that everybody can see. 

Kelli:  So I added the shortest one (draws a square around the leftmost column) with the 

tallest one (draws a square around the rightmost column). And I got eleven (points 

to the “11” in top left corner). Then I added the second shortest (traces over the 

second column from the left) and the second tallest (points to the second column 

from the right) and I got eleven. And then I added the third tallest (points to 

column) and the third shortest (points to column). ... And I got elevens for all of 

them (points to the row of “11s” in drawing). Then I added the 11s and got 55. 

Teacher:  Aah, very cool.… Three claps on three for Kelli. 

In this segment, students had authority for Authoring, Speaking, and Representing the 

mathematics because they led, or directed, these mathematical activities in this situation. Kelli, a 

student, publicly explained the strategy she authored both verbally and by referring to her written 

work. She repeatedly gestured to specific columns (i.e., stairs) to connect her written symbols to 

the problem context and pictorial representation. Her gestures emphasized the pattern she noticed 

in the representation—that the sum of pairs of ‘outer’ columns was constant—which she then 

connected to symbolic notation. Kelli’s Representing activity in this vignette, which was 

primarily gestural but also included some writing, was critical to the clear communication of her 

ideas. You may wonder why we did not assign the teacher as having authority for any of the 

mathematical activities despite her verbal contributions: she opened (and closed) the interaction 

by giving Kelli the conversational floor, acknowledged Kelli’s strategy, and supported clarity in 

Kelli’s communication. However, the teacher did not directly communicate or author any 

mathematics. Thus, the authority Kelli’s teacher held was pedagogical authority, which we 

differentiate from mathematical authority. Pedagogical authority is the authority for directing 

instructional activities such as selecting topics or tasks, opening and closing tasks, and 

nominating speakers (Wilson & Lloyd, 2000; see also Oyler’s [1996] process authority). Just 

because a teacher has pedagogical authority does not mean she also has mathematical authority.  

Quantitative analyses and loglinear models. While coding segments, we noticed patterns in 

some codes. For example, when students had authority for Representing in a segment, they also 

tended to have authority for Authoring. Because we hypothesized that who had authority for 

different mathematical activities was related, we used a combination of contingency tables, 

conditional probabilities, and Loglinear models to systematically explore relationships among 

the mathematical activities in our analytic framework. A Loglinear model is a regression model 
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for non-normal outcomes that represents counts of categories and is appropriate for categorical 

data. In the Loglinear model, we assume that counts (i.e., cells in a contingency table) follow a 

Poisson distribution and depend on the categories of variables (i.e., row effects, column effects, 

and interaction effects for a two-way, or two-variable, model) (Agresti, 2007). We used the 

Generalized Linear Framework to analyze the multi-factor contingency table created by counting 

co-occurring codes across the mathematical activities in our authority framework. 

Findings 

Negotiating Mathematical Authority: Authority Structures 

To answer our first research question we share vignettes that illustrate the diverse ways 

classroom members negotiated mathematical authority for the mathematical activities of 

Authoring, Speaking, and Representing during whole-class interaction. We introduce the term 

authority structure to describe, in a more general sense, patterns we observed in how authority 

was distributed across mathematical activities within segments of whole-class interaction. We 

identified four authority structures in our data—Teacher as Primary Mathematical Authority, 

Students as Primary Mathematical Authority, Sharing Authority Across Different Mathematical 

Activities, and Sharing Authority Within the Same Mathematical Activity. These authority 

structures exemplify common, yet qualitatively different ways authority was negotiated during 

whole-class interaction. We begin with segments in which one party has authority for the 

majority of mathematical activities (i.e., two or more activities). We describe the authority 

structure in these types of segments as a primary authority structure, the difference being who is 

the primary authority—the teacher or students. Consider the segment shared in the methods. This 

segment exemplifies the authority structure of Students as Primary Mathematical Authority 

because students had authority for Authoring, Speaking, and Representing (the majority of math 

activities). Segments in which students were the primary mathematical authority were not the 

norm but did comprise about 20% of our data. In this authority structure, students are positioned 

as capable doers of mathematics with the authority to clearly communicate their mathematical 

thinking. In contrast, consider segments in which the teacher drove the content; we characterize 

that authority structure as Teacher as Primary Mathematical Authority. Instead of illustrating this 

authority structure, we ask you to imagine an interaction in which a teacher authors mathematics 

content and represents it publicly, perhaps giving students opportunities to verbally communicate 

some parts of the content. In fact, segments in which the teacher had authority for Authoring and 

Representing, and both the teacher and students had authority for Speaking was the usual way in 

which Teacher as Primary Mathematical Authority occurred.  

For the first two activity structures presented, one party (teacher or students) was the primary 

mathematical authority. Below we present a vignette to illustrate a different type of authority 

structure in which mathematical authority is shared. In this vignette, students in a 5th-grade class 

solved this problem: How much does each person get if 4 friends share 11 brownies evenly?  

Teacher:  James, what did you do?   

James:  I made eleven squares and I divided – and I, um, cut them into fourths. 

Teacher: Okay. And those squares represented what? 

James:  A brownie. (Teacher draws eleven squares on the SMART board.) 

Teacher: And then you said you did what to those brownies?  

James:  I cut them into fourths. (Teacher partitions each square into four equal parts.) 
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Teacher:  Alright. James, after you split each brownie into fourths, then what did you do? 

James:  I put a number next to each [fourth] so I know that that’s one kid. 

 

 

Figure 2. Recording James’s solution on the SMART board 

Teacher:  Okay. So what you’re meaning is that piece (points to a fourth) goes to child one? 

(James nods.) So how did you know from that picture how much each child got? 

James:  Well, I counted, um. Every child got a fourth of each brownie. So every four 

squares, that would equal a whole. Each kid gets two wholes and three fourths. ... 

In this vignette, the mathematics under consideration was generated by James, but he is not 

the only person communicating his idea to the class. Because our operationalization of authority 

goes beyond Authoring to include Representing and Speaking, we can document how the teacher 

plays an important role in the oral, gestural, and written forms of communication. Although 

students had authority for Authoring the focal mathematical idea, the teacher had authority for 

Representing the idea by creating a public visual record of his thinking (and both had authority 

for Speaking). Thus, we describe the authority structure in this vignette as Sharing Across 

Activities. In this type of shared authority structure, students and teachers simultaneously claim 

authority for different mathematical activities. In other words, each party has sole authority for at 

least one mathematical activity in a segment. However, at times, teachers and students may share 

authority for the same activity. In fact, we see this in the previous vignette when the students and 

teacher shared authority for Speaking. But consider if the teacher had also explained how the 11 

one-fourths each child received was reflected in the drawing and was equivalent to 2¾. Had this 

occurred, the students and teacher would have shared authority for Authoring the focal 

mathematical idea, resulting in codes of both for Authoring, both for Speaking, and teacher for 

Representing. This hypothetical situation exemplifies our final authority structure of Shared 

Authority Within the Same Mathematical Activity; this authority structure is characterized by 

segments in which two or more mathematical activities are coded as both. The Shared Authority 

Within authority structure was the most common in our data, accounting for 40% of segments.  

The four authority structures we shared here provide common yet qualitatively different ways 

mathematical authority was distributed across the activities of Authoring, Speaking, and 

Representing in our study. Moreover, our distinctions between the authority structures of Shared 

Authority Across Different Activities and Shared Authority Within the Same Activity provide 

clarity to the construct of “shared authority” which is a consistent recommendation across 
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research but with various meanings in the literature (Amit & Fried, 2005; Arnensen & Rø, 2022; 

Gerson & Bateman, 2010; Langer-Osuna et al., 2020).  

Relationships Among Authoring, Speaking, & Representing: Loglinear Models 

To answer our second research question, we systematically explored relationships among the 

activities in our framework using a Loglinear model. We started with a saturated model that 

included all categorical variables and interactions. Using a backwards selection process, we 

eliminated interactions in layers to identify the ‘smallest’ model that fit the data as indicated by 

model fit statistics (Agresti, 2007). Our final model was:  𝑙𝑜𝑔(𝜇𝑖𝑗𝑘) = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝜆𝑘 +

(𝛽 × 𝛾)𝑖𝑗 + (𝛽 × 𝜆)𝑖𝑘  where 𝑋𝑖𝑗𝑘, the count of the (𝑖, 𝑗, 𝑘)𝑡ℎ cell, is Poisson(𝜇𝑖𝑗𝑘); each 

category of Authoring was estimated by i, i = 1, …, 3 (the three possible authority codes of 

Students, Both, and Teacher for Authoring); each category of Speaking was estimated by j 

where j = 1, …, 4 (the four possible codes of Students, Both, Teacher, None); and each category 

of Representing was estimated by k where k = 1, …, 4. The final model contains all main effects 

and pairwise interactions among Authoring and each of Speaking and Representing. Following 

Agresti (2007), we interpret significant results in terms of odds ratios that compare the relative 

likelihood of different categories of one authority variable occurring while holding other 

variables constant. (Due to space, we do not report all coefficients for the final model.) 

Our goal with this analysis was to understand which combinations of authority codes co-

occurred more frequently than expected—for example, what codes co-occurred when students 

had authority for Authoring or Representing? We found that when students had authority for 

Representing ideas, they were 3 times as likely to also have authority for Authoring compared to 

both or teacher Authoring. [Relevant odds ratio is log (
𝜇121

𝜇321
) =  0 −  (�̂�3 + (𝛽 × 𝛾)̂

32)  =  .72 +

 .41 = 1.13, so 𝑒1.13 = 3.1. The 95% family-wise confidence interval for the odds ratio is (2.26, 

4.24)]. In contrast, when students had authority for Authoring, the teacher was twice as likely as 

students to publicly Represent those ideas [log (
𝜇123

𝜇121
) = �̂�3 −  �̂�1 =  .67 − 0 = 0.67, so 𝑒0.67 =

1.95; the 95% family-wise confidence interval for the odds ratio is (1.58, 2.44)]. Although the 

authoritative activities of Authoring and Representing were related, that relationship depended on 

who had authority. In general, Representing is a mathematical activity for which the teacher is 

most likely to have authority, regardless of who has authority for Authoring. But when students 

did have authority for Representing, it was most likely their own ideas they were 

communicating. We also found that when students had authority for Speaking, they were more 

likely to have authority for Authoring, regardless of who had authority for Representing (odds 

ratios comparing students Authoring to other authorship categories holding students as Speaking 

constant were all greater than 1). And perhaps not surprisingly, when teachers Authored ideas or 

shared authority for Authoring with students (both code), the teacher was more likely to be the 

one Representing those ideas. These findings indicate that when students have authority for the 

mathematical activities of Representing and Speaking, they are more likely to also have authority 

for Authoring. Thus, we suggest these two activities may be particularly important opportunities 

to foster students’ mathematical authority.  

Discussion & Implications 

By incorporating multiple, simultaneous mathematical activities into our activity-based 

perspective of authority, we expand the field’s understanding of how mathematical authority is 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1765 

negotiated in classrooms and provide a useful lens to reflect on practice. We found both 

consistency and variety in the ways mathematical authority was distributed across the activities 

of Authoring, Speaking, and Representing which we documented with four authority structures. 

We suggest that the authority structures of Sharing Within and Across Activities provide specific 

and productive ways to share mathematical authority in ways that amplify, clarify, and build on 

students’ contributions. Yet despite the prevalence of shared mathematical authority in our data, 

students rarely had authority for Representing though they often had authority for Authoring. 

Moreover, authority for Authoring did not imply authority for Representing: the directionality of 

these relationships was complex. However, the activities of Representing and Speaking seem to 

be powerful indicators of students’ overall mathematical authority and we encourage teachers to 

seek opportunities for students to communicate mathematical ideas.  

In closing, we quote Benne who, over 50 years ago said, “We do not … know the shape of 

the future society and culture into which we as educators, along with those we are helping to 

educate, are now moving” (1970, p. 404). He wrote this as part of his argument for an authority 

that balanced freedom with responsibility in a self-renewing, interdependent community that 

adapted to the needs of the group, both now and in the future. As we look toward an uncertain 

future, we believe the activity-based perspective of authority we shared here provides a new and 

more positive conceptualization of authority that foregrounds the empowerment of students as 

doers and leaders of mathematical activities in ways that can adapt to accommodate the new 

activities future mathematics communities deem worthy of learning and learning to lead.  
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Supporting engagement at the middle school level as well as providing access to high-quality 

mathematics is crucial. We explore instructional moves that contributed to engagement during 

an informal geometry summer camp for middle school students, centered around advanced 

geometry such as braids, symmetries, and platonic solids. We report variation in engagement 

and explore how instructional moves of open-ended questioning, real-time feedback, and 

prompting supported positive moments of engagement.    

 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Geometry and Spatial Reasoning; Informal 

Education; Equity, Inclusion, and Diversity 

 

Middle school is a pivotal time in students’ development, and access to opportunities during 

this age can determine students’ confidence in pursuing particular disciplines (Buffum et al., 

2016; Shin, 2011). For example, access to high-quality, engaging mathematics during middle 

school can determine a student’s confidence to pursue STEM avenues (Butler-Barnes et al., 

2021; Furner, 2017). Unfortunately, many students lack opportunities for high-quality 

mathematics due to continued inequities in U.S. schools along racial/ethnic and socioeconomic 

lines (Morgan et al., 2016; Sirin, 2005). Experiential learning that engages students in 

collaborative and hands-on experiences may work against opportunity gaps (Kolb et al., 2014), 

while also aligning with community and socially-oriented approaches to learning that are 

especially important for students from historically marginalized racial/ethnic, cultural, and/or 

socioeconomic groups (Gray et al., 2020; Xu et al., 2018). We sought to understand middle 

school students’ engagement experiences during a week-long summer geometry camp centered 

around experiential learning-based activities by addressing the following questions:  

(1) What was the variation in students’ engagement during the experiential geometry activities, 

by day and by student? and (2) What instructional moves during the experiential learning 

geometry activities contributed to moments of positive engagement in the camp?  
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We focused on geometry to leverage students’ daily experiences with space and movement. 

Up to and through middle school, public school students receive geometry instruction, however, 

tendencies to provide lecture-style instruction and “teaching to the test” remain prevalent (Close 

et al., 2020). We sought to provide rich experiential learning opportunities to students so that 

they may explore abstract geometric concepts that they may not experience in their traditional 

mathematics classroom: braids, knots, symmetry, etc. Our purpose is to understand how students 

experience engagement with experiential learning activities centered around geometry and how 

to support students in order to create positive learning experiences.   

 

Theoretical Framework 

Engagement is a multidimensional construct as conceptualized by various researchers that 

refers to how students connect to learning (Fredricks, 2011; Hospel et al., 2016; Middleton et al., 

2017). We used Wang et al.’s (2016) five dimensions of engagement - behavioral, cognitive, 

affective, social, and agentic - to guide our observation of students during each activity. Our 

protocol (adapted from Ben-Eliyahu et al., 2018) included columns to document student actions 

(e.g., “Consider what students are doing: asking, describing…”), level of participation (e.g., 

“Active: takes initiative, Passive +: listening, attentive, Passive -: unfocused, not on task…”), 

and affect (e.g., “+: Amazed, joyful…, Neutral: calm, relaxed, - : Distressed, angry…”).   

This study is informed by Kolb et al.’s (2014) experiential learning cycle which consists of a) 

concrete experiences (engaging in an authentic situation), b) reflective observation (noticing 

what has occurred and relating to past experiences), c) abstract conceptualization (translating 

perceptions into abstract understandings), and d) active experimentation (honing skills in a new 

experience). The cycle encourages students to engage in both concrete and abstract thinking 

through experience and reflection, allowing them to interact with the content and discover 

connections between ideas. For example, within this study, students engaged in a series of 

activities centered around identifying the number of mathematical braids that meet a particular 

characteristic. Following an initial discussion of braids in which students shared their knowledge 

of what braids are and how they work, the students engaged in a concrete experience in which 

they created braids using pipe cleaners and then attempted to draw the braids using different 

color markers. Next, the students engaged in reflective observation when the instructor asked 

students how they might draw strings in their illustrations to clearly distinguish which strings 

were woven in the front versus behind. The students engaged in abstract conceptualization as 

they discovered that leaving a space between the background string and the forward string on 

both sides of the forward string represented the section of the background string that they could 

not see. Lastly, students entered into the active experimentation phase following this discussion 

when the instructor posed the question, “How many 3-string braids are there that have just one 

crossing?” The students used their new understanding to experiment with different possible 

cases. This cycle was used to engage students in opportunities to develop understanding of a 

variety of concepts from advanced-level geometry. Instructional moves in each of these phases 

refer to teacher actions that occurred prior to and during students’ engagement in the experiential 

geometry activities (Bobis et al., 2021; Frey & Fisher, 2010). 

 

Methods 
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The context for this study was a community-based geometry camp offered on the campus of 

a large urban university in the Mid-Atlantic. The public school division in which the university is 

situated is a high-needs school district, serving nearly 23,000 students (75% Black, 13% Latinx, 

9% White, and 3% Other) from low-income backgrounds (in the 2017-2018 school year, 100% 

of students qualified for Free and Reduced Lunch). Priority was given to students from the inner-

city school district and portions of surrounding districts known to be low-income areas.  

Forty-one students attended the week-long camp; 36 students’ data was included in analysis. 

The students included 18 girls (50%), 17 boys (47%), and one student who identified as non-

binary (3%). Eighteen students identified as Black (50%), eight as two or more races (22%), 

eight as White (22%), and two as Asian (6%). Nineteen students (53%) had completed 6th grade, 

10 (28%) students had completed 7th grade, and seven (19%) students had completed 8th grade.  

Data sources analyzed were observation protocols, video-recordings of lessons, and surveys. 

Students took survey items measuring dimensions of student engagement at the end of every day. 

Video-recordings were transcribed as needed. For the first research question, the second author 

analyzed survey data by converting responses to a Likert scale of 1 (strongly disagree) through 5 

(strongly agree) and computed averages. For each student, their average scores were calculated 

for each day of the camp. Using these scores, the students’ total averages were calculated to 

analyze overall engagement per day. Open-ended questions at the end of each survey were 

analyzed for common key phrases students attributed to their engagement efforts.  

For the second research question, the first author watched video to identify cases of “engaged 

moments” (Yin, 2009) based on the level of students’ cognitive (e.g., asking questions, 

describing their actions) and behavioral engagement (e.g., showing a knot they made). These 

moments were analyzed using Wang et al.’s (2016) dimensions of engagement, for students’ 

ideas (cognitive), actions (behavioral), participation level (social), and affect (emotional). 

Instructional moves were inductively coded and analyzed to generate themes in relation to the 

phase(s) of the experiential learning cycle that was/were demonstrated in the moments.  

 

Results 

Quantitative Results 

Mean engagement across five days of camp were relatively high: 3.47 (Day 1), 3.53 (Day 2), 

3.90 (Day 3), 3.71 (Day 4), and 3.79 (Day 5). Results showed that 0, 14, and 22 students fell into 

low (< 2.5), average (2.5-3.5), and high (>3.5) engagement groups, respectively. Open-ended 

survey responses showed that students attributed infrequent breaks to lower engagement, 

whereas they attributed hands-on activities to higher engagement ratings.  

Qualitative Findings  

Two cases in which various forms (e.g., cognitive, behavioral) of student engagement were 

visibly present during the geometry activities were analyzed in-depth to understand the 

instructional moves that supported students within the experiential learning cycle. One case 

involved one-on-one interaction between the instructor and a student, while the other case 

involved interaction between an instructor and three students. Both cases of interaction occurred 

when students were encouraged to explore a concept individually and/or with their group 

members, during which the primary and secondary instructors moved around the room to support 

students’ exploration. Overall, findings showed that instructors played an important role in 
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supporting students’ engagement in experiential geometry learning. Three major teacher moves 

that emerged from the analyses are summarized below. 

Open-ended questioning. Questions were categorized as open-ended (e.g., “If I were going 

to try to make yours out of string, what would I do?”) or closed (e.g., “It is a type of braid but it 

is somehow different from this braid, right?”; Chin, 2007). The majority of questions were open-

ended: nine out of 10 in the group engagement case and two out of three in the individual 

engagement case. Use of open-ended questions encouraged students to actively participate by 

explaining their thoughts regarding what was posed. For example, during the small group case, 

the instructor posed the question, “What kind of process happened to make this braid that was 

different from the process that was used to make this one?” Student A responded, “I was folding 

over and over and over, and he was twisting and twisting.” Here, posing open-ended questions 

created opportunities for reflective observation. Specifically, the student was able to reflect on 

the differences in braiding techniques which resulted in the production of different braids. 

Real-time feedback. Analysis of the engaged moments revealed the instructor’s use of real-

time feedback which supports students’ engagement with and understanding of the concepts 

(Wisniewski et al., 2020). This was often through the use of positive commentary supporting the 

students’ work, followed by guidance for the students to consider in moving forward. One 

example of this real-time feedback occurred during the individual engagement case. The student 

was working to identify the number of braid crossings. The instructor supported the student’s 

thinking and approach by saying, “This is a great way to approach this counting problem. You’ve 

broken it into categories where you’re going to count what are the possibilities [sic].” Following 

this positive feedback about the student’s moves, the instructor identified an important 

component to consider within the process, for duplicates and exceptions: “but the things to look 

for now that are actually technically the same or don’t count for some reason [sic].” She then 

gave an example using cases, which (she explained) is a process mathematicians use. The 

instructor then encouraged the student to go through his cases and identify whether there are 

more cases that are equivalent within the cases he had already identified.  

Prompting deeper experimentation. Analyses revealed the engagement that occurred 

following the instructor’s use of prompting encouraged students to elaborate on their thinking 

(Walshaw & Anthony, 2008). Prompting sometimes took the form of encouraging students to 

consider a particular idea, while other times encouraged physical engagement. For example, in 

the small group case, the instructor prompted student C to demonstrate how they completed a 

type of braid. The instructor responded, “Oh okay, you’re going full over.” As a result of this 

prompt, student A became involved as well, which led to sensemaking between the two students: 

 

Student A: “Wait, there’s an easier way to do that.” 

Student C: “Huh?” 

Student A: “Wait, can I try something? You could have just done… that… just twisting it.” 

Student C: “Yeah, but that doesn’t twist the entire thing like that.” 

Student A: “Yeah, that’s true.” 

 

In this example, the instructor’s prompting created an opportunity for the two students to engage 

in active experimentation, where they developed a deeper understanding - together - of a 

discrepant event: why two braiding processes did not result in the same outcome. 
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Conclusion 

In conclusion, quantitative and qualitative analyses revealed students reported and 

demonstrated overall high engagement in the camp. The qualitative analysis of two cases 

involving student engagement during geometry activities provides valuable insights into 

effective instructional strategies within the experiential learning cycle. The varied instructional 

moves implemented during these activities support existing literature arguing for intentional 

instructor actions that support students in engaging with the content (e.g., Chin, 2007; Walshaw 

& Anthony, 2008). While the geometry camp presents unique contextual considerations that vary 

from traditional K12 classrooms, the instructional moves presented can be implemented by 

traditional K12 classroom teachers as a means of supporting students’ deeper engagement with 

geometry concepts and beyond. Our analysis provides a fine-grained look at specific actions 

making up these instructional moves and student responses, which can provide guidance for 

instructors looking to implement supportive instructional moves in a variety of learning spaces. 
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Building on the theory of practical rationality, we explore how three beginning secondary 

mathematics teachers reconcile competing professional obligations, namely: disciplinary, 

individual, and institutional obligations. As these teachers transitioned from supervised teaching 

to teaching their own classrooms, they reconciled competing obligations and developed their 

own ideas about mathematics teaching and learning. The analysis revealed that it was only 

institutional obligation that conflicted with either disciplinary, or individual obligation, or with 

teachers’ own teaching preferences. No other two obligations appeared to clash. The conflict 

with institutional obligation was reconciled in favor of institutional obligation in less than 30% 

of instances. In the vast majority of cases, another obligation took precedence.  

Keywords: Beginning Secondary Teachers, Teacher Obligations, Practical Rationality  

“I thought that my job was to teach math. I was not emotionally prepared for all the other 

things I need to do in the classroom.” These words of a first-year secondary mathematics teacher 

illustrate the complexity of classroom teaching and the many demands inherent in the profession. 

Raising the question of “How teachers manage to teach”, Lampert (1985) asserts that the work of 

teaching requires constant management of practical dilemmas caused by competing 

responsibilities or commitments. For example, a commitment to attend to an individual student’s 

understanding may clash with a commitment to “cover the curriculum;” or a commitment to 

advance academic achievement may conflict with providing a comfortable learning environment 

to students. Becoming a mathematics teacher involves, among many other things, learning to 

manage these types of dilemmas (Herbst & Chazan, 2003; Windschitl, 2002).  

Beginning mathematics teachers transitioning from university-based teacher preparation 

programs to school teaching need support in learning how to recognize and deal with such 

dilemmas (Bieda et al., 2015). One way to support beginning teachers in this process is through 

an internship—supervised teaching experience, in which a teacher candidate is placed full-time 

in the classroom of a mentor-teacher. However, research shows that rather than being supported, 

interns experience additional competing commitments: toward the university supervisor 

advocating for ambitious teaching vs. the often-traditional practices of the mentor teacher 

(Bjerke & Nolan, 2023; Gainsburg, 2012). When entering their first teaching job, novice teachers 

assume additional classroom responsibilities, some of which have previously been managed by 

their mentor (e.g., communicating with parents, reporting to administration, coordinating 

instruction with other teachers). As a result, beginning teachers may feel overwhelmed, and enter 

a survival mode (Stokking et al., 2003) characterized by rigid, traditional teaching styles. Yet, 

some novice teachers hold on to the ambitious teaching practices learned in teacher preparation 

programs (Gomez Marchant et al., 2021; Thompson et al., 2013).  

The implied interconnectedness of beginning teachers’ early-field experiences and their 

emerging classroom practices indicates the importance of enhancing our understanding of how 

beginning teachers learn to reconcile and manage the multiple dilemmas of classroom teaching. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1774 

However, research examining this topic, especially longitudinally, has been limited (Cochran-

Smith et al., 2008; Gainsburg, 2012). Our study aims to address this research gap.  

The study reported herein is part of a larger NSF-funded project that explores the 

professional growth of beginning secondary mathematics teachers across four years, in multiple 

settings: from the senior year in their teacher preparation program, into the supervised internship, 

and their own classrooms. In this paper, we focus on three such beginning teachers: Nancy, 

Olive, and Diane (pseudonyms) who volunteered to participate in the study. All three teachers 

excelled in their academic studies as secondary mathematics education majors and demonstrated 

high buy-in for integrating ambitious teaching practices, as evidenced by the dispositions survey 

they completed as undergraduates. Moreover, the three participants had some experience with 

integrating ambitious practices in real classroom settings in their undergraduate preparation 

(Buchbinder & McCrone, 2023). We examine how these well-prepared beginning teachers coped 

with the challenges of transitioning from university to school teaching; and, how they reconciled 

competing commitments and teaching dilemmas.  

 

Theoretical Perspectives 

Teacher decision-making draws on many resources, such as teacher knowledge, personality 

traits, and beliefs. Herbst and Chazan’s (2003, 2011) theory of practical rationality suggests that 

beyond individual characteristics, there are certain professional obligations, that are common to 

anyone who holds the position of teacher in the institution of schooling. The authors identify four 

broad types of professional obligations. The obligation to the discipline of mathematics involves 

authentically representing mathematical concepts, and engaging students with mathematical 

ideas, values (e.g., accuracy of vocabulary and notation), and practices (e.g., discovery, 

reasoning, and proving). The obligation to students as individuals involves attending to fairness, 

and consideration of individual student’s needs, cognition, and emotions. Interpersonal 

obligation considers the class as a whole, requiring the teacher to manage social dynamics, 

intergroup relations, and ensure fair sharing of resources, time, and space. The institutional 

obligation requires the teacher to follow school, district, and state policies related to curriculum 

assessment and standards, and adhere to practices and guidelines shared by members of school 

mathematics departments.     

Becoming a mathematics teacher involves adopting a decision-making framework for 

managing the work of day-to-day classroom teaching in the institution of schooling. The four 

professional obligations are an inherent part of this framework, whether explicitly acknowledged 

by teachers or not. The obligations do not prescribe teacher actions, but rather serve as sources of 

justification for those actions (Chazan et al., 2016). As pointed out by Bieda et al., (2015) the 

“obligations can be found in teacher talk as they warrant claims, either explicitly or implicitly, 

about what should or should not, or might or might not, be done in classroom interaction.” 

Additionally, due to their often-implicit nature, obligations can be captured in situations where 

they come into conflict with one another. As teachers describe their classroom dilemmas their 

obligations come to the fore; and by examining the action taken following the decision-making 

process, we can learn about how the beginning teachers reconcile the competing obligations.   

In this paper, we focus on negotiation, managing, and reconciling competing obligations by 

three beginning secondary mathematics teachers. We examine the following question: In the 

discourse of beginning secondary mathematics teachers, what types of obligations surface as 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1775 

competing with one another, and how do teachers reconcile competing obligations?  

Methods 

Data Collection and Analysis  

Three beginning teachers: Nancy, Olive, and Diane volunteered to participate in the study as 

undergraduates and remained with the project for four years. In this paper, we focus on two time 

periods: (1) a supervised internship during which each intern taught in their mentor-teacher 

classroom, and (2) the first year of autonomous teaching. For Nancy, this supervised internship 

was a traditional length of one year with occasional stretches of autonomous teaching in the 

second semester. Olive and Diane were promoted to full-time autonomous teaching in their 

second semester due to the staffing needs of their schools and in light of their exceptional 

performance. For each participant, we collected multiple video observations, lesson artifacts, and 

interviews. The data for this paper comes from three interviews conducted with each participant 

during their first year in classrooms: one at the beginning of the internship and two in the second 

semester after lessons in which the participants taught autonomously. The fourth interview was 

conducted in March the following school year by which time they were all novice teachers. All 

interviews were conducted after one of the researchers observed a lesson taught by the 

participant. The interview questions probed the instructional decisions involved in the planning 

and enactment of the lesson.  

The interview transcripts were split among three researchers (the authors of the paper), and 

each interview was coded individually by two researchers. The three researchers met weekly to 

discuss the coding and reconcile disagreements; such that each code was reviewed by at least 

two researchers. Teachers’ discourse in these transcripts was examined at the utterance level for 

the presence of an action or decision made by the participant and the justification for that 

action/decision. These justifications were coded according to the four professional obligations 

described above (Chazan et al., 2016). In addition, some actions were justified on account of 

personal resources (i.e., knowledge, beliefs, preferences), when the participants described how 

they wanted their classrooms to look and feel. For example, consider the quote: “They [students] 

surprise me every day. I love that every time you do an activity, you're never doing the same 

thing twice. And every time I try to tweak it a little bit in the right direction.” In this quote, 

Olive’s action of “tweaking” an instructional activity is justified on account of her personal 

enjoyment of the teaching process and breaking the routine (“never doing the same thing twice.”)  

In this paper, we focus on those instances in our data where two obligations (or an obligation 

and a personal preference) appeared as conflicting with each other, and the teachers reconciled 

between them. Although these instances were relatively rare, they illuminate the dilemmas these 

beginning teachers faced and resolved early on in their professional journey. Hereafter, we refer 

to these instances as reconciling obligations.         

Results 

Of the total 492 obligation codes, only 35 codes (7%) involved reconciling obligations. For 

Diane, 8 of 132 obligation codes (6%) were reconciling; for Olive, it was 15 of 156 obligation 

codes (9%); and for Nancy 12 of 174 obligation codes (7%) involved reconciling. In all instances 

of reconciling two obligations, one of those obligations was institutional. Meaning that either 

disciplinary or individual obligations or personal teaching preferences conflicted with the 

institutional obligations. In 28% of all instances, the conflict was reconciled in favor of 
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institutional obligation, but in most cases (72%) it was reconciled in favor of some other 

obligation (See details in Table 1, below).  

Reconciling Institutional and Individual Obligations  

In the participants’ discourse, institutional obligation most often conflicted with an obligation 

to students as individuals. This occurred in 18 out of 35 instances (51%).  

At the beginning of the internship, some institutional obligations were represented by the 

need to adhere to the teaching style and the guidance of the mentor teacher. For example, Diane 

described that her mentor teacher suggested she should show students two ways of solving 

problems of calculating percentages, but Diane felt it would confuse the students. She said:  

It's like one extra step that they'd [students] have to do that I think would be confusing for 

them. So, I don't know if I would've even mentioned it, but my cooperating teacher suggested 

mentioning it.  

Here, Diane’s desire to avoid confusing students (individual obligation) conflicted with the 

institutional obligation of following the suggestions of the mentor. Olive experienced a similar 

tension, although in her case, Olive felt she had to adhere to her mentor teacher’s advice to 

instruct students to solve linear equations by collecting variables on the left side only. Despite 

her reservations, and because she “didn't want them [students] to do something that the other 

class didn't do,” Olive upheld the institutional obligation and followed her mentor’s advice.  

As the teachers transitioned to autonomous teaching, the relationships with the mentor were 

no longer a concern. A different aspect of institutional obligation was now discussed by the 

teachers but remained in tension with the individual obligation. Specifically, the teachers talked 

about the tension between the need to “cover the curriculum” while at the same time attending to 

individual students’ needs, prior knowledge, pace of learning, and even moods. Teachers mostly 

reconciled this tension in favor of the institutional obligation. For example, Diane described her 

context saying that there are “two students that are completely behind every time and I can't stop 

and constantly work with them, but I feel bad moving on.” Similarly, Olive described the need to 

move along the curriculum while attending to individual students' learning pace. She shared:  

The reality of the situation is that I cannot give the same work to every kid in this class and 

expect them all to do well on it. That is just not the case. There are kids who need more than 

other kids. […] It's definitely taught me a lot about trying to differentiate and trying to make 

sure I have extra […] resources and things for them to do so that they're not bored. 

In this quote, Olive acknowledged that students learn differently; therefore, her solution to 

managing this diversity was to differentiate her curriculum, ensuring some students were “not 

bored” while others receive different types of tasks in order “to do well.”  

Of the three teachers, Nancy was the one to express the tension most explicitly between 

institutional and individual obligations. She described this as follows:  

I feel like the standards and the things that they want us to teach are taking away from some 

of the fun stuff that we can do with it. And so, […] I get kind of frustrated because I wanna 

do fun stuff, but I also know I have other stuff I have to do and it's just kind of trying to find 

a happy medium, which I don't think I've gotten to yet. 

In this quote, Nancy described the tension between the institutional obligation to address the 
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content standards of her curriculum (“things they want us to teach”) and her desire to create an 

engaging learning environment for the students (“fun stuff we want to do”). She described her 

frustration with the situation admitting that she has not yet found a “happy medium.”  

Despite the strong influence of institutional obligation, all three teachers described how they 

resolve, or strive to resolve the conflict in favor of individual obligation. For example, Nancy 

explained how she worked on revising the curriculum that was handed down to her to make it 

more engaging and “fun” for the students:  

That's something I've been working on since the beginning because in the beginning of the 

year it was basically just worksheet review, worksheet, review, worksheet, notes. Like there 

was no engagement happening. Um, and that's just because those were the resources I was 

given. But now it's a lot more interactive. There's a lot more fun activities built in. 

Diane talked about reconciling the tension between institutional and individual obligations in 

terms of finding ways to “set them [students] up to be successful without making it too hard, but 

also without lowering expectations too much.” Diane disagreed with some of her colleagues' 

advice of breaking the problems into isolated skills. She said:  

Talking with some other teachers, they would be like, ‘oh, you'll never mix quotient rule with 

negative exponents.’ […] I really want to push them [students] to be able to problem solve 

through a couple of steps. My goal is trying to find a manageable way to set them up to do 

that without making the work so difficult that they don't do well.  

The institutional obligation in Diane’s quote is represented through the community of teacher 

colleagues, and the advice given to her. Yet the obligation toward individual student thinking and 

their ability to problem solve takes precedence for Diane in this instance.  

Reconciling institutional and individual obligations in favor of the latter sometimes took the 

form of developing greater sensitivity to students’ feelings. Olive explained this as follows: 

I've got a pulse for how the kids change every day. Sometimes they're in a […] good mood. 

Sometimes […] it's not time to bug that student. […] that kid is in a place today that this 

math is not the biggest concern right now. […] I can work with that kid tomorrow and that's 

okay for today because that kid is not having a day.  

In this quote, Olive described how she gradually developed “a pulse” for her students’ 

moods, and their ability to act as students in her classroom. Using the word “kids” rather than 

“students” indicates her obligation to them as individuals, as Olive described prioritizing their 

well-being over moving on with the curriculum.   

Of the 18 instances of conflicts between institutional and individual obligations, the teachers 

reconciled the dilemma in favor of institutional obligations 5 times and in favor of individual 

obligations 13 times. While these numbers are small and cannot be generalized in any way, we 

report on them to provide a sense of data trends.   

Reconciling Institutional and Disciplinary Obligations 

Institutional obligation competed with disciplinary obligation in 15 out of 35 instances, and 

in 10 of them the conflict was resolved in favor of disciplinary obligation. The disciplinary 

obligation was represented by the teachers’ commitment to have students learn important 

mathematical concepts and procedures meaningfully and thoroughly. Additionally, this entails 
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having students learn mathematics in ways aligned with disciplinary values and practices such as 

exploration, discovery, reasoning, proving, tinkering, and figuring out things for themselves.  

Enacting classroom activities that uphold these disciplinary practices may be demanding for 

novice teachers and may compete with the institutional obligation. For example, as a novice 

teacher, Nancy received instructional materials from a more experienced colleague. Nancy 

expressed frustration with the traditional nature of these materials and with an implicit 

expectation to align her instruction with this mode of teaching. She said:  

We're doing translations and there are so many cool things you can do with translations. […] 

And I just feel like I need to do the guided notes and practice problems, even though, I don't 

know, I guess I don't necessarily have to, but it's just like, there are these notes and things 

that in the past it's been really great for her [another teacher] and it works for her. And I'm 

just like, I just don't wanna sit there and talk to them for 30 minutes at a time.  

This quote shows Nancy’s perceived obligation to uphold institutional expectations to 

coordinate instruction among teachers of the same grade level (“I feel like I need to do the 

guided notes”). This conflicted with her obligation to disciplinary practices of doing meaningful 

mathematics (“many cool things you can do with transformations”). Despite Nancy’s 

dissatisfaction, the institutional obligation seems to take precedence in this instance.   

Other examples of reconciling in favor of institutional over disciplinary obligation occurred 

when teachers were pressed for time or struggled to manage classroom discussions. As a result, 

they cut short an exploratory activity (e.g., “We didn't end up doing this [exploration] because of 

time. I had to get to the next stuff”); or lowered the conceptual depth of the discussion (e.g., “[If 

I] try to circulate that room and have a deep conceptual conversation with each of those 28 

[students], I don't even think I'd have time in the block to do that”).  

Nevertheless, in most instances (10 out of 15) the teachers prioritized disciplinary obligation 

over the institutional. For example, as an intern, Olive modified her mentor’s lesson plan about 

linear inequalities to introduce a short exploration for students to understand why multiplying or 

dividing an inequality by a negative number changes the sign of the inequality.  Olive admitted 

she had to “push to do that just because in the original lesson plan […] the idea of flipping the 

inequality sign is not really explored at all.” Olive explained that she was “worried that they 

[students] were going to ask why, and I didn’t want to not have an answer to that question.” This 

shows that Olive had to overcome the institutional authority of her mentor and of the prescribed 

curriculum, to provide a conceptual justification for a mathematical rule. As a novice teacher, she 

continued to modify her curriculum to make for a more conceptually rich practice. She said:  

If there [is] a worksheet with a ton of problems on it, I will try to deliberately choose three 

different ones that […] really throw you for a loop, so that they [the students] see different 

representations of problems where they're doing a similar process, but they're seeing there's 

something novel about each one.  

Similarly, Diane described how she attempted to uphold the institutional goal of having 

students practice surface area and volume formulas through an exploratory activity where 

students calculated the surface area and volume of physical objects wrapped in aluminum foil:  

I didn't do much practice with them even using surface area formulas […] and volume 

formulas. So, they [the students] had the practice of figuring out what the formula means, 
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plugging the numbers in. […] It was different […] from every day because they [the 

students] were kind of drawing their own conclusions at the end.  

In this quote, Diane almost apologetically admitted that she “didn’t do much practice” with 

the students. This practice was achieved by breaking out from the everyday routine and by 

upholding the disciplinary obligation of having students “figure out what the formula means, 

plugging numbers” and “drawing their own conclusions.”  

The theme of breaking the routine, “doing something different,” (Diane) introducing “fun 

stuff” (Nancy), and “just really hate[ing] the drill and kill idea” (Olive) was common for all three 

teachers. Sometimes, exploratory activities “did not fit in naturally,” in Nancy’s words, with the 

ongoing curriculum topics. For example, Nancy used the pretext of Pi-day (March 14th) to have 

students explore the value of Pi while teaching linear equations. Despite the tension with the 

institutional obligation, all three teachers found creative ways to uphold the disciplinary 

obligation.  

Reconciling Institutional Obligation with Personal Preferences 

Occasionally, teachers described tensions between institutional obligations and their personal 

beliefs and preferences about teaching; these tensions were resolved in favor of the latter. Olive 

discussed her choice to shorten homework assignments, saying that the shorter assignment was 

more “fair” for students and that this choice was “the first time I had done something that was 

my idea.” Similarly, Nancy described going against her mentor teacher’s typical grouping of 

students into teams of three, saying “I wanted to do groups of four because I feel like groups of 

four are better”. In each case, the institutional obligation (giving homework, grouping students) 

was overridden by teachers’ personal preferences for how they wanted to organize their 

classrooms (shortening homework and changing group size), which ultimately shaped their 

actions. Although such conflicts were rare, it was important to these teachers to follow their 

personal beliefs about teaching, rather than always strictly adhering to institutional norms.  

Summary and Discussion 

Table 1 summarizes the distribution of codes showing how the three participating teachers 

reconciled between competing obligations in favor of one of them. For each type of code, the 

percentage is calculated out of the total N=35 reconciling codes. For each teacher, the total 

percent of reconciling codes is calculated out of the total number of obligation codes per 

participant. The results of case studies are not meant to be generalized statistically (Yin, 2017); 

we report on these frequencies to provide a general sense of data trends.  

 

Table 1: Distribution of Codes for Reconciling Obligations (N=35) 

 

Teacher 

Institutional vs. Individual 

Resolved in favor of 

Institutional vs. Disciplinary 

Resolved in favor of 

Institutional vs. 

Personal preferences 

Resolved in favor of 

the latter 
Institutional Individual Institutional Disciplinary 

Diane 2 3 0 3 0 

Olive 2 6 2 4 1 

Nancy 1 4 3 3 1 
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Total 5 (14%) 13 (37%) 5 (14%) 10 (29%) 2 (6%) 

 

As mentioned above, reconciling codes constitute only 7% of the total obligation codes; 

however, they are significant as illuminators of the tensions the beginning teachers encounter as 

they transition from university to school. Our data show that the main source of conflict for the 

participants along this journey was their institutional obligation. It appeared to clash primarily 

with either disciplinary or individual obligations and occasionally with participants’ beliefs, in 

our case, their desire to enact ambitious teaching in their classrooms. Similar to the observations 

in the literature (e.g., Bieda et al., 2015; Smagorinsky et al., 2004), the institutional obligation 

first surfaced at the beginning of the internship when the participants needed to adhere to the 

teaching practices and styles of their mentors. This obligation became even more pronounced 

during autonomous teaching since teachers had to assume additional responsibilities in their 

classrooms and adhere to the practices of their schools (Lampert, 1985; Windschitl, 2002).   

Teachers reconciled in favor of the institutional obligation when they felt pressed for time, 

either in specific lessons or more broadly, with respect to the pace of the school curriculum and 

content standards, for example, when there was an expectation to follow the shared curriculum 

and coordinate instruction amongst multiple teachers and classrooms. Additionally, the class size 

and the need to manage multiple students or groups inhibited teachers’ perceived ability to go 

into conceptual depth on certain mathematical topics. In these instances, the teachers often had to 

compromise other obligations to ensure they were in line with the institutional expectations.  

However, our data show that in the vast majority of situations (72% of reconciling codes) the 

conflict with institutional obligation was resolved in favor of some other obligation: disciplinary, 

individual, or personal preferences. On a side note, we did not encounter cases of institutional 

obligation clashing with interpersonal obligation. This may be due to the overall low frequency 

of reconciling codes within the data set; an observation that bears future exploration.     

The beginning teachers reconciled in favor of individual obligation, in situations in which 

they felt the curriculum did not support students’ classroom engagement. Nancy strived to 

include more “fun” and “interactive activities” breaking away from the “worksheets and review” 

routine. Diane devised tasks to make procedures “manageable” and “not too hard” for students, 

but without compromising problem-solving and “without lowering expectations too much.” For 

Olive, reconciling institutional and individual obligations in favor of the latter was realized in 

developing heightened sensitivity, “a pulse” in her terms, to students’ feelings. She talked 

empathically about how she can suspend the institutional obligation to the pace of the curriculum 

to accommodate a student who is stressed or maybe “just not having a day.”  

Additionally, all three teachers found ways to uphold the disciplinary obligation when it 

conflicted with the institutional obligation. This was apparent in the teachers’ expressed desire to 

enact ambitious teaching practices. This took the form of integrating exploratory activities for 

discovering mathematical rules and relationships. Olive talked about doing “explorations” to 

justify the rule of ‘flipping the inequality sign,” while Nancy integrated an activity about 

discovering the value of Pi despite its loose connection to the ongoing curriculum topic. The 

obligation to engage students with disciplinary practices took the form of engaging students with 

disciplinary mathematical values and practices, like free exploration (Diane), reasoning and 

justifying (Olive), and allowing students to choose which solution method they want to pursue 

(Diane). Reconciling the tension in favor of disciplinary obligation did not come easy but took 
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the form of small steps like “tweak[ing] things ever so slightly” or doing “little explorations.”  

Our findings illustrate the strong influence of institutional obligation on the day-to-day work 

of teaching and the pressure it imposes on beginning mathematics teachers. While the literature 

suggests that beginning teachers tend to gravitate toward traditional teaching practices in their 

schools (Gainsburg, 2012; Windschitl, 2002) we are encouraged by our results showing the 

ability of these beginning teachers to navigate institutional obligation without caving into it.  

These findings shed light on the complex situations beginning teachers face as they transition 

from the idealized setting of their teacher preparation programs into the challenging realities of 

school teaching. The theory of practical rationality and the four professional obligations (Chazan 

et al., 2016) help to conceptualize these transition processes as the socialization of beginning 

teachers into the teaching profession during which teachers adopt a particular decision-making 

framework that makes their classroom practice manageable (Herbst and Chazan, 2011). Teacher 

educators can build on these conceptual tools, and on the results of the current study, to support 

future teachers in retaining ambitious teaching practices in the institutions of schooling.   
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The purpose of this brief research report is to provide insight into Kaja’s ongoing doctoral work 

on storylines and student positionings in mathematics education. Based on a mentorship 

program in a Norwegian multicultural primary school, where 7th grade mentors collaborate with 

and mentor 3rd grade mentees during mathematics classes on a weekly basis, this research 

report explores how storylines can influence the positioning of the mentors. The report presents 

two storylines that indicates that the mentorship program could have a positive impact on the 

mentors positionings. 

Keywords: Culturally Relevant Pedagogy, Affect, Emotion, Beliefs, and Attitudes 

Context: A beautiful transformation of students’ positioning 

In February 2022, when the first author, Kaja Burt-Davies, started her PhD work, she visited 

the teachers and classes that had agreed to participate in a larger research project. She 

immediately understood that one class faced challenges. The teacher apologized for the behavior 

of the class and explained that it had been a challenging class since they started school. But with 

a twinkle in her eye, she also said something like, "Well, at least in this class, we have real 

challenges. It's not the kind of class you read about in textbooks". The classroom was chaotic. At 

one point, there were 7 adults in the room to manage 18 5th graders. Tired and frustrated after a 

lesson, the teacher declared: "The only thing that works with this class is to take a bus or be 

mentors." Kaja noted this in her notebook. A few months later, she saw mentorship in action. The 

mentees were 1st graders in a classroom across the corridor. At that time, to her, it seemed almost 

unthinkable that this class would mentor anyone; they couldn't even take care of themselves! 

However, she was astonished when she saw how the older students embraced the role of 

mentors. It was as if someone had cast a magic spell over the students. In groups of 2–6 students 

from both classes (carefully assigned by the teachers), the older students focused and quietly 

helped the younger ones with mathematics tasks. The older students read problems, counted on 

their fingers, and demonstrated with pen and paper to the younger students. When she heard one 

of the most challenging boys say to a younger boy, "You have to read the problem if you don't 

understand what to do; I'll read it out loud for you," she had to stop. What was happening here? 

Objectives and research question 

This brief report explores how storylines may impact students' opportunities to assume 

positions that are beneficial for learning. The aim of the report is to emphasize how mathematics 

teachers can utilize storylines to establish learning environments where students can position 

themselves as mathematics learners. To illustrate this research, two storylines are drawn from 

data collected in the previously mentioned classes, now consisting of 3rd and 7th graders in 

southern Norway. For three years, the two classes have been meeting weekly through an in-

school mentorship program to engage in mathematical activities together. This leads to the 

following research question: How do mentees’ storylines impact the positioning of the mentors? 
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Towards strength-based pedagogies through the lens of positioning theory and storylines 

Kaja’s doctoral work is affiliated with the research project Mathematics Education in 

Indigenous and Migrational contexts: Storylines, Cultures and Strength-based Pedagogies (MIM 

project), where position theory (Davies & Harré, 1990) and the concept of storylines are central. 

The MIM project explores strength-based pedagogies in mathematics education. We aim to 

explore how students' strengths and resources (both personal and academic) can be used as a 

starting point to create learning contexts where students perceive themselves as mathematics 

learners. 

Positioning theory 

Herbel-Eisenmann et al. (2015) define positioning as a discursive process involving action 

and communication to create social structures. In contrast to the static nature of the concept of 

"role", Davies and Harré (1990) propose that "positioning" directs attention to dynamic aspects, 

emphasizing how we understand ourselves in dialogues through the terms "positioning" and 

"subject position" based on existing narratives. Through the MIM project, we aim to promote 

positioning theory as it brings new perspectives to understanding learners. As most mathematics 

teachers probably recognize, it is common in mathematics classrooms to have students who 

desire to learn mathematics as well as those who do not (Andersson et al., 2015). 

Through the lens of positioning theory, it is possible to say that students accept or reject 

positions as mathematics learners. By adopting a positioning theory lens, we assert that teachers 

can create learning contexts that offer opportunities for students to pivot (Gerbrandt & Wagner, 

2023) or change their positions to enhance their engagement when learning mathematics. 

Storylines 

Based on our experiences as mathematics teachers, we have observed that students' positions 

often align with one or more narratives that support their views on their position as learners or 

non-learners. Positioning theory (Davies & Harré, 1990) refers to these types of narratives as 

storylines. Herbel-Eisenmann et al. (2015) define a storyline as a culturally shared narrative 

derived from an individual's lived experiences. Interactions among participants contribute to the 

creation of storylines, which serve as prerequisites for different positions in people's lives. 

Storylines play a significant role in shaping and influencing the positions individuals are 

assigned or have access to (Herbel-Eisenmann et al., 2016). During an interview about 

mathematics, their view on their futures and dedication in mathematics, Farrokh, a 6th grade 

student, shares one of his dreams:  

 

Farrokh: I want to become a doctor.  

Kaja: A doctor?  

Farrokh: Yeah, something like that.  

Kaja: Why is that?  

Farrokh: Because... well, I don't really know what I want to be myself, so my mom wants me 

to become a doctor. Since I don't know myself, I want to listen to her. And being a doctor 

is actually a good job.  

Kaja: Mmm, why is it a good job?  

Farrokh: I don't know much, but I've heard... my mom says it's because, firstly, it has a pretty 

good salary. And being a doctor or a physician is something you need everywhere you 

go. So, it's easy to find a job if you're a doctor and have a medical education because 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1785 

doctors are needed everywhere. That's why it's easy to get a new job if you move and 

stuff. That's why it's a good job. 

 

This example illustrates how Farrokh relies on narratives and information he receives at 

home to construct a narrative for his school life. He positions himself in relation to the future 

because of the conversations he has with his mother at home. As a result, a storyline such as 

"becoming a doctor is a good career choice" is supporting Farrokh in his decision to learn 

mathematics because the effort seems crucial to achieve his goal of becoming a doctor. 

Methodology 

To understand how the mentor-mentee relationship influenced mentors change of positions, 

semi-structured group interviews were carried out with both 3rd and 7th grade students, in total 10 

students from each class. The 3rd graders were interviewed in pairs, and the 7th grade students 

individually, in pairs, or in groups of three. For practical reasons, interviews with 3rd graders 

were conducted first, followed by interviews with the 7th graders. 

Thematic analysis 

Even though the ongoing analytic process has an inductive framework, the analysis is not 

free from theoretical or epistemological commitments (Braun & Clarke, 2006). Committed to the 

[project name], and the context of positioning theory and strength-based pedagogies, the analysis 

is guided by the search for storylines that can explain “the magic process”, described initially—

the beautiful transformation of the students’ positioning. The analysis process started with 

manually transcribing all audio recordings, followed by categorizing the text into various themes. 

These themes were partly derived from the interview questions, which primarily addressed 

practical aspects like student collaboration and mentor guidance. However, additional themes 

and sub-themes were also integrated. Notably, admiration emerged as a theme in mentee 

transcripts, while being a little teacher was a theme in mentor transcripts. These two themes, 

later developed into storylines, constitute the foundation of this research report. 

Initial results 

Storyline 1: “I admire you” 

One storyline that emerged most prominently during the analysis of the mentee's interviews 

was I admire you. This storyline was formulated based on many student statements but is rooted 

in the fact that the mentees look up to the mentors. The reasons for their admiration are many and 

varied. For instance, Nora explains that the mentees need the extra little teachers. Besides acting 

as little teachers, Nora also states that mentors can be of great help. Not just with mathematics 

but also if they get stuck or something like that. Jakub og Fariah have other reasons. Jakub talks 

about the mentors' experiences: so every day, they had math, that's why they are so good at it, 

and Fariah says: they are getting taller and taller and bigger, and then they almost become 

adults, and that's when they become better at math every single day. 

Storyline 2: “I like being your little teacher” 

In response to storyline 1, "I admire you," storyline 2, "I like being your little teacher," is 

visible in all interviews. Mentors were asked what they thought about being called a little teacher 

or almost an adult. The reason behind this question was to find out if mentors’ accepted positions 

made available through storyline 1. Despite facing some challenges, they agree that mentoring 
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younger students positively impacts their self-esteem, with expressions of feeling proud, tough, 

and skilled. Due to space constraints, we've selected one example of mentor responses: 

Kaja: But do you feel grown up? [when working with the mentees] 

Madelen: Yes, very much.  

Kaja: How is that?  

Thea: It's kind of fun. 

Madelen: You feel like you're so smart and strong!  

Thea: You feel like you're the big, strong, smart, cool one.  

Madelen: Not cool? 

Thea: No? I feel...tough! 

Kaja: But if we removed the whole mentor thing from school? Does it give you something to 

be mentor?  

Madelen: Yes, I feel like I like it because I feel smart. And I'm actually smart in my class too, 

just saying.  

Thea: Yes, you are. 

Kaja: But how does it make you feel when others think you're smart?  

Madelen: I feel [giggles, laughs] better than the others, I feel a bit egoistic but [giggles]. 

Kaja: Yeah, but there's something about it, your self-esteem grows. Do you think it helps that 

you have even better self-esteem because of the mentees?  

Madelen: Yes, I feel that. 

Discussion 

The storylines presented in this report are based on interviews linked to a mentorship 

program. “The magic process” was chosen because the change of context from their ordinary 

classroom had a major impact on the mentors' behavior. When the mentors changed their role 

from student in a challenging learning environment and instead entered the role of mentors 

where they interacted with different, younger students, they accepted and acted out a position as 

little teachers. We believe this was because the mentors experienced admiration and as Madelen 

confirms in the dialogue above, working with the mentees helps her self-esteem. In the MIM 

project, the goal is to move towards strength-based pedagogies in mathematics education. 

Through the lens of positioning theory, we are trying to understand how students' strengths and 

resources (both personal and academic) can be used as a starting point to create learning contexts 

that offer students positions where they perceive themselves as mathematics learners. We believe 

that the example highlighted in this report demonstrates how contexts can have a significant 

impact on students' self-perceptions. This, in turn, may influence their view of themselves as 

mathematics learners, ultimately leading to a pivot or change in students' positions. In this way, a 

focus on storylines could potentially serve as a foundational support for transitioning to strength-

based pedagogies.  

The authors of this article encourage readers to actively participate in contributing their 

valuable insights and thoughts. Your perspectives are crucial in fostering a collaborative dialogue 

on the potential applications of positioning theory and storylines as effective tools for the 

development of strength-based pedagogies. Your contribution will not only enrich the ongoing 

discussion but also help us better understand how these frameworks can be used to create an 
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empowering and inclusive educational environment. Feel free to share your experiences, 

reflections, and ideas, both with fellow readers and us. 
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One goal of professional development (PD) is to improve practice by having teachers 

incorporate what they learn into their existing instruction. We refer to teachers’ incorporation of 

these practices as uptake. Our project seeks to incrementally impact (Star, 2016) teachers’ 

practice through their uptake of instructional nudges, modest instructional suggestions, that are in 

concert with their existing instructional practices. We designed 16 instructional nudges that 

varied with regard to whether they were intended to impact curriculum materials (task nudges) or 

teachers’ actions (teacher nudges). For example, Pivot is a teacher nudge that encourages 

teachers to change the instructional format during their class period (e.g., shifting from whole-

class discourse to independent work time) with the goal of increasing student engagement by 

refocusing the classes’ attention. Rate & Review, a task nudge, encourages teachers to provide 

students with worked examples to rate and review in terms of the quality of the solution in the 

hopes of growing students’ conceptual understanding. The purpose of our study is twofold. First, 

we seek to understand which of our instructional nudges were high-uptake (Author, 2022. 

Second, we want to understand what features impact the rate of uptake. 

To accomplish our aims, we piloted a PD experience in which we provided instructional 

nudges to seven algebra teachers. The teachers ranged from novice to veteran and varied in their 

local context (e.g., school racial and ethnic diversity, location, and socioeconomic status). The 

main data source for the present study were individual, semi-structured interviews during which 

each teacher interacted with a heat map activity. The heat map consists of two axes on a 

continuum of, Hate It to Love It, on the horizontal axis and, Number of Tries, on the vertical 

axis. Each participant placed each of the 16 instructional nudges on the continuum with respect 

to their affinity towards the nudge (e.g., hate or love) and the number of times they tried it in 

their classroom, asking them to think-aloud as they placed each one. Each teacher also completed 

a survey that aimed to understand their perspectives on their instructional practices, and we 

conducted three observations across the year to examine teachers’ practices both before and after 

accessing the PD. We coded the interview data for each teacher individually with regard to the 

factors they considered in using particular nudges and the factors that impacted their view of the 

nudges. We then looked across the teachers for patterns regarding the factors impacting uptake. 

We used the survey and observation data to confirm our interview findings.  

Our preliminary findings indicate teachers heavily consider the amount of preparation 

necessary in deciding to take up nudges. In addition, nudges that align with teachers’ goals and 
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current practices contribute to their uptake. We will share the results of the heat map interviews. 

Our findings provide important insights for the design and development of PD and suggest the 

need for further research into features impacting teachers’ uptake of PD in their practice. 
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Data visualization has been proposed as a multidisciplinary topic to integrate mathematical 

thinking, statistical thinking, critical media literacy, and art or design in ways that highlight 

critical perspectives (Matuk et al., 2022; Rubel et al., 2021; Woods et al., 2024). While research 

has focused on students’ engagement with data science tasks and curriculum (e.g., Calabrese 

Barton et al., 2021; Lee & Delaney, 2022; Matuk et al., 2023; Wilkerson & Laina, 2018), less 

research has focused on how teachers or other educators take up the role of supporting student 

learning about data. Building on theory from interdisciplinary learning about the importance of 

teachers’ views about the disciplines and their connections (Cohen et al., 2022), we focus on how 

teachers view the discipline of mathematics in relation to data visualization. 

This research aims to explore the following research question: how do novice mathematics 

teachers view mathematics or mathematical thinking as part of youth’s engagement with data 

visualization activities? We present the preliminary analysis of episodes in an ongoing 

exploratory case study (Yin, 2009) of the sensemaking of instructors who co-led a 13-week data 

visualization informal education program for middle and high school grades youth. The team of 

instructors included an experienced art teacher, an experienced English teacher, and two novice 

mathematics teachers. The authors identified critical episodes in transcribed video-recorded 

planning sessions and reflective debriefs by searching for the words math, statistic(s)/stat(s), 

data, and art in the transcripts. We identified episodes where multiple participants used these 

words to discuss a similar topic that lasted longer than 1 minute. Both authors identified themes 

through collaborative analytic memoing and discussing episodes (Saldaña, 2015). 

We found that instructors compared math, data, and art as distinct labels for, or types of,  

activities, youth’s interests, and sensemaking. One example comes from an debrief episode about 

activities that stood out to instructors. Luis, a novice math teacher, commented that in contrast to 

youth showing interest in art, he wished he “would have seen that kind of spark when we did the 

math portion…at the very beginning they were, like, already negative…[about] the math part, the 

mean, median, mode, [and] range.” Beth, a novice math teacher, shared that the “dear data” 

portion was “something so simple and making it math…how many times I took a picture?...It’s 

saying, ‘hey, math can be so small, it’s what you do every day, you don’t know it.’” Sarah, an 

experienced English teacher, contrasted doing math with making meaning, saying, “A lot of them 

were just stuck on tallying things and adding them up. ‘I’m like. okay, what about as a 

percentage?’...And so, [our focus is] not even doing math…we’re trying to get at like ‘is mean 

meaningful?’” This example shows how the novice math teachers use the label of “math” for 

activities and youth’s experiences in different ways, and suggest potential tensions in disciplinary 

definitions among teachers that may constrain or expand learning opportunities. 

These findings suggest that explicit conversations and sensemaking about what “counts” as 

mathematics in connection to data science education and data visualization could be important 

for mathematics teachers, including novice mathematics teachers, to support expansive learning.  
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As the field of mathematics education research has progressed, scholars and professional 

associations have contributed to and advocated for an increased focus on equitable teaching 

practices that are to be adopted and employed by mathematics teachers. This study analyzes how 

two preservice teachers (PSTs) use discretionary spaces during their first field experience for a 

secondary methods course. The data consisted of video recordings, transcripts of those 

recordings, and a reflection paper from both PSTs. To perform the analysis, we used an 

empirical discourse approach to identify existing themes. Our work suggests that choices made 

in discretionary spaces came from the preconceived expectations PSTs had of social roles in the 

classroom. This indicates that an intervention shifting the expectations of classroom roles can 

promote considerations of equity in the positioning of teachers and students.  

Keywords: Instruction Activities and Practices, Classroom Discourse, Preservice Teacher 

Education, Teacher Beliefs. 

Introduction 

As the field of mathematics education research has progressed, scholars and professional 

associations have contributed to and advocated for the increased focus on equitable teaching 

practices that are to be adopted and employed by mathematics teachers (e.g., Aguirre et al., 2013; 

Leonard et al., 2010; Crespo et al., 2021; Goffney & Gutiérrez, 2018; National Council of 

Supervisors of Mathematics [NCSM] and TODOS, 2016; Association of Mathematics Teacher 

Educators [AMTE], 2017). In this same breath, we as a field, have also looked inward to assess 

the effectiveness of the ways in which we, as researchers and teacher educators, prepare teachers 

to effectively enact these practices (McDonald 2005; Hollins, 2011; McDonald et al., 2013; 

Lyiscott et al., 2018). One potential way of doing so is highlighted in Indicator C.4.2. of the 

AMTE (2017) Standards for Preparing Teachers of Mathematics, which states that “well-

prepared beginning teachers of mathematics recognize that their roles are to cultivate positive 

mathematical identities with their students” (https://amte.net/node/2270). Our work explores the 

choices preservice teachers make during classroom discussion that either shift or reinforce the 

positioning of students. These positionings, in turn, prompt a negotiation of roles that have direct 

impacts on student mathematical identities (Ruef, 2020). 

We decided to isolate moments of teachers cultivating mathematical identities within 

discretionary spaces (Ball, 2018; Berry, 2022; Berry, 2023) as these spaces provide focused, in-

the-moment insight into teachers’ use of discretion in the classroom that is not dictated by policy 

or curriculum. These “in-the-moment” decisions of facilitating classroom discourse and the 

corresponding impact on student positioning (Herbel-Eisenmann, et al., 2015; Bishop, 2012) 

contribute to the cultivation of student identities. Previous research provides examples of the 

impact of communication acts, both verbal and non-verbal, on the mathematical identity of 

students. For example, Wagner and Herbel-Eisenmann (2008) explain how “just” can be used as 
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an imperative (“just focus on your work”) or as an indicator that the answer should be easy (“just 

subtract five from both sides”). Both cases illustrate how communication acts affect the 

development of roles within a classroom. When “just” is used as an imperative the teacher takes 

an authoritative tone creating a sense of hierarchy within the classroom and indicating that the 

student should blindly follow. On the other hand, “just” as an indicator of simplicity can result in 

students who don’t understand the concept feeling inadequate and as an outsider to the 

conversation. This assignment of roles and the results thereof has the ability to influence future 

student contributions and their perceived sense of legitimacy (Wagner and Herbel-Eisenmann, 

2008).   

To better understand these issues, we investigate this research question: How do pre-service 

teachers navigate discretionary spaces in mathematics classrooms, and to what extent does their 

use of these spaces impact the positioning of students in the learning process? 

Theoretical Framework 

We draw on positioning theory (van Langenhove, L., & Harré, R., 1999; Anderson, 2009; 

Dennen, 2006) as it explains how each participant in a communication act plays a part in 

negotiating social structure. Within a classroom, teachers often exercise authority as a means of 

classroom management and control. In this storyline, teachers assume the role of subject matter 

experts, which leaves students as recipients of information (Wagner & Herbel-Eisenmann, 2015). 

An alternative is a shared authority structure where students become co-constructors of 

knowledge, contributing to the general discourse with the teacher as a guide or possibly even on 

the peripheral as an observer (Harper & Kudaisi, 2023). We are interested in how these 

negotiated storylines are enacted by preservice mathematics teachers in their early field 

experiences. Due to the nature of our study, and the complexity and scope of positioning theory, 

we have narrowed our investigation to only focus on how positioning is used to identify and 

apply this theory to help better understand how teachers position students during classroom 

interactions.  

Further, positioning is a dynamic action, changing from moment to moment based on moves 

that either reinforce the established position or shift how participants understand their role with 

others. For example, in a bulleted list, Bishop (2012) identified moves between two students 

based on the dialogue they shared, these include the use of an authoritative voice (being critical 

of the actions of others), face-saving moves (reducing the appearance of a lack of understanding) 

and the building of solidarity and provision of encouragement. Each of these moves shifted the 

identities enacted by the students. While we did not limit our analysis to these three movements, 

they appeared in discretionary spaces within the observation. 

Methodology 

To conduct this work, we used previously recorded video and audio data from a secondary 

methods course during the first round of field observations for a group of 14 preservice teachers 

(PSTs). The course focused on teaching at the middle school level, with an emphasis on 

analyzing and understanding student thinking and implementing instructional practices in middle 

school classrooms. The course-embedded field experiences took place in a midwestern public 

middle school with a majority African American population, located in the heart of a small city 

that was less diverse. Each PST completed a brief survey at the beginning of the course that was 

intended to gauge their experience with teaching as well as their beliefs and attitudes of “good 
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teaching” prior to their first field experience. After the experience, they submitted a reflective 

paper that detailed their impression of the enactments based on an analysis of a video recording 

of their teaching and the student work associated with that enactment.   

As part of the teaching experience, the PSTs were paired and given the same instructional 

routine of Contemplate then Calculate (Lucenta & Kelemanik, 2022) to teach to a group of 12-15 

middle school students during their mathematics period. This allowed PSTs to elicit student 

thinking strategies by posing complex integer addition and subtraction number expressions that 

had underlying structures for the students to recognize and use to mentally evaluate the 

expression.  

Of the 14 total PSTs taking the course, seven agreed to participate in the research study. 

Guided by our research question, we analyzed three video enactments where both PSTs agreed to 

participate in the study. The video enactment of the seventh PST was analyzed separately 

because their partner did not consent to participate. The two researchers independently reviewed 

the videos of the enactments with a focus on identifying episodes of PSTs using language in 

ways that influenced the positioning of students in the classroom. After this initial round of 

independent analysis, researchers reconvened to discuss their findings; both identified the same 

two PSTs for further analysis of the construct, Jaime and Alex (pseudonyms) because although 

they were presenting similar tasks, their individual approaches to teaching resulted in vastly 

different responses from students. It is important to note that Jaime and Alex did not perform 

their enactments as a pair, therefore, the analysis of their use of discretionary spaces was done 

independently from their partners. We operationally define discretionary spaces to analyze 

moments during instructional time where teachers make a choice that shifts or directs the 

learning trajectory of either individual students or the entire classroom. These spaces were 

identified when PSTs made an instructional move (choice) or used their discretion to facilitate 

the lesson and ended whenever PSTs shifted their focus away from the initial topic and began a 

new one.  

Once the two PSTs were selected, we transcribed the recordings using an online resource 

(https://otter.ai) and verified the transcriptions, making minor adaptations as needed. We used an 

empirical discourse analysis approach (Hodges et al., 2008) that allowed us to identify broad 

conversational themes contained within discretionary spaces (as defined above) that had the 

potential to shift or influence student identities in the classroom. We performed a second, more 

targeted analysis that focused on the two selected PSTs. This second analysis was also performed 

individually then transitioned to a discussion between researchers. Both researchers identified the 

same discretionary spaces and labeled them as rich opportunities to examine various ways 

students are positioned based on the language (verbal and nonverbal) used by the respective 

PSTs. The identified moments were categorized into statements and interactions. Statements are 

uninterrupted utterances by the PSTs, while the interactions include the verbal and non-verbal 

responses of students. We acknowledge that the positionings discussed in the following sections 

may vary based on the perceptions of the researcher. Therefore, we do not claim that our 

positionings listed are the only possible interpretations; they are based on our history and 

familiarity with the current literature. 

Findings 

We addressed our research question first by focusing on various discretionary spaces. 

Initially we looked at individual statements uttered by the PSTs that gave meaningful insight to 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1795 

positioning structures, then at brief interactions. During several moments of the enactment, the 

two PSTs navigated similar discretionary spaces, which gave an opportunity for comparison 

Statements 

In Figure 1, similar discretionary spaces between the two PSTs were placed side-by-side for 

comparison. On either side of observation quotes are possible interpretations of the language 

used by Alex and Jamie. Notice that there may be alternative positioning interpretations, but 

based on the perspectives of the researchers, these interpretations seemed most plausible. 

 

Alex Jamie 

Positioning of 

Students 

Utterance Utterance Positioning 

of Students 

Student as an 

active 

contributor of 

knowledge 

“Good morning you guys… So 

we’re gonna be going over an 

instructional routine called 

contemplate then calculate, [it] 

will help you practice looking for 

shortcuts using your own 

mathematical knowledge…” 

“Alright… so today we’re 

going to be working with y’all 

on contemplate then 

calculate… we do this to try to 

get you think like 

mathematicians…” 

Student as a 

passive 

receiver of 

knowledge 

Student as 

voluntary 

participant 

“[C]an I get any volunteers to 

share what they notice about the 

problem?” 

“We’re going to share our 

noticings out loud” 

Student as 

involuntary 

participant 

Student 

contribution as 

part of group 

“We have a good observation back 

here” 

“[Y]ou said something really 

interesting about that” 

Student 

contribution 

as individual 

Student as 

valuable 

contributor 

“So now I’m going to hand out a 

piece of paper… you only have to 

answer one of these… to help you 

think about how can we use what 

we know about the problem… and 

how they relate to one another…” 

“Alright, so now we’ll move on 

to reflecting on learning. I’m 

gonna pass out a paper, if you 

have a pencil, get them 

out…just go through, fill in 

whatever blank you feel like 

filling in” 

Student as 

neutral 

contributor 

 

Students as 

capable 

“…using your own mathematical 

knowledge. Y’all have brilliant 

brains that y’all can use.” 

“You don’t have to get it right 

away. Honestly, who expects 

anyone to? … No one’s 

expecting you to know how to 

solve it yet.” 

Students as 

incapable 

 

Figure 1: Examples of Teacher Language and Impact on Student Positioning 

Interactions 

From the analysis, we identified three pairs of related episodes of teacher-student interactions 

that illustrate positioning based on teacher communication acts.   
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In the following transcript, Alex creates a sense of solidarity and collaboration with the 

students early in the class, which aligns with Alex’s previously stated intention of focusing on the 

“teaching” aspect of mathematics education. 

Alex: “Are y’all ready to think like mathematicians?” 

Students: “No” 

Alex: “No? Come on, I need some better energy. Come on!” 

Students: [chuckling] “Yes” 

Conversely, the following interaction in Jaime’s class highlights the authoritative structure 

created by Jaime’s desire to be the subject matter expert. During a large-group discussion in 

response to a question about noticing, a student mentioned there were no variables in the 

mathematical expression on the board. 

Jaime: “Does everyone know what a variable is?”  

Student: “ABCDEFG”  

Jaime: “Not always. You can also use Greek symbols.” [nods to other PST, turns their 

back to the students and immediately begins talking about another topic] 

Here, we see Jaime enforcing this authoritative structure by self-identifying as the subject 

matter expert, and situating students as mere recipients of information. The physical move of 

turning their back and beginning to talk about a different topic closes any possibility of question 

or retort, indicating that Jaime did not expect to be challenged or questioned.   

The second episode allowed us to compare similar moments in which we recognized a 

similar discretionary space treated very differently between the two PSTs. As shown in Figure 2, 

both PSTs set an expectation that students were to put writing implements away to focus on 

mental mathematics. However, the way the PST discussed these expectations with the students 

varied greatly, as did the student response. In the following interactions, Jaime and Alex both set 

clear expectations; however, the way they address the students in this space is significantly 

different.   

 

  Alex Jamie 

Interaction 1: The teacher is 

explaining the task for the day. 

The teacher made it known to 

students what they will not be 

using writing utensils for the 

beginning of the task. 

“The first three steps you do not 

need a pencil or paper. You’ll 

not need anything to write 

down. Just use your mind and 

that’s it. Okay? We can do it. All 

right. Let’s put away our 

pencils. Put away our papers.”  

“Pens and pencils away. You 

don’t need them for this at all 

until the very end. We prefer 

you not to have them out for 

this because it is supposed to 

be more mental than verbal.”  
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Impact (Student Response) Immediately after: Students start 

putting away things, you can 

hear shuffling and what sounds 

like a pencil case or a backpack 

zipper.  

  

Alex: “Y’all ready? Paying 

attention?”  

Immediately after: Students 

start putting things away, you 

can hear some shuffling. One 

pencil remains on the desk 

(can be seen from camera 

angle)  

  

Jaime moves immediately into 

expectations for the activity.  

  

Interaction 2: The teacher has 

completed the task and is 

moving to the reflective portion 

of the activity. 

“So now I’m gonna hand out a 

piece of paper. I’m gonna hand 

out a piece of paper.”  

“Alright, so now we’ll move 

on to reflecting on learning. 

I’m gonna pass out a paper, if 

you have a pencil, get them 

out”  

Impact (Student Response) [Teacher was walking around 

handing out paper and pencils 

after giving students 

instructions]  

  

Alex: [To Student 1] “Do you 

need a pencil?”  

Student 1: “Yes”  

Student 2: “I’d like one”  

Student 3: “Me too”  

[Inaudible conversation]  

Student 4: [In response to 

another student voicing 

frustration] “She’s [Alex] giving 

out pencils”  

  

  

  

Multiple Students: “Can I go 

grab my pencil?”  

Jaime: “We have pencils I 

believe”  

Student 1: “Is it mechanical?”  

Jaime: “No”  

Student 1: “Can I go grab my 

pencil?” (emphasized)  

Jaime: “No, we have another 

group next door also doing the 

activity.”  

Student 2: “So I can’t run and 

grab my pencil?”  

Student 1: “Right?”  

[The class gets a little louder, 

students start to fuss]  

Student 3: “Oh my god!” 

[audibly annoyed]  

  

 

Figure 2: Examples of Teacher-Student Interactions and Impact on Student Positioning 

We see here that Jaime set expectations as rules to be followed, which aligns with the 

previous pattern of Jaime as a rule-setter and subject matter expert, positioning students as rule-

followers. Alex, on the other hand, sets the expectation, then follows with encouragement of the 

students’ capability as learners. Alex self-identifies in solidarity with students with the statements 

“we can do it” and “let’s put away our papers”.   

Within each discretionary space, language shifts the assumed role of teacher and students to 

fit the narrative storyline that is unintentionally designed by the PST. In Alex’s class interaction, 
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the negotiated role of teacher and students were as co-contributors working in solidarity. Jaime’s 

language set expectations more as subject matter expert and receivers of information. Although 

these are negotiated positions, the inherent power imbalance gives students little influence over 

these enacted roles. 

Discussion & Conclusion 

Each PST acted through their previous experience and expressed focus to use discretionary 

spaces in what they deemed to be meaningful ways. Jamie expressed in the survey that in the 

phrase “mathematics teacher,” the emphasis on mathematics was most important, while Alex 

emphasized the teacher. As a result, the words and phrases they chose to use reflected their 

individual focus. Because Jaime emphasized the mathematics, the role she played was as subject 

matter expert. Conversely, Alex’s emphasis on the teacher placed her in the role of encourager 

and guide, creating a classroom structure of shared authority and established students as co-

constructors of classroom knowledge (Ruef, 2021; Langer-Osuna, 2017).  

Using the term guide as a metaphor for Alex elicits imagery of a tour guide, giving clear 

directions of what’s to come while walking alongside the students with shared authority. We see 

this in the use of first-person pronouns of “we”, “us”, “our” and “ours”. Putting herself in the 

same figurative space as the students builds a sense of solidarity. In stating that students should 

use their own mathematical knowledge, Alex adds, “Y’all have brilliant brains that y’all can 

use,” identifying the capability of students, setting them as co-contributors to classroom 

knowledge. She further builds solidarity by asking for volunteers to share their knowledge rather 

than answers. In addition, with the shared solidarity of the class, students gladly participated in 

conversation. Each noticing was met with encouragement, and the students were able to build on 

each other's ideas. The students’ participation in the conversation and the unrestrained sharing of 

ideas confirmed that students took up the position of co-contributors and acted out of this 

position.  

Jaime’s focus on being subject matter expert created a hierarchy in which the teachers are the 

experts and authority. In a pattern of teacher moves, Jaime created an expectation of providing 

rules for the students to follow, then changing the subject or physically moving in a manner that 

removed herself from the conversation. The use of first-person pronouns referring to the PST 

with second-person pronouns such as “you” and “yours” referring to the students creates a 

division between authoritative voice and submissive voice. In explaining the idea that students 

would learn to think like mathematician, she stated that “we do this to get you to think like 

mathematicians.”  In this statement, “we”, Jaime and the other PST, are doing the action to create 

a result of “getting you to think like mathematicians”. This sets the students as passive receivers 

of information with little agency, which appeared to be a role they were not ready to accept.  

In the event of misaligned expectations, students may push back. In Figure 2, we highlight an 

interaction within a discretionary space where directions were given to students to use pencils for 

the final activity. Although Jaime acted out her expectations of being a subject matter expert with 

students as followers, the students challenged this positioning with crosstalk and lack of 

compliance. It can be noted that this pushback is a method of renegotiating roles in an 

environment where a power imbalance exists. To counter this imbalance, students band together, 

all speaking at once and advocating for a common goal. In this case, the goal became about 

going out of the classroom to get their own pencils, rather than using the pencils given to them. 

This interaction gives evidence of students’ dissatisfaction with the role of passive recipient.  
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After the field experience, each PST wrote a reflection of their experience with the students. 

It is interesting to note that Alex mentioned several opportunities for improvement, citing 

additional ideas that could have helped students connect to strategies of interest. Jaime, on the 

other hand, used this reflection as an opportunity to synthesize and justify her perception of 

events that occurred, describing in detail whether the students found the correct answers as a 

measure of successful teaching.  

The difference between these two PSTs is clear in their use of discretionary spaces and the 

subsequent classroom response. Alex established herself as a guide to the students and worked in 

solidarity with them, while Jaime attempted to be a subject matter expert in a hierarchical 

classroom which resulted in pushback from the students. What emerges then is a sense that the 

choices made in discretionary spaces came from the preconceived expectations PSTs had of 

social roles in the classroom. The resulting social roles manifested in the ways students were 

positioned during classroom engagement. When not agreed upon by the other actors (students), 

the process of positioning has the potential to be divisive, which stifles opportunities for 

collaboration. On the other hand, communication acts that create a sense of belonging or guide 

students have the potential to shift positions of the students into co-constructors with shared 

authority.   

Our work suggests that without proper, intentional preparation, PSTs enforce classroom roles 

that are influenced by their prior experience with mathematics and the teaching of mathematics. 

Oftentimes, these roles conflict with those shared by the students, as seen in the findings. For 

mathematics education to shift towards a brighter, more inclusive future, PSTs must engage in 

explicit shifts of expectations where students’ diverse identities, inclusive of cultural and 

linguistic backgrounds, are leveraged. Student roles must be negotiated rather than dictated and 

should reflect the brilliance they bring to the classroom. By bringing attention to classroom 

dynamics that occur within discretionary spaces, we can begin the work where we evolve from 

simply envisioning to physically creating a future of mathematics education where students are 

nurtured and positioned in ways that cultivate positive mathematical identities. 
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In this paper, we describe how mathematics education researchers and mathematicians 

collaborated to introduce active learning pedagogy into a proof-based linear algebra course. 

This description highlighted the goals, values, and obligations that mathematicians had for their 

pedagogical practice, and how challenging it can be to introduce active learning pedagogy into 

mathematics classrooms that is compatible with these. We also illustrate how mathematics 

educators’ understanding of mathematicians’ perspectives allowed mathematics educators to 

help create instructional techniques that mathematicians are willing to use in their practice. 

Keywords: Professional Development, Curriculum, Instructional Activities and Practices, 

Reasoning and Proof 

Introduction 

The purpose of this paper is to discuss a recent collaboration project between mathematics 

education researchers and mathematicians to improve instruction in undergraduate mathematics. 

In this collaboration, mathematics education researchers and mathematicians worked together to 

introduce active learning into a proof-based linear algebra course in a manner consistent with the 

goals and values of the mathematicians who were teaching this course. We illustrate how this 

collaboration proceeded by describing the challenges and resolution of designing short questions 

that can be used during lectures that encourage student activity and elicit student thinking. As we 

describe what transpired, we will discuss mathematicians’ values and goals and the importance 

of attending to them. 

Literature review 

Most university mathematics courses are taught by lecture (Artameva & Fox, 2011; Melhuish 

et al., 2022). There is a general consensus amongst researchers in undergraduate mathematics 

education that this situation is not ideal. Lecturing is largely viewed as an ineffective pedagogy; 

students who emerge from lecture-based classes in advanced mathematics typically have a poor 

understanding of central concepts and an inability to write proofs (e.g., Ko & Knuth, 2009; 

Rasmussen & Wawro, 2017). There is also evidence that students’ understanding, performance, 

and affect improve when active-learning strategies are used (e.g., Freeman et al., 2014; Laursen 

et al., 2014; Rasmussen & Wawro, 2017). It follows that a key way to improve instruction in 

undergraduate mathematics is to introduce active learning pedagogy. However, lecture remains 

the dominate form of instruction across undergraduate mathematics (Johnson, 2019).  

This leads to a natural question: Why aren’t mathematicians using more student-centered 

forms of instruction when there is evidence that this pedagogy leads to better learning outcomes 
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than lecturing? We believe that a major reason is because alternative instructional methods 

frequently do not address mathematicians’ most pressing concerns. A primary goal of advanced 

mathematics courses is to enable students to successfully prove theorems (e.g., Alcock, 2010) 

and, as Stylianides and Stylianides (2017) observed, there are few research-based interventions 

that have been shown to improve students’ abilities to write proofs that meet mathematicians’ 

standards in undergraduate mathematics education research. Another often cited, but largely 

unaddressed concern is content coverage.  

Braun et al. (2018) argued that the instructional innovations designed and promoted by 

mathematics educators have designed is not the only way to make university classrooms more 

active and improve teaching and instead emphasized that there are smaller steps that 

mathematicians can use to increase student activity in a lecture. For instance, think-pair-share 

questions and whole class discussions can increase student activity while still enabling lecturing. 

However, active-learning pedagogy that is compatible with lecturing has not been the subject of 

much mathematics education research. In this paper, we describe how we worked collaboratively 

with mathematicians to introduce exactly these types of active learning strategies with their 

lectures. In doing so, we respond to Artigue’s call for projects that are “collaborative projects, 

building and negotiating, jointly with mathematicians and other university teachers, 

problématiques that make sense for all those involved, and meet their respective interests and 

needs” (2016, p. 12). 

Theoretical perspective 

We use three constructs to categorize teaching. A teacher’s values correspond to the broad 

goals they want to achieve in their classroom. Values might include things such as enabling 

students to prove interesting theorems, preparing students to enter graduate school, of having 

students regularly engage in authentic mathematical debate. Strategies are common adaptable 

pedagogical techniques that teachers use to achieve their goals. These include things like 

modeling mathematical reasoning during lectures, asking open-ended questions with adequate 

wait time, or having students solve problems collaboratively and present their work. 

Implementations are the specific embodiment of a strategy. For instance, the implementation of 

the strategy of “use a think-pair-share questions” would involve the specific question that was 

chosen as well as how the question was introduced to the class. We argue that active-learning 

strategies are most typically strategies while the specific mathematical questions are 

implementations or tactics.  

Broadly speaking, we believe that the lack of uptake of undergraduate mathematics education 

research is that these are based on strategies that do not align with many mathematicians’ values 

and strategies that are difficult to implement. However, we believe that there are strategies that 

encourage active learning that are compatible with mathematicians’ values. For instance, using 

think-pair-share questions can be done in a lecture format, or in more inquiry-based classrooms. 

We drew on Brownlee et al.’s (2017) conceptual description of teacher beliefs and practices as 

reflexively coevolving. They claimed that as teachers engage in new practices that their beliefs 

will change, and, as their beliefs change, their valuation of- and engage-in practices will also 

change. 
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Methods, Data, and Analysis 

During the Fall 2023 semester we formed a collaborative group of mathematics educators 

and four mathematicians who were teaching different sections of the same proof-based linear 

algebra course. The research team’s progressive goal was to support mathematicians in using 

more student-centered instructional techniques over time. To do so, we conducted weekly 

meetings (starting in October) with four mathematicians teaching the course and the five 

members of the research team. Our study followed a design research framework (Cobb et al., 

2003) in which we are simultaneously trying to develop an effective collaborative framework for 

improving mathematicians’ teaching as well as a theory for why our framework is effective and 

how mathematicians’ beliefs and practices evolved.  

After the semester, we engaged in retroactive analysis. In instances where mathematicians 

judged an active learning strategy to be infeasible (either dismissing it before using it, or 

deciding it did not work for them after using it), they were required to give a rationale for their 

decision. Using a thematic analysis (Braun & Clark, 2017), we analyzed the mathematicians’ 

rationales to identify what obligations (in the sense of Chazan et al., 2016) that mathematicians 

had to their institution, discipline, and students that made the active learning strategy infeasible. 

We then developed a narrative of how our active learnings strategies were ultimately adapted by 

the mathematicians as feasible given their perceived obligations. 

Results and Discussion 

In our first meeting with the mathematicians, we initially invited them to use Exit Tickets. 

The aim here was showing the limited understanding that students had of lectures, as well as 

helping the mathematicians see the value of attending to student thinking. Our suggested was 

rejected on the grounds that the mathematicians already knew that the most students did not 

understand their lectures all that well. As Mathematician D put matters, “I think most of them 

would say they don’t understand yet”. To the mathematicians, understanding only came after 

students had the opportunity to reflect upon the lectures. Our next suggestion was for the 

mathematicians to give the Exit Tickets for homework problems. Our rationale was that this 

would give mathematicians the opportunity to see student thinking, but since they were 

homework, they would not require cutting into any lecture time. This was tried, but 

mathematicians felt that even these questions took too much time. From our field notes on the 

implementation of the Exit Tickets, the mathematicians would offer complete answers to the Exit 

Ticket questions that they asked. Apparently, mathematicians felt an obligation to give a 

complete and rigorous answer to every question that they proposed. 

We proposed a think-pair-share structure for questions. The mathematicians rejected the 

structure for multiple reasons, including that they did not want to try to force students to talk to 

each other and it was too late in the semester to introduce the new practice. One noted that the 

students had established, spatially distanced, seating patterns and asking them to move would be 

too much.  

In general, mathematicians valued the conceptual questions that our team initially generated, 

as well as the student engagement that they elicited. However open-ended questions, with the 

nuance and detail that the mathematicians requested, required more time in class than the 

mathematicians were regularly able to devote to their implementation. This was largely because 

these questions took students a long time to process and the mathematicians felt obligated to 

lecture the correct solutions. A structural solution that we found that worked for the 
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mathematicians was to ask clicker-type or voting questions immediately after they introduced a 

new topic or concept on a topic that they intended to lecture about anyway where the questions 

had to be ‘understandable’ within about a minute of reading them. This required careful balance 

between precision in the formulation of the question and the importance of the ideas.  

For example, one question that Mathematician B used was, “Do we get equality or inequality 

in the Cauchy-Schwartz inequality if one of the vectors is a multiple of the other?” This format 

alleviated the concerns about time in two respects, while maintaining the conceptual focus of the 

question. First, because the questions were introduced within the context of the lecture, students 

were already familiar with many of the core ideas of the question so it would take less time to 

process. Second, because the mathematicians had planned to cover the topic of the questions 

anyway, no time was “lost” going over the solution to the questions that were asked. We also 

agreed that students did not necessarily formulate complete answers to the questions that were 

posed. They could simply make predictions, and discuss with their peers, whether certain 

statements were likely to be true or not. This could engage the students with thinking about the 

key theorems that would be covered in the class before seeing their proofs. An innovation that 

the mathematicians suggested was having all students commit to a yes or no vote on whether 

statements were likely to be true, so all students had to engage in the task and the mathematicians 

were able to see the thinking of all students (one even created voting cards that students would 

hold up). 

Overall, mathematicians were satisfied with the format that we created. They liked the 

conceptual questions that our research team generated—our research team had the time and 

expertise to generate questions that elicited students thinking about the key linear algebra topics 

in the course—and they liked the format by which they could use the questions. Mathematician 

C reflected, “So that’s actually, that’s just like what [Mathematician D] said. It does not take 

much time and it is actually effective because I can ask everyone someone who would never 

want to raise their hand. I sort of forced her to raise her hand so that it’s actually useful.” 

Mathematician D was also enthusiastic about the questions that were used and the collaborative 

meetings in general: 

Yeah, I thought the suggestions for the questions [generated by the research team] were 

great. And that's really helpful. Also, just to see the suggestions from other instructors.  

 

Conclusion 

In this paper, we illustrated how mathematics educators and mathematicians can collaborate 

to introduce active learning strategies into the mathematicians’ classrooms. We use our 

description to suggest three broader points. First, implementing active learning pedagogical 

techniques that are commonplace in K12 classrooms may not be immediately applicable to 

advanced mathematics classes. Second, mathematicians had goals and values that of which we 

were not initially aware that caused problems with implementing our strategies. For instance, 

mathematicians’ desire to have questions about abstract vector spaces beyond Rn made it 

challenging to generate conceptual questions that could be answered (or even understood) 

quickly by the students. Finally, we illustrate how mathematicians and mathematics educators 

working together is a promising model for generating active learning strategies that 

mathematicians are willing to use. This supports Artigue’s (2016) contention that changing 
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university instruction may work best if we collaborate with mathematicians to solve problems 

that are meaningful to them with solutions that they believe are viable. 
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A classroom study was conducted to understand how to engage in responsive teaching with 18 

seventh grade students at three stages of units coordination during a unit on proportional 

reasoning co-taught by the first author and classroom teacher. We found that teacher-researcher 

decentering was a mechanism underlying the practice of inquiring responsively in small groups. 

Decentering involves adopting the perspective of another person by setting one’s own 

perspective to the side and using the other’s perspective as a basis for interaction. This paper 

shows a pattern of decentering actions and a type of question, leveraging questions, supported a 

student at stage 1 of units coordination to sustain challenges and learn.  

Keywords: Instructional Activities and Practices, Communication, Proportional Reasoning 

Being able to respond to students’ diverse mathematical ways of thinking in a classroom is 

viewed as essential for supporting student learning—for teaching (e.g., Dyer & Sherin, 2016; 

Franke et al., 2015). Jacobs and Empson (2016) define responsive teaching as “a type of teaching 

in which teachers’ instructional decisions about what to pursue and how to pursue it are 

continually adjusted during instruction in response to children’s content-specific thinking, 

instead of being determined in advance” (p. 185). Not surprisingly, this kind of teaching requires 

considerable skill and expertise (Webel et al., 2021) and is not easy to enact (Empson, 2014). 

In our classroom study that took place during a 26-day unit in a 7th grade mathematics class, 

we aimed to engage in responsive teaching with students who were learning proportional 

reasoning. We uncovered diversity in students’ thinking through assessment of students’ units 

coordination stages (explained later). These stages indicate the multiplicative reasoning that 

students engage in based on how they conceive of and organize units (Hackenberg & Sevinc, 

2024). Since proportional reasoning involves multiplicative reasoning, we used a framework 

about multiplicative reasoning to track diversity in students’ thinking.  

In this paper, we look at one teaching practice, inquiring responsively in small groups 

(Hackenberg et al., 2021), because we found this practice useful in supporting student learning 

across units coordination stages. As we analyzed our data, we found that decentering, or “taking 

actions that adopt the perspective of another” (Bas-Ader & Carlson, 2021, p. 2), was a 

mechanism underlying our practice of inquiring responsively. Researchers who study 

decentering have argued that it provides a mechanism for understanding teachers’ mental actions 

and behaviors that underlie responsive teaching (Bas-Ader & Carlson, 2021; Teuscher et al., 

2016). Our study provides more evidence for this claim from a typical seventh grade classroom. 

In our study, 18 students learned to make two cars travel the same speed during a classroom 

unit on proportional reasoning. Elsewhere we have articulated what three focus students in the 

class learned, where each focus student was operating at a different stage of units coordination 

(Hackenberg et al., 2023). In this paper we describe the decentering that supported that learning. 

Our research question is: How did teacher-researcher decentering in a classroom study with 

seventh grade students support them to learn to make two cars travel the same speed? 
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Literature Review: Teachers Interacting in the Moment with Students to Support Learning 

How teachers inquire responsively in small groups is part of a larger domain: How teachers 

interact in the moment with students to support their learning. Researchers have studied this 

domain from the perspectives of responsive teaching (e.g., Jacobs & Empson, 2016), questioning 

(e.g., Stein et al., 2008), and decentering (e.g., Bas-Ader & Carlson, 2021). Jacobs and Empson 

developed a framework that articulated what an experienced elementary teacher did as she 

monitored—circulated in a class and interacted with groups of students who were working on a 

story problem. The case study is a valuable documentation of expertise. However, as Bas-Ader & 

Carlson have pointed out, it does not address what teacher thinking went into making these 

moves. In addition, Jacobs and Empson do not demonstrate how the teacher’s enactment of 

particular categories of teaching moves supported student learning. 

In contrast, Hunt and colleagues (Hunt et al., 2019; Hunt & Silva, 2020) have engaged in 

responsive teaching in one-on-one teaching experiments with students diagnosed with learning 

disabilities. In their studies they have linked carefully-crafted teaching moves to specific acts of 

student learning. However, this work has not been done in full classrooms. 

The types of questions teachers ask certainly play a role in responsive teaching: Researchers 

have studied questions that probe students’ responses (Boaler & Brodie, 2004; Stein et al., 2008) 

or support students to rethink or elaborate on their initial ideas (Franke et al., 2015). For 

example, Smith and Stein (2018) have proposed two types of questions to ask when teachers are 

monitoring: assessing questions and advancing questions. The purpose of assessing questions is 

to find out how students are thinking about a problem or idea. The purpose of advancing 

questions is to support students to make progress in their thinking about a problem or idea. Smith 

and Stein encourage teachers to stay with the group to listen to student responses to assessing 

questions in order to gather information about how students are thinking. In contrast, when the 

group works on an advancing question, teachers can walk away in order to visit another group. 

Bas-Ader and Carlson (2021) used decentering as an approach to study the nature of in-the-

moment interactions between graduate student instructors and college students in a precalculus 

program at a large university. They characterized instruction using five levels of decentering. At 

the first two levels, instructors primarily tried to get students to adopt teachers’ ways of thinking. 

At the other three levels, instructors exhibited gradations of reflective action. Their study 

provides “insights into the rationale for the teacher’s actions” (p. 17) as they worked to 

understand their students’ thinking and use it in instruction. 

Theoretical Frame 

Knowledge and Interaction 

To understand decentering requires distinguishing between first-order and second-order 

knowledge. First-order knowledge refers to what a person constructs “to organize, comprehend, 

and control his or her experience” (Steffe, 2010b, p. 16). Second-order knowledge refers to what 

a person constructs to describe and explain their observations of another person’s experiences 

(Steffe, 2010b). In decentering, a person sets their own first-order knowledge to the side and tries 

to build second-order knowledge of the other person’s first-order knowledge. Here, knowledge 

consists of the interactive constructions that people make to organize their experiential worlds. 

Piaget and Inhelder (1969) viewed decentering as essential in the construction of knowledge 

and in socialization because it marks being able to separate one’s own viewpoint from that of 

others, a task that young children cannot yet perform. Indeed, decentering is necessary for the 
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development of mental actions, or operations, because it allows children to move from a state in 

which all of their operations are centered on themselves to a state in which their operations take 

their place within a larger world of objects, events, and other people. Other people are especially 

important in this process, because as children construct others who have their own views, 

children have to reconcile their views with the views of others, which involves decentering on a 

social level. Thus, the “decentering of cognitive constructions necessary for the development of 

operations is inseparable from the decentering of affective and social constructions” (p. 95). 

Students’ units coordination stages 

One way to understand the multiplicative cognitive constructions of students is to use a 

framework called units coordination (Hackenberg & Sevinc, 2024). People create units from 

“abstracting out the ‘one’-ness from some aspect of experience” (Ulrich, 2015, p. 3). With 

middle school students, a unit typically refers to a length or a discrete 1. A composite unit is a 

unit of units, such as conceiving of a package of four yogurt drinks as one item and as four items.  

Units coordination refers to how students distribute the units of one composite unit across the 

units of another (Steffe, 1992). For example, to determine how many yogurt drinks in seven 

packages, a student might distribute four ones across each of the seven units (packages), for a 

total of seven fours. A units coordination stage is a researcher’s generalized model of particular 

operations and schemes with units that students construct and use to structure problem situations 

(Hackenberg & Sevinc, 2024). In our study, we had students at all three stages of units 

coordination typical in middle school. However, in this paper we can only report on one group of 

students at stage 1. So, here we discuss the units coordination of only students at stage 1. 

Students at stage 1 have constructed composite units, and they can track a sequence of these 

units recursively (Steffe, 1992). To determine the number of yogurt drinks in seven packages of 

four, students at stage 1 typically count on by 1s past known skip-counting patterns for 4s. These 

students can also construct connected number sequences (Steffe, 2010a). A connected number 

sequence is made from iterating a length unit to create a set of lengths that are two iterations of 

that unit, three iterations of that unit, etc. However, students at stage 1 do not construct an a 

priori multiplicative relationship between a length unit and lengths made from iterating that unit. 

Method 

Participants 

The classroom teacher with whom we conducted the study, Ms. W, was one of 15 middle 

school teachers who had participated with us in a year-long study group to explore differentiating 

instruction. We observed Ms. W’s only seventh grade mathematics class and invited students to 

participate. Eighteen out of 20 students submitted consent forms. Before the unit, we sought to 

develop an initial understanding of students’ units coordination stages and to select six focus 

students, ideally two at each stage. So, we administered written assessments of students’ units 

coordination stages (Norton et al., 2015) and conducted individual interviews prior to the unit.  

In the interviews we developed a deeper understanding of students’ thinking and sometimes 

revised our assessment of a student’s units coordination stage. Following the interviews, we had 

five students at stage 1, nine students at stage 2, and four students at stage 3. We selected as 

focus students two students at stage 1, three students at stage 2, and one student at stage 3. For 

the analysis for this paper, we included all six focus students, but due to space constraints we 

present in detail our interactions with one focus student at stage 1, Emily. 

Data Collection 
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All 26 class meetings of the unit were filmed with four cameras: a GoPro that captured the 

whole classroom, a stationary camera trained on the board, and two roaming cameras. Video 

from the latter three cameras was inset into the GoPro video for analysis. The classroom was 

organized into six tables for students to work in groups of three or four. Audio was captured with 

six microphones fed into a mixer and audio-recorders on each table. 

During class meetings, Ms. W and the first author co-led inquiry-oriented instruction with the 

Comparing and Scaling unit of Connected Mathematics Project 3 (Lappan et al., 2014), which 

addresses proportional reasoning. Research team members operated roaming cameras and 

interacted with students. Between class meetings the team processed video data, scanned student 

work, discussed conjectures, and planned for the next class with Ms. W. The first author kept a 

research journal and wrote a summary of each class session. In the middle and at the end of the 

unit, we interviewed the six focus students to assess their understanding of topics. 

Summary of Speed Investigation 

The unit consisted of three investigations: quantifying orangeyness (Days 1-8), quantifying 

speed (Days 9-18), and understanding percents (Days 19-26). We followed Comparing and 

Scaling for the first and third and designed a replacement for the second based on Lobato’s 

MathTalk project (https://mathtalk.sdsu.edu/wordpress/). We made this replacement because we 

conjectured that after investigating orangeyness, which is controlled by two continuous 

quantities, a speed context, also controlled by two continuous quantities, would support students’ 

proportional reasoning. During the orangeyness investigation we found that students at stage 1 

were not iterating two quantities as a composed unit to make other mixtures with the same flavor. 

A composed unit is a correspondence between two composite units (Nabors, 2003). Because we 

also observed differences among students at stages 2 and 3, we decided to group students by 

units coordination stage for the start of the speed investigation, Days 9-13. 

On Day 10 and 11, students worked on introductory tasks about speed. On Day 12 students 

worked on the Same Speed Task (Figure 1). We differentiated instruction by giving different 

numbers to different groups (not relevant to this paper and explained in Hackenberg et al., 2023). 

Figure 1. Same Speed Task. 

 

Data Analysis 

For this paper, analysis occurred in two phases. First, we built second-order models of the 

focus students. A second-order model is a researcher’s constellation of constructs to describe and 

account for another person’s ways of operating (Steffe & Thompson, 2000). Second, we used an 

existing coding scheme for decentering (Bas-Ader & Carlson, 2021) to analyze individual-

environment interactions that were involved in the accommodations. The result of the first phase 

analysis is reported in Hackenberg et al. (2023). This paper reports on the second phase. 

In the second phase, we analyzed the decentering actions of the teachers in interacting with 

students in small groups during the speed investigation. To do so, we coded all interactions 

between a teacher and the six focus students during the three days of intensive small group work 

https://mathtalk.sdsu.edu/wordpress/
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(Days 10-12) during which students worked on speed tasks. We used the codes from Bas-Ader 

and Carlson (2021) to code all utterances of the teacher in each exchange, basing code selection 

on what the interchange with the student was about. So, even though we were coding the 

teacher’s utterance, codes were contingent on what students said and did in relation to the 

teacher’s comments and questions.  

During the coding of data, we had 15 transcripts and videos to code, one for each focus 

student’s small group interactions for each of Days 10-12 (two focus students were in a group 

together; the other four were in separate groups). Each transcript was coded by at least two 

authors. The three authors met bimonthly to discuss our code use and what coding revealed about 

decentering in relation to students’ work on speed tasks (e.g., Figure 1). We ran intercoder 

investigations for each transcript, revising coding until we reached at least 90% agreement. Once 

we stabilized the coding, we looked for patterns in relation to accommodations students made. 

That is, we identified instances where specific acts of learning occurred, in 5 of the 15 

transcripts, and we examined the nature of the decentering actions for those acts of learning. We 

compared these patterns to patterns of decentering actions across all 15 transcripts.  

Findings 

We found two patterns of decentering actions that supported specific acts of student learning. 

In the first, a challenge to the student (coded PS, Perturbing the student in a way that extends the 

student’s current way of thinking) was followed by questions coded LST (Leveraging the 

student’s thinking to advance the student’s thinking), which we call leveraging questions. Then 

the teacher used follow-up questions and comments to understand students’ thinking about their 

response to the leveraging question (coded FMST, Following up on response to make sense of 

students’ thinking). In the second pattern, a challenge (PS) was followed by follow-up questions 

and comments (FMST), which were followed by a leveraging question (LST). In both patterns, 

chains of FMST and LST often continued while the students worked to address the challenge.  

We found that these two patterns helped us support students to sustain challenges across 

stages of units coordination. In all cases, sustaining challenges yielded learning, although not 

always the learning that the teacher was aiming for. We show the first pattern with Emily. 

Emily: Constructing Doubled Journeys as Connected Numbers 

Student work and decentering analysis. Emily’s group worked on making the red car travel 

the same speed as a blue car traveling 18 mi in 3 min. The group tried 9 mi in 6 min, 18 mi in 6 

min, and 18 mi in 2 min. Then Emily’s groupmate suggested 36 mi in 6 min. The group found 

that it worked, and Emily expressed excitement. The first author, known as Ms. H, asked them to 

explain why doubling produced the same speed and to draw a picture to justify. 

Although most students were challenged by the request to draw a picture to show same 

speeds, Emily seemed especially stymied. Ms. H immediately modified the challenge, asking 

Emily and groupmates to draw only the 18 mi-3 min journey. Emily said, “I don’t really know 

how to show it. I know how to tell, but I don’t know how to show it.” When asked how she 

would tell, Emily said that 18 times 2 was 36 and 3 times 2 was 6, so you could divide each 

number by 2 or “reduce” it. She did not draw. Thus, modifying the challenge to draw only one 

journey did not sufficiently support Emily to draw. 

Ms. H then asked Emily to think about the quantities, not just the numbers, because the 

quantities would give her more power in understanding speed. Ms. H said, “You said something 

about multiplying by 2. Is there any way to show that in a picture, like... to show 36 miles in 6 
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minutes is twice 18 miles in 3 minutes?” This question is a leveraging question because Ms. H 

was asking Emily to think about how to represent her idea of multiplying by 2 in a picture. 

Emily wrote down numerals to show that 18 x 2 was 36 and 3 x 2 was 6. Ms. H acknowledged 

her work but said she wanted to know why doubling produced the same speed.  

At this point, in a further attempt to support the group Ms. H repeated the modified 

challenge, asking Emily and groupmates to draw just the 18 mi-3 min journey (Table 1; turn 1). 

Following this modification, Emily began to draw (Table 1; turn 2). 

Table 1. Emily Begins to Draw 

Turn Code Data 

1 Modified 

PS 

(repeated, as 

discussed 

above) 

AH: How could you just draw—you don’t have to draw a car—you don’t 

have to draw anything other than something to show 18 miles in 3 

minutes. What could show it? [7-s pause] What if you want to show, 

say, hey somebody, the car went 18 miles and it happened in 3 

minutes, what would you draw to show the car’s journey?  

2   EMILY [draws a car]: That’s a bad car. But you have a car. And it’s going 

[draws a segment from the car to a house with “3 min” written over 

the segment, Figure 2a]. 

3 LST AH: Okay, great. I noticed, Emily, you have 3 minutes there. It’s kind of 

like you’re saying this is this distance that got covered in 3 minutes. 

What’s the distance again? 

4   [Emily writes “18 mil” under the segment.] 

5 LST AH: All right, super. Right here you have this segment, or line, that 

would show that distance. Now, we also have the other car going 36 

miles in 6 minutes. Do you think you could show that one? 

6   [Emily draws another segment below the first, Figure 2a.] 

Figure 2. Emily’s three drawings 

 
 

Emily’s initial drawing (Figure 2a) may have indicated motion from one place to another, not 

a distance traveled in 3 min. The arrows at the end of her segments suggest this interpretation. 

However, Ms. H interpreted the segment as a distance covered in 3 min and asked Emily to write 

in the distance (Table 1; 3). This question is a leveraging question because Ms. H used what 

Emily had drawn and supported her to develop it so that it might show a distance traveled in a 

number of minutes. Following this exchange, Emily drew the other car’s journey. Ms. H then 
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posed follow-up questions (Table 2; 7, 9, 11, 13) to get a sense of how Emily was viewing her 

drawing and whether she was thinking about the length of her segments. 

Table 2. Emily Revises her First Picture 

Turn Code Data 

7 FMS

T 

AH: Now, would these [segments] be the same length? 

8   EMILY: No. 

9 FMS

T 

AH: What’s the relationship between the length of this one and that one? 

10   EMILY: That one’s [top] shorter than that one [bottom]. 

11 FMS

T 

AH: It’s shorter, okay. Can you tell me anything more? How much shorter—I 

mean right now yours is shorter. Do you think it shows well that this is 18 

and that’s 36? 

12   EMILY: Yeah. 

13 FMS

T 

AH: How come? 

14   EMILY: Because it’s labeling them. 

15 LST AH: Do you have the idea of doubling in there though, that you were talking 

about? 

16   [Emily writes “x 2” between the segments.] 

17 PS AH: Okay, well can you show it with the lengths? Emily, can you show the 

doubling of the lengths? Do you get what I’m asking about? 

18   EMILY: It’s two times larger. 

19 LST AH: Yeah. Can you draw it that way? Maybe draw it again over here. [Emily 

draws a second picture, Figure 2b.] 

 

Based on Emily’s response that the drawing showed the two journeys well (Table 2; 12), Ms. 

H posed another leveraging question, “Do you have the idea of doubling in there though, that 

you were talking about?” (Table 2; 15). Here, Ms. H used Emily’s work so far—she had talked 

about the importance of doubling and drawn a picture where one segment was not double the 

other in length from our perspective—and asked her to continue to develop it. So, the question 

was a support for Emily to sustain the challenge of drawing without telling her what to draw. 

Emily responded to this leveraging question by writing “x 2” on her picture (Table 2;16). Ms. 

H then repeated the original challenge about trying to show doubling with the lengths (Table 2; 

17). When Emily said, “it’s two times larger,” Ms. H asked if she could draw it that way (Table 

2; 19), a leveraging question that again built on Emily’s expressed idea of one journey being two 

times the other, pressing to see whether she could draw that idea. Emily then drew a second 

picture (Figure 2b). From our perspective, Emily’s second picture shows journeys that are the 

same size. Ms. H complimented the picture and said to Emily what she saw in it (Table 3; 20). 

Table 3. Emily Revises her Second Picture 

Turn Code Data 
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20 FMS

T 

AH: That’s a really nice picture. To me, though, when I look at it, it looks 

like this journey and that journey are the same size. Are they the same 

size? 

21   EMILY: No. 

22 LST AH: Something’s the same about them, the speed. Is there any way to show 

how the one journey is, as you said, twice as long, twice as big? 

23   [Emily extends the 36 mi-6 min segment, but she reaches the edge of the 

paper and does not make it twice as big as the 18 mi-3 min segment, 

Figure 2c. AH asks if that shows it exactly. Emily spans the first 18 mi-3 

min segment with her fingers, and then she moves her fingers over to 

make another one, drawing it in.] 

 

When Emily agreed that the journeys in the picture were not the same size, Ms. H posed 

another leveraging question, “Something’s the same about them, the speed. Is there any way to 

show how the one journey is, as you said, twice as long, twice as big?” (Table 3; 22) Here Ms. H 

again used Emily’s idea of “two times larger” (Table 2; 18) and asked Emily to show that 

relationship in her picture. Following this question, Emily extended the 36 mi-6 min journey, 

using her hands to indicate fitting two 18 mi-3 min journeys into the 36 mi-6 min journey. 

During this interaction, Emily constructed doubled journeys as connected numbers 

(Hackenberg et al., 2023). The teacher’s decentering actions did not cause Emily to do so, but 

they opened the possibility for it. We argue that the decentering actions supported Emily to view 

her segments as lengths and use iteration, an operation she had constructed, on the segment that 

represented the original journey to create a new journey that consisted of two of the original 

journeys. Since Emily then spoke of her picture (Figure 2c) as “not drawn to scale,” we have 

evidence that size was now relevant to her. The next day in the whole class discussion Emily 

presented to the class how the 18 mi-3 min journey fit two times into the 36 mi-6 min journey, 

and she explained that her drawing was not accurate, confirming the importance of size to her. 

Patterns in Decentering Actions. The pattern we found in these decentering actions is that 

after a challenge (PS), a leveraging question (LST) often immediately followed. Then the teacher 

used follow-up questions and comments (FMST) to try to understand Emily’s response to the 

leveraging question. This understanding then allowed the teacher to pose another leveraging 

question (LST) based on Emily’s current ideas. 

In particular, after Emily first started drawing, the leveraging questions were about helping 

Emily to expand her drawing or see it in a new way. After her first picture, the leveraging 

questions (Table 1; 3, 5) asked Emily to expand her drawing to show both journeys and to 

identify both a time value and distance value for each journey. These questions may have helped 

Emily to make a correspondence between 18 mi and 3 min, as well as between 36 mi and 6 min, 

viewing each pair as a composed unit. The follow-up questions and comments (Table 2; 7, 9, 11, 

13) were posed to understand how she viewed the changes she had made. 

Then the next leveraging questions (Table 2; 15, 19; Table 3; 22) asked Emily if she could 

follow through (from our perspective) on her ideas to show doubled journeys in her drawing. 

After Ms. H posed the third of these leveraging questions, Emily changed her drawing to show 

the larger journey as made of iterating two smaller journeys. 
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Discussion 

In this paper we argue that decentering actions supported to Emily sustain engagement in the 

challenge of justifying same speeds. Like Jacobs and Empson (2016), we documented responsive 

teaching moves but with a theoretical grounding of decentering that bases these moves in 

second-order model building. Like Hunt and Silva (2020), we demonstrated how particular 

teaching moves supported specific acts of student learning but in a whole classroom.  

Our leveraging questions were based on closely observing students’ contributions and then 

asking students to build on that contribution a small amount, toward a large challenge such as 

drawing a picture or justifying. So, leveraging questions could be seen as a version of advancing 

questions (Smith & Stein, 2018). Yet they are a quest for a small advance, close to students’ 

work. The judgment of the size of the advance is contingent on the second-order models of 

students’ mathematics that the teacher is building. To determine the efficacy of a leveraging 

question, a teacher-researcher has to stay to hear the student’s response. So, in contrast with 

advancing questions, leveraging questions require staying put. 

We argue that leveraging questions are important for middle school students at stage 1 of 

units coordination. These students are quite challenged to meet the multiplicatively-heavy 

demands of topics in typical middle school mathematics curricula and instruction. Leveraging 

questions may support them to use their abilities to coordinate two levels of units in activity in 

order to make interpretations of at least some of these topics. In the larger study, we found 

leveraging questions to be useful with students at all three stages. We view them as a tool for 

both teacher-researchers and classroom teachers.  
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The purpose of this poster is to present a framework that uses discourse and positioning 

theory as a tool to define relationships in discourse between a teacher and their students and 

provide a connection between discourse and student perceptions of content accessibility, as well 

as the student’s mathematical identity. Positioning theory evaluates conversations by examining 

verbal and non-verbal communication patterns (Bishop, 2012), common phrases (Herbel-

Eisenmann et al., 2010), or by looking at individual words (Wagner & Herbel-Eisenmann, 2008) 

for meaning. We use positioning theory as a lens through which we view discourse from 

classroom observations to describe the apparent negotiation of social roles in that classroom.  

Researchers tend to identify roles and positions through their understanding of the social 

norms of the dominant culture. Students and teachers come from various cultures, shifting how 

they view social constructs. An aspect missing in positioning theory is identifying teacher intent, 

driven by their prior beliefs and attitudes, and student perceptions, shaped by the student’s 

previous experiences. Bishop (2012) described a scenario with students where their pre-existing 

self-identity is enacted through utterances and conversation moves such as interrupting and 

question-and-answer patterns. 

The proposed framework illustrates the interplay between teacher and student, with their 

outside influences, attitudes, and beliefs. The outcome of the interaction between teacher and 

student is that students internalize the messages they receive which, in turn, shapes their 

perceptions of how accessible the content is and their self-identity within the mathematics 

community. In our future research, we will utilize the framework to combine student perception, 

teacher intent, and positioning theory to understand how teacher language impacts student beliefs 

about their position in the classroom and as “doers” of mathematics. 
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Despite calls to make classroom mathematics more accessible to students, research on 

instructional moves that support accessibility is scarce, particularly at the undergraduate level. 

We present one teacher’s use of Euler diagrams as a pedagogical tool to support students’ 

understanding of logical implication. Through semiotic analysis, we describe how her 

instructional task sequence may support students’ understanding of the semantic, syntactic, and 

pragmatic features of Euler diagrams and their connections to mathematical logic. Further, we 

discuss how addressing all three of these features may aid students in forging vital connections 

between their own intuitive understandings and formal mathematical reasoning. Our framework 

considers interactions between semiotic features, not just the features themselves—a divergence 

from the current semantic-syntactic dichotomies used in mathematics education research.  

  

Keywords: Instructional Activities and Practices; Reasoning and Proof; Undergraduate 

Education; Semiotics; Euler Diagrams 

Undergraduate mathematics students’ reasoning in proof and proving has become a focal 

point in recent research. Weber and Alcock (2004) suggested the importance of understanding the 

semantic and syntactic features of proof production, and Dawkins (2012) highlighted the 

significance of understanding the underlying structure of students’ mathematical activity in proof 

and proving. However, their use of these semiotic features to investigate teaching and learning of 

proof does not attend to the ways these features might interact. Furthermore, the pragmatics of a 

representational system are not addressed in these works, a divergence from the analytic 

framings in other disciplines, namely applied linguists. This paper explores whether utilizing 

applied linguists’ analytic framing allows us additional insight into student understanding of the 

biconditional statements within the logical representation system of Euler Diagrams. We analyze 

the semiotic features (semantics, syntax, and pragmatics) explored in a small group discussion in 

an introductory proofs class. 

Semantics and Syntax in Mathematics Education Research  

Semiotic analysis in mathematics education has predominantly attended to semantics and 

syntactics, focusing attention on the continuum between students’ informal and formal 

understandings which Vinner (1991) called concept images and formal definitions, respectively. 

Weber and Alcock (2004) described these understandings by identifying features that 

differentiate the proof production of senior undergraduate students and more seasoned 

mathematicians. They found the former tended to use “rules” in proof activity, while the latter 

considered the more intuitive mathematical features when proving. Weber and Alcock (2004) 

called these two approaches to proof production semantic and syntactic, respectively.  

Hiebert (1985), explains that we understand when we connect new knowledge to our existing 

knowledge. To develop robust understanding, he argues, we need to connect symbols to their 

underlying meaning (semantics), connect procedures to their underlying rationale (syntax), and 
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check the reasonableness of the procedures and solutions in the light of other mathematics we 

know (pragmatics). 

Semiotic Features in Linguistics 

Hiebert’s (1985) approach aligns with applied linguists’ analytic framing. According to the 

American Speech-Hearing Association (ASHA, 2023), syntax is the form or structure of 

language, semantics is the content or meaning of language, and pragmatics is the use of language 

in context. For linguists, semantics describes the meaning associated with words and sentences. 

Words are symbols associated with referent objects or ideas–they have lexical meanings. In 

discourse, these lexical meanings are semantics but may be subsumed by their pragmatic, or 

applied situational meanings (Stotts, 2020). Furthermore, the meaning of a word is dynamic, 

adapting with individual experience and applied context (Assimakopoulos, 2012; Stotts, 2020). 

Theoretical Framework  

Applied linguistics defines the features of semiotic systems to both assess and remediate 

language development, considering the interaction of semiotic features. Interactions between 

semiotic features are seldom considered in mathematics education literature. This paper aims to 

illuminate these interactions through analysis of students’ work using Euler diagrams, a simple 

representational system: Euler diagrams. We adapt ASHA’s semiotic definitions to fit the 

mathematical context of Euler diagrams in Table 1. Symbols (e.g., words and numbers) are 

objects used to encode meaning (i.e., mathematical logic). In Euler diagrams, the truth set of a 

statement is depicted by a region enclosed by a circle, while the universal set is depicted by a 

rectangle. The spatial relationships between circles within the universal set encode the logical 

relationships between truth sets (syntax). It is from the interaction of these semantic and 

syntactic features that students ultimately abstract appropriate logical meaning based on the 

mathematical context (pragmatics). 
 

Table 1: Semantics, Syntax, and Pragmatics of Mathematical Representation Systems   

Semantics   Syntax   Pragmatics   

The intuitive meaning of symbols 

and what they are understood to 

mean in terms of experience.    

Meaning associated with 

the placement of symbols 

in relation to one another.   

Combinations of semantics and 

syntax that are mathematically 

functional or appropriate.    

 

Methods 

We were interested in students’ interaction with Euler diagrams because they have recently 

been leveraged in research-based instruction on logical implication (Dawkins & Roh, 2022). 

Antonides et al. (in press) provide evidence of the spatial elements of this representational 

system aiding students’ understanding of logical structures. The data were video, audio, and 

students’ written work (on iPads) that was collected throughout one instructor’s semester-long 

undergraduate introduction to proofs course. Motivated by the findings of Hub and Dawkins 

(2018), Euler diagrams are used during instruction to support students’ understanding of logical 

implication. The class included group activities and whole class discussions which refined their 

understanding. There were many cases where students utilized Euler diagrams spontaneously in 
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groups to support their arguments. The whole classroom dialogue was transcribed, and pertinent 

portions of the instructor’s notes were identified. Screenshots of these are included as figures in 

the results section. We present one vignette to illustrate how students leveraged their syntactic 

understanding of Euler diagrams to make sense of the logic underlying their task. 

 

 

Results 

We present an excerpt of a small group discussion demonstrating how students can leverage 

the syntactic aspect of Euler diagrams to understand biconditional statements. This task arose at 

the end of a sequence of activities which we conjecture supported students to build an 

understanding of the semantic and syntactic features of Euler diagrams by utilizing students’ 

pragmatic understandings. Figure 1 depicts an Euler diagram of the true statement ``P implies Q” 

(P→Q).  

 

  

Figure 1: The prototypical Euler diagram for the true implication P→Q  

 

Using the Syntax of Euler Diagrams to Make Sense of Biconditional Statements 

Before this vignette, the whole class had discussed whether the converse of the statement, 

Q→P, must also be true when P→Q is true. They agreed that it was possible to populate an area 

in Q which was not in P. Thus, Q→P was false. The discussion led one student to wonder what 

the Euler diagram would be like for the biconditional statement “P if and only if Q” (P↔Q). The 

instructor encouraged the class to explore this idea in groups.   

While not all groups were able to interpret the relationship between the truth sets or 

successfully generate an Euler diagram representing this case, one group had the following 

discussion: 

 Student E: P implies Q. That would just be Q, a giant circle with P in it. So like, something 

is a multiple of 6, then it’s a multiple of three. [Drawing the rectangle]  

Student F: You can just draw one circle.    

Student G:  It’s the same circle. [In agreement] 

Student E:  [Pauses to consider, then drawing a single circle] They have to be the same circle. 

It’s a really direct relationship. They’re always both true. (Labeling the circle P, Q)   

Student F:  It has to go both ways. 
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Figure 2: Students’ representation of P↔Q  

 

In this interaction, Student E considered the conjecture and the supporting statements of her 

group. She agreed with her peers, offering a justification for the resulting Euler diagram as she 

generated it. By attending to the syntactic relationship of the two statements in the Euler 

diagram, she refined her understanding of biconditional statements. 

Student E referenced the initial exploratory task to ground the chosen syntactic structure. 

This indicated that the syntactic feature itself had become a symbol for her, its own (pragmatic) 

referent. These more nuanced semantic and syntactic features were used to support the 

understanding of mathematical inferences that can be made from the diagrammatic interaction of 

the truth sets. Using features of Euler diagrams to make logical conclusions in this task was 

mathematically appropriate and functional. The syntactic and semantic features made the implicit 

logical relationship between the truth sets explicit. This allowed a more flexible and connected 

use of the representational system, a pragmatic feature of Euler diagrams. 

Discussion and Conclusion 

This analysis showed how students’ understanding of not only the semantic and syntactic 

features of a mathematical representation but also their interaction empowers them to utilize 

these features pragmatically. In considering P→Q, Student E supported her abstraction of the 

meaning of syntactic features by spontaneously connecting the task to a past class example (“So, 

like, something is a multiple of 6, then it’s a multiple of three”). She was able to utilize the 

relationships between symbols pragmatically. In this way, the syntactic features forged 

connections between intuitive knowledge and formal mathematical concepts. 

Researchers have recognized the importance of connecting procedures, or syntactic 

processes, to their underlying meaning (see for example Hiebert, 1985). Existing frameworks 

have described syntax as synonymous with procedural understanding (Bayaga & Bossé, 2018) or 

instrumental reasoning (Skemp, 1976; Weber & Alcock, 2004). However, these views alone do 

not capture the importance of the conceptual features encoded in the syntax of the mathematical 

representation. Adapting ASHA’s definitions of semantics, syntax, and pragmatics in our analysis 

allowed a clearer picture of how students develop competence with mathematical systems of 

representations. Our reframing of the categories of semiotics is a starting point, elucidating the 

interaction of semantics and syntax in mathematical sense-making. 

While our analysis suggested the utility of Euler diagrams in making explicit the features that 

are implicit in formal mathematical language and informal conversation, we did not explore this. 

Future studies should consider an in-depth analysis of students’ spontaneous use of Euler 

diagrams to support reasoning in more complex tasks as a means of developing an intuitive 

understanding of mathematical statements. In addition, careful analysis of how students develop 

the semantic and syntactic understandings of these representational systems is needed. The 

proposed framework could ultimately yield productive insight into which tasks instructors might 
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use to target specific semiotic features of mathematical representations. This insight could then 

be used as a starting point for unpacking students’ difficulties with more complex mathematical 

representations, including how the order of quantifiers impacts the logical meaning of formal 

mathematical statements. 
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Issues Facing Students in Introductory Math Courses 

This poster attempts to address certain issues faced by students in introductory math courses. 

We piloted this activity in a course which serves as a prerequisite for College Algebra. Many 

students in the course are first-time first-year and/or first-generation students. Students in such 

courses frequently struggle with confidence and doubt their own mathematical ability. Many 

students seem hesitant to seek help from their instructor or tutors on campus when they struggle 

with the material. The final issue facing students in these courses that we identified is student 

engagement. Many students see these courses as a requirement they must fulfill but have no 

interest in the topic of mathematics. Some of these students see the course as a repeat of material 

already learned and regularly miss class. This leads to poor attendance, so the students miss 

material that is new or complicated to them. 

Escape Room Icebreaker Activity 

We implemented an icebreaker activity where students work in groups and apply their 

mathematical and logical abilities. The activity was an escape room game with a math theme. An 

escape room is a series of puzzles that participants must complete to “escape” the room/scenario. 

We used several sets of “Escape Room: The Game ©” by Identity Games. The scenario involves 

a group of prisoners working together to break out of prison using clues left by a former inmate 

who was a mathematician and close to escaping. This scenario was perfect for this course since 

many puzzles were mathematical but only required order of operations, which was an early topic 

in the course. 

To encourage attendance, students were warned that there would be a special activity during 

the next class period and that successful participants would earn extra credit on the next exam. 

We worked with the Student Success Center [SSC], which offers free tutoring on campus, to 

have tutors attend class and join in the escape room activity. Each team included 4-5 students and 

a tutor. Tutors worked through a similar escape room scenario earlier in the week, so they knew 

how the game worked and could help guide their teams. Note that this activity does not fit well 

into common theoretical frameworks, since the goal is to encourage confidence and comfort with 

tutors, rather than having tutors guide students through course content. 

Results and Data 

The goal of this activity was to have students use math in a fun way so that they were more 

engaged with the topic and the course. Tutors were brought in so that students could meet and 

interact with them in an informal setting and destigmatize seeking help. The class enjoyed the 

activity, and each group finished the 1-hour activity within a 50-minute class period. The number 

of SSC visits for students in this course increased from 6 in Fall 2023 to 19 in Spring 2024, 

despite the SSC seeing fewer visits in the same period. We plan to expand this activity to more 
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introductory math courses next semester.  
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In this paper we examine Second Order Models (SOMs) in contrast to teacher noticing, 

focusing on how SOMs go beyond attending by inferring students' underlying mathematical 

mental activity, specifically their construction and use of units. Through empirical examples 

from practicing teachers, we illustrate how SOMs attribute students' mathematical actions to 

inferred mental activities. By distinguishing between teacher noticing and SOMs, we highlight 

the importance of developing SOMs for effective mathematics instruction. 
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To imagine the future of mathematics education, it is crucial to draw on past foundational 

research, using it as a basis to enhance future learning beyond current knowledge. In this paper, 

we build on recent research (Hodkowski, 2018; Hodkowski et al., under review; Smith & 

Hodkowski; in press) on teachers’ shifts towards instruction that uses Second Order Models 

(SOMs; Steffe, 2000) to examine how SOMs may go beyond teacher noticing (Jacobs et al., 

2010; Mason 1998, 2008), providing empirical examples from existing teachers to present 

evidence for those differences. Specifically, we asked: What distinguishes SOMs from teacher 

noticing? 

Teacher noticing is an active, proven, pedagogical process where teachers attend to and make 

sense of their students’ work, words, and actions (Mason, 2008; Sherin et al., 2011). Teacher 

noticing includes teacher attention to students’ mathematical strategies and problem-solving, 

which is more than just noting the type of strategy (e.g., algorithm versus partial product). 

Rather, the teacher uses their observations to get “a window into children’s understanding” (p. 

172, Jacobs et al., 2010). The teacher interprets their students’ mathematical understandings 

using evidence from the students’ work as the basis for their judgements. Failing to seek 

understanding of a student's actions and, instead, saying "they just didn't try" would demonstrate 

unproductive noticing by the teacher (Jacobs et al., 2010). Finally, in teacher noticing, the 

teacher uses their noticings of student work to guide potential instructional decisions. Jacobs and 

colleagues (2010) noted this as an anticipated intention rather than an enacted one, where the 

reflection on student reasoning precedes any actual teaching acts. The practice of teacher 

noticing is considered critical for intentional, effective instruction (Schoenfeld, 2011). 

SOM, also referred to as a model of someone else’s mathematical reality (Steffe, 2000) is 

inferences made of a students’ thinking (mental operations; Steffe & Thompson, 2000; 

Thompson, 2000; Ulrich et al., 2014). SOM differs markedly from the observer’s 

(researcher/teacher) own mathematics, which is referred to as one’s First Order Model (FOM). 

When thinking about how the concept of SOM can become a practice useful for teachers, it is 

important for teachers to make a distinction between their FOM and a student’s thinking (SOM). 

Often, teachers conceive of their students’ mathematics through the lens of their own FOM 
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(Tzur, 2010); that is, the teacher understands a mathematical concept in a particular way and 

interprets students’ mathematics by using their own FOM. Such a teacher likely assumes that, 

through instruction, students will come to understand mathematical concepts the same way the 

teacher does (Simon et al., 2000). For example, a teacher may use the “I do, we do, you do” 

instructional model as a way to teach mathematics however this model teaches mathematics the 

way the teacher (“I do”) understands it. Thus, the teacher uses instructional techniques driven by 

their FOM understanding of mathematics. The issue is that FOM, while making complete sense 

for the teacher, may be insufficient for fostering student learning of the intended mathematics 

(Steffe, 2000). 

Developing an SOM has an explicit focus on recognizing not only what the student did, but 

more importantly, why they did it based on the mental operations inferred from the 

observer/teacher. This focus on the “why” provides insight into the student’s existing 

conceptions as the starting point for their future learning. In contrast, during noticing, the teacher 

may work to interpret the student’s math but not understand why this math was available to the 

student. For example, teacher noticing would be considered when a teacher explained that the 

“student answered the problem 12+5 fairly quickly, however drew 12 circles and then drew 5 

more and then counted all the circles. The student understood to add, but needed to draw pictures 

to solve it.” This statement attends to specific mathematical details, but not necessarily why the 

student made the mathematical decisions they did. On the other hand, SOM for the same student, 

would be considered if the teacher explained, “The student answered the problem by drawing out 

all the circles, 12 and then 5, and then counting each one. They understood to add but operated 

on units of one instead of counting on from the 12 or 5. This indicates the student does not yet 

recognize and operate with a unit composed of ones just the ones.” Teachers with an SOM can 

describe an intention behind the math action as opposed to just naming the math action (as in 

noticing) or judging it against their own (FOM). 

Instructional shifts from just teacher noticing toward SOM is an essential pedagogical 

realignment away from the teacher’s math as the driver for learning and instead toward student 

conceptions. Focus on the students' conceptions for learning can pivot instructional shifts from “I 

do, we do, you do” towards instruction more centered on the students’ specific individual needs 

for advancing conceptual understanding (Hackenberg et al., 2023).  

Second Order Models in Research and Instructional Practice 

Second order models have been described to be made by researchers and teachers. At the 

researcher level, SOMs are reliant on a theoretical perspective of learning that requires the core 

notion of assimilation (Piaget, 1971). Assimilation is a mental process by which a learner’s 

existing understanding organizes and shapes their ongoing learning experience. It is the lens by 

which we “see” the world around us. Literature has described the different levels that researchers 

make SOMs: Emerging SOM, Developed SOM, and Elaborated SOM (Ulrich et al., 2014). At 

the Emerging level, researchers have insight into participants’/students’ mathematical thinking as 

separated from their own mathematical understanding, but are not yet able to make instructional 

adaptations as a result of the SOM – as the model is still being constructed. At the Developed 

level, a researcher can anticipate and plan interactions with participants/students based on the 

SOM. Finally, at the Elaborated level, the researcher is able to determine a viable SOM of the 

participant/student and situate this with other SOMs in a class to create several “like” models of 

participants/students that drive design and enactment of mathematical instruction for groups.  
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Teachers’ shifts toward SOM are somewhat parallel to that of researchers', however, at the 

instructional level the focus for SOM is to create a model of students' existing concepts and 

acknowledge those concepts’ influence on solutions presented by the student. Specifically, two 

stages for teachers’ shift toward SOM are cogitation and distinction (Hodkowski, 2018). 

Cogitation refers to teachers’ increased ability to contemplate and think deeply about what their 

students’ mathematical mental activity might be. Shifts towards cogitation allow teachers to 

further separate students’ thinking from their own (FOM), and think more deeply about how 

students make sense of the mathematics. It is most closely related to the Emerging level of SOM 

used by researchers and similarly does not necessarily result in instructional adaptations. 

Distinction is a stage of SOM development where teachers’ ability to distinguish a students’ 

mathematical reasoning from other students while maintaining a separation of student reasoning 

from their (the teachers’) own reasoning (FOM). Distinction is likely what researchers may 

incorporate regularly at all three levels (Emerging, Developed and Elaborated). Particularly in 

the Elaborated level, researchers use one student’s understanding to attribute similarities to a 

group of students and organize instruction based on inferences into all students’ available 

conceptions. 

To shift towards cogitation and distinction requires teachers to infer into a student's existing 

conceptions (what the student can do) and separate these from her (teacher’s) own mathematical 

knowing (SOM; Hodkowski, 2018; Smith & Hodkowski; in press; Hodkowski et al., under 

review). Essentially, SOMs enable teachers to infer how students' existing mathematical 

knowledge shapes their reasoning and mathematical decisions. This shift allows teachers to gain 

a deeper understanding of why students focus on specific aspects of mathematical problems 

(Hodkowski, 2018), or make certain errors in reasoning when solving problems (Smith & 

Hodkowski, in press), or operate on units in ways (Hodkowski et al., under review).  

Recognizing what students are attending to (as in teacher noticing) is a crucial initial step for 

teachers, but transitioning toward SOMs (cogitation and distinction) requires more than mere 

observation. An SOM encompasses the teacher’s capacity to infer how the student’s existing 

mathematical knowledge influenced the reasoning presented from the student. Incorporating 

SOMs involves not only noticing students' abilities but also attributing these abilities to their 

underlying conceptions. With SOMs, teachers can both observe students' mathematical strategies 

and delve into the conceptual roots behind them. This pedagogical shift expands the concept of 

teacher noticing by framing it as a foundation for inferring into students' mental mathematical 

activities and understanding the conceptual basis of their reasoning through units and how 

students operate on them. Following we present empirical evidence illustrating that SOM is more 

than just teacher noticing. 

Differentiating Between Teacher Noticing and Second Order Models 

We build on recent research (Hodkowski, 2018; Hodkowski et al., under review; Smith & 

Hodkowski, in press) examining potential indicators toward teachers’ shifts in SOM. 

Specifically, we present evidence and comparisons between practicing teachers’ noticing as 

distinct from but related to developing SOMs. To identify evidence of distinctions between 

teacher noticing and SOM, we asked practicing teachers to reflect on the following scenario and 

solutions from two students who were not part of the teachers’ current classrooms: 
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Student A and Student B (work pictured below) were asked to solve the following 

question: Ms. Smith’s class collects 36 cans for the recycling program. Then, 

Camilla brings in 8 more cans. How many cans does the class have now? 

 
Six teachers were sampled from a large, public school district in the Southern United States. 

Teachers ranged from early career (first year) to veteran (30+ years) across the K-6 spectrum and 

were anonymously asked five questions based on the pictured work using Google Forms. The 

questions were: 1) Looking at the work of Student A and Student B, what do you notice? 2) 

Looking at the work of Student A and Student B, what do you wonder? 3) Looking only at 

Student A, what can you describe about their thinking and how they solved the problem? 4) 

Looking only at Student B, what can you describe about their thinking and how they solved the 

problem? 5) When comparing and contrasting the work of Student A and Student B, what 

differences can you describe in their reasoning (with evidence). Is this comparison important for 

their next steps in learning? Why/not? 

We used constant comparison analysis (Glaser & Strauss, 1967) to examine teacher responses 

and distinguish between instances of teacher observation (teacher noticing) and instances of 

more complex student reasoning descriptions (SOMs). Initially, responses were individually 

coded by each author for evidence of teacher noticing or indications of cogitation and/or 

distinction (SOM). The authors then compared their individual coding with each other through 

multiple conversations to reach consensus between teacher noticing statements versus SOM 

statements. This collaborative process allowed us to better characterize each teacher’s statement 

and establish how SOM differed from teacher noticing. 

Following, we present a sample of teacher responses through our classification of teacher 

noticing versus indications of SOMs. Our aim is to illustrate that while teacher noticing involves 

recognizing the students' solutions and strategies, SOMs, particularly cogitation and distinction, 

describe student thinking based on the construction and operation of units each student might 

have been using to think about and solve the problem. 

Examples of Teacher Noticing 

Teacher noticing involves teachers’ attention to observing and analyzing how students solved 

the problems through mathematical strategies and problem-solving approaches. This is exampled 

from the teacher descriptions seen in Table 1.  
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Table 1 

Examples of Teacher Noticing 

Teacher 

1 

[Student A] found the sum by counting on their fingers. Then proceeded to 

break the problem up to show the sum of 44 using tens & ones. Then they sort 

of used arrows to show 4 tens & 4 ones equals 44.  

[Student B] simply counted on. 

Student A is on their way to understanding multiplication. 

Teacher 

2 

[Student A] only have the answer drawn out, so I believe they have a better 

understanding of the numbers within the problem. 

[Student B] They counted on from the first number, so their thinking shows 

they have an understanding of the numbers within the problem but may still 

need some concrete support while working. 

They used different strategies in solving, I think [Student] A may have a 

better understanding because they did not really have to work out the problem, 

they just showed the answer. I believe [Student] B has an understanding of the 

work but may not be quite on the same level of abstract thinking. 

Teacher 

3 

[Student A] likes to group items and numbers to make it easy for them  

[Student B] likes to subtract and can understand the regrouping process. 

Well comparing them they understand regrouping carrying a number but 

they just go about it in a different way neither of them are wrong. It is not 

important because they have shown their work and how they got the answer. 

Next step is give them another strategy.  

Teacher 

4 

I think [Student A] has a solid understanding of how numbers work and has 

a good understanding of number partners.   

[Student B] was able to count on and also numbered them to show her 

thinking. 

Student B has a solid understanding of the procedure for counting on, but I 

am not sure they really understand quantities. Student A seems like they are 

ready for bigger numbers. It is important because on is ready to fly and the 

other one still needs support and perhaps more hands on practice. 

 

Teachers’ noticing statements acknowledge that Student A may be on the path to a deeper 

comprehension of mathematical concepts but conceptual reasons as to why or inferences into 

how the student operated to arrive at their answer (e.g. counting by ones versus breaking apart to 

make ten) is not yet accounted for. For example, Teacher 1’s description of Student A's use of 

finger counting, breaking down the problem into tens and ones, and employing arrows to 

represent the sum of 44 demonstrated robust noticing and attending to the mathematical details 

presented. However, in Teacher 1’s description, inferences into the mental operations for how 

the student thought out and operated on the tens and ones to arrive at 44 seems absent. Similarly, 

for the teacher noticing group (Table 1), Student B's reliance on counting on is noted which, as 

suggested by the teachers, is “an understanding of a procedure” (Teacher 4) and “a potential need 

for additional concrete support” (Teacher 2) but how the student counted on (tracking by ones 

with each additional count) is not mentioned by the teachers.  
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Teachers’ noticing descriptions recognize the diversity of strategies each student brought, 

such as Teacher 3’s noticing that Student A “used grouping” and that Student B had an 

“understanding of regrouping”. However, why each student would reason this way (inferences 

into how they operated on tens and/or ones to arrive at the grouping or regrouping) or use such 

strategies seemed lacking in these teachers’ descriptions. From the examples above, teacher 

noticing statements acknowledge that both students’ strategies were valid but do not yet 

categorize either strategy as being more (or less) conceptually advanced. 

Examples of Second Order Models 

Teachers' statements which included SOMs, unlike teacher noticing statements, describe 

inferences made by teachers into students' mental mathematical activities as the conceptual basis 

of their reasoning through units and how students operated on them, as illustrated in Table 2. 

These statements suggest the teachers were cogitating and making distinctions about students’ 

mathematical thinking in terms of the units and operations students used; instead of referring to 

strategies students used to arrive at the correct answers, as seen in the noticing statements (Table 

1). 

 

Table 2 

Examples of SOM 

Teacher 

5 

First [Student A] broke up the number 36 by tens and ones. Then they add 

[sic] 8 ones, then had another group of tens. [Student A] then took the left over 

ones and left them, this is how they got 44.  

[Student B] had to count on and keep track that they counted up 8. 

Student A has a deeper understand[ing] of numbers value and how numbers 

are formed. Student B does not see numbers the same and sees this more as 

counting on and not looking at the value of the number. Yes, student A has an 

understanding of value while student B is still at the surface level of 

understanding numbers. 

Teacher 

6 

Student A decomposed the 8 more cans into 4 and 4 and decomposed 36 

into 3 groups of 10 and 6 ones. She then composed a group of 10 using the 6 

and 4. That gave her 4 groups of 10 and 4 extra ones for a total of 44. 

Student B solved the problem by starting with the first quantity and 

counting on 8 more numbers to add the second quantity. 

I believe Student A has cardinality and is able to subitize with larger 

numbers. She understands the quantities that are being added and that making a 

10 is an efficient way to solve a joining problem. Student B understands the 

pattern for counting and can count on from a given number. He understands the 

process for solving a problem by counting on but there is no evidence that he 

understands the quantities that have been added. (He may understand them, but 

it is not indicated in his answer.) 

Both students have used a strategy that works for them to solve a joining 

problem with result unknown. I believe that Student A's explanation shows a 

more advanced understanding of the math behind the solution and therefore 

Student A is ready for other problem types or joining problems with larger 
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quantities and that Student B perhaps is not. However, I will admit that I am not 

really sure about what Student B would need at this point. 

 

There is a distinguishable difference between Teachers 1-4 statements (Table 1) and the 

statements of Teachers 5 and 6 (Table 2). We attribute this difference to teachers developing 

SOM as exampled through the cumulation of Teacher 5 and 6’s descriptions. For example, when 

describing Student A’s work, both Teacher 5 and 6 noted an approach where the student 

decomposed 36 into tens and ones (3 groups of ten and 6 ones) and 8 into a group of 4 and a 

group of 4 and composed numbers, using the 4 to make a ten and then determining 44 with 4 

more ones. Teachers 5 and 6’s statements explicitly describe distinct units which the student 

operated, whereas Teachers 1-4 did not provide evidence of this.  

Later, when comparing the two students’ work, both Teacher 5 and 6 worked to identify why 

Student A was able to reason as they did (Teacher 5 describing Student A’s understanding of 

“value” while Teacher 6 described it as “cardinality and subitizing”). We attribute this to a 

developing SOM regardless of the mathematically/ conceptually accurate thinking that a 

researcher might attribute to these students. The teachers’ attention to the “why” Student A was 

mentally able to work with various, distinct units demonstrated more than teacher noticing. We 

see Teachers 5 and 6’s and statements as attempts to understand what the students were thinking 

as a result of their solution as well as the “why” (units and how students operated on them). Said 

differently, for statements in Table 2, teachers seemed to make attempts to infer into what 

students did know as a way to describe the work that was presented.  

Discussion 

This paper examined the distinctions between teacher noticing and Second Order Models 

(SOMs) and presented empirical evidence to illustrate these differences. Teacher noticing, as 

described in the literature, involves teachers' attention to and interpretation of students' 

mathematical strategies and problem-solving approaches. In contrast, SOMs involve recognizing 

not only what the student did but also why they did it based on the mental operations inferred 

from the observer. This focus on the "why" provides insight into the student's existing 

conceptions as the starting point for their future learning. While teacher noticing is a crucial 

initial step, SOMs enable teachers to infer how students' existing mathematical knowledge 

shapes their reasoning and mathematical decisions. 

The empirical evidence presented in this paper illustrates the differences between teacher 

noticing and SOMs through a comparison of responses from six practicing teachers. The 

examples of teacher statements provided demonstrate that while teacher noticing involves 

recognizing the students' solutions and strategies, SOMs, particularly cogitation and distinction, 

describe student thinking based on the construction and operation of units each student might 

have been using to think about and solve the problem. An implication of SOMs in instruction is 

teachers’ attention to differences in the way students solve problems based on the units involved. 

While more research is needed on teachers’ development of SOMs and their use of them in 

instruction, teachers’ attention to differences on how students operate can result in more 

individualized instruction to students who can arrive at the same answer albeit different thinking.  
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Mathematics class can support students to develop civic dispositions that are foundational to 

productive citizenship (Education Commission of the States, 2014) and prepare students to see 

mathematics as relevant and meaningful. Social justice mathematics lessons (SJML; Gutstein, 

2003) may provide opportunities for students to consider both mathematics and social issues 

(Kokka, 2022), yet balancing attention to both is challenging (Bartell, 2013). Citizen Math, one 

set of SJML, has been documented to engage students in social issues while improving middle 

school students’ mathematics achievement (Jackson & Makarin, 2018). We investigate teachers’ 

enactment of Citizen Math lessons to inform professional learning and further research of SJML. 

We utilize Cazden’s (2001) two dimensions of interactional routines, sequential and 

selectional dimensions. Sequential dimension refers to routines that are consistent across 

classrooms and/or lessons. Selectional dimension refers to the ways teachers exercise their 

agency to enact segments of a lesson. Classroom routines are influenced by published materials 

(Banilower et al., 2018) such as off-the-shelf SJML (e.g., Conway et al., 2023). Yet, even with 

common resources teachers may enact components differently which is visible in the selectional 

dimension. One difference is in how teachers position mathematics and students, which has 

implications for teachers’ and students’ mathematical authority (Herbel-Eisenmann, 2007). 

We share our analysis of 22 observed SJML in middle school classrooms to answer the 

research question: How do middle school teachers learning to use SJML enact such lessons? 

Findings in the sequential dimension indicate that teachers enact segments of Citizen Math 

lessons in a predictable manner consistent with teachers’ guides. The timing of each segment was 

the most variable aspect. In the selectional dimension, we found variance among which 

mathematical concepts were emphasized and how the lesson and mathematics were positioned. 

For instance, in a 7th grade lesson, students considered the fairness of wages in different 

professions by analyzing unit rates. Mrs. Amber emphasized that students should consider 

fairness from their perspectives (e.g., “You're going to determine whether you all think it’s fair, 

whether you think they should be able to make that much…”) and throughout the lesson students 

used mathematics to make sense of the concept of fairness. On the other hand, Mr. Brown’s 

perspective suggested the task was to find a correct answer (e.g., “Is it more valuable to be a 

football player?”) and regularly directed students to use particular procedures. Where Mrs. 

Amber allowed students to make assumptions, Mr. Brown funneled students' reasoning so that all 

students performed the same computations. Multiple examples from a variety of these SJMLs 

illustrate differences across lessons, particularly in the selectional dimension. By identifying the 

various ways that teachers exercise their agency, for example through questioning patterns and 
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constraining authority, we hope to contribute to the discourse about professional development 

efforts related to SJML. This analysis can support teachers to skillfully implement SJML that 

advance mathematical goals while also cultivating positive mathematics and civic dispositions.  
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In teaching a lesson that is responsive to students’ mathematical thinking, teachers urge students 

to solve problems using whichever strategy they prefer. Prior work has described the difficulties 

teachers may face in teaching responsively, yet little has sought to characterize the particularly 

high-stakes moments that may derail a responsive lesson, what we refer to as “critical 

junctures.” We examined 27 prospective elementary teachers’ reflections on the challenges they 

encountered in teaching a responsive lesson in a rehearsal, as well as video of the most common 

critical junctures. We find that critical junctures involve confusion on the part of the teacher, the 

students, or both. We also find that many of the challenges teachers described in their reflections 

did not rise to the level of a critical juncture, suggesting that these may need to be introduced 

during rehearsals if prospective teachers are to have opportunities to navigate them. 

Keywords: instructional activities and practices, preservice teacher education, teacher educators 

Imagine the following. A teacher educator (TE) is modeling a Number Talk for a group of 

prospective elementary teachers (PTs) (Humphreys & Parker, 2015). The TE asks PTs to solve 75 

– 29 however they prefer. After a few minutes, a whole-class discussion begins, in which several 

PTs share their strategies. The first PT describes a strategy the TE anticipated: 29 ➔ 25 and 4; 75 

− 25 = 50; 50 – 4 = 46. The second PT describes a compensation strategy the TE had also 

anticipated: 75 – 30 = 45; 45 + 1 = 46. A third PT then shares: 80 – 30 = 50; 50 – 5 = 45; 45 – 1 

= 44. And the TE is stuck, unsure what the PT did, why it did not work, or what to do next. 

This scenario took place in a mathematics methods course taught by the first author as he 

sought to model instruction responsive to students’ mathematical thinking (Dyer & Sherin, 2016; 

Jacobs & Empson, 2016). While difficult to convey in writing, this moment engendered a sense 

of panic. Such moments, what we call critical junctures, can derail a responsive lesson, and even 

lead a teacher to abandon efforts to teach mathematics in a way that is responsive to students’ 

thinking (Borko et al., 1992). While some work has described what makes responsive teaching 

challenging (e.g., Ghousseini, 2015; Gibbons et al., 2017), little has characterized particularly 

high-stakes moments like the one described here. Work characterizing such moments, including 

what they have in common and how they can be navigated may support TEs in preparing PTs to 

teach responsively. It may also result in more students experiencing the merits of this approach to 

instruction for their learning and dispositions (Boaler & Greeno, 2000; Carpenter et al., 1989). 

We examined the critical junctures 27 PTs described facing in teaching a responsive lesson in 

a rehearsal. We answered the following question: What is the nature of the critical junctures PTs 

encounter when teaching a lesson designed to be responsive to students’ mathematical thinking? 

Conceptual Framework 

Responsive Mathematics Teaching 

In teaching responsively, teachers urge students to solve problems using their own preferred 

strategies rather than a single predetermined strategy shown to them by the teacher (Carpenter et 
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al., 1998). Several of these strategies may then be compared and contrasted in a whole-class 

discussion devoted to surfacing and developing students’ understanding of a key mathematical 

idea (Sleep, 2012; Stein et al., 2008). Calls to teach responsively are rooted in research showing 

that such teaching is associated with the development of rich mathematical understandings and 

productive dispositions towards the subject (Boaler & Greeno, 2000; Fennema et al., 1996).  

What Makes Responsive Mathematics Teaching So Challenging? 

Despite these benefits, responsive teaching remains somewhat rare (Bishop, 2021; Cobb & 

Jackson, 2021; Stigler & Hiebert, 1997), due in large part to the many challenges of teaching in 

this way. In teaching responsively, teachers must necessarily improvise (Borko & Livingston, 

1989). Even with substantial prior planning (Stein et al., 2008), teachers are likely to encounter 

strategies they did not expect or have never seen before, which requires them to comprehend the 

strategy on-the-spot and decide how to respond to the student who used it (Jacobs et al., 2010). 

This challenge may be especially salient for prospective teachers, as they tend to be less familiar 

with the nonstandard strategies students use (Jacobs et al., 2011; Shaughnessy & Boerst, 2018). 

Even if they follow every strategy, teachers may encounter a challenge in making these strategies 

the basis of a whole-class discussion (Singer-Gabella et al., 2016) or leveraging them in an effort 

to surface the lesson’s key mathematical point (Ghousseini, 2015; Sleep, 2012). 

Such challenges are integral to responsive teaching, yet may not derail a lesson. Critical 

junctures – the focus of this study – are not only challenging, but threaten to derail a lesson. And 

while they may share much in common with the challenges described here, they may well differ. 

Methods 

Participants and Context 

Twenty-seven PTs were recruited from an elementary math-methods course. Most presented 

as white and female, but a range of gender, linguistic, and racial identities were represented. PTs 

experienced live representations of a Number Talk, Quick Images, Choral Count, and Number 

String taught by the first author, who also facilitated an unpacking of each representation with 

the PTs (Lampert et al., 2013). PTs then co-planned a similar lesson to rehearse with a partner. 

Data Collection and Analysis 

Data consisted of written reflections in which PTs described three challenging moments from 

their rehearsal, including what occurred, what made it challenging, how they responded, and how 

things proceeded. Video-recordings of the rehearsals were also gathered with an iPad on a Swivl 

robot. Analysis began with the creation of a codebook comprised of a priori codes for the types 

of challenges teachers may face in teaching a responsive mathematics lesson (Ghousseini, 2015; 

Singer-Gabella et al., 2016; Sleep, 2012). We then read a sample of PTs’ reflections to assess the 

applicability of the codes, which resulted in several emergent codes being added. However, we 

soon recognized that some codes were unrelated to responsive teaching or described challenges 

not high stakes enough to comprise a critical juncture. We thus revisited the codes, asking if each 

challenge: a) was relevant to responsive teaching and b) did or could derail a lesson. Only codes 

meeting these criteria were kept. We made these decisions by considering our own teaching 

experience and asking if a given challenge had indeed halted lessons when it occurred. Next, we 

independently coded a sample of challenges, with those that did not meet our criteria coded NA. 

We then compared and revised codes as needed. Once codes were stable, we coded additional 

samples until achieving adequate interrater agreement. The first author then coded all challenges, 

also applying a code for the lesson phase in which the challenge occurred: a) launch, b) whole-
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class discussion, or c) lesson closure. We then wrote analytic memos (Maxwell, 2013) in which 

we described patterns in the codes. To capture what critical junctures entail, we identified 

instances representative of the most common critical junctures, viewed video of them, and wrote 

memos describing what occurred therein. We present our analysis of one such instance below. 

Results 

Table 1 portrays the distribution of codes applied to PTs’ descriptions of challenges faced. 

 

Table 1: Critical Junctures 

 

Code n Lesson Phase 

Unanticipated solution strategy 4 Whole-class discussion 

Following a student’s thought process 8 Whole-class discussion 

Explaining why 1 Whole-class discussion, Closure 

Limited range of strategies 4 Whole-class discussion 

Partially correct strategy 4 Whole-class discussion 

Steering toward the mathematical point 0 Whole-class discussion, Closure 

Closing lesson by foregrounding key point 4 Closure 

Adjusting in-the-moment 11 Whole-class discussion 

NA 45  

 

Adjusting in-the-moment and following a student’s thought process were common critical 

junctures. Less common junctures were responding to unanticipated strategies, a limited range of 

strategies, and partially correct strategies, as well as closing a lesson by foregrounding its key 

point. We had a code for “steering toward the mathematical point,” but PTs did not mention this 

challenge, suggesting that it was not salient for PTs or they perhaps experienced it, but did not 

write about it as it is less of a “challenging moment” and more of a recurrent challenge woven 

throughout a lesson. We applied NA codes to 45 challenges. For example, consider the following 

challenge shared by one PT: “When students answered the questions that we had planned, it was 

hard to come up with more questions to push them to think deeper.” While relevant to responsive 

teaching, this challenge is unlikely to halt a lesson and thus fell short of being a critical juncture. 

A Critical Juncture 

We now describe an instance of one of the most common critical junctures PTs faced in their 

rehearsals: following a student’s thought process. For this instance, PTs were teaching a Number 

String and had already asked students to solve 4×7 and 8×7, which PTs chose as the answer to 

8×7 is double that to 4×7. After posing a third problem, 20×7, the following exchange occurred: 

Student 1 One-forty [140]. 

PT 1 And how did you get that? 

Student 1 I did it two different ways, actually. 

PT 1 Okay. 

Student 1 And the first one was, I actually multiplied 28 by five. 

PT 1 Perfect. Twenty-eight by five? 

Student 1 Yep. Because I knew that four times five is 20, so I just multiplied that by five. 

PT 1 Okay, so four times five equals 20 and then you just multiplied that by five? 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1841 

Student 1 I multiplied the, I knew that the first number string, the four times seven, was 28. 

PT 1 Right. 

Student 1 And I knew that four times five is 20, so I did the 28 times five, and I got 140. 

Student 2 Girl, what? 

Student 3 Oh, okay, so she did seven times four to get 28 and then times that by five, to get, 

I get, I get what she’s saying. 

PT 1 Okay. So, you did this right here? 

Student 3 So, she broke up, she broke… 

PT 1 The seven times four to get the 28. 

Student 1 Exactly. 

PT 1 And then? 

Student 1 And I saw that the new equation was 20 times seven, I knew that 20 was four 

times five, so I just multiplied the 28 by five. 

PT 1 Times four, times five? I’m stuck. 

The TE then asked Student 1 if she solved 28×5 in one step or solved 20×5 and 8×5, then added 

the products. Student 1 said that she did the latter and the TE wrote the following on the board: 

20×7= 

∧ 
(4×5)7= 

4×7=28 

28×5= 

∧ 
(20+8)5= 

The TE then turned to PT 1 to ask if things were making sense, to which PT 1 responded, “a little 

bit.” PT 1 then asked the class if anybody had a different way of solving the problem, 20×7. 

In reflecting on this moment, PT 1 shared: “Student 1 shared a strategy that not only us 

‘teachers’ were confused by, but fellow ‘students’ were confused by, too. Even after eliciting, I 

struggled to understand what she did and was unable to revoice or represent her strategy.” Thus, 

PT 1 seemed to concur that this was a critical moment related to following a student’s thinking. 

Discussion 

We contribute to a growing literature seeking to characterize the challenges teachers face in 

teaching responsively (Ghousseini, 2015; Gibbons et al., 2017; Singer-Gabella et al., 2016). 

Unlike prior work, we focus not on “challenges,” but those particularly high-stakes moments 

encountered in teaching responsively that either do, or have the potential to, bring a lesson to a 

halt, what we refer to as critical junctures. Critical junctures involve confusion on the part of the 

teacher, students, or both, which may be expressed overtly (e.g., “I’m stuck,” “Girl, what?”) or in 

more subtle ways recognized by a TE, though perhaps not by PTs. Following a student’s thought 

process (Jacobs et al., 2011; Shaughnessy & Boerst, 2018) was a common critical juncture, as 

was adjusting on-the-spot. At times, the latter was in response to something the TE suggested. 

About half of PTs’ challenging moments did not rise to the level of a critical juncture. This 

implies that such junctures may be rare in rehearsals, perhaps because students in rehearsals are 

adults who are forthcoming with their thinking, thereby limiting confusion. TEs may thus need to 

introduce critical junctures in rehearsals (Baldinger et al., 2021) if PTs are to have opportunities 
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to navigate them. The lack of critical junctures may also have been due to PTs not recognizing 

junctures when they arose or junctures being resolved by a TE before becoming critical for PTs. 

An objective of ours moving forward is to develop even greater clarity regarding what makes 

a critical juncture a critical juncture. As we describe above, the critical junctures in this study 

either derailed, or had the potential to derail, a responsive mathematics lesson. They were also 

characterized by notable confusion. However, in our analysis, we recognized that some of the 

critical junctures that fulfilled these criteria (e.g., following a student’s thought process) seemed 

more critical than others (e.g., limited range of strategies). In future work, we plan to specify 

such distinctions and may even create tiers in terms of a critical juncture’s criticality.  
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Identifying key features of productive struggle helps build a common language and shared 

understanding of this term across conducting research and enacting the National Council of 

Teachers of Mathematics’ (NCTM, 2014) teaching practice “[supporting] productive struggle in 

learning mathematics” (p. 10). However, productive struggle is a complex phenomenon. One 

way to better understand this phenomenon is by investigating how different researchers 

conceptualize productive struggle, such as by depicting it through the figures in their published 

papers. Thus I investigated the research question: What do researchers’ conceptualizations of 

productive struggle in distinct contexts reveal about key features of productive struggle? 

This exploratory study emerged from a larger ongoing study that investigates the definitions 

of productive struggle (e.g., Kamlue & Van Zoest, in press). As I analyzed studies that 

investigated productive struggle, I noticed that Warshauer’s (2015) study [W15] and Granberg’s 

(2016) study [G16] had several key differences, including interaction opportunities, mathematics 

content, and study foci. For example, in W15, students had opportunities to work individually, in 

a small group, or as a whole class, and the students received support from their teachers. In 

contrast, students in G16 worked in pairs and received automatic feedback from GeoGebra 

software. Moreover, while G16 used linear function problems for upper secondary school 

students in her study, W15 used proportional reasoning for middle school students. I also noticed 

that while G16 focused on the problem-solving process (e.g., correcting prior knowledge), W15 

focused on classroom interactions (e.g., teacher-student interactions). 

Since these two authors investigated the productive struggle construct through different 

lenses (e.g., different study foci), I analyzed these two articles, particularly focusing on the 

depictions in their figures as a proxy of their conceptualizations, to identify commonalities in 

their approaches. I analyzed the two articles using the four dimensions (tasks, student struggles, 

teacher responses, and outcomes) that were identified in W15’s productive struggle framework 

(p. 391) as a starting point to investigate how G16 aligned with or differed on those four 

dimensions. Then, I discussed the initial findings with other researchers to confirm or disconfirm 

the findings. 

The initial results indicated at least three commonalities between how W15 and G16 

conceptualized productive struggle in learning mathematics that can inform future work on 

productive struggle. First, tasks that are unfamiliar to the students promote productive struggle. 

Second, struggles that tended to be productive concerned important mathematics (e.g., error 

concerning prior knowledge (Granberg, 2016, p. 39), not error due to carelessness (Warshauer, 

2015, p. 386)). Finally, student responses to the feedback they receive emerged as important, 

regardless of the form of the feedback (e.g., teacher responses, automatic feedback from 

GeoGebra, peer responses). This poster will illustrate my analysis of these studies and elaborate 

on how my results can inform future research into productive struggle. 
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Efforts to make mathematics more equitable and inclusive for anyone who wishes to pursue 

it have been happening for the past 40+ years in K-12 grades. More recently, efforts to reform 

undergraduate mathematics -- in particular, the calculus sequence (Smith et al., 2022) -- have 

been underway as well. Mathematics education in proof-based courses, like those taught in 

graduate classes, and teacher pedagogy and practice in college mathematics are both 

understudied fields in education (Weber, 2012; Melhuish et al., 2022; Speer et al., 2010). 

Conversations regarding graduate-level mathematics instruction could open up communication 

between researchers in mathematics education and research mathematicians, which could benefit 

students enrolled in graduate courses, professors who teach these courses, and students who 

aspire to pursue mathematics at any level. 

This project aims to bridge the mathematics and education departments within a university in 

the Rocky Mountains in an ethnographic endeavor to study teaching and learning practices in a 

graduate mathematics course.  Graduate courses are prime candidates for studying learning based 

on the motivation of the students that participate in them and given the similarity between 

modern mathematics teaching methods and the goals and methods of mathematics research.  The 

type of work accomplished in graduate mathematics courses includes developing intuition about 

how ideas are connected and the validity behind statements, developed through exploring 

patterns, formulating conjecture, and seeking solutions to them (Schoenfeld, 1992).  While 

performing mathematics research, one must enact these practices and understand the material 

that forms the foundation, which is typically what graduate courses are for. So, understanding 

how mathematics is taught in graduate courses and relating it back to the work of a mathematics 

researcher can open up possibilities for creating classrooms where learning mirrors research 

more closely. 

This study inquires into how graduate mathematics content is learned and taught in university 

classrooms.  To gain understanding about the teaching and learning process, the researcher has 

conducted interviews with 15 students enrolled in graduate mathematics courses (graduate, 

undergraduate and from schools outside of math), six instructors of graduate mathematics 

courses and one postdoctoral scholar. Classroom observation data was also collected using a 

modified P2C2 protocol from the SEMINAL project (Smith et al 2022). These observations 

focused on student interactions and teacher moves.  

I perceive teaching and learning as social activities. Prior research has shown enhanced 

student understanding of mathematical concepts and desire to pursue mathematics further 

(Boaler and Greeno 2000). Looking at what strategies students are using to learn content and 

what professors do in class to motivate student learning can begin conversations about what 

strategies are currently happening as well as envision futures where more students are drawn to 

learning mathematics and have enhanced opportunities to do so at this level.  
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We report on undergraduate students’ experiences of different group formation methods used by 

eight instructors of an introduction to proof course. We offer themes of student experience of 

three group formation methods: random selection, student selection, and instructor selection. 

Keywords: instructional activities and practices, undergraduate education, reasoning and proof 

Group work implementations vary across many dimension, such as the frequency of the 

group work, the content worked on, and the instructor assistance offered (Smith et al., 2020). In 

this report, we focus on one such dimension: group formation, that is, how groups are formed. In 

particular, we are interested in undergraduate students’ experiences of different group formation 

methods and seek to learn: 

• How do undergraduate students experience different group formation methods?  

To this end, we report on the experiences of 29 undergraduates from eight sections of an 

introduction to proof course where about two-thirds of class time was dedicated to group work. 

Although group work has been extensively studied in the K–12 context, it has received less 

attention at the undergraduate level. Due to the contextual differences, research results from the 

K–12 context may not map directly onto the collegiate context.  

Literature Review 

Below, we briefly review existing literature on group formation using Hagelgans et al.’s 

(2001) four-part classification of group formation methods, which will also frame our results. 

Random Selection 

Groups can be organized by random assignment, a method argued for by Liljedahl (2021). 

He noted that groups should be randomized every hour or so to avoid students settling into active 

or passive positions, and he observed that groups needed to be visibly randomized, for otherwise 

students doubted that groups were random and returned to fixed positions. Yet, random selection 

can also lead to unfortunate groupings, such as minoritized students being isolated in their 

groups (Reinholz, 2023). For example, Hwang et al. (2022) documented two undergraduate 

students’ experiences of being linguistically isolated in randomly formed groups.  

Pseudo-Random Selection 

Hagelgans et al. (2001) used the term pseudo-random selection to refer to “[t]he instructor 

mak[ing] a few adjustments to randomly selected groups” (p. 19). They suggested that any such 

adjustments should be made before the class so that students do not see the adjustments. This 

stands in contrast to Cohen and Lotan’s (2014) suggestion to make adjustments openly. Reasons 

for making these adjustments could be to pair newly arrived students with translators or to 
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separate unproductive friends/enemies. Further, paying attention to race, gender, and individual 

needs and making adjustments accordingly can serve to counter known issues such as white men 

dominating participation (Reinholz, 2018, 2023).  

Instructor Selection 

By determining groups themselves, instructors can ensure heterogeneous groups, paying 

attention to race, gender, and individual needs (Reinholz, 2018). Instructors can also utilize 

student input. A concern raised by Cohen and Lotan (2014) is that some instructor choices, for 

example with respect to gender and race, can be easily noticeable and lead students to viewing 

other students as stereotypical representatives rather than as individuals.  

Student Selection 

Instructors can also permit students to form groups on their own. Cohen and Lotan (2014) 

raised several concerns about this method: (a) friends will typically choose to work together and 

be focused on play rather than work, (b) socially isolated students may be isolated even further 

by not being selected, and (c) some students who need extra support may be less likely to receive 

it. Reinholz (2018) added that student selection may also lead to excessively homogeneous 

groups, which can also lead to the exclusion of students.   

Methods 

This study’s data set is a subset of a larger data set that was collected to understand students’ 

experiences in university mathematics classes across multiple years. Data collection began when 

students took a group work-based introduction to proof (ITP) course at a large public university 

in the Midwestern United States and continued into subsequent proof-based courses. 

ITP Context 

The ITP course was a multi-section course, where each section was typically taught by two 

graduate students, one serving as the instructor, the other as a teaching assistant. The course was 

coordinated by a faculty member, who asked instructors to use group work with groups of three 

to four students. No further group work implementation instructions were provided to the 

instructors. Around two-thirds of all class time was dedicated to group work.  

Data Sources 

We drew on two data sources in this study: (a) classroom observations, and (b) semi-

structured interviews. The classroom observations were of eight sections, split across two 

semesters, each observed by one or two researchers. We tried to observe classes at least once a 

week and thus have a total of 116 observations, of which 83 included group work.  

In each of these eight sections, we recruited between two to five participants for a total of 29 

participants. In our recruitment, we attended to gender, race, ethnicity, and major in the hope of 

accurately representing the diverse set of experiences of the ITP student body. All but one of the 

29 participants took part in two semi-structured interviews: an early-semester interview (ESI) 

several weeks into the semester, and a late-semester interview (LSI) towards the end of the 

semesters. (The 29th participant only completed the ESI.) In the interviews, we sought to learn 

about students’ course experiences more broadly, and although group work was an important 

experiential component addressed by all participants, it was not the sole focus of the interviews. 

Data Analysis 

First, we used a bottom-up approach to classify the group work formation methods we 

witnessed instructional teams implement. This approach resulted in seven group work profiles. 

Comparing our profiles to Hagelgans et al.’s (2001) taxonomy, we were able to recognize our 
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group work profiles as subcategories of the taxonomy. For example, we identified two different 

types of random selection: one in which the groups were randomized in public (i.e., in front of 

the class) and one in which the groups were privately randomized by the instructional team. Yet, 

our refinement of Hagelgans et al.’s (2001) taxonomy is not the focus of this report: We view the 

classifying of the classroom observations as context for students’ reported experiences.  

To learn about students’ experiences, we used a series of coding methods to identify themes. 

The first author began by using two rounds of structural coding (Saldaña, 2009): first, to identify 

interview segments that addressed group work, and, second, to narrow the group work segments 

to those subsegments pertaining to students’ experiences of the group formation method. The 

group formation subsegments were then themed (Saldaña, 2009) by the first author, that is, each 

subsegment was summarized by a several sentence-long thematic statement. Last, the first two 

authors used pattern coding (Saldaña, 2009) on the thematic statements to identify central themes 

of student experience. For each theme, we wrote an extended description. We include an example 

thereof in the Results.   

Results 

In the 83 observations that included group work, we observed student selection methods 42 

times, random selection methods 26 times, instructor selection methods 12 times, and pseudo-

random selection 3 times. Accordingly, participants’ comments about their experience mainly 

focused on random selection and student selection, with a smaller number of comments about 

instructor selection. Furthermore, mirroring participants’ experience in the classroom, 

participants’ discourse on random selection was entirely about weekly random selection and their 

discourse on instructor selection was almost entirely about instructor selection with student input. 

In Table 1, we present the themes identified for the three broad types of group formation methods 

discussed by the participants. Thereafter, we offer our description of Random Selection Theme 

#2 as an example of one of our theme descriptions. 

 

Table 1: Students’ Experiences of Group Formation Methods Themes 

 

Group Formation 

Method 

Student Experience Themes 

Random 

Selection (Each 

Week) 

1. Participants’ overall experience in randomized groups was 

positive or neutral 

2. By working in multiple randomly formed groups, participants met 

many of their peers, which had several positive consequences 

3. Participants also identified downsides of random selection 

4. Participants identified advantages and disadvantages of 

randomizing groups each week 

5. New interactions and positions in new randomized groups 

Student Selection 1. Participants offered a mixed picture of group work experiences in 

student-selected groups 

2. Student selection typically led to participants working “with” their 

neighbors for the semester (subject to minor adjustments) 

3. When given the option, some participants chose to work alone 
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4. Fixed interactions and positions in student-selected groups 

Instructor 

Selection (With 

Student Input) 

1. Not all participants submitted group preferences, but those who 

did asked to work with peers they were comfortable with 

2. Being in a permanent group created by the instructor with student 

input made many, but not all, participants happy 

Example Theme Description of Random Selection Theme #2: By Working in Multiple 

Randomly Formed Groups, Participants Met Many of Their Peers, Which Had Several  

 

Positive Consequences 

Since instructor 1 randomized groups every week of the semester and instructors 6 and 7 

randomized groups for a large part of the semester, students who experienced random selection 

worked with many of their peers. The participants reported multiple positive outcomes, including 

getting to know their classmates. Even though this may seem natural or even trivial, five 

participants (O, M, G, F2, E2) shared that they had not gotten to know their peers in past 

classes—even in small classes and classes with group work. Consider G’s story:  

G:    [...] I work with my friend. [...] 

Interviewer:  Did you meet when you came to class, or did you know each other before? 

G:  Not known [sic] very well, but I was seeing him in my Calculus 2. First 

semester I remember him, and Calculus 3 I think I’ve seen him in the 

class, but I haven’t talked to him until I came to this class. And I saw him 

in class, and I remember him, I remember his face, but I never know [sic] 

him before. (ESI) 

Aside from G, multiple other participants (K, C2, F2, N2, E2) reported being able to make 

friends in the class. More broadly, M shared in her ESI that “[in] high school I felt like I 

definitely had a bond with my other math kids that I feel a similar bond to the math kids in [this 

course].” Aside from getting to know their peers and forming friendships, three participants (M, 

H2, N2) described benefiting from hearing different perspectives.  

Interviewer:  Do you feel like you’ve learned directly from anybody in class? 

M:  Yes [...] I know that [NAME 1] usually uses contradiction work and I use 

direct proofs. His way of doing it is always different. Then [NAME 2], 

like I said, just has a completely different way where he brings in other 

variables if he needs them [...] (LSI) 

Last, participants highlighted that changing groups provided them with two valuable insights: 

(a) understanding one’s speed in relation to one’s peers’ (i.e., “know[ing] how fast, or how slow 

I am compared to a part of the class” [H2, ESI]), and (b) determining whom one works with 

productively (i.e., “who I work with better or who I found to be more productive” [N2, LSI]).  

Discussion 

In this study, we explored students’ experiences of group formation methods by identifying 

11 themes across three group formation (sub)methods. The themes paint a generally positive 

picture of weekly random selection and raise concerns about student selection. From the two 

themes about instructor selection (with student input), we learned that letting students provide 

instructors with their group preferences may be useful but not a cure-all.  
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We acknowledge the importance of the ITP context for this study. Several participants 

identified key aspects of the ITP context that made their group work experience (positively) 

different from past group work: (a) the utility of group work in an ITP course, unlike calculation-

heavy courses like Calculus, (b) their peers’ motivation and seriousness about the work, and 

(c) the emphasis on understanding and not receiving a grade for group work. Particularly the first 

two appear to us a dividing line of typical early and later undergraduate students’ experience. We 

are left wondering to what extent the line can be (re)moved via active learning implementations 

of early undergraduate courses, like Calculus. 
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In this theoretical paper, we present the results of an analysis of literature on equitable 

mathematics teaching. We bound our review to research published in Educational Studies in 

Mathematics between 2010 and 2023. In our review, we considered how authors conceptualized 

equity, the recommendations they made to teachers, and how they positioned students.  
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This year’s theme asks that we envision the future of mathematics education in uncertain 

times. In order to envision the future, we first turn to the past. In particular we trace the 

recommendations made as to how classroom teachers should create more equitable mathematics 

classrooms. Given the large body of work now addressing equity in mathematics education, we 

are interested in what it is that mathematics education researchers are saying about equity and 

how the work of addressing equity is transferable to actions that teachers could take in K12 

classrooms. We conducted a literature review of Educational Studies in Mathematics (ESM). 

ESM was chosen for three reasons: (1) It is considered “top-tier” journal in mathematics 

education (Nivens & Otten, 2017; Williams & Leatham, 2017); (2) In our initial search which 

included Journal for Research in Mathematics Education and For the Learning of Mathematics, 

ESM returned the highest number of articles that met our criteria; (3) the journal aims indicate 

that it is, “open to all research approaches and research foci, including cognitive, socio-cultural, 

socio-political, and language-related aspects of mathematics education” (ESM, 2024). Given this 

aim of the journal, we expected that ESM might provide the most diverse representation of views 

on equity. The research questions that guide our review are: 

1. What is the scope of research on equitable mathematics education? 

2. How are authors framing equity and who do they position as needing equity-focused 

pedagogies? 

3. What actions has the research on equity in mathematics education suggested for 

classroom teachers? 

Phrases such as ‘equitable mathematics teaching’, ‘equity-focused pedagogies’, and ‘equity 

in mathematics education’ convey distinct nuances, our purpose is to engage with the way 

mathematics education researchers have employed their use in explorations of equity-related 

issues in mathematics education. 

Perspectives and Theoretical Framework 

There is no single set of directions or procedures that can be followed to create an equitable 

classroom environment, and we have found in our research that enacting equitable pedagogies 

takes substantial time (Castanheira et al., 2024). We begin by stating that equitable teaching is an 

ongoing, elusive, never finished endeavor. Due to the disciplinary and societal positioning of 

mathematics in K12 environments, we, and others (Martin, 2015, 2019; Stinson, 2004), argue 

that creating equitable mathematics classrooms requires working against the grain. All change in 

schools requires recognizing and then challenging the taken-for-granted (Britzman, 2003), in this 
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paper, we analyze the ways the mathematics education researchers are framing equitable practice 

and the actions necessary to create equitable mathematics classrooms. An underlying assumption 

to the calls for more equitable teaching practices is that the inequities present in schools can be 

addressed and remedied by teacher actions. Some question whether teachers can effect 

substantial and sufficient change within the current structures (Bullock, 2023; Martin et al., 

2019), we honor these perspectives; however, in this project, we are curious about the scope of 

recommendations and how they position teachers. Therefore, we traced how equity was 

conceptualized within a subset of Mathematics Education Research (MER).  and further consider 

how teachers are positioned in terms of their agency to address inequities.  

Modes of Inquiry 

In 2010, Katherine, Heid, asked “Where’s the math (in mathematics education research)?” 

Given this push to recenter and prioritize mathematics content, we were curious as to patterns we 

might find in the MER related to equity from that point until the present. Thus, we searched 

articles from 2010 to 2023 in ESM. We identified 190 total records. Of the initial search we 

excluded 98 duplicates, book reviews, and editorials. Then, the team reviewed the abstracts of 

the remaining 92 identified articles retaining any article that met the following criteria:  

1. Audience is K12 mathematics education researchers or mathematics teacher educators 

2. Equity is a central focus of the article 

3. Manuscript suggested recommendation(s) to support equitable mathematics teaching and 

learning 

After these criteria were applied, there were 22 manuscripts to review (see Figure 1). We 

reviewed each article and considered the following. What, if stated, was the author’s stated 

purpose? To whom were equitable teaching recommendations or interventions directed?; How, if 

at all, did the authors conceptualize or describe equity?; What recommendations were made for 

actions that K12 teachers should take to teach mathematics more equitably? How do the stated 

recommendations position teachers in terms of their agency within the classroom? And, how, if 

at all, did the authors acknowledge structural and systemic influences on classroom instruction? 

 

 
 

Figure 1: Literature Review Process 

 

Results 

In this report, we share our analysis of three areas, conceptualizations of equity, 

recommendations for and positioning of teachers, and positioning of students. We begin by 

considering the conceptualizations of equity. Across the articles 11 of 22 articles did not directly 

define equity, or a form of equity. In these cases, we acknowledge that all authors did not omit a 

definition, but that some focused heavily on social justice or equity adjacent ideas. Of the articles 

that did provide conceptualizations of equity, there were ten which were borrowed from other 

authors. There were two main themes. Equity as taking up space or making room. Lui (2022), 
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Hand (2012), and Ruef et al. (2020) take the view of equity as taking up space or allowing 

student ownership of classroom space or mathematics. This definition within a classroom space 

aligns with NCTM’s Access and Equity Position Statement (NCTM, 2014), which is drawn upon 

by Yilmaz et al. (2021). Matthews et al. (2021) and Xie et al. (2021) use a similar conception of 

taking up space, but with the space being within larger society. For example: “the creation of 

liberatory spaces that disrupt dehumanizing conditions and provide avenues for hope” (Matthews 

et al., 2021, p. 336). Equity as societal fairness. Valoves-Chavez (2018) and Roos (2023) 

conceptualize equity as fair chances, or fair distribution of opportunities, for advancement of the 

self or mathematics knowledge. Neither identify where, or with whom, the responsibility of 

distribution of fairness rests. Whereas Bollock (2023) and Chen (2023) explicitly and critically 

situate fairness and opportunity within societal structures and acknowledge that teachers do not 

have control nor individual responsibility to overturn systems of oppression. 

Next, we analyze the recommendations for action and positioning of teachers. We analyzed 

the way in which definitions of equity position the teacher, students, classroom space, and 

society and who has the ability to enact change. Within equity definitions, some position the 

choices of the teacher as the creator/driver of equitable space (specifically Boylan, 2016). With 

Hand (2012), Ruef et al. (2020), Yilmaz et al. (2021) picking up definitions which see the 

teacher’s choices as providing agency to students. Chen (2023) acknowledges that while teachers 

make equitable instructional actions, these actions do not solely promote necessary change to 

dismantle inequitable systems. 

Discussion 

Across suggestions for teacher practice, we found a continuum from practical and observable 

actions to overarching ways of being in mathematics classrooms. Several authors described 

planned recommendations for teacher practice that could lead to more equitable mathematics 

teaching and learning. Hand (2012) suggested ways of noticing and responding to classroom life 

that teachers could enact to create a trusting environment. Bonner (2014) recommended ways for 

teachers to develop knowledge of students and their community to build relationships and trust. 

They recommend relationship building as providing a “more practical place from which to work” 

(p. 397), thus allowing classroom change responsive to a student’s community. Conversely, 

Yilmaz et al. (2021) suggested overarching professional development on implementation and 

utilization of mechanisms to support student needs. These recommendations are non-specific but 

identify teachers as the decision-makers and enactors of change within the classroom space.  

A subset of articles included conceptualizations of equitable teaching practice that are made-

in-the-moment. These conceptualizations primarily draw on post-structural and new materialist 

theoretical frameworks. They present equitable or ethical classrooms as being made by teachers 

in ongoing and inter-acting relations between students, curriculum, and discursive elements. 

Boylan (2016) upholds this perspective in their discussion of ethical practice drawing on 

Levinas.  Liu and Takeuchi (2023), drawing on feminist new materialist theory, acknowledged 

“spatial and temporal configurations of pedagogy that enable or hinder racialized multilingual 

learners” (p. 270). And further discussed student agency as being fostered through the use of 

space, discourse, and the decentralization of the teachers. While many of these authors also 

acknowledge the impact of societal and school structures, these statements and guidance imply 

agency within the teacher to fix inequities within classroom spaces. We found few examples of 

explicit acknowledgement of systemic inequities (e.g., Bulluck, 2023; Chen, 2023; Louie, 2017) 
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Some studies focused on making changes to the classroom environment to better serve 

specific student populations. For instance, Hand (2012), Liu and Takeuchi (2023), and Bonner 

(2014) directed their research towards reconceptualizing mathematics pedagogical spaces to 

better include and serve traditionally minoritized students. These studies acknowledged the 

inherent deficiencies in the teaching and learning of mathematics and aimed to reposition 

“learners from nondominant ethnic, racial, and linguistic backgrounds” (Hand, 2012, p. 233) and 

“racially and linguistically minoritized students” (Liu & Takeuchi, 2023, p. 268) from being seen 

as learners of deficiency to being recognized for their potentials and what they can contribute.  

Across other studies, there seems to be a preference for an asset-based approach to describing 

students by focusing on the strengths, potentials, and rich cultural values they bring into the 

classroom. This is evident in the way these populations are framed as not merely recipients of 

mathematics education but as contributors who can be active in the learning process. For 

instance, Matthews et al. (2021) emphasized reimagining work highlighting the need for a shift 

towards recognizing and harnessing the culture and excellence of black learners. Also, Takeuchi 

(2017) focused on the mathematical resources students of immigrant parents access at home, 

which suggests that we should recognize the valuable and often overlooked assets these students 

come into their various mathematics classrooms with as learners. Despite the intentions of some 

research studies to position students from an asset-based lens (e.g. Hand, 2012; Liu & Takeuchi, 

2023; Matthews et al., 2021; Takeuchi, 2017), which emphasizes the strengths and potentials, 

some findings from our review suggested a contrasting perspective at the classroom level. 

Notably, Darraugh and Valoyes-Chávez (2019) drew attention to how their data showed that 

“students in general were viewed as being a problem." and that "teachers spoke more about the 

students than any other factor as being one of these challenges" (p. 431). 

Conclusion 

Given the history of reform practices, we analyzed the recommendations by the level of 

control they attributed to the teacher in enacting the recommendations and whether they 

accounted for any external factors. We identified two continuums of conceptualizations of the 

teacher in relation to equitable practice. The first continuum moves from conceptions of the 

teachers as an independent actor able to perform new practices to create a more equitable 

learning environment to a conception of teacher as in ongoing relation to the students, 

discourses, material environment with some level of agency. The second continuum moves from 

articles that largely ignored systemic and structural conditions to those that explicitly 

acknowledged and named systemic and structural influences and interactions. By considering the 

ways that MER conceptualizes equity, who it is for, and how it might be enacted, we are left to 

wrestle with the ambiguities within this body of research. Leaning too far toward a conception 

that positions teachers as in complete control creates the possibility for teachers to serve as 

scapegoats. Likewise, giving too much power to systemic influences can create apathy. As 

mathematics teacher educators envisioning a different future for students and teachers in K12 

environments, questioning the taken-for-granted has propelled us to consider the multiple levels 

of work, and we reiterate for ourselves and the field that “equity” is a target that is always on the 

move in relation to our communities, commitments, and expressed and unexpressed values. 
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In this exploratory study, we analyzed one mathematics teacher’s annotations of a transcript of 

their teaching. The teacher was prompted to annotate the transcript for actions that contributed 

to or hindered their enactment of a complex teaching practice. We analyzed these noticings to 

explore what we could learn about the teacher’s understanding of the practice, and then what 

these understandings revealed about our own conceptualization and communication of the 

practice. Our approach to analyzing teacher noticing illustrates how the study of noticing can 

contribute to advancing researchers’ understanding not just of teachers’ noticing but also of the 

phenomena they are noticing. 

Keywords: Classroom Discourse, Instructional Activities and Practices, Research Methods, 

Teacher Noticing 

Research on teacher noticing has typically centered around how to best support teachers in 

learning to notice salient features of the classroom. The majority of this work has focused on 

understanding the effectiveness of specific noticing interventions (Jacobs et al., 2010; McDuffie 

et al., 2014; Santagata et al., 2021; Schack et al., 2013; Stockero et al., 2017), but studies have 

also focused on comparing different methods of documenting noticing (e.g., Lee, 2021) and 

understanding how noticing develops (e.g., Bragelman et al., 2021; Simpson & Haltiwanger, 

2017). Other studies have focused on understanding how teacher noticing interacts with factors 

such as teaching experience (Yang et al., 2021), mathematical knowledge, and affect (Jong et al., 

2021), which allows the field to consider how such factors might need to be accounted for when 

supporting teachers in learning to notice. Still other research has examined the long-term 

outcomes of noticing interventions by focusing on the extent to which noticing skills developed 

in a teacher education intervention transfer to classroom teaching practice (Sherin & van Es, 

2009; Stockero, 2021). In all of this work, the intent was to examine teachers’ noticing in order 

to understand how to better support that noticing. 

We encourage the field to consider, however, how the study of teacher noticing can 

contribute to advancing researchers’ understanding not just of teachers’ noticing itself but also of 

the phenomena they are noticing. One example of this approach is Louie et al.’s (2021) work 

focused on understanding anti-deficit noticing. In their work, they used a noticing interview to 

analyze how one teacher’s noticing aligned with and differed from deficit and equitable frames 

from the literature. The outcome of their analysis was a conceptualization of anti-deficit noticing 

and what it might look like in practice. We contend that the study of teacher noticing could also 

help us understand other aspects of teaching. In this exploratory study, we examine how studying 

a teacher’s noticing around his enactment of a complex teaching practice can help us better 

understand our own conceptualization and communication of that practice. 

Theoretical Framework 

Broadly speaking, our work aligns with the cognitive-psychological perspective on noticing 
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in that we “recogni[ze] that human perception is limited and that teachers must learn to pay 

attention to certain instructional aspects while disregarding other aspects” (König et al., 2022, p. 

3). In particular, our research has focused on supporting teachers to notice student contributions 

that have high potential to advance students’ learning of mathematics if taken up during a lesson. 

We have also focused on understanding how teachers might subsequently keep students focused 

on jointly making sense of those contributions during a whole-class discussion by noticing and 

taking up ideas that support such sense-making and putting aside those that do not. 

     Mathematical Opportunities in Student Thinking (MOSTs) (Leatham et al., 2015) are 

high-leverage student contributions that are important for teachers to notice because they create 

an opportunity to engage the class in making sense of the significant mathematics embedded in 

the instance. Building on a MOST (hereafter referred to as building) is the teaching practice that 

takes advantage of the opportunity a MOST provides by engaging the whole class in a joint 

sense-making discussion focused on understanding the mathematics at the heart of a MOST. 

Building is “comprised of four elements: (1) Establish the student mathematics of the MOST so 

that the object to be discussed is clear; (2) Grapple Toss that object in a way that positions the 

class to make sense of it; (3) Conduct a whole-class discussion that supports the students in 

making sense of the student mathematics of the MOST; and (4) Make Explicit the important 

mathematical idea from the discussion” (Leatham et al., 2021, p. 1393). 

In this exploratory study, rather than considering how to support teacher noticing, we 

consider what we as researchers can learn from a teacher’s noticing as they reflect on their 

enactment of building. That is, we theorized that examining the instances a teacher identified as 

important in their enactment of building and how they discussed those instances in relation to a 

conceptualization of building that had been shared with them could advance our own 

understanding—both about the practice of building and how we communicate that practice to 

teachers. In a sense, we extend van Es and Sherin’s (2002) notion that noticing entails “making 

connections between the specific of classroom interactions and the broader principles of teaching 

and learning they represent” (p. 573) to consider how researchers can use the connections a 

teacher makes in their noticing as a venue for advancing their own understanding. 

Methods 

As part of a larger research project, twelve teacher-researchers (TRs) worked with the authors 

as they conceptualized the teaching practice of building by enacting the practice in their 

classrooms and then allowing the authors to analyze those enactments. Mr. Thompson, the 

subject of this case study, was one of the twelve TRs. At the time of the study, he had been 

teaching junior high school mathematics for about 20 years, had been recognized for his 

excellent teaching, and worked part-time as an instructional coach for his school district. 

Following the final two enactments of the mini-tasks, Mr. Thompson was provided a transcript of 

each enactment and asked to annotate instances where his actions either contributed to or got in 

the way of enacting an element of building. 

Mr. Thompson provided 24 annotations across two different enactments of building. Given 

the prompts for the annotations, we viewed them as instances of noticing with respect to the 

practice of building and used them as the unit of analysis to answer the research question: How 

can teachers’ noticing help researchers refine both their theorization of a teaching practice and 

how the practice is communicated to teachers? Looking at each annotation in the context of what 

happened during the enactment, the researchers determined whether what Mr. Thompson noticed 
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provided evidence of understanding, partial understanding, or lack of understanding of building. 

After deciding what a given “noticing” told us about Mr. Thompson’s level of understanding, we 

identified what contributed to this level of understanding. 

Results 

There were two primary categories of what we as researchers gained from our analysis of Mr. 

Thompson’s noticings: (a) an expanded conceptualization of building, and (b) an expanded 

understanding of how to develop teachers’ understanding of building. We use examples of Mr. 

Thompson’s noticings to illustrate each of these categories. 

Expanded Conceptualization of Building 

At times our analysis of Mr. Thompson’s noticings with respect to building prompted us to 

consider aspects of the practice that we had never considered. At other times our analysis helped 

us to better understand aspects of the practice of which we were aware, but about which we still 

had uncertainties. In such situations, the TRs were using their classroom expertise to try to enact 

a broad vision of the practice and their attempts allowed us to further conceptualize what it 

would take to enact moves that would align with our own vision of the practice. For example, at 

one point during Make Explicit Mr. Thompson asked the class, “Now we’ve talked about this 

year, what we call the value that you plug in for x, it has a name. Do you remember, what’s it 

called? What do we—what do we call the possible things you can plug in for x?” He attached the 

following comment to his transcript: “Not contributing very well (Make Global): As soon as I 

attempted to have students consider the understanding about this specific problem that has now 

been shared things went awry.” We still had many questions at this point about the kinds of 

moves a teacher might make when trying to scaffold the class toward articulating the 

mathematical point that could be gleaned from their prior sense making about the MOST. Mr. 

Thompson’s attempt to provide such scaffolding, the difficulties that ensued, and his own 

noticing of those difficulties, allowed us to better understand the nature of the teachers’ 

scaffolding at this point in building. In particular, we realized the complexity of determining the 

extent to which students themselves might be positioned to articulate the mathematics and the 

extent to which the teacher might need to do some of that work. 

Expanded Understanding of How to Develop Teachers’ Understanding of Building 

At times our analysis of Mr. Thompson’s noticings with respect to building confirmed our 

conceptualization of the practice. In such instances we often gained insights into our own efforts 

to develop Mr. Thompson and his fellow TRs’ understanding of building in preparation for their 

enactments. There were times when we had been explicit in our work with the TRs about a given 

aspect of building and yet Mr. Thompson’s noticing seemed to provide evidence of incomplete 

understanding of that aspect. There were other times when his incomplete understanding was 

likely due to a critical oversight on our part. That is, while the aspect of building was mutually 

understood by the research team, it had remained implicit in our work with the TRs. Finally, 

several of Mr. Thompson’s noticings with respect to building revealed how some important 

routines from his typical task-based teaching hindered his ability to enact our conceptualization 

of the practice. For example, at the beginning of the Conduct element of one enactment, Mr. 

Thompson elicited a contribution that was clearly related to making sense of the established 

MOST. The protocol in these situations was to invite the class to consider how this contribution 

might help them to further make sense of the MOST. Instead, Mr. Thompson set aside the 
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contribution and collected contributions from five additional students. He attached the following 

comment to the section of the transcript where he elicited this collection of contributions:  

I'm not sure that this is a real nice fit with the framework for MOSTs. The closest fit might 

be Conduct? Anyway, I do think it is helpful for there to be a bit of sharing like this to 

occur….a chance for some initial thoughts and rough draft thinking to get out there. 

We see here an awareness that this collecting rather than connecting a contribution to the MOST 

at the beginning of Conduct likely did not fit the conceptualization of building Mr. Thompson 

was enacting. Nevertheless, he felt it was important to deviate in this way. We realized in 

analyzing this noticing (and others that were similar) that we needed to pay more attention to 

teachers’ typical teaching routines, considering which aspects of those routines might be valuable 

to activate during building and which might need to be “deactivated” for the sake of building. In 

this case, Mr. Thompson seems to have assimilated building into his prior practice rather than 

accommodating that practice to create new space for the building practice. 

Discussion and Conclusion 

In this exploratory study, we focused on analyzing the noticings from a single teacher. Data 

from the larger project will allow us to analyze noticings from a dozen teachers. We suspect that 

analysis of the larger data set will provide additional ways teacher noticings can be used to 

develop researchers’ conceptualization and communication of a teaching practice. In addition, we 

might learn which of these ways are more common or more useful for these purposes. 

The noticing literature has tended to focus on whether teachers are noticing what we, as 

researchers or teacher educators, want teachers to notice. And for good reason. It is important 

that teachers develop the skills for noticing certain things over others (e.g., the substance of 

students’ mathematical ideas over students abilities to articulate those ideas). The goal of such 

research is to better understand how to help teachers develop those noticing skills. The results of 

this exploratory study demonstrate how teachers’ noticings can provide insight into their 

understanding of the phenomenon they are noticing which, in turn, can provide insights into the 

phenomenon itself. Mr. Thompson is an experienced teacher with substantial noticing skills. As 

researchers we were able to leverage that noticing to help further our understanding of building. 

Although it is certainly important that the field of mathematics teacher education continue to 

seek ways to help teachers improve their noticing skills, it also seems important, particularly 

when working with inservice teachers, to position them as important resources from whom we as 

researchers and teacher educators can learn (Freeburn et al., 2024). Mr. Thompson is a skilled 

and accomplished teacher who engaged enthusiastically in our research and demonstrated a 

desire to learn from the experience as well as help us to learn. In fact, he expressed on numerous 

occasions that his work with us was one of the best professional development experiences he had 

had. Thus, when his noticings revealed a mismatch in understandings of the practice of building 

it in no way reflected poorly on him as a teacher or learner. When his noticings revealed a 

difference, we were able to hone in on that difference and consider whether and to what extent 

the difference might matter. His noticings also provided ample opportunities for us to reconsider 

how we communicate the building practice to others. Perhaps there is a lesson in this work for all 

of us as mathematics teacher educators and mathematics education researchers: Let us use the 

expertise of the students and teachers with whom we work to shine the light on ways we can 

improve, to evaluate our own work more so than theirs. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1863 

Acknowledgments 

This research report is based on work supported by the U.S. National Science Foundation 

(NSF) under Grant Nos. DRL-1720410, DRL-1720566, and DRL-1720613. Any opinions, 

findings, conclusions, or recommendations expressed in this material are those of the authors and 

do not necessarily reflect the views of the NSF. We thank the teacher-researchers for opening up 

their practice and our colleague Laura Van Zoest for her enduring contributions to this work. 

References 
Bragelman, J., Amador, J. M. & Superfine, A. C. (2021). Micro-analysis of noticing: A lens on prospective teachers’ 

trajectories of learning to notice. ZDM Mathematics Education 53, 215–230. https://doi.org/10.1007/s11858-

021-01230-9  

Freeburn, B., Stockero, S. L., Postma, J. L., & Leatham, K. R. (2024). Elevating inservice secondary mathematics 

teachers' expertise in rehearsals [Manuscript submitted for publication]. 

Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. 

Journal for Research in Mathematics Education, 41(2), 169–202. 

https://doi.org/10.5951/jresematheduc.41.2.0169  

Jong, C., Schack, E. O., Fisher, M. H., Thomas, J., & Dueber, D. (2021) What role does professional noticing play? 

Examining connections with affect and mathematical knowledge for teaching among preservice teachers. ZDM 

Mathematics Education, 53, 151–164. https://doi.org/10.1007/s11858-020-01210-5 

König, J., Santagata, R., Scheiner, T., Adleff, A., Yang, X., & Kaiser, G. (2022). Teacher noticing: A systematic 

literature review of conceptualizations, research designs, and findings on learning to notice. Educational 

Research Review, 36. https://doi.org/10.1016/j.edurev.2022.100453  

Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualizing mathematically 

significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics 

Education, 46(1), 88–124. https://doi.org/10.5951/jresematheduc.46.1.0088 

Leatham, K. R., Van Zoest, L. R., Freeburn, B., Peterson, B. E., & Stockero, S. L. (2021). Establishing student 

mathematical thinking as an object of class discussion. In Olanoff, D., Johnson, K., & Spitzer, S. (Eds.) 

Proceedings of the 43rd meeting of the North American Chapter of the International Group for the Psychology 

of Mathematics Education (pp. 1392–1400). PME-NA. 

Lee, M. Y. (2021). Using a technology tool to help pre-service teachers notice students’ reasoning and errors on a 

mathematics problem. ZDM Mathematics Education, 53, 135–149. https://doi.org/10.1007/s11858-020-01189-

z.  

Louie, N., Adiredja, A.P. & Jessup, N. (2021). Teacher noticing from a sociopolitical perspective: The FAIR 

framework for anti-deficit noticing. ZDM Mathematics Education, 53, 95–107. https://doi.org/10.1007/s11858-

021-01229-2  

McDuffie, A., Foote, M. Q., Bolson, C., Turner, E. E., Aguirre, J. M., Bartell, T. G., et al. (2014). Using video 

analysis to support prospective K-8 teachers’ noticing of students’ multiple mathematical knowledge bases. 

Journal of Mathematics Teacher Education, 17, 245–270. https://doi.org/10.1007/s1085 7-013-9257-0  

Santagata, R., König, J., Scheiner, T., Nguyen, H., Adleff, A., Yang, X., & Kaiser, G. (2021).  Mathematics teacher 

learning to notice: A systematic review of studies of video-based programs. ZDM Mathematics Education, 

53(1), 119–134. https://doi.org/10.1007/s11858-020-01216-z   

Schack, E. O., Fisher, M. H., Thomas, J. N., Eisenhardt, S., Tassell, J., & Yoder, M. (2013). Prospective elementary 

school teachers' professional noticing of children's early numeracy. Journal of Mathematics Teacher Education, 

16, 379–397. http://dx.doi.org/10.1007/s10857-013-9240-9. 

Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers’ professional vision. Journal 

of Teacher Education, 60, 20–37. https://doi.org/10.1177/0022487108328155  

Simpson, A., & Haltiwanger, L. (2017). “This is the first time I’ve done this”: Exploring secondary prospective 

mathematics teachers’ noticing of students’ mathematical thinking. Journal of Mathematics Teacher Education, 

20, 335–355. https://doi.org/10.1007/s10857-016-9352-0  

Stockero, S. L. (2021). Transferability of teacher noticing. ZDM Mathematics Education, 53, 73–84. 

https://doi.org/10.1007/s11858-020-01198-y  

https://doi.org/10.1007/s11858-021-01230-9
https://doi.org/10.1007/s11858-021-01230-9
https://doi.org/10.5951/jresematheduc.41.2.0169
https://doi.org/10.1016/j.edurev.2022.100453
https://doi.org/10.5951/jresematheduc.46.1.0088
https://doi.org/10.1007/s11858-020-01189-z
https://doi.org/10.1007/s11858-020-01189-z
https://doi.org/10.1007/s11858-021-01229-2
https://doi.org/10.1007/s11858-021-01229-2
https://doi.org/10.1007/s11858-020-01216-z
https://doi.org/10.1177/0022487108328155
https://doi.org/10.1007/s10857-016-9352-0
https://doi.org/10.1007/s11858-020-01198-y


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1864 

Stockero, S. L., Rupnow, R. L., & Pascoe, A. E. (2017). Learning to notice important student mathematical thinking 

in complex classroom interactions. Teaching and Teacher Education, 63, 384–395. 

https://doi.org/10.1016/j.tate.2017.01.006 

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom 

interactions. Journal of Technology and Teacher Education, 10(4), 571–596. 

Yang, X., König, J. & Kaiser, G. (2021). Growth of professional noticing of mathematics teachers: A comparative 

study of Chinese teachers noticing with different teaching experiences. ZDM Mathematics Education 53, 29–42. 

https://doi.org/10.1007/s11858-020-01217-y 

  

https://doi.org/10.1007/s11858-020-01217-y


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1865 

UNDERSTANDING ONE MIDDLE SCHOOL’S MATHEMATICS INTERVENTION 

CONTEXT 

Erica N. Mason 

University of Illinois Urbana-Champaign 

enmason@illinois.edu 

Camille Griffin 

University of Illinois Urbana-Champaign 

cgriffi5@illinois.edu 

Keywords: Curriculum, Middle School Education, Teacher Beliefs 

Mathematics intervention is an often under-investigated aspect of mathematics instruction. 

Mathematics intervention is generally understood to be supplemental instruction for students 

who require “increasingly intensive instruction matched to [students’] needs” (RTI Action 

Network, n.d.) and is often conceptualized through the lens of special education (e.g., National 

Center on Intensive Intervention, n.d.). When general education teachers are responsible for 

mathematics intervention instruction, they may especially lack guidance about how to support a 

range of learners in supplemental instructional contexts (e.g., Perry et al., 2015). The purpose of 

this study was to understand how general education teachers at one middle school thought about 

and enacted mathematics intervention curriculum and instruction. 

Context, Participations, and Data Collection 

Unity Middle School (a pseudonym) is in a small Midwestern city. In 2021–2022, the state 

designated Unity as an “on watch” school since it was in the lowest-performing 5% of all schools 

in the state. The school has almost 900 students, the majority of whom are Black or Hispanic 

(59.9%); 19% of Unity students receive special education services. 

This research team has been co-designing research activities with Unity since the 2021–2022 

school year. In spring 2022, the mathematics instructional coach and the two authors of this 

paper, co-designed this investigation. Driven by the instructional coach’s interest in reimagining 

the intervention space, we decided to first collect data about the current landscape of intervention 

instruction—what was happening in classrooms and how teachers talked about mathematics 

intervention itself and in relation to core instruction. 

There were six voluntary participants—four mathematics teachers and two science teachers; 

five participants taught one section of mathematics intervention and one participant was the 

school’s mathematics interventionist. Using a co-designed observation tool, each team member 

conducted three, 50-min classroom observations in each teacher’s classroom. Each teacher also 

participated in one, 60-min semi-structured audio-recorded interview. The instructional coach 

collected one-third of the classroom observation data; the first author conducted all interviews. 

Preliminary Findings and Possible Implications 

As part of our research team, the instructional coach has been coding and analyzing data with 

the paper authors. Preliminary findings reveal that the majority of teachers in this study viewed 

remediating basic skills as the purpose of intervention and believed that core instruction and 

intervention should be more different than similar. These articulated beliefs were consistent with 

observational data, which revealed intervention curriculum and instruction aimed at below-

grade-level content and focused on “procedures without connections” (Smith & Stein, 1998, p. 

346). Our co-analysis will conclude in the summer of 2024. Findings from this project can 

inform how schools and districts conceptualize mathematics intervention and at what efforts they 

might aim for resources. 
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Background 

The effectiveness of professional learning opportunities depends on their content and how the 

content is facilitated, what teachers’ study, and how they study it (Van Es et al., 2014; Kazemi et 

al., 2008; Kennedy, 2016). In my study, I focus on the way in which professional learning 

opportunities are facilitated, on how teachers are engaged in studying teaching.  

Instructional circles are somewhat informal gatherings of small groups of teachers to discuss 

instructional practices (Melville, 2022). These circles seem oriented to analyzing specific 

practices and sharing advice rather than collectively designing a lesson or learning about a 

specific instructional method. Some local teachers and educators voluntarily attend instructional 

circle sessions that usually meet once every few months. Japanese teachers have described them 

as important professional learning activities that serve an essential function quite different from 

lesson study. This session will look at how instructional circles support the development of 

teachers’ ability to critically discuss improvements to instructional practices enabled through the 

deprivitization of their practice.  

U.S. teachers often have a difficult time deprivitizing their practice among other 

professionals (de Jong et al., 2019). Often when teachers do deprivitize their practice, three main 

types of interactions occur: giving praise, giving advice, and (uncommonly) engaging as 

challenging colleagues (Males, 2009). Engaging as challenging colleagues is less about 

critiquing the professionalism of the teacher but working together to improve the instructional 

practices found within a lesson. Thus, taking the focus from the teacher and put onto teaching 

(Hiebert & Grouws, 2007). This session will present how instructional circles are able to help 

teachers deprivitize their practice and engage as challenging colleagues to improve their 

instructional approaches to teaching.  

Methods and Results 

An ethnographic approach was taken to learn about how instructional circles engage U.S. 

teachers in deprivitizing their practice in a community of learners. We focused specifically on 

what teachers brought to the instructional circle, what they taught, and then how they felt the 

process beneficial for their learning. We did participant observations, interviews, artifact 

collection, and journaling. 

So far, we have found that instructional circles addressed the need for a safe place for 

teachers to share their practice with others. In other words, teachers felt comfortable 

deprivitizing their practice to allow for high-quality discussions about the improvement of 

instructional practices as identified by the teachers themselves. Teachers were able to develop a 

community of learners through their focus on improving a specific aspect of the lesson plan. For 

example, one teacher was trying to increase student engagement and asked the other teachers for 
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their input. Teachers offered advice, but the focus was more detailed through the lens of trying to 

accomplish the learning goals. 
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Epistemological obstacles (EOs) are cognitive challenges students experience that persist 

despite research-based instruction (Brousseau, 2002; Sierpińska, 1987). Informed by prior 

research, The Proofs Project (NSF DUE-2141626) designed and implemented instructional 

materials that elicit and address these obstacles in transition to proof (TTP) courses through 

cycles of small group exploration and whole-class discussion. We investigate the discursive 

routines of one teacher as she elicited and addressed EOs around transforming conditional 

statements and we discuss implications for teaching with this theory. 
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Teaching in ways that elicit meaningful participation in classroom mathematical discourse 

has become a primary objective of modern mathematics education (NCTM, 2014; Speer & 

Wagner, 2009), but developing these practices is known to be challenging for teachers 

(Andrews-Larson et al. 2019, Bishop et al., 2020, Henderson et al., 2011). In K-12 education, 

researchers who have investigated these practices in whole-class discussions have found that 

features like responsiveness and intellectual demand can support students’ learning (Bishop, 

2021) as well as their mathematical attitudes and identities (Boaler & Greeno, 2000; Wagner & 

Herbel-Eisenmann, 2008). At the undergraduate level, Mesa & Cheng (2010) illuminated some 

of the ways instructors’ discursive moves shaped students’ agency in calculus and introductory 

courses like college algebra. Building on this work, we wondered how teachers in transition-to-

proof (TTP) courses might use student-thinking to drive mathematical discussions, given the 

“didactical gap” between the mathematics of K-12 education and proof-based mathematics 

(Balachef, 2010).  

To bridge this gap, students must take up the rigorous logical reasoning and communication 

practices of mathematicians in a context with distinct epistemic and heuristic commitments from 

computation-based courses, like formality and abstraction (Melhuish et al., 2022; Lew & Mejía-

Ramos, 2019; Sfard, 2014). They must also adapt to higher demands for conceptual 

understanding and autonomous problem-solving as compared to prior math courses (Selden, 

2012; Tallman et al., 2021). In addition to these difficult shifts in mathematical practice, there 

are unique cognitive challenges students encounter in TTP (Dubinsky, 1990; Harel, 2002; 

Stylianides et al., 2007). Working with logical implications (LIs), or conditional statements, is 

one such challenge (Arnold et al., in press, Antonides et al., in press). Students may erroneously 

interpret conditional statements as biconditional (Girotto, 1991) and conflate implications with 

their converse (Duran-Guerrier, 2003) or inverse (Knuth, 2002). Further, students struggle to 

utilize the equivalence of a LI with its contrapositive (Dawkins & Hub, 2017) and its disjunction 

(Hawthorne & Rasmussen, 2015). Brousseau and Sierpińska (1987) conceptualized these 

necessary challenges as epistemological obstacles (EOs): “cognitive challenges that persist even 

in response to research-based instruction,” perhaps due to teachers circumventing them, rather 

than addressing them (Kokushkin et al., 2023, p. 1). 

Considering the challenges students face in TTP from both a discursive and cognitive 
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perspective, it would be edifying to understand how teachers might elicit students’ thinking 

around these EOs and address them during whole-class discussion. We investigate one teacher’s 

routines in the context of eliciting and addressing EOs around logical implication in an 

undergraduate TTP class. 

Theory and Methods 

The theory of epistemological obstacles emphasizes the importance of eliciting and exploring 

students’ thinking through questioning, probing, and challenging tactics aimed to bridge students’ 

informal ideas with formal reasoning, or, as Bishop (2021) framed it, teaching in ways that are 

responsive to students’ thinking and require intellectual work from both teacher and students. 

These discursive routines enacted in classroom interactions are related to Munson’s (2019) 

conferring interactions in which the teacher elicits and probes student thinking and then responds 

to what has been uncovered (Munson, 2019, p. 2). We investigate the ways these discursive 

modes arise in a TTP class with attention to specific EOs entailed in the lesson, especially 

because the research-based instruction we study aims to “elicit and address students’ experience 

of epistemological obstacles head-on” (Arnold & Norton, 2022). Reasoning about hidden 

quantification (Qh) is one EO from prior investigations particularly relevant to this study (Norton 

et al., 2023). 

The data in this study were collected as part of a larger project focused on addressing 

cognitive and instructional challenges in TTP. The data consist of one 50-minute class video of a 

TTP course taught at a large, land-grant university in the eastern United States by the third 

author, Dr. A. To begin data analysis, the first author created an initial transcript from the class 

video using Otter.ai, then edited the transcript by hand for accuracy. Episodes of whole-class 

mathematical discussion were identified for analysis; discussions that were not mathematical in 

nature (i.e., about assignment due dates) were not analyzed. Within each episode, several related 

verbal exchanges between teacher and students occurred. Here, an exchange is comprised of a 

corresponding initiation, response, and follow-up. We coded each of the teacher’s follow-ups for 

intellectual work and responsiveness, using the following coding scheme from Bishop (2021). 

Intellectual work determined whether the teacher’s move requested information from students 

(demand) or provided information (give). For both types, low-level and high-level moves are 

distinguished. Several additions to categories were developed to accommodate the mathematical 

activity in TTP classes. For instance, Bishop’s (2021) framework did not account for requests to 

evaluate logical statements at a particular value in the universal set because the subjects of her 

study were not TTP students. However, students at this point in the course could be expected to 

make this calculation routinely, so responses of this type were coded as Low demand. Similarly, 

connecting an idea to formal notation or logical structures entails high intellectual work for 

students, so responses of this type were coded as either High give or High demand depending on 

the response type. 

Bishop’s (2021) responsiveness moved beyond conceptualizations of responsiveness as 

binary—i.e., teacher interactions as either responsive or not (see Munson, 2019)—to investigate 

responsiveness as a continuum describing “the extent to which student ideas are elicited, 

incorporated, and built on” in class conversation (p. 12), like Jacobs and Empson (2016). 

Responsiveness has three levels: Low or No responsiveness, Medium, and High, depending on 

whose idea became the focus of the response. Low or No responsiveness follow-ups include 

evaluating, revoicing, acknowledging, or making a related statement or question to a student’s 
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idea. Medium-level follow-ups involve corrective moves, co-opting student responses to make a 

point, or incorporating basic information provided by students to supplement the teacher’s 

response. The last level is subdivided into levels High I and High II depending on whose 

reasoning was displayed in the follow-up: the teacher’s or the students’, respectively (Bishop, 

2021, p. 478-79). 

Because our curiosity lies at the nexus of Dr. A’s eliciting and addressing moves around EOs 

and their function as responsive or intellectually demanding speech, we attended to shifts in 

responsiveness and intellectual demand within Dr. A’s follow-ups. We expected Dr. A’s responses 

to shift while eliciting and addressing an EO because eliciting students’ thinking around EOs 

necessarily makes demands of students whereas addressing EOs requires both responsiveness to 

students’ thinking and intellectual work from the teacher.  

To identify these shifts, we collected the codes for all exchanges in class discussion and 

looked for when one or more codes changed across exchanges. For instance, we noted shifts 

from Medium responsiveness to High I or from High demand to Low demand. We also 

identified, and member-checked with Dr. A, the EOs underlying the mathematical content 

discussed within each segment to note their possible connections to these shifts. A shift across 

exchanges became a routine if a) it was repeatedly enacted across the lesson and b) a feature of 

an EO (e.g., quantification, or Qh) was being discussed. Note that we do not view these shifts as 

entailing a change in the quality of a response; a decrease in responsiveness or intellectual work 

does not necessarily imply a lowered quality of teaching. In contrast, a shift from High II to High 

I responsiveness meant the follow-up was (neutrally) less responsive because the teacher’s 

thinking, rather than the students’, drove the response—an essential move for refining and 

formalizing students’ thinking. 

Results 

We present a discursive routine found in Dr. A’s class that is characterized by tandem shifts in 

the intellectual give and demand of Dr. A’s responses to students: as intellectual give increases, 

intellectual demand decreases. We refer to this routine as Conferring to Elicit and Address, 

adopting the terminology of Munson, (2019). This routine arises in 12 out of the 25 exchange 

pairs we analyzed. The remaining exchange pairs either did not exhibit shifts that were repeated 

multiple times (failing our first criterion) or did not address an EO (failing our second criterion). 

We present a vignette displaying this routine and discuss Dr. A’s moves below. 

Vignette: Truth sets are subsets 

Prior to this vignette, students had been working together in small groups to create an Euler 

diagram depicting the true statement P implies Q, denoted P → Q. 

Dr. A: Alright, let's come back together. What should the relationship between the truth sets 

P and Q be, in the event that the implication P implies Q is actually true? [calls on Alex] 

Yeah? 

Alex: P should be the smallest circle within a larger circle, Q. 

Dr. A: P should be inside - the circle for P should be inside the circle for Q, what do you all 

think? What's another way that we could describe that relationship? [calls on Joe] Yeah? 

Joe: P is a subset of Q. 
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Dr. A: Yeah, P is a subset of Q, so we want to make sure that we're seeing that in our picture. 

[drawing the Euler diagram] So this one should be Q and then the one on the inside 

should be P. And we said that means that P should be a subset of Q. 

There was a notable shift in Dr. A’s intellectual work across her responses to Alex and Joe. 

After Alex described her group’s diagram, Dr. A revoiced the contribution and asked, “what do 

you all think? What’s another way that we could describe that relationship?” This was a High 

intellectual demand response, requesting that the class make sense of Alex’s statement and then 

probing to elicit a more formal version of it. This was also High II responsiveness because it 

placed Alex’s contribution at the center of discussion.  

When Joe articulated the correct subset relationship, Dr. A’s response shifted from High to 

No demand, instead giving information to students in the form of a summary of the discussion. 

The shift in intellectual work occurred precisely when a student had attended to the subset 

relationship between the truth set of P and the truth set of Q. This centered on the Qh EO because 

it attended to the sets of values for which each statement is true and the relations between them. 

Rather than pressing Joe for further explanation or requesting other students to make sense of his 

thinking, Dr. A connected the two contributions herself to summarize the main ideas and drive 

the discussion toward the next topic. This move also contained a shift in responsiveness, from 

High II to Medium because Dr. A was revoicing Joe and Alex’s statements. 

Discussion and Conclusion 

In analyzing Dr. A’s implementation of curriculum materials designed to elicit and address 

EOs in her TTP class, we characterized the ways instructors might elicit and support high quality 

student thinking in classroom discourse while maintaining mathematical rigor. By attending to 

Dr. A’s intellectual work and responsiveness, we identified a clear discursive pattern, called 

Conferring to Elicit and Address, in which Dr. A used high-demand responses to elicit students' 

thinking about a particular EO and then address it using high-give moves. This routine aligns 

with the theory of EOs that informed the larger project as it ostensibly elicited students’ initial 

understandings and ways of reasoning about the task, creating the need to address the EOs they 

experienced. In turn, Dr. A’s intellectually giving moves appeared to refine students’ ideas into 

more formal mathematical notation and reasoning. By hinging on key aspects of students’ 

experience with EOs, this routine emphasizes the production of intellectual need (Harel, 2013) in 

discourse, so that the teacher’s giving moves organically impart mathematical disciplinary 

practices as useful tools that empower students to formalize their own ideas.   

EOs are not limited to the context of TTP; practitioners are aware of a wealth of cognitive 

challenges in mathematics that persist despite best practices. To orchestrate mathematically rich 

class discussions on all grade levels, teachers can design in advance their Conferring to Elicit and 

Address routines by drawing explicit connections between features of the task, possible student 

contributions, and the EO(s) they’ve identified in their lesson. This supports the effective 

enactment of the intellectually giving and demanding responses necessary to address EOs when 

Conferring to Elicit and Address. Finally, because responsiveness and intellectual work are about 

whose thinking is on display and whose ideas drive mathematical discussions, great care must be 

taken in utilizing these discursive structures in ways that support equitable participation for 

students who have been historically marginalized in mathematics. Although we have identified 

one discursive routine to address cognitive challenges, more work is needed to understand the 
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ways such discursive routines might support students in terms of equitable participation, access, 

and affect. Additionally, future research should investigate the discourse of a variety of teachers 

in TTP courses to further explore the consistency of this routine across contexts. 
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When elementary mathematics specialist coaches observed written artifacts of student thinking, 

they organically created groupings and pairings of students. Their interpretations of student 

work reveal two broad categories for meaningfully grouping students for instruction. One 

grouping strategy subjectified students, rendering a global evaluation of their performance. 

Mathematizing strategies were based on the evidence of mathematical thinking shown in 

students’ work. Both strategies have the potential to inform instruction, but the mathematizing 

grouping strategies may have more potential to support mathematical instruction, while 

subjectifying strategies may pose threats to student identities as learners of mathematics. The 

noticings and spontaneous groupings described in this study illustrate different approaches to 

forming working groups that may serve a broader variety of instructional goals. 

Keywords: Teacher Knowledge, Assessment and Evaluation, Instructional activities and practice, 

Elementary Mathematics Specialists 

The formation of student groups is essential for promoting productive classroom discourse 

and allowing students opportunities to learn from each other’s mathematical thinking. This report 

focuses on coaches’ observations, specifically related to their strategies for grouping students for 

instructional purposes. The results suggest that a binary choice (success or non-success) for 

grouping students is simplistic.  

What coaches noticed in student work (Sherin, Jacobs, & Philipps, 2011), how they 

interpreted it, and then responded raised issues of mathematical identity, reflected in the 

participants’ utterances (Haye, et al., 2011) as they described students’ work. In order to make 

sense of the utterances participants used to talk about students and their work, the identity 

perspective shared by Heyd-Metzuyanim and Sfard (2012) was invoked. Mathematizing 

describes the utterances about objects of mathematics– the symbols, the representations, etc. 

Utterances that address the doer of mathematics are referred to as subjectifying language and 

threaten to fix students’ identity in mathematics (Aguirre, Mayfield-Ingram, & Martin, 2013). 

Four licensed teachers serving as coaches were invited to observe and reflect on 13 written 

student work samples on a task. The elementary mathematics specialist coaches all 

independently and spontaneously used their investigation of the student work samples to plan for 

instructional groups. Using Heyd-Metzuyanim and Sfard’s (2012) framework, their utterances 

were coded as mathematizing or subjectifying. Two broad categories emerged. In one category, 

the coaches generalized student performance and formed groups based on global performance. 

For the second category, the coaches’ utterances reflected the mathematizing category, referring 

to the mathematics present in the student work. Coach utterances that focused attention on details 

of mathematical thinking fore-fronted student thinking to steer instructional group creation. 
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A coach can leverage language cues to draw attention to grouping strategies, either by 

attending to their own language or noting the language of their client teachers. The coach can 

then use this information to constructively guide the teacher client to create working groups, 

remedial groups, or other groups designed to maximize students’ opportunities to learn. Future 

study might examine the noticings of novice and experienced teachers  
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This study explores how place and space influence mathematics classroom interactions, focusing 

on insights from Mathematics Teacher Educators (MTEs). Through geospatial lenses, we 

investigate how teachers' and students' accessible identities and positioning shape teaching 

practices, student mathematics learning, and specific aspects of knowledge generation and flow 

within the mathematics classroom. Employing semi-structured interviews with MTEs, we unveil 

the influence of geographic and non-geographic factors on mathematics classroom dynamics. 

Our findings offer practical insights for educators striving to create inclusive learning 

environments. Aligned with the conference theme of envisioning the future of mathematics 

education, this research provides a fresh perspective on the crucial role of place and space in 

shaping the dynamics of mathematics education. 

Keywords: Place, Space, Student Mathematics Learning, Mathematics Teacher Educators 

In this research, we employ dialogic lenses to illuminate the complex dynamics shaping 

interactions within mathematics classrooms. Our focus is unraveling the positionalities and 

identities available to teachers and students during mathematical lessons. Specifically, we delve 

into the influence of place (the origins of students and teachers) and space (the characteristics of 

the learning environment) on the identities accessible to individuals in their mathematics classes 

(Butler & Sinclair, 2020; Tate, 2008). Drawing on the works of Tate (2008), Masingila (1993), and 

Rubin (2007), we acknowledge the significant influence of students' out-of-school experiences and 

discourses on their prior knowledge, engagement, and experiences with the conventional 

mathematics classroom. Furthermore, Leyva (2021) underscores how institutional ideology, 

culture, and beliefs shape students' mathematical experiences within diverse classrooms, varying 

across institutions, school districts, and geographical contexts. (Anderson, 2014; Hogrebe & Tate, 

2012). 

Central to this argument is the assertion that a teacher's proficiency in teaching practices is 

linked to the identities they embody and the identities accessible within the classroom setting 

(Darragh, 2006; Omoze et al., 2024; Simon, 2012). Simultaneously, student learning, classroom 

interactions, and the generation and sharing of knowledge are profoundly influenced by student 

identities, positioning, and discourses permitted or restricted by the teacher during lesson 

exploration (Andersson & Wagner, 2019; Robin, 2007). However, these dynamics operate within 

the constraints and influences of place and space factors, delineating the geographic and non-

geographic realms of the learning institution, as well as the diverse backgrounds of teachers and 

students (Leyva, 2021). 

The primary aim of this study is to reposition Mathematics Teacher Educators (MTEs) within 

the context of mathematics classroom interactions. By eliciting reflections on their past 

experiences, MTEs offer valuable insights into how place and space as contextual variables can be 
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effectively addressed to enrich students' mathematical conceptualization. This study focuses on the 

strategies and approaches that can mediate the influence of place and space, ultimately enhancing 

students' learning experiences. Through in-depth interviews and leveraging the expertise of MTEs, 

this research endeavors to illuminate the significance of space and place in the mathematics 

classroom, contributing to the existing body of knowledge in mathematics education and offering 

practical implications for educators striving to create inclusive and supportive learning 

environments. The central research question guiding this investigation is: How do Mathematics 

Teacher Educators (MTEs) perceive place and space as contextual variables in mathematics 

classroom interactions? 

Conceptual Framework 

In recent decades, there has been a notable shift in research toward employing geospatial 

lenses to analyze and critique mathematical learning outcomes, diversity, equity, and inclusion in 

mathematics education (Larnell & Bullock, 2018; Rubel & Nicol, 2020). Many researchers in the 

field of geospatial analysis assert that place and space significantly influence students' 

mathematics classroom experiences and, consequently, their learning outcomes, highlighting the 

growing recognition of their impact on educational dynamics (Hogrebe & Tate, 2013; Holland et 

al., 1998; Tate, 2008). Understanding the complex relationship between geospatial factors and 

students' identities is paramount for fostering a holistic educational approach (Andersson & 

Wagner, 2019; Bishop, 2012; NCTM, 2000).  

Socio-spatial Framework  

Larnell and Bullock's (2018) Socio-spatial Framework (SSF) provides a comprehensive 

perspective that outlines the geographical, social, and temporal dimensions of the mathematics 

learning environment. Although Larnell and Bullock originally intended to develop theoretical 

lenses for understanding urban mathematics education, we focus on the human and critical 

geography aspects of their framework to examine how mathematics teacher educators (MTEs) 

perceive place and space in their practices. Specifically, we are using the SSF to interpret 

learning environments, including the planning and organization of mathematics classrooms. For 

example, they explain that "by socio-spatial dialectic, we mean that the social significations and 

spatial considerations necessarily interact to determine meaning for urban contexts" (p. 48). 

Suggesting that the geographical characteristics of a small town or city, combined with a 

particular community's cultural beliefs and practices, create a meaningful place. This meaningful 

place then contributes to shaping and defining local discourses, language, out-of-school 

mathematical experiences, and embodied identities for students and educators. 

The SSF highlights the complex relationship between geographical factors, social influences, 

and temporal dynamics within mathematics classroom settings. The spatial dimension 

underscores the importance of understanding the spatial context of mathematics learning, 

including geographical contexts, classroom arrangement, resource accessibility, and 

organizational layout (Hogrebe & Tate, 2013; Tate, 2008). The social dimension acknowledges 

the profound impact of sociocultural contexts on students' engagement with mathematical 

concepts, emphasizing culturally responsive teaching strategies and diverse perspectives within 

the learning environment (Ladson-Billings, 1995; Gay, 2018; Wachira & Mburu, 2019). Finally, 

the temporal dimension delves into the dynamic nature of learning experiences over time, 

highlighting the continuous process of knowledge construction and the enduring influence of 

past experiences on student learning outcomes (Larnell & Bullock, 2018). 
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Place as a Contextual Variable 

Place, as a contextual variable in education, refers to the geographical location endowed with 

unique non-geographical characteristics that shape individuals' experiences, perspectives, and 

interactions within a specific setting (Butler & Sinclair, 2020). It encompasses the physical 

aspects of a particular location, including its geographical coordinates, geopolitical 

demarcations, and imaginary boundaries (Angweh, 1987; Massy, 2009; Tate, 2008). The 

geopolitical and imaginary boundaries can include school districts, urban, suburban, rural areas, 

states, countries, or even continents, each with distinct landmarks, physical features, and cultural 

attributes. 

The meaning attached to a place goes beyond its geographical coordinates and is derived 

from factors such as the historical, cultural, or social attributes associated with that place 

(Angweh, 1987). The place is not solely defined by its physical characteristics, but also by the 

unique characteristics that shape individuals' perceptions and understanding of the world (Butler 

& Sinclair, 2020; Holland et al., 1998; Weiland & Poling, 2022). For example, a person living in 

Greenland, where snow is prevalent, may have developed specific ways of interacting with and 

understanding the world in terms of snow, while someone living in the Sahara Desert, 

experiencing consistently high temperatures, may perceive the world in terms of sand dunes. 

These different environmental contexts significantly influence individuals' experiences, 

perspectives, and knowledge construction. 

Space as a Contextual Variable 

Space extends beyond the physical boundaries of a classroom to encompass the broader 

educational landscape. The spatial distribution of schools, educational resources, and 

infrastructure within a community or district can significantly influence students' access to 

quality education (Hogrebe & Tate, 2012). Disparities in spatial distribution and resource 

allocation can create inequalities in educational opportunities, affecting students' learning 

outcomes and academic achievement (Lee & Ready, 2009). Therefore, understanding the spatial 

dimensions of educational environments is crucial for addressing educational inequalities and 

promoting equitable access to education. 

Place and space contextual variables play distinct roles in shaping and influencing students' 

mathematics learning experiences (Butler & Sinclair, 2020). Understanding these differences is 

essential, as they highlight unique contextual variables within the educational discourse. 

Recognizing these distinctions helps educators navigate the specific variables of the mathematics 

classroom, thereby enhancing their teaching practices and fostering inclusive learning 

environments  

 

Methods 

Context and Setting 

MTEs' extensive knowledge and insights, gained from teaching mathematics across diverse 

educational environments, provide valuable context for understanding the spatial and situational 

dimensions of mathematics education. Their varied experiences navigating different classroom 

settings and encountering diverse student populations enrich the exploration of how space and 

place shape instructional practices and student learning outcomes. Moreover, MTEs are uniquely 

positioned to interact with both preservice and in-service educators, contributing to the study's 

depth. The research captures the diverse range of MTEs' conceptualizations of space and place 
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through semi-structured interviews, shedding light on the factors influencing instructional 

decisions and student engagement (Jacobs et al., 2010). 

Data Collection and Analysis 

The study involved semi-structured Zoom interviews with Mathematics Teacher Educators 

(MTEs) from a mid-western US university. Purposeful sampling ensured diverse faculty and 

graduate student perspectives. Interviews explored MTEs' views on place and space in 

mathematics classrooms and their impact on teaching. Audio recordings were transcribed, 

deidentified, and securely stored. Data analysis used Saldaña's (2014) dual-engagement strategy 

and Braun and Clark's (2008) thematic analysis, identifying themes through narrative inquiry. 

Descriptive coding highlighted key elements, addressing challenges in interpreting distinctions 

between "place" and "space" with insights from Poland and Pederson (1998). 

 

Findings and Discussion 

In response to our research question, MTEs perceive place and space as integral components 

shaping mathematics classroom interactions, and their beliefs underscore the transformative 

influence of these perceptions on instructional practices (Rubel & Nicol, 2020). 

For instance, one MTE participant illuminates the distinction between "place" and "space," 

defining "place" as the physical environment encompassing geographical factors, student 

backgrounds, and the educational setting. In contrast, "space" is viewed as the classroom's 

physical layout, including seating arrangements, technology, and teaching tools. This definition 

aligns with Larnell and Bullock's (2018) socio-spatial framework's spatial dimension, focusing 

on physical location and background, a notion supported by Gravemeijar (1994) and Masingila 

(1993). It also resonates with Hogrebe and Tate's (2012) concept of geographical locations. 

However, their vision of space is confined to classroom design, including desk arrangements and 

teaching tools (Rubin, 2007). 

"Place to me is all about where you're located, where you're teaching, where your kids are 

coming from, and where they're at. Space, on the other hand, is the actual layout of the 

classroom, how you set up your desks or tables, how you use technology and various 

teaching tools." 

Another perspective offered by participants defines space as the environment, which could be 

sociocultural, sociopolitical, or intellectual. According to one participant, "Space is more about 

kind of the social and intellectual environment that you're in." This broader conceptualization 

emphasizes the influence of the sociocultural and intellectual atmosphere on the learning 

environment, aligning with Larnell and Bullock's (2018) social signification dimension (Leyva, 

2021; Rubin, 2007). 

"Space is more about kind of the social and intellectual environment that you're in." 

The significance of cultivating an environment that allows students to personally connect 

with mathematics is underscored by MTEs, echoing Gravemeijer's (1994), Masingila's (1993), 

and Omoze et al. (2024) observations that student backgrounds impact how they interpret 

mathematical problems. They stress the importance of allocating time for individual or group 

work, enabling students to share insights with their peers (Yackel & Cobb, 1996).  

 

Conclusion and Implication 
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MTEs play a pivotal role in advocating for pedagogical practices that foster inclusive and 

effective learning environments grounded in the understanding of place and space variables. 

Their insights highlight the need to address the challenges posed by fixed classroom layouts and 

promote flexibility to enhance student engagement and collaboration. As MTEs continue to 

navigate the complexities of mathematics classroom interactions, their contributions serve as 

guiding beacons for creating dynamic and equitable learning spaces. This study highlights the 

critical role of MTEs in shaping diverse, equitable, inclusive, and effective learning 

environments. The findings underscore the need to address challenges posed by fixed classroom 

layouts, promoting flexibility to enhance student engagement and collaboration. 
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Inviting students to participate in mathematical dialogues could help them develop a better 

conceptual understanding. For classroom dialogues to be effective, teachers’ communicative 

approaches must be consistent with the activity’s purpose and create support for students to 

participate in joint meaning making. This paper gives examples of how two early-career teachers 

use an interactive/dialogic communicative approach to invite and engage students in dialogues. 

We describe how teachers invite students to participate in meaning-making processes of 

mathematical content in three different situations over a series of mathematics lessons—to 

activate previous knowledge, to contrast students’ solutions and to work on problem-solving 

tasks. In the ongoing analysis, we ask how these types of situations can be related to teaching 

purposes and the progression of students’ understanding of the mathematical content.  

Keywords:  Communication, Classroom Discourse, Instructional Activities and Practices 

Research show that participating in conversations about mathematics promotes students’ 

understanding of mathematical concepts and the development of a formal mathematical language 

(e.g. Barwell, 2016; Schleppegrell, 2007). For such conversations to be successful, the teacher 

must balance between focusing on the process of students sharing their ideas and focusing on the 

learning of the specific mathematical content (Sherin, 2002). In practice, classroom talk varies in 

the level of student participation and the possibilities for them to share ideas or perspectives 

(Mercer & Howe, 2012; Mortimer & Scott, 2003; Warwick & Cook, 2019). To activate the 

learning potential in classroom talk, the teacher must not only invite students to participate in 

dialogues but also support their meaning-making processes toward a scientific view of the 

subject (Scott et al., 2011; Walshaw & Anthony, 2008). How the mathematical content is 

presented will also influence students’ engagement and understanding (Dietiker et al., 2023).  

Although the teacher’s approach to communication can set frames for meaning-making 

processes in the classroom (Scott et al., 2006), students’ reactions, questions and expectations all 

influence classroom interactions. The exchange of initiatives and responses in interactions 

between teachers and students adds a dynamic aspect to teaching, requiring teachers and students 

to be prepared to respond to one another in meaning-making processes. Then, teachers’ planned 

actions in each moment may change, resulting in improvisation (Bishop, 2008). The teacher must 

make new decisions for how to respond or what of the students’ input to include further in 

teaching, maintaining the conversation’s mathematical productivity. However, inexperienced 

teachers may struggle with dynamic aspects such as instantaneously enacting strategies that 

encourage students to share their ideas or building on students’ contributions in a whole class 

setting (Alexander, 2020; Lewis, 2014).   

In this paper, we focus on how early-career teachers implement an interactive/dialogic 

communicative approach to engage students in classroom talk and negotiate the meaning of 

mathematics. Our guiding research questions are: How are students invited to participate in the 
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negotiation of the meaning of the mathematical content within an interactive/dialogic 

communicative approach? How are the teachers building on the students’ contributions? 

Theoretical approach  

We take a dialogical approach to this research on classroom interactions to highlight “the role 

of interaction and contexts, as well as language and the contribution of ‘the other’” (Linell, 2009, 

p. 7). Dialogic theories describe meaning making as multi-voiced and interactive with others or 

oneself. The meaning of actions and knowledge is created in dialogue with others when trying to 

make sense of the world in a specific context. The others are not only the physical people we 

communicate with but also people present in traditions, expectations, previous knowledge, or 

ideas brought into a conversation by the participants. When using a dialogical research approach 

to explore interactions in mathematics classrooms, all the participants are positioned as 

contributors to the meaning of mathematics (Barwell, 2016). Such meaning-making processes 

could be about understanding representations of a mathematical concept or what counts as an 

acceptable mathematical explanation/justification in the classroom (Cobb, 1999).  

Mortimer and Scott (2003) have identified four classes of communicative approaches used by 

science teachers to support meaning making in classroom talks. These approaches address 

aspects of classroom talk that are also relevant to mathematics teaching and learning. 

• Interactive/authoritative approach: One perspective/idea is explored (authoritative). 

Students are invited to contribute (interactive), but the teacher evaluates their ideas to 

support the scientific view. 

• Interactive/dialogic approach: All participants are invited to take part in the talk 

(interactive) and to contribute with perspectives/ideas on the subject (dialogic).  

• Non-interactive/authoritative approach: The teacher alone stands for the content and 

perspective/ideas (authoritative), and students are not invited to contribute with responses 

or new initiatives (non-interactive).  

• Non-interactive/dialogic approach: The teacher makes different perspectives/ideas 

accessible to the students (dialogic), but the teacher presents them rather than the students 

(non-interactive). 

The approaches provide different opportunities to participate in classroom talk and contrast 

everyday views on a subject with the scientific view (Scott et al., 2006). So, depending on the 

content and the teaching purpose, the teacher can use shifts between these approaches to support 

students’ understanding of mathematical content. Scott and Ametller (2007) associated a dialogic 

communicative approach with a teacher opening up classroom talks by, for example, inviting 

students to compare several ideas. In contrast, an authoritative communicative approach, such as 

the teacher reviewing presented ideas, was used to close down classroom talks. The study by 

Mortimer and Machado (2000) demonstrated a correlation between different approaches and talk 

patterns. For example, an interactive/authoritative approach was characterized by talk patterns of 

teacher initiation, student response and teacher evaluation (IRE-patterns). In an 

interactive/dialogic approach, the third turn (teacher evaluation) in such patterns instead 

consisted of teacher feedback or a new invitation for others to participate.  

This paper focuses on teaching episodes in which the teacher shifts to and from an 

interactive/dialogic communicative approach to explore how teachers balance incorporating 
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students’ contributions in teaching and supporting students in making sense of mathematical 

content. We note that although teachers may choose or indicate a specific communicative 

approach to interactions, other participants may respond differently to what the teacher expects. 

Moving forward, we use dialogues to describe classroom talks where several participants 

contribute to the content. 

Methodology 

This classroom study was conducted in two Scandinavian upper secondary schools. Two 

early-career mathematics teachers were observed during a sequence of lessons covering a 

mathematical curricular unit (quadratic equations and vectors, respectively). The teachers 

themselves planned all the teaching. Both participating teachers had a master’s degree in 

engineering and retrained as mathematics teachers for upper secondary school. At the time of 

classroom observations, Teacher 1 had taught for less than two years, and Teacher 2 had around 

five years of teaching experience. All observations were video recorded (approximately 14 hours 

per teacher) by the first author. Microphones worn by the teachers captured dialogues during 

group and whole-class activities. The students were 16–18 years old and took a mathematics 

course for further science studies. All participation in this research was voluntary, and the 

researchers had no prior connections to the participants. The participants were informed of the 

fundamental ethical principles of integrity, confidentiality, and anonymity (Clark et al., 2021; 

Forskningsetiske komiteene, 2018). Students who did not consent to video recording were seated 

outside the camera view, and their conversations and interactions with the teacher were not 

included in the data material.  

In the analysis, we concentrated on episodes that involved dialogues with the whole class or 

with students during group or peer discussions. Teacher’s communicative approaches were 

identified based on the level of interaction with students (interactive to non-interactive) and the 

extent to which students’ ideas were allowed to influence the progression of a lesson (dialogic to 

authoritative) (Mortimer & Scott, 2003). Patterns in the teachers’ and students’ turn taking were 

explored through the type of questions, amount of talk time, and presence of evaluation and 

feedback in teacher responses. The approaches were first identified by the first author. In a 

validity process, the coding was then discussed collectively in a research group. Consensus on 

the features behind the coding was reached after reviewing video material and transcripts from 

various episodes from both teachers. At the PME-NA conference, we will share examples of 

transcripts to explain how the approaches were identified, teachers’ prompts for inviting students 

to participate and their responses to students’ contributions. Here, we focus on results from the 

analysis of when the teachers used an interactive/dialogic communicative approach. 

Results  

Three types of situations in which the teachers were more likely to apply a dialogic 

communicative approach were identified in both teachers’ classrooms: 1) to activate or make 

visible students’ previous knowledge, 2) to contrast students’ solutions, and 3) to guide students’ 

group discussions during problem-solving tasks. The situations could be linked to specific 

teaching purposes expressed by the teacher either in the introduction of an activity or as part of 

an evaluation at the end of a lesson. The first two types of situations occurred as part of teaching 

episodes, which started with a group activity and were followed by a whole class discussion. The 
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third type occurred during students’ group work with problem-solving tasks as the teacher moved 

between group dialogues. 

The first type of situation was used by the teachers to make visible students’ previous 

knowledge of mathematical content. The teachers used them as transitions between activities 

during a lesson or as a start of a lesson, often before introducing a new mathematical concept or 

using a familiar concept in a new setting. In these situations, the teacher invited students to 

engage in collaborative discussions in pairs or groups, prompting them to recall prior knowledge. 

The purpose was to activate the students’ knowledge and to find ideas to build on or address 

during upcoming activities. For example, Teacher 1 asked the students to remember the 

characteristics of a quadratic function before introducing them to a zero-product procedure. 

Teacher 2 asked the students, before presenting the mathematical definition of a vector, to think 

about when it could be helpful to know both the size and direction of a physical quantity. In the 

whole-class discussion that followed the peer discussion, the teacher invited multiple students to 

share their ideas and asked them to explain or develop their answers. This first type of situation 

often ended with the teacher shifting to a more non-interactive approach, summarizing 

contributions, or providing examples of correct procedures. In the follow-up phase, the teacher 

stayed in an interactive/dialogic approach if the students agreed with the invitation to share their 

ideas. However, if there were no responses or just a single student answered, the teacher shifted 

to a non-interactive approach rather than attempting a new strategy to encourage participation. 

The second type of situation occurred when students were given the opportunity to contrast 

different solutions to mathematical tasks. As in the first situation, these situations involved shifts 

between work in groups or pairs and whole-class discussions. The teaching purposes were to 

support students’ conceptual understanding of rules/procedures and to provide opportunities to 

reflect on correct notations and mathematical language in their communication. For example, 

both teachers created discussion tasks around students’ errors in their solutions on a previous 

test. Teacher 1 handed out premade solutions for the students to correct, and Teacher 2 presented 

solutions on the whiteboard and asked the students to evaluate them. In the follow-up phase, 

different groups were asked to share reflections, show their solutions, or elaborate on someone’s 

explanation. The teachers asked questions to clarify mathematical language use or highlight what 

mathematical rules were being used (or misunderstood). These situations ended with the teacher 

repeating the correct solution or reminding the students of the correct mathematical rule in a non-

interactive/authoritative communicative approach. If there were aspects of the mathematical 

content that the students did not bring up, the teacher presented them at the end. 

The third type of situation where the teacher used an interactive-dialogic approach occurred 

during more extended group activities with problem-solving tasks. Positive feedback such as 

“You are well on the way! Nice opening! Clearly described!” was a typical start to these 

dialogues. To include students in the dialogue, the teacher could ask questions such as “How 

have you started? What strategies have you tried? Do you see any patterns?” These questions 

aimed to get ahold of students’ starting points and guide (or challenge) them toward a solution or 

understanding without showing them how to do it.  

Discussion 

In all three types of situations, students were invited to share their ideas without the teacher 

knowing precisely what contribution the students would have. However, how students’ ideas 

were incorporated further in teaching varied in our material. In exploring how students are 
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invited to negotiate mathematical content within an interactive/dialogic communicative 

approach, we will continue our analysis by comparing the results with previous research (e.g., 

purposes identified by Mortimer and Scott, 2003). Additionally, we will compare the three types 

of situations to search for additional characteristics. In this work, we ask a couple of questions to 

distinguish or find similarities between the situations: What is the mathematical focus of the 

meaning-making processes? What positions are made available for the students when the teacher 

invites them to think and share their ideas? How are the students responding to the invitations to 

participate in meaning making? In what ways can an invitation to participate be linked to where 

in the sequence of lessons/activities the situation appears? We intend to share some of our 

answers and insights into these questions at the PME-NA conference to contribute to research on 

how early-career teachers handle dynamic aspects of teaching during classroom dialogues. 
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Classroom discussions are important for students’ mathematical learning, but often, who and 

how students participate illuminates persistent issues of gendered and racialized bias. Teachers 

can disrupt potential issues of inequity by providing varied opportunities for students to 

participate in discussions. In this paper, we consider an observation tool to make sense of the 

nuanced features of interactions between a teacher and students during mathematics classroom 

discussions. When examining the lesson with attention to student race, new understandings are 

illuminated in the interactions between teacher and students. 

Keywords: Classroom Discourse; Equity, Inclusion, and Diversity; Instructional Activities and 

Practices 

Classroom discussion has long been shown to support students’ broad learning and 

engagement across content areas (Khong et al., 2019; Mercer et al., 1999; Reznitskaya et al., 

2009) and specifically in mathematics (Kazemi & Stipek, 2001; O’Connor & Snow, 2017). 

Teachers, then, are asked to create meaningful opportunities for discussion in their instruction 

(O’Connor & Michaels, 2019; van der Veen et al., 2017). However, research has found that some 

students from historically marginalized groups can be further marginalized within classroom 

discussions (Chen & Horn, 2022), which in turn influences these students’ opportunities to 

participate (e.g., Grøver Aukrust, 2008; Reinholz & Shah, 2018). 

The benefits of classroom discussion for students’ mathematical learning combined with the 

challenges of making such discussions inclusive spaces for diverse groups of students require 

more attention to how mathematics classroom discussions unfold. This includes attending to 

what teachers and students do. To address this concern, we build on our prior work in which we 

analyzed how the teacher and students participated as well as differences between how boys and 

girls participated for a focal subset of students. In this analysis, we ask: How does fine-grained 

coding of teacher and student participation, combined with student demographic data, reveal 

differences in patterns of participation by race? Our intent in examining this question is not to 

evaluate a teacher on her practice in one lesson but to focus on what our analysis tool may reveal 

about patterns of participation with respect to race that may then be used to support future 

teacher professional development. 

Theoretical Framing 

Our conceptualization of classroom discussion is rooted in sociocultural views of learning 

(Mercer, 2000; Vygotsky, 1978) and Bakhtin’s (1981) theories of the dialogic. As such, we see 

classroom discussions as spaces where interactive (i.e., dialogic) student talk supports 
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understanding. This talk supports the co-construction of knowledge as it influences learning in 

classrooms (John-Steiner & Mahn, 1996). In other words, how people think and talk with one 

another supports shared learning.  

Such conceptions of learning include the interaction of talk between people and the context 

of their lived experiences (Bakhtin, 1981; Wells & Arauz, 2006). Given the interplay between 

talk and context, we analyze classroom discussion, attending to the teacher’s and students’ 

contributions, with particular attention to patterns of student participation for different 

demographic subgroups. How these three elements interact with one another creates a clearer 

picture of the events of a classroom discussion, where teachers solicit student ideas, students 

share their own thinking or add to the thinking of others, and teachers take up or extend those 

students’ ideas in some way (Bishop, 2021; Michaels & O’Connor, 2015; Webb et al., 2014).  

Student participation plays a central role within the combined frameworks of dialogic talk 

and sociocultural perspectives of learning. Research has examined the influence of social 

demands in classrooms on how students may be enabled or constrained to participate 

(Kovalainen & Kumpulainen, 2007; Ng et al., 2021). Dialogic and sociocultural perspectives 

provide lenses for making sense of what happens in classroom discussions. Using this 

perspective, we attend to teachers’ actions and the participation of the students in relation to the 

teacher's actions within a dialogic conversation. We also examine the role that race may play in 

student participation during classroom discussions as an aspect of the sociocultural nature of 

their learning environment, particularly given the research on how whiteness has influenced who 

has power and is valued in education spaces (Battey, 2013; Haviland, 2008). 

Methods 

This analysis takes place in the context of a partnership with elementary schools aimed at 

supporting teachers to engage in dialogic discussion across content areas. To better understand 

teachers’ ongoing learning and facilitation choices, we observed whole-class discussions in 

mathematics, ELA, and science for each teacher in each year of the study. This analysis focuses 

on video-recorded observations of mathematics classroom discussions for nine teachers (grades 

K - 5) at Rivers Elementary, focusing on one teacher (Allison). First, we explain the analytical 

approach, the results from our prior analysis, and then explain the subsequent layer of analysis. 

Analytical Approach 

To best make sense of the dialogic aspects of classroom discussions and who gets to 

participate in this discussion, we combined aspects of two previously used observation tools: (1) 

the Equity Quantified in Participation (EQUIP) framework (Reinholz & Shah, 2018) and, (2) the 

Low Inference Discourse Observation (LIDO) instrument (LaRusso et al., 2023; O’Connor et al., 

2016). The EQUIP framework was designed to focus on student participation, while the LIDO 

instrument was designed to assess the dialogic nature of teachers’ and students’ talk. We coded 

classroom observation videos by individual student contributions. For each contribution, we 

documented the teachers’ original question (teacher solicitation), how a student was asked to 

share (solicitation method), what the student said (student contribution), and how the teacher 

took up what the student said (uptake type). Table 1 shows these four dimensions coded and the 

different coding options. 

 

Table 1: Coding Schemes and Descriptions 
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Teacher Solicitation Solicitation Method Student Contribution Teacher Uptake Type 

(S2S) Encouraging 

students to respond to 

students 

(Called On - by 

teacher) Teacher 

selects a student to 

share 

(S2S) Student to 

student talk 

(Follow-up) Teacher asks a 

question with a connection 

to the student contribution 

(Explain) Teacher 

asks students to 

explain, clarify, give 

evidence 

(Called On - by 

student) Student 

selects another student 

to share 

(S ref S) Student 

referring to another 

student’s ideas 

(Elaborated) Teachers adds 

detail or clarity to a student 

idea 

(Continue) 

Encourages students 

to continue 

(Student Called Out) 

Student shares without 

being called on 

(Because) Student 

provides reasoning 

(Revoiced) Teacher repeats 

or paraphrases what a 

student said 

(Open) Open 

question 

(Choral Response) 

Multiple students 

respond together 

(Q4T) Student asks 

Teacher a question 

(Acknowledged) Teacher 

acknowledges student idea 

(Semi-open) Between 

closed and open 

(Turn and Talk) 

Students are directed 

to discuss the question 

with a partner or small 

group 

(Extended) Student 

response longer than a 

simple clause 

(Redirected) Teacher 

redirects student idea 

(Closed) One 

expected answer 

(Simple) Minimal 

student turn, brief 

(Evaluated) Teacher makes 

a judgment about student 

contribution 

(None) No 

solicitation 

 
(Unrelated) Not 

connected to 

discussion 

(None) No uptake by the 

teacher 

 

Videos were coded with four raters, who were trained on the coding scheme and engaged in 

practice and consensus coding across multiple rounds. Inter-rater reliability was assessed by 

comparing codes from all raters after training and by comparing codes from pairs of raters in an 

ongoing manner. Our Krippendorf’s alpha scores for training ranged from .68 to .96 and ranged 

from .57 to .81 for independent coding. Since the independent reliability tests were conducted in 

pairs, there were fewer comparisons than the training reliability across four coders, which likely 

contributed to the reduced alpha statistics. 

Our prior analysis (Wilhelm et al., 2024) examined the nature of the mathematics discussion 

and how student participation differed by gender for a focal subset of students (n=8) in one 

teacher, Allison’s, classroom. That subset consisted of all students in Allison’s class for whom we 

had parental consent to participate in the study. This sample of students consisted of four girls1 

and four boys (Alma, Samika, Lucy, Casey, Jaden, Kai, Derrick, and Robert, all pseudonyms). 

 
1While we recognize that gender is more expansive than the categories of girl and boy for students, we report on 

only these categories as the listed options in the school’s demographic data. 
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The girls within the sample identified racially as white2 (n=2), Hispanic (n=1), and Asian (n=1). 

The boys within the sample identified racially as white (n=2), Black (n=1), and Black and white 

(n=1). Given our attention to participation by race and the role of whiteness (Haviland, 2008; 

Taylor-Heine et al., 2022), we focus on the six students from this set who identified as white or 

Black. Students who identify as only white are categorized as white, and students who identify 

all or in part as Black are categorized as Black for this analysis. We share the results and 

statistical comparisons of Allison’s lesson. Given that the focal sample is small, with just one 

lesson’s worth of information about their participation, we also aggregated the participation 

patterns of Black and white students in the observations of the teachers across Rivers Elementary 

in order to see if some of the emergent patterns from Allison’s discussion were true across a 

larger population of classrooms and students. We provide descriptive information about the four 

categories described in Table 1: Teacher Solicitation, Solicitation Method, Student Contribution, 

and Uptake Type. For the aggregated sample, we use Chi-squared tests to compare the 

distributions and report statistically significant differences. 

Prior Analyses 

Before answering our research question about how patterns of participation varied by student 

race, we describe Allison’s lesson and summarize results from our prior analysis of Allison’s 

mathematics lesson (see Wilhelm et al., 2024 for more detail). The classroom discussion we 

analyzed focused on supporting students in representing three-digit numbers (e.g., expanded 

form, word form, standard form). During the discussion, Allison specifically introduced students 

to the expanded form with input from students into the definitions of key terms like sum, value, 

and digit. Looking at the data in the aggregate, we saw evidence of a lesson where students were 

encouraged to share their ideas, often in response to questions with one expected answer, one 

after the other. Frequently, this looked like Allison listening to what a student said and then 

calling on a new student to support the flow of discussion without asking a new question. While 

it was most common for Allison to invite students to participate by calling on a new student to 

share their idea (49.3%), we noticed her intentional use of choral response (16.0%) and turn and 

talk (9.3%) that supported more students talking and getting students to talk directly with one 

another as these moves allow everyone to share an idea. Likely tied to the prevalence of Allison 

posing questions with one expected answer, the most common type of student response in the 

discussion was simple, one-word or brief answers (64.8%). Finally, the most common approach 

Allison had in responding to a student's idea was to allow or encourage other students to engage 

(no uptake, 37.3%), offering no further questions or rephrasing of her own.  

Results 

When looking at the subset of students in Allison’s classroom by their racial demographics 

(see Table 2 below), some other differences emerge in how their ideas were solicited, shared, and 

taken up, particularly between the Black and white students. The patterns of questions (teacher 

solicitation) students received were fairly similar. However, white students tended to receive 

more questions asking them to explain their thinking (5% Black, 30% white). For example, after 

stating, “sum is the value of an addition problem,” Allison asks one of the white students to 

 
2We make an intentional choice to leave white uncapitalized and to capitalize instances of Black to describe race 

where other scholars have documented white as a social construct and Black a “self-determined name” (Dumas, 

2016, p. 12). 
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explain what value means in that statement. Related to what students said in the discussion 

(student contribution), 80% of the responses from Black students and 60% of responses from 

white students were classified as simple. Additionally, most responses from white students 

included longer answers (extended; 30%). Finally, concerning how Allison responded to student 

contributions (teacher uptake type), Black students were most likely to be asked follow-up 

questions from the teacher following their responses (40% vs. 30%), and white students were 

more likely to have their responses repeated (revoiced) by the teacher (30% vs. 10% revoiced).  

 

Table 2: Classroom Discussion Participation of White Students (N=4) vs. Black Students 

(N=2) 

Teacher Solicitation White Black 
 
Solicitation Method White Black 

S2S 0.0% 0.0% 
 
Called On (by teacher)+ 100.0% 85.0% 

Explain+ 30.0% 5.0% 
 
Called On (by student) 0.0% 0.0% 

Continue+ 10.0% 20.0% 
 
S Called Out 0.0% 15.0% 

Open 10.0% 15.0% 
 
Choral Response 0.0% 0.0% 

Semi-Open 10.0% 15.0% 
 
Turn and Talk 0.0% 0.0% 

Closed 20.0% 25.0% 
    

None 20.0% 20.0% 
    

Student Contribution White Black 
 
Teacher Uptake Type White Black 

S2S 0.0% 0.0% 
 
Follow-up+ 30.0% 40.0% 

S ref S 0.0% 5.0% 
 
Revoiced+ 30.0% 10.0% 

Because 10.0% 15.0% 
 
Recorded 0.0% 0.0% 

Q4T 0.0% 0.0% 
 
Elaborated 20.0% 15.0% 

Extended+ 30.0% 0.0% 
 
Acknowledged 10.0% 15.0% 

Simple+ 60.0% 80.0% 
 
Evaluated 0.0% 0.0% 

Unrelated 0.0% 0.0% 
 
Redirected 10.0% 0.0% 

   
 
None+ 10.0% 20.0% 

Note. This table compares discourse elements for a mathematics lesson in Allison’s 2nd-grade 

classroom, comparing the participation of 6 focal students by race. The number of students here 

is too small to determine statistically significant differences. Italicized values point out a 

difference but not at a significant level (+ qualitative difference visible). 

 

The differences in teacher questions and student responses between Black and white students 

are illuminated in an excerpt from the lesson below. Allison asks the class if the equation 156 = 

50 + 100 + 6 is true or false. In what follows, Jaden (the only Black student in the exchange) is 

prompted with multiple closed-ended questions with simple responses compared to the other 

peers (Alma and Casey) who share here: 

Allison Alma, can you tell us why you think it’s false? Then we’ll come to you [Jaden] if 

it’s different. [To Alma] what made you say it was false? 

Alma There’s 50, then 100, then 6. It’s the order 

Allison Because there’s 50, then 100, and then 6? Ok. Their order? 5 1 6? Ok, she’s 

saying it’s because of the order…Jaden, tell me what you think. 
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Jaden What I think is, so when there’s 50 and 100 that gets 100 and then we have the 6 

and I think that’s 106. 

Allison So you think it’s 106. Someone who thinks true, Casey, you said true. Now I want 

Jaden to listen because if you want to revise your thinking you can. Casey, why 

did you think it was true? 

Casey  I said it was true because I saw that there was the same numbers up on the board 

but they were just flipped flopped. So I still saw a 100, I still saw 50, and I still 

saw 6. 

Allison So you saw all the components but you knew they were flipped flopped, or mixed 

up.  

[Allison walks through recording the place value before turning back to Jaden] 

Allison Do you want to revise your thinking now? 

Jaden Yeah 

Allison Ok, on your board do you see a 50? 

Jaden Yeah 

Allison On your board do you see a 100? 

Jaden Yeah 

Allison On your board do you see a 6? 

Jaden Yeah 

Allison Ok, what is that number? What does 100 and 50 and 6 equal? 

Jaden One hundred fifty six. 

Allison  One hundred fifty six. 

In this exchange, we see some misconceptions from the students Alma and Jaden. Notice how 

Alma and Casey are prompted with questions to explain their thinking in this exchange (e.g., 

“why did you think it was true?”). However, Jaden (who identifies as Black) is posed a series of 

closed, test-like questions to attend to the revisions in his thinking. 

This pattern in uptake type for white students was similar to the pattern in uptake for girls we 

saw in our previous analysis, with girls receiving more revoicing of their ideas (see Wilhelm et 

al., 2024). Additionally, the pattern in uptake type for Black students may be explained by one of 

the students in the subset, a Black boy, who had the majority of responses across the group that 

included a follow-up from the teacher. The intersectional identities of these students are 

important to this analysis of their discussion participation. For example, both Black students in 

our focal sample identify as boys. The teacher questioning frequencies by race showed more use 

of closed-ended questions by the teacher and simple answers from the students. However, these 

frequencies are more aligned with how girls participated in the discussion (i.e., asked more 

closed-ended questions and answered with more simple responses).  

 

Table 3: Aggregated Classroom Discussion Participation of White Students (N=35) vs. 

Black Students (N=14) 

Teacher Solicitation White Black 
 

Solicitation Method White Black 

S2S 2.80% 3.30% 
 

Called On (by teacher) 93.80% 93.30% 

Explain 17.2% 10.00% 
 

Called On (by student) 0.70% 0.00% 

Continue 12.40% 16.70% 
 

S Called Out 5.50% 6.70% 
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Open 12.40% 13.30% 
 

Choral Response 0.00% 0.00% 

Semi-Open 15.20% 15.00% 
 

Turn and Talk 0.00% 0.00% 

Closed 25.50% 25.00% 
    

None 14.50% 16.70% 
    

Student Contribution White Black 
 

Teacher Uptake Type White Black 

S2S 0.00% 0.00% 
 

Follow-up 51.00% 53.30% 

S ref S 1.60% 1.70% 
 

Revoiced 20.70% 18.30% 

Because 10.50% 12.10% 
 

Recorded 1.40% 1.70% 

Q4T 0.80% 1.70% 
 

Elaborated 14.50% 11.70% 

Extended 25.00% 1.70% 
 

Acknowledged 5.50% 6.70% 

Simple 60.50% 82.80% 
 

Evaluated 0.70% 1.70% 

Unrelated 1.60% 0.00% 
 

Redirected 2.80% 0.00% 
   

 
None 3.50% 6.70% 

Note. This table compares discourse elements for all observed mathematics lessons of teachers in 

Y1 of the study with consented students who identified as Black or white. Values that are bolded 

point out a statistically significant difference. 

 

We were curious if we would see similar participation patterns when we looked across more 

lessons. Table 3 shows the aggregated analysis of participation patterns of consented Black and 

white students at Rivers Elementary across grades K - 5 classrooms. Some of the differences in 

Allison’s classroom discussion are not apparent in the aggregated set, such as how students were 

called on (solicitation method) and how teachers took up students’ responses (uptake type). Some 

of the same differences we saw in Allison’s lesson were present, but to a lesser degree, such as 

the types of questions the teachers ask (more explain your thinking questions for white students, 

more continue your thinking questions for Black students). What is interesting is the continued 

differences in student contributions, where white students were more likely to provide an 

extended answer than Black students (25% white, 1.7% Black), and Black students were more 

likely to provide a brief answer (“simple,” 60.5% white, 82.8% Black). These differences in how 

students responded were statistically significant. 

This fine-grained analysis of the mathematics lesson suggests differences in how students 

participated based on race, which exemplifies the potential of analyzing data at the individual 

level. With an even larger sample of student contributions, it would be worthwhile to analyze this 

data by intersectional subgroups as done in other literature (e.g., Reinholz & Wilhelm, 2022). 

The use of the observation tool helps make visible the moves of the teacher and students in a 

classroom discussion, with the opportunity to pay attention to participation related to student 

demographics. 

Conclusions 

We began this deeper analysis of Allison’s mathematics classroom discussion to understand 

the details of a teacher’s facilitation and student participation and what would be visible when 

specifically paying attention to student race. Our sociocultural and dialogic framework thus 

centers how these features of facilitation and participation interact with one another (Bakhtin, 

1981; Wells & Arauz, 2006). Attending to issues of equity within dialogic talk is important 

because of the numerous ways that mathematics classroom discussion can constrain student 

participation (Black & Radovic, 2018; Ng et al., 2021). The intent of this analysis is not to draw 
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generalizable conclusions about Allison’s specific practice but to provide an image of what such 

an observation tool allows mathematics educators to see and track in future classroom 

discussions to understand if such findings become larger patterns pertaining to student 

participation, such as the emerging results of the aggregate data for Rivers Elementary. 

Analyzing the nuances of what happens in classroom discussions thus illuminates who is 

potentially marginalized in their participation (Chen & Horn, 2022). 

In our focal set of students from Allison’s classroom, we found that Black and white students 

participated differently. For example, we found that despite the fact that both Black students 

were boys, who generally tended to be asked more semi-open questions, the Black students were 

more likely to be asked closed questions, while white students were more frequently asked to 

explain their thinking. With just six focal students, it was not possible to meaningfully 

disaggregate the data by intersectional subgroups (e.g., Black boys), but that intersectionality is 

critical and likely contributes to explanations of participation patterns. Other studies have shown 

significant differences between intersectional subgroups, with a large body of qualitative 

evidence demonstrating differences in classroom experiences (e.g., Gholson & Martin, 2014; 

Joseph et al., 2019; Morris, 2007). 

We want to reiterate that Allison’s classroom discussion results are based on a single 

observation in one content area with a small sample of focal students. Although some emergent 

patterns were not present or not as prevalent in the larger set of Rivers’ classroom discussion 

data, we do see patterns in how white vs. Black students are entitled to contribute their ideas to a 

discussion. We specifically consider how students may have been entitled to participate, 

recognizing the interrelated role of interactions between teachers and students that can inform 

how students are “entitled or constrained” to participate (Black & Radovic, 2018, p. 274). In our 

data, we see that white students were more likely to provide extended responses, whereas Black 

students were more likely to provide simple, brief responses. These differences suggest 

continued examination of why these students participated in this way. In drawing attention to 

these patterns of participation, we aim to demonstrate that by disaggregating the data by 

particular social demographics, it is possible to ask questions about whether participation is 

equitable (Lavigne & Good, 2021; Reinholz & Shah, 2018). 

Details about the nuances of student participation in a mathematics classroom discussion 

were illuminated through the use of our observation tool. Originally, LIDO was designed to 

assess students’ and teachers’ dialogic talk, while EQUIP was designed to focus on the equity of 

student participation. By combining aspects of the LIDO instrument (LaRusso et al., 2023; 

O’Connor et al., 2016) and the EQUIP framework (Reinholz & Shah, 2018), we were able to 

attend more carefully to student participation through the interplay of a teacher’s solicitation and 

student contribution of ideas during a classroom discussion. 

Investigating mathematics classroom discussions through a combined tool to track dialogic 

talk and student participation supports the future of mathematics education in such uncertain 

times. The tool provides two ways to attend to the challenges of the educational and political 

landscape. Related to educational needs, teachers are being asked to demonstrate disciplinary 

expertise across content areas, including cross-content classroom discussions (Fitzgerald & 

Palincsar, 2019). Such a tool, then, could support analysis of classroom discussion across 

disciplines to leverage features of similarity for facilitating quality instructional practices. For 

example, from the current study, this observation data was collected at the beginning of our work 
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together, where teachers participated in a 3-year long professional learning program to support 

and reflect on their classroom discussion practices. Related to the current political landscape, we 

see a voice of doubt that argues such issues of race and gender are even present, and thus, ways 

that such activity to support equitable classroom practices are limited (Lopez et al., 2021; Wuest, 

2018). A tool that looks at teacher and student engagement in discussion examined by factors 

such as race and gender can provide empirical evidence for particular inequities that cannot be as 

easily dismissed. Mathematics education could thus benefit from purposeful attention to 

instructional practices to identify potential patterns of inequity. Analyzing how these practices 

unfold in classroom discussions provides a first step to articulating their presence empirically.  
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GETTING COMFORTABLE: DELEGATING AUTHORITY WHILE POSITIONING 
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This multiple case study explores how two elementary mathematics teachers made themselves 

and their students comfortable with the teacher delegating authority to students while also 

positioning students with agency. I conducted three Video Stimulated Recall (VSR) interviews 

and pre- and post-semi-structured interviews with each teacher to understand their practices and 

thoughts about moments from prior lessons related to authority and agency. The results indicate 

that, while one teacher expressed being quite comfortable delegating authority to students and 

positioning them with agency, the other expressed reservations. Results also indicate that 

teachers make students and themselves comfortable delegating authority and positioning 

students with agency by creating time to understand students’ solutions, getting to know students' 

assets outside of the classroom, and employing Social Emotional Learning (SEL) strategies. 

Keywords: elementary school education, teaching practice and classroom activity 

Implementing an ambitious approach to teaching elementary mathematics is complex work 

that requires teachers to delegate authority to students while positioning them with agency 

(Aguirre et al., 2013; Amit & Fried, 2005; Dunleavy, 2015). Existing literature demonstrates the 

benefits of providing opportunities for students to engage in such a vision of ambitious 

mathematics instruction (Ball, 1993; Carpenter et al., 1989; Jackson et al., 2017). Teachers in the 

United States may experience discomfort and tension, however, when they shift from traditional 

mathematics instruction – in which students typically lack authority and agency (Stigler & 

Hiebert, 1997) – to an ambitious instructional approach, in which students have more say about 

the validity of mathematical ideas (i.e., authority) and freedom to solve problems as they choose 

(i.e., agency) (Ball, 1993; Langur-Osuna et al., 2020). To understand how teachers combat this 

tension, this multiple case study (Creswell & Poth, 2016) explored how teachers delegated 

authority while positioning students with agency (Hicks et al., 2023; Turner, 2013). I answered 

the following research questions: (1) What practices and activities do teachers engage in to help 

make themselves feel comfortable with teachers delegating authority to students while also 

positioning them with agency in elementary mathematics classrooms? (2) What practices and 

activities do teachers engage in to help make students feel comfortable with teachers delegating 

authority to students while also positioning them with agency in elementary mathematics 

classrooms? 

Theoretical Framework  

Authority  

Authority in mathematics resides with whoever is regarded as mathematically legitimate 

(Amit & Fried, 2005; Dunleavy, 2015). An ambitious vision of mathematics instruction (Jackson 

et al., 2017) requires teachers to delegate authority to students so that they play a role in deciding 

which contributions are mathematically sound and valid, and why (Gresalfi & Cobb, 2006; Hicks 

et al., 2023), thereby contributing to students feeling mathematically legitimate. 
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Agency  

Agency is having the freedom to solve problems as one sees fit (Dyer et al., 2023). In the 

context of the mathematics classroom, agency necessitates day-to-day attendance (Aguirre et al., 

2013; Turner, 2003). Therefore, in an elementary mathematics classroom, teachers must 

routinely position students with agency for them to develop a sense of agency (Ball, 1993; 

Boaler, 2002; Lampert & Ghousseini, 2012). 

Delegating Authority and Positioning Students with Agency is Difficult  

Teachers may be uncomfortable delegating authority and positioning students with agency. 

(Dunleavy, 2015; Turner, 2003). Societal metanarratives and prior knowledge of what elementary 

mathematics classrooms should look like might impact teachers’ beliefs of who holds 

mathematical authority (Aguirre et al., 2013; Bartell, 2016). Moreover, when teachers delegate 

authority to students while positioning them with agency, it can create an unpredictable learning 

environment where a lesson can take unanticipated turns (Kazemi et al., 2009; Stein et al., 2008).  

Students might be uncomfortable as well. All students come to school with a set of beliefs, 

cultural and community norms, and an idea of “what to do” in order to learn (Delpit, 1995; 

Lampert et al., 1998). These factors might be at odds with ambitious mathematics instruction 

(Lubienski, 2000); therefore, students might not be used to being delegated authority or 

positioned with agency (Aguirre et al., 2013). However, the teacher is responsible for helping 

students transition into this environment and has the power to develop students’ comfort with 

being delegated authority and positioned with agency in the mathematics classroom (Jackson et 

al., 2017; Langer-Osuna et al., 2021).  

Methods 

This multiple case study (Creswell & Poth, 2016), inspired by Gutiérrez’s statement, “I have 

always believed we learn best from understanding ‘success’ cases” (Gutiérrez, 2011, p. 21), 

explored how teachers made themselves and students comfortable with delegating students 

authority while positioning them with agency in elementary mathematics classrooms. 

Positionality 

My previous professional roles, such as an elementary classroom teacher, mathematics 

instructional coach in Title I schools, and teacher educator supporting pre-service teachers, 

contribute to my background knowledge, biases, and interpretations of data.  

Participants and Context 

This study, which took place at the beginning of the school year, included two participants, 

each teaching at elementary schools in the same district in the Pacific Northwest. Though 

unknown at the time of data collection, the district participates in a social-emotional program, 

Everyday Speech. Participant A, who was in their 16th year of teaching at the time of the study, 

teaches third grade at a school that has Title I status, participates in the Advancement Via 

Individual Determination (AVID) program (AVID, 2012), and serves a diverse population. 

Participant B, who was in their eighth year of teaching, teaches first grade at a school in the same 

city that does not qualify for Title I status. The participants in the study met the following 

criteria: (a) the participant was seeking to delegate authority to students and position them with 

agency during mathematics instruction, (b) the participant taught first, second, or third grade, and 

(c) the participant taught in a public elementary school setting. 

Data Collection 
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I used Video-Stimulated Recall (VSR) to allow teachers to articulate their thoughts and 

feelings related to interactions in their teaching (Martinelle, 2020; Muir, 2010; Nguyen et al., 

2013). The data collection protocol was as follows: (a) lessons were video-recorded using a 

SONY™ EV-10 camera and audio-recorded with a Lavalier microphone or ZOOM H1 exterior 

microphone, (b) after the lesson, I selected moments from the lessons that exhibited interactions 

related to mathematical authority or student agency, (c) occurring the same day, and as soon as 

possible, the teacher and I met for an interview, in which the teacher watched and reflected on 

selected moments (Calderhead, 1981; Nguyen et al., 2013).  

Additionally, pre- and post-semi-structured interviews were conducted with each participant 

via Zoom (Creswell & Poth, 2016). As Calderhead (1981) states, VSR alone cannot completely 

capture teachers’ thoughts. Therefore, interviews were conducted before and after the VSR 

process to add context, confirm or disconfirm findings from the VSR data, and access additional 

insight regarding teachers’ practice with respect to delegating authority and positioning students 

with agency (Calderhead, 1981; Creswell & Poth, 2016; Lincoln & Gruba, 1985). 

Data Analysis 

Data was analyzed using the process of thematic analysis (Braun & Clarke, 2021). A 

codebook was developed that consisted of a priori codes connected to relevant literature 

(Carpenter et al., 1989; CASEL, 2022; Moll, 2019) while allowing for unanticipated codes to 

emerge (Saldaña, 2021). Multiple iterations of the codebook were developed throughout the data 

familiarization process (Braun & Clarke, 2006). An external audit process took place with 

another researcher familiar with the project to stabilize code descriptions and examples. 

Additionally, the audit process enhanced the accuracy of my interpretations (e.g., distinctions 

between authority and agency were discussed during the coding process) and conclusions for this 

research project. The themes were derived from the coded data (Table 1) by analyzing frequency, 

co-occurrences, and triangulation (Creswell & Poth, 2016; Lincoln & Guba, 1985). 

Results 

Through thematic analysis of the VSR interviews, I identified the following themes: (a) 

Tension, (b) Time to think for teachers and students, (c) Getting to know students’ knowledge 

and culture, (d) Tending to students’ emotions, and (e) Being or becoming comfortable. Below, I 

share examples of reflections from Participant B demonstrating the themes of Time to think and 

Tending to students’ emotions. 

 

Table 1: Topics Discussed by Teachers in VSR Reflections 

 

Teacher Discusses Teacher 

A 

Teacher 

B 

Total 

 

Authority 

Teacher Delegating Authority 13 7 20 

Student Initiating Authority 4 5 9 

Teacher Withholding Authority 0 0 0 

 

Agency 

Teacher Positioning Students with 

Agency 

9 8 17 

Student Assuming Agency 5 3 8 

Teacher Withholding Agency 0 1 1 

 
 

Comfort 

Teacher Comfort 1 2 3 

Student Comfort 5 2 7 

Teacher’s Lack of Comfort (Tension) 0 5 5 

Student’s Lack of Comfort (Tension) 0 0 0 
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Time to 

Think 

Time to Think to Make Themselves 

Comfortable 

1 4 5 

Time for Student Thinking to Make 

Students Comfortable 

3 2 5 

Knowledge, 
Culture, and 

Language 

Student Knowledge, Culture, and 
Language to Make Themselves Comfortable 

0 0 0 

Student Knowledge, Culture, and 

Language to Make Students Comfortable 

4 0 4 

Emotions Social Emotional Learning to Support 
Delegating Authority and Agency 

7 8 15 

 

Time to Think  

Both teachers spoke of the importance of time to think in order to understand students’ 

thinking, thus, fostering students' mathematical legitimacy (authority) and freedom to solve 

problems as they see fit (agency). As an example, Participant B reflected on a moment when a 

student posed a subtraction representation (whole-part=part; 9-1= 8) for a part-part-whole 

activity (the whole was 9), stating, “I felt frantic in the moment.” When looking for the intended 

representation, the teacher asked the student “Oh, but what is our whole number?”, then went on 

to discuss the following:  

…because I saw 8 at the end of her equation. and then she said, “But it is subtraction.” And I 

said, “Oh, we just haven’t talked about subtraction,” I called out that she did not have the 9 

that I was looking for. But then she, I don’t want to say called me out, but said, “But it is 

subtraction, I did 9-1.” 

Participant B went on to share that they felt relieved that they had time to make sense of the 

student’s representation while conferring one-on-one before the whole-group discussion, stating, 

“If I was teaching whole group, they [students] are all staring at you. It gave me some time, and I 

feel like that is what they need, too.” 

Tending to Students’ Emotions  

Participant B discussed tending to students’ emotions to create a comfortable environment for 

students to exercise their mathematical authority. In the following example, Participant B 

discussed how they sought to delegate authority by promoting students’ ability to give feedback 

on their peers' mathematical solutions while also receiving feedback from their peers (“glows 

and grows”): 

It’s a process, I’ve only started the ‘glows and grows’ last year. It’s nerve-wracking…we are 

also trying to teach them social-emotional [skills] and how to make their peers- I don’t want 

to say better versions of themselves- but to help them, without hurting their feelings…I don’t 

want to say back in the day, but when you call someone out, it’s embarrassing or makes you 

feel super sad, or I am just not good at this. Before we even get here, we go over ‘growth 

mindset’ and how we can’t do things yet, the power of yet.  

Participant B continued to stress the need to tend to students’ emotions to create a classroom 

environment in which students are not embarrassed or hurt by feedback (peers exercising 

mathematical authority), saying, “So, there is a whole social-emotional piece before we dive into 

academics, specifically math…It’s social-emotional…It’s a work in progress.” 
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Discussion  

This study contributes to the field by illuminating the ways teachers make themselves and 

students comfortable with the teacher delegating students authority while positioning them with 

agency. Results indicated that teachers make students and themselves comfortable by creating 

time to understand students’ solutions (Carpenter et al., 1989), getting to know students' assets 

outside of the classroom (Moll, 2019), and employing Social-Emotional Learning (SEL) 

strategies (CASEL, 2022).  

Time was limited for this study. The next steps might be to use similar methods to explore the 

longitudinal development of teachers’ practice in this realm.  
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This poster focuses on how two 3rd grade teachers taught conventions associated with 

coordinate graphing with a goal of developing a method for capturing the degree a teacher 

delegates mathematical authority. This study came from a larger study of an analysis of a 

common set of early algebra lessons enacted in 78 classrooms guided by the question, “How are 

mathematical conventions introduced and treated by teachers in elementary classrooms?” 

(Ristroph, 2024). Those findings revealed those teachers rarely explicitly addressed conventions 

as such, most frequently introduced mathematical conventions in a manner of direct instruction, 

and when spoken of they were often attributed to external agents (e.g., “they”, “people”, 

“mathematicians”). The few episodes in which teachers delegated authority to their students to 

explore alternatives to conventions gave motivation for this work. 

The ways in which elementary teachers of mathematics confer mathematical authority are 

explored by asking the following:  

How is the power to form and justify mathematical ideas either withheld by the teacher or 

delegated to students? How does the teacher’s talk moves, uptake of student’s ideas, and 

participation structures constitute a delegation or withholding of mathematical authority? 

Perspective 

Mathematical authority is the view of another subject (i.e. person, community, object) as a 

legitimate source of mathematical knowledge or mathematical reasoning and, thus, able to make 

meaningful mathematical contributions (Gresalfi & Cobb, 2006; Hamilton, 2022). The 

delegation of mathematical authority in the classroom can be construed as the set of teacher 

moves that position students as having the power to rely upon mathematical authority situated 

internally or within the community of peers’ “taken-as-shared” knowledge (Dunleavy, 2015; 

Wood et al., 1991). 

Development of Methods 

A lesson introducing coordinate graphing was taught and video recorded in 26 third-grade 

classrooms. Instances were flagged in which the power to form mathematical decisions was 

largely positioned either within the teacher or students’—this pass yielded the resulting two 

seemingly diametrically opposing episodes which became the focus of this poster. Teachers’ talk 

moves, uptake of student ideas, and participation structures are currently being operationalize for 

qualitative analysis. 

A coding framework and preliminary findings will be shared. 
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Storytelling is a versatile and inclusive pedagogical tool that accommodates for different ways of 

mathematical thinking and contexts including cultural and linguistic. This study sought to 

understand factors for realizing the power of storytelling as a pedagogical tool for mathematics 

namely teachers’ perspectives of the role of storytelling, and how well the curriculum supports 

incorporating storytelling. Using qualitative research methodology, the results show the need for 

teacher training and curriculum materials that support story-based pedagogies. 

Keywords: Teaching Practice and Classroom Activity 

Research demonstrates that storytelling is an effective teaching tool shown to increase 

achievement and facilitate authentic learning through motivation, engagement, and 

contextualization of information (Doğan, 2021; Wilkerson & Laina, 2018). This aligns with the 

goals of the U.S. Department of Education for “creating authentic learning experiences that 

encourage and prepare learners” (National Science and Technology Council, 2018, p. 5). 

Storytelling has also been shown to be a versatile and inclusive teaching style that accommodates 

different ways of thinking and contexts including cultural, linguistic, identity, subject, and age 

(Doğan 2021; Posey & Lavik, 2021). The narrative paradigm (Fisher, 1984; Roberts, 2004) 

posits that through narratives, we develop a deeper understanding of our own and others’ 

knowledge of culture. It can address the opportunity gap expressed by Harvard-sponsored 

Panelists as reported by The Harvard Gazette on the need for more inclusive STEM education 

(O’Rourke, 2021). It makes math topics accessible to a diverse group of students when the 

student identities are intentionally taken into consideration.  

Storytelling is a practice that contextualizes math to create a more authentic learning 

experience rather than focusing on rote memorization (Lemonidis & Kaiafa, 2019; Doğan, 

2021). Lemonidis and Kaiafa ‘s study with experimental and control groups showed that “the use 

of storytelling had a positive effect on students’ achievement in fractions, as the experimental 

group performed significantly better than the control group” (p. 165). Gould and Schmidt (2010), 

describe how storytelling was able to increase motivation in trigonometry. Furthermore, it can be 

identified as a form of student-centered learning (Doğan, 2021; Büyükkarci & Müldür, 2022). 

Thus, storytelling in math is more than just a motivator, it’s also an effective tool for increasing 

achievement.   

Objective 

Low performance and achievement gaps in math persist while improving the teaching and 

learning of mathematics continues to be of national importance. Empirical studies provide 

evidence that storytelling can be one of the effective tools for addressing challenges facing 

STEM education. Critical factors in the effectiveness of storytelling include teachers’ 

pedagogical content knowledge, beliefs about the role of storytelling, teaching practices, and 

their perception of the place of storytelling in the curriculum. Studies on these critical factors are 
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scarce in the literature. Therefore, this study sought to study storytelling in math through these 

research questions: 

a. How do math curriculum materials support teachers’ use of storytelling for teaching? 

b. How do teachers incorporate storytelling as a tool for math teaching and learning? 

c. What are teachers’ perceptions about the role of storytelling in mathematics? 

 

Methodology 

This research utilizes a qualitative research design as it seeks to understand through 

descriptions and experiences. Fossey et al describes qualitative research as “a broad umbrella 

term for research methodologies that describe and explain persons’ experiences, behaviors, 

interactions and social contexts without the use of statistical procedures or quantification.” 

(Fossey et. al, 2002, p. 1).  Eleven teachers participated in this study. All participants were 

elementary (10 teachers) or middle school teachers from schools in one of the states from the 

Midwest. The participants’ teaching experience ranged between fifteen and 30 years. Ten 

participants self-identified as female and one as male. Data were collected through semi-

structured interviews. All interviews were audio recorded.  

Data were transcribed using computer software: Nvivo and Microsoft. The transcriptions 

were further checked by researchers to ensure accuracy. Using both software services and human 

transcription is important because “While AI may offer a cheaper and quicker alternative to 

human transcription, these transcripts will need to be meticulously checked by the researcher to 

ensure accuracy, fill in missing details or edit for context and readability” (McMullin, 2021, p.3). 

The steps for thematic data analysis begun with getting familiar with the data, then generating 

initial codes based on the literature and participants’ own words, then lastly revising codes based 

on responses. Transcriptions were coded using line by line coding which involved naming each 

data which allowed the researchers to “remain open to the data and to see nuances in it” 

(Charmaz, 2006, p.50). Identifying themes involved identifying repeated patterns in the line-by-

line codes to “summarize, highlight key features of, and interpret a wide range of data sets” 

(Kiger & Varpio, 2020, p. 8). Data analysis was conducted by multiple coders to “improve both 

the internal quality and external reception of qualitative studies” (O’Connor & Joffe, 2020). All 

the data were coded by two researchers.  

Results 

Math Curriculum Materials 

Almost all teachers said they think their curriculum materials incorporated storytelling but 

with some sort of caveat. Excerpts 1 through 4 were responses when participants were asked how 

well their math curriculum included storytelling. As the excerpts show, the caveats included 

grade level as a factor, story readability, school context, and relatability of story problems. The 

participants wished the “curriculum was very intentional in including stories that went along 

with what was being taught in that unit” but did not perceive their curriculum as doing this well. 

Interview excerpt 1. 

“I think in the younger grades probably more so, but in the 6th grade we're moving at such a 

fast pace. I mean, we really don't have the number talks and we don't go through what some 

of the younger grades do. So, I really think at my grade level, it doesn't lend itself as much.” 

Interview excerpt 2. 
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I do think the curriculum incorporates math storytelling as a tool for teaching math. One of 

the only problems I am finding though is that the students who cannot read well have a big 

aversion to that section and are completely put off by it. This makes it very hard for me since 

I need to walk them through every problem and sometimes feel like if the curriculum had 

used simpler language this wouldn’t be such a big deal. Being in a such a small, rural area 

also poses a problem with the students’ comprehension of multicultural names or activities 

that cannot be sounded out to pronounce. 

Interview excerpt 3. 

Our curriculum already has many story problems throughout the lessons, but many are hard 

to relate to. At times I will change them up and use my own students as examples and insert 

their names and friends so they can understand it better. 

Interview excerpt 4. 

We have even just some books that we could get and read, but even the way that those are 

done, they're still so disconnected to what we're actually teaching, and it's not like they're 

even any have high interest stories that the kids really want to hear.  It's just so disconnected, 

so our curriculum does a horrible job of having anything extra like that involved in it. 

Storytelling in Math Instruction 

Most of the participants said they always or almost always use storytelling in lesson delivery. 

The most common way storytelling is incorporated is for the application of math concepts such 

as for problem-based learning. Storytelling is also used for lesson introduction as one teacher 

explained “Starting a lesson, you always want to do some type of spark, so you are really striving 

to relate it to the current culture or what you're currently studying.” Eight of the ten participating 

teachers said they do not have students tell stories in math learning. When teachers reported that 

their students tell stories in math, it was unintentional and was because students were telling 

personal stories. Only two participants identified having students tell stories intentionally. The 

justification for not intentionally using storytelling included that students “see stories as part of 

literacy, and not as part of math.” Another teacher explained that it is because students “solve the 

problem and just focus on numbers that they forget how much language is involved in the math.”  

The Role of Storytelling in Math  

Multiple themes emerged when teachers were questioned on how they perceive the role of 

storytelling in math classrooms. The themes included engagement, personal connection, 

application, retention, and perseverance. 

Engagement. The most robust theme for the role of storytelling in math was engagement. 

Participants believed that storytelling is necessary “so that the math sticks, is interesting, alive 

and it's applicable.” The engagement theme also focused on personal connections, as explained 

in Excerpt 5. They view personal connections as support for engagement, information retention, 

and application. One teacher said, “I think it is important that students relate math to the real 

world. I think if your students hear short stories or scenarios that relate to them, they will be 

more engaged in the learning.” Other teachers thought many elementary students are not able to 

make personal connections with the math they learn without storytelling.  

Interview excerpt 5. 

I think it's a piece of engagement and sometimes with these stories that you share from your 

own experiences it gives students a better idea of who you are. . . I think in teaching you're 

not just the so-called sage on stage and if you want to do a good job you need to know a little 
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bit about your students. But that also means at times to give a little bit of yourself, so they 

know a little bit more about you as well. 

Application.  As may be noted, the referral for real-world applications of math through 

storytelling is not suggested only in the sense of supporting content connections of how to apply 

mathematical content in real-world situations. The theme of application is also focused on how 

the mathematical content can be applied to the students and make those personal connections.  

Information retention. The role of storytelling for information retention emerged from the 

data in the context of mathematics learning. A teacher explained, “I think it is very important 

because wherever you can insert real-world applications to what the students are learning, they 

tend to retain more information.”  

Perseverance. Storytelling in math was also perceived to aid in perseverance. Many 

responses echoed that teachers share their previous struggles with math and how they worked 

hard and sought support as students to be successful.  The teachers identified value in using 

personal experiences with mathematics to engage students in the “if I can do it so can you” 

mentality to motivate students to persevere. 

Intentionality and Readiness to Teach with Storytelling 

Teachers explained that their storytelling is intentional if their curriculums have adopted it. 

These curriculums that teachers viewed as having adopted storytelling were Amplify, MyMath, 

and Big Ideas Math. When discussing students sharing stories, this was also done unintentionally 

and often not purposefully. Furthermore, 10 out of 11 participants reported that they have never 

had any professional development or training related to story-based pedagogies math. The one 

participant who had reported having professional development was an educator in a Montessori 

school. The participant’s Montessori curriculums are designed with stories and base their 

curriculum on 5 main stories. This participant has three professional development days per year 

to learn about the story-based curriculum. Additionally, participant’s Montessori School hold 

weekly meetings with spaces for learning about how to teach using storytelling.  

 

Discussion and Conclusion 

Some of the study’s results align with the existing literature. For example, teachers perceive 

storytelling as a tool for engagement, motivation, and improving achievement as reported in the 

literature (Doğan, 2021; Wilkerson & Laina, 2018). Unlike literature that identifies storytelling 

as a tool for inclusion pedagogy (Piipponen & Karlsson, 2019; Mahmood et al., 2020), inclusion 

was not a robust theme in these data. The study also adds to the literature the finding that 

although storytelling is a valuable tool in math classrooms, lack of intentional incorporation and 

training are persistent problems.  

The implications of this paper are that schools should provide more professional 

development around the intentional use of storytelling in the classroom and be more intentional 

about incorporating story-based pedagogies in teacher education. Schools and curriculum 

specialists should consider developing and selecting curriculums that motivate story-based 

pedagogies. Teachers themselves should take the storytelling they utilize in the classroom and 

make its incorporation more purposeful. 
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This study examines the impact of teachers’ beliefs on the implementation of Mathematical 

Knowledge for Teaching (MKT) slope, focusing on an in-depth case study of an in-service 

teacher, Ms. R. Through classroom observations and interviews, we explore how Ms. R’s beliefs 

about her students’ abilities and backgrounds influence her teaching of slope. Findings reveal 

that deficit beliefs significantly mediated the implementation of MKT slope, affecting 

instructional decisions and practices. 

Keywords: Teacher Beliefs, Mathematical Knowledge for Teaching. 

Teachers’ beliefs affect their instructional strategies and shape their classroom practices, and 

one particularly influential aspect of teachers’ beliefs is their asset or deficit thinking about 

students. This study narrows its focus to Mathematical Knowledge for Teaching slope 

(MKTslope), investigating how one teacher’s beliefs about students’ mathematical abilities, 

behavior, and potential career paths affected the enactment of her MKTslope. We conducted a 

series of classroom observations with an in-service teacher and then, in response to one 

classroom incident, which we introduce below, we collected a sequence of follow-up interviews 

to understand the dynamic between the teacher’s MKTslope and her beliefs about her students. In 

this paper we examine how a teacher’s beliefs influenced her actions to constrain student 

engagement with the mathematical concept of slope. In doing so, we address the following 

research question: How does one teacher’s beliefs about student groups affect the 

implementation of MKTslope in a classroom setting? 

Literature Review and Background 

Teachers’ Beliefs and Expectations in Mathematics Education 

Teachers’ beliefs significantly influence their instructional actions in mathematics education. 

Beliefs about mathematics, teaching, and learning are pivotal in shaping classroom practices (e.g. 

Conner et al., 2011; Liljedahl, 2009; Thompson, 1984). A number of researchers have also 

studied more specific or nuanced teacher beliefs. In particular, studies have shown that teachers’ 

beliefs about their students, including their needs and backgrounds, play a critical role in 

determining their teaching approaches (Sztajn, 2003; Skott, 2001). This study addresses how one 

teacher’s deficit beliefs about her students affected her instruction. 

Deficit thinking involves attributing academic challenges to perceived deficiencies in 

students (Valencia, 2010), often linked to their racial or cultural backgrounds (e.g., Diamond et 

mailto:halil.tasova@csusb.edu
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al., 2004; Bol & Berry, 2005), socio-economic status (e.g., Rubie-Davies, 2016), or language 

(e.g., De Araujo, 2017). This perspective tends to overlook students’ existing skills, focusing 

instead on their weaknesses. Deficit thinking is not only a personal bias but is also entrenched in 

educational systems and societal structures (Parks, 2010). It leads to biased expectations and 

inequitable treatment in educational settings (Martin, 2009; Irvine & York, 1993; Townsend, 

2000). For instance, academic failures among marginalized students are often linked to inherent 

deficiencies, overlooking the role of teaching methods and educational practices (Delpit, 1992). 

More recently, researchers have increased the amount of attention given to deficit-based 

beliefs because these beliefs influence teachers’ choice of tasks and instructional strategies, often 

limiting mathematical opportunities for those to whom they attribute deficiencies (Jackson et al., 

2017; Peck, 2021). Marginalized and lower-achieving students frequently encounter tasks 

emphasizing procedural skills rather than conceptual understanding (Ferguson, 1998). These 

beliefs can result in simplified language and less challenging mathematical tasks (De Araujo, 

2017), lower cognitive demands in activities (Jackson et al., 2017), and a diminished sense of 

responsibility for student learning, ultimately leading to lower expectations and fewer 

opportunities for students (Diamond et al., 2004; Flores, 2007). This creates a negative feedback 

cycle that only exasperates the issue. In attributing deficiencies to particular student groups, 

teachers may then lower the cognitive demand of the tasks they implement, which then limits 

students’ reasoning opportunities and prevents them from building the competencies teachers 

would like to see, thus leading to a self-perpetuating cycle of lowered expectations. 

This study explores how a teacher’s deficit thinking about her students’ mathematical 

abilities, behavior, and career paths affected her teaching of slope. Unlike previous research that 

has drawn on surveys, NAEP data, or simulations (e.g., Bol & Berry, 2005; Battey et al. 2021; 

Irvine & York, 1993; Lubienski, 2002), we examine a specific classroom-based incident in which 

a teacher’s beliefs influenced her in-the-moment decision making in a manner that reduced 

opportunities to reason meaningfully about slope as a ratio of change. 

Mathematical Knowledge for Teaching (MKT) 

Teachers’ MKT is crucial for effective teaching (e.g., Ball et al., 2008; Harel, 2008; Kahan et 

al., 2003.; Rowland et al., 2005). We use Silverman and Thompson’s framework (2008), which is 

rooted in the concept of key developmental understandings (KDUs), which are essential for 

developing a teacher’s MKT. Initially, a teacher must identify and develop their own KDU for a 

specific mathematical topic, which equips them with knowledge that has the potential for 

pedagogical application. This knowledge must then undergo a process of reflective abstraction to 

transform into pedagogically powerful MKT. The framework further requires a teacher to adopt 

students’ perspectives (“decentering,” p. 508), envision how students might grasp mathematical 

concepts similarly to themselves, and devise supportive activities and discussions. 

Researchers have identified various meanings of slope among teachers (see e.g., Nagle & 

Moore-Russo, 2013; Byerley & Thompson, 2017). Three prevalent meanings include slope as 

steepness, in which slope is seen as a physical property with visual steepness; slope as rise over 

run, in which slope is understood as a geometric or algebraic ratio often focused on procedural 

movement (i.e., “rise” and “run”) on a Cartesian plane but lacking in multiplicative reasoning 

(Byerley & Thompson, 2017); and slope as a ratio, in which one compares changes in two 

quantities to multiplicatively form a new quantity, which is an interpretation applicable across 

various contexts and related to the mathematical property of constant rate of change (Diamond, 
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2020; DeJarnette et al., 2020). This last interpretation, though less common, is essential for a 

comprehensive understanding of slope and its applications in mathematical concepts and real-

world scenarios. 

Diamond (2020) defined MKTslope as teachers’ personal understanding of slope, teachers’ 

understanding of students’ developed meanings for slope (e.g., slope as steepness, slope as 

formula, slope as ratio, etc.), and how the teachers use classroom activities and discussions to 

support the development of these meanings. We examine a teacher’s MKTslope, particularly her 

focus on the slope-as-formula meaning, and how it is mediated by her beliefs about students. 

Interaction Between Teachers’ Mathematical Knowledge and Beliefs 

Research indicates a complex interplay between teachers’ mathematical knowledge and their 

beliefs, which affects their instructional practices (Bray, 2011; Campbell et al., 2014; Wilkins, 

2008). Teachers’ beliefs mediate their instructional decisions, and these beliefs are, in turn, 

influenced by their mathematical knowledge (Fennema & Franke, 1992; Zhang & Wong, 2015). 

Studies have shown that although strong knowledge is essential, beliefs play a critical role in 

how teachers engage with instructional practices (Charalambous, 2015; Copur-Gencturk, 2012). 

However, the specifics of this interaction, especially instructional decisions in the moment, 

remain underexplored (Philipp, 2007; Wilkins, 2008; Yang et al., 2020). Most research addresses 

beliefs about mathematics and its teaching and learning, with limited studies on how teachers’ 

beliefs about students might mediate their knowledge to influence instruction. Our study bridges 

this gap by examining how a teacher’s deficit beliefs about students affected her use of MKTslope, 

revealing how such beliefs constrain student engagement with complex mathematical concepts. 

Methods 

This study is part of a larger project focused on understanding how teachers support students 

engaging in mathematical generalization (see Ellis et al., 2024). We conducted a series of 

classroom observations and interviews with several teachers to observe what happened in 

practice and to understand their beliefs about generalization and their perspectives on the lessons. 

Within this broader project, we identified Ms. R, a sixth-year high-school algebra teacher from a 

rural district, for an in-depth case study (Merriam, 1998; Yin, 2009) due to her insights into the 

teaching and understanding of slope. While teaching her lesson on Systems of Equations and 

Inequalities, Ms. R used the Pet Sitter Task (Figure 1a). She asked students to collaborate and 

represent the constraints algebraically and graphically. As she facilitated the discussion, Ms. R 

make some choices about which she later expressed regret, and the details of the situation are 

discussed in the next section.  

 
Carlos and Clarita have been worried about space and start-

up costs for their pet sitters business, but they realize they also 

have a limit on the amount of time they have for taking care of 

animals they board. To keep things fair, they have agreed on the 

following time constraints.  

Feeding Time: Cats will require 12 minutes to eat per day. 

Dogs will require 20 minutes to eat per day. Carlos can spend up 

to 8 hours each day to feed the animals.  

Playing Time: Cats need 16 minutes each day to be brushed. 

Dogs will need 20 minutes each day playing with the ball. Clarita 

can spend up to 8 hours to play with the animals.  

Write inequalities for each of these additional time 

constraints. Shade the solution set for each constraint on  
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separate coordinate grids. 

(a)        (b) 

Figure 1: (a) The Pet Sitter Task and (b) Two differently oriented graphs from two 

different students for the feeding time 

Through a series of six semi-structured interviews (Roulston, 2022), which were conducted 

over a mixture of in-person and Zoom-based settings, we explored her MKT, her beliefs, and 

how these factors influenced her instructional actions. MKT interviews focused on Ms. R’s 

understanding of slope and were adapted from Diamond (2020). The questions included tasks 

intended to explore how her knowledge might impact her teaching such as the Five Students 

problem (Figure 2) and follow-up questions that incorporated contexts from her classroom to 

explore the knowledge related to the classroom incident that is illustrated in the next section.  

 

Five students are discussing the meaning of slope in a linear context. Student A says that slope is 
𝑦2−𝑦1

𝑥2−𝑥1
. 

Student B says that slope is the steepness of the line. Student C says that slope is rise over run. Student D says 

that slope is the rate of change of the line. Student E says that slope is the number m. 

Figure 2. Five Students problem (Adapted from Diamond, 2020). 

Beliefs interviews focused on her beliefs about mathematical generalization and the 

capabilities of her students and allowed us to follow-up with her to confirm our conjectures 

about her beliefs. These interviews incorporated video clips from her classroom so that she could 

reason and provide context to the choices that she had previously made in teaching. This 

retrospective reasoning was not intended to understand her in-the-moment decision making, but 

it helped us to explore the beliefs that she holds.  

We analyzed the interviews through a multi-phased qualitative process. Initial analysis 

focused on Ms. R’s beliefs about her students’ mathematical abilities and her MKTslope and were 

coded using an open and axial coding approach (Strauss & Corbin, 1998). As a result, categories 

of her beliefs about students’ knowledge and ability emerged as did her understanding of slope. 

Later interviews were modified based on previous data to continue to explore her beliefs and 

understanding. As a result, we created an account of explanations of how her beliefs and MKT 

influenced her teaching actions. 

Background: Classroom Incident 

Here we detail a classroom incident that sparked our curiosity about Ms. R’s MKTslope and 

beliefs. We share this incident as a separate section from the Results, as it is the event that 

initiated further data collection in the form of interviews to better understand both Ms. R’s 

MKTslope and her beliefs about her students. This incident occurred during the implementation of 

the Pet Sitter Task (Figure 1a). During the task’s implementation, the students worked in groups 

to write inequalities. As they began to graph the solution sets on separate coordinate axes, the 

students asked Ms. R which quantity, feeding time or playing time, should go with which axis.  

Ms. R decided to allow the students to choose how to orient their axes, stating, “Let’s just see 

who comes up with what. I think that’ll be better… that’ll be cool to see.” As the students 

continued to work on their graphs, Mr. R moved from one group to another and appeared to 

regret her decision to allow the students to choose their axes orientations. She said, “Man, I wish 

I had never said anything about y’all’s axes.” Despite this apparent regret, Ms. R nevertheless 
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proceeded to foster a discussion about the situation, comparing two students’ graphs with 

different orientations (Figure 1b). 

Ms. R put the two graphs under the document camera, saying, “I thought it was interesting, 

um, how you guys graphed. So, the cats and the dogs, the axes were different and similar.” She 

then asked the class, “Alright, so do you guys see the difference between these two graphs?” 

Several students responded that the dogs and cats were “flip-flopped” on the axes of the 

coordinate plane. Ms. R then highlighted the difference in the axes and drew the students’ 

attention to the slopes of the two graphs. Some students claimed that both graphs had the same 

slope, whereas others believed that the slopes were different. In trying to navigate this 

disagreement, Ms. R drew the students’ attention to the quantitative referents, claiming “they 

[both graphs] represent the feeding time… the one has cats as a y-axis, one has dogs as a y-axis.” 

She then asked the students again, “So, would the slopes be the same or different?” One student 

pointed out that in comparing the two graphs, “the rise and the run would be, like, switched.” 

Referring to the graph at the top (Figure 1b), another student said that the slope is “Negative 3 

over 5 and, like, if you start with 40 cats [referring to the bottom graph in Figure 1b] and you go 

down 5 and over 3.” In response to this argument, through employing the “rise over run” 

method, the majority of students concluded that the slopes were different, in fact, they were 

“flip-flopped,” seeing the reciprocal values of the slopes as different. 

Following this classroom incident, we were intrigued by Ms. R’s expression of regret about 

allowing the students to choose their own axes orientations. We were also interested to 

understand why, despite this regret, Ms. R decided to still bring the two graphs into a whole-class 

discussion and why, during this discussion, she compared the slopes of these graphs.  

Results 

In this section, we initially focus on Ms. R’s reflective interview concerning the classroom 

incident. Subsequent sections will dive deeper into her MKTslope and beliefs about students, 

exploring how these factors may have influenced her instructional actions. 

Ms. R’s Reflection 

We were curious about Ms. R’s stated regret over her decision to let the students choose their 

axes orientations, particularly given that she then nevertheless used this as a learning opportunity 

by presenting two students’ graphs to the class. We decided to conduct a reflection interview with 

Ms. R to gain insights into (i) her potential regret and its driving factors, and (ii) her decision to 

use the student graphs with different orientations. It was during this reflection interview that Ms. 

R’s descriptions of the classroom incident suggested that her beliefs about students and her 

MKTslope might impacted her actions. 

Ms. R’s beliefs regarding her “on-level” students’ abilities may have influenced her 

perception of her instructional decision as a mistake, as she believed that discussing graphing in 

different orientations, or “axis flipping,” was appropriate only for honors settings. She noted, “it 

[referring to the axis flipping] is only something that I think should be discussed in like honors 

setting,” and added, “on level, I mean they already cannot figure out which like they are like 

which way does it go,” indicating a preference to “let's just focus on the basics.” This stance 

suggests she reserves more complex discussions for honors students, underlining a belief that on-

level students are better served by focusing on basic graphing skills due to perceived limitations 

in handling advanced topics. 

We also explored Ms. R’s decision to use two student graphs with different orientations 
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(Figure 1b) in a class discussion despite her regret. During a video interview, Ms. R reflected on 

her decision watching a clip of herself. She noted her wish to have more clearly demonstrated the 

slope formula, citing concerns that some students (especially her “on-level” students) might 

misconstrue the graphs’ similarity in decline and spacing, potentially assuming identical slopes. 

Ms. R remarked, “both of them [graphs] are decreasing and they look about the same spread,” 

highlighting a potential misunderstanding outside an honors context where students might 

overlook differences, emphasizing, “I can see if that had not been in honors gifted class, it would 

have easily been oh yeah everything is the same.” Her intention was to clarify that slope analysis 

goes beyond visual inspection to require formula application, aiming to show, “we are just 

looking at how this vertical distance is changing over this horizontal distance,” to discern the 

distinct slope values. Our interpretation is that Ms. R’s understanding of the slope concept and 

her MKTslope may have significantly influenced her teaching approach, as she emphasized the 

importance of the formula over visual steepness in understanding the concept of slope. 

The emphasis Ms. R placed on the slope formula and the numerical values of slopes while 

comparing the two graphs sparked a line of inquiry for the research team as there are other ways 

of thinking about slope including slope as rate of change3. Given the value of understanding 

slope as a rate of change, particularly for interpreting the two graphs in the pet sitter task, we 

wondered why Ms. R discussed the meaning of slope as a formula instead of slope as a rate of 

change. It could have been interesting to see how both Ms. R and the students could conclude 

whether the slopes of those lines were different or the same when considering the rate of change 

meaning that is connected to quantities in the context of the problem. We argue that the slopes of 

these two graphs would be the same as both graphs show the same quantitative relationship: 

“every time you are done feeding 3 dogs, you can feed 5 more cats.” This understanding would 

require someone to think unconventionally (see Moore et al., 2014, for “breaking conventions,” 

p. 151) about how we represent inputs and outputs in a Cartesian plane.  

Conjecture #1: Ms. R’s MKTslope 

Given Ms. R’s emphasis on slope as formula in the initial interview, we hypothesized that her 

understanding of slope, as well as her MKTslope, might not include the concept of slope as a rate 

of change. To verify this hypothesis, we conducted MKTslope interviews, drawing on Diamond’s 

methodologies, to explore her perspective. Contrary to our hypothesis, Ms. R demonstrated a 

multifaceted understanding of slope, primarily as a rate of change between two quantities, often 

using real-world examples like fuel costs to illustrate this relationship. She considered this 

interpretation applicable in various contexts beyond formulas or procedures. 

We wanted to get further insight into Ms. R’s views on students’ understanding of slope. 

Presented with a task (see Figure 2), she highlighted her focus on slope as a rate of change, 

viewing it as a deeper, more meaningful understanding than just a memorized technique. She 

considered conceptualizing slope as a formula more substantial than seeing it as mere “rise over 

run” and deemed understanding slope as steepness, represented by “m,” as the most basic level. 

Ms. R used practical examples, such as “25 miles/hour,” broken down into a relatable format 

(“for every 1 hour, the car goes 25 miles”), to teach slope as a rate of change. Her goal was to 

enable students to create similar phrases and apply this understanding across different 

mathematical representations, like graphs, equations, and tables. 

 
3   We adopt Ms. R’s terminology, using “rate of change” to describe the “ratio” understanding of slope, despite 

our awareness of the conceptual differences between the two terms. 
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In order to get her insights into how she would compare the slopes of the two graphs oriented 

differently (Figure 1b) form the rate of change perspective, we designed and presented a task 

where a hypothetical student claims the following regarding the two graphs in Figure 1b: Slope is 

the rate of change. So, both graphs show that “For every 3 dogs you are done feeding, you can 

feed 5 more cats”. So, the rate of change in both graphs are the same. Therefore, the slopes are 

the same. The student also knows that inputs can be represented on the y-axis and outputs can be 

represented on the x-axis. Our goal was to see how Ms. R would interpret the hypothetical 

student’s understanding. Ms. R indicated that the student’s emphasis lay in understanding the 

relationship between quantities and the meaning of slope, rather than fixating solely on the 

numerical value of the slope. According to her, “these numbers [referring to the numbers in the 

student’s phrase] represent something and have meaning.”  

When directed to the aspect that the student also asserts that the slopes are equivalent, she 

explained, “The phrasing [referring to the student’s phrase] to me is more about like a 

relationship. And they’re saying, okay it’s [i.e., slope] a rate of change. So, their rate of change is 

the same” because “these two graphs represent the same relationship although they just look 

different visually.” Although she acknowledged that “the slopes are technically different”—using 

“technically” to denote “the literal exact value”—she argued that by conceptualizing the slope as 

a rate of change, the slopes are indeed identical. The interview data revealed that Ms. R 

emphasized slope as a rate of change connected to varying quantities. It was therefore more 

confusing that she did not adopt the rate of change perspective in her teaching, especially when 

comparing two graphs. This finding adds complexity to our understanding of her teaching 

approach regarding the concept of slope. 

Conjecture #2: Ms. R’s Beliefs about Students 

Our initial interview with Ms. R suggested she held deficit beliefs about certain students. 

Therefore, we created an alternative hypothesis that perhaps her beliefs mediated the way she 

implemented her MKTslope. To test our hypothesis, we investigated Ms. R’s stance on the 

feasibility of engaging her students in a discussion about slopes as rate of change and, more 

importantly, a discussion about the equivalence of slopes—as exemplified by the hypothetical 

student’s response. Results confirmed our conjecture. Ms. R’s beliefs about student behavior 

issues, abilities, and their future paths played a mediating role in implementing her MKTslope. 

Ms. R recognized the value of teaching slope as a rate of change but emphasized its 

complexity, noting, “I think that’s a good idea and a good thing to talk about, but I also recognize 

how big of an idea that is,” and contrasting it with simpler, procedural methods like the slope 

formula. She observed that students struggle with abstract concepts, expressing, “like we are 

talking about a relationship and meaning versus the concrete smaller procedural like ‘let’s do 

slope formula.’” Concerned about lower-level students’ reactions to difficult material, she 

mentioned, “when they’re confused, it’s like they’re angry and they start misbehaving,” leading 

her to prefer straightforward approaches to minimize disruptions. Ms. R pointed out that in a 

gifted setting, complex topics were more feasible due to fewer behavioral issues but anticipated 

“blank stares” and resistance from lower-level students. Additionally, she linked behavioral 

issues to external factors like home life, suggesting, “a lot of it [referring to behavior issues], I 

would say probably stems from something happening at home … if they [referring to parents] 

were more proactive, I think that would help a lot with kids being more engaged.” 

Ms. R’s beliefs about her students’ readiness to understand concepts like switching x and y 
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axes on the Cartesian plane influenced her use of MKTslope in the classroom, particularly 

hesitating to introduce such topics to lower-level students. She considered these concepts more 

accessible to gifted students and challenging for others, noting, “I think that is a big jump for 

those, that level of kids [referring to lower-level students] to handle the different orientations.” 

This provided additional evidence that her beliefs about students’ ability moderated the 

enactment of MKTslope as she decided to not bring slope meaning as rate of change when 

comparing the two graphs. In other words, even though she had more powerful MKTslope (slope 

as a rate of change), her deficit beliefs interfered with them leveraging that MKT. Moreover, Ms. 

R expressed doubts about teachers’ understanding of slope as a rate of change, saying, “as for 

like teachers as a whole, like, honestly, I don’t know that teachers even understand it.” Crediting 

her own understanding of the slope as a rate of change to being labeled as gifted, she observed, 

“I don’t want to sound cocky, but I think it’s because I was labeled gifted as a kid in school,” and 

noted a tendency among teachers towards rote learning. This stance implies she views the rate of 

change concept of slope as potentially too complex for standard classroom settings, fitting more 

for advanced learners and educators. 

Moreover, Ms. R held varying expectations for her honors and lower-level students, 

influenced by her perceptions of their future career paths. For honors students, she emphasized 

challenging mathematics tasks relevant to their projected careers requiring advanced skills. She 

stated that the rigorous mathematics is important “for the ones that I’m thinking that want to go 

to, like a four-year college and potentially major in something where they’re gonna have to use a 

good bit of math.” In contrast, she expected less from lower-level students, tailoring instruction 

to simpler concepts she deemed more practical for their potential vocational paths like “nursing,” 

and noted, “I think the advanced, the depth of math they need is just depending on where they 

want to go.” Additionally, Ms. R highlighted how external factors such as social class and 

parental education, especially in lower socio-economic backgrounds, impact students’ 

educational directions, observing, “I think it’s because the parents don’t know [about career 

options]... so it’s harder for them to educate their own kid about it.” 

In summary, Ms. R’s deficit beliefs about certain student groups and her perception of their 

abilities and future paths significantly influenced her implementation of MKTslope, particularly in 

her approach to teaching slope concepts. 

Conclusion and Discussion 

Our findings indicate that Ms. R’s beliefs about students mediated her MKTslope to influence 

instructional actions and decisions in various ways. Initially, she regarded the decision to allow 

students to choose their own axis orientations as a mistake, driven by her beliefs about their 

abilities, leaning towards a “focus on the basics.” However, once she recognized this perceived 

error, she used it as a learning opportunity. Guided by the interaction between her beliefs about 

students and her MKTslope, Ms. R emphasized the formulaic meaning of slope while discouraging 

the steepness interpretation. This combination of beliefs and knowledge led Ms. R to lead a 

discussion about graph differences and their respective slopes, redirecting students’ attention 

from visual appearances to the numerical aspects of slope as a formula. Furthermore, despite Ms. 

R’s MKT encompassing the concept of slope as a rate of change, she chose not to introduce the 

rate of change interpretation when comparing the two graphs, influenced by her deficit beliefs 

about student behavior issues, her perception of students’ abilities, and future career pathways.  
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This paper highlights the profound influence of teachers’ beliefs on the implementation of 

MKT in the context of teaching slope. Through an in-depth case study of Ms. R, it provides 

nuanced insights into how a teacher’s perceptions of students’ abilities and potential can shape 

instructional practices, particularly in complex mathematical concepts like slope. Moreover, our 

findings extend the discourse on the interplay between teachers’ MKT and their beliefs, offering 

a unique perspective on the dynamic interactions that occur in real classroom settings. By 

focusing on slope as rate of chance—a concept that is pivotal for students’ deeper mathematical 

understanding—this study sheds light on the missed opportunities for enriching students’ 

learning experiences due to the constraints imposed by deficit thinking. Thus, it calls for a 

reevaluation of teaching practices and belief systems in mathematics education, aiming to 

empower teachers with the knowledge and strategies to effectively nurture and leverage students’ 

mathematical understanding, irrespective of their backgrounds. This research underscores the 

necessity of addressing and challenging deficit beliefs within teacher professional development 

programs, advocating for a more holistic approach that includes fostering an understanding of 

diverse student capabilities and promoting instructional strategies that are inclusive and 

supportive of all learners. 
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Problem Statement and Conceptual Framework 

TCs learn across both the university setting and in K-12 classrooms (Grossman et al., 2012); 

however, for some time, scholars (e.g., Feiman-Nemser & Buchmann, 1985) have cautioned us 

to be cognizant of the lack of a shared vision across these two settings, especially in mathematics 

education. And still, researchers have emphasized (Smagorinsky et al., 2006; Ronfeldt et al., 

2018a) how mentors are seen as having the most immediate and enduring influence on how TCs 

teach. Thus, if we as mathematics teacher educators within teacher education programs (TEPs) 

hope to truly impact TCs’ teaching practices, we have to seek avenues by which we can cultivate 

a shared vision of ambitious mathematics teaching (Walkowiak et al., 2018) with mentors.  

This notion of a shared vision and partnership not only incorporates communal ideals around 

best mathematics practices but also ideals surrounding the various roles that mentors play (Butler 

& Cuenca, 2012; Parker et al., 2021). Mentors’ conceptualization of such roles is influenced both 

by their beliefs (Rozella & Wilson, 2012) and their perceptions (Leatham & Peterson, 2010). 

Matsko and colleagues (2020) reflect upon the various ways in which a mentor is both a model 

of teaching practices and a coach, as they intentionally target TCs’ learning. Early work defined 

coaching as ongoing cycles in which a coach facilitates “observation and feedback” to improve 

implementation of new teaching strategies (Joyce & Showers, 1981, p. 170). Other work has 

moved beyond these earlier definitions by focusing on components of coaching conversations 

(e.g., Knight, 2007), alternative structures for coaching (e.g., Gibbons & Cobb, 2017), and the 

multitude of modalities for how one should provide coaching and within varying contexts (e.g., 

Dozier, 2006). Hoffman et al. (2015) review what we can learn across various studies 

surrounding what it means to coach a TC and what we can learn from those interactions. 

Thus, we seek to understand not only how mentors are modeling mathematics teaching 

practices for their TCs as teacher educators but also the ways in which they go about 

communicating feedback (Lawley, 2014) and coaching their TCs about ambitious practices. Yet, 

in approaching this work, we are cognizant of, just as teaching is complex work, there are many 

differing contextual factors at play that may impact mentors’ work (Roegman & Kolman, 2020) 

and TC learning (Grossman et al., 2012). 

Eliciting Student Thinking in Mathematics Education  

The eight mathematics teaching practices provide a framework for standards-based or 

ambitious mathematics instruction (NCTM, 2014). To elicit and use evidence of student thinking 

is defined as, “…us[ing] evidence of student thinking to assess progress toward mathematics 

understanding and to adjust instruction continually in ways that support and extend learning” 

(NCTM, 2014, p.10). This practice heavily overlaps with posing purpose questions. We are 

interested in five aspects of eliciting, including: 1) formulating questions to elicit and probe 

student thinking, 2) posing questions, 3) listening to and interpreting student thinking, 4) 

developing additional questions based on student responses, and 5) making sense of what 

students know and can do (Shaughnessy et al., 2020).    

Purpose  

A broad goal for this work is to enhance the quality of elementary mathematics instruction by 

understanding the skills of mentors with practices of eliciting student thinking in mathematics 

and providing feedback (Cohen et al., 2020; Ronfeldt et al., 2018b) to their TCs about such 

practices. This nested case study sought to understand how such practices were being 

implemented; while the larger research study has sought to explore how we can use these 
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findings and materials to support and develop (Matsko et al., 2020) the skills of mentor teachers, 

who will, in turn, better support the next generation of TCs during such uncertain times.   

Research Questions  

There were three research questions for this work, but we have focused heavily on Research 

Question 3 within this proposal, as seen in the findings.  

1. How are the TCs within this study eliciting student thinking? What are their perceptions of 

the practice of eliciting? 

2. What are the mentors’ perceptions of what it means to elicit student thinking? What are the 

mentors noticing about the TCs’ practices with eliciting student thinking?  

3. How are the mentors providing feedback to their TCs and coaching them about the 

practice of eliciting student thinking?   

Methods  

For this study, we followed a case study design (Yin, 2018), examining the four, teacher-TC 

dyads within our elementary TEP, who were all serving a diverse student population.  

Sample  

The participant group for this research consisted of four mentor-TC dyads. The mentors were 

each recommended as experienced mentors who had worked locally with our TEP for at least 

five years. The four TCs were all seeking degrees in our elementary undergraduate program and 

were student teaching at the time. We sought to have more diversity represented within our 

sample, but unfortunately, as reflective of the teacher population in our area and nationally, the 

majority of experienced teachers working within the TEP were white women.  

In what follows, we outline the dyad information for pairing of mentors and TCs. Jade (white 

woman) a second-grade mentor teacher worked with Thea (white woman). Kali (white woman) a 

kindergarten mentor teacher worked with Raya (white woman). Maria (white woman) a first-

grade mentor teacher worked with Imani (woman of color). And lastly, Phoebe (white woman) a 

third-grade mentor teacher worked with Alex (white man).  

Data Collection  

The four TCs were each asked to submit two recorded mathematics lessons (approximately 

30 minutes each) taught within their internship placements. The TCs were asked to select lessons 

that specifically focused on eliciting student thinking. The respective mentor teachers were asked 

to engage with their TCs, following each mathematics lesson, in recorded feedback 

conversations. These conversations were approximately 20 minutes each. The mentors were not 

given a substantial amount of guidance, but were told that we wanted to learn more about how 

mentors provide feedback to TCs on eliciting student thinking in mathematics. 

Later, the mentors and TCs were each individually interviewed (approximately 30 minutes) 

to discuss their experiences with these feedback conversations. The TC interview focused on 

perceptions of when and how they attended to eliciting student thinking as well as unpacking 

how they felt about the coaching received. Sample mentor interview questions included: 1) How 

do you provide feedback to your TC about his/her mathematics instruction; 2) how do you 

decide how to provide feedback to your TC about eliciting student thinking; and 3) are there 

specific strategies or coaching moves that you use to give feedback? If so, please explain.  

Data Analysis 
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All eight of the mathematics lessons and the eight feedback conversations were recorded and 

transcribed. Additionally, in reviewing all of the video materials, we kept detailed fieldnotes as if 

we were in the elementary classrooms. Further, all eight of the interviews were also recorded and 

transcribed. Throughout the interview process, analytic memos were written intermittently, data 

were coded in Dedoose, and all data sources were triangulated. We further engaged in peer 

debriefs to ensure credibility throughout this process aligning with research.  

Results 

Eliciting Student Thinking as a Practice  

In examining the first two research questions, a number of themes emerged. It became 

evident that while these mentors have a great amount of expertise, their conceptions of what it 

means to elicit student thinking in mathematics did not always align with mathematics education 

research. For example, at times, there was a lack of depth in the mentors’ comments and missed 

opportunities to coach for probing questions. Perhaps, this is because the TCs also grappled with 

expressing fully formed ideas of what eliciting student thinking looks like. This also translated 

into practice where we noticed that the TCs made efforts to initially pose “how” questions but 

they missed the mark with further probing the students’ thinking or with making assumptions. 

Additionally, the mentor interviews revealed that the mentors’ perceptions of their feedback and 

coaching often did not align with what was observed within the videos. For instance, they often 

thought that they provided much more tangible coaching on eliciting than what was observed. 

Structures of Feedback Conversations 

The feedback conversations, structured by the mentors, varied in approach. For example, 

some mentors like Phoebe were very intentional in making sure that the conversation had a 

beginning (asking Alex how he thought it went), a middle (in which most of the feedback for 

future work was provided and there was some practicing), and an end (bringing closure to the 

conversation and looking ahead to future practice). However, mentors like Kali had a list of 

points that she wanted to discuss and she simply worked through the list in sequential order. 

While these two examples stand out for being extremes of one another, the coaching 

conversations of Maria and Jade did not consistently follow a specific structure, rather the 

structure was seen as being highly dependent upon what happened during a given TC lesson and 

what seemed pressing to discuss. Overall, Phoebe’s structure was seen as being most influential.   

Coaching Moves within Feedback Conversations  

While the structure of the conversations varied, the coaching moves also differed. For 

instance, Jade had more “suggestions for future moves” and rarely asked Thea questions about 

her teaching nor had her make future projections about practices. Similarly, across both feedback 

conversations, Kali did not ask Raya a single question, rather Raya only spoke when she wanted 

to interject or defend her decision making. Kali gave very directive comments, telling Raya what 

she should do the next time; Kali would often sit with a small white board and actively model 

instructional strategies. Maria and Phoebe both sought more of a balance between soliciting their 

TCs’ ideas and providing suggestions and directives for future practice. Specifically, we saw how 

Maria and Phoebe posed questions to have their TCs reflect on what they did, while immediately 

making moves to transition into phrases like, “next time, I would really like to see you to try…”. 

These directives were usually followed by additional questions like, “why do you think that 
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would be better?” or “how do you feel about that?”. In the following excerpt, we see some of 

Phoebe’s coaching moves while attending to the practice of eliciting student thinking.  

 

Phoebe: So, after they had explored [by using manipulatives], we turned to the brownies 

(with 1/6), how do you think that that went?  

[Alex talks about the scenario which asked the students to consider where they would want to 

purchase brownies from, given the shape of the equal parts.]    

Phoebe: Then, we did the discussion and a couple students answered, but what could you 

have done to make sure that everyone was understanding?  

Alex: I could have asked another question… to demonstrate that no matter how it was cut, it 

was still 1/6.  

Implications & Conference Theme 

The first finding asserted that mentors who work within our TEP could use professional 

development on the practice of eliciting student thinking as a teacher learner to ensure consistent 

understanding of these practices. In reflecting upon the latter two findings, we noted that even 

with a small sample size, the coaching that our TCs received varied substantially, having impacts 

on their practice and their perceptions of their performance. This too points to potential 

professional development opportunities on what it means to coach and engage in effective 

coaching moves within the role of a teacher educator. A particular implication for teaching would 

be to have mentor teachers record and re-watch their own feedback conversations with TCs for 

professional growth, just as we often suggest with self-analysis of mathematics lessons.  

Our research team affirms the value in establishing partnerships between university and 

school stakeholders. Specifically, we point to the need for a shared vision that enables TCs to 

develop equitable mathematics practices such as eliciting student thinking as we seek to envision 

the future of mathematics education in uncertain times. In recent years, teachers have faced 

immense challenges and feel the rippling effects of a global pandemic and political shifts, and so, 

in the face of such adversity, we must focus on the importance of building partnerships to 

support both practicing teachers and novices, for the sake of best serving the needs of learners.   
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This article explores equity-based and culturally responsive mathematics instruction in 

elementary education, with a specific focus on mathematical modeling (MM). Guided by the 

Noticing for Equity Framework, this case study of a 5th grade classroom identified and explored 

three key approaches: (1) selecting and adapting tasks relevant to students' lives, (2) launching 

tasks connecting to out-of-school knowledge, and (3) creating opportunities to learn and value 

input from peers. The findings illustrate the practical application of these approaches. The study 

highlights the importance of contextually relevant tasks, emphasizing the need for purposeful 

task selection and adaptation to create an equitable and engaging learning environment. 

Implications for teachers include recommendations to integrate familiar scenarios into lessons 

to deepen student understanding and appreciation for mathematics. 

Keywords: Culturally relevant pedagogy; Equity, inclusion, and diversity; Modeling; Teacher 

noticing.  

In elementary mathematics education, a transformative shift is underway—one that 

recognizes the impact of lived experiences on students’ learning journeys (Turner et al., 2021). In 

the United States, the Common Core State Standards for Mathematics (NGA Center & CCSSO, 

2010) call for activities that allow students to “apply the mathematics they know to solve 

problems arising in everyday life, society, and the workplace” (p. 7). The process of 

mathematical modeling (MM) aligns with this standard. MM involves the application of 

mathematical concepts and procedures to solve real-world problems by formulating a 

mathematical question, selecting computational methods, interpreting results, and creating 

generalizable models to apply to other situations (Suh et al., 2021). While engaging in MM, 

students use their knowledge and experiences to identify quantities and mathematical 

relationships (Aguirre et al., 2020; Turner et al., 2019). Moreover, student-centered pedagogies 

that emphasize contextual relevance and culturally responsive mathematics instruction can be 

incorporated into teaching and learning with MM (Turner et al., 2019; Suh et al., 2021). 

Researchers and policymakers advocate for engaging students in tasks that foster both 

mathematical reasoning and problem-solving, as well as equitable instructional practices that 

attend to students’ backgrounds, experiences, and cultural perspectives and traditions (National 

Council of Teachers of Mathematics, 2014; NGA Center & CCSSO, 2010). Despite these calls, a 

persistent gap remains in understanding how to implement equitable instruction in ways that 

align with students’ interests and experiences (Suh et al., 2021; Turner et al., 2024). We argue 

that presenting situations that are relatable and significant to students supports meaningful 

mathematics instruction and serves as a cornerstone for fostering equitable practices. 

Purpose and Research Questions 

We investigated the teaching and learning of MM with a focus on equitable and culturally 

responsive pedagogies. Our research focused on deepening understandings of teaching practices 
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and classroom interactions that incorporates students’ lived experiences in MM instruction. We 

explored the following research question: How do elementary teachers notice equity in planning 

and enacting MM instruction?  

Research Informing the Study 

This study centers on equity-directed instruction in the context of MM. MM problems 

provide opportunities to enact equitable practices as students experience real-world connections 

between mathematics and their own lives (Suh et al., 2017, 2021). Our theoretical framework for 

studying teaching and learning of MM centers on the Noticing for Equity Framework (van Es et 

al., 2022). “Noticing” in this body of literature represents ways teachers attend to elements 

within the classroom, make sense of them, and provide appropriate responses (Jacobs et al., 

2010). van Es and colleagues (2022) applied noticing research to equitable teaching practices to 

develop the Noticing for Equity Framework, and they identified critical ways to notice and foster 

equity in mathematics education. This framework is built on previous work on equitable 

practices, including research from Gutiérrez (2007) and Rubel (2017). Correspondingly, their 

constructs for equity and equitable practices informed our research as we focused on culturally 

responsive and sustaining pedagogies, access, achievement, identity, and power. Through a lens 

of the Noticing for Equity Framework, we examined culturally sustaining practices, such as 

positioning students as capable through discourse, recognizing students’ sociocultural selves, and 

promoting academic success (van Es et al., 2022).  

Methodology 

We conducted a case study involving classroom observations and analysis of mathematics 

lessons and lesson artifacts (e.g., instructional materials and worksheets) (Yin, 2015). Case 

studies provide rich examples for educators to consider when improving their own practices. 

Through purposeful selection, we identified and recruited two experienced 5th-grade teachers, 

Anna and Liz, along with their respective students at Sunset School, located in the northwestern 

United States (all names are pseudonyms to protect confidentiality). This public school serves K-

5 students with diverse backgrounds, ensuring representation across different demographics, in 

line with equity-based instructional principles (Rubel, 2017). Data collection included teacher 

interviews before and after each lesson and lesson observations. Interviews focused on 

mathematics instruction, decision-making, equitable practices, and students’ learning. We 

observed four mathematics units, with each unit featuring three mathematics lessons, resulting in 

12 observed and video-recorded lessons.  

Data analysis involved multiple coding cycles to identify themes, patterns, and differences 

(Saldaña, 2021). During the first cycle of coding, we used in vivo and descriptive coding to 

identify content relevant to the research question (Saldaña, 2021). For the second cycle of 

coding, we used Atlas TI (qualitative data analysis software) and employed axial and thematic 

techniques, integrating first-cycle codes, as well as codes from relevant research and theory (e.g., 

fund of knowledge, mathematics thinking, academic success). This stage involved deeper 

examination of the data to identify overarching themes and synthesize information (Saldaña, 

2021). We wrote analytic memos throughout data collection and analysis. Finally, we ran reports 

and used functions in Atlas TI to test emerging themes and generate findings.  
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Findings 

Guided by the Noticing for Equity Framework (van Es et al., 2022), our analysis revealed 

three primary approaches for planning and enacting MM instruction as teachers noticed for 

equity, including: (1) selecting and adapting tasks that are meaningful to their students’ lives, (2) 

launching tasks to connect to students’ out-of-school knowledge, and (3) creating opportunities 

for learning from and valuing input from peers. We illustrate these three ways in an example 

from a lesson Anna taught. For context, we first describe the MM task. Next, we discuss our 

findings for the three approaches Anna used in planning and enacting the lesson. 

For this lesson, Anna selected the “Better Buy” task from her curriculum materials. For this 

task, students analyzed the cost-effectiveness of purchasing 8 granola bars for $10 compared to 

buying 20 bars for $23 (Matassa et al., 2017, p. 27). Anna selected this task because she thought 

it had strong potential for engaging students in MM. The Better Buy task prompted students to 

consider real-world prices and relationships, a crucial aspect of the modeling process (Turner et 

al., 2021). While this task did not involve generalization, it encompassed other key components 

of MM, such as formulating a mathematical question, selecting computational methods, and 

interpreting results, making it suitable for students in aspects of MM (Suh et al., 2021).  

Anna evidenced noticing for equity when she stated that students would connect with the 

experience of buying granola bars. In the post-lesson interview, Anna said: 

I think that’s what happened today. It [the Better Buy task] made sense for them [students], 

because that was completely a familiar context. ... “I will go buy granola bars for all of us”, 

or “I eat granola bars every day at snack, and I need to find the cheapest ones around. So, I 

need to figure out what’s the better deal.”  

To further support connections to students’ out-of-school knowledge, Anna adapted the task 

by setting it in the context of grocery stores that were familiar to her students, using the names of 

“Rosauers” and “Costco.” Anna’s strategic framing of the task within the context of familiar 

grocery stores allowed students to draw upon their lived experiences and enabled students to 

apply mathematical reasoning in a real-world setting, forms of noticing for equity (van Es et al., 

2022). During the lesson, Anna launched the task by prompting students to recall instances of 

their experiences with grocery shopping, deliberately facilitating connections to students’ lives. 

Anna also asked students to share scenarios in which they might need granola bars (e.g., birthday 

parties, social gatherings). Anna facilitated group work and ensured that students valued input 

from peers while students shared different strategies to solve the task. At the end, students 

presented their strategies to the class and explained the rationale for their final decision on the 

best deal for granola bars. Anna viewed making posters and having a class discussion as a way 

for students to learn from peers. These three approaches (i.e., selecting and adapting tasks, 

launching the tasks, and valuing peer learning) aimed to ensure that all students could relate to 

and engage meaningfully with the MM activity.  

Next, we present students' work on the task to demonstrate the effectiveness of the identified 

approaches in fostering meaningful engagement in the MM task. A substantial number of 

students drew on their personal experiences shopping at both grocery stores as they solved the 

task. For instance, one student confidently stated, “Of course, we all know Costco is cheaper 

than Rosauers.” When another student asked about the reason for his assumption, he explained 

that he compares prices while accompanying his parents to both stores.  
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Students’ group work demonstrates the effectiveness of the identified approaches and 

illustrates additional strategies used by students while working on the MM tasks. In Figure 1 (a) 

students chose to equate both deals to 40 bars for comparison. Students identified 40 as a 

common multiple of 8 and 20, which facilitated the comparison by providing an equal basis for 

evaluating each deal. In Figure 1 (b), another group showed their work by comparing both prices 

using coin models as a visual representation to aid their understanding and decision-making 

process. By representing each price option with coins, they could visually compare the quantities 

and values to analyze the situation. 

      

Figure 1. Students’ Work  

 

Anna reflected on the task and stressed the value of grounding mathematics in real-life 

contexts. In the post-lesson interview, Anna explained: 

It is good if you can give them [students] a context that makes sense for them.... There are 

random questions that don’t necessarily have that [meaningful context]. ... So, if [students] 

don’t have the background knowledge to even understand what a question is asking, then ... 

that’s where the hang up continues to be. 

Anna’s perspective underscores the potential challenges students face when presented with 

abstract or disconnected mathematical problems, emphasizing the need for teaching contextually 

relevant tasks. She deliberately addressed this challenge by selecting the scenario of choosing the 

best buy for snacks and adapting it by using familiar store names. This scenario resonated with 

students, making MM relevant for decision-making in their daily experiences.  

Conclusion and Implications 

Our analysis revealed three effective approaches for elementary teachers in noticing for 

equity while planning and enacting MM instruction. Anna’s enactment of the “Better Buy” task 

exemplified how real-life scenarios can be integrated into MM, prompting students to draw from 

their personal experiences. The implications for research and practice stemming from this study 

underscore the need for equitable practices in mathematics education, particularly in elementary 

classrooms. For teachers, this implies a focus on purposeful task selection and adaptation, along 

a b 
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with deliberately facilitating engaging learning environments. By integrating familiar scenarios 

with MM, teachers can foster a deeper understanding and appreciation for mathematics among 

students. At the same time, teaching MM with a focus on equity is complex work, and teachers 

might need support to engage in this work. Moving forward, it is essential to continue exploring 

and developing equity-directed approaches in mathematics education. Ongoing collaboration 

between researchers and practitioners can support efforts to prioritize equity and access in 

elementary mathematics classrooms through mathematical modeling tasks. 
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In this paper, we propose a mathematics professional development tool designed to support 

teachers’ noticing for equity and improve their ability to provide powerful mathematics and an 

inclusive discourse community for each and every student. Used within the context of coaching 

cycles, this tool serves as a reflection guide for teachers to consider the extent to which all 

students had opportunities and access to rigorous mathematics and a discourse community and 

were engaged as doers and communicators of mathematics during a lesson. Our theoretical 

basis for the tool and iterative design process are described, followed by an example of its utility. 

We conclude with a discussion of what we learned from our retrospective analysis of our process. 

Keywords: Classroom Discourse, Teacher Noticing, Professional Development 

The significance of teacher noticing to promote effective mathematics teaching and learning 

has been highlighted in mathematics education research. Definitions of noticing call for teachers 

to identify classroom events and act on them during instructional interactions (Jacobs et al., 

2020). Teacher noticing includes teachers paying attention to student thinking and using their 

mathematical knowledge for teaching to make sense of students’ mathematical ideas (Sherin et 

al., 2011). It is often conceptualized as comprising three interrelated skills: attending, 

interpreting, and deciding how to respond (Jacobs et al., 2010). Such definition emphasizes the 

dynamic nature of noticing, which goes beyond observing a moment during classroom 

interactions to asking that the observer (often teachers) use their knowledge to make sense of the 

moment and make decisions in responding (Jacobs et al., 2010; van Es & Sherin, 2021). 

Noticing is not an isolated concept and has to be considered within a broader framework for 

analyzing instruction. Schoenfeld (2011), for example,  stated “teachers’ decision making is 

shaped by what teachers notice...But what teachers notice, and how they act on it, is a function of 

the teachers’ knowledge, goals and orientations.” Therefore, Schoenfeld claimed that noticing 

had to be “situated within the larger picture of teacher decision making” (p. 233). Tying noticing 

explicitly to equity, van Es et al. (2022) indicated that “teachers’ noticing of classroom activity 

shapes who is invited to participate, who is valued, and whose forms of knowing are included in 

mathematics classrooms” (p. 114). They suggested that supporting mathematics teachers’ 

noticing is critical for an equitable mathematics learning environment (van Es et al., 2022). 

mailto:eashaver@ncsu.edu
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Although noticing is key for equitable instruction, not all teachers inherently engage in 

noticing and noticing skills do not necessarily develop solely through teaching experiences 

(Jacobs et al., 2020). Some teachers might learn to notice effectively in their own classrooms, but 

professional development (PD) can support teachers in being more attuned to this practice and 

cultivating understanding about what to notice in the moment and how to interpret and act on 

those significant moments. In their review of the literature, Jacobs and Spangler (2017) stated 

that PD initiatives focused on enhancing teacher noticing have shown that teachers can learn to 

gain in-depth insights into their students’ mathematical thinking and learn to make productive 

instructional decisions, such as improving the quality of instructional tasks and increasing 

opportunities for students to engage with mathematical concepts.  

This paper focuses on the question of how to support teachers’ noticing for equity in 

mathematics instruction within the context of a PD program. In response, we share our 

development of a tool for teacher noticing for equity and its use in coaching cycles. We have 

designed the tool to support mathematics teachers and coaches’ noticing for equity and improve 

teachers’ ability to provide powerful mathematics, as well as an inclusive discourse community 

for each and every student. The tool also serves as a reflection guide for fostering productive 

coaching conversations on equitable practices in mathematics classrooms.  

In what follows, we first present the PD context for which the proposed tool was developed. 

Then, we provide theoretical background that contributed to the design of the tool and describe 

the design process. We conclude by providing an illustrative example within the tool. 

Additionally, we suggest recommendations for and discuss the implications of the tool’s utility, 

while also acknowledging its limitations. 

 

Context  

Beginning in 2010, Project AIM (All Included in Mathematics) received a series of grants 

from the National Science Foundation (NSF) to develop and test comprehensive educative PD 

materials (Davis & Krajcik, 2005) for K-2 mathematics. Originally, these materials comprised a 

core teacher PD program (AIM-PD) and a facilitator preparation program and were designed for 

school-team participation with local facilitators. These AIM materials were tested and revised 

across six implementation cycles that involved over 230 teachers and 14 facilitators. Additional 

components including a school-leader program (AIM-LP), a coach preparation program (AIM-

CP), and materials for coaching cycles were recently developed to extend the set of PD 

materials. 

Project AIM built on successful discourse techniques established in elementary literacy 

instruction to develop its 30-hour core teacher program. Throughout the AIM-PD, while teachers 

learn the AIM mathematics discourse techniques (Sztajn et al., 2021), they are asked to 

immediately integrate them into their classroom instruction. Teachers then use their experiences 

to examine what it takes to implement the techniques effectively and how to use them 

purposefully to improve high-quality mathematics discourse for their students. 

By providing teachers with techniques that can be immediately implemented, the AIM-PD 

“flipped the script” (Guskey, 2020) on PD design to allow teachers to quickly change aspects of 

their practice before they reevaluate their knowledge and beliefs. The PD starts with lesson 

organization, moves into the implementation of purposeful AIM discourse techniques, and circles 

back to connect teachers’ reflections on implementation to knowledge about high-quality 
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mathematics discourse (Sztajn et al., 2021). The Project AIM team calls this quick change in 

aspects of teachers’ practices “getting it going.” Over the years, the project has demonstrated the 

impact of its flipped script on participants’ knowledge, beliefs, and practice (Alnizami et al., 

2019), reinforcing the understanding that teachers in the AIM-PD get changes in their practice 

going. To extend and enhance the impact of AIM-PD on teachers–or as Project AIM team refers 

to it, to move from “getting it going” to “getting it good”--Project AIM added the AIM-LP and 

the coaching cycles. 

Coaching is considered a productive way to bring knowledge into practice (Joyce & 

Showers, 1981, 1982) and evidence of the positive impact of coaching on teaching is growing 

(Campbell & Makus, 2011; Russell et al., 2019). In the context of AIM, the coaching component 

particularly focuses on teacher noticing for equity (van Es et al., 2017) to promote transformative 

changes in practice. Leadership also plays a critical role in shaping teachers’ practice (Cobb et 

al., 2003), influencing the way teachers interact with coaches and fostering the ways in which 

teachers incorporate PD experiences into their practices (Coburn & Russell, 2008). Thus, AIM-

LP engages school leaders in establishing a shared vision for high-quality mathematics 

instruction and envisioning what productive mathematics classrooms look like. 

 

Theoretical Background 

The National Council of Teachers of Mathematics (NCTM) committed to approach 

mathematics education research through an equity lens, highlighting the growing importance of 

equitable mathematics learning for all students (NCTM, 2000; NCTM, 2014). This commitment 

significantly influenced the way mathematics educators explore equity and equitable practices in 

mathematics instruction. For instance, Gutiérrez (2007; 2012) provided a structured framework 

with four dimensions for equity in mathematics education: access, achievement, identity, and 

power. Access involves tangible resources for participation in high-quality mathematics; 

achievement focuses on tangible results; identity centers on whether mathematics is meaningful 

and relevant to students' cultural and linguistic background, and power analyzes voice in the 

classroom. NCTM’s (2014) access and equity position statement highlights what equitable 

mathematics instruction entails: 

Being responsive to students’ backgrounds, experiences, cultural perspectives, traditions, and 

knowledge when designing and implementing a mathematics program and assessing its 

effectiveness... Addressing equity and access includes both ensuring that all students attain 

mathematics proficiency and increasing the numbers of students from all racial, ethnic, 

linguistic, gender, and socioeconomic groups who attain the highest levels of mathematics 

achievement. (p. 1) 

Moschkovich (2012) offered a synthesized understanding of equitable practices in 

mathematics classrooms by reviewing several works (e.g. Esmonde, 2010, Gutiérrez, 2012, 

Wagner & Borden, 2012) that highlighted:  

a) supporting mathematical reasoning and mathematical discourse (because we know these 

lead to conceptual understanding and learning);  

b) broadening participation for students from non-dominant communities (because we know 

that participation is connected to reasoning and learning) (p. 100). 

As researchers explore what equitable mathematics instruction entails, teachers’ noticing in 

their instruction appears essential for supporting teachers in forming equity-focused perspectives 
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and implementing equitable practices (Hand, 2012; Turner et al., 2012). Thus, over the past 

decade, researchers initially explored the concept of teacher noticing, recognizing it as a 

fundamental construct in effective teaching (van Es et al., 2022). Research on high-quality 

mathematics instruction has provided evidence that noticing underpins teachers’ in-the-moment 

decision-making as they attend to and make sense of important moments during instruction 

(Jacobs et al., 2010, Jacobs & Spangler, 2017; van Es & Sherin, 2021). Furthermore, researchers 

have provided evidence that teachers’ noticing of students’ mathematical thinking influences 

teachers’ instructional practice and students’ mathematics learning (Jacobs & Spangler, 2017; 

van Es et al., 2022). 

However, noticing students’ mathematical thinking and activities is insufficient for fostering 

equitable learning environments (Turner et al., 2012). It is imperative to extend noticing to 

equitable practices (Jacobs & Spangler, 2017). van Es et al. (2017) define “noticing for equity” 

as “how mathematics teachers observe classroom activity with consequences for whether 

particular groups of students feel more or less empowered to engage in mathematical reasoning” 

(p. 252). Others indicate noticing for equity calls for attention to aspects like classroom 

participation (Wager, 2014), access (Gutierrez, 2007), positionality (Esmonde, 2012; Hand, 

2012), identities (Gutierrez, 2012), as well as culture and home knowledge (Turner et al., 2012).  

Studies on equitable instructional practices also call for exploring teachers’ noticing for 

equity (van Es et al., 2017). These studies indicate that equity-focused teachers notice key 

aspects of practice such as equitable discourse opportunities, access, how students position 

themselves and are positioned, the role of power, and the role of culture and language in 

mathematics classrooms (Jacobs & Spangler, 2017). Additionally, equity-focused teachers 

engage in pedagogical practices “that do not perpetuate deficit (or privileged) perspectives about 

groups of students” (van Es et al., 2017, p. 254).  

Project AIM Perspective on Equity and Noticing for Equity  

Several research studies highlight various aspects to be noticed with an equity lens, yet 

teachers often maintain a holistic perspective on classroom practices, leading to simplistic and 

general inferences based on their observations (Wager, 2014). They usually do not notice 

nuanced details related to equitable practices such as who engaged with the mathematics and 

how during the lesson (Hand, 2012; Wager, 2014). They tend to notice classroom mathematical 

activities as distinct from other forms of classroom participation (van Es et al., 2017). Addressing 

this issue, Hand (2012) suggested teachers should cultivate a lens of noticing for equity. This is 

essential for implementing equitable classroom practices and responding to noticing in equitable 

ways. To cultivate such a lens, it is critical to offer teachers both support and opportunities for 

“more frequent and nuanced noticing of classroom participation” as it contributes to a deeper 

understanding of equity issues (van Es et al., 2017). 

Project AIM’s coaching component supports teachers to notice equitable practices in 

mathematics instruction by creating opportunities for them to engage in nuanced noticing with an 

equity lens. We contend that noticing for equity needs to attend to both the dominant (access, 

achievement) and critical (identity, power) components of instruction (Gutiérrez, 2007). For us, 

"dominant noticing" regards teachers’ use of their MKT as they learn to attend to, interpret, and 

decide how to respond to students’ thinking (e.g., Jacobs et al., 2010). "Critical noticing," 

however, focuses on attending to, interpreting, and responding to equitable discourse practices. 

The project also focuses on including each and every student in mathematics discourse, attending 
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particularly to emergent multilingual learners (Malzahn et al., 2019). It promotes instructional 

practices that have been shown to foster equity such as attending to the role of language and 

status in classroom discourse participation, positioning all students as competent, and welcoming 

students’ home knowledge and language (Jacobs & Spangler, 2017; Wilson et al., 2019). 

 

Design Process 

The tool developed is Project AIM’s reflection tool for use by teachers and coaches. Our 

primary focus is fostering growth and improvement in teachers’ noticing for equity through the 

use of this tool in the coaching cycle. The design of the tool incorporated several key decisions, 

which emerged from the wealth of knowledge and insights derived from Project AIM, literature 

on noticing for equity and equitable mathematics instruction, and individual and collective 

reflections within the research team during three iterative design cycles. 

First Cycle: Design Decisions 

We began our design with Moschkovich (2012) emphasis on the pivotal role of mathematical 

reasoning and discourse in supporting conceptual understanding and learning alongside 

broadening participation for students from non-dominant communities. This resonates with 

Project AIM's emphasis on providing high-quality mathematics to each and every K-2 student, 

focusing on equitable discourse practices, and supporting teacher noticing with a focus on equity. 

Thus, we identified two critical aspects for the tool, adapting Moschkovich’s (2012) 

nomenclature, and named them initially: 1) Powerful mathematics and 2) 

Communication/Inclusive learning environment. 

The research team proposed a matrix format to unpack the actions of both teachers and 

students in the classroom, specifically homing in on how teachers notice these actions within 

each aspect. Recognizing the complexity of teaching, our tool design aims to support teachers in 

noticing for equity within significant moments, considering the challenge that they cannot attend 

to every event during classroom instruction (Jacob & Spangler, 2017). Thus, in the design 

process, our intentional focus is on leveraging the insights and experiences teachers acquire 

through the AIM-PD to identify and engage with these significant moments.   

Our collective reflection meeting led us to focus on detailing the actions of both teachers and 

students, emphasizing noticing lenses of opportunity and access mainly in Teacher Actions, and 

participation and power/voice mainly in Student Actions (Column headings of the tool). These 

areas were chosen within the overarching context of Powerful Mathematics and 

Communication/Inclusive Learning Environment aspects (Row headings of the tool). Each 

intersection represented by a cell (See Table 1). 

Subsequently, we decided to incorporate characteristics of equitable practices in a 

mathematics classroom as noticing actions within each cell of the tool. To identify these noticing 

for equity actions, the research team reviewed the related literature (e.g. Gutiérrez, 2012; Hand, 

2012; Jacobs et al. 2010; Jacobs & Spangler, 2017; Munter, 2014; Moschkovich, 2012; Sherin et 

al., 2011; van Es, 2017) and conducted individual written reflections to address a key design 

question: 

If we want teachers to notice for equity as it relates to students’ mathematical 

thinking/reasoning and student participation/communication, what specifically do we want 

them to pay attention to during the lesson and/or think about in planning?  
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Individual written responses to these questions were analyzed by a team member and 

organized within each cell of the tool. This process helped us pinpoint the initial noticing for 

equity actions within each cell. For instance, in cell of Communication or Inclusive classroom 

learning environment-opportunity& access (teacher actions), we included “Implementing 

techniques and moves to encourage and support student participation and draw on their assets” 

and in participation voice/power (student actions), we included “patterns of participation” as 

noticing actions. 

Second Cycle: Design Decisions 

In the tool’s second iteration, instead of presenting a mere list of noticing actions, we decided 

to delve deeper into each cell. This involved identifying focal actions within each cell, 

incorporating reflection questions, and reorganizing the placement of those actions identified in 

the first cycle under the new focal actions. The bolded noticing actions were purposefully 

selected and/or synthesized from the initial version of the tool to represent key practices that 

teachers pay attention to within each cell. We used Teach Math (McDuffie et al., 2014), and 

existing AIM-PD resources such as the Math Discourse Matrix (Sztajn et al., 2021) to identify 

the initial focal noticing actions. 

Reflection questions were also purposefully added to help teachers reflect on or examine 

each focal noticing action. The reflection questions were not broad inquiries such as "what 

teachers notice about"; rather we created questions to promote reflection on specific qualities of 

equitable practices in mathematics classrooms. For instance, we unpacked the initial noticing 

action of "patterns of participation" by including questions like, "To what extent do the 

reciprocal interactions among students and teacher-student contribute to the development of 

shared understandings of mathematical concepts?” We placed this question under the focal 

noticing action of "Who participates? Where does the majority of the math 'work' take place in 

the classroom (e.g., front of the room, small group, individual desks) and how does this 

contribute to participation?" within Communication or Inclusive classroom learning 

environment-access & opportunity (teacher actions). These noticing actions and questions within 

the tool are not exhaustive, but represent key points of emphasis in Project AIM that address 

equitable instructional practices highlighted in the literature. 

During collective reflection meetings, we decided to fine-tune the tool for better accessibility 

and user-friendliness for teachers and coaches. 

Third Cycle: Design Decisions  

In this cycle, we refined key elements of the tool, including the renaming of aspects and 

revising focal noticing actions, as well as revising the reflection questions. In the first cycle, we 

initially named the second aspect of the tool as "Communication/Inclusive learning 

environment." However, given Project AIM's commitment to equitable discourse practices, and 

the acknowledgment that all actions emphasized in the tool contribute to an inclusive learning 

environment, we decided to rename this aspect "Inclusive Discourse Community."  

We decided to use language in the reflection questions to prompt thoughtful consideration 

rather than evaluation or yes/no answers. Specifically, we chose to frame questions with prompts 

such as "in what ways" and “how” rather than "to what extent" or “do/does.”  For instance, 

instead of inquiring about “to what extent are students encouraged/expected to ask each other 

questions that press for mathematical reasoning, justification, and connections among ideas?”, 
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we revised the question to “How are students encouraged/expected to ask each other questions 

that press for mathematical reasoning, justification, and connections among ideas?” 

While "how" questions can effectively encourage teachers in noticing their actions, the same 

approach for student actions lacks the specificity needed for teachers to notice which students 

engaged in powerful mathematics and discourse. Consequently, we made the decision to rephrase 

the questions related to student actions, incorporating both "how" and "which/who." For 

example, in powerful mathematics-participation & power/voice cell, under the "Engage in math 

reasoning for sense-making of concepts " focal noticing action, we modified the question to be 

more targeted: "Which students are making meaningful connections between procedures and 

concepts? How?"  

Table 1 presents the short version of the final tool (without the reflection questions) as a 

result of the three iterative design cycles. 

 

Table 1: Tool for Teacher Noticing for Equity: Short Version 

 

 Opportunity & Access 

(Teacher Actions) 

Notice what the teacher does to 

create equitable opportunities and 

access to powerful mathematics and 

discourse.  

Participation & Power/Voice 

(Student actions) 

Notice who is engaged and how in 

powerful mathematics and discourse 

Powerful 

Mathematics 

●  Selects a challenging, discourse 

promoting task  

● Implements the task to maintain 

challenge while building on 

students’ prior knowledge  

● Promotes student thinking and 

sense-making  

Capitalizes on students’ 

mathematical, cultural, and 

linguistic assets as resources for 

learning 

 

● Engage in problem solving for 

conceptual development 

● Engage in math reasoning for 

sense-making of concepts 

● Utilize prior knowledge, 

resources, and assets to 

understand and engage with the 

math 

Inclusive 

Discourse 

Community 

● Attends to socio-mathematical 

norms for engaging in high-

quality and equitable math 

discourse  

● Values, encourages, and supports 

multiple modes of 

communication  

● Creates structures to encourage 

and support broad participation 

● Promotes academic language 

● Use multiple modes of 

communication to share and 

justify their math thinking and 

reasoning 

● Critique others’ thinking and 

reasoning and form math 

connections among ideas  

● Take ownership/responsibility 

for the math discussion   

● Collaborate with and utilize 

peers as resources to make sense 
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of each other’s thinking and the 

math ideas 

 

In this paper presentation, we also unpack the inclusive discourse community aspect of the 

tool. We share the reflection questions related to focal noticing actions in the cell and discuss the 

utility of the tool. For instance, for the focal action “Use multiple modes of communication to 

share and justify their mathematical thinking and reasoning,” the reflection question was “Which 

students are representing a concept or solution using one or more modes in addition to language 

– gestures, writing/drawing, technology, concrete objects, mathematical symbols? How?”  

 

Discussion and Conclusion  

Our work as designers of Project AIM has repeatedly led us to appreciate the power of tools 

that bring concepts from research into teachers’ professional learning and support aspects of their 

professional practice. That is, the tools form a foundation for learning and improvement by 

providing practical ways of engaging with new ideas in the PD setting and applying those ideas 

in teachers’ school and classroom experiences. We consider these tools to be boundary objects 

(Sztajn et al., 2014) spanning this territory of research, professional learning, and teaching 

practice. We were intentional about which aspects and actions to highlight, knowing that a tool 

can't include everything and still be practical and useful. We spent considerable time deciding 

which actions to include in the tool and engaged multiple design cycles to avoid overwhelming 

users. 

In our current work, we set out to create a new tool to support coaches and teachers who will 

engage in coaching cycles for a year following their experience in the existing AIM-PD. 

Undertaking this work allowed us to be attentive to and reflective on our process for creating the 

kind of boundary objects we have found supportive for bridging research, professional learning, 

and teaching practice. Although we did not set out with a defined process for this work, in 

retrospect, we discovered three identifiable cycles in our design work that mirrored the territories 

we intended for the tool to bridge. This intention includes (1) drawing on research generated 

concepts; (2) providing teachers access to these concepts in ways that meaningfully connect to 

their experiences; and (3) engaging teachers in applying these concepts to reflect individually 

and collectively on their learning and how it informs their teaching practice. 

We found that the three design cycles we identified in our work largely align with these three 

intentions. The First Cycle aligned with the first intention. We began with powerful concepts 

from research literature to define the overall domain, Noticing for Equity (Jacobs & Spangler, 

2017, van Es et al., 2017) and the space of the tool as a two-by-two matrix crossing aspects of 

equitable mathematics instruction (Moschovich, 2012) with actions to notice which tie to 

dimensions of equity (Gutierrez, 2007, 2012). Finally, we identified multiple actions in related 

research and located them in this space.  

The Second Cycle centered on the second intention, providing teachers and coaches access to 

the many concepts incorporated in the tool. Two key steps made up this cycle: organizing actions 

into a smaller number of categories recognizable to teachers, and framing these actions within 

questions teachers and coaches could consider, answer, and discuss when examining specific 

instances of their own practice. We drew on tools with similar purposes from our own (Sztajn et 

al., 2021) and colleagues (McDuffie et al., 2014) work to inform these steps.  
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Finally, in the Third Cycle we addressed the third intention of promoting teachers’ and 

coaches’ application of the tool. Two main decisions arose in this cycle, renaming one aspect of 

equitable mathematics instruction (Inclusive Discourse Community) to more closely align it with 

what would be familiar to teachers when examining practice in AIM-PD, and rephrasing the 

reflection questions to promote thoughtful and critical reflection on instances of practice rather 

than evaluative or binary (yes/no) judgments. This design decision was crucial for the tool's 

accessibility and usability, reinforcing that it represented familiar ideas reorganized and 

unpacked to highlight aspects of equity. 

This retrospective examination of our work uncovered a process for developing tools as 

boundary objects for professional learning to improve mathematics instructional practice, 

specifically for equitable practice. Reconsidering and recounting our experience allowed us to 

codify for ourselves and offer to other developers specific intentions and actions for engaging in 

and studying the design of tools for mathematics teachers’ professional learning experiences.  
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Alabama’s Practitioner Leaders for Underserved Schools in Mathematics (APLUS in Math), 

funded by the National Science Foundation, is a group of secondary (grades 6-12) mathematics 

teachers recruited from 20 schools across 10 school districts, creating two cohorts of Master 

Teacher Fellows to become masters of instruction and teacher leaders. Utilizing two measures 

with validity evidence, we examine the relationships between classroom observation data on 

teaching practices collected at multiple points of the school year and the National Board for 

Professional Teaching Standards (NBPTS) portfolio rubric scores obtained during the same year 

as the observation data. Significant results include strong relationships between classroom 

observations and specific portfolio results. We highlight validity evidence and measures with 

findings towards accomplishing the project’s overarching goals to improve instructional quality, 

student experiences, and school change. 

Keywords: Professional Development; Instructional Activities and Practices; Teacher Educators; 

Instructional Leadership; Assessment; Instrumentation, Validity Evidence 

Since 2000 on a macro-scale, the teaching and learning of mathematics in the United States 

has been guided primarily by the National Council of Teachers of Mathematics (NCTM). The 

Standards for Mathematical Practices [SMPs] (NGA & CSSO, 2010) rooted in the NCTM 

mathematical processes (NCTM, 2000), along with the Mathematics Teaching Practices [MTPs] 

(NCTM, 2014) present opportunities for dynamic mathematics classrooms. Teacher professional 

development (PD), at the micro-level, has tended to reflect these practices as higher priorities for 

the last decade-plus. Classroom teachers that incorporate the Mathematics Teaching Practices 

and engage students in the Standards for Mathematical Practices in concert during instruction 

can, arguably, be described as providing an effective environment for the teaching and learning 

of mathematics for all students. Moreover, mathematics classrooms that regularly demonstrate 

the MTPs and SMPs in concert provide ideal clinical settings for field-based experiences of 

teacher candidates (TCs) as they work towards establishing productive dispositions and early 

career teaching practices. This brief research paper focuses on the early analysis and findings of 

the relationship between live observation ratings of secondary teachers using the Mathematics 

Classroom Observation Protocol for Practices [MCOP2] and the National Boards’ Component 2 

(Differentiation of Instruction) and Component 3 (Teaching Practice & Learning Environment) 

portfolio scores. National Boards is much more related to affective domains of teacher beliefs, 

attitudes, and self-efficacy, whereas live observations of instruction are actual teacher behaviors. 

There has been conflicting evidence as to whether teacher espoused beliefs about their teaching 

of mathematics are their actual enacted practices and behaviors (Buehl & Beck; 2014; Polly et 

al., 2013). We wonder the degree to which National Boards results align to that of the MTPs and 

SMPs classroom enactment. 
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Foundation and Framework 

Measurement Framework 

Over the past decade, nearly 50 mathematics education researchers have assessed the validity 

of measures in mathematics education. A subset of this group analyzed the validity evidence of 

affective and behavior "teacher education instruments" published in 24 mathematics education 

field journals. Within the domains of affective and behavior measurement, it has been found that 

a significant portion of these instruments lacked strong validity evidence or in some cases no 

evidence (Gallagher et al., 2022).  

The MCOP2, developed by Gleason et al. (2017), evaluates student engagement (SE) with 

Standards for Mathematical Practice (SMPs) during classroom instruction, as well as teacher 

facilitation (TF) related implicitly to the NCTM Mathematical Teaching Practices (MTPs). 

Gleason et al. (2017) published validity evidence for content, reliability, response processes, and 

internal structure. Later, Zelkowski et al. (2016, 2024) have published addition evidence for the 

consequences of use, and relationships to other variables strengthening the validity argument for 

using the MCOP2 with live observations of classroom mathematics teaching to capture the two 

factors of interest (i.e. SE and TF).  

The National Professional Boards for Teaching Standards (NPBTS) has witnessed a 

significant rise in nationally board-certified teachers (NBCTs), with states offering salary 

incentives for certification and two to three times as much for teaching in high-need and/or hard-

to-staff schools (Gooden et al., 2023; Darling-Hammond & Sykes, 2003). States, districts, and 

schools have developed support mechanisms, professional development, and writing peer 

mentorship groups as an effort to support teachers in their pursuit of such certification. The 

NPBTS assesses four domains, including affective and behavior dimensions (Components 2, 3, 

4) and content knowledge (Component 1), through established rubrics with some demonstrated 

validity evidence in scoring (NBPTS, 2016) yet virtually no empirical published research 

connected to the degree to which NBCT mathematics teachers demonstrate the MTPs and their 

students engage in the SMPs.  

Professional Development  

A professional development [PD] program requires extensive planning for design, 

implementation, and assessment to make change as needed to maximize the program’s goals 

(Penuel et al., 2007; Kennedy, 2016; Loucks-Horsley et al., 2009). Some of the five goals of the 

APLUS in Math project include teachers reaching “teacher leadership” status through ongoing 

PD to become masters of instruction, leading PD, mentoring other teachers and TCs. The project 

is a five-year, three-phase designed PD project. Phase-1 consisted of 15 months of foundation 

graduate coursework (18 credit hours) in content knowledge, pedagogy, and teacher leadership, 

whereas Phase-2, the target phase of this research, consisted of professional workshops and 

pursuit of National Boards over two academic years [AY] as a means to “master instruction” 

demonstrating regular use of the MTPs and student engagement in the SMPs. Phase-3, not the 

focus of this report, includes the implementation of teacher leadership projects. 

This initial research focuses on understanding the relationship between observed instructional 

practices (SE, TF) with the MCOP2 and National Boards’ differentiation of instruction 

(Component 2) and teaching practices and classroom environment (Component 3). This early 

work aimed to inform adjustments for future professional development in the project, improve 
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instructional practices, and guide national board workshops while looking for additional validity 

evidence related to the MCOP2, National Boards, the MTPs, and the SMPs. 

Our research question: What is the relationship between MCOP2 SE and TF observation 

ratings and National Board Component 2 and 3 portfolio scores? 

Methodology 

To assess the impact of Phase-1 and Phase-2 PD, three MCOP2 classroom observations are 

collected during each AY spread apart by about 2-3 months. According to Gleason et al. (2017), 

three observations of a teacher provide enough data for an annual measure of SE and TF 

(previously discussed). During year 1 of the project, baseline observations were conducted in the 

2020-21 and again in year 2 (2021-22) when MTFs were working on Component 2 in the fall 

and Component 3 in the spring. In December of 2022, results of both components of the first 

cohort of MTFs were received which are reported in this paper. 

We conjectured that baseline year MCOP2 SE and TF scores would not be significantly 

related to Component 2 and 3 scores given they occurred in different school years, whereas we 

further conjectured that the SE factor score would be more likely related to Component 2 

[differentiation] and that the TF factor score would be more likely related to Component 3 

[teaching practices] given the foundation and framework discussion during the year of teachers 

working on national boards. We performed Spearman correlations given the interval level 

scoring of NB rubrics and then followed that with regression analyses to account for highly 

correlated independent variables with Component 2 and 3 as the dependent variables (interval 

scored, a caution to consider), with the MCOP2 SE, TF, total score ratings, and then MCOP2 item 

level ratings as the independent variables using a stepwise forward procedure to understand the 

variance explained by the observation measures on the national board’s performance level. 

Eleven MTFs had Component 3 scores, and ten MTFs had Component 2 scores. All MTFs had 

year 1 and year 2 MCOP2 observation ratings. 

Results 

Spearman Correlations two-tailed tests were significant, in order, as follows (p<0.05): 

COMP2 ~ [Yr 2 MCOP2 item 13, total score, SE score, TF score] 

COMP3 ~ [Yr2 MCOP2 item 7, 6, 4, 13, total score, TF score] 

All MCOP2 items were highly significant in relation to each other (rho>0.7). To address 

multicollinearity and to understand the better potential predictors, the secondary analyses found 

significant regression equations explaining 58.3% and 59.6% of the variance respectively of 

Component 2 and 3 based on MCOP2 observation recorded data.  

EQ1: COMP2 (rubric rating) = 1.653 (MCOP2 SE Factor Score in year 2) 

EQ2: COMP3 (rubric rating) = 1.485 (MCOP2 TF Factor Score in year 2) 

The constants were non-significant in the models whereas the MCOP2 coefficients were 

significant (p<0.01). Year 1 MCOP2 factor scores were non-significant. 

After recognizing the two factors that were statistically significant for components 2 and 3, 

we conducted additional analyses of the respective factor score items from the MCOP2 in 

relation to the component scores. The results indicated one TF item and one SE item were 

statistically significant in predicting the associated component score. However, the results were 

surprising which we discuss. The relationships explained 51.2% and 62.0% respectively where: 

EQ3: COMP2 (rubric rating) = 0.847 (MCOP2 Item 13 rubric mean from year 2) 
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EQ4: COMP3 (rubric rating) = 1.429 (MCOP2 Item 6 rubric mean from year 2) 

The constants were again non-significant in the models whereas the MCOP2 coefficients 

were significant (p<0.02). Year 1 MCOP2 items on each respective factor were non-significant. 

Lastly, we were curious as to whether there were any relationships to the content knowledge 

assessment (component 1) with respect to the MCOP2 observational data. Again surprisingly, 

there was one MCOP2 item with a significant relationship to the total component 1 score, item 7 

was significant, the modeling focused item. 

EQ5: COMP1 (rubric mean score) = 2.578 + 0.632 (Item 7 rubric mean from year 2) 

None of the sub-scores (exercises 1, 2, or 3, and multiple response) on Component 1 had 

significant predictors in the data, but the total component score generated a significant model. 

The Spearman Correlational analyses initially found the items that were statistically 

significant in relationship to NBCT component scores. Given the high correlations of multiple 

variables (rho>0.5), we then explored which variables are the greater predictors to understand 

which were most related in understanding NBCT related scores. The MCOP2 scoring can be 

interpreted as follows. The mean SE and TF factor scores ranging 2.5-3.0 would be “excellent” 

with 2.0-2.49 as “very good”. Further, 1.5-1.99 would be “good to average” and less than 1.5 is 

below average teaching practices. Based on EQs (1, 2, 3, 4, 5), we find that Component 2 is 

strongly related to the level of student engagement observed throughout the year’s observations 

during initial NBCTS submission. The model explains nearly 60% of variation in the outcome 

scores. Important to note, a mean score of ~1.8 on the MCOP2 SE factor is related to a 

Component 2 score of 3 (clear evidence of accomplished teaching). This is a lower score than 

anticipated. With the differentiation component mostly about how teachers plan to engage all 

students in their planning and enactment and a purely written component of portfolio artifacts, it 

is not so surprising in hindsight. Component 3 though tells a different story. A mean MCOP2 TF 

factor score requires slightly more than a 2.0 to warrant clear evidence of accomplished teaching 

on Component 3 (teaching practices). This is an expected score range. 

Discussion 

In making early programmatic decisions about our PD design, these findings allow us to 

make some initial points related to the PD design (Penuel et al., 2007). Our initial findings with 

the first cohort of MTFs demonstrates significant relationships even with a small sample size less 

than 15 teachers. However, by going even deeper into the item-level analyses, we see the 

importance of a “conceptual teaching focus” with the TF item 6 on teaching practice construct 

outcomes (need >2.0 mean on item 6), as well as the SE item 13 on differentiation of instruction 

to engage students with a high-quality classroom culture (need ultimately a 3.0 mean) to warrant 

accomplished teaching for the differentiation construct. That is not to say that the other 

Spearman significant correlations are not worth considering. Items 4&7 are also important. Item 

4 focuses on both TF and SE factors, pointing to teachers who facilitate lessons with a focus on 

students critically examining mathematical strategies. Item 7, modeling, is also important as we 

found a relationship to content knowledge with a post-hoc exploration. We were not initially 

examining the Component 1 content knowledge relationship to MCOP2 observations, it was 

secondary that we found some significance with the modeling item 7 though a similar finding 

exists (Yenmez et al., 2017).  

We believe this finding begins to shed potential that modeling may be more present in 

teachers’ classrooms with greater content knowledge. We will be interested to see if this finding 
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holds up with the second cohort when data collection is available May 2024. Holistically, there 

were also TF, SE, and total MCOP2 scores that were important. We view this holistically that 

most items are important on each factor, but certainly as our data set grows, we expect to see 

more granular findings in future research analyses. We would need further analyses, interviews, 

and a larger data set to fully begin to draw some conclusions.  
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EXPLORING THE INTERPLAY OF PROOF VALIDATION AND CONSTRUCTION: A 

STUDY OF STUDENTS' RATIONAL BEHAVIOR 
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This study explored the transformability of student rational behavior between proof validation 

and construction in a university-level online transition-to-proof course. Through a combined 

"proof validation-construction" activity, this study investigated how students recontextualized 

their rational behavior from proof validation to subsequent proof construction activities 

according to Habermas' three components of rationality. The results emphasized the need for 

additional support and practice in proof construction, extending beyond proof validation, to 

adequately fulfill the requirements of epistemic and communicative rationality. The study also 

demonstrated the positive impact of proof validation on proof construction, emphasizing the 

interconnectedness between two proof activities.  

Keywords: Reasoning and Proof, Research Methods, Instructional Activities and Practices, 

Design Experiments. 

Validating arguments and constructing mathematical proofs are essential skills for all 

mathematicians, and they constitute vital components of advanced mathematics courses in higher 

education. Proof construction is the process of developing correct proofs and proof validation 

involves evaluating these proofs to assess their correctness (Selden & Selden, 2017). Research 

has shown that most university students have experienced substantial difficulties with proof 

validation and construction (Alcock & Weber, 2005; Selden & Selden, 2003; Sommerhoff & 

Ufer, 2019; Weber, 2010). Although proof validation and construction are distinct activities, with 

construction involving the identification and application of theorems and definitions and 

validation dealing with the understanding and verification of these elements (Selden & Selden, 

2017), research indicates that the two activities are closely connected. For instance, Kirsten and 

Greefrath (2023) investigated different kinds of validation activities (e.g., reviewing, rating, etc.) 

used by 11 undergraduates in constructing a proof. They found that students' difficulties in 

constructing proofs may stem from insufficient validation strategies and a lack of suitable criteria 

for accepting their own proof constructions. Powers et al. (2010) found that students learn 

written proofs better by providing them with opportunities to validate proofs in an abstract 

algebra course. Therefore, some researchers have proposed that proof validation and construction 

should be taught together for better learning (Kirsten & Greefrath, 2023; Powers et al., 2010; 

Stylianides & Stylianides, 2009) because "constructing or producing proofs appears to be 

inextricably linked to the ability to validate them reliably, and a 'proof ' that could not be 

validated would not provide much of a warrant." (Selden & Selden, 2015, p. 9).  

Although it is suggested that proof validation can influence students’ performance on proof 

construction, limited studies have explored the specific knowledge or skills acquired through 

proof validation that mediates this effect. The present study implemented a combined "proof 

validation-construction" activity to explore how students’ rational behavior (cf. Habermas, 1998) 

was recontextualized from proof validation to subsequent proof construction activities according 

to Habermas' three components of rationality.     
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Theoretical Framework 

Habermas’ (1998) construct of rational behavior has been adopted by a few researchers (e.g., 

Boero, 2006; Boero & Planas, 2014; Morselli & Boero, 2011; Zhuang, 2020, 2023; Zhuang & 

Conner, 2018, 2020, 2022) into mathematics education as a theoretical framework for studying a 

variety of mathematical activities, including argumentation, modeling, proving, and problem-

solving process. In these studies, Habermas’ construct was used to analyze students’ or teachers’ 

rational behavior according to the three rationality components: epistemic rationality (focuses on 

the knowledge that use and play with); teleological rationality (focuses on how strategically 

choose tools or means to achieve the goal of the activity); and communicative rationality 

(focuses on the use of language toward reach understanding in the given community). The proof 

is a specific kind of mathematical activity in which students are expected to strategically choose 

specific tools to achieve the validity claims (teleological rationality) on the basis of mathematical 

rules, theorems, axioms, and principles (epistemic rationality), and communicate in a precise 

way with the aim of being understood by the given community (communicative rationality), 

which corresponds to Habermas’ elaboration about rationality requirements in discursive 

practices (Boero et al., 2010; Boero & Planas, 2014). In order to analyze students' rational 

behavior in applying proof methods within set theory, as examined in this study, the requirements 

of the three components of rationality were defined as follows, adapted from Habermas’ (1998) 

construct of rational behavior:  

Epistemic rationality. Accurately validate or apply set theory definitions or operations (e.g., 

set difference, set inequality); ensure the sufficient and correct use of reasons and warrants in 

developing mathematical arguments. 

Teleological rationality. Accurately validate or apply proof methods (e.g., proof by 

contradiction and contrapositive); ensure the use of proof methods is strategic in achieving the 

goal of the proof.  

Communicative rationality. Accurately validate or write proof statements using correct 

mathematical language, visual representations, or symbolic notations; ensure a clear and concise 

proof structure without any irrelevant or distracting elements. 

Methodology 

This critical case study (Yin, 2018) focused on a cohort of mathematics graduate students 

from an online transition-to-proof course. Students' proof skills were exercised through a review 

of proof methods and their applications to set theory. The main objective of this course was to 

equip students who were pursuing a master's degree in mathematics with the proof skills needed 

before they proceed to advanced graduate-level mathematics courses. 

In the initial weeks of the course, the instructor introduced the Proof Validation Framework 

(PVF; for more details, see Zhuang, 2023) and guided students in using it to validate proofs 

based on the three rationality requirements. Following this, students were expected to use the 

PVF to complete the weekly Proof Writer's Workshop (PWW) assignment individually, which 

required them to validate at least one purported proof common to the new proof methods covered 

in the course. Then, students were assigned to complete a weekly Proof Written (PW) 

assignment, which contains proof problems similar to the ones in their PWW assignment. The 

data of this study consisted of the written responses of 16 participating students to one of their 

weekly PWW assignments and PW assignments (see Figure 1), focusing on the week when they 

were introduced to proof by contradiction and proof by contrapositive methods. This study 
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employed a microanalysis approach (Corbin & Strauss, 2015) to examine the written responses 

provided by each participating student.  

 

Figure 1: Proof Writer's Workshop (PWW) and Proof Written (PW) Assignment 

Results 

Proof Writer’s Workshop    

The results showed that out of the 16 students, 14 students were assigned either a revised or a 

failed grade to the purported proof presented. Among 14 students, 11 correctly identified errors 

about the definition of set difference (epistemic rationality), with some offering corrections, 

“using the definition of set difference and DeMorgan’s [law] it should be 𝑥 ∉ 𝐵 or 𝑥 ∈ 𝐶” or by 

offering a counterexample. Three students mistakenly believed that the writer accurately stated 

the definition of set difference. Of eight students who focused on teleological rationality, half 

correctly assessed the use of the proof by contradiction, while the others had an incorrect 

understanding of assumptions used for proof by contradiction. One student suggested that a 

direct proof method could potentially reduce the length of the proof. A consensus was reached on 

the clarity in writing of the purported proof for eight students who attended the communicative 

rationality component.  

Proof Written Assignment  

Four students struggled with epistemic rationality in exercise 1.1, failing to justify their 

arguments using existential quantifiers. One student wrote, “a∈B contradicting a∉B” but did not 

provide adequate warrants for where the assertation “a∈B” came from. All students successfully 

applied the proof by contradiction method with correct assumptions (teleological rationality). 

Several students included unrelated or redundant points (e.g., restating the definition in a general 

sense) in their proof writing (communicative rationality). For exercise 1.2, it was observed that 8 

students failed to meet the requirements of epistemic rationality. Many students struggled to 

interpret the set inequality "A-B ≠ A" (epistemic rationality) when using proof by contrapositive 

method. One student wrote, “We know that x∉A-B, but since x∈A, we can conclude that A-B≠
A” without explaining why the exclusion “x∉A-B” held, showing a gap in their logical 
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reasoning. Regarding the teleological rationality, 14 students established the correct assumptions 

and worked logically toward the final claim based on the proof method they had chosen. One 

student failed to employ any proof method, and another student started with proof by 

contrapositive but lost track of what needed to be proven in the end. A few students presented 

unclear statements and constructed their proofs using lengthy sentences which made the proof 

harder to follow (communicative rationality). Table 1 presents students’ rational behavior within 

PWW and PW assignments. The table provides the number and percentage of students who 

satisfied the requirements of each rationality component, taking into account the varying total 

number of students attending to specific rationality component in the PWW assignment.  

 

Table 1: Students’ Rational Behavior within Proof Writer's Workshop (PWW) and Proof 

Written (PW) Assignment 

Components of 

Habermas’ rationality 

Number and percentage of students who met the 

requirements of rationality   

 PWW 

assignment 

Exercise 1.1 

(PW 

assignment) 

Exercise 1.2 

(PW assignment) 

 n % n % n % 

Epistemic Rationality  11 79 10 63 8 50 

Teleological Rationality 4 50 16 100 14 88 

Communicative 

Rationality 

8 100 9 56 8 50 

Note. The number of students counted in the PWW assignment may vary depending on how 

many students attend the specific rationality component. 

 

Discussion and Conclusion 

Table 1 illustrates a decline in the percentage of students meeting the requirements for 

epistemic and communicative rationality from proof validation to construction. It showed that 

merely knowing definitions or theorems (epistemic rationality) and checking languages or 

notations (communicative rationality) in proof validation did not guarantee students meet the 

requirements of these rationality components in subsequent proof construction exercises. The 

results reveal that proof construction is more challenging than validation, supporting the 

argument made by Selden and Selden (2017). On the other hand, the results of this study suggest 

that students' rational behavior in the three rationality components can be partially transferable 

from proof validation to proof construction. While some students did not fully satisfy the 

requirements of rationality in proof construction, they demonstrated the ability to bring accurate 

definitions of set difference (epistemic rationality) and to apply the proof by contradiction 

method (teleological rationality) learned from proof validation. These results support the 

previous studies (e.g., Kirsten & Greefrath, 2023; Powers et al., 2010; Stylianides & Stylianides, 

2009; Yee et al., 2018) in underscoring the interconnectedness between proof validation and 

construction and the benefits of fostering them together. Further research is needed to continually 

explore the interrelationships between two proof activities and the advantages of fostering them 

together. 
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Drawing on Habermas' (1998) construct of rational behavior, this study examined the 

transformability of students’ rational behavior between proof validation and construction. The 

adaption of Habermas’ construct enables a thorough examination of students' attention, 

interpretation, and response to the three components of rationality, which help us better 

understand students' cognitive processes and abilities in these proof activities. Sometimes, 

students may arrive at a correct judgment while providing incorrect interpretations in terms of 

rationality components, as found in this study. Examining students’ rational behavior in proof 

activities can offer valuable information for gaining insights into their understanding of 

mathematical concepts, strategies, and language.  

References  
Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking warrants. The Journal of 

Mathematical Behavior, 24(2), 125–134. https://doi.org/10.1016/j.jmathb.2005.03.003 

Boero, P. (2006). Habermas’ theory of rationality as a comprehensive frame for conjecturing and proving in school. 

In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th conference of the 

International Group for the Psychology of Mathematics Education (Vol. 2, pp. 185–192). Prague: PME.  

Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical 

perspectives and their classroom implementation. In M. F. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 

34th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179–

205). Belo Horizonte: PME. 

Boero, P. & Planas, N. (2014). Habermas’ construct of rational behavior in mathematics education: New advances 

and research questions. In Liljedahl, P., Nicol, C., Oesterle, S., & Allan, D. (Eds.), Proceedings of the Joint 

Meeting of PME 38 and PME-NA 36 (Vol. 1, pp. 205–235). Vancouver: PME.  

Corbin, J. M., & Strauss, A. L. (2015). Basics of qualitative research: Techniques and procedures for developing 

grounded theory (Fourth edition). SAGE. 

Habermas, J. (1998). On the pragmatics of communication (M. Cooke Ed.). MIT Press. 

Kirsten, K., & Greefrath, G. (2023). Proof construction and in-process validation–Validation activities of 

undergraduates in constructing mathematical proofs. The Journal of Mathematical Behavior, 70, 101064. 

https://doi.org/10.1016/j.jmathb.2023.101064 

Morselli, F., & Boero, P. (2011). Using Habermas’ theory of rationality to gain insight into students’ understanding 

of algebraic language. In Early algebraization (pp. 453–481). Springer, Berlin, Heidelberg. 

Powers, R. A., Craviotto, C., & Grassl, R. M. (2010). Impact of proof validation on proof writing in abstract algebra. 

International Journal of Mathematical Education in Science and Technology, 41(4), 501–514. 

https://doi.org/10.1080/00207390903564603 

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: can undergraduates tell whether an 

argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4–36. 

https://doi.org/10.2307/30034698 

Selden, A., & Selden, J. (2015). Validation of proofs as a type of reading and sense-making. In K. Beswick, T. Muir, 

& J. Wells (Vol. Eds.), Proceedings of the 39th conference of the international group for the psychology of 

mathematics education: Vol 4, (pp. 145–152). Hobart, Australia: PME. 

Selden, A., & Selden, J. (2017). A comparison of proof comprehension, proof construction, proof validation and 

proof evaluation. In Proceedings of the Conference on Didactics of Mathematics in Higher Education as a 

Scientific Discipline (pp. 339–345). 

Sommerhoff, D., & Ufer, S. (2019). Acceptance criteria for validating mathematical proofs used by school students, 

university students, and mathematicians in the context of teaching. ZDM Mathematics Education, 51(5), 717-

730. https://doi.org/10.1007/s11858-019-01039-7 

Stylianides, A. J., & Stylianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in 

Mathematics, 72(2), 237–253. https://doi.org/10.1007/s10649-009-9191-3 

Weber, K. (2010). Mathematics majors' perceptions of conviction, validity, and proof. Mathematical thinking and 

learning, 12(4), 306–336. https://doi.org/10.1080/10986065.2010.495468 

https://doi.org/10.1016/j.jmathb.2005.03.003
https://doi.org/10.1016/j.jmathb.2023.101064
https://doi.org/10.1080/00207390903564603
https://doi.org/10.2307/30034698
https://doi.org/10.1007/s11858-019-01039-7
https://doi.org/10.1007/s10649-009-9191-3
https://doi.org/10.1080/10986065.2010.495468


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1956 

Yee, S. P., Boyle, J. D., Ko, Y. Y. W., & Bleiler-Baxter, S. K. (2018). Effects of constructing, critiquing, and 

revising arguments within university classrooms. The Journal of Mathematical Behavior, 49, 145–162. 

https://doi.org/10.1016/j.jmathb.2017.11.009 

Yin, R. K. (2018). Case study research and applications: design and methods (6th ed.). Sage. 

Zhuang, Y. (2020). Using Habermas' Construct of Rational Behavior to Gain Insights into Teachers' Use of 

Questioning to Support Collective Argumentation (Publication No. 28024092) [Doctoral dissertation, University 

of Georgia]. ProQuest Dissertations and Theses database.  

Zhuang, Y. (2023). An application of Habermas construct of rationality to support students’ proof validation skills. 

In Lamberg, T., & Moss, D. (Eds.), Proceedings of the forty-fifth annual meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1) (pp. 95–105). 

University of Nevada, Reno. 

Zhuang, Y. & Conner, A. (2018). Analysis of teachers’ questioning in supporting mathematical argumentation by 

integrating Habermas’ rationality and Toulmin’s model. In T. Hodges, G. Roy, & A. Tyminski (Eds.), 

Proceedings of the 40th Annual Meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education (pp. 1323–1330). University of South Carolina & Clemson University.  

Zhuang, Y., Conner, A. (2020). Teacher questioning strategies in supporting validity of collective argumentation: 

explanation adapted from Habermas' communicative theory. In A.I. Sacristán, J.C. Cortés-Zavala & P.M. Ruiz-

Arias, (Eds.). Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American 

Chapter of the International Group for the Psychology of Mathematics Education, Mexico (pp. 2288–2296). 

Cinvestav/AMIUTEM/PME-NA. https:/doi.org/10.51272/pmena.42.2020 

Zhuang, Y., & Conner, A. (2022). Teachers’ use of rational questioning strategies to promote student participation 

in collective argumentation. Educational Studies in Mathematics, 111(2), 345–365. 

https://doi.org/10.1007/s10649-022-10160-6 

 

 

 

https://doi.org/10.1016/j.jmathb.2017.11.009
https://doi.org/10.51272/pmena.42.2020
https://doi.org/10.1007/s10649-022-10160-6


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1957 

 

 

 

 

 

 

 

 

 

Chapter 15:  

Technology and Learning Environment Design 

  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1958 

AFFORDANCES AND LIMITATIONS OF PRISMS MATH VR SIMULATIONS FOR 

STUDENTS’ MATHEMATICAL REASONING ABOUT RATIO AND SLOPE 

Theodora Beauchamp 

Southern Methodist University 

theob@smu.edu 

Candace Walkington 

Southern Methodist University 

cwalkington@smu.edu 

Virtual Reality (VR) provides unique learning experiences that allow students to immerse 

themselves in three-dimensional environments where they can explore mathematical ideas. 

Prisms VR is a suite of VR simulations for mathematics that allows students to have simulated 

real-world modeling experiences while working through topics such as ratios and 

proportionality. We examine affordances and constraints of VR for mathematics learning, 

focusing on manipulating and switching attention between different dynamic representations of 

mathematical principles, some of which involve immersion. Findings showed that some students 

enjoyed the immersive experiences and were able to be successful moving between the 

representational forms in VR, while others struggled with the overwhelming environment.  

Keywords: Cognition, Learning Theory, Technology, rational numbers, proportional reasoning 

Introduction 

Virtual Reality (VR) in math education provides learning opportunities for students through a 

multimodal approach, using body movements, hand gestures, and perspective-taking to interact 

with objects in virtual worlds. VR is when a user is transported to a fully virtually-rendered 

world, often by wearing a headset that completely overlays their visual field with dynamic digital 

graphics. There is currently a lot of enthusiasm about the possibilities of VR for mathematics 

education, with many meta-analyses highlighting VR’s positive results on learning (Cao, 2023; 

Villena-Taranilla et al., 2022; Yu, 2023). Prisms Math (Prisms of Reality, 2020) is the first 

widely-available and relatively-affordable suite of VR mathematics simulations for middle and 

high school, intended for use at scale in schools. But research on this program has again focused 

on its positive effect on pre- and post-scores (WestEd, 2023), without an accounting of what 

happens as students engage in mathematical reasoning in these environments. Our research 

question is: What are the affordances and constraints of immersive VR simulations for middle 

school students’ mathematics learning? 

Theoretical Framework 

Contemporary VR systems can allow students to interact with virtual objects using their 

bodies to manipulate and move around the objects. This capitalizes on embodied views of the 

nature of cognition (Lakoff & Núñez, 2000; Nathan, 2021), which posit that all conceptual 

knowledge is understood and experienced through the body and is action-based in nature. 

Embodied views of mathematical cognition often give rise to learning pedagogies where students 

engage in perceptual, sensorial, and motor activities to deepen their understanding of 

mathematical ideas (e.g., Abrahamson & Sánchez-García, 2016; Dimmel & Bock, 2019; Smith 

et al., 2014), including through gestures.  

Here we examine three affordances of VR highlighted by Dimmel et al., (2021) – these 

include that spatial inscriptions in VR can be: (1) viewed from different visual perspectives, (2) 

explored at different scales, and (3) interacted with in three spatial dimensions. When students 
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interact with 3D objects in VR, they do not only move their hands but their entire bodies as part 

of their perceiving processes (Bock & Dimmel, 2021; Dimmel et al., 2021). 

In terms of constraints of VR, Walkington et al. (2021) found that mathematics teachers 

highlight their technical and logistic limitations, as well as issues with behavior management and 

content coverage. In another work, Ke and Carafano (2016) conducted a mixed-methods study 

where the authors explored an immersive, flight-simulation learning game for high school 

students. The found that the more immersive simulation generated distractions and sensory 

overload, potentially hindering learning, with additional challenges in physical setup. 

 

Methods of inquiry 

Participants and Procedures 

Participants included 9 middle school students who were participating in a district summer 

school. The students consented to participate in a VR summer tutoring program from a larger 

study. The students self-identified three as male and six as female; six identified as Hispanic and 

two as African American. Students wore the Oculus Quest VR headset for 1-4 afterschool 

tutoring sessions that lasted 30 minutes – 1 hour. They played the VR math game “Prisms Math” 

while being supported by a trained math tutor.  

Within Prisms Math, students were given two simulations to work through. Each simulation 

started with an interactive immersion activity (Table 1: Immersive Satellite, Train). In the first 

simulation of ratios, students attempted to hit the “send” button to send location and time data 

back to Earth from a satellite. In the second simulation of rate of change, students were stopping 

the train but pulling down the brake lever to calculate “thinking distance.”  In both simulations, 

after the initial immersive experience was complete students were brought to the “lab” to figure 

out if the satellite was in its orbit in the ratios simulation and the rate of change train simulation 

to calculate various types of weather conditions (Table 1: tasks Lab Satellite, Lab Train). 

 
Description Image # of Ss Reached   

Immersive Satellite: Students are in a 

control center and manipulate where a 

satellite goes with their hands at different 

angles, learning about ratios. 

 9 

Lab Satellite: Students are moving the 

satellite to find the distance traveled for 

multiple measures such as ½ and ¾ of the 

orbit. They use this information to calculate 

the unit rate. 

 9 

Immersive Train: Students are in a 

moving train roleplaying being a train 

conductor. The goal is to stop the train with 

minimal reaction time. 

 5 

Lab Train: Students compared the 

thinking distance of a train conductor 

through three types of weather to see if the 

weather had an impact on the time it takes 

to stop the train.  

 5 

Table 1: Descriptions of the Simulations Used in Prisms Math 
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Data collection and analysis 

Participants took a pre-survey. They used the Meta Oculus 2 VR goggles through four 

sessions working through the Prisms simulations of Ratios and Rate of Change. After each 

session, students were given post-surveys regarding their experience with Prisms and the VR 

headset. Participants were also video-recorded and their videos coded into three categories. The 

first category was manipulation of the satellite simulation, or the number of times students 

moved the satellite to show the satellite’s distance traveled and fill in the table with the correct 

distance. While doing this a few times showed engagement and immersion in the VR context, we 

saw that doing this many times indicated struggle. For the second (switching representations in 

satellite simulation) and third (switching representations in train simulation) categories, in both 

simulations, students had to move within the visual field to four sections: a data table, an 

interactive simulation of the satellite or train, a hint button with a hint displayed, and an answer 

tab where they fill in their answer. This movement to complete the task was counted, as again we 

saw that having to switch rapidly between these 4 different complex and immersive 

representations signaled difficulty.  

Next, videos were coded using thematic analysis (Clark & Braun, 2017) where we looked 

broadly at affordances and constraints of the VR. For this coding, we focused in on elements of 

what was occurring that were unique to the environment being VR – that would that have been as 

likely to happen if the same simulation was on a flat screen. Themes were determined 

inductively, and multimodal analysis (Walkington et al., 2023) was then conducted for each 

theme to look at students’ functional actions, speech, and gestures in the VR environment. 

Results 

In our results, we give one emergent theme for the affordance of VR for mathematics 

learning and two emergent themes for the constraint of VR for math learning. Our theme for the 

affordances of VR was that the simulations allowed some students to successfully immerse 

themselves in a real-world scenario using 3D visualizations. In Figure 1, the student manipulates 

the satellite by moving the handle to calculate distance. As they moved the handle the Virtual 

Assistant in the simulation filled in the table automatically. The transcript shows that this student, 

an eighth grade, male Hispanic, EL learner, was able to move fluidly between mathematical 

representations that were situated in real-world activities (i.e., the satellite moving) and more 

formal mathematical representations (i.e., the table and calculating the numerical answer) in the 

immersive environment (Lines 1-2 Figure 1). This affordance is supported by the data showing 

students making fewer satellite moves and left to right movements in both simulations. The 

students’ positive response to the environment is further highlighted in their post-survey 

response, where they said with respect to the VR simulation: (“It is intesesing and is not boreag” 

(It is interesting and not boring)).  
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Figure 1: Using Ratios Simulation in Prisms VR 

Our first theme for constraints of VR is that students struggled to move between different 

representations presented in the VR environment. The immersive simulation, along with 

different math representations and hints, overwhelmed some students. Those who didn’t 

understand the satellite’s role tended to manipulate it excessively. In both simulations, we 

observed students frequently scanning the visual field from left to right. In the post-survey 

answers to the question, “What didn’t you know about VR that you do know?”, an eighth-grade, 

male Hispanic student said, “That math is more hard in VR the in real life”. Another post-survey 

question was “What did you dislike about VR?” An eighth-grade Hispanic male, responded, “I 

need more hints than just one.”  

Our second theme was that the facilitator struggled to understand the issues students were 

experiencing due to not being able to see from their immersed first-person perspective (Figure 

2). Figure 2 shows the researcher communicated with the student multiple times to try to assist. 

However, the student struggled to explain where they were in the visual field (Line 4, P2). They 

also say in Figure 2, “I don’t know what to divide it by” and “Maybe I can times it by 3?” 

showing that the facilitator was not able to provide assistance. 

Figure 2: Communication Issue Using Ratios Simulation in Prisms VR 

Discussion and Conclusion 

This study analyzed rich, in-the-moment interaction data as students used a commercial VR 

simulation suite for secondary mathematics – Prisms Math. We found that the immersive nature 

of the simulations of real-world phenomena (driving a train, controlling a satellite in orbit) was a 

huge affordance of VR, as were the positive affective reactions students had to this environment. 

However, we also found that students struggled to make sense of the multiple, immersive 

representations of mathematical ideas in a very crowded and sensory visual field, and the 
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facilitator struggled to provide meaningful assistance to students without access to their first-

person view in the VR. One implication of this research is that additional and new considerations 

of how to scaffold students’ mathematical learning need to be brought in VR environments. 

Scaffolds are needed that focus students’ attention, reduce visual and sensorial complexity, and 

allow teachers to deeply understand what they are experiencing in their immersive environment.  

A second implication of this research is that future VR designs should follow Prisms Math in 

leveraging immersive, real-world, even fantastical situations (like controlling a satellite from a 

space station or driving a train), which students would be unlikely to ever experience in real life. 

This kind of immersion can be powerful for student engagement. 
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The field of mathematics education faces multifaceted challenges in uncertain times, and 

preparing learners for the future of work and participation in society requires fostering essential 

skills and knowledge, including quantitative literacy and mathematical reasoning. Aligning 

mathematics education with emerging societal trends necessitates a strategic approach, 

leveraging technologies like AI to enhance instruction while mitigating associated risks. This 

call to action uses Bloom’s (1984) Four Objects of Change as a framework for discussing 

recommendations for AI supported designs and solutions for learners, educators, curriculum 

content and materials, and families. 

Keywords: Early Childhood Education, Learning Theory, Policy, Systemic change, Artificial 

Intelligence, Technology 

Introduction 

The field of mathematics education presently faces a myriad of multifaceted challenges that 

demand a re-evaluation of our current practices and a renewed commitment to addressing 

persistent issues. The conference theme which asks us to consider the “future of mathematics 

education in uncertain times” urges us to confront the complexities of the present moment while 

charting a course towards a more equitable and effective future. 

At the heart of any discussion about the future of mathematics education is an 

acknowledgment of present challenges. Consider that despite decades of effort and substantial 

investment of time, energy, and capital, we have not substantially increased the mathematics 

achievement of nearly two-thirds of students in the United States to grade-level proficiency 

(deBrey et al, 2019; NAEP, 2022). Additionally, the concept of "uncertain times" encompasses a 

range of challenges, including a worldwide pandemic that saw an explosion of edtech solutions 

and alternative schooling options, raising concerns about quality and equity, and exacerbating 

mathematics achievement challenges (Dorn et al., 2021; Patrinos, Vegas, & Carter-Rau, 2022). 

Furthermore, recent developments in AI have increased its integration into education spaces 

underscoring the need for more strategic foresight and critical examination of its impacts (U.S. 

Department of Education, 2023). 

Preparing Learners for the Changing Nature of Work & Society 

Preparing learners for their future involves two things: (1) understanding the future students 

will inhabit, and (2) facilitating educational experiences that empower learners with the requisite 

skills, attitudes, and knowledge to succeed in that future. Though the purpose of education has 

been defined in different ways over time, more recent conceptions include its framing as an 

economic good for both society and individuals (Locatelli, 2018; Murray, 2023). Meaning, an 

educated citizenry not only promotes the successful functioning of a society through economic 

prosperity as a whole, but also through the economic prosperity of the individual.  

The future of work and society is already here. Technological advancements are changing the 

nature of work and society at a pace unseen in human history. Current projections show that  “by 
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2030, activities that account for up to 30 percent of hours currently worked across the US 

economy could be automated—a trend accelerated by generative AI” (Ellingrud et al., 2023, p. 

iv). These changes predict increased occupations in the field of healthcare, STEM, and 

development (i.e., building and construction)--all of which require strong mathematical 

knowledge and reasoning. Analyses conversely estimate dramatic reductions in jobs earning the 

lowest wages with the least educational requirements: “Automation’s biggest effects are likely to 

hit other job categories. Office support, customer service, and food service employment could 

continue to decline” (Ellingrud et al., 2023, p. iv). These changes are coming fast, with workers 

in the lowest wage quintiles (i.e., pay ranges of $30K to $38K) 10 to 14 times more likely to 

need to change occupations by 2030 (Ellingrud et al., 2023).   

Work is not the only aspect of adult life that is changing; the past few years have seen 

unprecedented change in society as well. Students today swim in a sea of data, bombarded by a 

proliferation of unsubstantiated information, biased interpretations, “alternative facts,” “fake 

news,” and more. Successful navigation of adult life today and for the foreseeable future requires 

acute quantitative literacy that empowers individuals to evaluate, interpret, and develop insights 

from data in new ways (Elrod, 2014; Yeom, 2021). Calls “for educational approaches that can 

promote an understanding of how mathematics and statistics are used to serve social power 

structures or manipulate and shape public opinion” (Gal & Geiger, 2022, p.7) are growing in 

response to the changing social, civic, and political landscapes. 

The implications of these changes in the future of work and society are monumental.  They 

require us to create mathematics education systems that empower learners with deeper 

mathematics knowledge, stronger mathematical competencies, more creative problem solving, 

and more rigorous quantitative reasoning. In a world where computational and procedural 

aspects of work are done by machines, tasks that can’t be automated or synthesized, or predicted 

by large language models, will need to be done by humans who have the ability to think 

critically, engage in high level problem posing and creative problem solving, and to reason 

logically. As Pink (2006) said decades ago, “we are moving from an economy and society built 

on the logical, linear, computer like capabilities of the Information Age to an economy and a 

society built on the inventive, empathic, big-picture capabilities of what’s rising in its place, the 

Conceptual Age” (p. 2). Learners with strong math knowledge and skills who reason 

quantitatively, think critically, and creatively problem-solve, will have a distinct advantage in the 

future they face.  

 

Given this, important questions to ask as stakeholders in mathematics education include:  

 

(1) What is being done to develop learner competence in these areas (e.g., mathematical 

knowledge & skills, problem-solving, quantitative reasoning, etc.)?   

(2) How are we leveraging emerging technologies (such as generative AI) to facilitate learner 

competence in these areas at scale?  

(3) How are we applying the learning sciences to increase learner mathematics competence 

across the PreK-12 learning cycle? 

 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1966 

Perhaps a further question we might pose is, how will we know our efforts are succeeding? 

Presently, we lack the proper instruments to truly answer this question. Consider that even 

though some progress has been made in moving from assessments that measure procedural 

knowledge to better measure conceptual knowledge and higher-order reasoning (Thompson, 

2008), state and national measures of achievement only have limited means of assessing student 

critical thinking, creative problem solving, and real-world applications of their mathematical 

knowledge (Manouchehri et al., 2016). Moreover, in the broader field of education, resistance (at 

best) or denial (at worst) permeates efforts to change. Tripses (2019) points out that “a lack of 

deep motivation exists, whether individually or on a societal level, to understand how innovative 

education differs from past practice. At most, innovations are tolerated as long as they lead to 

adequate performance on traditional measures. Assessments are almost all geared for classical 

subject matter and rarely offer the means to assess the flexible, cooperative thinking required for 

interdisciplinary thought” ( p. 25). Conversely, another challenge includes a rush to adopt and 

implement new technologies (such as generative AI), which can be viewed as problem-solving 

panaceas, without critical thought about how best to do so (U.S. Department of Education, 2023; 

NCTM, 2024). That being said, new paradigms for thinking about the future of mathematics 

education are vital if we hope to prepare learners for the additional challenges the future will 

bring. 

AI’s Potential Impact 

The rapid evolution and adoption of artificial intelligence (AI) has the potential to contribute 

to the development of these new instructional paradigms. However, the speed of development 

and adoption has far outpaced the adoption of frameworks and policies that guide the use of AI. 

This discrepancy leaves room for misuses that can undermine educational objectives or 

compromise student privacy. As professional organizations and government organizations alike 

begin to grapple with AI’s implications for education, two themes emerge. First, AI has the 

promise to enhance mathematics instruction, in part by “creat[ing] positive pressure to avoid the 

‘shallow assessment’ trap and create assignments and assessments that blend the fundamentals 

and creative thinking.” (NCTM, 2024). Second, AI has the potential to limit opportunities, 

perpetuate biases, and spread misinformation (OSTP, 2024), so a cautious and judicious 

approach is warranted. 

Theoretical Framework 

In considering how to obtain maximum benefit from AI while reducing its risks, it is helpful 

to consider a learning sciences approach as a framework for investigating AI’s potential impact 

on mathematics education. Bloom’s (1984) research showed that learners working one-to-one 

with an expert tutor using a mastery-based approach were able to increase their achievement two 

standard deviations over that of their peers in a business-as-usual classroom condition. Much of 

Bloom’s subsequent work centered on how to adjust the conditions of the whole class 

environment such that the achievement of these students could begin to approach the desired 

achievement of those working with an expert tutor.  As part of this work, Bloom identified four 

“objects of change” which could be acted upon to produce better outcomes for student learning 

which included the (1) child, (2) materials, (3) teacher, and the (4) environment, which for 

Bloom largely meant family and peers. 

Often interventions or initiatives designed to improve mathematics performance may only 

focus on one or two of these four objects.  For example, programs may focus on improving 
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learning materials only, or perhaps they might add in “implementation” training for the 

teacher.  However, Bloom viewed these objects as the focus of critical, sustained efforts to 

improve quality. In other words, serious and ongoing professional development for the teachers 

to increase their content area and pedagogical expertise in the subject area (e.g., mathematics), 

not just providing training for program implementation.  Bloom further explained that working 

only through one of the objects was less likely to produce the desired outcomes as working 

through multiple objects, essentially adopting an ecosystems approach. 

 

 

Figure 3: Bloom’s Four Objects of Change (from Authors, Date) 

 

Bloom’s recommendations that efforts to increase student learning and achievement by 

leveraging these four objects of change seem, on the one hand, perfectly self-evident. Of course 

initiatives targeting to improve student learning should seek to work through all avenues possible 

– and yet so often, efforts do not give equal attention to each of these objects. More often than 

not, programs and initiatives may overly focus on one object (e.g., the materials and content) and 

only tangentially focus on the others (if at all). However, in recent years, adopting an ecosystems 

approach to learning, which involves giving equal attention to increasing the quality and 

performance of all parts of the system (e.g., child, materials, teacher, families, etc.), has received 

more concentrated attention (Authors, Date). This has included international calls from the 

Office of Economic Cooperation and Development (OECD), stating “to attain the desired 

outcomes of a curriculum reform (i.e., students’ development and application of knowledge, 
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skills, values, and attitudes) necessitates more than changing teaching and learning outputs. It 

involves making coordinated, multifaceted changes at the classroom, school, and policy level.” 

(Taguma & Barrera, 2019, p.3). 

A Bloomsian Perspective on the Future of Mathematics Education 

Bloom’s four objects of change, combined with a future learning landscape disrupted by 

evolving applications of artificial intelligence, provides a useful theoretical grounding for an 

examination of the future of mathematics education. With Bloom’s framework and AI in mind, 

we can begin to think about the child who sits at the heart of the mathematics learning 

ecosystem, how their mathematics learning journey begins in early childhood, and the ways AI 

can be leveraged to give every child the very best start (NAEYC & NCTM, 2010). 

The Future Early Mathematics Learner 

Early childhood is a pivotal time for shaping a child's trajectory in mathematics. During these 

formative years, children are inherently equipped with a remarkable capacity for learning, 

characterized by extensive neuroplasticity that allows for the rapid absorption and integration of 

new knowledge (Muthukrishnan et al., 2019). This period is critical for embedding fundamental 

mathematical concepts such as number sense, pattern recognition, and spatial understanding, 

which serve as the building blocks for all future mathematical learning (Clements & Sarama, 

2020). 

Early childhood is the best time to prevent gaps in foundational mathematics knowledge 

before they form (Claessens & Engel, 2013; Duncan et al., 2007).  However, even as early as 

pre-kindergarten, learners are beginning formal schooling with a patchwork of “math readiness” 

knowledge and skills (Authors, Date). This uneven foundation leads to variability in learners’ 

ability to learn, and the pace at which they can learn the required skills in kindergarten.  Though 

teachers may wish to attend to the personalized needs of every student, the constraints of 

traditional classroom environments often prevent such personalization. 

The potential of artificial intelligence to enhance personalization through the identification 

and amelioration of student errors and misconceptions, even in early childhood, represents a 

significant area of promise (Authors, Date). A model, when trained with the learning experiences 

of a vast number of students, ranging from hundreds of thousands to millions, could be capable 

of discerning the typical mistakes and underlying misconceptions students possess (Lin, Luo, & 

Qian, 2023). Once these errors and misconceptions are recognized, a model that has been 

educated on examples of skillful instructional methods can generate corrective feedback. This 

feedback, specifically designed to address the misconception directly, could then guide a student 

through the necessary steps to comprehend the correct solution. This approach ensures that 

students receive the precise assistance they require in a timely manner, thus minimizing time 

spent on ineffective strategies and maximizing engagement with the most effective pathways to 

successful learning outcomes. Examples of this exist and are already deployed with thousands of 

Prekindergarten through Second Grades students, and more importantly, are producing learning 

outcomes at scale (Authors, Date; Bang, Li, & Flynn, 2023; Thai, Bang, & Li, 2022). 

It is important to acknowledge that the strategies mentioned herein are not inherently 

innovative; the effectiveness of personalized learning has been understood for decades. The 

transformative potential of AI lies in its capacity to emulate these effective classroom practices 

within digital platforms, enabling dramatic amplification and scaling. 

The Future Early Mathematics Curriculum Content and Materials 
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Among Bloom’s Four Objects of Change, instructional materials stand out in the current 

discourse as significantly poised for disruption and evolution by artificial intelligence. The 

prevalent discussion focuses on AI’s tendency towards inaccuracies, colloquially termed as 

"hallucinations," and the subpar performance of current models in basic mathematical tasks. 

Concerns have been raised about the potential for such inaccuracies to permeate AI-generated 

instructional materials. However, these issues are likely to be transient. Substantial progress is 

being made in the detection and mitigation of hallucinations through strategies that include the 

careful selection of training data, enhanced detection techniques, and self-correction methods 

(Huang et al., 2023). In parallel, innovations such as NVIDIA’s OpenMathInstruct-1 

problem/solution database are poised to significantly improve the mathematical reasoning 

abilities of models (Shah, 2024). 

Assuming that these problems will be solved, it seems best to turn our attention toward 

applying these models effectively. While large language models in particular are improving at a 

rapid clip, they are still being trained on general language, and lack the specific expertise for 

sound, developmentally appropriate mathematics learning pedagogy. In a future where 

mathematics instructional materials are custom-generated for each student, it is paramount that 

the AI-enabled generation is trained to emulate best practices in early mathematics instruction. 

Even as we innovate in the creation of instructional materials, it becomes crucial to critically 

evaluate the curricula these materials support. In an era where AI augments human capabilities, 

the value of memorization and computational skill diminishes in comparison to an individual's 

aptitude for discerning which problems merit attention. Essential to this competence is the 

capacity to pose relevant questions and to judiciously evaluate the mathematical soundness of 

AI-provided solutions. Transitioning from a focus on procedural fluency to fostering critical 

quantitative reasoning requires an ongoing shift in the educational paradigm. It underscores the 

importance of nurturing analytical prowess, critical thinking, and the judgment required to 

effectively navigate an environment increasingly characterized by automated processes and AI-

driven outcomes. 

The Future Early Mathematics Educator 

One of the primary obstacles to delivering quality early childhood mathematics education is 

the increasing the mathematical content and pedagogical expertise among teachers in this field—

especially early childhood educators. Often, educators in early childhood settings are under-

trained in mathematics, lacking the depth of knowledge required to effectively teach the subject 

(Clements & Sarama, 2020). This deficiency is compounded by a widespread phenomenon 

known as math anxiety—a condition that affects a considerable number of educators, who may 

then inadvertently transmit this apprehension to their students (Hertz, Beilock, & Levine, 2019). 

The combination of insufficient training and personal math anxiety among teachers leads to 

suboptimal instruction in early childhood mathematics. This not only hampers the delivery of 

high-quality mathematical education but also potentially instills a similar sense of anxiety and 

aversion to mathematics in young learners, thereby affecting their long-term relationship with the 

subject (Hertz, Beilock, & Levine, 2019). 

It follows, then, that if we expect the teachers of the future to provide students with higher-

order math abilities, teachers themselves require further education. The existing literature points 

to the positive impact that redeveloping teachers’ math expertise can have on their ability to 

teach effectively (Reid & Reid, 2017; Stoddart, Connel, Stofflet, & Peck, 1993) as well as their 
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attitudes toward the subject (Hertz, Beilock, & Levine, 2019). Just as AI can be put to the task of 

providing instruction and correcting misconceptions in children, it could do the same for their 

teachers. Such intervention would ensure that teachers are fully equipped to develop their 

students’ mathematical reasoning at the required level of sophistication. 

The Future of Family Support for Early Mathematics Learning 

In line with recent calls to focus on mathematics teaching and learning in early childhood, the 

National Council for Teachers of Mathematics issued a call to “strengthen partnerships with 

families and communities to create a shared vision of deep mathematics learning that is 

meaningful and relevant to children’s lives” (Huinker et al., 2020, p.126). Further to this call, it is 

important to note that approximately 60% of children in the United States are not enrolled in any 

kind of pre-primary school (NCES, 2022). For these children, their primary early learning 

environment is the home, where parents and caregivers—who may or may not have the 

knowledge needed to effectively support their children’s early math learning—are their first 

teachers. Without more equitable beginnings, it is difficult to ensure that every child will have 

access to the best start in mathematics. 

Children who begin kindergarten with the needed prior mathematics knowledge are more 

ready to learn, more likely to master key early math competencies, and as a result go on to later 

success in mathematics in school (Claessens & Engel, 2013; Duncan et al., 2007).  In addition, 

children who experience enriching home mathematics environments, filled with warm and 

nurturing parent-child shared math activities, are more likely to begin school ready to learn math 

(Blevins-Knabe, 2016). However, many parents report not knowing how to support their 

children’s early math development, or for those children enrolled in preschool or pre-K, parents 

may prefer to rely on the teacher to foster the math learning of the child (Author, Date; Clements 

& Sarama, 2020). 

For the most part, parents and families want to be involved and want to help their children to 

prepare to successfully learn math, but they need support (Author, Date). Adults often have 

deficiencies in their own math understanding, which can lead to math anxiety that they can easily 

transmit to their children (Hertz, Beilock, & Levine, 2019). As with teachers, AI can be a tool for 

addressing these deficiencies, providing personalized instruction on both math concepts 

themselves and the ways in which children develop understanding of those concepts. AI can also 

serve as a thought partner, helping caregivers to devise games and activities that ambiently 

incorporate math into family time in a way that is engaging and productive for all involved. AI-

enabled chatbots can be designed to simply answer parent questions about what, how, and why to 

expose children to key math competencies, using carefully vetted databases of information that 

can replace parents’ current “go to”--You Tube (Author, Date). When involving the family, the 

objective is less to turn caregivers into math teachers, but rather to support them in the raising of 

confident and capable math learners. 

Conclusion 

The future of mathematics education in uncertain times requires new paradigms, fresh 

perspectives, and the ability (and willingness) to leverage new tools and methods to tackle long-

standing challenges. This includes, among other measures, a proactive focus on increasing the 

quality and accessibility of early childhood mathematics education as a means of ensuring that 

disparities do not have a chance to develop in the first place. An ecosystems approach that seeks 

to address the child, the instructional materials, the educator and the family has been shown in 
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the research to be greater than the sum of its parts (Bloom, 1984; Authors, Date). Ecosystems 

intentionally designed to leverage artificial intelligence may be an effective means of impacting 

each of these objects of change, fostering personalization and building capacity to prepare 

students to reason mathematically. Envisioning the future of mathematics education in uncertain 

times is a call to action—an invitation to reimagine our approaches, rethink our priorities, and 

redouble our efforts to ensure that every student has the opportunity to succeed in mathematics. 
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Machine learning techniques focus on how computers acquire new information. Typically, 

artificial intelligence used in mathematics education focuses on intelligent tutoring systems, 

profiling and prediction, and adaptive systems and personalization (Hwang & Tu, 2021). We 

propose an alternative use of machine learning techniques to train and optimize a model that 

gives feedback on student strategies, deploying it as a real-time, interactive feature of the digital 

curriculum platform. In this poster, we report on the development of the proportional reasoning 

rubric using students' inscription data—log files and any digital student work saved in the digital 

platform. The set of curriculum materials embedded in the digital collaborative platform we 

discuss is the middle grades problem-based curriculum, Connected Mathematics4 (CMP; The 

Connected Mathematics Project, 2023; Phillips et al., in production). Given the emphasis of the 

CMP curriculum on fostering student thinking (Choppin et al., 2015), the rubric is thoughtfully 

designed to adapt to the diverse array of proportional reasoning strategies that may emerge from 

students' log files.   

To develop the rubric, we examined the research literature on proportional reasoning 

strategies (e.g., Ben-Chaim, Fey, Fitzgerald, Benedetto, & Miller, 1998) and investigated student 

work already in the digital collaborative platform. The development of the rubric was based on 

two critical aspects. First, the rubric could be used across the different units in which 

proportional reasoning appears throughout the year. Second, the information for each criterion 

generated from machine learning is useful for teachers, such as aiding teachers in structuring 

whole-class discussions based on students' strategies. Our final rubric focuses on three criteria: 

(a) student approach (e.g., part-to-part, or part-to-whole), (b) mathematical representation (e.g., 

text, drawing, equation, or table), and (c) solution strategy (e.g., unit rates, common 

parts/wholes, or building up).  

Our next steps include applying the rubric to code students’ digital work to train the machine 

learning model. We also created a new annotation feature to elicit more information on students’ 

strategies. We are testing a new digital interface that allows students and teachers to sort student 

digital work based on human and machine learning applications of the rubric criterion. 
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We propose a study that aims to utilize ChatGPT to foster and develop the lesson planning skills 

of pre-service elementary teachers. The goal of the study is to show that pre-service teachers can 

interact with ChatGPT in a way that takes their initial drafts of mathematics lesson plans and, 

through working with peers and ChatGPT feedback loops, design improved lesson plans that are 

more inquiry-based and student-centered. 

 

Keywords: Technology, Preservice Teacher Education, Elementary School Education 

Introduction 

The use of technology in math education has evolved significantly, from simple calculators to 

sophisticated online tools. When a new tool is introduced, it is often initially met with doubt, but 

eventually recognized for its value in teaching and learning. For example, scientific calculators 

and computer algebra systems were initially questioned but have since proven their worth in 

classrooms, supported by research that endorses their positive impact on mathematical 

understanding and student attitudes toward learning (see e.g., Chorney, 2021; Yohannes & Chen, 

2021). Major stakeholders such as The National Council of Teachers of Mathematics (NCTM) 

have asserted that “It is essential that teachers and students have regular access to technologies 

that support and advance mathematical sense making, reasoning, problem solving, and 

communication” (NCTM, 2015, p.1). Indeed, a considerable body of research supports the idea 

that advanced digital technologies can support learning in general (Borokhovski et al., 2020) and 

mathematics concepts in particular (Hoyles, 2018; Yohannes & Chen, 2021) as well as having 

positive effects on students’ attitude to learning (Fabian et al., 2018). 

Artificial Intelligence (AI), particularly through tools like ChatGPT, represents the latest 

advancement in this continuum. This study aims to use Large Language Models (LLMs) to 

enhance the lesson planning abilities of pre-service PreK-5 math teachers. By utilizing LLMs to 

improve existing lessons or create new ones, our research seeks to achieve several objectives: 

enhance teachers' proficiency in creating effective lesson prompts (prompt engineering), foster a 

critical approach to evaluating AI-generated teaching materials, and enhance overall lesson 

planning skills through critical analyses of teaching materials.  

Recognizing the inevitability of AI tools in educational settings, we aim to equip pre-service 

teachers with the confidence and know-how to harness these technologies for the benefit of 

students in their future classrooms. We see LLMs not just as tools, but as collaborative partners 

with unique strengths and limitations, aiming to prepare teachers for a future where technology 

and pedagogy intersect more seamlessly. 

 

Literature review and relationship to research 

Lesson planning is pivotal in teaching, with research highlighting challenges encountered by 

teachers, especially novices, in crafting effective plans. Cevikbas, König, & Rothland (2023) 
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emphasize that while initial teacher education and professional development can enhance lesson 

planning competence, teachers often require support in areas such as understanding student 

thinking and leveraging innovative pedagogies. Collaborative methods such as communities of 

practice (Wenger, 1999) and lesson study groups (Fernandez, 2002) offer valuable frameworks 

for enriching lesson planning through shared knowledge and a research-based approach. 

The advent of ChatGPT (OpenAI, 2023) introduces a novel resource for lesson planning, 

though empirical studies on its efficacy are still emerging. Rogeaux & Sharp (2023) note that 

with appropriate prompts, ChatGPT's output can rival the lesson plans of pre-service teachers, 

suggesting AI's potential to streamline the lesson planning process. Additionally, practitioner 

accounts (Schulten, 2023; Mok, 2023) and emerging platforms like Eduaide advocate for 

ChatGPT's role in enhancing productivity and offering personalized support in education. 

This study aims to explore the utilization of ChatGPT and similar LLMs in lesson plan 

development among pre-service PreK-5 mathematics teachers, with a focus on improving 

candidates' prompt engineering skills, critical usage of LLMs, and overall lesson planning 

proficiency. Specifically, we investigate the following research question: What is the impact on 

pre-service teachers’ understanding of the role of AI in designing, revising, and evaluating lesson 

plans for mathematics instruction of deploying ChatGPT in the design of lesson plans? 

 

Methods and Methodologies 

Setting and Participants  

The study encompasses prospective elementary school teachers enrolled in a mathematics 

teaching methods course (ED 3XX), focusing on the integration of LLMs for planning (and 

implementing) mathematics lessons. In this study, we leverage AI to enhance collaboration, 

synthesize ideas, and communicate concepts in a natural language.  

The ED 3XX course is divided into three modules, each designed to deepen the participants' 

lesson planning skills with an emphasis on inclusion, student engagement, and the effective use 

of technology. Each module spans three weeks, incorporating activities that guide pre-service 

teachers from initial lesson plan analysis to AI-assisted revision and critique. The modules are 

structured as follows: 

Module 1: Introduction to lesson plan analysis and revision through a blend of classroom 

activities and homework assignments. This includes analyzing a sample lesson enacted by the 

instructor, with candidates critiquing it and engaging with ChatGPT for improvements. 

Module 2: Similar in structure to Module 1 but focuses on commercially-produced curricula 

enacted by small groups of candidates, encouraging collaborative lesson planning and AI-

assisted revision. 

Module 3: Builds on the previous modules with an initial lesson generated using ChatGPT 

from initial ideas gleaned during students' field work, challenging students to refine the AI-

generated lesson further. 

Data Collection and Evaluation 

The following course assignments have been constructed, in part, to help answer our research 

question. Students complete versions of these assignments in each of the three modules: 

Pre-Teaching Analysis (PreTA): This tool is used before teaching a lesson, where candidates 

assess a lesson plan based on eight criteria such as learning objectives alignment, lesson detail, 
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and engagement strategies. It includes a rubric and prompts for candidates to anticipate the 

lesson's strengths and areas for improvement. 

Post-Teaching Analysis (PostTA): Conducted after teaching, this reflective tool prompts 

candidates to evaluate the lesson's execution against their initial analysis and expectations. It 

focuses on what went well, surprises encountered, and how the lesson could be improved based 

on the actual teaching experience. 

Prompt Effect Worksheet (PEW): This worksheet documents the interaction with AI tools 

during the lesson revision process. Candidates note down specific prompts used, the AI-

generated responses, and provide a critical analysis of how these interactions influenced the 

lesson plan's revision. It serves as a record of candidates' engagement with AI in refining 

educational materials. 

In addition, candidates complete questionnaires at the beginning and end of the study. 

Lesson Planning Questionnaire: Administered at the course's start and end, this questionnaire 

gauges candidates' perspectives on effective lesson planning, their experience with LLMs, and 

reflections on AI's role in lesson planning. It aims to capture shifts in candidates' understanding 

and attitudes towards AI-assisted lesson planning. 

 

Data Analysis 

Our analysis employs a multi-tiered approach. Initially, we compare the initial and final 

lesson plans in each module, focusing on qualitative differences highlighted by candidates 

regarding lesson strengths and weaknesses. This involves a direct assessment of the 

improvements attributed to AI assistance. We also look for differences in plans across the three 

modules. For instance, do candidates focus more attention on lesson differentiation in later 

modules? As they gain experience in PreK-5 classrooms during the field component of the 

course, do they incorporate these experiences and understandings into prompts they provide to 

LLMs? 

Adding to this, we propose an innovative qualitative analysis by loading all Prompt Effect 

Worksheets (PEWs) into a ChatGPT interface. This will allow us to systematically evaluate how 

closely the AI-guided discussions center around eight key quality indicators of a lesson plan 

identified in the PreTA. Such an analysis not only quantifies AI's focus on critical lesson plan 

components but also highlights areas for further pedagogical development in AI interactions. 

Further, open coding and the constant comparative method (Glaser & Strauss, 1967) will be 

used to analyze improvements suggested across all modules, developing a codebook that reflects 

emerging themes such as standards alignment and effective AI prompts. This codebook will then 

guide the analysis of final reflections and follow-up interviews, providing a comprehensive view 

of the AI's impact on pre-service teachers' lesson planning skills and their understanding of AI's 

role in education. 

This layered analysis strategy aims to answer our central research question, exploring the 

depth of ChatGPT's influence on the pedagogical process and its potential to enrich lesson 

planning in mathematics education. 

 

Preliminary Results 

The initial phase of our study has revealed insightful trends regarding pre-service teachers' 

lesson planning approaches before and after interaction with AI tools. The initial phase of our 
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study has illuminated the nuanced journey of pre-service teachers integrating AI into lesson 

planning. Five key themes emerged from their reflections: 

Specificity in AI Interaction: Pre-service teachers learned the value of specificity when 

interacting with AI, noting that detailed prompts yielded more relevant and useful responses. A 

student observed, "I became more and more specific with my requests...the AI does not respond 

very well to vague or large overarching questions." 

AI as a Resource for Inclusive and Engaging Activities: Many appreciated AI for generating 

diverse and engaging activities, acknowledging, "It created different activities...inclusive and 

engaging for all my students, that I may not have thought of on my own." Notably, one student 

remarked, "ChatGPT helped me see beyond the standard curriculum, offering fresh angles on 

engagement." This echoes Cevikbas et al.'s (2023) findings on the potential of training to elevate 

teacher competence in lesson planning, particularly through technological integration. Feedback 

underscored AI's role in surmounting common planning challenges, particularly in diversifying 

engagement tactics and addressing varied learning styles. Notably, one participant reflected, "AI 

opened new avenues for differentiation I hadn't considered, making my plans more inclusive." 

Overcoming Initial Hesitance: Despite initial hesitance, the practical utility of AI in revising 

lesson plans was acknowledged, with reflections such as, "I was hesitant about using AI...but 

when I started the process...it truly wasn’t that bad." Engagement with AI tools marked a pivotal 

shift, resulting in more innovative approaches and a broader perspective on inclusivity. 

AI's Role in Enhancing Lesson Content: Teachers found AI particularly helpful in refining 

lesson content and structure, making lessons more interesting and accessible. "For almost every 

prompt that I gave AI, I was able to find...suggestions to be extremely helpful." 

Learning to Leverage AI for Detailed Revisions: The process revealed that AI's effectiveness 

increased with detailed, focused prompts, leading to significant improvements in lesson plans. 

"The AI’s responses gave me details and content that was much needed...I learned to include 

specifics on what I specifically wanted revised," a teacher reflected. 

 

Anticipations for Modules 2 and 3 

As we progress, we anticipate a deeper exploration of AI's capacity to enrich lesson planning 

in Modules 2 and 3. In Module 2, with candidates leading lessons from the Investigations 

curriculum (TERC, 1998), we expect an enhanced application of AI in real-world teaching 

scenarios, reflecting on Rogeaux & Sharp's (2023) insights on AI-generated plans related to real-

world experiences. Module 3 promises further exploration into AI-initiated lesson plans, where 

we foresee candidates critiquing and refining ChatGPT-generated content, potentially redefining 

the boundaries of traditional and AI-assisted teaching methodologies, resonating with Schulten 

(2023) and Mok (2023)'s advocacy for AI as a transformative tool in lesson planning. 

 

Relationship to Conference Theme 

This study directly addresses PMENA 2024's theme by exploring how AI, specifically 

ChatGPT, can be integrated into mathematics education to navigate and adapt to the changing 

educational landscape. Through examining pre-service teachers' engagement with AI in lesson 

planning, our research contributes to envisioning the future of mathematics education amidst 

uncertainties, highlighting the potential of AI to support innovative teaching strategies and 

enhance educational outcomes. 
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Volume measurement requires children to develop skills in the coordination of three dimensions, 

the mental structuring of space, and flexible volumetric reasoning. However, students often face 

difficulty in these areas. Augmented reality (AR) technology holds promise as a solution to this 

problem as it can create an environment that introduces a computer-generated layer into the 

visual environment of the user. In this paper, we introduce an AR smartphone application, 

MeoGeo, that we developed. This application enables students to use their perceptuomotor 

actions as pedagogical resources in forming a concept of volume. By employing a multimodal 

analysis of an elementary student’s embodied interaction with this app, we revealed the moments 

that a student enacts volume measurement of a 3D object. This study suggests that coordinating 

perception and action in an AR-enabled environment can facilitate mathematical cognition.  

Keywords: Technology and Learning Environment Design, Geometry and Measurement, Student 

Learning and Related Factors 

Purpose of the Study 

This Brief Research Report aims to demonstrate the potential of an augmented reality (AR) 

system as an embodied learning technology. AR allows users to augment their view of the real 

world with computer-generated information. In this paper, we illustrate the embodied repertoire 

of behavior of an elementary student in learning volume measurement, guided by AR 

smartphone application, MeoGeo, which was developed by the authors of this paper. 

Children often struggle with volume measurement, as it requires coordination of three 

dimensions (3D; Battista & Clements, 1996). Previous research revealed four mental schemes of 

volume identified by young children: packing, building, filling, and comparing (see Van Dine, 

2014; Curry & Outred, 2015). Each scheme can bring particular misconceptions to children. For 

example, children who use the packing approach (i.e., quantifying the space within a 3D 

container by iterating unit cubes) tend to miscount only visible faces (Ben-Haim et al., 1985; 

Panorkou, 2019). In general, mentally organizing the space and imposing structure for volume 

measurement can be challenging for children, and a carefully designed manipulative can be 

helpful (Ferrara & Mammana, 2014). 

In this study, we introduce MeoGeo. This smartphone application was designed for children 

to bodily coordinate 3D models using virtual arrays of unit cubes in their everyday environment 

in real-time. For example, children can move their body (pre-symbolic register) in alignment 

with the virtual three axes of object. This experience constitutes situated action where 

mathematics meanings can arise (Varela, Thompson & Rosch, 1991; Morgan & Abrahamson, 

2016). We extend literature on the positive impact of dynamic virtual manipulatives on volume 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1986 

learning (Panorkou, 2019; Rupnow, 2022) to the AR-incorporated embodied learning 

environment.  

Given the increasing popularity of immersive technology across every sector of life, this 

study aims to report design principles of AR-enabled mathematics learning environments that 

emphasize pre-symbolic experience for children. We hypothesize that a student’s coordination of 

action with MeoGeo can mobilize reasoning with respect to their concept of volume. Our 

research question asks, “What forms of volumetric reasoning can develop as a result of a child’s 

guided engagement in/with an AR-enabled learning environment?” 

Theoretical Framework 

Our work is rooted in the theory of embodied cognition and sociocultural theory. Embodied 

cognition posits that cognitive processes are rooted in the body's interaction with the world, 

including perceptuomotor coordination and the spatial system (Wilson, 2002). With this 

framework, this study can analyze how students utilize their body with AR technology 

(Abrahamson, 2020; Walkington, 2023). Additionally, we also utilize recent scholarship that 

marries embodied cognition with sociocultural theory to study human-technology interaction 

(Danish, 2020; Kaptelinin & Nardi, 2017). This approach enables an analysis of the mutually 

constitutive role of a student within an AR system-applied learning environment (MeoGeo). 

The Design Study as Mode of Inquiry 

We conducted a design-based study with eight students in grades 2-6 to examine how the 

forms of volumetric reasonings emerge within the context of our AR system (Cobb et al., 2003). 

The students participated in a seven-week-long mathematics program in New England, with 

weekly sessions featuring a one-hour-long AR activity session. For this pilot study, we focused 

on Greg (pseudonym), as he demonstrated motor skills in operating an iPad. Greg showed 

limited understanding of volume before using the app. To address our research question, Greg 

was asked to explore how many virtual cubes make up real-objects of his interest. He chose to 

measure the air-conditioner (AC) (See Figure 1). Two data sources were used: screen recordings 

of the app and video recordings from an iPad placed in the classroom. These recordings captured 

Greg's verbal and non-verbal actions. We employed a microanalytic investigation to capture the 

evidence of how and why MeoGeo may help learning of volume (Erikson, 1992). We reviewed 

the video recordings and identified the forms of interactions linked to the features of the app (e.g, 

half-transparent virtual unit cubes) using the MAET framework focusing on a user’s body 

position, gaze, and body movement (Walkington, 2023). Below, we illuminate three excerpts that 

show the moments of interaction between Greg and MeoGeo. 

Results 

Volume as Coordination of 3D 

What if children could structure 3D models using virtual unit cubes that visualize hidden 

portions of shapes and navigate around to experience them in a real world (3D)? Simply 

observing a physical cube does not enhance children's mental coordination of 3D objects 

(Battista & Clements, 1996). The utilization of dynamic geometric software, such as GeoGebra, 

can assist students in coordinating 3D representations of volume, but it relies on a fixed 

computer screen (Rupnow, 2022). MeoGeo synchronizes the dimension of the object studied 

(3D) with the environment in which a child explores it (3D). Excerpt 1 demonstrates a student 

actively coordinating the 3D of an object, aided by MeoGeo. Greg, to measure the height of AC, 
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adjusted his body positioning up and down (Excerpt 1.01). To ensure that the height of the unit 

cubes was the same as AC, he sat down to align his eye position with AC (Excerpt 1.02). He then 

moved on to measure the width (Excerpt 1.03), followed by examining the length of AC from 

another angle (Excerpt 1.04). He moved his body as if there were x, y, and z axes in space, 

aligning his body with these axes. When children employ volume as a packing or building 

method, they limit focus to visible faces (Van Dine, 2014). However, Greg’s bodily maneuver, 

enhanced with the transparency of virtual unit cubes projected onto the AC, served to 

demonstrate the pedagogical utility of an AR environment in reasoning 3D properties. 

 

Table 1: Excerpt 1. Greg’s spatial structuring of virtual unit cubes 

  
 

01   Greg:   Hmm. And then, stack it!  

(Fig. 1: Greg stands up and places the 

iPad face down) 

02   Greg:   So, this.  

(Fig. 2: Greg sits down, moves the iPad 

to change the camera angles, and then 

stacks up one more cube on the first 

column) 

03   Greg:   Yep. Let’s go. Yeah! It’s perfect. 

(Greg taps iPad to add another column of 

virtual unit cubes.) 

04   Greg:   I think there is another [column to stack up 

for width.] I can’t quite decide. 

(Fig. 3: Greg stands up and moves beside 

AC) 
 

 

 
Fig. 1  

 

 
Fig. 2  

 

 
Fig. 3 

 

Volume as Unit Structuring Scheme 

Children’s flexible coordination of units and composite units (such as rows) can aid in 

volume reasoning, which later helps in the construction of volumetric calculation algorithms 

(Clements & Sarama, 2021; Rupnow, 2022). To emphasize the unit structuring scheme, we 

designed an app where children can build virtual unit cubes without gaps or overlaps, a mistake 

often made by children (Curry & Outhred, 2005). Drawing on gestalt psychology of continuity, 

we assumed children are more likely to create a row, column, or layer with cubes rather than 

randomly placing them. This design choice aimed to encourage students to flexibly manipulate 

units, units of units, and units of units of units for volumetric reasoning. Excerpt 2 shows 

evidence that children intuitively and bodily explored these unit construction schemes. Greg 

stacked up three layers with three cubes per row (Excerpt 2.01). Subsequently, he walked around 

the object to measure the length. He added three more columns (Excerpts 2.02-2.03).  

 

Table 2: Excerpt 2. Greg’s interaction with MeoGeo in real time 
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01   Greg:   I think there is another [column to stack 

up for width.] I can’t quite decide. 

(Greg stands up and moves beside 

the AC)  

02   Greg:   Ugh.  Is this… Hoo.. Uhm. 

(Greg stacks up another column. Fig. 

4: Greg stands up and walks far 

away from the AC) 

03   Greg:   How is it doing that? Alright. This one 

[column]. I figured it out.  

                        (Greg walks back closer to the AC. Fig. 

5: he stacks up three more columns, 

steps back, pauses, and observes his 

virtual cubes) 
 

 

 

 
Fig. 4  

 

 

 
Fig. 5 

 

Flexible use of multiple reasoning approaches to volume 

A previous study found that children were likely to choose one volumetric reasoning strategy 

(e.g., packing) for a volumetric measurement problem (Vasilyeva et al., 2013). In contrast, our 

data shows Greg employed three interrelated reasoning strategies for volume. Greg stacks up 

virtual cubes next to the AC, which shows the volume as building approach (see Fig. 6). Then, he 

compared the size (comparing) using an allocentric frame of reference (Iachini et al., 2023). 

Then, Greg tried to ‘fill’ the virtual unit cubes, with the AC (Fig. 7). Although the filling strategy 

is often observed when measuring the volume of fluid (Van Dine, 2014), the affordances of AR, 

combining the digital and physical world, made the filling strategy available. It was also 

interesting that Greg used the AC (the object being measured) as the measuring unit itself. This 

finding shows that the use of AR can bring flexible volumetric reasoning strategies. 

 

Table 3: Excerpt 3. Greg engaging in various reasoning strategies with MeoGeo  

  
 

01   Greg: (Fig. 6: Greg stacks up another virtual 

layer. He inserts his foot into the cubes. He 

circles around the AC and walks farther 

from it and come back where he stood.)  

02   Greg: (Fig 7. Greg grabs the AC and then put 

inside virtual cubes.) 

03   Greg: I am done. 
 

 

 
Fig. 6 

 

 
Fig. 7 

 

 

Discussion and Conclusions 

This study examined video recordings of a fifth grader's embodied interaction with MeoGeo. 

This coincides with the increasing popularity of immersive technology featured in the 2024 

PME-NA conference theme. We tested our hypothesis that a student’s coordination of action 

(body position, gaze, body movement) mobilized reasoning about volume by (a) coordinating 

3D, (b) exploring unit structuring, and (c) flexibly employing three approaches on volume. As a 
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pilot study, this research is limited to the interaction of only one student. However, it highlights 

the spontaneous and non-deterministic meaning-making process of a student performing volume 

measurements within an AR-enabled immersive setting. The virtual arrays of unit cubes, 

structured with no gaps and overlaps, seemed beneficial for students to arrive at reasonings of 

volume. We believe our study would be beneficial for educators and designers to attend to such 

design principles that value students’ pre-symbolic register of the body in teaching abstract math 

concepts. 
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Technology is becoming increasingly integrated into many K-12 education classrooms. This 

study documents pre-service teachers’ decision making in utilizing technology to support 

algebraic thinking for elementary students. A design research study was conducted where pre-

service students designed and taught lessons to elementary students. The findings revealed that 

pre-service teachers intentionally considered the student perspective of their technology 

selections. Findings were categorized by purpose in for mathematical thinking and role of 

technology using the PICRAT Framework (Kimmons, 2018) However, selecting the right tool to 

specifically support early algebra content was more challenging. Implications for integrating 

technology into a mathematics methods courses to support pre-service teachers’ TPACK 

knowledge are discussed. 

Keywords: Pre-service Teacher Education, Technology, 

Introduction 

Technology has become a normative instructional practice (Horne & Staker, 2011; US 

Department of Education 2004, 2010). It has been used flexibly as a tool to support mathematical 

thinking (Romberg & Kaput, 1999; Warren et al., 2016).  This requires pre-service teachers to 

develop technological, pedagogical, and content knowledge (TPACK) (Mishra & Koehler, 2006).  

While the development of TPACK knowledge for pre-service teachers has been established 

(Graham et al., 2012). There is little research on pre-service teachers’ rationale, anticipated use, 

or attitudes about technology (Hughes et al., 2020). This paper presents findings from a whole 

class teaching experiment conducted in a pre-service methods course, specifically focusing on 

pre-service teachers' technology decision-making processes as they developed and taught lessons 

on early algebraic thinking to individual elementary students. 

Review of Literature 

To effectively incorporate technology to support student learning of algebraic thinking, pre-

service teachers must develop knowledge in their content (early algebraic thinking), instructional 

practices, and technology tools. Early algebraic thinking has been well-defined (Blanton, 2008; 

Carraher & Schliemann, 2018; Kieran, 2018) and emphasizes numeracy, characteristics, and 

properties of numbers and their arithmetic operations with or without the formal use of symbolic 

algebraic notation.  

Selecting the right technology for teaching math content is challenging.  When working with 

educational math applications for teaching, there is a need for pre-service teachers to be aware of 

the learning theories within the apps to better align the app use with specific learning objectives 

or outcomes (Larkin, 2013; Dubé et al., 2020; Kay & Kwak, 2018a, 2018 b). Overall, pre-service 

teachers primarily select and use technology from a teacher-centered and directed approach 

(Hughes et al., 2020; Hu & Yelland, 2017). Therefore, it is important for pre-service teachers not 
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to use technology as a quick add-on for their classrooms, but rather to use it in conjunction with 

research-based practices that support technology for student learning (Bai, 2019; Lai, 2018) for 

the teaching and learning of mathematics. There is a need to distinguish between the purpose in 

per-service teachers’ use of technology and technology use by the student in order to support 

early algebraic thinking. This gap in knowledge leaves pre-service teachers with little guidance 

on how to select or sequence technology tools within their algebraic lessons. Therefore, we 

investigated: What do elementary pre-service teachers consider when integrating technology to 

support early algebraic thinking? 

 Methodology  

A whole class teaching experiment was conducted in a math methods course in a Western 

state. Twenty-two K-8 pre-service teachers (N=22) participated in the study for nine weeks. The 

course integrated content knowledge and pedagogical content knowledge and intentionally 

integrated instructional technologies. To provide an authentic lesson planning experience, the 

pre-service teachers were provided a practicum experience where they had to tutor individual 

students within the methods course. A design research approach (Barab & Squire, 2016; Collins 

et al., 2016) was used to design and deliver the lessons. The course duration was 9 weeks and 

was designed to incorporate technology throughout the course using TPACK Knowledge 

Progression (Chai et al. 2010). The purpose of technology selections was framed using the 

PICRAT Framework (Kimmons, 2018). The goal was to support pre-service teachers in 

developing lesson plans to support the learning of algebraic thinking by integrating technology. 

Additionally, the course incorporated early algebraic thinking (Early Algebra Progression 

(LEAP) Blanton et al. (2020) and a lesson planning framework (Lamberg, 2019)  

The data collected included field notes, audio transcripts, and two lesson plan assignments 

that required pre-service teachers to support elementary students’ algebraic thinking by 

integrating technology into the lesson. The first assignment was given in Week 5 as an online 

discussion. The pre-service teachers were given a lesson plan introducing multiplication in this 

assignment. They were asked to find or create a technology that they could use to support 

students’ early algebraic thinking. The second assignment was given in Week 8, reflecting on the 

pre-service teachers’ lesson sequence with their elementary students. In their reflection, they 

were asked to describe a specific aspect of students’ algebraic thinking they noticed and justify 

the technology that could be used in their instructional sequence to support their learning 

objectives. The data was analyzed using (Corbin & Strauss, 1990). Constant comparative method 

for whole class discussions. Deductive coding was used to distinguish between arithmetic 

thinking (Radford, 2018) and algebraic thinking (Kaput, 2008).  

The technology use was also coded for themes using the PICRAT framework by Kimmons 

(2018) which addresses the student relationship with technology and the teacher’s use of 

technology. To determine the purpose for technology and integration within lesson planning, 

codes were created inductively using descriptive coding (Saldaña & Omasta, 2018; Saldaña, 

2021) . 

Results  

Selected Technologies Primarily Support Arithmetic Thinking 

Pre-service teachers initially selected technologies related to arithmetic concepts, focusing on 

the operations being done. In the first task of selecting mathematics technology for a lesson plan 

on multiplication, 100% of participants identified a technology that aligned with the 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1993 

mathematical learning objective in both assignments. The pre-service teachers primarily selected 

arithmetic technologies to support students' arithmetic (operational thinking). Figure 1 

summarizes the types of mathematical thinking supported by the technology selected in each 

lesson task.  

Figure 1: Type of Mathematical Thinking Supported by Technology Selection 

 
 

However, the second lesson planning task increased early algebraic thinking and formal 

algebra. Pre-service teachers identified technology uses that supported generalization, relational 

thinking, or additive or multiplicative properties. Algebraic thinking could be further 

distinguished as supporting early algebraic thinking or formal algebraic thinking.  

Selected Technologies for Math Lesson Plans Were Passive & Interactive 

Coding schemes were created according to PICRAT Framework (Kimmons, 2018), 

technologies were coded according to student relationship to technology and teacher’s use of 

technology. In both lesson planning tasks 100% of technology selections were chosen based on 

the student’s relationship with technology. Within those tasks, they were further distinguished by 

passive, interactive and creative technologies. Overall, the pre-service teachers selected three 

types of technology for both tasks: games or digital manipulatives (interactive) and videos 

(passive). For both assignments creative technologies were not selected. Figure 2 summarizes the 

percentage of pre-service teachers who selected each type.  

Figure 2: Student Relationship to Technology in Technology Selections 
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Creative & Teachers’ Use of Technologies Emerge  

In small grade level groups were asked to create a poster about how they think of technology 

during lesson planning. While interactive and passive technologies still appeared, creative and a 

teachers’ perspective of technology emerged. Not only do the pre-service teachers describe 

technologies for supporting math instruction, but they make connections to the lesson planning 

sequence and provide justifications for technology selection.  

 

Discussion  

Initially, pre-service teachers only primarily selected interactive activities to support specific 

mathematics objectives. However, collectively, in a group discussion, it was revealed that pre-

service teachers are aware of and can differentiate between the purposes of passive, interactive, 

and creative activities for non-content-specific generalized instructional activities.  This study 

differs from Hughes et al. (2020) in showing that pre-service teachers primarily selected 

technologies that were from the students’ perspective but were also aware of the difference in 

technology for students and teachers' use. Overall, this supports the PICRAT framework 

(Kimmons, 2018) and continues to validate Kimmons et al. (2020) in utilizing PICRAT within 

pre-service methods courses to distinguish between student and teacher use of technology. 

Furthermore, incorporating technology into the lesson planning framework (Lamberg, 2019) 

goes a step further by linking technology as an intentional decision embedded within the 

instructional sequence. As technology becomes an instructional norm for teaching, methods 

courses must support content and pedagogical knowledge and technological pedagogical content 

(TPACK) knowledge. This study highlights how the pre-service teachers' technology decision-

making does not occur within a single lesson but how TPACK knowledge is developed in 

smaller lessons throughout the course. As technology cannot simply be an add-on to K-12 

education, it cannot be a one-time supplement to pre-established learning goals in mathematics 

methods courses.  
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This study explores high school mathematics teachers’ beliefs about integrating computer 

science (CS) content into mathematics curricula. Beliefs are defined as teachers’ convictions 

about the value and efficacy of CS integration. The objectives are to examine (1) teachers’ 

perceptions of the benefits and challenges of CS integration in mathematics classrooms and (2) 

teachers’ beliefs regarding the impact of CS integration on student engagement, problem-solving 

skills, agency, identity, and access to future opportunities. With thirty US state legislatures 

mandating the inclusion of at least one CS course (e.g., Missouri General Assembly, 2022) and 

only 41% of small high schools offering standalone CS courses (Code.org et al., 2023), there is a 

pressing need to explore innovative alternatives for CS integration within existing core classes 

(e.g., Missouri Department of Elementary and Secondary Education, 2023). 

This study draws on Expectancy-Value Theory (Eccles, 1983) and constructionism (Papert, 

1980) to explore integrating CS content into high school mathematics curricula. Expectancy-

Value Theory provides a lens to examine teachers’ motivations and perceived barriers to 

incorporating CS content, while constructionism grounds this study in the view that students 

learn most effectively through active engagement in creating and designing tangible projects. 

The principles of constructionism advocate for a mathematics education that fosters ownership, 

agency, and relevance through personally meaningful projects that resonate with students’ 

cultures, values, and societal contexts (Papert, 1980). CS integration aligns with these principles, 

positioning learners as active creators and designers who use technology to explore, experiment, 

and construct, thereby deepening their mathematical understanding. 

The methodological approach for this study centers on qualitative inquiry through semi-

structured interviews with participants identified through a targeted data request to the Missouri 

Department of Elementary and Secondary Education (DESE) and subsequently emailed for 

recruitment. The sample included five educators meeting the dual certification criteria for 

teaching high school mathematics and computer science. Interviews were recorded via Zoom, 

with thematic analysis applied to the transcribed content. Initial codes were developed from the 

research questions and theoretical frameworks. Coauthors met to discuss and reconcile coding 

variances to ensure the coding process's reliability and validity. 

Teachers expressed enthusiasm for integrating CS into mathematics curricula, citing benefits 

such as enhanced student engagement and its potential to foster a positive identity in students as 

learners of mathematics. However, they also highlighted barriers like limited resources and 

insufficient training. Teachers emphasized the value of hands-on, project-based learning, noting 

that students engage more deeply with mathematics when seeing practical applications through 

CS projects. They believed this integration could empower students from underrepresented 

demographics by exposing them to CS within a core subject, thus broadening their career 

aspirations and reducing the gender gap in computing fields. Implications include targeted 
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support for smaller schools through grants and professional development programs and 

advocating for innovative and resource-aware curriculum approaches. 
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Artificial intelligence (AI) has quickly become a prominent discussion topic in academia, 

including within the field of mathematics education (Kaplan-Rakowski et al., 2023). In broad 

strokes, AI refers to machines that simulate aspects of human thinking, and generative AI refers 

to AI capable of producing new content (e.g., text, images, music, etc.) based on particular user-

specified input (Pavlik, 2023). Professional organizations have begun to enter the AI 

conversation in the form of recommendations, position statements, or calls for manuscripts on 

the topic; for example, a recent NCTM President’s Message challenged mathematics educators 

“to learn how to integrate [AI] into [their] instruction and into our profession” (Dykema, 2023). 

At this point, exactly how mathematics educators should productively do this remains a largely 

open question, especially with respect to AI that generates non-text output. 

In this poster, we consider the ways in which prospective elementary and middle-grades 

teachers (PTs) intentionally used Adobe Firefly—a text-to-image generative AI—toward 

mathematically pedagogical ends. In a semester-long mathematics content course on number and 

operation, 50 PTs were introduced to Adobe Firefly and were directed to use it for selected 

assignments. Here, we report on PTs’ responses to one assignment, which involved: (a) writing a 

story problem that could be used to support elementary students’ understanding of addition and 

subtraction, (b) using Adobe Firefly to produce an image with countable items matching those in 

their story problem, and (c) writing 4–8 sentences to explain why they designed their image the 

way they did, specifically focusing on features they deemed important for supporting students’ 

mathematical thinking. On this assignment, PTs were also encouraged to attempt multiple 

prompts to find a satisfactory image; additionally, PTs were encouraged to use Firefly’s 

generative editing features to further refine their image (e.g., by using additional rounds of 

generation to insert or remove objects from a previously generated image).  

In the poster, we share examples of the problems, prompts, and images that PTs submitted for 

this assignment. We present a thematic analysis (Braun & Clarke, 2006) of the features PTs 

considered in designing their images to support students’ mathematical thinking as well as 

generative edits they reported making to Firefly’s initial image outputs. Additionally, we offer a 

brief analysis of PTs’ story problems in terms the Cognitively Guided Instruction problem types 

(Carpenter et al., 2014) and consider the features PTs considered in conjunction with problem 

types. We close the poster by (a) considering the affordances and challenges (from PT and 

instructor perspectives) in using Adobe Firefly for mathematically pedagogical purposes, (b) 

offering other examples of ways we have used text-to-image AIs in our courses for prospective 

mathematics teachers, and (c) providing some questions and directions that might be explored in 

future research endeavors. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

1999 

References 
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 

77–101. DOI: 10.1191/1478088706qp063oa 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2014). Children's mathematics: 

Cognitively guided instruction (2nd ed.). Heinemann.  

Dykema, K. (2023, November). Math and artificial intelligence. NCTM. https://www.nctm.org/News-and-

Calendar/Messages-from-the-President/Archive/Kevin-Dykema/Math-and-Artificial-Intelligence/   

Kaplan-Rakowski, R., Grotewold, K., Hartwick, P., & Papin, K. (2023). Generative AI and teachers’ perspectives on 

its implementation in education. Journal of Interactive Learning Research, 34(2), 313–338. 

Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence 

for journalism and media education. Journalism & Mass Communication Educator, 78(1), 84–93. 

https://doi.org/10.1177/10776958221149577 

  

https://doi.org/10.1191/1478088706qp063oa
https://www.nctm.org/News-and-Calendar/Messages-from-the-President/Archive/Kevin-Dykema/Math-and-Artificial-Intelligence/
https://www.nctm.org/News-and-Calendar/Messages-from-the-President/Archive/Kevin-Dykema/Math-and-Artificial-Intelligence/
https://doi.org/10.1177/10776958221149577


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2000 

USING ASSISTMENTS FOR COLLEGE MATH: EVALUATING THE 

EFFECTIVENESS OF SUPPORTS AND TRANSFERABILITY OF FINDINGS 

Eric Hedgepath 

UNCC 

ehedgepe@charlotte.edu 

Michael Smalenberger 

UNCC 

msmalenb@charlotte.edu 

Dr. Kelly Smalenberger 

Belmont Abbey College 

kellysmalenberger@gmail.com 

Cathy Holl-Cross 

UNCC 

chollcro@charlotte.edu 

Dr. Allison McCulloch 

UNCC 

amccul11@charlotte.edu 

 

Keywords: Technology; Assessment; Algebra and Algebraic Thinking 

Online homework systems are widely used in the instruction of college algebra at the post- 

secondary level (e.g., Boyce & O’Halloran, 2020; Hauk & Segall, 2005). The immediate 

feedback and variety of tutorial supports in these systems provide an opportunity for students’ 

autonomy in their learning (Boyce & O’Halloran, 2020), encourage students to correct their 

mistakes (Affouf & Walsh, 2007), and participate in a cycle of learning of attempt-feedback-

reattempt (Brewer, 2009). Studies from middle to post-secondary school indicate that students 

prefer to complete online assignments, which provide a source of motivation (Hauk & Segall, 

2005; Ostrom & Heffernan, 2014). One no-cost system, ASSISTments (www.assistments.org) 

has been used in large quasi-experimental studies at the middle and high school level (Murphy et 

al., 2020; Singh et al, 2011). Research on the use thereof to support student learning and the use 

of formative feedback in instruction in middle-school and secondary classrooms is very 

promising (e.g., Feng et al., 2014; Kehrer et al., 2013; Kelly et al., 2013; Koedinger et al., 2010; 

Mendicino et al., 2009). Three of these studies provided insight into the effectiveness of “Best so 

far” supports, namely video hints vs. text hints (Ostrow et al., 2014), worked examples vs. hints 

(Shrestha et al., 2009), and single vs. multiple template questions (Jiang et al., 2020) and showed 

positive learning gains for students with these supports. Given this promise, we proposed 

adapting ASSISTments for use at the undergraduate level.  

This research study conducted at two southeastern universities over two years aims to 

replicate the three aforementioned studies using ASSISTments in college algebra courses. The 

goal of this study is to determine whether the use of ASSISTments at the college level leads to 

similar gains in mathematics learning and analogous changes in pedagogical practices as 

reported in younger grades. Using the E-TRIALS platform, action-level data will be collected 

from individual students at the universities and combined with administrative data. Preliminary 

results on the use and effect of support within ASSISTments will be reported. 

An understanding of the efficacy of different support can provide insights into the impacts of 

the design, implementation of education materials, and pedagogical practices. This speaks to 

research in the areas of learning sciences and technology, and mathematics education. Further, 

examining how college students use within-problem supports compared to younger students 

could help understand how mathematics learning changes chronologically. Finally, we can report 

average effect sizes on performance disaggregated by student characteristics to ensure findings 

do not inadvertently harm underrepresented groups in college mathematics courses, which was a 

component missing in many of the prior studies at the K-12 level.  

 

http://www.assistments.org/
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Augmented Reality (AR) technologies allow for holograms to be layered over the real-world, 

“augmenting” human vision by overlaying illustrations onto 3D space. Contemporary AR 

systems allow students to interact with virtual objects using their bodies. This capitalizes on 

embodied views of the nature of cognition (Lakoff & Núñez, 2000; Nathan, 2021), which posit 

that all conceptual knowledge is understood and experienced through the body and is action-

based in nature. Meta-analyses are numerous and estimate the effects of AR in educational 

interventions to be anywhere from d=0.64 (Garzón & Acevedo, 2019), to g=0.65-0.75 (Chang et 

al., 2022).  However, less is known about the impact of AR holograms in math education 

specifically. Here we explore the question: What affordances does AR in a collaborative 

environment have for the future of mathematics education in uncertain times?  We conducted a 

study where 120 high school students were randomly assigned in pairs to the AR treatment 

condition which used the Hololens2 or to the control condition of the iPad.  Using the same 

Dynamic Geometry Software (DGS; Hollebrands, 2007), subjects were asked to collaboratively 

explore, evaluate, and justify their reasoning about six geometry conjectures (e.g., alternate 

interior angles are congruent; Figure 1).  Half of the conjectures were about two-dimensional 

objects (e.g., triangle), and half were about three-dimensional objects (e.g., pyramid).  

 

     
Figure 1. iPad Condition (left) versus HoloLens condition (right) 

 

Data were analyzed in R using a multilevel cross classified logistic regression. Subjects with 

the iPad evaluating 2D conjectures performed better than both subjects with iPads evaluating 3D 

conjectures and subjects with HoloLens evaluating 2D and 3D conjectures (log-odds β = 2.04, 

SE = .062, p < .001).  This effect was moderated by scores on a spatial reasoning test, which 

assessed ability to mentally rotate 2D and 3D objects (log-odds β = 1.3, SE = .45, p = .004). A 

simple linear mediation analysis suggests that students manipulating the geometric objects while 

evaluating the conjecture mediated 22% of the effect subject performance in iPad 2D vs. 

HoloLens 3D (mediation β = 0.027, SE = 0.012, p = .024, total effect β = 0.118, SE = 0.045, p = 
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.008). These results show important factors that impact AR’s effectiveness for mathematics 

learning – including dimensionality, spatial ability, and types of interactions. 
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This paper presents an initiative aimed at integrating tailor-made micro-programming 

environments (MPEs) into middle school mathematics education to foster student learning and 

enhance computational thinking skills. We examine the effectiveness of MPEs in engaging 

students in computational thinking, aligning with mathematical practice standards, and usability 

in promoting interdisciplinary connections between mathematics and computing in the middle 

school setting. Findings suggest MPEs can advance computational thinking skills and enrich 

lesson alignment with educational standards. Most participants indicated approval of 

integrating MPEs into middle school classrooms. 

Keywords:  Mathematical Representations, Computing and Coding, Computational Thinking 

In pedagogy-centered mathematics classrooms, educators encourage students to articulate 

and demonstrate their mathematical thinking through various representations, including 

diagrams, graphs, and verbal explanations. Incorporating MPE tools for mathematical modeling 

can enhance modeling effectiveness while exposing students to computer science. The idea of 

using programming to help students learn mathematics and science has a long history (Papert, 

1980; Mayer, 2004; Hickmott et al., 2018), but few studies (Benton et al., 2017; Calao et al., 

2015) explore learning key mathematical ideas through computing (Schanzer et al., 2015; 

Bråting & Kilhamn, 2021). Programming languages are excellent for externalizing and 

manipulating thought processes (diSessa, 2001; Schaffer & Kaput, 1998). While paper and pencil 

modeling or physical manipulatives are typically used to externalize thoughts, programming 

requires students to use explicit commands for each step in the problem-solving process. This 

approach can aid students in correcting their thinking and help teachers recognize 

misconceptions. General-purpose programming languages, or even tools such as spreadsheets, 

may be too unconfined to be effective for students and require prerequisite knowledge. Our 

design allows teachers to limit features, tailoring the MPE to the specific purpose of the activity. 

Through survey analysis, we assess MPEs' ability to engage learners in computational thinking, 

align with math practice standards, and overall usefulness in the middle school classroom. 

Findings suggest MPEs advance computational skills, align lessons to standards, garner general 

approval for classroom integration, and feature intuitive elements requiring minimal learning 

time, necessitating no expertise from teachers to implement. 

Theoretical Framework 

This study is grounded in Constructivism, which posits that learners construct their 

understanding and knowledge through experiences and reflection (Piaget, 1972). Constructivism 

highlights the importance of learners being active in their learning process, engaging in 

meaningful tasks (Vygotsky, 1978). The MPE embodies the constructivist approach by providing 

hands-on, experiential learning in computing. The MPE allows students to visualize and model 

their step-by-step problem-solving processes, making their understanding and misunderstandings 
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visible. When the program does not perform as intended, students quickly realize mistakes, 

enabling immediate feedback and correction through debugging, a key aspect of learning in 

programming (Papert, 1980). 

With the intentionality to bridge the gap between computer science and mathematics, the aim 

of the MPEs in this study is to create a constructivist environment that develops computational 

thinking and enhances student engagement in the Standards for Mathematical Practice (SMP): 

• SMP1 “Make sense of Problems and Persevere in Solving them.” 

• SMP2 “Reason Abstractly and Quantitatively.” 

• SMP3 “Construct Arguments and Critique the Reasoning of Others,” 

• SMP4 “Model with Mathematics.”  

• SMP5 “Use appropriate tools strategically.” 

• SMP6 “Attend to Precision.” 

• SMP7 “Find and make use of structure.” 

• SMP8 “Find and make use of repeated reasoning.” 

MPE Modeling 

Our MPE offers diverse strategies for solving mathematical problems. Consider the example: 

"A seventh-grade class needs 5 leaves daily to feed 2 caterpillars. How many leaves would the 

students need daily for 12 caterpillars?" Various mathematical strategies can be represented 

through operations performed on ratio tables. Teachers can limit available blocks to encourage 

specific strategies or provide options for students. Figure 1 illustrates four typical strategies, 

showcasing features of the MPE and its evolution of reasoning from concrete to abstract. 

 

Explicit Copies: 

Manual Additive 

reasoning 

Repeat Block: 

Automated Repeated 

Addition 

Avoiding Magic 

Numbers: 

Multiplication by a 

scale factor, using 

only starting values 

Abstract Reasoning: 

Generalized to 

calculate with any 

starting values. 
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 Figure 1: MPE block-code is shown above, with the corresponding output table below. 

Research Methodology and Design 

This study addresses the following research questions: 

• RQ1. Do micro-programming environments (MPEs) facilitate and enhance participant 

engagement in computational thinking skills? 

• RQ2. Does integration of MPEs support the alignment with and application of 

mathematical practice standards in the context of middle school mathematics? 

• RQ3. What are the perceptions of pre-service teachers on the usefulness and challenges 

of integrating MPEs into mathematics education? 

• RQ4. Is the MPE tool intuitive enough for participants to make sense of the tool without 

teacher expertise? 

This study employed a mixed-methods research design, combining qualitative and 

quantitative approaches to explore the effectiveness of integrating micro-programming 

environments (MPEs) into middle school mathematics education. The qualitative approach 

allowed for an in-depth understanding of participants' experiences and perceptions regarding the 

use of MPEs, while quantitative data were collected through surveys to supplement the 

qualitative findings.  

As a preliminary to the in-class implementation detailed in publications to come, this trial 

was run on college students enrolled in a pre-service teacher program. The participants in this 

mixed-methods study were eleven pre-service teachers who engaged in a self-guided activity 

using the MPE. Among the participants, 2 (18%) were males and 9 (82%) were females. In terms 

of racial demographics, 7 (64%) identified as White, 3 (27%) as Black/African, and 1 (9%) as 

Asian/Vietnamese. The participants had diverse academic backgrounds, with 8 participants 

majoring in Biology, and one each studying Math, Physics, and Chemistry. 

Data were collected through self-reported surveys administered after the MPE activity. The 

surveys assessed participants' educational backgrounds, experiences with the MPE tool, 

perceptions of computational thinking, and the usefulness of the MPE in middle school 

classrooms. Qualitative data analysis was conducted to identify themes and patterns in 

participants' responses. Thematic analysis was employed to categorize and interpret qualitative 

data related to participants' experiences, perceptions, and feedback on the integration of MPEs. 

Quantitative data from the surveys were analyzed using descriptive statistics to provide 

additional insights into participants' demographics and perceptions. 

Analytical Results 

RQ1: Computational Thinking 

Survey responses revealed significant insights into participants' perceptions of computational 

thinking. Participants reported an increase in engagement with computational thinking skills 

during the MPE activity to 82%, compared to 49% in their previous education experiences. 

Comments included: “This activity developed my computational thinking skills well because I 

had to think about what I was doing and it helped me develop skills for computer thinking and 

problem-solving,” and “It really forced me to think about the meaning behind simple arithmetic.” 

RQ2: Alignment to Standards for Mathematical Practice 
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Participants rated the MPE lessons’ alignment with the standards for mathematical practice 

(SMP) on a scale of 0 (no alignment) to 5 (full alignment). The results showed that participants 

reported full alignment (5/5) with SMP1 “Make sense of Problems and Persevere in Solving 

them” and SMP3 “Construct Arguments and Critique the Reasoning of Others.” The average 

alignment rating for the other standards was 4 out of 5, indicating near full alignment. 

Researchers observed that participants engaged more in discussions and debates when using the 

MPE (SMP4, SMP5), which required precision commands (SMP6, SMP7), than when modeling 

their thinking on paper. Quotes from the lesson include: “We can’t get there from here,” and 

“Yours is more efficient, but mine more clearly shows my thinking. In this format, the table can 

be used repeatedly for different numbers of days and different numbers of caterpillars.” 

RQ3: Usefulness of the MPE 

Participants rated the usefulness of the MPE on a scale of 0 to 5. Analysis showed that 73% 

of participants considered the tool generally useful (rating of 3 or higher) in a middle school 

setting. Comments included: “I think that tools like this would be useful for introducing coding 

concepts for use in problem solving,” and “For students that struggle to solve stepwise problems, 

this could be a useful tool to outline their thinking. Middle school is a good age to develop these 

skills.” Thematic analysis revealed that participants appreciated the hands-on and experimental 

nature of the MPE activity, which made their thought processes visible. Some initially struggled 

with block coding but found it easier once they understood the process. Comments included: 

“The restriction of having to show every single step forced us to figure out how to solve every 

step using the program.” Participants who rated the MPE “low” (0-1) reported 80% less PBL in 

their middle school experiences than those who rated it “high” (4-5), and half as much PBL as 

those who rated it “moderate” (2-3). This suggests that participants with less exposure to similar 

challenges in their own education found the tool less suitable for middle school settings, while 

those with more exposure found the tool more suitable. One participant commented: “I don't 

think I've done project based learning in my entire K-12 schooling, especially in math.” 

RQ4: Intuitive Design 

Although students initially engaged in a productive struggle, all 11 participants were able to 

quickly deduce the mechanics of the tool without prior knowledge, teacher guidance, or 

intervention. One participant commented: “It took a while to model my step-by-step process on 

the block coding, but once I did, it was easy to see the process visually.” 

Conclusion 

This study underscores the potential of Micro Programming Environments (MPEs) to 

transform middle school mathematics education by fostering computational thinking and 

aligning with mathematical practice standards. The integration of MPEs facilitates an active, 

constructivist learning environment where students can model and visualize their problem-

solving processes, receiving immediate feedback and opportunities for correction through 

debugging. Participants reported significant engagement in computational thinking skills and 

observed near-full alignment with the Standards for Mathematical Practice. 

The findings suggest that MPEs are effective tools for enhancing mathematical modeling and 

computational thinking skills among middle school students. Most participants indicated a 

positive reception towards integrating MPEs into classrooms, highlighting the tool's usefulness 

and ease of adoption without requiring extensive teacher expertise. This study contributes to the 

growing body of research advocating for the integration of computational tools in education, 
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suggesting that MPEs can enrich the learning experience and bridge the gap between 

mathematics and computer science. 
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Research efforts have demonstrated that pre-service teachers (PSTs) often encounter 

challenges in interpreting students' mathematical thinking and conceptual understanding when 

technology-enhanced math tasks are involved (McCulloch et al., 2023; Smith et al., 2017; Yeo & 

Webel, 2019). The practice of teachers noticing students' mathematical thinking often involves 

three key components: attending to students' strategies, interpreting their conceptual 

understandings, and determining appropriate responses (McCulloch et al., 2023). PSTs can 

describe students' interactions with technology but they have challenges in finding sufficient 

evidence to connect these interactions with students' mathematical thinking (McCulloch et al., 

2023; Smith et al., 2017; Yeo & Webel, 2019) which influences how they interpret students' 

conceptual understanding of the mathematical ideas embedded in the technology-enhanced task 

(McCulloch et al., 2023). The Association of Mathematics Teacher Educators (2017) Standards for 

the Preparation of Teachers of Mathematics notes the importance of teachers being proficient with 

tools and technology designed to support mathematical reasoning and sense-making. The primary 

question explore here involves the ways in which the integration of technology enhances future 

mathematics teachers' ability to draw insights about students’ learning processes.  

In an undergraduate Methods in Secondary School Mathematics course, we identified this 

common challenge among pre-service teachers. To address this challenge, we adopted a research-

based approach to develop curriculum materials, integrating two theoretical frameworks: the 

TPACK framework (Technology Pedagogical Content Knowledge) and TQE process (Tasks, 

Questions, and Evidence). In each module, initially, pre-service teachers, based on the TPACK 

framework, learn about ways to recognize different types of technology in serving different 

purposes by considering technology choice, curriculum goals, and pedagogical content knowledge 

(Mishra & Koehler, 2006). Then, we asked them to engage with a technology-enhanced math task 

as learners by using technology tools: Desmos and GeoGebra. In this step, based on the TQE 

process, they involved responding to questions and interacting with peers in small group 

discussions through using technology. This active involvement allows PSTs to anticipate student 

thinking and understand the learning process more comprehensively. Following this approach, 

PSTs observed the ways that using technology and implementing the TQE process generate various 

evidence for formative assessment (Nolan et al., 2016), while also integrating individual learning 

and small group discussions to explore mathematical concepts deeply. Finally, we asked the 

teacher candidates to analyze other groups’ work and engage in discourse in whole class 

discussion. As PSTs continue using the TPACK framework and TQE process within technology-

based learning during the course, they gather more evidence to connect students' engagement with 

technology to the students' mathematical understanding. This knowledge enables them to provide 
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personalized instruction and consistent feedback to address the needs of all learners through the 

use of technology (Black & Wiliam, 2009; Black & Wiliam, 2018; Neumann et al., 2021).  
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This study examined how virtual reality (VR) supports students’ understanding and 

visualization of the nanoscale. A 90-minute VR session allowed students to explore the human 

hand and zoom inside the hand to see cells, blood vessels, and even individual molecules. 

Students were in control of the simulation and could look around and explore what was 

happening 

Methods 

This study had eleven participants: students aged eleven to fourteen, seven identifying as 

female, and three as male. This camp was conducted at a mid-sized Western university. The 

camp focused on nanotechnology. The culminating design project asked students to create the 

largest soda geyser possible based on what was learned throughout the camp. Even after multiple 

activities students still struggled to visualize the nanoscale. Therefore, a design decision was 

made to utilize virtual reality to allow students to explore the nanoscale.  

Findings 

The VR gave students a concrete understanding of the nanoscale and allowed students to 

bridge the gap between macroscopic and nanoscale scales. After the VR session, students could 

discuss and understand how materials react at the nanoscale. In the post-activity discussion, 

students understood just how small nano is and the scale at which the nanoworld exists. 

 

Discussion 

Virtual reality allowed students to develop a concrete understanding of powers of 10. 

Students were able to use proportional reasoning to scale down to the nanoscale. This aligns with 

the work of Lamon (2020), where students were able to reason up and down to the appropriate 

scale. This is evident through how students talked and thought about the nanoscale and how they 

could use this knowledge to ultimately solve a design problem (creating the tallest soda geyser 

they could). The VR session provided students with an embodied cognitive perspective. Students 

engaged in graspable math and playful learning in a virtual learning environment (Abraham et 

al., 2020). The virtual reality simulation provided a real-world context inside the hand. It was an 

open-ended environment where students could flexibly explore things they found interesting to 

make sense of size and scale. Further research is needed to explore the use of virtual reality to 

support math learning. 
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In this preliminary theoretical paper, we describe our use of conjecture mapping (Sandoval, 

2014) to guide the design of a digital task sequence to support 6th graders’ meanings for points 

as a simultaneous representation of the amount-ness of two quantities. The conjecture map 

ultimately serves as a theoretical framework with testable conjectures about how the design of 

the digital task sequence might promote the intended learning outcomes. 

Keywords: Design Experiments, Technology, Mathematical Representations 

Graph construction and interpretation are critical skills for advanced mathematics 

coursework and consumption of popular media (Glazer, 2011). Despite the importance of graphs 

in K-12 mathematics and science curricula (CCSS; NGSS), research indicates that students 

struggle with graph construction and interpretation well into their post-secondary studies (e.g., 

Carlson et al., 2002; Glazer, 2011). One explanation for students’ challenges with graphing is 

that they develop meanings for graphs that are useful initially but are limited as they advance 

through the mathematics curriculum (e.g., understanding points as a set of directions for how far 

to move over and up from the origin; Frank, 2016). We posit that one way to address this 

challenge is to support students in developing more productive meanings for graphs when they 

first encounter graphs in the curriculum. A promising approach to understanding graphs is 

emergent graphical shape thinking (EGST; Moore & Thompson, 2015). In this theoretical report, 

we describe our effort to design a task sequence that supports 6th grade students (11-12 years 

old) in developing EGST. This task design effort was undertaken between rounds of a design-

based research study (Cobb et al., 2003), and we utilized conjecture mapping (Sandoval, 2014) to 

guide our design toward the dual goals of developing theory about how the design of the learning 

environment functions and about how the development of productive graphing meanings occurs. 

 

Background 

Within a multi-year design-based research study (Cobb et al., 2003), we have been working 

to develop an instructional sequence that supports 6th grade students in developing EGST. We 

conducted multiple rounds of small group teaching experiments (Steffe & Thompson, 2000) in 

which pairs of students worked through our task sequences. The ultimate learning goal we 

intended to support was students’ development of EGST. 

EGST entails conceiving of a graph as a record of covarying quantities (Moore & Thompson, 

2015) which can be created by imagining the trace of a point moving through the coordinate 

plane such that the motion of the point is constrained by the relationship between situational 

quantities. As such, developing EGST requires attention to students’ quantitative reasoning 

within situations and graphs. Quantities are conceptual entities grounded in an individual’s 

conception of a situation. “A person is thinking of a quantity when he or she conceives a quality 

of an object in such a way that this conception entails the quality’s measurability” (Thompson, 

mailto:aolshefk@udel.edu
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1994, p. 7). An attribute of a situation is measurable to an individual if they can conceive of a 

process for measurement that results in an amount and a unit (or the anticipation of a unit). The 

situation in which a person constructs quantities can be a graph (e.g., constructing vertical 

distance above the horizontal axis as an attribute of a point) or some experientially real context 

(Gravemeijer & Doorman, 1999; e.g., constructing weight and habitat temperature for animals at 

the zoo). Although engaging in EGST entails conceiving of varying quantities, in this report we 

detail an effort to support students in what we conjecture is a prerequisite meaning for graphs as 

representing relationships between static quantities. 

Informed by Paoletti et al.’s (2023) LIT for developing EGST with advanced 8th graders, our 

high-level conjecture is that repeated occasions to draw explicit connections between meanings 

for situational quantities (situational quantitative reasoning; SQR) and meanings for graphical 

quantities (graphical quantitative reasoning; GQR) is critical for students’ developing EGST. 

Given space constraints in this report, we focus on the first level of SQR and GQR. Denoted as 

SQR1 below, students must first construct quantities in a situation and conceive of the quantities 

as being able to take particular amounts in the situation. GQR1 entails considering the length of a 

magnitude bar as representing a static amount (i.e., constructing the quantity of length). Bridging 

SQR1 and GQR1 (SQR1⟷GQR1) entails considering a magnitude bar as representing the static 

amount-ness (Stevens & Moore, 2017) of a situational quantity. 

We developed the Zoo Task sequence to provide students with opportunities to reason about 

points as a simultaneous representation of the amount-ness of two situational quantities. 

However, retrospective analysis from our first two rounds of teaching experiments that used the 

task indicated that students needed more (or different) opportunities to bridge SQR and GQR. 

We decided to redesign the Zoo Task sequence to meet this need and took up conjecture mapping 

(Sandoval, 2014) as a strategy for redesigning the task in ways that would enable us to test and 

refine our conjectures about the task design and process of developing SQR and GQR. 

Conjecture mapping attends to the dual goals of design-based research by differentiating between 

theories about the design of the learning environment and theories about the process of learning. 

Conjecture maps depict the ways researchers anticipate the design of the learning environment 

supporting learners in engaging in observable processes as well as conjectures about how 

engagement with those observable processes results in the desired learning outcomes. Our initial 

conjecture map is in Figure 1. 

The Zoo Task 

We describe the opening sequence (screens 2-5) of the Zoo Task to ground descriptions of the 

conjecture map in the next section. Due to space constraints, we only report on the opening 

sequence of the task which we designed to support students’ SQR1, GQR1, and SQR1↔GQR1. 

To support the reader, we provide a link to the opening activity sequence so that the digital 

interactions we describe here can be experienced as we designed them 

(https://bit.ly/ZooTaskPMENA). On Screen 2 (Figure 1a), students are prompted to weigh three 

mystery animals at the zoo and record their weight. Students can weigh each animal by dragging 

it to a scale and pressing the ‘Weigh It’ button. In response to those actions, the scale depresses 

with a bounce (imagine a heavy object being placed on a spring-loaded plate) and the weight of 

the animal is represented with numbers and a magnitude bar. Students then record the animal’s 

weight by dragging a point to construct a vertical magnitude bar with a numeric readout. On 

Screen 3 (Figure 1b), students are prompted to order five animals from lightest to heaviest given 
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five vertical magnitude bars. Three of the magnitude bars are copied over from their construction 

on Screen 2 and include a numeric readout, but the other two magnitude bars represent the 

weight of new animals and do not have numeric readouts. When students select an order and 

press the ‘Check It’ button, the vertical magnitude bars are dynamically rearranged to reflect the 

student’s selection and evaluative feedback (a green checkmark) appears next to the animal 

names in the list if they are in the correct location within the list. Screens 4 and 5 follow a similar 

design but with opportunities to measure habitat temperature by dragging a temperature probe 

into each enclosure and then recording values on horizontal magnitude bars.  

 

(a)   (b)   

Figure 1: (a) Screen 2, and (b) Screen 3 of the redesigned Zoo Task. 

 

An Initial Conjecture Map for the Redesigned Zoo Task 

Recall, our high-level conjecture is that repeated occasions to draw explicit connections 

between meanings for situational quantities (SQR) and meanings for graphical quantities (GQR) 

is critical for development toward EGST. To test that conjecture, we need students to (1) develop 

SQR, (2) develop GQR, and (3) bridge SQR and GQR meanings. Due to space constraints, we 

report on the opening sequence of the zoo task that we intend to support students in developing 

the first level of SQR, the first level of GQR, and bridging between those two meanings.  

 

 
Figure 2: An initial conjecture map to guide the redesign of the Zoo Task. 

 

To support SQR1, we theorized that directly measuring weight and habitat temperature for 

several animals supports students in conceiving of an attribute of the animals (i.e., heaviness; 
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hotness) as being measurable (i.e., having an amount and a unit) (LC1; see Figure 2). To support 

GQR1, we theorized that constructing magnitude bar representations to record particular values 

would support students in understanding that the length of a magnitude bar represents an 

amount-ness (e.g., longer bar = larger amount) (LC2). Furthermore, using the magnitude bars to 

represent particular amounts of weight and habitat temperature derived through direct 

measurement can help students bridge SQR1⟷GQR1 (LC2). Lastly, we theorized that ordering 

animals with respect to a situational quantity (weight or habitat temperature) when provided with 

information about those quantities via magnitude bar representations would support 

SQR1⟷GQR1 because students would have to set a goal related to the situation (e.g., determine 

which animal weighs the least) and then use information from the graphical representation to 

achieve that goal (e.g., which magnitude bar is the shortest) (LC3). 

The observable interactions between student and digital environment that are necessary for 

testing these learning conjectures are listed in the middle column of the conjecture map. Students 

need to (1) directly measure the weight and habitat temperature of several animals (toward LC1), 

(2) construct magnitude bar representations of particular weight and habitat temperature amounts 

(toward LC2), and (3) interpret magnitude bar representations to order animals with respect to 

weight and habitat temperature (toward LC3). 

Next, we developed design conjectures that link the theoretically salient aspects of the task 

design to the production of desired student-environment interactions. Our goal was for this 

activity to be a stand-alone digital activity, so we wanted students to be able to directly measure 

the weight and habitat temperature of zoo animals within the digital environment. We theorized 

that we could design student-environment interactions that emulate direct measurement by 

coordinating available actions (i.e., drag to the scale and click ‘Weigh It’) and visual feedback 

(i.e., “bouncing” on the scale) (DC1). To support students in constructing magnitude bar 

representations of particular amounts of weight and habitat temperature, we theorized that 

strategic use of numbers could support students in linking the result of direct measurement in the 

situation with their understanding of magnitude bars as representing amounts (DC2). The 

reification of this design conjecture can be seen in Figure 1a where the 500 pounds can be seen 

as the dynamic label on the magnitude bar representing Sebastian’s weight as well as the result of 

measuring Sebastian’s weight on the scale. Our final design conjecture is that strategic use of 

numbers and strategic use of visual feedback (Margolis & Boyce, in press) can support students 

in utilizing magnitude bar representations to order animals with respect to weight and habitat 

temperature (D3). Specifically, when we prompt students to order animals (Screens 3 and 5; 

Figure 1b), they can view the magnitude bars with numeric readouts for the three animals that 

they measured on Screens 2 and 4 but are not provided with numbers for the two new animals. 

We anticipate that this strategic use of numbers will result in students’ reasoning about the bars’ 

lengths rather than reasoning about the relationship between values. After students select an 

order and press the ‘Check It’ button, the magnitude bars dynamically rearrange to reflect the 

order of their list. When a student has the animals out of order (as in Figure 1b), we anticipate 

that the reordered magnitude bars will be useful for reasoning about the necessary adjustments. 

 

Discussion & Future Work 

We posit that conjecture mapping is a useful tool for studying the complex links between task 

design and mathematics learning. Our initial conjecture map serves as a preliminary theoretical 
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framework with testable conjectures about how to design digital tasks that support 6th grade 

students in developing SQR1, GQR1, and SQR1↔GQR1. Future work can focus on empirically 

verifying the design and learning conjectures from this conjecture map. Additional work can 

focus on whether and how the development of SQR, GQR, and SQR↔GQR support the 

development of EGST. Such research could lead to the development of curricular materials that 

alleviate student struggles with graph construction and interpretation important for their future in 

advanced coursework and as critical citizens. 
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This study examines the preparation of prospective teachers (PSTs) in teaching secondary 

mathematics with technology. It compares the assessment of PSTs' preparedness using two 

constructs: Vision of High-Quality Mathematics Instruction with Technology (VHQMIw/T) and 

Technological Pedagogical Content Knowledge (TPACK). To unpack this, we explore the journey 

of Avery, a prospective secondary teacher, within the context of Teaching Secondary Mathematics 

with Technology course. The study finds that while TPACK focuses on technological integration, 

VHQMIw/T may offer a more comprehensive understanding of PSTs' preparedness, especially in 

envisioning instructional practices with technology. The authors recommend using both 

constructs to assess PSTs' preparedness effectively. 

Keywords: Instructional Vision, Preservice Teacher Education, Technology 

The field of mathematics education has long agreed on the importance of secondary 

mathematics teachers being prepared to support students’ learning of mathematics using 

technology that supports students’ mathematical reasoning and sense making (ISTE, 2000, 2017; 

AMTE, 2017, 2022; NCTM, 2014, 2023). However, assessing the development of prospective 

mathematics teachers (PSTs) toward this goal is difficult (e.g., Abbitt, 2011). Researchers have 

called for the use of PSTs’ instructional vision (Hammerness, 2001) to assess the development of 

their pedagogical practices during teacher preparation programs (Fieman-Nemser, 2001; 

Arbaugh et al., 2021). Munter (2014) described instructional vision as “ways of seeing the world 

that encompass horizons not yet reached” (p. 587). While instructional vision has been shown to 

be a helpful construct to assess PSTs’ preparedness to teach mathematics (e.g., Arbaugh et al., 

2021; Walkowiak, et al., 2015), to date there is scant research on the use of instructional vision to 

assess PSTs preparedness to teach mathematics with technology. Rather, the most common way 

of assessing PSTs’ preparedness to teach with technology is through attending to the 

development of their specialized knowledge for teaching mathematics with technology referred 

to as technological pedagogical content knowledge (TPACK; Mishra & Koehler, 2006). The 

purpose of this paper is to compare and contrast what we can learn about PSTs’ preparation to 

teach secondary mathematics with technology through attending to these two constructs, vision 

of high-quality mathematics instruction with technology (VHQMIw/T) and TPACK. 
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Theoretical Frameworks 

Our approach to preparing PSTs to teach mathematics with math action technologies (MAT: 

Dick & Hollebrands, 2011) suggests two different ways of framing, and assessing, their 

development, 1) attending to the development of their VHQMIw/T or 2) attending to the 

development of their TPACK. We describe both theoretical approaches in the sections that 

follow. 

VHQMIw/Tech 

Instructional vision is a discourse that teachers (including PSTs) “employ to characterize the 

kind of ideal classroom practice to which they aspire but have not yet necessarily mastered” 

(Munter & Wilhelm, 2021, p. 343). As such, one’s instructional vision is an expression of their 

appropriation of the principles, frameworks, and ideas about teaching and learning that they have 

encountered through their personal and professional learning experiences (Munter & Wilhelm, 

2021). Munter (2014) described a specific vision of mathematics instruction deemed “high-

quality” that is aligned with the literature on effective mathematics instruction, guiding 

frameworks in mathematics education (e.g., NCTM, 2014) and data collected from the Middle 

School Mathematics and the Institutional Setting of Teaching project (Cobb & Smith, 2008). As 

our work is in the context of using MATs, we refer to discourse about high-quality mathematics 

instruction that incorporates MATs in ways that are aligned with the literature on effective 

teaching with technology one’s VHQMIw/T.  

Like Munter’s VHQMI, researchers have long characterized successful technology 

integration with a specific vision toward “constructivist, student-centered technology use” that 

includes “active and collaborative learning through authentic problem solving and knowledge 

construction” (Kopcha et al., 2020 p. 730). In fact, Kopcha et al. (2020) point out that many of 

the frameworks used to describe technology integration characterize student-centered approaches 

as high-quality. Thus, when considering a VHQMIw/T in the context of using MATs, the only 

real difference from Munter’s VHQMI should be in the type of task used during instruction.  

To operationalize how closely one’s vision is aligned with the specific VHQMI described in 

the literature, Munter (2014) created three interrelated rubrics: role of teacher, classroom 

discourse, and mathematical tasks. Each dimension has its own 5-point rubric indicating a 

trajectory of VHQMI with 4 as the highest and 0 as the lowest. We extensively adapted the 

mathematics tasks rubric since the curriculum materials used in our work focused specifically on 

the use of tasks that include MATs. On the adapted VHQMIw/T technology-enhanced 

mathematics task rubric the descriptions are parallel to Munter’s. A score of 0 or 1 indicates that 

the PST does not envision using a MAT and either “does not view tasks as a manipulatable 

features of classroom instruction” (0) or “emphasizes tech tasks that provide students with an 

opportunity to practice a procedure before applying it conceptually to a problem” (1). To score a 

2 or higher it must be clear that a MAT is being used in the task. A score of 2 emphasizes 

“‘reform’-oriented aspects of MAT tasks [e.g., “explore,” “higher-order”] without elaborating on 

their function in terms of learning mathematics—often more about motivation/engagement”, 3 

emphasizes “MAT tasks with multiple solution paths, potential for complex thinking/problem-

solving, but no emphasis on generalization, connections btw strategies/representations, etc.”, and 

a score of 4 is characterized by an emphasis on MAT use in ways “that have the potential to 

engage students in ‘doing mathematics’ Munter (2014, p. 633)”.  
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TPACK 

Researchers in teacher education have built upon Shulman’s (1986) notions of teachers’ 

pedagogical content knowledge (PCK). Grossman (1989, 1990), Even (1990), and Hill et al. 

(2008) drew upon ideas of PCK and further delineated specific constructs for mathematics within 

PCK. However, none of this work considered the knowledge that comes with teaching 

mathematics with technology. In 2005, Niess adapted Grossman’s (1989, 1990) components of 

PCK to take technology into consideration and referred to technology-enhanced PCK. In 2006, 

Mishra and Koehler identified such knowledge as TPACK. The TPACK framework describes the 

type of knowledge teachers need to understand how to use technology effectively to teach 

specific subject matter. In 2013, Neiss identified four components of TPACK with detailed 

descriptors and claimed they provide insight for “developing a transformed knowledge [of] 

(TPACK)” (p. 196). These four components: “(1) an overarching conception of what it means to 

teach a particular subject integrating technology in the learning; (2) knowledge of instructional 

strategies and representations for teaching particular topics with technology; (3) knowledge of 

students’ understandings, thinking, and learning with technology in a particular subject; and (4) 

knowledge of curriculum and curriculum materials that integrate technology with learning in the 

subject area” (Neiss, 2005, p. 511) capture the skills teachers need to develop TPACK.  

Many strategies have been used to assess TPACK including teacher interviews, team 

planning and classroom observations, self-reported surveys, open-ended questionnaires, and 

performance-assessment instruments (Mouza et al., 2014). Studies that use validated instruments 

to assess performance-assessments or artifacts of teaching have proven quite useful (e.g., Harris 

et al., 2010; Hofer et al., 2011; Lyublinskaya & Tournaki, 2012) in providing a glimpse into 

teachers’ TPACK applied in their classrooms. Lyublinskaya and colleagues used the four levels 

as a guide to develop a validated TPACK Levels Rubric (Lyublinskaya & Tournak, 2012; 

Lyublinskaya & Kaplon-Schilis, 2022) used to code teachers’ technology-enhanced teaching 

artifacts (e.g., lesson plans) for evidence of their TPACK. 

Lyublinskaya and Tournak’s (2012) rubrics include five levels of TPACK development (1-

Recognizing, 2-Accepting, 3-Adapting, 4-Exploring and 5-Advancing) which are applied to each 

of Neiss’ (2009, 2013) four components of TPACK. At the lowest level, 1-Recognizing, teachers 

use technology as a motivational tool, not to support students’ mathematical thinking and are 

focused on rote practice. At level 2-Accepting, the use of technology is instructor led and 

focused on teacher delivery of information often mirroring traditional textbook material.  For the 

middle level 3-Adapting, teachers begin to use technology as a source of student inquiry to 

support students’ mathematical thinking under direct teacher guidance and without opportunity 

for student reflection; math action technologies may or may not be used at this level.  At level 4-

Exploring, students become the primary driver of explorative technology making full use of math 

action tools within the technology, however the teacher “still guides the students to see the 

meaningful consequences of those actions” (Lyublinskaya & Tournak, 2012). At the highest 

level, 5-Advancing, students are provided opportunities to explore, make conjectures, reflect and 

develop their own conceptual understanding of mathematical concepts. 

 

Methods 

This is an instrumental case study (Stake, 1995) of a single PST, Avery, who participated in a 

course titled Teaching Secondary Mathematics with Technology. Avery was a mathematics major 
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and secondary mathematics education minor. This was the first mathematics specific methods 

course. The course was designed using principles of practice-based teacher education (Grossman 

et al., 2009), used curriculum materials from the Preparing to Teach Mathematics with 

Technology – Examining Student Pracices project [PTMT-ESP], and the course text was 

Exploring Math with Technology: Practices for Secondary Teachers (McCulloch & Lovett, 

2024). Throughout the course Avery had many opportunities to engage in high-quality 

technology-enhanced math tasks as a learner, to analyze the design of these tasks, to analyze 

video of students and teachers engaged with these tasks, to create technology-enhanced math 

tasks, and to plan lessons that incorporate technology-enhanced math tasks. Through these 

experiences, Avery was developing both their VHQMIw/T and their TPACK. Avery was selected 

as the case for this study because they scored high on both VHQMIw/T and TPACK at the end of 

the semester, we hoped this similarity would provide insight to what we can learn about a PSTs’ 

preparedness from these two different perspectives. As such, we aim to answer the following 

research question: What are the similarities and differences in what we can learn about PSTs’ 

preparation to teach mathematics with technology-enhanced mathematics tasks by attending to 

their VHQMIw/T and their TPACK? 

For the purposes of this study, we are focusing on artifacts from the end of the semester to 

understand Avery’s preparation to teach secondary mathematics with technology at that point in 

time. This includes his description of his VHQMIw/T and a technology-enhanced math task that 

he created along with its accompanying lesson plan. The data sources and our analysis of them 

are described in the sections that follow. 

TPACK: Data Source and Data Analysis 

All PSTs enrolled in the Teaching Secondary Mathematics with Technology course along 

with Avery, were asked to design a technology task and an accompanying lesson plan. In a prior 

lesson PSTs had engaged in a sequence of approximations of practice related to a Desmos 

Activity designed to introduce amplitude, midline, and period of the sine function 

(tinyurl.com/IntroSine). This included anticipating student thinking, noticing student thinking, 

scripting whole class discussion, and analyzing video of the classroom teacher as she monitored 

small groups and facilitated a whole class discussion. At the end of this sequence the PSTs were 

assigned to design a follow up lesson. They had the option to create a task and lesson that either 

a) provides an opportunity for the students to further develop their understanding of amplitude, 

midline, and period related to sine functions and their graphs, or b) provides an opportunity for 

her students to apply their knowledge of amplitude, midline, and period to a real context through 

modeling, or c) an investigative task intended to introduce phase shift to go along with 

amplitude, midline, and period. For this assignment, Avery chose option c. 

To analyze the tasks and accompanying lesson plans, we used the TPACK Levels Rubric 

(Lyublinskaya & Tournak, 2012; Lyublinskaya & Kaplon-Schilis, 2022) to capture the PSTs’ 

TPACK levels across the four dimensions: overarching conception, knowledge of student 

understanding, knowledge of curriculum, instructional strategies. Each dimension has its own 5-

point rubric indicating a growth trajectory of TPACK with 5 as the highest and 1 as the lowest. 

All tasks and accompanying implementation plans were coded by four researchers and then 

discrepancies were discussed until consensus was reached across the four coders. A composite 

score was computed (i.e., the sum of the four dimensions). 
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VHQMIw/T: Data Sources and Data Analysis 

Similarly, all PSTs enrolled in the course with Avery responded to a vision prompt adapted 

from Munter (2014): If you were asked to observe a technology-using math teacher’s classroom 

for one or more lessons, what would you look for to decide whether the mathematics instruction 

(including the use of technology) was high quality? In your response make sure you describe 

what you would expect to see/hear from the teacher, students, and mathematical tasks during 

your observations. 

To analyze the PSTs’ vision statements, we used our adapted version of Munter’s VHQMI 

rubrics. These rubrics include 3 interrelated dimensions: role of teacher, discourse, and 

technology-enhanced math tasks. Each rubric indicates alignment with a research informed 

VHQMIw/T with 4 being the highest, 0 the lowest, and N/A indicating the dimension was not 

included in the PSTs’ vision statement. Like the TPACK analysis, all vision statements were 

coded by four researchers and then discrepancies were discussed until consensus was reached 

across the four coders. 

 

Findings 

Avery’s scores for both VHQMIw/T and TPACK are found in Table 1. Based on the analysis 

of their vision statement and lesson plan artifacts, Avery would be described as having a 

VHQMIw/T that is aligned with the literature on effective teaching and learning with technology 

and TPACK that is aligned with the advancing level of technology integration. In what follows 

we unpack what we learn from these rubric scores about Avery’s preparedness to teach 

mathematics with technology-enhanced tasks. We begin with VHQMIw/T, then TPACK, and 

finally we compare and contrast the two. 

 
VHQMIw/T Rubric Scores (max: 4)   TPACK Rubric Scores (max: 5) 

Role of Teacher 4   Overarching conception 5 

Discourse 4   Knowledge of student 

understanding 
5 

Tech-enhanced math task 4   Instructional strategies 4 

    Knowledge of curriculum 5 

Composite Score 4   Composite Score 4.75 

Table 1: Avery’s TPACK and VHQMIw/T Rubric Scores 

 

Avery’s VHQMIw/T 

When responding to the VHQMIw/T prompt, Avery began by clearly stating their 

overarching VHQMIw/T and then went on to describe how to achieve that vision. Avery 

articulated their VHQMIw/T as,  

A high quality, equitable math instruction with technology would include the following: 

students exploring the mathematics with dynamic math technology, each student/group 

working with the technology equally, and a lesson designed to incorporate the student’s 

understandings and work into a discussion that furthers the whole-class understanding around 

the mathematics topic. 

In terms of the role of the teacher, Avery expanded on this statement by describing that when 

students are working on a task, a teacher’s role is to “ask students assessing questions that help 
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the teacher see students’ understanding then ask advancing questions that lead students to a more 

developed understanding.” Avery envisions that an instructor “guides and facilitates, 

occasionally may need to step in to reach the necessary daily goals, but should almost never 

directly explain a topic in full without student input.” Avery scored a 4 on the role of the teacher 

rubric since they described the teacher’s role as more than just a facilitator. By describing that the 

teacher “should almost never directly explain a topic in full without student input” it is clear that 

Avery’s vision is the teacher as a more knowledgeable other. 

With respect to discourse Avery also wrote that their VHQMIw/T includes a “full-class 

discussion around understanding the mathematics.” Avery expanded on this stating that “an 

instructor should facilitate a discussion on the topics using the students’ work. This is done 

through carefully cultivating the responses and ordering them for discussion.” Avery went on to 

explain that a teacher “should lead the discussion by having open-ended questions posed to them 

that allow them to identify, compare, contrast, and critique the responses.” Avery provides 

concrete images of students learning from each other. Therefore, Avery scored a 4 on the 

classroom discourse rubric. 

Finally, with respect to technology-enhanced tasks, Avery noted that students should explore 

mathematics and expanded this idea noting that a high-quality technology-enhanced math task 

“must be dynamic, it must allow students to explore and notice facts and relationships about the 

topics being presented.” Here Avery focused on connections between the mathematical ideas and 

described a task that would align with “doing mathematics” (Smith & Stein, 1998), therefore 

Avery scored a 4 on this rubric. 

Avery’s TPACK 

For three of the four components of TPACK – overarching conception, knowledge of student 

understanding, and instructional strategies – Avery scored at the advancing level (5). With 

regard to their overarching conception, Avery’s lesson plan included a high-cognitive demand 

(Smith & Stein, 1998), technology-enhanced task built in Desmos Activity Builder. The task 

focused on developing students’ understanding of phase shift and provided opportunities for 

inquiry and reflection. For example, Avery’s task asked students to explore the relationship 

between the parameters of the sine function when a new parameter was added. Students were 

then asked to write down what they notice when examining the slider for h. This example 

demonstrates the connection to conceptual understanding through both inquiry and reflection that 

was seen throughout the task. 

   
Figure 1: Students could explore the phase shift of the function using sliders 
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Within knowledge of student understanding, Avery’s advanced rating of 5 was evident in 

Avery’s task that relied on students taking mathematical actions (using sliders in Desmos) to 

examine the impact of h and b, see the consequences of their mathematical actions, and draw 

conclusions about phase shift (i.e., phase shift = h/b) based on these consequences. The lesson 

plan included how Avery planned to use the resulting student thinking to facilitate discussions 

and make connections across multiple representations, allowing student thinking to drive the 

direction of the lesson. For example, Avery included, 

After students have completed the activity, I plan to facilitate a whole class discussion on 

phase shift. I will ask students to share their noticing looking for… 

● An informal description of how the h slider alters the graph (horizontally shifts) 

● A description of the term phase shift 

● An informal description of the relationship between the slider and phase shift 

● A precisely described mathematical relationship between h, b, and phase shift (direct 

with h-h/b) 

I want to make sure students connect the horizontal shift with phase shift and understand their 

slight differences… 

Avery’s advanced rating (i.e., score of 5) for instructional strategies was due to the use of 

sliders within the mathematical task that provided students with an inductive strategy that 

effectively supported students' exploration of phase shift and included prompts to promote 

reflection and sense making/reasoning. 

With respect to the remaining component, knowledge of curriculum, Avery demonstrated an 

exploring level related to TPACK (i.e., score of 4). This was evidenced in how effectively the 

task was aligned to the learning and performance goals included in the lesson plan, and how the 

task provided students an alternative way to explore the mathematical topic (i.e, alternative to 

using paper and pencil methods) and expand on the mathematical ideas they build with respect to 

amplitude, midline, and period in the prior lesson through their exploration of the function. 

Avery’s lesson did not score a 5 on the knowledge of curriculum rubric because the task did not 

make connections outside of the curriculum or challenge the traditional curriculum to have 

students learn different topics.  

Comparing and Contrasting Avery’s VHQMIw/T and TPACK 

Both the VHQMIw/T and TPACK rubric scores suggest that Avery is well-prepared to teach 

mathematics with technology. What we are curious about is what we learn about Avery’s 

preparation from each of these measures. We begin with the more commonly used construct, 

TPACK. 

Since Avery was in a class focused on teaching mathematics with technology and the lesson 

planning assignment at the end of the semester required the inclusion of a technology-enhanced 

task that included a MAT, as long as they created a lesson that met the requirements of the 

assignment his TPACK rubric scores were going to all be 3, 4 or 5, leaving little room for 

variability. The TPACK rubrics highlight that Avery is well-prepared to design a high-cognitive 

demand technology-enhanced task, aligned with learning goals, that provides ways for students 

to interact with the mathematical objects and prompts them to both explore and reflect. However, 

we know less about how Avery plans for students and teachers to interact with each other when 

engaging with the task. The knowledge of student understanding and instructional strategies 
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rubrics do indicate that the teacher plans to facilitate students’ use of the technology in ways that 

lead to deep understanding of mathematics, and that they will use both deductive and inductive 

strategies to do so. So there is a sense from the rubric scores that Avery will carefully facilitate 

the implementation of the technology-enhanced task and resulting whole-class discussion, but 

this does not provide insight to how Avery’s hypothetical students will interact with each other’s 

ideas. 

In contrast, the VHQMIw/T rubrics provide insight to not only what Avery envisions a high-

quality technology-enhanced math task to be, but also provides further details for how Avery 

envisions the teacher and students’ interacting around such a task. The technology-enhanced 

mathematics task rubric indicates that Avery designed a task that uses a MAT and is of high-

cognitive demand, to score a 4 on this rubric they also had to explain how such a task would 

support student learning (i.e., function view). This additional explanation is not captured in the 

TPACK rubric. The role of the teacher rubric score indicates that Avery envisions the teachers’ 

role as a more knowledgeable other who is proactively supporting students’ learning through 

anticipating student thinking as part of the lesson planning process and then during the lesson, 

using student work to drive whole class discussions around the important mathematical concepts 

and connections. Thus, Avery is not only planning to use deductive and inductive strategies as 

indicated in the TPACK rubrics, but is going to leverage the students’ thinking to drive the 

deepening of their understanding. Finally, the discourse rubric indicates that Avery envisions 

students’ learning from each other, with the mathematical discourse often being student initiated 

and students talking to each other, not solely through the teacher. None of the TPACK rubrics 

capture the nature of the planned discourse. 

 

Discussion and Conclusion 

Comparing and contrasting VHQMIw/T and TPACK using Avery’s work at the end of a 

course focused on preparing PSTs to teach secondary mathematics with technology does reveal 

some differences in what we can learn about PSTs’ preparedness using these two constructs. The 

most striking finding is that the TPACK rubrics do not capture the nature of planned discourse, 

including how one envisions the role of the teacher during small group and whole class 

instruction. The VHQMIw/T role of teacher and discourse rubrics do capture these important 

aspects of mathematics instruction. In their review of technology-enhanced pedagogy in teacher 

learning, Zinger et al. (2017) called for less attention to PSTs’ use of technological tools and 

more attention on the role of the teacher in using those tools to address problems of practice. Our 

findings suggest that VHQMIw/T might be a helpful framing for researchers taking on that work.   

PSTs often do not have field experiences in courses in which they are learning to teach 

mathematics with technology (McCulloch et al., 2021), making assessing TPACK based on their 

practice difficult. With this in mind, rather than attending to their enacted instruction, researchers 

have called for attending to PSTs’ instructional vision as an indication of their developmental 

progress during teacher preparation programs (e.g., Feiman-Nemser, 2001), noting that changes 

in instructional vision often occur before changes in practice (e.g., Munter, 2014). Our findings 

suggest that the VHQMIw/T rubrics do provide insight into how PSTs envision the design of 

technology-enhanced mathematics tasks – the main focus of the TPACK rubrics – while also 

providing insight to how they hope to one day facilitate students’ working on such a task.  
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Based on the findings in this study, we would ultimately recommend using both the 

VHQMIw/T and TPACK constructs to understand PSTs’ preparedness to teach mathematics with 

technology. However, assessing TPACK as a pre-test  is difficult to do when PSTs have yet to be 

introduced to teaching mathematics with technology (i.e., it is unfair to ask them to design a 

technology-enhanced mathematics task and accompanying lesson plan when they have not yet 

been taught how to do so), yet VHQMIw/T can provide insight to what they aspire. It is not 

uncommon for researchers to use self-reported TPACK measures like self-efficacy or beliefs as 

pre/post measures alongside TPACK as post measures  (e.g., Akapame et al., 2019). We 

recommend attending to instructional vision over other self-reported measures as the latter 

“suggest a relatively static set of decontextualized ontological commitments” and “vision is 

intended to communicate a more dynamic view of the future” (p. 587). To further compare these 

two constructs, future work following PSTs into the field to study how their VHQMIw/T informs 

their practice and whether or not their practice aligns with their VHQMIw/T and enacted TPACK 

would be useful.  
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AI’s influence in mathematics education is growing rapidly with the expansion of new 

technologies and AI tools. Researchers argue that a deeper study of AI’s role in mathematics 

classrooms is needed to unlock the full potential that technology offers (e.g., Aleven et al., 2023; 

Gattupalli et al., 2023; Aljarrah & Towers, 2022). In this paper, we share preliminary findings 

from a study exploring the impact of the AI-powered guide, Khanmigo, on undergraduate 

students’ mathematical learning. Participants completed four tasks drawn from the History of 

Mathematics (Katz, 1988) and four focused on mathematical modeling (Erbas et al., 2016). 

Methods 

We chose a case study methodology (Stake, 2000), investigating individual cases 

(undergraduate students) to address the overall research goal. In this poster, we present findings 

related to one student’s (second author, Li) interactions with Khanmigo specific to this task: At 

their last concert, Oscar & the O’s sold 2200 tickets for $32 each.  The promoter believes that a 

$1 decrease in the price of a ticket will attract 50 more listeners.  Oscar points out that charging 

$1 more per ticket is just as likely to drive away 50 people.  The promoter wants your help to 

determine the ticket price that will bring in the most money. Data collected and analyzed include 

Li’s individual response to the task, solution based on her interaction with Khanmigo, and 

reflections on the task engagement with the AI-tool. Li used the tool for brainstorming ideas, 

generating suggestions, and seeking clarification on challenging concepts. 

Li’s engagement with the AI tool is characterized by a progressive exploration of generalized 

topics related to optimization. Her prompts to the tool evolve gradually, becoming more refined 

based on the responses received. Khanmigo plays a pivotal role in shaping the conversation’s 

direction by posing questions that prompt Li’s thinking and assess her current understanding. An 

example of this is when the tool inquires, “Do you know what a ‘constraint’ is in this context?” 

and follows up with, “Can you think of a situation where you might have a constraint?” The 

subsequent clarification and the query, “Does that make sense?” demonstrates the tool’s role in 

gauging Li’s mathematical understanding. This interactive dynamic underscore the AI tool’s 

function not only as a source of information but also as a supportive tool facilitating hands-on 

problem-solving and conceptual understanding. However, there was a specific instance when 

Khanmigo failed to catch the Li’s mathematical mistake until she pointed it out. In a classroom 

setting, this oversight can mislead the learner into thinking that their answer (and thought 

process) is correct, when in reality, it is incorrect. This hinders the learning process and is 

counterproductive rather than facilitating. Khanmigo’s inability to present graphs and other 

drawings presents another challenge. 

In summary, the above findings demonstrate how an AI tool can be effectively used as a 

collaborator in the learning process. While Khanmigo has the potential to serve as both an 

amplifier and reorganizer (Pea, 1985), using it cautiously as a reorganizer proves to be the most 
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effective approach to leverage its AI capabilities, considering the potential modification of Li’s 

thinking processes in this context.  
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Recent recommendations from national organizations on advancing mathematics education 

underscore the necessity of integrating artificial intelligence (AI) in the classroom for 

empowering students. It is necessary to move past the question of “Why use AI” and focus on 

“How to use AI”, “What tools are conducive for AI learning”, and “When to use these tools”. 

This shift is necessary for developing a broader and a deeper understanding of the use of AI in 

mathematics classrooms. In this paper, we feature key findings from a longitudinal case study 

aimed to explore, understand, and analyze the interactions unfolding between undergraduate 

teacher education students and an AI tool (ChatGPT) during their engagement with mathematics 

modeling tasks. We highlight specific findings related to a specific modeling task and describe 

key aspects of learner-AI engagement.   

Keywords: Undergraduate Education, Computational Thinking, Technology, Modeling, 

Geometry and Spatial Reasoning.  

With the rise of new technologies and AI tools, the influence of AI in mathematics education 

is growing, leading to a current debate within the educational community about if and how AI 

should be integrated within mathematics education (Kovács et al., 2022, p. 23). AI tools have the 

potential to transform how learners engage with mathematical tasks (Hwang et al., 2020); 

however, this requires a comprehensive understanding of AI’s nuances and its effective 

integration within existing curricular and pedagogical frameworks and finding ways to support 

teachers and learners in the effective and responsible use of AI tools (Celik et al., 2022; Hwang 

& Tu, 2021). The authors are engaged in a longitudinal research project, aimed to explore the 

role of AI use in mathematical classrooms, specifically focused on how prospective mathematics 

teachers (PMTs) engage with AI as ‘learners’ of mathematics. The primary objective of this 

research is to explore, understand, and analyze the interactions unfolding between learners and 

AI tools as they engage with cognitively demanding mathematical tasks. This paper particularly 

discusses the interactions between learners (PMTs) and Chat Generative Pretrained Transformer 

(chatGPT) during their engagement with a mathematics modeling task.  

Our working definition of AI is that it is a network of “computational systems that simulate 

human intelligence in machines to reason, learn, and act on complex tasks” (Copur-Gencturk et 

al., 2023, p.4). ChatGPT, a natural language processing model, has been found to have the 

potential to assist with both the teaching and learning of mathematics. Teachers use it for various 

purposes such as lesson planning, student assessments, and providing feedback (Crust, 2023; 

Firat, 2023; Wardat et al., 2023). Moreover, the chatbot can support learners in generating 

explanations, answering queries, and engaging in interactive problem-solving related to 

mathematics (Guo et al., 2023).  
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Proponents of activity theory (e.g., Vygotsky 1978; Leontiev, 1978) emphasize the central 

role tools play in mediating human activity. The theory highlights the notion that the relationship 

between the subject and object is mediated through a tool. Using Activity Theory to investigate 

learner engagement with AI involves analyzing how the tool-mediated relationship between the 

subject and the object influences the learning process. In the present context, the subject is the 

learner, the object is the AI technology, and the mediating tool is the specific AI application (e.g., 

a chatbot) used for learning. The term “tool-mediated” suggests that tools, whether physical or 

intellectual, act as facilitators in the relationship between the learner, mathematics, and 

technology highlighting the importance of these tools in mathematics classrooms. 

 

Methodology 

We use a case study methodology (Stake, 2000; Yin, 1994), specifically, an instrumental case 

study approach to address the research goal. We intend to shed light on a particular phenomenon: 

the nature of learners’ interactions with chatGPT as they engage with a mathematical modeling 

task. By investigating individual cases (learners), we seek to show how the phenomenon itself 

could be described, and hence an instrumental case study is appropriate. In this paper, we focus 

on a subset of data collected for the longitudinal case study. 

The geographical context is a large south-western university in the United States. The study 

setting is a mathematics course for middle school and secondary PMTs - Advanced mathematics 

from a secondary perspective. Fifteen PMTs engaged with middle school and high school-level 

topics, including algebra, geometry, and calculus. Within this course, the first two authors 

developed a course project to explore AI’s role in mathematics learning. PMTs completed 

various activities, beginning with a survey aimed at gathering their initial impressions on the 

topic.  Following this, they researched AI tools applicable to mathematical contexts and 

completed three mathematics modeling tasks outside of regular class hours. In this paper, we 

present data specific to the following task (Figure 1). 

 
Figure 1: The Mathematical Task (Erbas et al., 2016) 

Data collected and analyzed include PMTs’ responses to the task, documented interactions 

with the AI tool, and their reflections on task engagement. Emphasizing inclusivity and ease of 

use, we allowed learners to self-select the AI tool. During their AI interactions, PMTs were 
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advised to a) use prompts for brainstorming instead of directly seeking answers and b) 

encouraged to independently solve problems first before collaborating with the AI tool for 

alternate solutions. The first and the second authors independently read and coded PMTs’ 

interactions with the AI tool, cross-checking their findings. Elsewhere, we have presented a 

framework that represent levels of learner engagement with AI from foundational recall to 

creative exploration of mathematical ideas (Naresh et al., 2024). In this paper, we provide a brief 

synopsis of one case Manu (a pseudonym) – as an illustrative example that highlights a creative 

level of engagement with AI.  

Results 

Manu took a distinctive approach by prompting AI to create a recommended table of 

variables essential for solving the task. After transcribing the AI-generated variables onto the 

board, Manu analyzed the information, generating initial ideas for solving the task (Figure 2). 

 

 
 

Figure 2: An Overview of Manu’s Solution Process  

 

Manu used multiple representations in the solution strategy, illustrating how each can would be 

positioned and stacked in the storage unit. Using the table, Manu calculated the number of cans 

each storage unit could accommodate. Next, Manu inquired about an alternative way to model 

the situation for determining the most cost-effective storage unit, specifically prompting the 

chatbot to “act like the college professor and to provide guidance rather than a straightforward 

answer”. The bot responded with suggestions, including formulating equations to express the 

volume of a single can and the volume of the storage unit. Manu, recognizing the rigid 

dimension of the cans, opted for a “Guess and Check method”. She calculated the cost associated 

with using a single storage unit multiple times (e.g., using unit 1 three times costing $300/month) 
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or a combination of multiple units (such as units 1 and 2 together costing $250/month), 

ultimately choosing storage unit 3 as the most cost-effective option.  

Transitioning to modeling for varying number of cans, Manu recognized the problem as an 

optimization challenge and proposed a simple function to the chatbot. Manu received a set of 

instructions and identified the following guidance as the most helpful: “Ensure Minimization: 

Confirm that the objective is framed as a minimization problem. The goal is to typically minimize 

the total cost, so the objective function should reflect this”. Further advancing the inquiry, Manu 

prompted the chatbot to write code in MATLAB (a programming and numeric computing 

platform) using the optimization toolbox to mathematically model the situation. After an 

interactive conversation with chatGPT, debugging the generated code, and testing it in 

MATLAB, Manu successfully developed a code that recommends the least costly option for 

storing any number of cans. Reflecting on the practical implications, Manu highlighted the 

potential real-life application of the code, envisioning a program that allows customers to input 

the number of cans and receive cost-effective storage recommendations. 

 

Discussion  

Manu’s engagement surpassed immediate problem-solving by extending into the 

generalization of mathematical concepts and processes, yielding additional outputs. To further 

discuss the dynamics between the subject, object and the mediating tool, we turn to Activity 

Theory. Manu’s thoughtful consideration of various solution approaches indicates an activity 

where understanding the task and exploring potential solution pathways take precedence over 

immediate task completion. Manu’s engagement involves a broader exploration of the task’s 

context before narrowing down to specific mathematical ideas. The progression from a general 

understanding of the task to a focused engagement with mathematical content suggests a 

dynamic interplay between the learner, the AI tool, and the evolving understanding of the task. 

These nuanced engagements highlight the varied depth and creativity in interactions with the AI, 

offering insights into the potential for more thorough and constructive engagements. 

 

Conclusion 

Our findings have significant implications for teaching and research, indicating potential 

lines of inquiry for further exploration. For teaching, we noted that the AI tool enhances dynamic 

learning but requires proactive engagement from learners, and incorrect answers or self-

corrections necessitate caution for those with varying mathematical understanding. Additionally, 

the use of AI outside the classroom limits the instructor’s ability to monitor adherence to 

guidelines, with some learners treating the AI as a tutor rather than a collaborator. This highlights 

the need to further explore AI integration methods, classroom dynamics, pre-AI engagement, and 

the instructor’s role (NCTM, 2024). In our research, we recognize the need to examine how 

learners interact with AI across various content domains and problem types. Investigating the 

instructor’s role can add new dimensions to our study, providing further insights. Conducting 

semi-structured interviews will help us understand learners’ thought processes and metacognitive 

factors. Additionally, examining the experiences of prospective teachers with AI tools can offer 

insights into AI’s role in future classrooms. 
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Research (Eubanks, 2018; Holstein & Doroudi, 2022) offers insights into how the use of AI 

tools can exacerbate or ameliorate historical issues such as inequities experienced by non-

dominant groups, particularly in Artificial Intelligence Education (AIED). Despite the National 

Council of Teachers of Mathematics [NCTM] (2024) call for such research in Mathematics 

Education, few studies exist. Findings from a deductive analysis of video transcripts (Powell et 

al., 2003) from three comparative case studies conducted over three months in rural, 

multilingual, technologically constrained, low socio-economic community and school settings in 

Ghana contribute to this research. As shown in Figure 1, these findings offer insights into how AI 

tools used for teaching and learning mathematics either meet or fall short of established 

definitions of equity, particularly concerning students' identity (Gutierrez, 2007). As AI tools in 

AIEd often exacerbates existing inequities concerning language identity by being trained 

primarily on mainstream dialects (Holstein & Doroudi, 2022), so are they in mathematics 

education. Contrary to the lack of flexible customization in AI tools in AIEd, which worsens 

existing one-size-fits-all pedagogies (Nye, 2014), AI tools in mathematics education 

explainability’s mitigate this. These findings involve five high school students, five parents with 

two being francophone speakers, a mathematics and AI researcher who integrated the free mobile 

version of PhotoMath for differential calculus. 

 

Figure 1: AI Tools in Mathematics Education Meeting or Falling Short of Established 

Equity (Identity) Definitions 

 
Established equity 

(Identity) definitions 

in Mathematics 

Education 

AI Tools Meeting 

Established equity 

(Identity) definitions in 

Mathematics Education 

AI Tools Falling short of Established 

equity (Identity) definitions in 

Mathematics Education 

1. Students engage in 

mathematical tasks 

according to their 

preferences, 

including 

algorithms and 

strategies to solve 

problems 

(Gutierrez, 2007; 

Myers, 2014). 

 

2. Students maintain 

and draw upon 

cultural and 

linguistic capacity 

during mathematics 

1. Students had the 

autonomy to select 

their preferred 

Photomath  

explanability such as 

step-by-step solution, 

promoting inclusivity 

and accommodating 

diverse learning 

styles. 

2. In the out of school 

context, Francophone 

parents actively 

engaged with teachers 

and students, utilizing 

Photomath's French 

 

 

 

 

 

 

 

 

 Photomath support is limited to 

mainstream dialects such as Spanish, French, 

and English, commonly taught in Ghanaian 

schools. This restriction excludes Ghanaian 

dialects, restricting students' ability to connect 

with mathematics through their linguistic 

repertoire and hindering teachers' capacity to 

adapt to local contexts. 
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learning (Gutierrez, 

2007).  

interface to support 

students learning. 
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The integration of Artificial Intelligence (AI) tools in mathematics education is growing, but 

many tools lack transparency in their outputs. Updated versions of AI tools such as Photomath 

have incorporated explainable features to improve user comprehension. This paper offers 

insights into Photomath's explainable features under two areas: technique and practice related. 

Technique-related comprises the descriptions of available explainable while practice-related 

covers how they impact users. Findings from the video transcript of a three-month project 

integrating Photomath into a differential calculus curriculum show that its explainable, such as 

the embedded dictionary, can impact teachers' mathematics curriculum decisions, amplify 

equitable mathematics practices, develop students' mathematics communication skills, and 

provide insights into algorithmic bias, depending on the teacher's instrumental orchestration.  

Keywords: Technology, Instructional Vision, Instructional Activities and Practices, Instructional 

Leadership  

Introduction 

Fey (1989) identified key areas, including connections to Computer Science and 

Mathematics Curricula, Artificial Intelligence, and Machine Tutors, as focal points for research 

into integrating technological tools within mathematics education. In 21st-century Mathematics 

Education, there is a significant shift towards leveraging Artificial Intelligence (AI) tools 

(Engelbrecht & Borba, 2023; Lagrange et al., 2023; Richard et al., 2023). These are the newest 

additions to the digital and analogue tools for teaching and learning mathematics, designed to 

learn and function based on data that simulates human thought processes. The book titled 

"Mathematics Education in the Age of Artificial Intelligence: How Artificial Intelligence can 

Serve Mathematical Human Learning” by Richard et al., (2023) outlines three key areas of focus 

within this transition: encompassing the process of creating AI in mathematics, examining the 

integration of AI in learning and investigating the role of AI in optimizing current and future 

learning based on insights from empirical research. 

This paper focuses on the second and the third focal point: the integration of photomath 

explainable features in the teaching and learning of mathematics and how they can enhance 

certain teaching practices. Photomath is an AI tool designed to recognize, extract, and solve 

handwritten as well as printed text mathematical problems using computer vision technology. 

Photomath's explainable features mainly consist of alterable and non-alterable interfaces, 

including step-by-step solutions, embedded mathematical dictionaries, variants of mathematical 

formulas, and approaches to tailor a specific generated solution to offer users an explanation for 

its output. Among the array of AI tools in mathematics education, Photomath is emphasized for 

two reasons. Firstly, due to its widespread adoption, with over 220 million downloads 

worldwide, addressing 2.2 billion problems monthly, and being utilized by over 1 million 

teachers (Photomath, 2023). Secondly, due to its updated features such as explainability’s aimed 

at overcoming some of its documented challenges. 
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In the second section of the paper, a snapshot of the literature documenting challenges with 

the integration of AI tools such as Photomath for teaching and learning is presented. The third 

section continues with an insight into the updated features in Photomath aimed at mitigating 

some of these challenges. The fourth section explores how mathematics educators can 

instrumentally orchestrate some of these updated features to inform important mathematical 

practices. 

Challenges with the Integration of AI Tools for Teaching and Learning 

An artificially intelligent (AI) tool is a software or hardware application that simulates and 

performs tasks or functions typically associated with human intelligence, such as learning, 

problem-solving, perception, and decision-making (Zawacki-Richter et al., 2019). Frequently, 

users remain unaware of the explainability (the extent of understanding regarding how the AI-

based system produces specific outcomes) (ISO, 2020). Consequently, scholars argue that this 

lack of transparency in AI tools renders complex mathematical concepts seemingly irrelevant for 

students (Newman, 2014). Despite ChatGPT's advanced capabilities as a chatbot model trained 

on the large language model Generative Pretrained Transformer (GPT), enabling it to handle a 

broad variety of text-based requests through vast volumes of data (Azaria et al., 2023; Lund, 

2022), Bliss (2023) observed its lack of transparency. She stated that that while AI assisted tools 

such as the large language model Generative Pretrained Transformer (ChatGPT) can aid in 

delivering information to learners, it cannot think for them or facilitate genuine learning. Bliss 

expressed concern that students often rely on AI as a quick solution for instant answers, rather 

than engaging in critical thinking or retaining knowledge, even as educators strive to foster 

interest and skill acquisition in various subjects. Her concerns are rooted in the premise that 

human intelligence is innate, developing naturally as we interact with others, contemplate the 

world, and strive to enhance our connection to it. 

In mathematics education, Webel and Otten (2015) discuss concerns regarding the utilization 

of the Photomath app, noting that "In conceptual problems, Photomath can assist only with 

computations; it cannot generalize the patterns" (p. 370). They propose potential responses, 

including banning access, restricting access, or considering a different division of labor. 

Capinding (2023), citing Muslimah et al. (2023) and Latham (2020), suggests that students may 

struggle to grasp essential concepts when learning mathematics via Photomath since it provides 

opaque generated answers instead of the pen-and-paper approach where students engage in 

manual and transparent calculations. This could lead to an insufficient foundation for future 

learning, as some may opt for convenience by relying solely on Photomath (Capinding, 2023, 

p.3). In their 2024 position statement on AI, the National Council of Teachers in Mathematics 

[NCTM] highlighted concerns about bias in AI tools' training data, which sometimes can lead to 

amplifying existing inequities faced by non-dominant groups. For instance, in our use of 

Photomath for differential calculus, we found that Photomath support is limited to mainstream 

dialects such as Spanish, French, and English, commonly taught in Ghanaian schools (Nti-

Asante, 2024). This exclusion of Ghanaian dialects reinforced existing challenges in the study 

context, where students are restricted from connecting with mathematics through their linguistic 

repertoire, perpetuating known challenges faced by multilingual students. 

Mitigating Challenges with AI Tools for Teaching and Learning  

To address challenges associated with AI integration, researchers, policymakers and AI tool 

making companies have outlined possible approaches. Cox (2020) advocates for educators to 
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cease adversarial engagement with available technology, urging instead an acceptance of its 

presence and the exploration of ways to leverage it for students' benefit. In line with this, the 

NCTM advises educators to develop assessments that diminish reliance on computation while 

fostering problem-solving skills. They stated this approach positions students to critically engage 

with AI-generated outputs, aiding in the identification of potential biases.  

Recognizing the significance of these challenges, AI tool developers such as Photomath have 

taken proactive steps to ameliorate them. They have introduced updated features, including 

alterable and inalterable explainable features, aimed at providing users with comprehensive 

explanations for generated outputs. Due to the profound insights offered by explainability’s in 

tackling challenges faced by users of AI tools, there has been extensive research on the 

techniques and practices associated with them (Wang et al., 2023). According to Wang and 

colleagues, technique-related research provides users with an understanding of the various 

explainability’s integrated into a specific AI system and its applications, while practice-related 

research primarily focuses on evaluating the impact of AI-powered tools' explanations on users. 

In the subsequent sections, I explore both the techniques and practice aspects of Photomath's 

explainability’s to inform research in the mathematics education community.  

Technique Aspect of Photomaths Explainability  

The integration of explainability in AI corresponds to teachers' authentic provision of 

explanations regarding students' task performance, improvement suggestions, self-monitoring 

prompts, and affect-level comments (Hattie & Timperley, 2007).  Khosravi et al., 2022 

categorized AI technique related explainability into two main criteria: global approaches vs. local 

approaches and self-explanatory models vs. post-hoc explanations. 

These explanations, generally fall under User-Alterable and Inalterable. User-alterable 

explainability features empower users to customize and interact with explanations based on their 

specific needs, while inalterable explainability delivers fixed, predefined explanations by the AI 

tool that users cannot modify. Photomath incorporates various types of inalterable explainability 

to enhance user understanding and trust in its system. Global explanations provide users with an 

overall approach and methodology used by Photomath when solving mathematical problems, 

contributing to a more comprehensive understanding of its workings. This is evident in 

Photomath's step-by-step solutions and math concepts tutorials. Self-explainable features offer 

clear and understandable explanations for their decisions and actions without requiring additional 

external explanations. These features are exemplified by Photomath's AI-generated explanations 

and hints for each problem, as well as its proprietary Animated Tutorials, which utilize AI audio 

voiceover paired with video explanations. Post hoc explanations are provided after the 

Photomath system has made a decision or taken an action, aiming to clarify and justify its 

behavior. Users can see this in Photomath's aftermath problem-specific explanations and error 

analysis, which offer opportunities to delve deeper into the solution process with additional 

"how" and "why" tips provided. Photomath's alterable explainability focuses on local 

explanations, which explain how the system works with different inputs and explores alternative 

solutions to demonstrate how changes affect specific decisions or predictions for inputs or 

instances. This includes integrating interactive elements, such as buttons and settings, allowing 

users to select their preferred type of representation for a solution, choose the languages to 

present their solutions, and explore animated, step-by-step instructions to solve equations—a 

visually engaging method for learning. The smart calculator feature enables users to input or 
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modify scanned equations via an intuitive math keyboard to experiment with alterations, gaining 

a more profound comprehension of mathematical problems. Photomath also utilizes graphs to 

illustrate equations, enabling exploration of graph details like the root, domain, and interpretation 

of equation solutions. Moreover, Photomath employs Knowledge Graph Embeddings (KGE) 

models to map and relate mathematical concepts to real-world applications, such as students' 

home languages. Users can access the embedded Math Dictionary to learn the correct 

terminology, meaning, and translation by tapping on highlighted vocabulary terms. Photomath 

also detects mathematical word problems and translates them into equations and other 

mathematical representations. 

Practice Aspect of Photomaths Explainability  

Existing practice-related research on AI tools' explainability primarily focuses on their 

potential to offer explanations for their outputs and how that impacts users' trust in these outputs 

(Brdnik et al., 2023; Wang et al., 2023). Beyond fostering trust in AI tools, explainability offers 

opportunities for teachers to orchestrate these tools to address or enhance existing challenges and 

opportunities in the teaching and learning process. Instrumental orchestration (Drijvers et al., 

2010; Trouche, 2004), as used here, refers to the teacher’s intentional and systematic 

organization and use of the various explainable features of an AI tool in a given mathematical 

task situation, enabling students to develop intertwined technical knowledge about the AI 

explainability and their mathematical affordances. 

Drijvers and colleagues (2010) describe three ways in which teachers' instrumental 

orchestration can be observed: didactical configuration, exploitation mode, and didactical 

performance. In terms of AI explainability, didactical configuration includes teachers' decisions 

on how to set up the classroom environment to integrate AI explainability into mathematics 

teaching and learning. This can involve various setups, such as whether to use computers, 

cameras, mobile phones, or the free or paid version of the software. Exploitation mode refers to 

the hypothetical decisions a teacher makes regarding the potential ways to utilize AI 

explainability and the related mathematical knowledge and skills to be developed by students. 

Lastly, didactical performance encompasses the teacher's operationalization of the planned 

teaching, including the questions posed to achieve the intended use of the AI explainability, 

handling unexpected inputs from students or the explainability that diverge from the intended 

purposes of teaching, and navigating these challenges effectively.  In the following sections, I use 

the transcript of a teacher's orchestration of the embedded mathematical dictionary of Photomath 

as part of our three-month Photomath-infused differential calculus project to demonstrate which 

mathematical practices were amplified for each type of orchestration. 

 

Methods 

Research Design 

This study is a revelatory case study (Yin, 2009), revealing the mathematical practices that 

get amplified through teachers' orchestration of Photomath's explainability features, such as the 

embedded mathematical dictionary. 

Study Context and Participants 

The transcript is from one teaching episode purposefully selected from twelve episodes 

involving five high school students, five parents (two of whom are francophone speakers), a 

mathematics educator, and an AI researcher. They integrated the free mobile version of 
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Photomath for teaching and learning differential calculus and geometry. This project was 

conducted over three months in rural, multilingual, technologically constrained, low socio-

economic settings in Ghana. An episode comprises the intended purpose of teaching. The 

selected transcript was chosen because its purpose was to plan and teach differential calculus by 

integrating Photomath's embedded dictionary. 

Data Collection 

Data were collected through video, audio, field notes, and student artifacts, including 

screenshots from Photomath emailed to the teacher and researcher. The teaching and learning 

activities for each episode in the project followed a three-part lesson plan: before, during, and 

after. In the "before" stage, the teacher, accompanied by the researcher, describes his objectives 

and the supporting resources in place to achieve these objectives. In the "during" stage, students 

join the teacher and researcher, and the teacher executes his teaching plan. In the "after" stage, 

the teacher and students meet with the researcher in groups and individually to describe their 

experiences, including the opportunities and challenges they faced with Photomath and how the 

teacher intends to address these in subsequent teaching sessions. 

Data Analysis 

The transcript of the selected episode was generated using an AI tool and reread to correct 

errors. The generated transcript was then segmented according to the three-part lesson plan: 

before, during, and after teaching. The three forms of teacher orchestration were used as an 

analytical lens to analyze the respective transcript segments and describe what transpired. 

Inductive reading of this description provides insights into which existing practice-related 

frameworks in mathematics education are amplified by the teacher's orchestration. Specifically, 

didactical configuration and exploitation mode were used as deductive analytical lenses for the 

"before teaching" segments of the transcripts. Didactical performance was used as a deductive 

analytical lens for both the "during" and "after" segments of the transcripts. Components of the 

transcript are presented based on Powell et al. (2003) description of the composition of a 

transcript: names, quotes, activities, and time. 

 

Findings 

 

Table 1: Transcript of the Before Teaching  
 

Time on 

Transcript 

Quotes   Deductive code Inductive 

Codes/Amplified 

Mathematical Practice 

00:00:30 

 

 

 

 

 

 

 

 

 

 

Researcher: Mr. Austin, 

can you explain what the 

objective is for class today? 

Mr. Austin: I will integrate 

the photomath mathematics 

register into the teaching and 

learning process today.  

Researcher: How will you 

do that? 

Mr. Austin: As you know, 

we currently have the free 

Deductive 

Configuration 
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00:05:00 

 

 

 

 

 

 

 

 

 

 

 

 

 

00:10:00 

version so we will not have a 

complete use of it. If we 

subscribe to it, Photomath will 

highlight the mathematical 

terminologies in the sentence for 

students to click on to have the 

meaning. Currently students can 

only see the highlighted text but 

will not be able to click on for 

the meaning to show. 

Researcher: Oh! Then what 

is the worth of use?  

Mr.: Austin: I have a plan. 

We have mathematics dictionary 

in the library though I have not 

added it to my lesson plan 

before. Because of this 

inconvenience from our current 

use of photomaths, I have 

brought some for each students 

use.  

Researcher: How will they 

use photomaths along with 

mathematics dictionary? 

Mr. Austin: The goal is for 

students to create mathematics 

diary which will be their 

mathematics vocabulary bank. 

They will each have a book 

where they will have four 

columns; highlighted math word 

from photomath, the related 

symbol, the sentence, and 

meaning the highlighted word 

they will generate from the 

mathematics dictionary.  

Researcher: This seems 

rich. Yet how and when will 

they use this mathematics diary?  

Mr. Austin: Since we use 

the photomath as a guide, but 

each student thoroughly 

discusses their output for 

justification, I will ensure that 

they use the words, its meaning 

and symbols in the right context 

during their explanation. Also, I 

will do a weekly collection of 

students diary for verification 

and assessment. Lastly, I will 

allow students to construct their 

own word problems in 

differential Calculus and 
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et al. 2015) 
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design for students to 

become aware of 
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highlight the vocabularies, to 

compare with what photomath 

output.  

Researcher: Okay, let us 

roll it to see the outcome. 

algorithmic bias 

(NCTM, 2024) 

 

As shown in Table 1, before the teaching, Mr. Austin explained that his goal is to see how the 

students will use the photomaths embedded mathematics dictionary during the differential 

calculus session. However, the challenge is that students can only see the highlighted 

mathematics register in the text but will not be able to click on it to see the meaning. This is 

because as of this time on the project we were using the free version. We needed to subscribe to 

the paid version in order to access the meaning of the highlighted mathematical register. To allow 

students to have this benefit, he brought to the class mathematics dictionaries from the school 

library. He stated that the students will develop a mathematics diary where they will develop a 

mathematics vocabulary bank. To do this, they will pick the mathematical registers photomaths 

highlights from the text, find its meaning from the mathematics dictionary, create four columned 

table with headings: differential calculus register, meaning, symbol and embedded mathematics 

word problem to record. He expects them to do this for the project until we get sponsors to help 

us access the paid version. When asked where how he will see the students use these 

mathematical diary, Mr. Austin stated that he will ensure that the students provide explanations to 

photomaths generated outputs while using these mathematical registers and also provide verbal 

and symbolic explanations to these registers. Mr. Austin also suggested that he will have students 

generate their own word problems for differential calculus and underline the mathematical 

registers in them. Then, they will submit these problems to Photomath to see which mathematical 

registers it highlights and check if they align with the students' identifications. Table 2 presents 

just a snapshot from the during the teaching transcript, which was deducted as the Didactical 

performance. Due to space the after the teaching transcript is not presented.  

These efforts by Mr. Austins show how his instrumental orchestration of the photomath 

explainable offer opportunities for amplifying existing mathematical practices such as equity, 

mathematics literacy, algorithmic verifications, and mathematical communication skills. 

Although Mr. Austin had not previously incorporated a mathematics dictionary into his teaching, 

his desire to provide students with access to the latest educational technology despite constraints 

motivated him to leverage the mathematics dictionary from the library. This highlights how a 

teacher's orchestration of Photomath’s explainable features can influence curriculum decisions, 

including what resources to integrate or exclude. As shown in Table 2, Mr. Austin's approach to 

engaging students in justifying their Photomath-generated outputs by explaining the vocabulary 

and symbolic representations facilitates their comprehension and application of mathematical 

language and symbolism. This demonstrates how Photomath’s explainable features can enhance 

existing mathematical practices, such as students’ communication skills in mathematics (Brenner, 

1998). Furthermore, by orchestrating Photomath’s explainable features to enhance students’ 

mathematical communication, Mr. Austin reinforces the teaching practice of developing 

mathematical literacy as an integral part of the learning process. Regarding the amplification of 

equity in mathematics education, Mr. Austin's use of up-to-date AI (Myers, 2014), support for 

learning outside of class hours, and the creation of a conducive classroom environment and 

participation (Gutierrez, 2007) characterize equitable access. Additionally, facilitating 
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communication with mathematics empowers students. Lastly, his efforts to have students verify 

mathematical registers before using Photomath demonstrate his commitment to educating 

students about algorithmic bias, a practice advocated by the NCTM for incorporation into 

teaching and assessment practices. 

Table 2: Transcript of During the Teaching Deducted as the Didactical Performance  
Time  Quotes Students screenshot 

00:30:00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00:45:00 

Mr. Austin: Before you justify the methods for your 

solution, what are some of the vocabularies you 

generated? Show it on the photomath. 

Elvis: For this problem, because I wanted my solution 

to be in the L'hopital's method, photomath highlighted 

terms such as indeterminate limits and L’Hopital's 

rule. So, I documented them and also used the 

mathematics dictionary to find their definitions. 

L'hopital's rule, which is a method of evaluating limits 

of indeterminate form using differentiation of one 

variable approach. 

Mr. Austin: That is good to know. However, let me 

see on photomath. 

Elvis: Here is the screenshot I took. 

Mr. Austin: Faustina, what are some of the 

Mathematical registers you also generated. 

Mr. Austin: Coming back to you Elvis, what is the 

symbolic representation you had for those two 

registers? 

Elvis: The indeterminate limits are represented by two 

different symbols 0/0 or ∞/∞. There is no one specific 

symbol for the L’Hopital's rule but it involves the 

connected processes of Lim (x → c) [f(x) / g(x)] = 

Lim (x → c) [f'(x) / g'(x)] where f'(x) and g'(x) 

represent the derivatives of f(x) and g(x) respectively. 

Mr. Austin: How about you Faustina. 

Elvis’s Screenshot 

 

 

Conclusion 

The evolving landscape of digital and analogue technologies within mathematics education, 

notably with the integration of artificially intelligent systems, presents challenges concerning the 

assurance of transparency in their utilization. While developers continuously enhance these tools 

with explainable features, a notable lacuna exists in scholarly inquiry providing mathematics 

educators with comprehensive insights into these updates and their pedagogical implications. 

This paper examines Photomath's explainable features and their pedagogical impact, urging 

thoughtful orchestration by educators for optimal educational benefits. 
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This study investigates how two middle school teachers of mathematics reflected on and planned 

for the use of a digital collaborative platform embedded with a problem-based curriculum. As 

digital resources can help teachers enact mathematics problems that are responsive to the needs 

of their students, more empirical work is needed to understand and inform relevant teaching 

practices that leverage evidence of student thinking (Pepin et al., 2017). Drawing on a 

documentational approach to didactics (Gueudet & Trouche, 2009), we examine the influences 

of collaborative reflections on teachers’ decisions about the use of digital resources. Our 

preliminary findings show that based on their reflective conversation, teachers considered the 

affordances and constraints of both digital and non-digital resources in their planning. Our 

findings suggest collaborative reflections help teachers critically examine digital resources. 

Keywords: Technology, Instructional Activities and Practices, Curriculum, Problem-Based 

Learning 

Rationale and Purpose 

A critical teaching practice in student-centered, inquiry-oriented classrooms is for teachers to 

elicit evidence of student thinking and connect with prior understanding (Jacobs et al., 2010; 

Kazemi & Franke, 2004; NCTM, 2014). Given the power and potential of digital technologies, a 

growing number of studies are examining the important relationship between teachers and their 

use of digital resources (Gueudet et al., 2012; Remillard et al., 2009; Geiger et al., 2023). Yet, 

more empirical research is needed to understand the factors influencing teachers’ decisions to 

integrate technology into mathematics classrooms (McCulloch et al., 2018). Further, the 

potentialities of using digital resources are amplified when students and teachers use digital 

curriculum materials or digital platform systems that are designed and developed around student 

thinking in problem-based classrooms (Edson & Phillips, 2021). This study examines how 

teachers reflect on their individual use of digital or non-digital resources on the same problems. 

Theoretical Perspectives 

The notion of the teacher has shifted from teachers as curriculum implementers to teachers as 

enactors, and more recently, to teachers as instructional designers who make decisions on how to 

use curriculum materials (e.g., Jones & Pepin, 2016; Remillard et al., 2009). This study takes the 

perspective of teachers as instructional designers who interact with resources to achieve their 

instructional goals (Brown, 2009). As the scope of curriculum resources expands to include 

digital materials such as digital textbooks or interactive online platforms (Pepin et al., 2017; 

Remillard, 2016), how teachers appropriate and transform resources plays a critical role in their 

teaching work (Adler, 2000). 

In our study, we draw on the documentational approach to didactics (Gueudet & Trouche, 

2009), which centers the selection, planning, and enactment of resources (i.e., digital, non-

digital) “at the core of teachers’ professional activity and professional development” (p. 199). 
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The documentational approach to didactics emphasizes the dual nature of teachers’ interactions 

with resources. When teachers shape a given artifact to achieve goals (instrumentalization), the 

affordances and constraints of the artifact influence teachers’ usage of the artifact 

(instrumentation). As teachers develop schemes of how to use resources in their classroom 

context, their decisions are influenced by both explicit learning goals and implicit beliefs and 

knowledge from their teaching experiences (operational invariants). Over time, teachers develop 

documents and resource systems that entail both a set of resources and the utilization schemes of 

how to enact the resources (Gueudet, 2019; Ruthven, 2019).   

We also draw on the perspective that discussions with other teachers are part of resources, 

highlighting the importance of collective documentation work among teaching colleagues (e.g., 

Gueudet, 2019; Gueudet & Trouche, 2009, 2012; Gueudet et al., 2016). Drawing from the 

perspective of understanding individual teacher learning within the context of collective 

practices (e.g., Lave & Wenger, 1991; Wenger,1998), the documentational approach to didactics 

provides insights into the influence of collaborative reflections and planning on individual 

teachers’ development of resource system. Given the limited evidence of how teachers navigate 

the affordances and constraints of resources and how teachers orchestrate them (Pepin et al., 

2017; Rezat et al., 2021), this study seeks to understand how teachers extend their perceptions of 

digital curriculum resources and incorporate them into their teaching practices. 

Methods 

This study is guided by the following question: How do individual teachers select, adapt, 

enact, and reflect on the use of resources in classrooms where there is readily access to both 

digital and non-digital resources? We situate the study within a larger design-based research 

project that focuses on developing a digital collaborative platform embedded with a problem-

based middle school mathematics curriculum (Edson & Phillips, 2021). This platform contains 

various tools for digital inscriptions, such as texts, graphs, tables, drawings, and images. Also, 

students and teachers can access and co-opt others’ digital work in real-time. 

Our study focuses on two teachers, Ms. Evans and Ms. Foster, who teach seventh-grade 

mathematics at the same school in the Midwestern suburban area. Both teachers have more than 

ten years of teaching experience with a problem-based curriculum, Connected Mathematics 

(CMP; The Connected Mathematics Project, Phillips et al., in press). They have been using the 

developed digital platform for several years. During their daily planning meetings, they used to 

select problems together to utilize the digital platform. In this study, they were asked to enact the 

curriculum in two different learning environments—digital or paper-and-pencil. This paper 

focuses on two problems from one geometry unit. For Problem 1.3, Ms. Evans made use of the 

digital platform, and Ms. Foster did the print curriculum. For Problem 3.1, the type of resources 

is reversed. Ms. Foster used the digital resources, and Ms. Evans did the non-digital resources.   

Teachers’ collective planning meetings and their individual reflection interviews after each 

problem were video recorded and transcribed. Secondary data sources included classroom video 

recordings, researchers’ field notes during classroom observations, teachers’ weekly reflection 

survey responses, and classroom documents generated by the teachers and their students (digital 

and non-digital). The data analysis was guided by the reflective investigation to study teachers’ 

documentation work (Gueudet et al., 2012). First, we identified how teachers perceived the 

affordances and constraints of digital and non-digital resources and how they would incorporate 

those resources into their teaching (documentation work). Then, we coded what influenced the 
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teachers to develop their utilization schemes of resources (operational invariants). After 

applying descriptive codes to each teacher’s data, we looked for patterns, similarities, and 

differences in the codes between the two teachers’ cases.  

Preliminary Findings 

Our analysis revealed that after their conversations about teaching the same problem, (a) 

teachers considered the benefits and limitations of using both digital and non-digital resources in 

association with students’ development of mathematical ideas, and (b) teachers changed their 

planning on future problems in order to integrate digital affordances.  

Seeing Both Sides: Drawing From Each Other’s Reflections 

When asked to select between digital and non-digital resources, Ms. Foster indicated it would 

make no difference in student learning experience. It was because she believed that “seventh 

graders are visual learners” and hands-on activities help visualization. For Problem 1.3, she had 

her students use patty papers to trace shapes and compare them with other shapes to explore the 

similarities. After having a reflective conversation with Ms. Evans, however, she recognized the 

differences in student engagement and understanding in different learning environments. While 

she appreciated how the hands-on manipulatives’ color format helped her students see the 

corresponding sides, Ms. Foster was “rethinking” the limitations of patty papers compared to the 

affordances of digital manipulatives. In other words, while maintaining her belief in visualization 

(operational invariant), she could develop a scheme of using digital resources for the same 

problem. Her rethinking was influenced by Ms. Evan’s reflection. Ms. Evans shared how her 

students explored various approaches using digital tools (Figure 1), whereas most of Ms. Foster’s 

students took the same approach by which they measured the lengths of hypotenuses. Ms. Foster 

claimed that using patty papers was more challenging to connect with mathematical ideas during 

the whole-class discussions compared to using digital manipulatives: 

The connections that I heard, Ms. Evans talked about today, was when they could actually go 

into the platform, make copies of the original, and play with the copies in the new image to 

where they could actually formulate a conclusion about the corresponding sides, 

corresponding angles, and even the area. [It is] because my kids didn’t, we didn’t even talk 

about the area, whereas Ms. Evans said some of her kids actually picked up on the area. […] 

Now that I’m talking about this and reflecting, I think, timewise, the digital platform allows 

us a shorter amount of time but a deeper sense of questioning and understanding.   

   
Figure 1: Students’ Different Strategies Used on the Digital Platform 

 

Although teachers used one format for each problem, either digital or non-digital resources, 

they drew on each other’s different experiences and considered both resource types to better help 

students “actually see” embedded mathematical ideas and their conversations “go deeper.” After 

teaching Problem 3.1 on the digital platform, Ms. Foster imagined the possible limitations of 
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using patty paper. She continued to say, “It’s an aha moment for me because I used to be the 

queen of paper-and-pencil” who always used patty paper for these two problems. 

Looking Ahead: Adapting Plans for Future Problems 

Teachers adapted their plans for the same problem to integrate digital affordances. This 

means that teachers revised their documents as they perceived that digital manipulatives could 

help students focus on exploring mathematical ideas (operational invariant). For example, after 

teaching Problem 3.1 using patty paper, Ms. Evans claimed it took longer for students to work on 

the problem because her class did not have sufficient time to facilitate as deep conversations 

about scale factors as Ms. Foster’s class. Ms. Evans further pointed out students’ tracing was not 

accurate enough to examine scale factors, because she learned that from the digital 

representations, Ms. Foster’s students saw underlying mathematics “right away.” After this 

conversation, Ms. Evans planned to discard patty papers during her next class, and instead, she 

provided each group with a set of plastic shapes. She hoped students would struggle less with 

drawing and focus more on the relationships with scale factors. At the end of the day, however, 

Ms. Evans said that using plastic shapes was no better than patty paper for seeing the patterns. 

She noticed that most students stopped drawing after making a shape twice as big. With digital 

tools, she imagined students would easily have duplicated shapes to stack them into larger shapes 

more than twice. Thus, Ms. Evans wanted to revisit the same problem using the digital platform: 

I’ll just make some different shapes […] and then have them try and rep-tile it [because] 

some of them are still not sure about the scale factor. [In the platform,] they’re still looking at 

how many shapes versus side lengths, so I think that will help with connecting that a little bit 

better for them. […] Getting to do it again in a slightly different format will help solidify it. 

For both problems, teachers compared the benefits and limitations of digital and non-digital 

resources and concluded that the digital platform would be more beneficial for student learning. 

Interestingly, they mentioned that if they had to teach these problems in a paper-and-pencil 

environment, they would prepare multiple pre-cut shapes so students could skip the drawing step 

and focus on manipulating shapes to explore mathematical ideas. That is, teachers changed the 

scheme of using hands-on manipulatives to remove unnecessary distractions and help focus on 

deepening mathematical understanding, inspired by the digital affordances they observed.   

Discussion and Conclusions 

This study provides empirical evidence of how teachers shifted from using non-digital, 

hands-on manipulatives toward using digital resources. This shift was based on collaborative 

reflections about student understandings of the key mathematical ideas. The teachers developed 

operational invariants that digital resources help students focus on visualizing their thinking 

more efficiently than hands-on manipulatives. Such belief will influence the ways teachers 

consider digital affordances and represent their resource systems (Ruthven, 2019). 

Findings from the study pose important implications as teachers select, adapt, and use digital 

and non-digital resources in their mathematics classrooms. First, we provide evidence that 

teachers can utilize co-planning meetings to share the different affordances of resources for the 

same problems that inform how to use technology in supporting student learning (McCulloch et 

al., 2018). As our preliminary findings focused on the two teachers’ cases, further research 

should investigate the impact of collaborative reflections compared to individual reflections. 

Second, we provide evidence that digital features in the platform prompted teachers to re-
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examine the benefits and challenges of using digital resources (Geiger et al., 2023). As our 

preliminary findings were specific to geometry problems involving patty paper, further research 

is needed, e.g., How do teachers develop resource systems regarding their use of digital/non-

digital resources in problem-based classrooms?  
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This synthesis examines recent research from 2016-2022 on integrating computer technology 

(CT), specifically as exploratory environments, into geometry education across grade levels. 

Searches were conducted using Google Scholar and ERIC with relevant keywords. Inclusion 

criteria focused on peer-reviewed empirical studies combining geometry education and 

exploratory CT environments. Out of 338 initial search results, 64 articles met the criteria. Key 

findings show the number of studies increased substantially in recent years, with a peak of 14 

studies in 2022. The predominant computer technology used was GeoGebra, followed by 

Geometer's Sketchpad and emerging Augmented Reality/Virtual Reality. Studies overall found 

positive effects of CT integrations on test scores, problem solving, spatial skills, conceptual 

understanding, and attitudes. Furthermore, CT facilitated students' exploration, visualization, 

conjecture generation, justification, and comprehension.  

 

Keywords: Technology, Geometry and Spatial Reasoning.  

 

Historically, geometry has not been valued as highly as algebra (Nirode, 2013), and research 

shows that many students struggle with learning geometry concepts and developing proficiency 

in geometric thinking (Sinclair et al., 2017). The use of computer technology (CT), especially 

dynamic geometry software (DGS), has been proposed as an effective approach to enhance 

geometry teaching and learning since it offers interactive diagrams and visualization features that 

provide students with the opportunity to dynamically construct, manipulate, and analyze 

geometric shapes and measurements (e.g., Hollebrands & Okumuş, 2018; Sherman & Cayton, 

2015; Sinclair & Moss, 2012). 

Sinclair et al. (2017) provided a systematic overview of research on geometry education, 

including studies on the use of technology in geometry classrooms up to 2016. They discussed 

many ways that computer technology has impacted the teaching and learning of geometry. The 

use of technology in geometry education has accelerated rapidly in recent years due to the 

COVID-19 pandemic (Bellamy, 2021; Borba, 2021). This study aims to expand the work done 

by Sinclair et al. (2017) with the following specific questions: 1) What are the trends of peer-

reviewed journal articles focused on the use of computer technology in exploratory environments 

with a focus on geometry education during the last seven years (2016-2022)? 2) What kinds of 

computer technology are they using in these studies, and what are the main findings?  

In this study, we restrict computer technology (CT) to software rather than hardware. 

Exploratory environment is one of the four uses of CT in classroom (Li & Ma, 2010; Lou et al. 

2001; Means, 1994). This focus on exploratory environments aligns with constructivist learning 

theories that emphasize students constructing their own knowledge through active exploration 

and discovery-based learning (Lou et al., 2001). By examining the current role and impact of 

technology, this research will inform our vision for the future of geometry education. 
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Methodology 

This synthesis examines peer-reviewed journal articles on the use of computer technology in 

geometry teaching and learning that were published between 2016-2022. The search was 

conducted using academic databases including Google Scholar and ERIC keywords related to 

technology, dynamic geometry software, geometry education, learning, and teaching. The initial 

pool from the search was screened based on criteria in Table 1, resulting in 64 out of 338 articles 

(18.95%) meeting the inclusion criteria. These articles are indicated with an asterisk (*) in the 

reference list, or you can click this link for the complete reference list of these 64 studies.   

Data analysis involved categorizing the selected articles based on year published, type of 

computer technology (CT), geometry topics, participants' grade level, findings, and methodology 

(qualitative or quantitative for most CTs). A spreadsheet program was used to determine 

frequencies and percentages for each category. 

 

Table 1: Inclusion and Exclusion Criteria 
Criterion Inclusion  Exclusion 

Type Full peer-reviewed journals  Non-peer-reviewed journals, book chapters, books, 

preliminary reports, short papers, brief reports 

Topics Studies focused geometry and 

computer technology (CT) 

integration 

Studies focused on non-geometry topics, geometry 

without technology, technology integration in non-

geometry topics 

Type of CT  Exploratory environments CT other than exploratory environments (e.g., tutors or 

tutorials, communication media, tools) 

Populations Research on technology 

integration in geometry classes at 

all levels, including stakeholders 

(e.g., in-service teachers) 

Non-human subject research on geometry and 

technology even if in an educational context (e.g., meta-

analyses, bibliographic studies, syntheses) 

Language Studies written in English Studies in other languages 

 

Results 

The trends of peer-reviewed journal articles 

Our analysis shows that the number of peer-reviewed articles meeting the criteria increased 

consistently from 2016 to 2020, peaking at 14 articles in 2022. In terms of grade levels, the most 

common participant groups across the research on technology integration in geometry education 

were at the K-12 levels (38 studies, 59.4%), with the most at grades 6-8 (19 studies, 29.7%). 

About the same number of studies focused on high school (11 studies, 17.2%) and elementary 

school (9 studies, 12.5%) levels. Approximately a third of the studies focused on participants in 

teacher education, with most of them (17 studies, 26.6%) on preservice teachers (PSTs) and a 

handful on in-service teachers (6 studies, 9.4%). Only 3 studies focused on higher education 

participants (non-teacher education). 

In terms of the trend of geometrical topics, this study found that 70.3% of the reviewed 

studies focused on 2D geometry only, 18.8% focused on 3D geometry only, while 7 studies 

focused on both 2D and 3D geometry. Using the primary geometry context as the basis for 

coding, the majority of the studies (34 studies, 53.1%) focused on the classifications, properties, 

and relationships of a variety of 2D or 3D shapes, for example, studies that required participants 

to construct or identify the properties of 2D shapes, focus on parallel and perpendicular lines and 

angles, and on congruence and similarities of triangles. Eleven studies (17.2%) focused on 

https://docs.google.com/document/d/1qITnowmG0ygHxCkrNU3nefuCStAjhHeJ/edit?usp=sharing&ouid=101143218567421193928&rtpof=true&sd=true
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measurement concepts such as area, perimeter, surface area, and volumes. Nine studies (14.1%) 

focused on a variety of transformation concepts. Three studies focused on proof, and seven 

studies (10.9%) focused on a variety of other concepts such as limits or analytic geometry. 

The types of computer technology and what are the main findings  

This study found that the predominant computer technology (CT) used from 2016 to 2022 

that met our search criteria was GeoGebra, with 42 out of the 64 studies (65.63%) either using it 

as a standalone CT or along with other CTs such as GSP, Desmos, and tools for video, animation, 

and games. GeoGebra was also incorporated into web-based learning platforms, such as Virtual 

Math Team, or as an app in AR headsets, such as GeoGebra AR. 

The quantitative studies that incorporated GeoGebra found that participants who received 

GeoGebra interventions demonstrated positive improvements compared to control groups on test 

scores, problem-solving skills, self-efficacy and self-regulated learning, conceptual 

understanding of geometry, and spatial geometry skills. Some studies showed that teaching with 

GeoGebra statistically improved preservice teachers' and in-service teachers' creative thinking 

skills, spatial visualization skills, creative thinking skills, and in-service teachers' beliefs in using 

GeoGebra in their teaching instructions. Whereas the qualitative studies found that the dragging 

feature in GeoGebra helped participants see static figures as movable ones, helping their 

understanding by enabling exploration of geometrical objects and seeing/justifying relations. 

Additionally, some studies found that using dynamic geometry activities with GeoGebra helped 

students progress in their van Hiele levels from basic visual recognition of shapes to a more 

advanced understanding of geometrical properties and relationships between shapes. 

Furthermore, some studies found that GeoGebra helped preservice teachers (PSTs) understand 

geometry proofs and expanded their technological pedagogical knowledge, inspiring the 

integration of similar activities into their teaching. A study on student opinions of technology-

integrated lessons (Dikkartın Övez & Kıyıcı, 2018) found positive attitudes about math being 

more attractive, entertaining, allowing them to discover without memorizing, making 

information memorable, and increasing participation. 

The second most used CT was Geometer's Sketchpad (GSP), with 10 out of the 64 selected 

articles using this tool, either standalone or along with other CTs like GeoGebra. We found that 

the experimental groups whose participants received GSP interventions obtained significantly 

better test scores or achievements compared to control groups. Some studies found that GSP 

integration improved students' attitudes toward math, such as self-confidence and curiosity to 

actively explore geometry concepts. In-service teachers also had positive views on GSP's 

usefulness for pedagogy (Huang et al., 2020) and its potential as a part of the learning process 

rather than merely as a tool (Zambak & Tyminski, 2017). 

Studies incorporating Augmented Reality (AR) and/or Virtual Reality (VR) have grown in 

recent years, particularly from 2020 to 2022. The CTs or software used in these studies were 

Unity software, GeoGebra, Geometry and Quiver, Zappar - HP Reveal, and Neotrie VR. Out of 

the 64 selected articles, there were five studies that used AR and/or VR. Like the other CTs, 

quantitative studies using AR/VR found that experimental groups receiving AR/VR interventions 

obtained significantly better test scores or achievements compared to control groups. Some 

studies (Elsayed & Al-Najrani, 2021; Flores-Bascuñana et al., 2020; Moral-Sánchez et al., 2022) 

found that students learning with AR were more motivated in mathematics, although Sarkar et al. 

(2020) found no significant motivation difference between individual and collaborative AR. 
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Four of the 64 selected articles focused on Cabri. Similar to other CTs, a quantitative study 

found that the experimental group receiving Cabri interventions had significantly better scores 

than the control group (Chang et al., 2016). Meanwhile, qualitative studies on incorporating 

Cabri showed that students actively explored geometry concepts through guided discovery 

(Selman & Tapan-Broutin, 2018) and improved their conceptual understanding and confidence 

with geometry after using Cabri (Gülburnu, 2022). Additionally, Cabri Geometry's dragging 

feature allowed students to test and refine constructions (Kepceoglu, 2018). Cabri also provided 

an enjoyable, exploratory learning environment (Gülburnu, 2022). 

Other CTs such as Google SketchUp, Scratch, Minecraft, Desmos, and Microworld saw more 

limited implementation. Google SketchUp was found to improve students' van Hiele levels 

(MdYunus et al., 2019) and spatial visualization skills relating to rotating, viewing, transforming, 

and mentally manipulating 3D objects and shapes (Abdullah et al., 2022). Setyawan et al. (2018) 

found that while Desmos helped students and teachers understand concepts, Scratch helped 

students understand concepts like coordinates, movement, rotation, and angles (Calder, 2019). A 

Scratch-based game improved student achievement and computational thinking (Acar & 

Dı̇Kkartin Övez, 2022). Minecraft activities promoted pedagogical content knowledge and 

experience with game-based math instruction (Kim & Park, 2018). 

Discussion 

Our analysis yielded 64 studies meeting our strict criteria from an initial pool of 338 search 

results. This substantial number aligns with the findings of Çavuş and Deniz's (2022) meta-

analysis, which identified a similar rise in research examining technology's impact on math and 

geometry achievement (2000-2016). The trend suggests a growing interest in integrating 

technology into geometry education which might be partially influenced by the COVID-19 

pandemic, which forced many teachers to adopt online learning methods (Borba, 2021; Bellamy, 

2021). Further supporting this trend, the most common computer technology used was 

GeoGebra, followed by GSP, AR/VR, and Cabri which is consistent with the results in Abidin et 

al.'s (2018) study that the commonly used CT during 2009 to 2017 research articles was 

GeoGebra and GSP, further suggests continued stability in the use of GeoGebra and GSP for 

geometry instruction. 

Studies consistently demonstrated that experimental groups using CT interventions 

outperformed control groups on students' scores, problem-solving, spatial skills, conceptual 

understanding, etc. Like this result, other studies related to article syntheses on technology 

related to mathematics classes (e.g., Abidin et al., 2018; Çavuş & Denı̇Z, 2022; Ondes, 2021) 

also found that the participants who received technology-assisted interventions outperformed the 

participants who did not receive the technology. Similar to Abidin et al. (2018), this study also 

found that CTs improved participants’ attitudes, confidence, motivation, curiosity, and 

technology integration skills, possibly due to the dragging feature that enables the participants to 

visualize static geometry figures more dynamically, which facilitates exploration of geometrical 

objects and relation noticing (Sinclair et al. (2017). 

Abidin et al.'s (2018) found that the incorporation of AR/VR not only improved students' 

achievement but also their attitudes towards using the technology. However, our study only 

identified AR/VR use in middle grades and for pre-service teachers (PSTs). This highlights a gap 

in research, particularly at the elementary level, where the exploratory features of AR/VR could 

significantly benefit spatial understanding in 3D geometry. Additionally, there is an emergence of 
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AI tools like ChatGPT or PhotoMath that are changing how students learn math. The future of 

math education may involve more knowledge construction using immersive exploratory 

technologies and productively leveraging AI tools. 
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Technology use in mathematics classrooms can be isolating, dehumanizing, and detrimental 

to collaboration by encouraging students to withdraw from other people and from society, 

causing a breakdown in the student-teacher relationship, jeopardizing human values, and over 

standardizing education (Nissenbaum & Walker, 1998). In these uncertain times, using 

technology should support the future of mathematics education, which includes collaboration, “a 

joint production of ideas, where students offer their thoughts, attend and respond to each other’s 

ideas and generate shared meaning or understanding through their joint efforts” (Staples, 2007, p. 

162). The use of technology in teaching and learning mathematics continues to expand, as it can 

provide more accessibility, instantaneous feedback, and multiple representations (e.g., Clark-

Wilson et al., 2020; Edson & Phillips, 2021; Powell et al., 2018). In this poster, drawing from 

larger design-based research, we report on the design characteristics of a digital curriculum 

platform that supports small-group and whole-class collaborative discussions.  

When working in small groups, it is essential that students make sense of mathematics, 

building on each other’s thinking. Our digital platform allows students to share work with their 

groupmates in real time through a “four-up” view that displays all group members’ workspaces 

at once. Sparrows (student proportional reasoning arrows) allow students to explicitly connect 

and annotate relationships among different representations. Digital messages can be sent from a 

teacher to individuals and groups to advance student thinking. Teachers can collaborate with 

colleagues around student work as they plan and use student work for whole-class discussions. 

During whole-class discussions, students’ various strategies to solve problems are shared to 

unpack embedded mathematics. In the digital platform, teachers can quickly display different 

student strategies using a group view or the gallery walk feature. Also, teachers can create a 

digital document to collect student work and record class discussions, then make it available to 

all students. The learning logs allow students to reflect on the problem and accumulate their 

work and ideas over time. Moving forward, we continue to elicit teacher feedback on the features 

and explore professional development to both support teachers’ implementation and discuss what 

features can be added or changed to enhance small-group and whole-class discussions.  
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This study investigates the interactions between informal educators and adolescents during math 

walk activities at an art museum. “Math walks” are activities where students notice and wonder 

about mathematics in the world around them, often creating their own “math walk stops” where 

they ask and answer mathematical questions. Drawing upon theories of informal math learning, 

scaffolding, and problem-posing, our research aims to enhance understanding of math walk 

implementation. Through video content, interaction analysis and artifact analysis of 

participants’ iPad photos, we explore students’ mathematical learning processes and the role of 

adult facilitators in guiding these activities. Results from a three-day summer camp are given, 

and findings offer implications for designing effective informal math education programs and 

fostering meaningful student engagement with mathematics in real-world contexts. 

Keywords: Informal Education, Integrated STEM / STEAM, Middle School Education 

Research Purpose and Question 

Investigating interactions between informal educators and adolescents in informal learning 

settings provides valuable insights into students’ perceptions of mathematics. “Math walks,” or 

“math trails,” a method linking mathematics to real-world occurrences, can foster meaningful 

dialogues in community-based settings (English et al., 2010; Fesakis et al., 2018; Wang & 

Walkington., 2023). During math walks, learners critically assess their surroundings with their 

“math lenses,” observing both mathematical and non-mathematical elements, generating and 

addressing their own questions (Wang & Walkington, 2023). However, the role of informal 

educators in guiding learners through this process remains underexplored (Sager et al., 2023). 

This study explores how informal educators facilitate connections between school math and 

real-world math during math walk activities at a downtown art museum. Focusing on scaffolding 

techniques and student-created math walk stops, we aim to address gaps in the literature on 

informal math learning, where research has documented the challenges that learners have while 

making connections between school math and real-world math (e.g., Inoue, 2005; Lave & 

Wenger, 1991; Masingila et al., 1996). Insights from our case study of six students shed light on 

student-educator interactions and problem-posing processes, with implications for informal math 

education. Our research questions are: (1) How do student and facilitator interactions unfold 

during math walk activities as educators employ scaffolding techniques? (2) What are the 

characteristics of, and problem-posing processes leading to, student-created math walk stops? 

Next, we present our theoretical framework, methodology, findings, and conclude with a 

discussion on future research implications. 
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Theoretical Framework 

Students’ ability to describe mathematics can be explicit or implicit (Kaur et al., 2013). 

Explicit forms often involve the use of standard mathematical terminology. Whereas implicit 

forms involve understanding and using mathematics without explicitly describing it as such, 

often embedded within real-world contexts, like those found in informal settings, and are 

influenced by factors such as prior knowledge and cultural background (Kaur et al., 2013). To 

this end, we draw upon informal math learning, scaffolding, and problem-posing in our study.  

Firstly, informal math learning research has examined how people use math in their everyday 

lives and in careers (e.g., Nunes et al., 1993; Walkington et al., 2014). More recent empirical 

studies on learning math within informal settings has helped to understand program effects on 

achievement outcomes (e.g., grades, GPA, test scores) in school mathematics (Lauer, et al., 2006; 

Lynch et al., 2023). Although place-based mathematics education in informal learning 

environments is gaining increasing interest (Mokros, 2006), research on this topic remains 

limited (Pattison et al., 2017). They go on to explain that visitors in place-based settings are often 

unaware of their engagement with mathematics, and that promising mathematical thinking and 

social interactions around mathematics can emerge in informal spaces (Pattison et al., 2017).   

Secondly, scaffolding describes the guidance and support a teacher (or knowledgeable adult) 

provides a student during problem solving activity in a particular learning context (Dingman et 

al., 2019), namely in the context of adult-child interactions (Stone, 1998). This is to center the 

students’ learning and reasoning through a process of “the adult ‘controlling’ those elements of 

the task that are initially beyond the learner’s capacity, thus permitting him to concentrate upon 

and complete only those elements that are within his range of competence” (Wood et al., 1976, p. 

90). From their work, we employ four of the six primary scaffolding strategies in our 

methodology and in our findings: (1) Recruitment: the instructor elicits the student’s interest in 

the problem and highlights the requirements of the task. (2) Direction maintenance: the 

instructor keeps the student in pursuit of a specific objective. (3) Marking critical features: the 

instructor highlights or emphasizes the relevancy of certain features of the task. (4) Frustration 

control: the instructor reduces stress from working the problem (Wood et al., 1976, p. 98). 

Thirdly, problem posing in mathematics education involves teachers and students 

(re)formulating or expressing new mathematics problems within a specific context, as described 

by Cai et al. (2023). These tasks require students to generate or shape new problems based on 

real-life mathematical situations, which include both contextual situations and prompts (Cai, 

2022; Cai & Hwang, 2023). Contextual situations provide problem posers with necessary data to 

craft their problems, while prompts guide students in problem posing tasks (Cai et al., 2023). 

Creating math walk stops is a problem-posing task with the potential to enhance students’ 

interest in and understanding of mathematics. Studies by Walkington and Bernacki (2014) and 

Wang and Walkington (2023) highlight the challenges students face in problem posing due to the 

need for prior math knowledge and familiarity with “school math” norms. Problem posing 

research offers opportunities to enrich the informal math literature by transcending the 

constraints of formal “school math.” Next, we present methods for data collection and analysis. 

Methods 

Background Context 

This study highlights findings from the second year of the MathExplorer project, a research 

practice partnership (RPP) connecting a university in the southwestern United States, a STEM-



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2067 

oriented nonprofit, and nine informal learning sites. We partnered with informal educators at a 

local art museum (“Art Museum”) to conduct a three-day summer camp. Students from the local 

community participated, alongside five researchers and supervising professor from the university 

and the director of the STEM-based nonprofit. The Museum Teacher who led the camp was 

trained on the app, scaffolding strategies, and problem-posing techniques by the research team. 

Student participants used the app to explore real-world objects that they encountered during 

their math walks at the Art Museum. Accompanied by a facilitator, they gained an understanding 

of and proficiency in applying mathematical concepts while engaging with objects. During the 

camp, participants explored selected art pieces each day with the facilitators. They watched 

previously recorded videos embedded in the App, discussing math concepts related to the 

informal learning space. Afterward, they freely explored the museum to create their own math 

walk stops about things they noticed and wondered about in their environment (Sager et al., 

2023). At the end of the day, they convened for whole group discussions, sharing their photos 

and math question(s). On the final day, students presented their math walk stops to the group. 

Research Participants 

The student participant group was diverse, and relevant demographic information including 

anonymized pseudonyms is summarized in Table 1.  

 

Table 1: Camp Participants 

 

Name (Pseudonym) Grade Race/Ethnicity Gender 

Astrophel Seven (505) 8th Hispanic/African American Male 

Hamal Slope (201) 3rd White/African American Male 

Apollo Osmium (202) 4th White Male 

Zania Copper (203) 6th African American Female 

Zenith Bit (204) 5th African American Female 

Daniah Roentgenium (506) 5th African American and Other  

(not specified) 

Female 

 

Data Collection 

We collected video and artifact data while observing students and teachers during the Art 

Museum’s three-day summer camp. Students were divided into partner groups, each paired with 

at least one adult from either the research team or the Art Museum. Each group was provided 

with a tablet containing the MathExplorer app. Researchers recorded video footage of each small 

group using handheld recording devices, resulting in twelve videos totaling 340 minutes of 

footage. Additionally, we retrieved photos of various artifacts from each participant’s iPad, some 

of which were annotated with markings and included posed questions and answers. All collected 
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data was stored in a shared Box folder, organized by data source type (video, image), group 

number, and date to facilitate the subsequent analysis. 

Data Analysis 

This study focuses on three main forms of collected data: demographic surveys, small group 

video recordings, and walk stop screenshots taken from students’ iPads. Transcripts and content 

logs of videos were manually created by the researchers (Jordan & Henderson, 1995). Eighteen 

math walk stops were created and shared by camp participants over the three days. Following an 

iterative process informed by the data analysis spiral (Creswell & Poth, 2018), the authors 

engaged in systematic reading, viewing, and memoing of data, followed by collaborative 

meetings to categorize and recategorize codes (Saldana, 2021). Further, the authors rewatched 

videos, read content logs, and revisited transcripts. We used an inductive process to identify 

various types of interactions between the adults and students. After two rounds of inductive 

coding, we categorized interactions by the four scaffolding strategies (Wood et al., 1976). Codes 

were labeled with a schema (theme-interaction category-type), seen in Table 2 under Findings. 

Artifact analysis involved a comprehensive review of student-created walk stops from iPad 

photos to address the second research question. Authors employed an inductive process to 

identify walk stop types, categorizing them into explicit and implicit mathematics themes using a 

“problem-posing-type” schema. Subcodes were generated where necessary to denote specific 

aspects of the walk stops. A decision was made collectively to classify codes as “explicit school 

mathematics,” “implicit mathematics,” or “unrelated” discussed later in detail. 

Triangulation involved comparing student-selected walk stops with facilitator-student 

interactions to understand engagement leading up to each walk stop creation. The process 

included systematic comparison and integration of data sources to ensure coherence and 

reliability in the analysis. By using triangulation strategies, our data analysis methods offer a 

transparent framework for analyzing collected data and generating meaningful insights. 

Findings 

We present our findings for the qualitative case study by looking at each research question 

separately. The number of instances we observed for each code is provided in Table 2. 

 

Table 2: Codebook from Interaction Analysis and Artifact Analysis 

 

Code Definition Coded As Example Count 

Scaffolding: 

Recruitment 

Instructor elicits 

student’s interest in 

problem and 

highlights 

requirements of task 

Probing 

(prior 

knowledge) 

“You mean Zeus?”  24 

  
Probing 

(connection) 

“You think it’s interesting? 

What makes it 

interesting?” 

52 
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Scaffolding: 

Direction 

Maintenance 

Instructor keeps 

student in pursuit of a 

specific objective 

Probing 

(directive) 

“So, remember…at each 

stop there’s gonna be a 

little video for you to 

watch…and then there’ll 

be some questions that 

they ask…” 

32 

Scaffolding: 

Marking 

Critical 

Features 

Instructor highlights 

or emphasizes 

relevancy of certain 

features of the task 

Probing 

(mathematical) 

“How can we find the 

diameter of the eye? 

48 

Scaffolding: 

Frustration 

Control 

Instructor reduces 

stress from working 

the problem 

Probing 

(redirect) 

“It’s art.” 2 

Problem 

Posing: 

Explicit School 

Mathematics 

Student explicitly 

uses school 

mathematical terms 

Measurement, 

Count, Patterns, 

and Shapes 

“…it was about finding a 

symmetrical ah a little 

symmetrical with the white 

and black arrows.” 

31 

Problem 

Posing: 

Implicit 

Mathematics 

Student poses 

questions about 

aesthetic elements 

without using explicit 

school math terms 

Design, 

Functionality, 

Artist 

Motivation 

“Q: My question is why is 

it so colorful and how was 

it made??” 

9 

Problem 

Posing: 

Unrelated 

Student poses 

questions of 

situational interest, 

but not of 

mathematical interest 

Unrelated “Q: If she sad.” 

 

1 

 

RQ1. How do student and facilitator interactions unfold during math walk activities in 

informal learning settings as educators employ scaffolding techniques? 

In addressing Research Question 1, we observed facilitators employing four of the six 

traditional scaffolding methods (Wood et al., 1976).  

Recruitment. Facilitators elicited students’ interests as learners observed artworks, 

sometimes probing students by accessing their prior knowledge or making personal connections. 

For instance, Figure 1 illustrates a facilitator-student exchange employing both recruitment 

strategies. Green highlights indicate scaffolding coded as “probing-prior knowledge” and yellow 

highlights indicate scaffolding coded as “probing-connection.” In this example, and others, the 

facilitator is eliciting student’s interest in the art (situational context) to foster the prompting 

portion of the problem posing task, as summarized next.  
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Figure 1: Photo-transcription of Museum Teacher Scaffolding by Recruitment 

 

Direction Maintenance. Our analysis also shows facilitators employing direction 

maintenance techniques (coded as “probing-directive”), to keep students focused on the task of 

posing mathematical questions. This involved providing explicit directives related to the task, 

ranging from simple reminders to more descriptive instructions, as exemplified in a transcript 

excerpt where facilitators guide students through the task step-by-step beginning with the 

Museum Teacher: 

We can also spread out so we’re not like all clustered together to make listening to it a little 

more easily…Please don’t leave the orange area over here…So, you’re gonna watch the 

video, and then you’re going to formulate questions and answer the questions. Okay?... 

Researcher A, then builds with further instructions to assist a nearby student with using the App’s 

embedded voice recorder: 

You’re gonna click on ‘record answer’ to answer the question that it asks you in the box. 

(student listens to question) So, what are some math questions you could ask here? (student 

records herself but has trouble hearing her recording) Can you hear yourself?...Do you want 

to try again? (student tries again)…Do you have any other questions that you need to 

answer? Think about another question. You can go look at it if you need to so that you can 

notice some things. They can be any math questions that you’re thinking. 

Researcher C, overhearing the adult-student exchange, interjects, “Or any…It doesn’t have to be 

math, just any question you have about this place.” This dialogue example is rich with 

scaffolding techniques that moved students along in the problem posing task including self and 

group management, technical support, and clarifying the task.  

Marking Critical Features. At times, facilitators marked critical features of the artwork, 

highlighting or emphasizing emphasized the relevancy of certain features of the task. For 
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example, Student 202 is drawn to a large indigenous artifact (shown in Figure 2) stating, “The 

eyes are really big (30:43).”  

 

 
 

Figure 2: Photo Example of Marking Critical Features Taken from Video 

 

Researcher A acknowledges, and then draws attention to the eyes to highlight and emphasize 

their relevance to the problem posing task, “Okay. Do you see anything on the eyes?” This 

scaffolding made way for Student 202 to formulate and then pose his question, “I've got a 

question…What is the diameter of the eye?” It is important to note that scaffolding is also used 

to mitigate student frustration when seeking mathematical connections with diverse artforms. 

Frustration Control. Additionally, facilitators employed frustration control techniques to 

mitigate student frustrations and maintain focus on mathematical learning. During one session, 

Student 202 deemed a particular exhibit as inappropriate for kids because it contained nudity. 

Then, Student 201 agreed how he hoped “nobody makes a walk stop about the naked people”. 

Researcher A replied, “It’s art,” and Researcher H reinforced, “It is art.” However, the students 

carried on about “it’d be creepy,” and if there was one it wouldn’t be “for kids.” Researcher A 

steered the conversation back to mathematical inquiry with a definitive, “All right.”  

In addition to facilitator strategies, students described specific characteristics of and the 

problem-posing process that led to their math walk stops, further enriching our understanding of 

student-facilitator interactions during math walk activities. 

RQ2. What are the characteristics of, and problem-posing processes that lead to, student-

created math walk stops? 

Students described mathematics in both explicit (coded as “problem-posing-explicit school 

mathematics-type”) and in implicit ways (coded as “problem-posing-implicit mathematics-

type”); “type” refers to more specific characteristics or problem posing processes observed in our 

analysis. Figures 3a-d illustrate select mathematical examples captured during artifact analysis, 

categorized by subcodes – measurement, count, patterns, or shapes.  

Explicit School Mathematics. These codes corresponded closely with the questions students 

posed during the camp and with their accompanying iPad photos. Firstly, measurement questions 

often pertained to length, such as “how long” (see Figure 3a). Secondly, students inquired about 

quantities, or count, exemplified by questions like, “How many carvings in this photo?” (see 

Figure 3b). Next, patterns revealed students’ describing identified patterns within artworks, 

posing questions like “How many patterns are there?” (see Figure 3c). Lastly, shapes refer to 

named or drawn geometric shapes, mostly circles and triangles, as seen in Figure 3d. These 
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explicit school mathematics connections were pronounced during our analysis; however, we also 

found some implicit mathematical connections as well. 

Implicit Mathematics. In contrast, some students described mathematics implicitly, focusing 

on artistic aspects, namely the object’s design or functionality and the artist's motivation. Such 

descriptions reflect students’ ability to see applied mathematical principles in art (Figures 3e-g). 

For instance, Student 505 questioned the materials used to design a clock (Figure 3e), while 

Student 203 expressed curiosity about an object’s usage (Figure 3f), exemplifying functionality. 

Also, Student 204 inquired about an artist’s motivation for color choices and sewing techniques 

(Figure 3g). Nine photos fell under this theme, illustrating students’ intriguing observations of 

mathematical applications in art through aesthetic.  

Unrelated. Lastly, a student’s inquiry about a painting’s emotional content (Figure 5d), 

without any explicit or implicit mathematical connections, highlights the diversity of student 

responses and interests during the math walk activities.  

Our findings present a plethora of observations that underscore the multifaceted nature of 

student problem posing during math walks. Next, we discuss their significance related to the 

literature and implications for informal math education. 

 

 
 

Figure 3: Problem Posing Student Examples (by Codes) 

 

Discussion and Conclusion 

While math walks have been identified as an important informal mathematics learning 

activity, little research has examined how student-facilitator interactions unfold during math 

walks. Having students generate their own noticings and wonderings from their surroundings is a 

challenging process, as it involves creativity and the ability to see mathematics as an expansive 

and situated domain for looking at the world. Here, we show how facilitators can use scaffolding 
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processes like recruitment, direction maintenance, marking critical features, and applying 

frustration control to make these activities more feasible and rewarding for students, while still 

allowing students to maintain their independent voice. This offers important guidance for how 

informal educators can be best trained or prepared to implement math walks – by rehearsing, 

watching videos of, and discussing these scaffolding strategies. 

We also show the kinds of math walk stops students created at an art museum, highlighting 

the explicit and implicit mathematics they noticed. One striking finding from this study was that 

the students’ walk stops in Figure 3 was quite simple and un-nuanced compared to the rich 

conversations students had while creating these math walk stops. Thus, the math walk stops 

themselves are not the most important demonstration of or product of students’ learning from 

math walks – instead, it is the mathematical discussions that students and facilitators have 

leading up to the submission of the formal walk stop that best show students’ transformations. 
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AN ESTIMATION GAME TO PROMOTE SECONDARY STUDENTS’ CLIMATE 

CHANGE UNDERSTANDING USING DATA AND VISUALIZATIONS 

Data and data visualizations have the potential to shift learners’ attitudes and conceptions about 

controversial science topics. However, many people, particularly secondary students, struggle to 

make scientific meaning from data. This design-based research project aimed to support data 

literacy and science learning by developing an online estimation game to support secondary 

students’ understanding of climate change with data and data visualizations. Over the course of 

three design iterations, we interviewed 12 racially diverse secondary students and documented 

the design of a climate change number estimation game. Inductive coding analysis illustrated 

dimensions of students’ (a) estimation strategies employed (e.g., drawing from prior knowledge, 

mental computation, wildly guessing), and (b) emotions experienced while estimating climate 

change numbers (e.g., emotions about climate change vs. about performance). 

Keywords: data literacy; design-based research; numerical estimation; secondary education 

Scientific data visualizations—such as maps, charts, and graphs—can communicate critical 

socioscientific information to the public (Allen, 2018; Harold et al., 2016). However, many 

people lack the quantitative reasoning skills needed to interpret these visualizations (Börner, et 

al., 2016; Peters et al., 2006; Thacker & Sinatra, 2019). Secondary students, in particular, 

struggle with number magnitudes using conventional number line representations (Doyle, 2015; 

Vamvakoussi & Vosniadou, 2004; 2007; 2010; Wilensky, 1991). This magnitude knowledge 

predicts math and science achievement (Booth & Siegler, 2006; Sasanguie et al., 2012; Siegler & 

Booth, 2004; Siegler et al., 2012), and students’ inability to use visual representations to compare 

rational numbers can lead to misinterpretations of science topics (Siegler, 2016). 

A relevant topic relying on quantitative evidence is climate change. National science 

standards require students to understand quantities, tables, and graphs related to human-induced 

climate change (NGSS, 2013). However, students have serious misconceptions about climate 

change (Dawson & Carson, 2013; McNeil & Vaughn, 2012). There is a need for learning 

contexts that support climate change understanding and data literacy. Several approaches, such as 

micro-interventions with surprising numbers about climate change, support learning (Ranney & 

Clark, 2016; Thacker & Sinatra, 2022), though evidence thus far uses undergraduate samples. 

The current project developed an intervention to shift secondary students’ climate change 

misconceptions by leveraging data visualization skills and documenting design choices for 

integrated STEM learning. The intervention used number line visualizations to support data 

literacy and climate change learning and investigated estimation strategies students used therein. 

 

Theoretical Framework 

To explain how novel data and data visualizations might help shift scientific misconceptions, 

we integrate theories of conceptual change and numerical development. Conceptual Change 

involves restructuring conceptions to align with scientific consensus (Dole & Sinatra, 1998). The 

Plausibility Judgments for Conceptual Change (PJCC) model (Lombardi et al., 2016) posits that 
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novel information can shift conceptions if it is comprehensible, coherent, compelling, and valid. 

More explicit plausibility judgments—which are influenced by motivation, engagement, and 

emotion—increase the likelihood of conceptual change (see Figure 1 for a summary). 

 

 
 

Empirical research shows that novel data can inspire conceptual change about climate 

change. Estimating climate change numbers before presenting the true values can reduce 

undergraduates’ misconceptions (Thacker & Sinatra, 2022; Thacker, 2023). Further, instruction 

on data-literacy skills can enhance knowledge gains (Thacker, 2023; Thacker et al., 2024). 

However, no research thus far has tested this approach with secondary students nor assessed the 

benefits of supplementing the experience with data visualizations. 

Data visualizations can support understanding of scientific quantities and developing of 

numerical knowledge. Siegler’s (2016) Integrated Theory of Numerical Development posits that 

people develop an accurate understanding of number magnitudes and their relationships as they 

connect numbers (e.g., representing rising global temperatures) to the things that those numbers 

refer to (e.g., global climate change). Such connections between numbers and their referents 

happen through processes of analogy and association, as facilitated by conventional 

representations and visualizations. The linear number line is central to representing real numbers 

and helps students compare magnitudes and understand abstract concepts (Van De Walle et al., 

2013). This can support math and science learning, retention, and engagement (Gunderson et al., 

2012; Schwartz & Heiser, 2006; Siegler, 2016; Saxe et al., 2013; Stevens & Hall, 1998). 

The current research concentrates on the design of an online intervention presenting 

secondary students with novel climate change data. The study investigates using number line 

visualizations to enhance student comprehension of climate change data, math and science 

learning, and identifies strategies students employ that support this learning. Namely, we ask: 

1. How can a learning intervention be developed to leverage number line estimation skills 

for the learning of climate change science among secondary students? 

2. What numerical estimation strategies do students employ when estimating climate change 

numbers? And how do they respond when presented with the true value?  

 

Methods 
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To answer our research questions, we used a design-based research (DBR) methodology 

(Anderson & Shattuck, 2012; Hoadley & Campos, 2022) to guide the design of an online 

intervention that we call the “Estimation Game.” Typical of DBR, the design, implementation, 

and revision occurred over several iterations (Bakker, 2019; Cobb et al., 2003).  

We revised an existing online estimation game (Thacker et al., 2024), where undergraduate 

students estimated 12 climate change numbers before being shown the scientifically accepted 

number. Half of the prompts included given benchmark values (e.g., “hints”) that learners could 

arithmetically manipulate to estimate unknown values. After estimating each value, a pop-up 

window would appear displaying the true number, accuracy feedback (one to five “gold stars”), 

an explanation of the climate change number to help students contextualize the quantity in terms 

of students’ prior knowledge, and links to sources of the information to improve credibility.  

For this study, we aimed to modify this design to improve data comprehensibility and 

engagement. Modifications included (a) personalized feedback via a number line visualization to 

help students compare their estimates with the true value, (b) revised text that is more suitable 

for secondary students, and (c) a revised look-and-feel to be more game-like. This work resulted 

in an online, open-source estimation game for secondary students with number line visualization 

feedback (ianthacker.com/design.html). For a related quantitative study, see Thacker (in press). 

Participants and Procedure. The intervention design, implementation, and revision 

occurred over three iterations. We conducted 12 one-on-one “think-aloud” interviews (Desimone 

& Le Floch, 2004) via Zoom with a diverse sample of secondary students (grades 7-12) from a 

southern U.S. metropolitan area. Students identified as female (50%), male (50%), Hispanic 

(60%), White (58%), two or more races (33%), and Black (8%). Each iteration included pretests, 

engagement with the game, posttests, and a demographics questionnaire. 

Survey Materials. Students completed measures of climate change knowledge and 

plausibility at pretest and posttest. The knowledge measure assessed the scientific consensus on 

climate change using a five-point agreement scale (Lombardi et al., 2013). The plausibility 

perceptions measure assessed endorsements related to human-induced climate change using a 

seven-point scale (Lombardi et al., 2012). 

Analysis. Qualitative analysis occurred in four waves: three after each design iteration and a 

fourth after all data was collected. Interviews were transcribed and analyzed. Interviewers wrote 

analytical memos based on open analyses of each transcript, and conclusions informed 

modifications to the Estimation Game. After three iterations, recordings were open-coded for 

student thinking dimensions (Corbin & Strauss, 2004; Saldaña, 2021). Themes centered around 

students’ quantitative reasoning strategies and emotions experienced during the game. 

 

Findings 

Survey results showed growth from pretest to posttest. At pretest, students had an average 

knowledge score of 2.4 of 5 and plausibility perception score of 4.87 of 7. Posttest scores 

improved to 2.91 of 5 for knowledge and 5.08 of 7 for plausibility. 

RQ1: Design of an Open-Access Data Estimation Game with Number Line Visualizations 

Three design iterations informed several game modifications. The first design iteration 

redeployed the central design features of the original intervention created by Thacker et al. 

(2024). We asked participants to estimate 12 climate change numbers. After making each 

estimate, a pop-up window would display the actual value along with accuracy feedback (one to 

http://ianthacker.com/design.html
http://ianthacker.com/design.html
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five gold stars), an explanation of the true value, and links to sources of the information. At the 

end, a summary page provided an overview of all estimated items and accuracy ratings.       

Four key improvements were introduced on top of the original design prior to the first round 

of interviews. First, we modified the accuracy feedback to also present students with a linear 

number line visualization illustrating each estimate alongside the true value to facilitate 

comparisons between the two and boost comprehension. Second, we adjusted the procedure for 

calculating accuracy feedback to present students with gold stars indicating order of magnitude 

error rather than absolute error, which is a more generous assessment of estimation accuracy and 

has been used in similar research (Bröder et al., 2022). Third, to make the intervention more 

“game-like” we modified the progress bar to include an earth icon, the summary page to provide 

students with a “final score” indicating the sum of their accuracy ratings, and we updated the 

“look and feel” of the web app to include more color and animation. 

RQ2: How Students Responded to the Intervention 

Inductive coding revealed themes in students’ estimation strategies and emotional responses. 

Estimation strategies included drawing from prior knowledge, mental computation, and wild 

guesses. Emotional responses varied from relief, sadness, and surprise about climate change 

information to excitement or disappointment about their performance. A summary of related 

results are presented in Table 1. 

 
Table 1. Summary of Themes Related to Student Reactions to the Estimation Game 

Dimension Sub-Dimension 
# of 

Students Example Excerpts from Student Interviews 

Theme 1: Strategies for Estimating Climate Change Quantities 

Prior 

Knowledge 

Educational 
1 

I was in geography and I saw a picture from 2009 to 2020, and it 

raised by a lot, so I'll say, say 65 inch increase. 

 Personal 7 It’s really cold right now… so [I’ll estimate] maybe like 7 

 Prior item 
6 

I’m going to use the same answer that I used in my first 

question. 

 Vague 11 I remember hearing somewhere… it was 30. 

Mental 

Computati-

on Applied 

to a Given 

Value 

Extrapolation 
10 

[Reading hint] Global sea levels rose by 1 inch between [1900 

and 1920] that’s not a lot…. But [now] it’s more… like 5 or 6. 

Arithmetic 9 I would just say 12. I'm just going to multiply by four. 

Unspecified 4 I think it's gone down [compared to what was given in the hint] 

Rounding 1 So we’ll round the 53 to 50…  

Wild Guess Wild Guess 12 I’d say four. Wild guess 

Theme 2: Emotional Response to New Information 

Emotions 
(about climate 

change) 

Relief 5 
I'm glad that more countries are [committing to climate action] 

than I thought. 

Sadness 8 Geez [glaciers are melting], well that's sad. 

Surprise 8 
I am very surprised and happy about it too. Huh. That is a nice 

surprise to know that I am very wrong. 

Emotions 
(about Excitement 6 

Amazing job. I was so close. *claps* Look at that. It was 151%. 

Yay, I got five stars! 
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performance) 

Disappointment 5 
Seriously? 5 billion times, I got one star. That's my lowest score. 

That's really sad. 

 

Contributions 

We sought to design an Estimation Game and explore the strategies that diverse secondary 

students use when estimating climate change data. The intervention, guided by theories of 

conceptual change and numerical development, reduced climate change misconceptions and 

increased climate change plausibility perceptions. We found that, as students estimated numbers, 

they tended to draw from their prior knowledge and/or employ mental computation strategies, 

supporting the idea that estimating real-world quantities may provide opportunities for students 

to coordinate their magnitude knowledge and prior knowledge in such a way that is mutually 

beneficial (Siegler, 2016). Future research might explore relationships between estimation 

strategies and emotional responses and their impact on STEM-integrated learning. 
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Appendix A: Screenshots of the Estimation Game Developed for this Study 

 

Students are prompted to estimate a 

climate change number 

True value pops up with accuracy 

feedback & number line & sources 

Summary screen after Estimating 12 

Quantities 

  

 

 

Note. See ianthacker.com/design.html for details.  
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Recent developments in Augmented Reality (AR) headset technologies have allowed for users to 

see and manipulate the same 3D hologram at the same time, allowing for collaborative, 

embodied interactions using gestures and actions. Three-dimensional geometry has traditionally 

been taught largely through 2D projections of 3D figures on pages or screens, thus dynamic 

holograms open new opportunities for understanding and extending mathematical cognition. In 

the present study, we examine multimodal interactions for high school students with either joint 

3D holograms or without holograms while exploring geometric conjectures. We examine cases 

in which changing modalities is associated with changes in reasoning and conclude that 

holograms have important tradeoffs for embodied mathematical reasoning. 

Keywords: Mathematical Processes and Practices, Technology and Learning Environment 

Design, Geometry and Measurement. 

Objectives and Purpose 

For many secondary students, formal geometric concepts can be hard to grasp. The abstract 

way in which geometric figures and concepts are presented in “school math” can create 

challenges for obtaining deep understanding (Ubi et al., 2018). Grounded representations like 

gestures and manipulatives can help make more concepts more accessible through connections to 

prior knowledge and real-world experiences (Cook & Goldin-Meadow, 2006; Demitriadou et al., 

2020; Goldin-Meadow, 2005; Nathan et al., 2014; Pier et al., 2019; Walkington et al., 2019). In 

this inherently embodied perspective, learning and practicing mathematics by using the body 

grounds the concepts through perceptual and motor systems resulting from simulated and 

performed actions (Abrahamson et al, 2020; Wilson, 2002). The framework of embodied 

cognition has major affordances for improving the accessibility of these concepts that are 

presented like amodal mathematical operations that have little connection to the real world, 

social systems, and physical bodies that sparked the ideas and principles behind them (e.g., 

Lakoff & Núñez, 2000). Previous literature in the field suggests that embodied learning 

technologies like augmented reality (AR) can have a positive impact on motivation, learning 

experience, and understanding (Jabar et al., 2022).  

In the present study, we sought to investigate the effect of AR goggles on students’ geometric 

reasoning within the context of mathematical learning. Recent advances in AR goggles have 

allowed three-dimensional (3D) holograms to be projected in the real-world scene in front of 

students wearing the goggles, with these holograms controlled through intuitive hand gestures 

(Walkington et al., 2023). Even more significantly, students can engage with these holograms 

collaboratively, seeing their partners and the room around them, with each able to manipulate the 

holograms and see the effects of others’ manipulations (Washington & Walkington, Accepted). 

Here we investigate 28 high school students using AR goggles in pairs to explore geometric 

conjectures and describe the possibilities this modality offers for sense-making, reasoning, and 

access to mathematical ideas through bodily and perceptual actions. In this study we sought to 

mailto:jcwashington@smu.edu
mailto:cwalkington@smu.edu
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answer the following research question: What is the effect of Augmented Reality (AR) on high 

school students’ geometric understanding and reasoning compared to without the use of AR? 

Theoretical Framework: Collaborative Embodiment and Gesture   

The integration of AR technologies in mathematics education holds significant potential, 

particularly when viewed through the lens of embodied cognition and gestures. Research shows 

the critical role of AR in fostering embodied cognition, emphasizing the integration of motion, 

gesture, and meaningful movement to enhance comprehension (Walkington et al., 2021; Bujak et 

al., 2013). Embodied cognition, rooted in motor behavior, posits that cognitive processes involve 

active engagement of the physical body within the learning environment (Schneegans & 

Schöner, 2008). AR, with its interactive capabilities, immerses learners in virtual surroundings, 

requiring active physical engagement through gestures and manipulation. Gestures, defined as 

hand or arm movements used to communicate or explore mathematical ideas (McNeill, 1992), 

play a crucial role. Research (Alibali, 2005; Goldin-Meadow, 2010) highlights the significance 

of bodily action in learning (Washington & Walkington, Accepted), suggesting that gestures 

enhance knowledge structure creation in long-term memory compared to verbalization alone 

(Cook et al., 2008). 

Embodied learning, within an enactivist framework, considers cognition as a result of 

dynamic interaction with the environment (Gallagher & Lindgren, 2015). AR, as noted by Bujak 

et al. (2013), encourages the creation of embodied representations, facilitating spatiotemporal 

alignment and a more meaningful learning environment. The ability to dynamically interact with 

virtual geometric shapes, observe real-time changes, and manipulate objects in AR provides 

profound affordances for deeper understanding (Washington & Walkington, Accepted). Studies 

(Price et al., 2020) suggest that immersive AR environments fill gaps in comprehension for 

mathematical concepts by allowing learners to use their bodies as tangible resources 

(Washington & Walkington, Accepted). This aligns with the idea that sensorimotor experiences 

and meaningful movement enhance geometry and spatial learning (Leitão et al., 2014; Özçakır & 

Çakıroğlu, 2022). Incorporating technology into education, especially AR, scaffolds reasoning 

and student capabilities, fostering a better assessment of mathematical understanding and 

knowledge growth. The literature also emphasizes the importance of interactive AR technologies 

that go beyond passive engagement (Walkington et al., 2023; Washington et al., Accepted;). 

Theoretical frameworks centered on gestures and embodied learning highlight how AR enhances 

sense-making, problem-solving, and collaborative learning. Dynamic gestures in AR, coupled 

with its immersive nature, make mathematical concepts more concrete and visually 

comprehensible (Bujak et al., 2013; Dunleavy et al., 2009; Tomaschko & Hohenwarter, 2019). 

However, while extant literature provides compelling evidence for the benefits of AR in 

education, there is a gap in research on the possibilities offered by AR holograms for 

embodiment and gesture. A comparative study of students exploring geometry conjectures with 

and without AR goggles projecting 3D holograms seeks to uncover the affordances and 

limitations of AR technologies for embodied collaboration. This investigation delves into the 

changes in reasoning, encompassing speech, gestures, actions on objects, and whole-body 

movements in a distributed cognitive system with multiple learners. Through this analysis, the 

study aims to contribute insights into the potential of AR holograms in enhancing embodied 

learning and collaborative problem-solving in mathematics education. 
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Methods of Inquiry 

Participants included 28 high school students enrolled in an enrichment program at a local 

university intended to support high school students likely to become first-generation college 

students. Twenty-three of the participants were female and 5 were male; 12 identified as African 

American, 14 as Hispanic, 1 as White, and 1 as Other Race/Ethnicity. They ranged from 

freshman to seniors, with an average age of 16.04 years. Only 2 students had not yet taken high 

school Geometry. Participants were asked to reason about 6 of 8 geometric conjectures about 

different shapes (see Table 1) in pairs, without AR goggles on. Then they put on the Microsoft 

HoloLens 2 AR goggles and justified 3-4 of the conjectures a second time. They used an app on 

the Microsoft HoloLens 2 AR goggles developed by GeoGebra (Hohenwarter & Fuchs, 2004), 

which rendered the shapes as 3D holograms, with the ability for the researcher to toggle different 

features (e.g., add a plane intersecting the circle or add a cylinder inscribing a cone). All 

simulations can be viewed at: https://sites.google.com/view/flatlandxr/home. 

 

Table 1: Sample Conjectures Students Were Asked to Reason About and Explain 

 

2D 
Simulation 

Example Conjecture Simulation Photo 3D 
Simulation 

Example Conjecture Simulation 

Photo 

Parallel Lines 

If two parallel lines 

are cut by a third line, 

the pairs of 

corresponding angles 

are congruent. 
 

Sphere 
A plane can only intersect 

a sphere at zero, one, or 

infinite points.  

Triangle 

The sum of the lengths 

of any two sides of a 

triangle must be greater 

than the length of the 

remaining side.  

Cylinder 

Given a cylinder with 

radius r and height h, the 

cylinder can be unrolled 

to include a rectangle 

with length h and width 

2𝛑r. 

 

Parallelogram 

Consecutive angles 

in a parallelogram 

add up to 180 

degrees.  

Prism 

If the length, width, and 

height of a cube are 

each doubled, then the 

volume increases by a 

factor of 8. 
 

Circle 

The perpendicular 

bisector of any chord 

always goes through the 

center of the circle. 
 

Cone 

The volume of a cone 

is one-third the volume 

of a cylinder with the 

same base and height. 
 

 

The feed from each students’ goggles was recorded, and camcorders also recorded the room. 

Videos were transcribed and entered into NVivo. A coding scheme was determined that focused 

on the nature of the mathematical reasoning, including gestures, collaborative talk moves, 

actions on virtual objects (i.e., holograms), and whole-body movements (e.g., walking around a 

triangle). Reasoning was coded as students showing multimodal evidence they understood key 

https://sites.google.com/view/flatlandxr/home
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mathematical insights related to the geometry conjecture (Nathan et al., 2021; Zhang et al., 

2016). For example, for the triangle conjecture, a key insight the students can have is that if the 

sum of the lengths was greater, the triangle will not be able to close. The key criterion for an 

insight is that it must extend what was explicitly given in the conjecture text, and that it must be 

consistent with the actual properties and interactions of Euclidean shapes. Insights can occur 

across modality, and insights communicated by speech were not privileged. Responses were 

coded as to whether they included mathematical insights when solving each conjecture without 

the goggles versus on a subsequent attempt with the goggles. Cases where the students did have 

key mathematical insights both without the goggles and with the goggles were coded as “Insight 

Stay,” and cases where students did not have key mathematical insights without the goggles and 

then with the goggles were coded as “No Insight Stay.” More interestingly, cases where students 

did not have key insights without the goggles but had key insights with the goggles were coded 

as “New Insight” and cases where the students had key insights without the goggles that they 

discarded with the goggles were coded as “Discarded Insight.” We first counted all instances of 

these 4 categories, and then used multimodal analysis (Walkington et al., 2023; McNeill, 1992; 

Alibali & Nathan, 2012) to analyze one representative instance of each case. 

Results 

The dynamic nature of the holograms and their 3D nature seemed to have some powerful 

affordances for mathematical reasoning and embodied collaboration by either changing a 

student’s mind when they were able to see the shape in front of them as a hologram or 

reaffirming their initial reasoning in both negative and positive ways. See Table 2 for the 

reasoning counts of changes or stays in reasoning broken down by conjecture.  

  

Table 2: Reasoning Insight Changes or Lack of Changes by Conjecture  

 

  Insight Stay No Insight Stay New Insight Discarded Insight N/A Total 

Triangle  6 9 4 1 0 20 

Circle  3 0 1 1 3 8 

Parallelogram 3 4 2 1 0 10 

Parallel Lines 6 2 10 3 1 22 

Sphere  7 3 4 7 1 22 

Cube  0 2 1 1 0 4 

Cylinder  2 3 5 1 1 12 

Cone  4 1 3 2 0 10 

Total  32 24 29 17 6 108 

 

Some students were able to use the holograms and their associated embodied resources and 

motions to reason more effectively or reaffirm prior reasoning. Figure 1 demonstrates such 

instances of “Insight Stay” and “New Insight.” Figure 1 shows students discussing the parallel 

lines conjecture from Table 1 using collaborative speech, actions on objects, and gesture. In 

Figure 1, we see S107 and S108 use dynamic gestures (P1-P3 – moving their hands diagonally to 
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show the angle and vertically parallel to show the parallel lines) without the goggles to explain 

reasoning. We coded this as Insight for S107 as he talked about the intersecting line not effecting 

the corresponding angles as they would be congruent for both parallel lines (Line 4, P1). We 

coded S108 as No Insight because she references the length of the parallel lines being the reason 

the corresponding angles are congruent (Line 5, P2-P3). They then moved to the AR goggles 

portion where having access to the 3D shape seemed to give the students novel insights, and we 

see them using the shape manipulation to change the perspective they have on the parallel lines 

to help with sense-making. The dynamic nature of the hologram, combined with its scale (i.e., 

students were immersed in large-scale parallel lines together) seemed to allow for effective forms 

of collaborative multimodal communication to occur. We also see S107 using dynamic gestures 

to reference the path of the parallel lines and the intersecting line (Line 8, P6) and collaborative 

actions to dynamically modify their parallel lines (P4 and P7). We coded this as Insight for S107 

and S108, making this an Insight Stay for S107 and New Insight for S108. As seen in Table 2, 

this conjecture had the second highest number of Insight Stays (6) and the highest number of 

New Insights (10) by over double compared to the next conjecture (4). Thus, the immersive, 

dynamic parallel lines seemed to be powerful as a hologram, leading to reaffirmed and new 

mathematical insights. 
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Figure 1: Insight Stay and New Insight: Reasoning about Parallel Lines Conjecture 

 

In Figure 2, we see a case of “No Insight Stay.” In this transcript without the goggles, S123 

uses representative gesture (P1and P4) that represents two vertically parallel lines, and in P2-3 

one arm vertical to show a 90-degree angle and one arm horizontal to show a 180-degree angle. 

They also use dynamic gestures (P5 – moving his hands back and forth in parallel lines). We 

coded this as No Insight as he talked about the angle and direction to which the sets of parallel 

lines in the parallelogram were having an effect (Line 2-4 and 9). They then moved to the AR 

goggles portion where seeing the 3D shape did not seem to give the students novel insights, 

despite them using the shape manipulation to change the perspective they have on the 

parallelogram. Despite S124 making a relevant observation in Line 12 (P7), the students cannot 

see how the angles can equal 180-degrees. In Lines 15-18, S123 and S124 add two sets of angles 

and explain that neither add to 180-degrees and use pointing gestures (P8-P10 – pointing at the 
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angles) and collaborative actions to dynamically modify their parallelogram (P6) to show their 

thinking. We coded this as No Insight Stay. As seen in Table 2, No Insight Stays were the most 

common (4) within this conjecture. 

 

 

Figure 2: No Insight Stay: Reasoning About the Parallelogram Conjecture 

 

In Figure 3, we see the “Discarded Insight” case where a pair attempts to prove the sphere 

conjecture. Without the goggles, we see S111 use representational gestures (P1 and P3 – creating 

an intersection and a sphere with her hands), dynamic gestures (P4 – moving her hand forward to 

show a cut or moving intersection) and pointing gestures (P3 – pointing at a single point on the 

imaginary sphere) to explain her reasoning. We coded this as Insight as she communicated 

having an infinite piece of paper and the places that would intersect the sphere (Line 6-7). They 

then moved to the AR goggles portion where having access to the 3D shape seemed to give the 
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students novel insights, and in the video, we see them using the shape manipulation to change the 

perspective they have on the sphere to help with sense-making. We see them using pointing 

gestures to reference places on the sphere and collaborative actions to dynamically modify their 

sphere, all while engaging in collaborative talk moves. However, despite this strong start (Lines 

11-14, P6), they did not see how zero points of intersection was possible with the hologram now 

present (Lines 16-20). We coded this as Discarded Insight. As seen in Table 2, the sphere 

conjecture had the highest number of Discarded Insights (7) amongst conjectures; thus, the 

hologram was not functioning for students’ math reasoning in the way we had intended. 

 

 

Figure 3: Discarded Insight: Reasoning About the Sphere Conjecture 
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Discussion 

This study has several implications. The first is that AR environments can change, support, or 

reinforce students understanding, beliefs, or thought processes in their sense-making of 

geometric objects, in some situations. Students can use these technologies effectively to support 

in creating meaning to illustrate students’ “knowledge” (Bujak et al., 2013; Jabar et al., 2022; 

Tomaschko & Hohenwarter, 2019; Washington & Walkington, Accepted). AR can also be an 

effective tool that helps clear up misconceptions or errors in mathematical reasoning with 

‘physical’ manipulatives and visuals to aid in this process (Price et al., 2020; Jabar et al., 2022). 

However, some students who use the technologies could have trouble with altering their 

reasoning to be consistent with mathematical insights about how figures and shapes work in 

Euclidean space. This could come from not using the technology effectively, forgetting to use the 

technology, or trouble seeing the mathematics in the hologram, which could reinforce students’ 

original reasoning. Another idea is that AR holograms may be more impactful and appropriate 

for concepts that are inherently three-dimensional, as these objects and our simulations leverage 

profound affordances; however, our data does support their effectiveness for some 2D objects 

like parallel lines cut by a transversal. Finally, AR allows students to interact with and explore 

objects in novel and nontypical ways (Bujak et al., 2013; Dunleavy et al., 2009; Walkington et 

al., 2023; Washington et al., Accepted; Washington & Walkington, Accepted). However, if you 

bring more traditional “school” tasks into an AR environment, students’ reasoning and attempts 

at meaning-making could be restricted. In our context, each simulation could use more time for 

exploration of properties of a figure, rather than confronting a specific conjecture immediately. 

Future study alternatives we are exploring is to scaffold students by having them work up to 

making and proving or disproving conjectures after familiarizing themselves with the 

movements of the figures. Tasks in an AR environment become particularly meaningful if they 

come from students and their embodied, gestured, collaborative experiences (Walkington et al., 

2019; Washington & Walkington, Accepted). 
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This study aimed to examine the quality of the GeoGebra applets for fraction division by 

attending to the conceptualizations, representations, and cognitive actions prevalent in these 

digital resources. The results reveal that a majority of the existing applets conceptualize fraction 

division as measurement while other conceptualizations of fraction division are 

underrepresented. Among the various representations used, the length model in the form of 

fraction bar and area model are the predominant choices, with the number line representation 

being notably less prominent. The results from this study also show that although most applets 

attempt to visualize the process of fraction division, there are limited opportunities in most 

applets for users to enact mental actions associated with fraction division, such as partitioning, 

unitizing, iterating, and disembedding. These results not only increase our understanding of the 

affordances and limitations of existing applets for fraction division so that we can become more 

intentional in our choice of them but also inform the design of new applets that support students’ 

development of a rich and robust understanding of fraction division.  

Keywords: Rational Numbers, Technology, Mathematical Representations 

A robust understanding of fractional concepts not only extends students’ understanding of 

numbers but also is foundational for learning more advanced mathematical content areas and 

everyday quantitative reasoning. Research has shown that understanding fractions is predictive 

of students’ long-term success in mathematics (NMAP, 2008; Booth & Newton, 2012; Siegler et 

al., 2012). Despite its importance, researchers have documented challenges in understanding 

fraction concepts among students in both elementary and secondary schools (e.g., Pitkethly & 

Hunting, 1996; Siegler & Pyke, 2013). This is especially the case for fraction division, where the 

literature indicates that students and even prospective mathematics teachers often struggle to 

create and use representations appropriately, overgeneralize properties of operations with natural 

numbers to fractions, interpret division primarily using a primitive partitive model of division, 

and tend to absorb only mechanical procedure like the invert-and-multiply algorithm and thus 

create “bugs” in computing division expressions (e.g., Tirosh, 2000; Lo & Luo, 2012; Adu-

Gyamfi et al., 2019). In other words, the lack of conceptual understanding and representation 

fluency of fraction division has been identified as a major issue for learning fraction division. 

The past few decades have seen the rise of a large repertoire of mathematics-specific 

technological tools, which can support teachers and students in visualizing, displaying, acting 

upon, observing, and validating mathematics relationships (Heid & Blume, 2008). By including 

dynamic and/or interactive representations, these digital tools have the potential to provide 

students with new ways to conceive and represent mathematics ideas, which are likely to support 

their development of conceptual understanding and representation fluency of mathematical 

concepts. In the domain of fractions, evidence suggests that the use of digital technology can 
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provide opportunities for students to work with/on fractions in interactive and dynamic ways, 

which are likely to support the development of robust understandings of fractional concepts and 

their operations (e.g., Steffe & Olive, 2002; Poon, 2018; Anat et al., 2020; Yeo & Webel, 2024). 

Meanwhile, researchers have pointed out that the design of tool-based tasks can embody 

different conceptualizations and representations of a mathematical idea (Leung & Bolite-Frant, 

2015). The use of different conceptualizations and representations in the design of tool-based 

tasks might impact not only what mathematical ideas are learned but also how they are learned. 

Therefore, it is important to analyze how mathematical ideas are conceptualized and represented 

in different tool-based tasks and resources. This is particularly true for concepts like fraction 

division, which are not only difficult to teach and learn conceptually but also open to multiple 

conceptualizations and representations.  

As an interactive geometry, algebra, statistics, and calculus application that can run on 

multiple platforms (e.g., desktops, tablets, and online), GeoGebra is developed for learning and 

teaching mathematics from primary school to university level. The GeoGebra website hosts more 

than one million free activities, simulations, exercises, lessons, and games for mathematics and 

science. A significant number of these GeoGebra applets are created for students to learn fraction 

division. Given that GeoGebra is a community of millions of students and teachers who are 

potential users of these applets, it is important to examine the conceptualizations and 

representations of fraction division in these applets. 

 

Literature Review and Conceptual Grounding 

Conceptualizations of Fraction Division 

The literature has described diverse conceptualizations of fraction division, including , 

division as partition, division as the determination of a unit rate, division as measurement and 

division as the inverse operation of multiplication (Sinicrope et al., 2002; Gregg & Gregg, 2007; 

Lamon, 2012; Adu-Gyamfi et al., 2019). When interpreting fraction division as partition, 

fraction division is perceived as the process of equally sharing a given quantity (dividend) 

between a given number (divisor) of groups in order to determine the amount in each group. 

Note that the conceptualization of fraction division as partition is efficient only in situations 

where the divisor is a whole number. When interpreting fraction division as the determination of 

a unit rate, the focus is not on the action of equally sharing but rather on the size of one unit. 

Under this conceptualization, 
𝑎

𝑏
÷

𝑐

𝑑
 is interpreted as 

𝑎

𝑏
 of one unit of quantity A corresponds to 

𝑐

𝑑
 

of one unit of quantity B, and the result of 
𝑎

𝑏
÷

𝑐

𝑑
 represents the amount of quantity A in relation 

to one unit of quantity B. Therefore, 
𝑎

𝑏
÷

𝑐

𝑑
= (

𝑎

𝑏
÷ 𝑐) ÷

1

𝑑
= (

𝑎

𝑏
×

1

𝑐
) × 𝑑 =

𝑎

𝑏
×

𝑑

𝑐
, in which 

𝑎

𝑏
÷ 𝑐 

represents only 
1

𝑑
 of a unit and multiplying the quantity by 𝑑 will get the whole unit. It is worth 

noting that this conceptualization of fraction division makes use of the partition interpretation of 

fraction division (i.e., 
𝑎

𝑏
÷ 𝑐 =

𝑎

𝑏
×

1

𝑐
) and proportional reasoning. When interpreting fraction 

division as measurement, 
𝑎

𝑏
÷

𝑐

𝑑
 is conceptualized as the number of times that the quantity 

𝑐

𝑑
 can 

go into 
𝑎

𝑏
. In other words, 

𝑐

𝑑
 is considered as a unit of measure for 

𝑎

𝑏
. This conceptualization of 

fraction division can lead to the common denominator algorithm for fraction division: 
𝑎

𝑏
÷

𝑐

𝑑
=

𝑎×𝑑

𝑏×𝑑
÷

𝑏×𝑐

𝑏×𝑑
= 𝑎𝑑 ÷ 𝑏𝑐. In this algorithm, the divisor and the dividend are first expressed as 
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fractions with like denominators, and the numerators are then divided to compare the fractions 

multiplicatively. As the inverse operation of fraction multiplication, a fraction division acts as an 

inverse function to that of fraction multiplication, mapping some set onto another set. More 

specifically, the original amount (product in multiplication, dividend in division) is multiplied by 

the denominator and divided by the numerator. This conceptualization of fraction division 

revolves around actions such as shrinking and enlarging, compressing and expanding, or simply 

multiplying and dividing. 

Mental Actions Associated with Fraction Division  

Mental actions constitute the key component of mental schemes. Mental actions, such as 

unitizing, partitioning, disembedding, iterating, and splitting are essential when working with 

fractions and their operations (Steffe & Olive, 2009). Unitizing is a mental action that treats an 

object or collection of objects as a unit, or a whole. Unitizing is essential for understanding 

fraction division because understanding fraction division demands the ability to visualize 

reference units, to move between the original unit and the intermediate unit, and to interpret a 

symbol or operation in terms of those units. Partitioning is the mental action of dividing a unit, 

or a whole, into equal parts. Equal-sized parts are fundamental to partitioning and to constructing 

the part-whole conception of fractions. Disembedding is the mental action of imaginatively 

pulling out a fraction from a whole while keeping the whole intact. The part-whole conception of 

fraction relies on mental actions of partitioning and disembedding, with which students can 

project 𝑛 equal parts in a continuous whole (partitioning) and pull out 𝑚 of those parts without 

losing track of their containment within the whole (disembedding), resulting in the fraction 
𝑚

𝑛
. 

Iterating is the mental action of repeating a part to produce identical copies of it. The part can be 

a unit fraction or a non-unit fraction. Iteration helps children conceive of a whole as a multiple of 

a same-size unit, which draws their attention to the number of times a unit fraction fits within the 

whole. Splitting is the simultaneous composition of partitioning and iterating. Students who can 

perform the splitting operation recognize that partitioning and iterating are inverse to each other. 

They can split an unpartitioned piece of a larger or smaller whole to re-create the whole. These 

mental actions are vital for developing a robust understanding of fraction concepts and their 

operations, including fraction division.  

Dick (2008) proposed a method of evaluating digital tools and resources for their 

pedagogical, mathematical, and cognitive fidelity, claiming that high levels of fidelity in these 

areas are necessary for a significant impact on student learning. The notion of cognitive fidelity 

indicates that digital tools and resources for mathematics teaching and learning should reflect 

students’ cognitive actions with an emphasis on illuminating mathematical thinking processes 

rather than simply arriving at the final results. A GeoGebra applet with high cognitive fidelity for 

fraction division should not only demonstrate but also enable its users to enact the mental actions 

associated with fraction division. Given the importance of mental actions such as unitizing, 

partitioning, iterating, and disembedding in different conceptualizations of fraction division, it is 

important to assess how well GeoGebra applets support these mental actions. 

Representations of Fraction Division 

It has been agreed that mathematical objects such as fractions cannot be directly perceived or 

observed with instruments, and access to mathematical objects is bound to the use of a system of 

semiotic representations that allow them to be designated (Goldin, 1998; Duval, 2006). In the 

mathematical domain of fraction division, representations that model the process of division may 
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include but are not limited to set models (i.e., the whole is understood to be a set of objects and 

subsets of the whole consist of fractional parts, such as pictures of familiar objects and dots), 

area models (i.e., fractions are represented as parts of an area or region of a shape, such as 

circles, rectangles, and grids), length models (i.e., a fraction is identified as being a particular 

distance from the “start” of the whole, such as fraction bars and number lines), numerals, and 

algebraic symbols. These representations have been used to model the different 

conceptualizations of fraction and fraction division. Research shows that specific representations 

and models of fraction concepts and operations do have their strengths and limitations. For 

instance, concrete set models may be well-suited to illustrate part-whole concepts but may not be 

appropriate for helping children understand fractions as numbers with specific magnitudes 

(Cramer & Wyberg, 2009). Circle representations can illustrate both the part-whole relationship 

and the meaning of the relative sizes of fractions (Cramer & Wyberg, 2009), but they are less 

helpful in supporting the conceptualizations of fractions beyond equal partitioning and tend to 

support additive thinking rather than multiplicative thinking needed for understanding fractions 

(Moss, 2005). Number lines help students see fractions as not only parts of a whole or parts of a 

set but also a part of distance. Many studies have argued the superiority of the number line over 

other representations of fractions (e.g., Sidney et al., 2019; Hamdan, & Gunderson, 2017). 

However, compared with other visual representations, the number line is more abstract and 

cognitively demanding because students have to coordinate symbolic information and visual 

cues in order to bring meaning to this model since the number line uses symbols to convey part 

of its meaning. Therefore, it is important to use multiple representations in teaching and learning 

fractions and their operations. To support students in developing a rich and robust understanding 

of fraction division, it is important to provide with them the opportunity to work with fraction 

division constructs (e.g., partition unit, referent units, and whole) via mental actions on 

representations (e.g., unitizing, partitioning, disembedding, iterating, and splitting) and reflective 

abstraction on those actions, to utilize multiple representations of the same fraction division 

conceptualization to observe isomorphic transformations between representations and to utilize 

multiple representations of the different conceptualizations of fraction division.  

 

Research Questions 

Informed by the literature on fraction division, this study was guided by the following questions:  

1. What conceptualizations of fraction division are used in the GeoGebra applets for 

fraction division? 

2. What representations are used in the GeoGebra applets for fraction division? 

3. What cognitive actions are supported by the GeoGebra applets for fraction division? 

4.  

Methodology 

Data Collection  

GeoGebra applets for fraction division were collected from two different sources. First, on 

August 21, 2023, the keywords “fraction division” and “dividing fractions” were typed into the 

built-in search engine provided by the GeoGebra community resources cloud service 

(https://www.geogebra.org/materials), which resulted in 156 and 44 outputs, respectively. Data 

Miner (https://dataminer.io), which is a Google Chrome Extension and Edge Browser Extension 

that helps its users crawl and scrape data from web pages and export the data into a CSV file or 

https://www.geogebra.org/materials
https://dataminer.io/
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Excel spreadsheet, was used to collect the names and URLs of the GeoGebra applets. After 

combining the results from the two searches, 11 files were first removed due to identical URLs. 

Second, a set of GeoGebra applets for fraction division was identified from a larger raw data set 

of GeoGebra applets for fractions that aimed to be used to investigate the conceptualizations and 

representations of fraction concepts and their operations in the existing resources on the 

GeoGebra website. The GeoGebra fraction applets in the larger data set were collected in two 

different ways. First, the keyword “fraction” was typed into the built-in search engine provided 

by the GeoGebra community resources cloud service. Second, fraction applets were also 

identified through the organization chart on the GeoGebra (https://www.geogebra.org/t/fraction). 

1054 GeoGebra applets were left in the larger data set after initial data cleaning, of which 84 

GeoGebra applets were likely about fraction division as their names included the word 

“division”. After combining the results from the two sources, 57 files were first removed due to 

identical URLs. Among the remaining 216 files with unique URLs, 20 applets were in languages 

other than English, 75 applets were not on fraction division (e.g., modeling division 𝑎 ÷ 𝑏 as a 

fraction, where 𝑎 and 𝑏 are both integers), 61 applets were duplicates of an existing applet with a 

different URL, and 4 applets were incomplete. This data cleaning process resulted in 56 unique 

GeoGebra applets for fraction division, of which 43 applets demonstrate fraction division and 13 

applets generate practicing problems on fraction division. This study focused on the 43 applets. 

 

 
Figure 1: Data Collection and Cleaning Process 

 

Data Analysis 

When analyzing each applet, we considered the conceptualization of fraction division that the 

applet was based upon, the representation that was used in the applets, and the cognitive actions 

associated with fraction division that the applet could support. We also considered the type of 

fraction division being modeled, as it can influence the conceptualization used. The types of 

fraction division include a fraction divided by a whole number (
𝑎

𝑏
÷ 𝑛),  a whole number divided 

https://www.geogebra.org/t/fraction
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by a fraction (𝑛 ÷
𝑎

𝑏
), and a fraction divided by a fraction (

𝑎

𝑏
÷

𝑐

𝑑
). A fraction in an applet could 

be either a proper or an improper fraction. The conceptualizations of fraction division include 

fraction division as measurement, fraction division as partitioning, fraction division as the 

determination of unit rate, and fraction division as operator. The types of representations that 

could be used in an applet include fraction bar and number line in the length model, rectangle 

and circle in the area model, numerical representation, and algebraic representation. When 

coding cognitive actions supported by an applet, we considered the affordance of the applet in 

supporting the following actions, namely, changing the dividend/divisor fraction, unitizing, 

partitioning, iterating, and disembedding. We differentiated between the affordance of 

demonstrating the actions and the affordance of enacting the actions. We believe that such 

distinction is important because an applet might use a particular representation to visualize the 

process of fraction division without allowing its users to enact the action in the applet. Each 

applet was coded by the two authors. There was a high inter-rater reliability between the two 

authors. Disagreements in codes were resolved through discussion.  

 

Results 

Conceptualizations of Fraction Division in the GeoGebra Applets  

As shown in Figure 2a, among the 43 applets, 28 were found to model “a fraction divided by 

a fraction” (
𝑎

𝑏
÷

𝑐

𝑑
), 10 modeled “a whole number divided by a fraction” (𝑛 ÷

𝑎

𝑏
), and the 

remaining 5 applets modeled “a fraction divided by a whole number” (
𝑎

𝑏
÷ 𝑛). As shown in 

Figure 2b, among the 43 GeoGebra applets designed to model fraction division, 67% (31) of 

applets adopt the conceptualization of fraction division as measurement. The remaining 

conceptualizations are distributed fairly evenly, with 9% (4) applets framing fraction division as 

a determination of unit rate, 11% (5) as partitioning, and 13% (6) as the inverse operation of 

multiplication. There are a small number of applets (n=3) that integrate two conceptualizations. 

 

                              
a. Types of fraction division situations                  b. Conceptualizations of fraction division 

Figure 2: Types and Conceptualizations of Fraction Division in the GeoGebra Applets 
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a. Representations used for fraction division     b. Representations used by conceptualizations 

Figure 3: Representations Used in the GeoGebra Applets for Fraction Division 

 

Representations of Fraction Division in the GeoGebra Applets 

Regarding the representations employed, a notable number of applets use the length model 

(n=19) and the area model (n=19) to convey their respective conceptualizations of fraction 

division. Among the 19 applets using the length model, only one utilizes the number line model, 

while the remaining 18 applets use a fraction bar model. In the case of the area model, 10 applets 

use a rectangular area model, while the remaining 9 applets opt for a circular area model. 5 out of 

the 43 applets provide numerical or algebraic procedural explanation without incorporating any 

visual representations. 

A cross-analysis of the use of conceptualizations and representations reveals several 

noteworthy patterns. The use of the length model is preferred in the conceptualizations of 

fraction division as measurement and fraction division as the determination of unit rate. 

Specifically, among the 31 applets that use the measurement interpretation, the length model is 

used in 17 instances (16 use fraction bar, and 1 uses number line), followed by 12 instances of 

area models (6 rectangular, 6 circular). However, in contrast to that, all 5 applets that 

conceptualize fraction division as partition exclusively use the area model, with 3 instances of 

the rectangular area model and 2 instances of the circular area model. When fraction division is 

interpreted as an operator, although the length model is not used in any of the 6 applets, there is 

no distinct preference identified in the use of the other three representations.  

Cognitive Actions Supported by the GeoGebra Applets 

The analysis of cognitive actions supported by the GeoGebra applets for fraction division 

reveals a predominant reliance on passive demonstration rather than interactive user engagement. 

As shown in Figure 4, among the analyzed applets, 70% (30) applets showcase the action of 

partitioning, providing a visual representation of the fraction division process without allowing 

users to execute the partitioning action. Similarly, 42% (18) applets demonstrate the action of 

unitizing, while 32% (14) applets and 5% (2) applets illustrate the process of iterating and 

disembedding, respectively. Out of the 43 applets, 74% (32) applets allow users to change the 

values of the divisor and/or dividend. However, this prominence of fraction modification is 

counterbalanced by the limited incorporation of interactive features that support students’ 

enactment of cognitive actions associated with fraction operations. More specifically, only 11.6% 

(5) applets allow their users to iterate a fraction, only 2.3% (1) applet allows its users to partition 

a fraction, and only 2.3% (1) applet allows its users to enact the action of disembedding. None of 

the applets allow the users to enact the action of unitizing. 
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Figure 4: Cognitive Actions Supported by the GeoGebra Applets for Fraction Division 

 

Discussion and Conclusion 

Although dynamic mathematical software programs such as GeoGebra make it easy for their 

users to create and share digital applets with interactive and dynamic features, the quality of 

these applets is less clear. This study aimed to examine the quality of the GeoGebra applets for 

fraction division by attending to the conceptualizations, representations, and cognitive actions 

prevalent in these digital resources. The results offer valuable insights into the features of the 

GeoGebra applets for fraction division, which could inform the choices and design of GeoGebra 

applets for fraction division. This type of content-specific analysis of GeoGebra applets is 

important because it moves beyond the dynamic and interactive features of digital applets and 

focuses on what they actually can or cannot afford and how they can be improved in terms of 

supporting the teaching and learning of fraction division.  

One noteworthy observation is the underutilization of the number line in the GeoGebra 

applets for fraction division, despite its advocated superiority in various studies (Sidney, 

Thompson, & Rivera, 2019; Hamdan & Gunderson, 2017). While the number line is argued to 

align well with the measurement conceptualization of fraction division, its scarcity in the 

analyzed applets suggests a gap in its integration. This might be due to the contradictory facts 

that the number line is more abstract and cognitively demanding as compared to other visual 

representations, yet fraction division is usually taught to young students in Grade 5. This also 

indicates that educators and applet designers may still need to fully explore how the number line 

can be used to support different conceptualizations of fraction division. Future design of 

GeoGebra applets for fraction division may consider utilizing the number line to model different 

conceptualizations of fraction division.  

Furthermore, the findings illustrate the popularity of the use of length model (i.e., fraction 

bar) to represent the measurement interpretation of fraction division and the use of area model 

(both circular and rectangular representations) to represent partition interpretation of fraction 

division. This may be partially attributed to the common representations that are typically 

associated with different conceptions of fraction. While area models such as circles and 

rectangles are often used to highlight the action of equal partitioning, length models such as 

fraction bar and the number line are often used to underline the action of iterating. Since the 

partition interpretation does not necessitate the cognitive action of “iterating”, there is no specific 

need to use a length model, as an area model is more than enough to enable the cognitive actions 

of “partitioning” and “unitizing”.  
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It is evident from the findings that the conceptualization of fraction division as measurement 

is more prominent than the other conceptualizations. This might be partially attributed to the 

promotion of measurement conception of fraction by the mathematics education research 

community and curriculum standards. There is no doubt that the conceptualization of fraction 

division as measurement can support students in developing a conceptual understanding of 

fraction division and the common denominator algorithm for fraction division, which might 

make more sense for many students than the invert-and-multiply algorithm for fraction division 

(Van de Walle, Karp, & Bay-Williams, 2022). However, the dominance of measurement 

interpretation of fraction division in the analyzed applets also raises concerns about the 

underrepresentation of other conceptualizations of fraction division. Working with different 

conceptualizations of fraction division enables students to not only develop a rich and robust 

understanding of fraction division but also connect fraction division with other mathematical 

ideas. For instance, developing an understanding of fraction division as the determination of unit 

rate not only allows students to see how fraction division as partition can be extended to a 

fraction divided by a fraction but also provides them with an opportunity to use and deepen their 

understanding of ratio and proportional reasoning. Therefore, the design and choice of GeoGebra 

applets for fraction division should provide students with opportunities to learn multiple 

conceptualizations of fraction division to foster a rich and robust understanding of it.  

Despite GeoGebra’s functionality and affordability to support the design of high cognitive 

fidelity applets, the results from this study show that most existing open-access GeoGebra 

applets for fraction division fail to leverage this potential. That is, many provide their users the 

opportunity to visualize the process of fraction division but not the opportunity to enact the 

mental actions associated with fraction division. This might be attributed to the emphasis on 

visualization and teacher-centered use of technology, in which students are positioned to listen 

and watch digital information rather than actively act on mathematical objects on the screen. 

Future design might consider enhancing the cognitive fidelity of the GeoGebra applets for 

fraction division by enabling students to enact essential mental actions associated with fraction 

division. 
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This study reports on a part of a broader research project on enhancing preservice elementary 

mathematics teachers’ understanding of number theory concepts in AI-integrated independent 

learning sessions. Exit interviews were conducted with participants to understand their 

perceptions of using an AI-powered guide (Khanmigo) in their mathematics learning experiences. 

Findings suggest that preservice teachers found AI to be beneficial in helping them understand 

mathematical problems better, providing personalized learning opportunities, and promoting 

open sharing of questions and challenges.  They also faced challenges with AI such as confusing 

responses and AI’s limitations in getting to know individual learners. 

Keywords: Preservice Teacher Education, Artificial Intelligence, Technology  

Research on the role of AI in mathematics teacher preparation is in its nascent stage. 

Emerging research has demonstrated that the integration of AI in mathematics education can 

provide opportunities for cultivating a deeper understanding of mathematical concepts and 

situating mathematics in meaningful contexts (Aleven et al., 2023; Gattupalli et al., 2023). AI-

powered guides are recognized for their potential to boost students' mathematical learning and 

thinking skills (Hwang & Tu, 2021). Despite the potential benefits, little progress has been made 

in exploring ways to support teachers and learners in the effective and responsible use of AI tools 

(Celik et al., 2022; Hwang et al., 2020; Hwang & Tu, 2021). Moving forward, there's a critical 

need to delve into various aspects of AI's role in mathematics education, including creating 

innovative and personalized learning environments, understanding the impact of AI on learning 

experiences, and evaluating the effectiveness of AI through theoretical perspectives (Balacheff, 

2023; Hwang et al., 2020; NCTM, 2024).  

In our commitment to fostering meaningful student engagement with AI in mathematics 

classrooms, we recognize the pivotal role of teacher education. Future teachers must grasp the 

significance of AI and engage with it meaningfully and productively (Hwang et al., 2020; 

McGrath et al., 2023; NCTM 2024). Consequently, it is the responsibility of mathematics teacher 

educators to devise innovative instructional approaches into teacher education courses, to model 

the integration of AI into productive mathematics learning environments. In this paper, we 

present an initiative where an AI-powered guide, Khanmigo (https://www.khanmigo.ai), was 

integrated into five teaching modules in content courses for preservice elementary mathematics 

teachers (PEMTs). As part of a broader research project investigating the impact of teaching 

modules on PEMTs’ understanding of basic number theory concepts, this paper is focused on 

findings related to this research question: How do PEMTS describe their experiences with an AI-

powered guide during independent learning sessions (ILS) focusing on number theory concepts? 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2105 

 

 

 

Methods 

Interviews were used to gain an in-depth understanding (Brenner, 2012) of PEMT’s 

perspectives on their experiences as they interacted with Khanmigo in AI-integrated content 

course. An ILS refers to a period within class time in which the PEMTs worked collaboratively 

in small groups, utilizing Khanmigo to explore number-theory concepts and solve open-ended 

problems. Students engaged in discussions without direct instruction from the mathematics 

teacher educator who played a supportive role when needed.  

We selected Khanmigo to enhance mathematical discourse through personalized tutoring and 

interactive learning (Kshetri, 2023) during each ILS. Utilizing GPT-4, Khanmigo's chatbot 

simulates a tutor who facilitates conversations ad provides constructive feedback to the learner 

rather than providing direct answers (Ofgang, 2023). 

Research Context  

The study was conducted at a university in the midwestern United States during Fall 2022 in 

a Fundamental Mathematical Concepts for Elementary Teachers course. Participants were 26 

PEMTs who engaged in five 75-minute AI-integrated ILS. The sessions were centered around the 

following concepts: prime and composite numbers, divisibility rules, prime factorization, 

greatest common denominator (GCD), and least common multiple (LCM). The instructor (third 

author) created a set of open-ended problems for each concept and modeled how PEMTs could 

use Khanmigo (used interchangeably with AI in this paper) to engage with the problems. During 

each session, the instructor guided and provided support to the PEMTs when they faced 

difficulties while utilizing AI to solve problems and/or comprehend number theory concepts. The 

PEMTs used Khanmigo’s tutor mode to solve the problems and explore number theory concepts 

while also participating in discussions with their peers. 

Data Collection and Analysis 

Data collected for the broader study included observations and screen recordings, content-

based pre and post-tests, and end-of-semester exit interviews. In this paper, we will focus on the 

analysis of the exit interviews conducted with three volunteer PEMTs from different small 

groups. A 30 to 45 minutes individual interview was conducted with each PEMT to gain an in-

depth understanding of the PEMTs’ perspectives on the perceived benefits and challenges of the 

use of AI to solve number theory problems. Interview data were analyzed in three phases. First, 

interviews were transcribed to identify the text segments (DiCicco-Bloom & Crabtree, 2006) in 

which the PEMTs’ shared benefits and challenges during their use of Khanmigo. We engaged in 

an open-coding process to identify the patterns in the data to develop themes and categories. The 

first author coded all text segments, and the second author independently coded a third of 

randomly selected text segments. Then, these researchers discussed the disagreements in coding 

until they reached a consensus. The agreement rate was found to be 86%. 

Findings 

We classified our interpretations of PEMTs’ perspectives on Khanmigo using two themes, 

benefits and challenges. Within the classification of benefits of AI use, we identified three 

benefits and two challenges as described in the sections below.  
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An AI Tutor Supports the Problem-solving Process 

PEMTs shared that the AI tool supported their engagement with the problems by a) helping 

them to understand the problems by breaking the problem into steps (n = 2), b) allowing them to 

elicit meaning of the mathematical concepts and words used (n = 3) and c) exploring multiple 

solution approaches (n = 2). For instance, PEMT1 shared how Khanmigo helped her understand 

story problems and elicit the meaning of mathematical concepts: “I really liked about AI is that 

you can input story problems. And some problems can be hard to dissect, kind of what it’s 

asking, especially when you are unfamiliar with those terms.” 

Two PEMTs emphasized how AI supported them to elicit and explore multiple solutions for 

the problem assigned in the course. For instance, PEMT2 stated: 

…to find the least common multiple of, say, like nine and six, and …sometimes it would 

already give you two ways to do it. But then if you asked, is there another way to find this 

out? Is there a simpler way? What does this mean? Then it would explain that to you more. 

An AI Tutor Supports Individualized Learning  

Participant describe the benefits of Khanmigo in structuring self-paced learning and 

attending to individual learning needs. All PEMTs highlighted the challenges a teacher faces in 

larger size classrooms of moving beyond direct instruction to support diverse learning needs. 

They emphasized how AI could foster more differentiated instruction. PEMT3 describe the how 

she could work at her own pace. 

In a normal classroom, you usually are given those strategies right off the bat, for me, I was 

able to ask for one strategy at a time from the AI. It was a slower process. And it was really 

nice for me to be able to learn and figure out each strategy before moving on to the next. 

PEMT2 extended this idea about self-paced learning as she reflected on the increased 

opportunities to learn because the interactions focused on her level of knowledge and curiosity.  

In the AI class, It wasn't me teaching myself, but it was definitely more me centered in a 

classroom of 20-30 students. It is challenging for it to really be geared towards one student 

specifically. With the AI, I was able to breeze past what was simple, what came easy, what I 

already knew, and then spend more time on what was confusing. And what I didn't know. 

An AI Tutor Responds to Student Struggles and Questions 

All PEMTs indicated that they felt comfortable sharing their struggles and questions with the 

AI tutor. For instance, PEMT3 stated: 

We felt a little more on our own, at least I did [using AI]. But I liked that aspect of it because 

I have some social anxiety and it's hard for me to ask questions in front of a whole class 

sometimes. So being able to just ask a computer and it tells me step by step that was 

something that was great for me at least. 

PEMT1 pointed out that the individualized interactions with AI significantly improved her 

comfort in asking questions: “Whereas with the AI, it's between you and the computer. I feel like 

you get more out of it, because you can ask questions on every problem and not feel ashamed 

and not be worried.” This benefit supported PEMTs in engaging in positive and productive 

struggle with mathematics concepts 
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An AI Tutor Produces Confusing Responses 

Although the conversational nature of AI was a benefit to PEMTs in fostering productive 

struggle, the PEMTs felt that the occasional lack of clarity in the responses created a challenge in 

using AI. Two PEMTs’ stated that sometimes AI produced mathematically confusing responses.  

For instance, PEMT3 stated: 

…And so we finished and we got a different answer. And then, we saw that AI had gotten 

something very off. And so all we did was we typed in what we thought was wrong. And we 

did it. I'm not quite sure how AI ended up getting the right answer. So that was something 

interesting, but also a struggle almost. 

PEMT3 noted how their group reacted to this discrepancy between their solutions and the AI 

tutor’s solution. They questioned the AI tutor’s solution instead of accepting it as correct, but 

they also felt the need to seek out the instructor’s support in trying to resolve the discrepancy. 

The AI Tutor Doesn’t Know Students’ Learning Preferences 

Although all PEMTs shared how AI could support individualized learning experiences, 

PEMT1 and PEMT3 highlighted the challenge of interacting with an AI tutor as a non-human. 

Unlike a classroom teacher, the AI-tutor is not able to respond to individual students’ learning 

preferences and building relationships with students in a mathematics classroom. For instance, 

PEMT3 stated: 

There's definitely the human interaction portion where you can build that relationship with 

your professor, they know your learning style. So, it's a lot easier for them to explain things 

right away. And then with AI, there's still a learning process. They don't know you. So, it's 

harder for them to help out, get it, get through the process of figuring out the problem. 

Discussion and Conclusion 

The results suggest that the PEMTs perceived both benefits and challenges for their 

mathematical thinking in AI-integrated ILS. PEMTs highlighted the benefits of using an AI tutor 

to assist in the problem-solving process. They helped students grasp the meaning of 

mathematical concepts and words used in the problems while encouraging students to explore 

multiple problem-solving strategies. PEMTs noted that AI acted as a supportive and non-

judgmental resource, providing a more comfortable environment for seeking assistance 

compared to asking questions in a whole class setting.  

The results also highlight the challenges that PEMTs experienced during engagement with 

the AI tutor. The benefits that they described suggest that PEMTs valued a humanistic 

responsiveness in their AI expert tutor that could enhance their learning and their mathematical 

confidence. These perceived benefits became challenges because at times the PEMTs felt the 

need to question the reliability of the AI's answers. They struggled to accept that they might have 

a better solution and sought reassurance or explanation from their instructor. They also felt 

challenged by the lack of humanistic responsiveness in an AI tutor who could not understand 

their unique learning preferences build sustained relationships with them. The PEMTs 

compensated for these challenges by actively seeking support from their instructors and 

collaborating with peers. The PEMT’s perceived benefits should motivate continued exploration 

of the individualized content learning opportunities that AI integration can create, while the 

PEMT’s perceived challenges highlights the need for students and teachers to understand that the 
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AI tutor is neither perfect or human. As NCTM (2024) position statement on AI and mathematics 

education, the need for high-quality pedagogy to support AI integration is an important 

implication of this study and an area for further research.  

Optimizing the use of AI in developing PEMT’s mathematical knowledge requires 

collaborative efforts between educators and AI developers. Such partnerships can ensure that the 

tools and platforms align with the needs of PEMTs and provide meaningful support in their 

learning. In our further work, we plan to design AI-integrated sessions that focus on other 

mathematical topics and investigate how they impact both PEMTs perception of learning and 

instructor decision-making.  
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Facilitating productive struggle is an essential aspect of teaching that is responsive to students’ 

thinking and develops deep and meaningful understandings of mathematics. Researchers, 

teacher educators, and teachers would all benefit from being able to draw on a common 

definition for the term “productive struggle” and a common understanding of the teaching 

practices needed to facilitate it. This working group will bring researchers and educators 

together to investigate what we know about facilitating productive struggle and draw on the 

expertise in the room to move our individual and collective understanding and practice forward. 

Keywords: Research Methods, Instructional Activities and Practices, Preservice Teacher 

Education, Teacher Educators 

Over the past 15 years, the term productive struggle has become commonplace in 

mathematics teaching and teacher education. Both the National Council of Teachers of 

Mathematics (NCTM, 2014) and the Association of Mathematics Teacher Educators (AMTE, 

2017) identify providing students with opportunities to engage in productive struggle as a key 

component of effective mathematics teaching and learning. However, a preliminary systematic 

review of how researchers define the term productive struggle leaves many unanswered 

questions about what productive struggle actually entails (Kamlue & Van Zoest, 2024). This new 

working group seeks to develop a shared, consensus definition of productive struggle and a 

related conceptual framework that can be utilized to support research and opportunities for 

students to experience productive struggle in learning mathematics in the classroom. 

Theoretical Background 

Several seminal writings influence how we perceive and use the term productive struggle in 

our different contexts. Here, we highlight three seminal works. First, Hiebert and Grouws (2007) 

define struggle as follows, “students expend effort in order to make sense of mathematics, to 

figure something out that is not immediately apparent” (p. 387). Several researchers (e.g., 

DiNapoli & Miller, 2022; Warshauer, 2015) use Hiebert and Grouws’ (2007) definition of 

struggle as their definition of productive struggle in their studies. Second, NCTM (2014) frames 

struggle as involving, “opportunities for delving more deeply into understanding the 

mathematical structure of problems and relationships among mathematical ideas, instead of 

simply seeking correct solutions” (p. 48). This framing continues to inform educators’, teacher 

educators’, and researchers’ understandings of productive struggle (e.g., Edwards, 2018; 

Warshauer et al., 2021). Third, practitioners and researchers often invoke the first Standard for 
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Mathematical Practice: Make sense of problems and persevere in solving them (National 

Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) 

when speaking of struggle. 

As we seek to illustrate here, there is great variety regarding how the field has described and 

conceived of productive struggle (e.g., expend effort, delve deeply, perseverance). This lack of 

consensus and common language presents a challenge to those who research productive struggle, 

those who teach how to facilitate productive struggle, and those seeking to create opportunities 

for their students to experience productive struggle. 

Structure of the Sessions 

The purpose of this working group is to bring together researchers and teacher educators to 

examine existing and new conceptualizations of productive struggle. This work is crucial for the 

mathematics education community, as the current lack of consensus regarding the use of the term 

productive struggle presents a host of issues, including the inability to: (a) compare findings 

across studies and build on each other’s work precisely, (b) determine when productive struggle 

occurs, and (c) effectively model how teachers can support productive struggle. Each session will 

be focused on a different aspect of productive struggle research and classroom practice.  

Session 1: Developing a Consensus Understanding of Productive Struggle  

Our goal for this session is to co-develop a shared definition of productive struggle and a 

theoretical underpinning of the term. We will first present how productive struggle has been 

defined by researchers, teacher educators, in-service teachers, and preservice teachers, and what 

theoretical frameworks they attended to in their contexts (Hiebert & Grouws, 2007; Jarry-Shore 

& Anantharajan, 2024; Warshauer, 2015). We will surface unanswered questions from working 

group participants and ask them to situate and relate their use and understandings of the term to 

existing literature in order to move our understanding of the term forward. 

Session 2: Analyzing Classroom Videos 

For this session, working group participants will be asked to apply the conceptualization of 

productive struggle developed in Session 1 to attend to and interpret instances of struggle in 

classroom video (Jacobs et al., 2010). Specifically, participants will view a collection of three 5-

minute video-clips that display struggle of different forms. Video-clips will portray students 

solving problems individually and in collaborative groups so that we can assess the usability and 

applicability of our collective conceptualization of productive struggle to varied problem-solving 

contexts. The work during this session will be iterative, with participants revisiting and refining 

ideas between each video viewing, with the goal of drafting a more comprehensive and refined 

conceptualization of productive struggle. 

Session 3: Facilitating Productive Struggle 

In the third session we will shift to thinking about how to operationalize the co-constructed 

conceptual framework developed in sessions 1 and 2 for research, PK-16 classroom practice, and 

teacher education/professional development. We will attend to two questions. First, how can we 

use the framework(s) we have developed in our practice to (a) more effectively engage students 

in productive struggle and (b) teach educators to facilitate productive struggle? Second, how can 

we use the framework(s) we have developed in our research to more effectively study productive 

struggle and its facilitation. For both questions, we will focus on assessing the usability of the 

framework and the benefits and challenges of having such a framework. 
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In this new initiative working group, our goals are to explore and share our experiences of 

teaching and learning mathematics using children’s mathematics and build a community for 

future collaborations. Over three days, drawing from the mathematical exploration lens, we will 

engage the participants in open notice and wonder reads, focused math lens reads, and idea 

investigations with different children’s literature, discuss the challenges and benefits of 

mathematizing children’s literature with elementary students and elementary prospective 

teachers, and initiate the conversation for follow-up activities at future PME-NA conferences.   

Keywords: Elementary Childhood Education, Instructional Activities and Practices 

Using children’s literature to teach and learn mathematics provides a context for problem-

solving, creates mathematical investigation and reasoning opportunities, and supports deeper 

conceptual understanding (e.g., Young et al., 2018). The research has supported the benefits of 

using children’s literature to teach mathematics to significantly increase mathematical learning, 

interest, and engagement in mathematical discourse. Within this body of research, the focus has 

been primarily on early childhood education (e.g., Elia et al., 2010; Monroe & Young, 2018; 

Hassinger-Das et al., 2015; Hong, 1996; Jennings et., 1992; van den Heuvel-Panhuizen et al., 

2016; van den Heuvel-Panhuizen & van den Boogard, 2008). While envisioning the future of 

elementary mathematics education as mathematics teacher educators and researchers, it is 

essential to facilitate the teaching and learning of mathematics by moving beyond the boundaries 

of mathematics education. At the boundaries of mathematics and literacy education, our goals of 

this new initiative working group are to (a) share our experiences of using children’s literature in 

mathematics teaching and learning with elementary students and elementary preservice teachers, 

(b) engage in mathematical explorations using children’s literature, and (c) build a community of 

scholars and educators for future research collaboration to develop research-based resources for 

preservice and in-service teachers.  

Theoretical Background 

One of the key recommendations for mathematics instruction described in Catalyzing 

Change is that “Each and every child should develop deep mathematical understanding as 

confident and capable learners; understand and critique the world through mathematics; and 

experience the wonder, joy, and beauty of mathematics” (Huinker et al., 2020, p. 11). Using 

children’s literature in mathematics provides opportunities to follow this recommendation. Hintz 

and Smith (2022) provide a framework for thinking about three types of explorations with 

children’s literature (whether the literature has an explicit or implicit mathematical focus). The 

open notice and wonder reads are an initial exploration that focus on promoting wonder, joy, and 

beauty in mathematics. First, in an open notice and wonder read, teachers invite students to 

notice and wonder about what they are hearing and seeing in a story. This process helps students 
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develop a common background of the story’s content and begin to think about how the story 

could be enhanced by viewing it through a mathematical lens. Second, the focused math lens 

reads involve revisiting the notice and wonders, considering which of the students’ ideas might 

be helpful to pursue mathematically, and then inviting students to think about the story from a 

mathematical lens (Hintz & Smith, 2022). Third, the idea investigations involve extending 

mathematical explorations beyond the book, helping them understand their broader world 

through similar mathematics. These mathematical explorations with children’s literature provide 

opportunities for students to engage in mathematical problem-posing and open-ended problem-

solving (Cai et al., 2015; Warden, 2022).  

Several factors play a role in how mathematical explorations with children’s literature unfold. 

One factor is the type of book used: mathematical-focused, general fiction, or nonfiction. A 

second factor is the people involved: teacher, preservice teacher, and students. A third factor is 

the mode of sharing the book: electronic (or multimedia) or physical. A better understanding of 

how mathematical explorations emerge from situations with different combinations of these 

factors is important for understanding mathematics instruction using children’s literature. 

Focus and Organization of the Working Group  

This working group focuses on understanding the benefits and practices of using children’s 

literature in mathematics teaching and learning. We organize the working group by sharing our 

experiences of using children’s literature in mathematics teaching and learning; learning about 

different approaches, challenges, and benefits of mathematizing children’s literature; and 

forming a community to build upon our learnings throughout the conference.  

Plans for Participants’ Active Engagement  

Day 1. We first will share our plans for the three days, introduce the theoretical background 

around mathematical explorations with children’s literature (Hintz & Smith, 2022), and provide 

research evidence supporting the benefits of using children’s literature in mathematics teaching 

and learning. Second, we will ask the participants to share their interests in this working group 

and their experiences using children’s literature in teaching and learning mathematics. Third, by 

drawing from the theoretical background, we will engage the participants in an open notice and 

wonder read of two books, one with an explicit mathematical focus (e.g., Lion’s Share by 

McElligott, 2009) and one with an implicit mathematical focus (e.g., Two of Everything by 

Hong, 1993). Fourth, the participants will brainstorm ways of using and doing research around 

this mathematical exploration.  

Day 2. We will start the second day by reviewing the first day. Then, in small groups, we will 

invite the participants to mathematically explore and categorize books (e.g., concept, explicit or 

implicit mathematical focus, grade level). Groups will select one book and problem-pose around 

one page to develop a problem-solving situation (Cai et al., 2015; Warden, 2022) and connect 

these to the types of mathematical explorations from our theoretical background (Hintz & Smith, 

2022). Finally, we will share future opportunities for research and teaching in using children’s 

literature to teach and learn mathematics within teacher education programs.  

Day 3. Reflecting and building on the last two days, we will brainstorm about the future 

directions of this working group for follow-up activities at future PME-NA conferences. We will 

aim to focus on the use of children’s literature in mathematics content and method courses for 

prospective elementary teachers. We will invite participants to share their insights and expertise 

around challenges prospective elementary teachers and teacher educators might encounter. We 
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will wrap up the last day by taking a survey of participants to document their learning throughout 

this working group and their interests in future collaboration.  
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During and since the 2023 PME-NA Annual Conference the working group has carried out many 

ongoing activities with the goals of creating community and producing scholarship in relation to 

our group's interests in statistics and data science education. During the conference, issues of 

environmental justice/sustainability and social justice were two major common interests of 

participants. Though both themes are clearly linked, discussions of social justice do not always 

include conversations about environmental justice. We then broke into two groups based on these 

interests to discuss current work we might have related to the topic or ideas for future work. 

These groups have continued to meet and have discussions throughout the year and will continue 

into the 2024 conference. We additionally had a group of interested participants publish an 

article in Mathematics Teacher: Learning and Teaching PK-12 based on a gap in the literature 

identified by the group. 

Keywords: Data Analysis and Statistics, Sustainability, Social Justice 

The 2023 conference marks the fifth PME-NA conference that our working group has met. 

Each year has been more productive than the last, with growing momentum and membership 

over the years. The working group began at the 2019 conference where we explored a recently 

published framework for meaningful statistical learning environments (Ben-Zvi et al., 2018), 

trying to start conversations about different aspects of design. Then, in the 2020 conference, we 

focused on considering statistics education across boundaries with collaboration between 

scholars in the US and Mexico with the sessions held in Spanish and English. In 2021, we began 

to consider how data science education might play a role in statistics education and the 

mathematics curriculum. In 2022, we took seriously the growing interest and movement toward 

incorporating data science education into K-12 schools (Education Development Center, 2015; 

Lee et al., 2022) and focused on data investigations as a vehicle for addressing the broad data 

literacy needs of people today rather than considering statistics and data science education as 
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fields. The working group has grown in size year after year and has increasingly taken on an 

explicit focus on using data investigations to explore issues of justice. 

 

Overview of the Working Group Activities 

Coming into the 2023 PME-NA conference, we had two main goals for the working groups  

1) sustaining the ongoing cross-institutional collaboration to develop frameworks and resources 

for supporting mathematics educators in facilitating data investigations and 2) advancing our 

discussions on designing data investigations with an eye towards taking action to promote 

socially and environmentally just outcomes. We recognize context is at the core of data 

investigations, which are driven by a problem. We view data investigation as a vehicle to make 

sense of and act upon issues of social and environmental justice around the world. Based on the 

role of context in teaching and learning with data, we organized this working group into three 

themes: the context of mathematics teacher preparation, the context of cross-disciplinary work, 

and the context of research and collaboration. Across the three days of the working group 

sessions, we moved from making connections between interested participants to making explicit 

plans for action after the conference. In the sections that follow, we discuss in further detail the 

activities during each day of the conference followed by a discussion of our activities since the 

conference. 

Day 1: Overview of Statistics and Data Science Education 

Following a round of introductions, the initial day started with a reexamination of pivotal 

questions central to our working group discussions. Six questions were placed onto large Post-it 

papers and a digital Jamboard, facilitating remote participants to collaboratively brainstorm and 

share their insights in smaller groups. Subsequently, a whole group discussion ensued to 

collectively analyze the generated ideas. This conversation aimed to discern overarching themes 

of interest, resulting in the identification of three prominent themes: (1) the use of social and 

environmental justice as key contexts for data investigations, (2) the exploration of 

interdisciplinary collaborations within K-12 teacher education, and (3) the integration of 

statistics education and data science within the realm of mathematics education. 
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Figure 1: Sample Responses by Participants 

 

In our conversations, we noted the increasing significance of K-12 statistics and data science 

education and a notable shift towards the recent development of computing and artificial 

intelligence (AI), leading to an anticipated larger role in K-12 education. AI integration in 

education, exemplified by tools like ChatGPT, prompts a need for thoughtful adaptation in 

teaching and evaluating processes. Anticipated challenges include the need to strike a balance 

between data literacy and traditional learning pathways within the K-12 mathematics curriculum, 

considerations of data ethics, and addressing algorithmic biases. Additionally, we acknowledged 

the varied interpretations of the term “data science,” which at times was perceived more as a 

"buzzword" associated solely with working on large datasets (Donoho, 2017). It is crucial to 

recognize that applying computing and programming to data investigation is a significant aspect 

of data science. 

All participants expressed a heightened interest in investigating social and environmental 

justice as a promising approach to teaching and learning with data investigations. Data 

investigations, which can play a pivotal role in illuminating social inequities and issues of 

justice, can be a means to critically examine the ethical considerations inherent in the use of data 

science and AI through a justice-oriented lens. The intersection between data investigations and 

justice-oriented inquiries can amplify the significance of each other and contribute to deepening 

participation in civic engagement that attends to societal and environmental challenges. These 

types of inquiry gain particular relevance in the context of data-driven decision-making, where 

considerations of justice play a key role. 

Day 2: Lessons from Prior Collaborations and Designing New Collaborations 

The second working group session began with a report from Smucker on a publication that 

was initiated during the previous working group in 2022. During that working group, a group of 
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participants wanted to pursue connecting the 5 Practices Framework (Smith & Stein, 2018) to 

statistical investigations. This sub-group met throughout the first half of 2023, which led to a 

manuscript submitted to Mathematics Teacher: Learning and Teaching PK-12. During the 

conference, the manuscript was returned with minor revision requests. The manuscript has now 

been published as a Front and Center article in the journal (Smucker et al., 2024). The group 

discussed the benefits of this collaboration and the potential for future publications coming out of 

this working group. Weiland then reported on possible pathways of pursuing a special issue on 

statistics or data science education in multiple journals in the field. Working group members 

could participate in different ways, such as guest editors and manuscript authors. Multiple 

participants indicated an interest in this, with some participants willing to take on editorial 

responsibilities. This work could begin in 2024-2025. 

The rest of the session was spent considering the themes that had come up during the gallery 

walk on Day 1 to determine which area(s) the group might want to focus on further. The working 

group organizers had grouped the ideas from Day 1 into the following categories: cross-

discipline data investigations, social justice and data science/statistics education (specifically 

issues of ethics and power), environmental justice in data science/statistics education, and 

supporting practicing and prospective K-12 teachers to prepare students to make sense of data in 

today’s world. Based on the interests of those in attendance, the larger group was divided into 

two subgroups to continue discussing the next steps, with one group focused on social justice and 

the other on environmental justice in statistics and data science education. It was determined that 

these two subgroups would continue their conversations on Day 3. 

Day 3: Planning for Year-Long Collaborations 

First, the social justice subgroup planned for a year-long collaboration, building on the 

diversity of experiences working with social justice topics within the subgroup. The initial part 

of the discussion was too broad, leaving the group undecided on whether the focus should be on 

working with students or teachers and at which grade levels. The group also noted that the 

relevance and appropriateness of certain social issues varied across different grade levels, 

although some topics remained pertinent across all ages. Issues such as immigration, gender 

differences, diversity, and climate change were among those that captured our attention. 

Subsequently, the discussion shifted towards the characteristics of datasets. Questions such as 

the following emerged: What variables could facilitate discussions on such social issues (e.g., 

school discipline)? What types of data could be collected? While existing databases could be 

valuable, we pondered if there were ways for students to gather relevant data related to social 

justice. Fernandes, who was working on a research project related to social justice, also 

described his work with a database of car stops and school discipline (“Statistical Investigations 

of Systemic Racism”, 2023). More questions than answers arose during the discussion, 

indicating the need to extend our work beyond the conference. Consequently, we decided to 

continue our conversations throughout the year. 

Second, the discussion of the environmental justice group began by sharing their past and 

ongoing projects or research studies related to environmental data and classroom connections. 

Subsequently, the group engaged in a discussion about integrating environmental justice and 

science into various content areas, emphasizing the incorporation of mathematics, science, and 

social studies. The primary challenge identified was providing students with opportunities to 

delve into authentic research in environmental justice and science. In addressing topics like 
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climate change, for example, there are challenges with going beyond having students merely feel 

hopeless; it requires balancing negative with positive affective developments without 

overwhelming students with large-scale climate data.  

Our discussion then shifted to questions regarding the means to enhance K-12 students' data 

literacy skills. How can working with environmental data be integrated in elementary and pre-

service elementary education across disciplines? This integration could manifest through citizen 

science projects that are locally relevant to students’ communities. What are useful tools for data 

exploration, analysis, and visualization? An example we discussed was the free Common Online 

Data Analysis Platform (CODAP; Concord Consortium, 2023) and its incorporation of NOAA 

data. Members of this group planned to continue these discussions beyond the scope of the 

conference and are committed to identifying goals for future collaboration regarding the 

integration of authentic environmental data into schools. 

 

Post-Conference Working Group Activities 

Social Investigation Group 

The group focused on connections between data science education and social justice and has 

met several times since the conference to refine our focus and consider potential projects for 

collaboration. At our first meeting in November, we discussed some of the ideas that came up 

during our sessions at the conference, including how we might connect to existing projects in K-

12 data science education and teacher preparation like Data Science 4 Everyone (“Data Science 4 

Everyone”, 2023), Introduction to Data Science materials from UCLA (“Introduction to Data 

Science”, 2022), ProCivicStat materials, (“ProCivicStat”, n.d.) and the ESTEEM project 

(ESTEEM, 2024), along with Fernandes and Weiland’s work on creating data science modules 

around the contexts of traffic stops and school discipline using real data which was previously 

mentioned. In particular, projects that might support teachers in states with standards and 

pathways specific to data science (e.g. Georgia, Oregon, North Carolina, Virginia) seemed like 

one place where there might be space for a contribution from this group. There was also a 

discussion on how the group might serve different purposes for various individuals, with some 

looking for collaboration partners while others may be interested in learning more about what 

others are currently doing in their research and teaching. 

At the January meeting, there was a shift towards thinking about how to encourage 

mathematics and social studies teachers to collaborate at the intersection of data science and 

social justice topics. Those who have been working to implement data investigations with 

prospective and practicing teachers involving issues of social justice noted the challenge in 

finding mathematics teachers and teacher educators who feel comfortable both facilitating a data 

investigation and having a productive discussion in these contexts. A cross-curricular 

collaboration with social studies educators might help resolve this issue. Mathematics teachers 

can provide expertise in facilitating data investigations, and social studies teachers can serve as 

experts in the contexts and navigating conversations around sensitive topics. The group built a 

consensus that this would be a productive idea to pursue further, but they also agreed that 

additional meetings were needed to determine what exactly this project might look like. Ideas for 

future discussion included applying for a grant to create professional development that could 

bring mathematics and social studies teachers together, along with using and adapting existing 

resources mentioned above. The importance of connecting data science and statistics to more 
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than mathematics classrooms was highlighted in a recent Passport to Potential: Exploring Data 

Literacy Worldwide webcast that included the President of the National Council of Social Studies 

Education along with members of the Global Partnership for Sustainable Development Data 

(Data Science 4 Everyone, 2023). We plan to continue meeting on a monthly basis to refine this 

focus further. 

Environmental Investigation Group 

The group met once soon after the conference to further develop the collaboration on 

examining teaching and learning with environmental data. The first meeting was organized as a 

“data session,” in which members brought data (either research data gathered from their own 

research projects or datasets that are relevant to environmental justice) to formulate collaborative 

research ideas to contribute to the common environmental justice goal. Three members 

showcased data from their individual projects or professional development programs (e.g., 

MODULE(S2), n.d.). One member showed data collected from an interview study, in which 

participants were asked to estimate climate-related numerical values. Another member shared 

student work, which led to a discussion on how the task could be modified for the next iteration. 

Additionally, we highlighted potential data sources, such as the USDA website featuring a Food 

Access Research Atlas (USDA, 2024) and the CDC website featuring a National Environmental 

Public Health Tracking resource (CDC, 2024) for future consideration. The aim was to build on 

existing research projects and collectively explore collaborative studies that the group could 

undertake. The group is determining the next steps for the collaboration. 
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In going into our sixth year as a working group, our aims are to build off of previous work of the 

group and look to new productive avenues of scholarship. In particular, based on ongoing 

conversations of people who met during the 2023 PMENA conference, we seek to find ways of 

forming interdisciplinary collaborations to support the teaching and learning of statistics and 

data science through data investigations in meaningful contexts drawing from the contextual 

knowledge of experts from other fields such as social studies education and science education. 

We hope to begin work on a grant proposal to pursue funding for ideas developed and refined 

during the conference to support the ongoing work of the working group. We also invite new 

members who are interested in exploring issues around teaching and learning with data 

investigations. 

Keywords: statistics education, data science education, data investigation 

As our working group continued the effort to identify ways to bring existing 

recommendations for teaching statistics and data science, such as GAISE II, and NCTM 

Principles and Standards (Bargagliotti et al., 2020; NCTM, 2000) to the variety of K-12 

education settings, we built a consensus that one of the key considerations is facilitating and 

supporting interdisciplinary teaching and learning. Mathematics teachers are often bound to 

teach mathematical aspects of statistical thinking, which often overlook students’ meaningful 

engagement with the context while teaching and learning statistics and data science. This issue is 

exacerbated by a confluence of complex factors including standardized testing, limited teacher 

learning opportunities, and resources. Whereas, science, social studies, and career and technical 

education bring abundant opportunities to explore authentic issues with real data that are situated 

in disciplinary contexts and closely aligned with students’ civic lives and professional 

trajectories. Therefore, we suggest that statistics and data science education researchers need to 

look beyond K-12 mathematics classrooms and investigate feasible and sustainable approaches 

to position statistics and data science education as a critical interdisciplinary link between 

mathematics and other multiple subject areas. Initiating these interdisciplinary efforts and 

designing mechanisms for collaborations are the primary goals of this year’s working group. 
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Theoretical Background 

We draw from two key discussions in the field to inform this year’s working group: the 

interdisciplinarity of statistics and data science and the known challenges with supporting 

teachers in teaching them. First, as Cobb and Moore (1997) described, statistics is a 

methodological discipline in service of other fields, such as medicine, science, and sociology. 

Data science, by building on its foundation of computing, mathematics, and statistics, offers 

powerful modeling tools in a variety of disciplinary contexts. Though there are multiple views on 

what data science specifically entails, its fluid boundaries allow us to look beyond what has been 

considered as computing, statistics, and mathematics when we think of teaching and learning 

with data investigation (e.g., digital humanities). The utility of data science is well reflected in 

numerous data science programs and initiatives in higher education institutions, drawing students 

from across colleges and majors who want to investigate their topics of interest with data. 

Second, the literature also presents known challenges associated with supporting teachers in 

fully leveraging these emerging understandings of data investigation in the classroom. These 

challenges include supporting teachers in facilitating data investigation (Bargagliotti et al., 

2020), their development of statistical knowledge for teaching (Groth, 2013; Lovett & Lee, 

2017) and the knowledge needed to adapt the use of technology to teach with data (Lee & 

Hollebrands, 2008). Some scholars reported promising approaches to professional development 

for teachers to address these challenges (e.g., Suazo et al., 2015), but the professional 

development that did not work as intended often remains unreported, which obscures existing 

challenges in preparing and supporting teachers to teach with data investigation. 

Informed by these discussions in the field, our working group plans to explore key challenges 

that are faced when teacher educators work to bring data investigations into mathematics 

classrooms and other subject areas, such as science and social studies. We aim to develop 

collaborative projects and funding proposals that can address some of the identified challenges 

based on the diverse expertise and experiences represented in the group. 

 

Organization of Working Group Activities 

The working group activities are organized in a way that the participants can briefly recap the 

ongoing progress in collaboration. This would allow the newly participating members to see the 

history of the group and also welcome them to existing collaborative efforts. Also through our 

collaboration, we learned that securing grant funding would substantially propel the ongoing 

collaborations. Based on the rich experience of grant writing by multiple members in our 

working group, we will progress by identifying key challenges, organizing resources and 

expertise, and developing a plan for proposal development. 
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Figure 1: Session Plans and Goals 
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At PME-NA 2023 in Reno, NV, the Conceptualizing the Role of Technology in Equitable 

Mathematics Classrooms (now referred to as TechQuity) working group met for the first time. 

While in Reno, we invited scholars of all backgrounds to contribute their voices to our new 

working group with the goal being to engage in conversation and plan research agendas 

centered on exploring how technology can promote equitable classrooms. The group has been 

able to sustain a dedicated group of members that have been meeting regularly online since the 

end of PME-NA 2023. In this report, we summarize the history of the TechQuity group, some 

insights gained through our work, and share some plans for the future of the working group. 

Keywords: Technology; Equity, Inclusion, and Diversity 

Our PME-NA working group focuses on the importance of using technology in equitable 

ways to advance our field of teaching and learning mathematics and preparing mathematics 

teachers. Two recent position statements from the National Council of Teachers of Mathematics 

(NCTM, 2023) and the Association of Mathematics Teacher Educators (AMTE, 2022) emphasize 

the importance of equitable integration of technology for mathematics learning. An urgent 

challenge in our time is the need to advance equity in mathematics education, particularly for 

those who have been historically marginalized. Technology is ubiquitous in our society and 

innovative technologies are showing promise in the teaching and learning of mathematics.  

Building on research in mathematics education focused on equity and technology, our 

TechQuity working group draws on several theoretical frameworks including Gutiérrez’s (2009) 

dominant and critical axis of equity. We are working on evaluating the role technology has on the 

dominant axis in promoting and increasing the mathematics achievement and participation of 

each and every student as well as the role technology has on the critical axis in promoting 

identity and power. In addition, as we work to bridge these two areas of interest (i.e., technology 

and equity), we build on transformative ways technology: offers student-centered learning 

experiences for exploration, discovery, collaboration and facilitating discourse (McCulloch & 

Lovett, 2024); advances equitable teaching practices (Suh et al., 2022); provides access to 

rigorous mathematics that connect to society (Byun et al., 2023); and allows for ease of 

differentiation and useful formative assessment to support teaching and learning (Barlow et al., 

2020). 
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History of the Working Group 

This group began through conversations at the PME-NA 2022 conference after a presentation 

on leveraging mathematical action technology to develop a sociopolitical disposition. During this 

conversation, some of the founding members of the group discussed the idea of engaging in more 

equity-centered work in conjunction with technology use in mathematics education. Given PME-

NA’s history of successful working groups, we felt starting a new working group was the best 

avenue to help us connect with others who have similar interests and move this work forward. 

Thus, at the beginning of 2023, we met to determine the goals, possible outcomes, and structure 

of the meeting times for the working group. Initially, our goals were (a) “[To] lay the 

groundwork for a research program dedicated to better understanding how technology can be 

used as a tool to support equity in mathematics education”; and (b) “bolster existing technology-

centered frameworks with considerations of equity from various dimensions” (Witt et al., 2023). 

With these goals in mind, we planned to engage the participants in our sessions as shown in 

Table 1. 

 

Table 1: PME-NA 2023 Plan for Engagement 

 

 Activities Next Steps 

Session 

One 

1. Introduction and goals 

2. Our work around technology and equity 

3. Questions and small group discussions 

about technology and equity frameworks 

Come to session two prepared to 

share how/what other frameworks 

may inform your work 

Session 

Two 

1. Small group discussions about which 

frameworks we should consider 

2. Group debrief to share current stances 

on how technology can support equity 

Think about what subgroups 

would be useful to examine 

various perspectives on equity 

Session 

Three 

1. Form subgroups and plan 

2. Subgroup share-out 

3. Reflections and future work plan 

Implement subgroup plan and 

prepare to share subgroup work 

next year 

 

Overall, we felt these three sessions were a success in reaching a broad range of mathematics 

education researchers. We were pleased with the turnout to the group during our first session in 

Reno, NV (approximately 20-25 people), and we were encouraged to see many returning faces 

on days two and three. Below we share more about what transpired during the PME-NA 2023 

conference, the progress we have made since the close of the conference, and what we plan to do 

next. 

2023 Conference Activities 

Before the Conference 

Prior to the PME-NA 2023 conference, we asked the conference organizers to share an 

interest form with potential conference attendees so that we could gather information about who 

might attend. In this interest form, we asked them what goals they have in relation to the group, 

which sessions they plan to attend, and to share frameworks or constructs related to technology 

and equity in mathematics education that they were familiar with, including a place for them to 
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share relevant files (i.e., screenshots of diagrams or frameworks, articles, etc.). While only two 

people completed the interest form before attending the conference, we used the information they 

shared as we designed the facilitation plan for each session. 

Day One 

We began our time together at PME-NA 2023 with the founding members briefly sharing 

about our work and how we came together to form the working group. We also asked 

participants to introduce themselves and share why they were interested in this working group. 

From there, we transitioned into six groups to do a card sort activity examining 17 technology-

centered and nine equity-centered frameworks that are used in mathematics education research. 

The frameworks were all mixed together and participants were not informed from which 

category each framework originated. We asked the participants to read each framework card and 

consider how the framework might support mathematics teacher educators (MTEs) and/or 

prospective mathematics teachers (PMTs). In groups, participants were asked to organize the 

frameworks into categories of their choice and provide a title for each grouping explaining their 

sorting criteria. During this time, participants worked together to find connections between and 

common themes across frameworks to identify and describe their groupings. Figure 1 shows two 

groups in action. At the end of the card sort activity, we asked each group to share their process 

for sorting the frameworks, their final categories, what they noticed, and how they felt this could 

help us articulate where we are within mathematics education in relation to these ideas. 

 

 
 

Figure 1: Participants working in groups on framework card sort 

 

Most groups seemed to initially separate the frameworks into two broad categories of equity 

and technology. This result was not surprising given our working group’s focus on finding ways 

these areas of work may intersect. In other words, it seemed from the card sort activity that the 

participants, much like us, struggled to make connections across the two sets of frameworks. 
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And, within the technology category, some groups created subcategories similar to the categories 

McCulloch et al. (2021) identified when examining technology frameworks MTEs use in 

preparing secondary PMTs. For example, some groups included a subcategory related to the 

McCulloch et al.’s (2021) design and evaluation of technology tools and tasks with groupings 

titled “evaluation,” “design tasks & technology,” and “task design and evaluation”.  

While the results of the sorting activity described above were what one might expect, other 

categories emerged as conversations continued within groups about how we might bridge 

technology-centered and equity-centered frameworks. These discussions included considering if 

the intersection of these two ideas should be about the teacher’s use of technology in equitable 

ways, the teacher and student interactions with technology, or how the students are perceiving 

the use of technology. One group furthered the discussion by considering if we needed to 

distinguish between macro and micro theories of equitable technology use. Still, some other 

groups had collections of frameworks labeled “don’t know yet” or “IDK”, indicating there are 

more conversations needed to work out a description of this category or determine where these 

frameworks fit within other existing groupings. Most notably, however, we found that there 

seemed to be a collection of categories across the groups that might all fall under the same theme 

of “pedagogy”. For example, four groups had categories named “teacher and teaching focus”, 

“pedagogy”, and “teaching practices” (Figure 2 shows three of these groupings). It was 

interesting to see that although the ways that the groups sorted the cards were not identical, there 

were some common ways in which the participants were thinking about these frameworks as 

they engaged in conversation. We were encouraged when we noticed that within some of these 

groupings, both technology-centered and equity-centered frameworks appeared, as this captured 

the essence of an important goal and theme of the group: finding intersections between teaching 

mathematics with an equity focus and teaching mathematics with technology. 

 

   
 

Figure 2: Pedagogy-related categories 

 

We ended our first session asking participants to complete the interest survey that we had 

distributed prior to the conference so we could better gauge what aspects of technology use and 

equity participants were familiar with and collect their contact information. We also asked them 

to complete some homework by reading through position statements related to technology and 

equity from two national organizations in mathematics education, NCTM (2023) and AMTE 
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(2023). We asked that they come to the second session prepared to share what resonated with 

them from these statements. Finally, we asked all participants to share their reflections from the 

first session via a Padlet. The Padlet contained the following prompts: “What are you hoping will 

come out of this working group?” and “Do you have any particularly illustrative examples of 

how you or how you’ve seen technology used to support equity?”.  

Day one team debrief. Shortly after the first session, the founding members of the working 

group met to debrief and adjust our plans for the next working session. Here, we briefly 

discussed how the day one session went and what the participants shared in the interest survey 

and Padlet. We used this information to guide the small group discussions for day two.  

At this debrief, we reviewed the 16 new responses to the interest survey. Across both the 

technology-centered frameworks and equity-centered frameworks questions, there was a lot of 

variety in what the participants shared. For example, three participants indicated that they did not 

know any frameworks or constructs related to teaching and learning mathematics with 

technology, while at least one participant from the survey indicated that they were familiar with 

the following technology-related frameworks and constructs: constructionism, microworlds, 

situated abstractions, instrumental genesis, instrumental orchestration, semiotic mediation, theory 

of semiotic register, TPACK, SAMR model, embodied cognition, and new materialism. From 

this list, two important things stood out to us: 1) some of the frameworks and constructs are 

technology-specific (e.g., TPACK, SAMR model), while others are not technology-specific (e.g., 

constructionism, semiotic mediation), and 2) some of the frameworks and constructs they shared 

are more general, while others are more specific in that they target particular aspects of 

technology use in mathematics teaching and learning. We found these ideas particularly 

interesting as they indicated there is much variability in the way the participants are thinking 

about the use of technology in mathematics education and that there may be multiple areas of 

interest that emerge from the group depending on one’s view of technology use in mathematics 

teaching and learning. In terms of equity-related frameworks and constructs in mathematics 

teaching and learning, half of the respondents indicated that they did not know of any, while 

others included frameworks such as critical theory, teaching mathematics for social justice, 

critical race pedagogy, equity pedagogy, black critical theory, culturally responsive teaching, 

funds of knowledge, Gutiérrez’s four dimensions of equity, rehumanizing mathematics, Watson’s 

care framework, and neurodiversity. Finally, our analysis of the survey responses about the 

participants’ goals for attending the working group fell across three main ideas: 1) integrating 

equity focused goals and impacts into research on teaching and learning with technology, 2) 

connecting existing technology- and equity-related frameworks on mathematics learning and 

learning, and 3) looking for future research collaboration on issues related to equity and 

technology use in mathematics teaching and learning. 

We also took a few minutes to review the responses to the Padlet reflection questions. From 

the six responses to the question: “What are you hoping will come out of this working group?”, 

two stated they would like to see a framework bridging equity and technology in math education 

that can be used for research and teacher preparation, two indicated they want to broaden their 

knowledge in understanding of technology and equity, one expressed interest in seeing a balance 

between technology and equity in instruction, and one stated they wanted to find research 

partners to explore topics of equity and technology use. The second Padlet question about 

providing examples of technology used to support equity only elicited two responses, both of 
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which were general descriptions. Yet, we agreed that the ideas shared within these responses 

would be a nice addition to the day two discussions, and hopefully by asking the question within 

the session, we might learn more about how others are using technology in equitable ways. 

Day Two 

At the start of our second working group session, we asked participants to share what 

resonated with them from the NCTM (2023) and AMTE (2022) position statements using 

Jamboard slides for each statement or declaration. We intentionally built in time to allow 

participants to review the statements if needed and discuss in small groups what they noticed and 

wondered about. This led to a whole group discussion about each statement or declaration where 

we asked participants to share to what extent their work aligned with the statement and any other 

ideas that stood out from the Jamboard. During this time, participants also pointed out that one 

important idea not captured in these statements is guidance for how mathematics teachers or 

teacher educators might design tasks that promote these ideas. Conversations like these about 

possible ways to equip educators led us into a nice transition to share what the founding team 

learned in their debrief of the day one activities. 

We used participants’ responses about their reasons for joining the working group from 

verbal communications on day one and from the interest survey to generate a word cloud to help 

us visualize overall themes in why we as a group came together (Figure 3). From this word 

cloud, it was evident that participants aimed to learn about, collaborate on, bridge (i.e., make 

connections across technology and equity), design around, and conduct research to better 

understand how we can support equitable technology use in mathematics teaching and learning. 

 

 
 

Figure 3: Word cloud illustrating participants’ reasons for joining the working group 

 

Then, building from the responses to the second question from the day one Padlet (i.e., 

provide examples of technology used to support equity), we felt it was important to allow time 

for participants to share more about their own work and interests. Following these conversations, 

we then brainstormed possible subgroups that would be of interest to participants. We left day 

two with the charge of identifying which subgroup you might want to be part of and any relevant 

research questions or ideas you may have. 

Day two team debrief. After the day two working group session, the lead team met to 

debrief and determine how to structure the conversation for day three. We were encouraged by 

the amount of participants that returned on day two from day one and how willing everyone was 

to share about their own work and ideas. We agreed that there are many avenues that we can 
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pursue together to move this work forward and that the conversation on day three needed to 

center around determining subgroups and possible products that may result from our work.  

Day Three 

On day three, we began by revisiting the list of possible subgroups identified on day two. We 

then engaged in conversations about what we are excited about exploring to help us narrow 

down where to start as many of us had numerous interests from the original subgroup list. Our 

discussions led to the creation of two subgroups, the Frameworks subgroup and the Task Design 

and Implementation subgroup. We then spent the remainder of the session determining potential 

products from each subgroup as well as establishing how we would remain in contact and 

continue working between conferences. We ended this last working group session with a plan for 

each group to meet within the next month and establish a regular meeting schedule. We also 

agreed to maintain a working group website where participants could find the most up to date 

information about the working group. 

After the Conference 

In the three months following the close of PME-NA 2023, the subgroups met separately 

multiple times, for a total of nine times across both groups. A few organizers led these sessions 

and recorded ideas in a running meeting notes document. At each first post-conference meeting, 

each subgroup initiated a process of having participants share literature through a Google form 

that then populated a folder with the relevant literature. This collection of literature helped 

inform how each group began to conceptualize their next steps. Additionally, one of the 

organizers, who is a member of both subgroups, has been maintaining our website 

(https://bit.ly/TechQuity) and distributing email updates to each group about the other group’s 

work and progress. 

Subgroup Activities and Artifacts as of February 2024 

Frameworks subgroup. The Frameworks subgroup aims to examine a variety of 

frameworks on equity and on technology and develop a framework on equitable technology 

integration for mathematics education. At the first meeting, the group created a Google form to 

enrich the pool of frameworks that were used in the card sort. Through this form, we aim to 

gather more equity frameworks, technology frameworks, and search for any frameworks that 

bridge the two. At the same time, we initiated discussions on what a framework on equitable 

technology integration would focus on, what we refer to as the TechQuity Framework. At our 

next meeting, we began to conceptualize the TechQuity Framework. Figure 4 illustrates these 

initial conversations.  

 

https://bit.ly/TechQuity
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Figure 4: Diagrams of our conceptualizations of the TechQuity Framework 

 

The diagram on the left shows our initial attempt to visualize the intersection of technology 

and equity as a graph. On the y-axis, we placed task design principles and the types of 

technology tools one might use while the x-axis focused on Gutiérrez’s (2009) four dimensions 

of framing equity, namely Access, Achievement, Identity, and Power. Based on this diagram, we 

asked questions such as “How can technology help build student identity? How can it support the 

student voice? How can technology support access to resources and mathematics?” We also 

discussed what we mean by “access”: access to high quality tasks with technology, a tool’s 

accessibility, or access to diverse populations of learners.  

These conversations led to the creation of the diagram on the right. In this conceptualization 

as a didactic tetrahedron (Hollebrands, 2016), the framework would model interactions between 

the students, the teacher, the technology, and the mathematics. Our current endeavor is to 

examine how each of these interactions may be framed and described in terms of Gutiérrez’s 

(2009) four dimensions. We plan to expand upon these ideas between now and the next 

conference; our goal is to share the first draft of the framework with the 2024 participants. 

Task design and implementation subgroup. The Task Design and Implementation 

subgroup began their work by also using a Google form to gather documents. Specifically, 

participants used this form to upload tasks that they felt were either (a) centered technology but 

had potential to be reframed from an equity lens, or (b) centered on some component of equitable 

teaching and had potential for being productively used with technology. As this subgroup met to 

discuss how technology can enhance mathematics curriculum and bring equity to the forefront, 

we began to highlight the many ways MTEs were engaged in integrating Artificial Intelligence 

(AI) into their curricular tasks and lesson development. Thus, it quickly became apparent after a 

few meetings, that many participants in this group had a budding interest in exploring the role of 

AI in mathematics education. As such, the subgroup decided to move forward by shifting our 

focus to the role of AI for creating equitable mathematics tasks. Subsequent conversations have 

also considered the role of AI for building equitable mathematics classrooms more broadly, 

including the ways AI can be used for assessment and as tools for instruction. Our discussions 

led to the realization that we need funding to bring various stakeholders together. We have since 

been in communication with NSF program officers about where our ideas might best fit. 
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Between now and the 2024 conference, we plan to continue these conversations. At the 

upcoming conference, we will share what we have learned and determine how to proceed. 

Next Steps 

Expanding on our prior efforts, the working group sessions in 2024 will delve into the 

following five agendas. First, we will focus on the development of the TechQuity framework, a 

framework that bridges theories in technology and equity and describes the relationships between 

mathematics, technology, students, and teachers (Figure 4). Second, we will delve deeper into an 

examination of the role of AI in promoting equitable mathematics instruction and the ways that 

various stakeholders might contribute to this. Third, we will continue our conversations around 

task design by exploring existing literature on mathematical tasks using technology for students 

in grades K-12 and seeking new mathematical tasks that are designed to enhance equity in 

teaching and learning mathematics. Fourth, we will grow our dissemination and networking 

efforts by expanding our website to serve as a hub for collecting resources for the equitable use 

of technology in mathematics for a larger audience and identifying ways to broaden participation 

in our professional community (e.g., newsletter). Lastly, we will continue to seek grant 

opportunities for technology use in mathematics education, particularly in the realm of artificial 

intelligence, such as applying for an AI workshop conference grant. 
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This working group focuses on integrating mathematics with translanguaging literacy to support 

emergent bilingual students and strives to gain a better understanding of how translanguaging 

practices and critical literacy can support the mathematical learning of emergent bilingual 

students. Participants will be encouraged to share current work supporting emergent bilingual 

students, network with other mathematics education researchers interested in integrating 

mathematics and literacy and establish new collaborations and research partnerships. 

Keywords: Elementary School Education; Equity, Inclusion, and Diversity; Culturally Relevant 

Pedagogy; Curriculum  

With the recent calls to consider how mathematics and literacy can coalesce to provide 

connected learning in both domains (NCTE & NCTM, 2024), this working group would be a 

new initiative taking up that call to consider how mathematics and literacy can be integrated, and 

in particular to support teaching and learning for emergent bilingual (EB) students. In the 

initiation of this group, we hope to be able to provide space and networking for scholars 

interested in connecting mathematics and literacy, drawing on translanguaging literacy and 

translanguaging practices. Our overarching aim is to explore opportunities for collaboration and 

exchange of ideas, to ultimately support the mathematical learning of EB students. 

Theoretical Background 

Decades of research have been dedicated to understanding mathematics teaching and 

learning of EB students. Many studies emphasize the importance of maintaining robust 

mathematical learning opportunities alongside language development and suggest that engaging 

in rich tasks can actually enhance language proficiency (de Araujo et al., 2018; Poza, 2019). Yet, 

for EB students in dual-language education (DLE) programs the learning opportunities often 

depend on what language mathematics is taught and assessed in (Author, 2023), given that DLE 

programs often lack clear directives as both federal and state levels regarding the distribution of 

instructional time between language and content areas (Boyle et al., 2015). As these DLE 

programs continue to expand, understanding how the separation of language shapes EB students’ 

mathematical learning becomes crucial. Maldonado Rodriguez & Krause (2020) caution against 

strict separation of language as a means to improve language proficiency, and instead advocate 

mailto:rosa.d.chavez@ttu.edu
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for embracing translanguaging as an “empowering and critical act” that encourages EB students 

to convey their mathematical thinking utilizing both languages (p. 21).  

Other researchers have additionally advocated for leveraging EB students’ cultural 

backgrounds as valuable resources (Moschkovich, 2022 de Araujo et al., 2018). In his framework 

for teaching mathematics for social justice, Gutstein (2006) pushes us to create learning 

opportunities for students to “[read] and [write] the world with mathematics” (p. 23). Within the 

landscape of literacy, Critical Literacy scholars suggest that “any issues that capture learners’ 

interest, based on their experiences…can and should be used as a text to build a curriculum that 

has significance in their lives” (Vasquez et al., 2019, p. 301). At the core of critical literacy lies 

the importance of centering students’ lived experiences to build on meaningful texts that address 

power, inequality and social justice, emphasizing the students’ role as agents of change. Critical 

literacy fosters personal connections where students can interrogate the status quo, encouraging 

them to look beyond themselves. This is critical to EB students as they gain voice and make 

meaningful personal connections to mathematical texts.   

Structure of Workshop 

Expanding on these theoretical foundations across research in mathematics, translanguaging, 

and critical literacy to support EB students, this working group will focus on sharing current 

research across these topics to cultivate further development in this burgeoning area of study. In 

the following sections, we outline our approach to engage participants throughout the three days 

of the working group sessions.  

Day 1: We will focus on introductions and providing opportunities for participants to share 

their interests in the group, their current/ongoing research, and what they would like to be able to 

accomplish throughout the three days. Participants will be asked to share research experience (or 

interest) in supporting emergent bilingual students’ mathematical learning. Participants will be 

encouraged to begin identifying intersections for possible collaborations. current work 

integrating mathematics with translanguaging literacy. Contributing researchers will each help 

guide discussion at different groups/tables and document common themes to support establishing 

smaller working groups for the remaining two days.   

Day 2: Contributing researchers (Author1, Author2, and Author4) will lead a short 

presentation (20 minutes) on rationale for the new working group. Presentation will focus on 

theoretical underpinnings of research and methodologies that have focused on supporting 

translanguaging practices of EB students in both mathematical and literacy contexts. Participants 

will then establish smaller groups interested in either collaborating on a manuscript or proposing 

a new project. Groups will begin developing ideas for their proposed research projects and 

outlining their proposed manuscripts.  

Day 3: Participants will continue developing ideas for proposed projects and manuscripts. 

Groups will also develop a working plan to move continue moving forward their projects or 

manuscripts after the conference. We will also design and schedule follow-up activities that will 

include setting optional virtual monthly meetings for all participants to support their ongoing 

work. 
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This report summarizes the collaborative work and discussions from the third meeting of the 

working group on Mathematics Curriculum Recommendations for Elementary Teacher 

Preparation at PME-NA 45. Specifically, we share details from our meetings at the PME-NA 

conference in Reno, NV, as well as updates about all working group endeavors after the 

conference. We also share specific accomplishments and updates from each of the eight research 

subgroups of the working group, and our overall plans for the future of the working group. 

Across this report, we emphasize how we will continue to welcome and actively involve new 

members to our working group across North America. 

Keywords: Preservice Teacher Education, Teacher Educators, Mathematical Knowledge for 

Teaching, Elementary School Education  

The Mathematics Curriculum Recommendations for Elementary Teacher Preparation 

(MCRETP) working group entered Phase III of its long-term plan during the PME-NA 45 

conference in Reno, NV in 2023. This phase centers on the research subgroups of MCRETP, 

specifically designing and supporting each other in conducting small-scale research studies that 

could address questions relevant to producing a research-based set of recommendations for 

elementary teacher preparation programs. The organizers of the working group created structures 

during PME-NA 45 for the MCRETP research subgroups to meet, brainstorm, collaborate, and 

share information about these small-scale research studies. Furthermore, the organizers 

welcomed several new members to the MCRETP working group at PME-NA 45, and 

meaningfully involved them in the work of the research subgroups. 
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In this report, we will summarize the outcome of our meetings at PME-NA 45 in Reno, NV. 

Next, we will describe post-conference activities that have helped our MCRETP working group 

continue to make progress. Then, we will review the eight research subgroups and describe each 

subgroup’s work and accomplishments at PME-NA 45 and beyond. We will end this report with 

our revised long-term plan for the working group and discuss what questions we hope to address 

in the future. 

We continue to emphasize that the MCRETP working group welcomes new participants to 

join at any time. We are especially interested in new members from North American countries 

outside of the United States, in an effort to better represent the diverse nationalities and 

perspectives of the whole PME-NA community. New members of our working group can expect 

to be involved immediately, either in being supported in conducting their own original research 

in a subgroup(s), joining an existing research team in a subgroup(s), and/or by being a non-

researcher in a subgroup(s) and finding ways to support the endeavors of the group. We 

encourage anyone interested in joining the MCRETP working group to reach out to the working 

group organizers and/or research subgroup leader(s) to learn how they can get involved. 

Our Meeting at PME-NA 45 

Day 1  

On Day 1 of the PME-NA 45 conference, MCRETP organizers aimed to orient everyone to 

the working group and to the research subgroups of the working group. We welcomed several 

new members to the working group, so we began Day 1 by restating our overarching goals, 

reviewing what we’ve accomplished so far, and previewing our long-term plan. 

We explained that the overarching goal of the working group is to develop research-based, 

specific, and usable recommendations for the curriculum of elementary mathematics teacher 

preparation. We reviewed the past work of the MCRETP working group, which included 

understanding the concerns about elementary teacher preparation (Phase I in 2021) and designing 

research studies that could inform curricular recommendations (Phase II in 2022). Then, we 

previewed the present and future work of the working group, which included conducting these 

research studies and disseminating and synthesizing the findings (Phase III in 2023-2024), 

drafting research-based curricular recommendations (Phase IV in 2025), and drafting and 

submitting a grant proposal for a larger-scale, multi-site research study on the curricular 

recommendations (Phase V in 2026). 

We also introduced and explained each research subgroup of the MCRETP working group. 

These subgroups included (in no particular order): (1) Literature Review and Critique of Current 

Recommendations, (2) Survey of Current Program Structures and Local Requirements, (3) 

Preparation Program Alumni Survey and Interviews, (4) Selection of Topics in Content Courses, 

(5) Pedagogical Practices, Tasks, and Thinking-Oriented Approaches in Content Courses, (6) 

Pedagogical Practices in Methods Courses, (7) Integration of Content and Methods Courses, and 

(8) Field Experiences and Clinical Work. Each subgroup leader(s) described their subgroup and 

its goals, research, and frameworks that guide their vision, and any progress that has been made 

toward achieving these goals. These descriptions helped reorient working group members to 

these eight areas of research, as well as introduce new members of the working group to 

potential subgroups they could join. Details about these research subgroups, their goals, and their 

up-to-date progress can be found in the Updates About Our Research Subgroups section below. 
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Day 1 ended with time for new members of the working group to visit with different 

subgroups and decide on the research subgroups they would like to join. Also, MCRETP 

organizers used this time to collect updated contact information from all working group 

members, as well as to preview the goals for Days 2 and 3. In all, Day 1 was a productive 

meeting because it reconnected members of the working group to the MCRETP goals and 

progress, and also meaningfully involved new members of the working group with research 

subgroup(s) of their interest. 

Days 2 and 3 

On Day 2 of the PME-NA 45 conference, each research subgroup convened and engaged in 

discussion. Subgroup members were prompted to share issues related to the mission of the 

subgroup that were salient in their current institutional context. Subgroup members were also 

invited to share details about a small-scale study they were planning to conduct or had already 

started conducting. The main purpose of these subgroup convenings was for subgroup members 

to gather feedback about these in-progress, small-scale research studies. Moreover, as more 

subgroup members shared about their in-progress research studies, subgroups could start to 

hypothesize about how findings from these studies might complement one another and to work 

together to test some hypotheses important to the subgroups’ research agendas. Near the end of 

Day 2, about half of the subgroups shared summaries of their conversations with the entire 

working group and sought feedback. Members of the working group asked questions of each 

presenting subgroup and provided suggestions to support the development or progress of the 

study presented. 

On Day 3 of the PME-NA 45 conference, subgroups continued to convene and engage in 

discussions, similarly to Day 2. Subgroups that had not yet shared about their conversations with 

the entire working group were given time to do so and collect more feedback. Each subgroup 

was also encouraged to start to make plans about how to keep their subgroup active and 

connected post-conference. The goal of the MCRETP organizers was for each member of the 

working group to leave PME-NA 45 with concrete steps for conducting research (or 

collaborating in such research) that will support our eventual curricular recommendations. 

Subgroup leaders used this time to start planning follow-up meetings and check-ins with their 

subgroup members. Days 2 and 3 proved to be valuable meetings because not only did all 

working group members have an opportunity to share their voices and visions, each research 

subgroup was able to make practical plans to stay connected with their collaborators after the 

conference. Next, we describe some of our post-conference activities that have helped our 

MCRETP working group continue to make progress after PME-NA 45. 

 

Post-Conference Activities 

Between November 2023 and February 2024, we have done the following: 

1. Each research subgroup convened (some several times), via Zoom, to provide updates 

about research endeavors and to continue to get support and feedback from each other. 

2. The leader/co-leaders of each research subgroup contributed information about their 

subgroup’s progress to inform this report. 

3. The MCRETP working group organizers met to discuss the overall progress of research 

subgroups. Using these updates, this team met to plan how to make PME-NA 46 as 

productive as possible. 
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Next, we review the eight research subgroups and describe each subgroup’s work and 

accomplishments to date. See the author list of this report for contact information for each group 

leader/co-leader. 

 

Updates About Our Research Subgroups 

Literature Review and Critique of Current Recommendations 

Group co-leaders: Nicole Wessman-Enzinger, Dana Olanoff, Kim Johnson, Jennifer Tobias, and 

Neet Priya Bajwa 

This subgroup has two main aims. First, we are compiling and analyzing existing 

recommendations for the mathematical preparation of teachers. Using established criteria (e.g., 

the number of mathematical content/methods courses, specific content/methods 

recommendations, course delivery recommendations), this group is analyzing recommendations 

from groups including the Conference Board of Mathematics Sciences (CBMS), the Association 

of Mathematics Teacher Educators (AMTE), the National Council of Teachers of Mathematics 

(NCTM), and the National Council on Teacher Quality (NCTQ). We plan to articulate the ways 

that these recommendations align (and do not align) with each other. Second, we will use this 

analysis and synthesis to create a literature review of work related to these recommendations. We 

know from research (e.g., Garner et al., 2023; Masingila & Olanoff, 2022) that the majority of 

teacher preparation programs are not meeting the current recommendations. Our hope is that the 

work from this subgroup will help us to create a set of practical recommendations related to the 

existing work that programs would more likely be able to implement. 

Survey of Current Program Structures and Local Requirements 

Group co-leaders: Tuyin An and Dan Clark 

The purpose of this research subgroup is to understand how elementary teacher preparation 

programs are structured across the nation, focusing on models of mathematical content and 

pedagogy integration, as well as how programs address social-justice-related topics. Since we 

presented our project idea to explore the structure of elementary teacher preparation programs at 

the 2023 PME-NA working group meeting, three colleagues have joined our sub-group. We 

shared similar interests in the policy, design, and structure of teacher preparation programs. We 

established our goal as a cross-institutional team: applying for an NSF IUSE grant to fund the 

development of our project. Our working group worked diligently throughout Fall and Winter 

2023 and early Spring 2024. We set up weekly and bi-weekly working objectives and supported 

each other in conquering these challenging tasks: project design, application material 

preparation, external evaluator collaboration, and cross-institutional budgeting. We successfully 

submitted our grant proposal in January 2024. The title of our project is “Fostering Cross-

Institutional Communication and Partnerships in Mathematics Teacher Preparation Programs.” 

The total request amount is $396,828 over two project years. 

The objectives of the proposed project are two-fold. First, we seek to understand the various 

programmatic structures that preservice elementary teachers (PT) preparation programs across 

the nation utilize in the mathematical preparation of their teacher candidates, as well as their 

perceived needs. Second, we will build an online, cross-institutional platform to foster 

communication and partnerships among PTs preparation programs regarding the mathematical 

preparation of their teacher candidates. Through the interactive platform, PT preparation 

programs would be able to easily find other programs (like or unlike themselves) in order to 
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share resources and collectively optimize their courses and program structures. Having this 

catalog of resources available in one place would facilitate communication across programs of 

all types, as well as lessen the financial burden of programs looking to improve themselves. In 

addition, as more and more participants are involved, the online platform will regularly publish 

newsletters to keep the community informed. Faculty from all over the country can share their 

program changes, course redesigns, collaborative projects, related publication news, and other 

resources through the newsletters. This will all lead to PTs entering the workforce with stronger 

mathematical preparation. 

Preparation Program Alumni Survey and Interviews 

Group co-leaders: Dana Olanoff and Nicole Wessman-Enzinger 

One of the best ways to determine what should be included in the mathematical preparation 

of teachers is to ask teachers which aspects of their preparation they find useful in their teaching 

practice. This subgroup has created a survey which we intend to distribute to recent alumni 

(within 5 years) of our teacher preparation programs. The survey asks respondents how prepared 

they felt to teach mathematics as well as to identify aspects of their teacher preparation programs 

that they felt were impactful to their current practice. We also ask for suggestions for aspects of 

teacher preparation programs that were missing that respondents wish had been included in their 

teacher preparation. We plan to distribute the surveys in the Spring of 2024 and to analyze the 

data in the Summer and Fall of 2024 in the hope of sharing preliminary data analysis with the 

whole Working Group at PME-NA 46. 

Selection of Topics in Content Courses 

Group co-leaders: Joseph DiNapoli, Valerie Long, and Jennifer Tobias 

This research area investigates the affordances and constraints related to the instructional 

time spent (or not spent) on specific mathematics topics included in content courses for 

elementary PTs. Our subgroup is largely motivated by a recent longitudinal research study 

(Corven et al., 2022) that shows that survey courses, or courses that devote small amounts of 

high-quality instructional time to many mathematical topics, may have little or no impact on a 

future teacher’s retention or use of knowledge related to those topics. Conversely, this study 

showed that teachers could more easily and effectively access knowledge related to mathematical 

topics for which ample high-quality instructional time was spent, years earlier, in their content 

coursework. This suggests that challenging decisions must be made about which topics to teach 

in content courses, and which to omit. 

At PME-NA 45 in Reno, NV, this subgroup met to continue to support each other in 

designing and conducting original research to test our hypotheses about instructional time in 

content courses. We made ample progress during these meetings, including designing studies that 

we could conduct at our home institutions. For example, one study that is currently underway 

seeks to investigate the relationship between instructional time and the development of 

mathematical practices like perseverance in problem-solving: do elementary PTs learn to 

persevere more with challenging tasks about topics for which more instructional time was spent? 

Another study that is currently in process concerns the relationship between teaching fewer 

topics and students’ summative assessment outcomes. After PME-NA 45, this subgroup has 

continued to convene virtually to offer support to those who are interested in designing and 

conducting their own original research relative to our subgroup’s goals. Just recently, an idea for 

a new study to survey North American programs about their selection process for topics in 
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content courses was born in one of these virtual meetings. In this subgroup, several studies are 

underway and some are even under review as potential presentations for PME-NA 46 about in-

process research. 

Pedagogical Practices, Tasks, and Thinking-Oriented Approaches in Content Courses 

Group co-leaders: Julien Corven, Jennifer Tobias, and Neet Priya Bajwa 

The purpose of this research subgroup is to consider recommendations for how to teach 

mathematics content within elementary content courses. Although recommendations for what to 

teach are important, without parallel recommendations for how to teach the content, the 

recommendations may end up ineffective. Li and Howe (2021) assert that it is critical for teacher 

preparation programs to focus not just on PTs’ knowledge of the mathematical content (a 

knowledge-oriented approach), but more so on how to apply this knowledge to the craft of 

teaching by, for example, using such knowledge to understand and base instruction on students’ 

thinking (a thinking-oriented approach). However, Li and Howe (2021) acknowledge that this 

assertion is their opinion, and they echo a call from Hiebert and Berk (2020) for more research 

that would support a professional knowledge base for MTEs on thinking-oriented approaches. 

Subgroup members are currently planning specific research projects in the content courses 

they teach to assess the effectiveness of particular pedagogical approaches and tasks. For 

example, one study underway focuses on how PTs analyze student thinking on student solutions 

to decimal division tasks through the use of base-10 blocks. Another study evaluates tasks and 

the effect their modifications have on PTs’ understanding of number concepts and operations. 

We see this research subgroup’s work as supporting our future recommendations by giving 

examples of how to design, modify, and/or implement tasks to support PTs’ development of the 

mathematics they are to teach in their future careers. An underlying aspect of this is pedagogical 

practice recommendations for MTEs who can then modify and iterate on these tasks and 

activities (Hiebert & Morris, 2009). We also anticipate results from our studies will help us 

develop a repository that includes rationales for instructional decisions and information about 

how PTs may respond to the activities as a way to support novice MTEs (e.g., Superfine & 

Pitvorec, 2021; Suppa et al., 2020). 

Pedagogical Practices in Methods Courses 

Group co-leaders: Valerie Long, Richard Velasco, and Hartono Tjoe 

This subgroup has two research aims: (1) to investigate the learning experiences that 

mathematics teacher educators utilize to help elementary PTs develop a rich understanding of 

equitable pedagogical practices in mathematics; and (2) to examine elementary PTs’ 

implementations of these practices in their field placements as far as advancing their own 

students’ mathematical thinking and learning. These learning experiences might include 

integrating culturally sustaining pedagogies, selecting and analyzing mathematics tasks, writing 

lesson plans, conducting teaching experiments, analyzing videos, examining misconceptions for 

a topic, etc. 

At PME-NA 45 in Reno, NV, subgroup members discussed next steps for the current research 

project pertaining to PTs’ analysis of tasks. These next steps are writing a practicum-based article 

about how researchers implemented the semester-long project in elementary math methods 

classes, analyzing data from PTs’ evaluations using a class rubric of a low-level place value task, 

and comparing these results with those from PTs’ evaluations using a class rubric for a high-level 

place value task. Additionally, members discussed applying for seed grants for research projects, 
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starting a literature review of access and equity practices within elementary mathematics 

methods courses, creating pedagogical tasks grounded in the literature that promote access and 

equity in mathematics, making recommendations for teacher preparation programs associated 

with mathematics methods courses, beginning preliminary/pilot work within our own respective 

elementary mathematics methods courses, and using findings to initiate a NSF grant application. 

Some recent accomplishments from our group include: (1) a manuscript proposal submission to 

Review of Research in Education (a systematic literature review for culturally sustaining 

pedagogies in mathematics teacher educator programs, inclusive of elementary teacher 

programs), and (2) a potential article publication to the School Science and Mathematics journal 

for PTs’ analysis of tasks. 

Integration of Content and Methods Courses 

Group co-leaders: Kristy Litster and Bona Kang 

This research area seeks to develop recommendations for integrating pedagogical methods 

and mathematical content that support and assess PTs’ learning. Specifically, it is looking at what 

MTEs can do in courses to support elementary PTs’ ability to develop specialized mathematical 

content knowledge and pedagogical methods to teach any mathematical standard or grade level. 

AMTE (2017) noted this is an important area for MTEs as they provide guidance in designing 

and implementing course structures, assignments, and fundamental methodologies when 

preparing high-quality elementary mathematics teachers. To support the learning of a diverse 

student population, PTs should learn to evaluate and reflect on both the content and methods they 

use in the classroom. Research shows many elementary teacher preparation programs have 

limited time available due to course and program structures, which constrains MTEs’ efforts to 

help PTs develop deep knowledge of children’s mathematical thinking as well as ambitious 

teaching practices (Berry, 2004; Bertolone-Smith et al., 2023; Cochran-Smith et al., 2015; 

Saclarides et al., 2022). Integrating content and methodologies through a thinking-oriented 

approach within mathematical content and methods courses helps mitigate limitations of allotted 

time in programs to support PTs to build cohesive understandings of both specialized content 

knowledge and pedagogical practices (Li & Howe, 2021). 

During the 2023 calendar year, this research group met monthly to review goals and plan 

potential collaborative research projects based on goals set at the 2023 AMTE conference in New 

Orleans, LA. We chose to focus on one of our project ideas: To try out specific strategies to 

integrate content and methods and assess PTs’ content and pedagogical knowledge through 

qualitative and quantitative outcomes. Specifically, we were able to develop a project to assess 

these outcomes using a diagnostic interview assignment in content and methods courses across 

multiple universities. We developed a rubric using the teacher noticing (Jacobs et al., 2010), 

domains of Mathematical Knowledge for Teaching (Ball et al., 2008), and NCTM’s effective 

mathematical practices (NCTM, 2014), which will be used to evaluate specialized content 

knowledge and pedagogical knowledge of PTs. We finalized the project idea at the PME-NA 45 

conference in Reno, NV, and we will be gathering data during Spring 2024. 

Field Experiences and Clinical Work 

Group leader: Kim Johnson 

At PME-NA 45, this subgroup narrowed our focus on paired field experiences and embarked 

on research on the benefits of providing this opportunity for PTs during their math methods 

courses. It is the aim of the methods courses that the PTs should observe mentors that use and 
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implement effective mathematical teaching practices (NCTM, 2014). However, choosing the best 

mentor teachers for PTs to work with is often problematic given the large number of students 

enrolled in many programs. As noted in Bullough et al. (2002), using paired placements allows 

the reduction in the number of mentor teachers required and enables the concentration of effort 

and energy needed to produce the simultaneous renewal of effective placements. According to 

previous research (Baker & Milner, 2006, Bullough et al., 2002), paired placements also bring 

other benefits for PTs such as an increase in confidence and deeper reflection on lessons. 

Our subgroup has met monthly since Reno, NV, and is pursuing a research study at 

University of Missouri to look closely at paired field placements versus individual field 

placements. This is an opportunity to do a comparison study, as they are piloting both types of 

placements. Additionally, group members are doing some work on developing planning tools for 

both in-service teachers and PTs to conduct more meaningful number routines in the classroom 

as part of professional development for mentor teachers. These lesson planning tools can be used 

by the PTs as part of the field experiences to help PTs focus on student thinking. 

Our Long-Term Plan 

The long-term plan for our MCRETP working group consists of five phases. We are currently 

in Phase III. Our working group, and consequently Phase I, began in 2021 at PME-NA 43 in 

Philadelphia, PA, with a primary focus on understanding the issues surrounding the preparation 

of elementary teachers. We entered into Phase II in 2022, at PME-NA 44 in Nashville, TN, with 

an emphasis on formulating research subgroups and brainstorming research studies aimed at 

providing insights that could inform our eventual curricular recommendations. As detailed in this 

report, we entered into Phase III in 2023, at PME-NA 45 in Reno, NV, and have continued this 

work since the conference. Phase III is designed to encompass two years, 2023 and 2024, as 

members of the MCRETP working group continue to design, conduct, and synthesize the 

findings from small-scale research studies that address questions relevant to producing a 

research-based set of recommendations for elementary teacher preparation programs. We aim to 

continue our work in Phase III at PME-NA 46 in Cleveland, OH, and in the months following the 

conference. Each research subgroup will continue to meet periodically, outside of our formal 

working group meetings at PME-NA conferences, to offer research support and feedback. The 

full MCRETP working group will also convene periodically, providing a platform for subgroups 

to share their progress and solicit additional feedback. We anticipate several members of the 

working group to be able to start disseminating findings from their small-scale studies near the 

culmination of Phase III. We will encourage working group members to write proposals to 

present research findings at PME-NA or other relevant professional conferences and to publish 

reports in other appropriate outlets. 

Looking beyond our current work, Phases IV and V are scheduled for 2025 and 2026, 

respectively, with a primary focus on synthesis and the eventual production of research-based 

recommendations. In Phase IV, we plan to propose a PME-NA 47 research colloquium, where 

the research findings from each subgroup of the MCRETP working group will be cohesively 

presented. This colloquium will serve as a formal platform for synthesizing collective findings 

and addressing questions about the implications of our work. Simultaneously, we anticipate 

organizing a special issue of a journal, featuring a synthesis article from each research subgroup 

and a concluding article discussing the policy implications of the research findings. Moving into 

Phase V, our initial goal is to publish the special issue prepared during Phase IV. Furthermore, we 
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intend to pursue a grant to host a 2026 conference with the objective of crafting and debating a 

research-supported set of recommendations for elementary teacher preparation.  

In conclusion, our MCRETP working group has formulated a distinct vision focused on 

creating a research-based set of recommendations for elementary teacher preparation programs. 

Our time at PME-NA 45 in Reno, NV was exciting and productive, fueling our enthusiasm as we 

embark on the subsequent phases of our long-term plan. We emphasize one last time our 

openness to new participants, inviting them to join the MCRETP working group during its 

current phase, contribute to a research subgroup, and collaborate with us in achieving our long-

term goals. Your participation is welcomed as we continue this impactful journey. 
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This group is dedicated to dismantling anti-Blackness in secondary mathematics teacher 

preparation through the development of critical, research-informed modules for Mathematics 

Teacher Educators. Our mission is to equip Pre-Service Teachers with knowledge, skills, and 

dispositions necessary to foster critical consciousness and counter systemic inequities in 

mathematics education. Leveraging improvement science methods, we aim to create, refine, and 

share six modules addressing instructor reflexivity, PST beliefs, identity and agency, political and 

historical context, systemic anti-Blackness, and actionable plans for student liberation. These 

modules are poised to transform mathematics teaching practices, promoting equity and 

stimulating interest in STEM among historically marginalized students.  

 

Keywords: Preservice Teacher Education, Equity, Inclusion, and Diversity, & Social Justice 

 

This newly established working group will contribute to ongoing efforts to increase access 

(Males et. al, 2020) to much needed research-based resources for Mathematics Teacher 

Educators (MTEs) to engage their pre-service teachers (PSTs) in learning to better serve the 

students in their diverse classrooms. The primary artifacts of discussion, development, and 

distribution will focus on six modules. These six modules are rooted in critical pedagogies 

(Duncan-Andrade & Morrell, 2008; Shor, 2014) to support PSTs in understanding how a) 

anti-Blackness functions in mathematics education and b) to counter cultural hegemonic 

practices. In line with Whitehead (2021), we define anti-Blackness as “whiteness and anti-

Blackness are discrete, entangled ideologies through which Black people are stripped of their 

humanity. … [and the] relationship between whiteness and anti-Blackness operates both 

systemically and interpersonally” (p. 310). Programmatic structures must allow students to 

commit to a praxis Freire, 1996) reflecting on how anti-Blackness (white supremacy culture) 

impacts mathematics education and focus on the actions they may have already taken and will 

continue to take in the future. Through an awareness of anti-Blackness and the agency to 

challenge white supremacy, PSTs will develop critical consciousness. In mathematics 

education critical consciousness is related to the context of learning (connections to the real 

world) and how we see/treat students. Critical consciousness in mathematics education 

harkens on the importance of connecting mathematics to the socio-political (real) world 

(Kokka, 2019; Seda & Brown, 2021). However, our prior work shows that MTEs lack 
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resources for doing this work (Males et al., 2020). Therefore, we aim to use improvement 

science methods (Bryk et al., 2015; Martin et al., 2020) to design and refine a series of 

modules for use in undergraduate 6-12 mathematics methods courses that address PSTs 

knowledge, skills, and dispositions to counteract anti-Blackness. The goal of this working 

group is to create a space for MTEs to collaborate on research and reflect on the harm caused 

by inaction, in order to sustain action towards dismantling systemic anti-Blackness within 

mathematics education, fostering a community of praxis that actively engages in the 

development and implementation of transformative pedagogies and curricula grounded in 

social justice and equity.  

Modules & Session Structure 

Recognizing the need for resources that empower MTEs to confront anti-Blackness in 

educational settings, our working group moves from theory to action. The six modules are 

designed to deepen PSTs understanding of anti-Blackness in mathematics education and equip 

them with the practical skills and reflective practices necessary for transformative teaching. PSTs 

will be encouraged to reflect on their own positions, challenge systemic issues, and develop 

actionable strategies for change. 
The first module, Instructor Positionality & Reflexivity (Module 0), prompts educators to 

reflect on their beliefs and practices related to anti-Blackness. Understanding PSTs’ 

Perspectives on Mathematics (Module 1) encourages PSTs to examine and reflect on their own 

beliefs about mathematics teaching and learning. Identity & Agency (Module 2) explores the 

influence of personal identities in the learning environment. The fourth module, Political & 

Historical Context (Module 3), links the history and politics of race to teaching practices. Anti-

Blackness and the System (Module 4) delve into systemic issues perpetuating inequities and 

the impact of the culture of white supremacy, while the final module, Developing a First Year 

Teacher Action Plan for Student Liberation (Module 5), focuses on actionable strategies for 

PSTs to foster an inclusive and liberating classroom. 

Session 1 – Overview and Reflexivity. We will begin by providing an overview of the project 

and the work completed thus far, including sample data from the first rounds of implementation 

(30 minutes). We will engage participants in aspects of Module 0 to reflect on our own beliefs 

and practices as MTEs (30 minutes). The session will close with a whole group discussion on the 

necessity of developing critical consciousness (30 minutes). 

Session 2 - Developing PSTs Critical Consciousness. Day 2 will engage participants in an 

activity from Module 2 called “Discarding Identities” (30 minutes). Participants will analyze the 

activity and further explore the modules in small groups (45 minutes). We will close with a 

whole group discussion on implementation of modules within participant contexts (15 minutes).  

Session 3 – Moving Towards Action. Based on day 2 participation, we will dive deeper into the 

modules and existing data in smaller interest groups (45 minutes). Groups will discuss next steps 

and movement towards action to inform future PMENA working group meetings (45 minutes). 
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This new working group will reflect on intersectional equity issues in today’s mathematics 

learning environments and create a resource to expand critical conversations through equity-

oriented cases. We plan to engage participants in discussions regarding current uses of case-

based instruction to reframe and dismantle violent and ideological views (e.g., racism, sexism, 

ableism) that diminish and disparage individuals from participating in mathematics settings. As 

a collective, participants will develop equity-oriented cases specific to mathematics education 

and establish collaborations to use the newly developed cases in mathematics teacher 

preparation. This working group aims to provide the community with space to generate a book of 

cases that will be shared with the mathematics education community. 

Keywords: Preservice teacher education; instructional activities and practices; equity, inclusion, 

and diversity 

Standards documents recommend teachers have a repertoire of equitable teaching strategies 

to be ethical advocates for every student (AMTE, 2017, Standards C.2 and C.4). Teacher 

education can provide opportunities for preservice teachers (PTs) to learn how social, historical, 

and institutional contexts influence mathematics teaching and learning, particularly with respect 

to equity and the various ways to challenge inequities that affect marginalized students’ learning 

experiences. Additionally, PME-NA’s Equity Statement (2020) calls for re-conceptualizing 

pedagogical practice away from deficit ways of knowing and learning to promote a humanized 

perspective of education that positions all students as capable contributors to mathematics 

education. In response to these initiatives, mathematics teacher educators (MTEs) use various 

research-based practices to support PTs’ understanding of power and privilege in mathematics 

education, how to cultivate positive mathematical identities, draw on students’ mathematical 

strengths, and enact ethical practice for advocacy. One such practice is using case-based 

instruction, which uses stories to explore the complexities of mathematics classrooms to develop 

a critical lens for teaching (Gorski & Pothini, 2018; Kavanagh, 2020). MTEs continue to 

develop, use, and share their cases at conferences and through personal connections. However, 

the sharing is not easily accessed by all in the mathematics education field. 

This new working group will create a resource to expand critical conversations through 

equity-oriented mathematics cases that can be shared widely. The cases will illuminate the 

mathematical brilliance of all students, focusing on the intersectional identities of oppressed and 

marginalized students. While this work is not new, as there have been many equity-oriented cases 

shared at PME-NA, AMTE, and AERA where MTEs report on how PTs responded, including 

some of our presentations (Gonzalez et al., 2022; Moldavan et al., 2023), the goal of this 

working group is to leverage the productive critical conversations that have foregrounded the 

collective work to meet the following goals (1) assist participants in becoming familiar with 
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recent research and resources addressing the benefits of case-based instruction and how cases 

can be used in mathematics teacher education to help PTs challenge equity issues in K-12 

mathematics settings and (2) develop equity-oriented cases specific to mathematics education 

that can then be implemented in their settings and submitted to a case book. 

 

Theoretical Background 

Case-based instruction is widely used as a pedagogical approach to examine authentic, real-

life scenarios that can engage teachers in analyzing dilemmas of practice (White et al., 2016). It 

can be used as a tool for uncovering teachers’ deficit noticings and perspectives that can lead to 

differential student treatment, such as over-punishing Black students, which is a form of systemic 

violence in mathematics education (Childs & Wooten, 2023; Martin, 2019). While cases can be 

used to present a complex classroom dilemma situated within discussion questions for individual 

and group reflections (Gorski & Pothini, 2018; Redman & Redman, 2011), the cases often need 

to be modified to address the specific needs of mathematics teacher educators using the cases to 

bridge theory to practice in the teaching and learning of mathematics (Gonzalez et al., 2022). 

Furthermore, cases are typically organized around specific issues, such as race, gender, or 

socioeconomic status, and do little to explore the intersectionality of oppressed and marginalized 

identities that create compounding systems of disadvantage. The field of mathematics education 

needs a resource of equity-oriented cases that represent mathematics learning and teaching while 

also highlighting the importance of attending to multiple students’ identities. 

To frame the equity-oriented cases, we consider Cochran-Smith and Keefe’s (2022) 

definition of strong equity, considering redistribution, recognition, representation, and reframing. 

MTEs can use equity-oriented cases to explore the power of one’s story, which provides entry 

points to self-reflect and learn from other’s experiences. The cases can encourage PTs to 

critically reflect on particular scenarios to reframe, integrate, and unlearn deficit views of 

students and transform equitable instructional practices that position all students as capable 

mathematics learners and doers. Recognizing the need to reframe and dismantle violent and 

ideological views (e.g., racism, sexism, ableism) that diminish and disparage individuals from 

participating in mathematics settings can guide the purpose and use of cases, especially cases 

that present counternarratives to challenge deficit perspectives. 

 

Organization and Presentation Plan 

The working group will be organized into three sessions where participants can actively 

contribute their experiences and expertise to satisfy a deliverable. The first session will welcome 

participants with an introduction to case-based instruction, an exploration of recent resources, 

and a discussion about the desired product that the working group will produce. As a collective, 

we will collaboratively critique existing cases focusing on equity and mathematics spaces. After 

sharing an example template for writing equity-oriented cases, participants will be tasked with 

drafting their own case to bring to the next session. 

In the second session, participants will work in small groups to provide feedback on their 

drafted cases. They will collaboratively unpack the intersectional equity issues the cases explore 

and critically reflect on how the cases were written so as not to perpetuate biases and deficit 

perspectives. They will then be tasked with coming to the next session with a revised draft with 

discussion questions that will engage PTs in unpacking the inequities alongside the mathematics 
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content. The last session will provide a space to refine the discussion questions, coordinate 

implementation plans to use the cases, and note recruitment plans to contribute to the case book. 

By the end of the conference, the group will have produced multiple equity-oriented cases 

that are ready to be used with PTs. Additionally, we intend to continue this work with broader 

participation from the mathematics education community by including the voices of mathematics 

teachers, coaches, and school leaders. 
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Gender research has a long history in mathematics education, whereas sexuality research is a 

newer research focus in the field. Much of this research has been conducted using a singular 

lens, that is, strictly focusing on the influence of participants’ genders (or sexualities) in their 

mathematics experiences. However, in recent years, increased focus has been placed on the 

importance of conducting research with an intersectional lens, with the acknowledgement that 

experiences within the same identity group (e.g., boys, lesbians) differ due to multiple 

intersecting identities. Although research has been conducted about the intersections of gender 

and race in mathematics education, far less attention has been paid to identity aspects that are 

less (visually) obvious than race, such as socioeconomic status, first-generation college student 

status, and certain disabilities. In this year’s working group, we will explore how to make 

gender/sexuality research more intersectional, addressing both methodological and theoretical 

considerations, with special attention to concealable stigmatized identities, which have rarely 

been explored in gender/sexuality research. 

Keywords: Gender; LGBTQIA+; Equity, Inclusion, and Diversity 

Mathematics education and mathematics education research are subject to influence from 

broader societal shifts and government policies. In recent years, there have been numerous bills 

introduced and passed in North America (French, 2024; Trans Legislation Tracker, n.d.) that have 

negatively impacted the lived experiences, including the schooling experiences, of LGBTQIA+ 

students and teachers (Kosciw et al., 2021). Hence, for these groups of individuals, their learning 

and teaching of mathematics are indeed taking place during uncertain times.  

Given these uncertainties, as well as recent societal shifts regarding perceptions of gender 

and sexuality, it is crucial that we, as mathematics education researchers, acknowledge and honor 

the complexities of participants’ lived experiences through our work. One such topic that has 

increasing relevance is intersectionality. Coined by Crenshaw (1989), the term intersectionality 

refers to “the intersection of people’s identity categories but also the intersection of individual 

and institutional factors” (Pugach et al., 2019, p. 207). Although some mathematics education 

research is intersectional, intersectional research is still uncommon in the field and typically only 

pertains to intersections of gender and race (e.g., Battey et al., 2022; Hsieh et al., 2021). Hence, 

scholars (e.g., Bullock, 2018; Hall et al., 2024) have called for an increased focus on 

intersectionality, as well as for intersectional analyses beyond gender and race. 

Social (or membership) identities are based on belonging to groups that share those identities, 

such as gender, sexuality, race, and language (Langer-Osuna & Esmonde, 2017). These 
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identities, especially as they intersect with each other, influence students’ experiences in and out 

of school (Eddy et al., 2015; Ferguson, 2017). Social identities can be conspicuous or 

concealable (Quinn, 2006). Concealable stigmatized identities (CSIs) are those “that can be 

hidden from others and that are socially devalued and negatively stereotyped” (Quinn & 

Earnshaw, 2013, p. 40). Examples include minoritized sexualities, certain health conditions (e.g., 

mental illness), and low socioeconomic status (Busch et al., 2023). Both hiding and disclosing 

CSIs can have consequences for people’s lives in school and beyond (Quinn & Earnshaw, 2013; 

Weisz et al., 2016). This relatively neglected research topic is thus a significant area of 

exploration for mathematics education researchers because mathematics identity is formed by 

interactions between mathematics learning and social identities (Gresalfi et al., 2019). 

History and Goals of the Working Group 

Since the Gender and Sexuality Working Group began in 2018, various topics have been 

explored, including methodologies and theories for conducting inclusive gender and sexuality 

research. Over the years, the working group has grown, indicating expanding interest in this 

research area. In last year’s working group sessions, participants shared their experiences 

conducting gender and sexuality research, including discussing how they initially became 

involved in the field. They expressed that they felt that the working group was a safe space to 

discuss research challenges that they faced, due to the similar perspectives, goals, and 

experiences of those in attendance. Participants also shared examples of research successes and 

pragmatic ideas to support each other’s research. 

One topic that arose in last year’s working group discussions was intersectionality. 

Participants expressed interest in exploring this topic in more depth in future working group 

sessions, which is why we selected the topic as this year’s focus. Specifically, we plan to use the 

working group sessions to provide participants with an opportunity to share their experiences and 

suggestions for conducting intersectional gender and sexuality research, with a focus on CSIs.  

This Year’s Working Group Sessions 

Each session will have a different, but related, focus. Specifically, Session 1 will have an 

introductory focus so that participants can become better acquainted with the topics of 

intersectionality and CSIs, their histories, and their places in gender and sexuality research, via 

two 10-minute presentations: one about intersectionality and one about CSIs. In the remainder of 

Session 1, participants will share their experiences conducting intersectional research, 

particularly research involving CSIs. 

Session 2 will begin with a 15-minute presentation in which examples of intersectional 

research involving CSIs (conducted by other researchers in the field) will be shared. The 

remainder of Session 2 will be a working session in which participants will be provided with 

case studies involving sample research questions and will be invited to conceptualize practical 

ideas for conducting the research using an intersectional lens. Participants will consider the case 

studies in small groups, and the responses to the case study questions will be shared in a jigsaw 

format. 

In Session 3, participants will be asked to form groups based on common areas of interest 

and will work together to brainstorm potential study designs around these topics. We anticipate 

that these discussions will lead to future research collaborations among the working group 

participants. 
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100-Word Description of the Working Group Sessions 

The focus of this year’s Gender and Sexuality Working Group is intersectionality. Although  

some intersectional gender/sexuality research has been conducted, these studies typically only 

involve gender and race. Hence, in the sessions, we plan to specifically focus on concealable 

stigmatized identities (e.g., mental health conditions, socioeconomic status), as they are rarely 

addressed in gender/sexuality research. Participants will share their experiences conducting 

intersectional gender/sexuality research, particularly research involving concealable stigmatized 

identities. Participants will also be able to put their understandings into practice, through 

considering case studies, and will be able to brainstorm future research collaborations with other 

group members. 
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The theory of units construction and coordination originally posited a rationale for students’ 

mathematical reasoning with whole numbers; for instance, explaining that students may 

conceive of 12 as 12 units of one, 1 unit of 12, or 1 unit of 3 groups of 4, among other 

possibilities. Research has subsequently identified connections between students’ construction 

and coordination of whole number units to fractional units, proportional reasoning, and other 

mathematical domains. This working group aims to engage mathematics educators in discussion 

to deepen the field’s understanding of units construction and coordination, including pure 

theoretical research, and research applied in classrooms.  

Keywords: Learning Theory, Learning Trajectories and Progressions, Number Concepts and 

Operations 

Background 

For the past several years, the Complex Connections working group has met to broaden the 

research, understanding, and application of units coordination in mathematics education. This 

work has included discussions around algebraic reasoning, covariational reasoning, 

combinatorial reasoning, mathematics knowledge for teaching and many other mathematical 

concepts. The goal each year is to provide an opportunity for researchers to discuss the links 

between the mathematical concepts and the types of of units constructions and coordinations 

needed for reasoning. This year, the working group is hoping to move beyond these discussions 

and look ahead at research we may develop to broaden the understanding of units construction 

and coordination.  

Units coordination is related to student reasoning, particularly multiplicative reasoning, 

fractional reasoning, algebraic reasoning, covariational reasoning, and combinatorial reasoning 

(Hackenberg & Lee, 2015; Hackenberg & Tillema, 2009; Norton et al., 2015; Antonides & 

Battista, 2022; Tillema, 2013, 2018). Units coordination refers to one’s ability to construct and 

operate on composite units made up of sub-units and switch between the multiple units (Norton 

et al., 2015). For example, in a multiplicative task (e.g., You have 5 towers of cubes, each with 3 

mailto:Karen.zwanch@okstate.edu
mailto:Karen.zwanch@okstate.edu
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cubes, how many cubes do you have altogether?), an individual reasoning multiplicatively could 

coordinate three different units within the task (composite units – towers, single units – cubes in 

each tower, and total compilation – total cubes across the 5 towers) (Tzur et al., 2017).  

Day 1: The Future of Units Construction and Coordination 

Day 1 will have the working group transitioning from what has already been studied to what 

the future holds in units construction and coordination research. The session will begin with an 

introduction to provide a framework for the working group’s goals and allow for a discussion on 

the distinctions between applied research versus pure theory research. This will give members 

the opportunity to consider which direction their future research may take based on their own 

aspirations and research goals. From there, members will be introduced to a scenario to provide 

context for further discussion: If we had unlimited funding to study units construction and 

coordination, what would we, as a community of researchers, want to study, what questions 

would we want to answer, and what problems would we want to explore? The goal is to provide 

a possible roadmap of where we want our research to go based on the progress we have already 

made and what we have left to explore. This discussion will provide members with an 

opportunity to collaborate with others interested in similar research goals and organize times to 

meet throughout the conference days and plan future research.  

Day 2: Nuances of Units Construction and Coordination 

Over the last several years, the working group has come to realize that the nuances of units 

construction and coordination research vary across researchers and their work in the field. 

Therefore, the group will spend the second session exploring these nuances and coming to some 

agreements and commonalities for our research field. These nuances include how we assess units 

construction and coordination, the stages of units coordination we observe and analyze, and the 

terminology we use in our research dissemination (i.e., unit vs units; structure; coordination vs. 

construction, etc.). We will culminate the session by analyzing discrepancies within the units 

coordination literature through guided prompts provided by the leadership team. The goal is to 

find a common foundation on which units coordination research can further build.  

Day 3: 

Day 3 will be a session bookmarked for members to report to the group what they are 

currently studying in units coordination and providing an opportunity to ask questions and 

discuss the research currently going on. The session will also include time to plan for the 2025 

working group, as well as expectations of working group members over the next year.  
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Matney et al.'s (2020) Black Hole of mathematics educational research involves an instructional 

practice that has attained critical gravity in the mathematics teaching field. While practitioner 

anecdotes and related research suggest the practice’s efficacy, there is a lack of rigorous 

research into the practice itself. Launching from Matney et al.’s example of Number Talks, this 

new working group will describe and elaborate on the Black Hole metaphor, identify additional 

possible Black Hole research domains, define parameters for researching and ultimately 

illuminating Black Holes, and establish future research collaborations. 

Keywords: Instructional activities and practices, research methods 

In mathematics education, practitioners often take up an instructional practice that intuition 

tells them will be impactful. This intuition is guided by experience and research related to the 

practice, but at times school systems use this practice widely without objectively understanding 

the efficacy of this practice. Furthermore, the practice often evolves into practices bearing the 

same name while being somewhat different in purpose and substance. This working group seeks 

to promote a “practice-to-research” focus on scholarship examining the ‘Black Holes’ 

surrounding these instructional practices in mathematics classrooms. The authors of this proposal 

are from various institutions and have connected at various conferences, including PME-NA, 

over their shared interest in widely used classroom practices that lack a solid foundation of 

empirical research. This working group seeks to formalize these connections and bring others 

into the conversation. In doing so, we have the following goals: 

• Introduce and discuss the metaphor of Black Holes of research and identify examples. 

• Describe constraints to working on research to illuminate a Black Hole. 

• Discuss what it means to contribute to research on practices represented as Black Holes 

of research. 

• Develop future work across institutions for systematic investigation of the practices. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2163 

Theoretical Background 

Matney et al. (2020) labeled the phenomenon described above as a Black Hole of research on 

instructional practice, meaning an instructional practice that has attained ‘critical gravity’ in the 

teaching field, but little to no blind-peer-reviewed research has investigated its efficacy. When a 

practice resides in a research Black Hole, the Black Hole does not represent empty space; rather, 

there is ‘something’ there attracting practitioners, but research has yet to systematically guide or 

illuminate it. Despite this lack of direct investigation, the Black Hole of research is surrounded 

by an accretion disk made up of connected knowledge from the results of rigorous research that 

suggests the practice’s validity (Matney et al., 2020). 

Matney et al.’s (2020) impetus for developing the metaphor of the Black Hole for 

instructional practices that lacked a rigorous research base was the practice of Number Talks 

(e.g., Humphreys & Parker, 2015; Parrish, 2011). Number Talks are said to promote sensemaking 

and computational fluency (Humphreys & Parker; Parrish). However, while established research 

on several relevant topics—such as classroom environment, discourse, mental math, number 

sense, and teacher questioning—suggest the practice’s efficacy, Matney et al.’s systematic 

literature review identified only one study that examined the impacts of the practice itself with 

K-12 students. Matney et al. asserted that investigation of the practice itself is necessary in order 

to bridge the gap between research and practice and identify the features of the practice and its 

implementation that contribute to the practice’s impact. 

Structure of the Sessions 

On Day 1 of the working group, we will begin with introductions of the participants of the 

working group and review the goals of the working group (15 minutes). Then, based on his 

original literature review (Matney et al., 2020), Matney will introduce the Black Hole metaphor 

and explain its origin (10 minutes). Two research teams will present an overview of their 

research into the practice that spurred the creation of the Black Hole metaphor, Number Talks 

(10 minutes each for a total of 20 minutes). One research group investigates in-service teachers’ 

curriculum assemblages with Number Talk resources. The second research group explores when 

and how preservice teachers use teacher authority in their enacted Number Talks and their related 

reflections. The remainder of the session (45 minutes) will involve small and whole group 

brainstorming and discussion of other potential instructional practices that are surrounded by a 

Black Hole of research. Discussion points will include parameters for what ‘counts’ as a Black 

Hole, what sources should be reviewed in order to identify a Black Hole, and what constitutes a 

lack of systematic research. 

On Day 2, we will review the items discussed on Day 1 (15 minutes). Three research projects 

will present overviews of their research on practices they have identified as surrounded by a 

Black Hole of research (10 minutes each for a total of 30 minutes). One researcher studies pre-

service elementary teachers’ engagement in open mathematics tasks such as Which One Doesn’t 

Belong? (Danielson, 2016), How Many? (Danielson, 2018), and Notice and Wonder (Fetter, 

2021; Ray-Riek, 2013). The second research group investigates in-service teachers’ purposes for 

using Notice and Wonder. A third researcher studies Complex Instruction (Cohen & Lotan, 2014) 

from its theoretical underpinnings of expectation states theory. In the remaining 45 minutes, in 

small groups and as a whole group, discussion will address issues such as research questions, 

populations, data collection, data analysis. We will also discuss what it means to provide 
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evidence of a practice’s ‘efficacy.’ We will discuss challenges inherent in researching in Black 

Holes such as establishing research in K-12 settings with K-12 students.  

Day 3 will focus on establishing joint goals and initiating research collaborations. We plan to 

have a website to keep a record of our work between and across conference meetings. 
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In continuing with past working groups on research at the intersection of disability studies and 

mathematics education, this working group met at PME-NA 45 to share new developments from 

group members, to make new connections, and work toward shared goals. Over the course of the 

three days, we articulated topics and ideas in which to invest our energies, specifically: (a) the 

development of the Mathematics Education Conference Access Committee, (b) a commitment to 

supporting the leadership of PME-NA as they work toward increasing accessibility to and at the 

annual conferences, (c) a plan for a Disability Justice and Mathematics book proposal, and (d) a 

plan for pursuing grant funding for a Disability Studies in Mathematics Education conference. 

Keywords: students with disabilities, special education, equity, inclusion, and diversity 

History 

Kai Rands and James Sheldon conceptualized and convened this working group, formally 

from 2016–2018, although other informal meetings occurred before and after these dates. During 

these early meetings, group members discussed employing different theoretical perspectives 

within their work, described current projects, and raised critical issues. This core group consisted 

of faculty, graduate students, disability activists, and classroom teachers and consisted of: Amber 

Candela, Jessica Hunt, Rachel Lambert, Katie Lewis, Paulo Tan, and Cathery Yeh. The working 

group convened again in 2022 and 2023 at PME-NA. In between formal meetings, many 

working group members collaborated to conduct research, write grants, produce manuscripts and 

books, and engage with the mathematics education, special education, and disability 

communities. 

Work at PME-NA 45 

Across the three sessions at PME-NA 45, 27 people participated in our hybrid working 

group. This hybrid approach allowed access for people to participate and engage in the group 

who would have otherwise been excluded from an in-person-only working group. The need for a 

hybrid working group surfaced when group members expressed concerns about COVID-19, 

travel, in-town transportation, and the difficulty many caregivers face when being away from 

home for multiple days. Our group discussed the various ways hybrid access allowed for more 

inclusivity, specifically for disabled, immunocompromised, and otherwise marginalized scholars. 
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Hybrid access allowed many working group organizers to meet and form collaborations across 

space before, during, and after the conference. Over the three days we built community, worked 

in small groups, and planned for next steps beyond the bounds of conference meetings. We 

created a set of shared documents to capture meeting notes, conversations, and ideas. 

Day 1: Community, Connections, and Generating Small Group Topics 

Our group started with introductions and sharing access needs. The importance of the 

invitation to share access needs is discussed by activists and scholars (e.g., Reinholz & Ridgway, 

2021; Sins Invalid, 2019). For example, sharing one’s access needs might sound like, “I am 

[name], and I am at [university]. My pronouns are she, her, hers, and it is important that I can get 

up and stretch; I need to take breaks periodically,” or, “My access needs are being met through 

having the virtual environment.” Through these introductions, our group built camaraderie as 

people identified similar needs and ways to collectively meet various needs. These introductions 

served as opportunities for group members to identify people with whom they would like to 

connect based on, for example, their professional role or interests. These introductions were also 

an inroad for folks to learn about ableism and how professional norms often (unintentionally) 

impede access. During these introductions, we recorded names and contact information on a 

shared electronic document so group members could reach out to each other during or after the 

conference. One access need shared by many participants was having a virtual modality for the 

working group. Throughout the session, organizers regularly ensured that access needs were met 

and that communication throughout both modalities was successful and comfortable. This helped 

create an environment in which those participating virtually were viewed as full and contributing 

members of the community and spurred a discussion about implicit ableism in the way that 

virtual participation is often viewed as less legitimate. Several members expressed 

disappointment that they, and other marginalized scholars, were unable to engage in the 

remainder of the conference.  

We generated a list of topics for members to pursue in a small group; ideas were documented 

on the shared electronic document. As we generated this list, it became evident that attendees had 

a range of experiences, background knowledge, and interests. It was clear that attendees, both old 

and new, were interested in a space to feel intellectually, professionally, and personally seen and 

heard. Thus, the first meeting organically developed into a space for community and connection. 

Day 2: Generating and Planning 

Our next meeting afforded the opportunity to enact the value that access is a collective 

responsibility, thereby moving toward a collaborative actualization of Disability Justice 

(Piepzna-Samarasinha, 2019). One small concrete example of this occurred as people arrived at 

the session. Group members immediately began collaboratively rearranging chairs and tables, 

with members joining in as they arrived, to honor multiple access needs simultaneously, even if 

those needs were not shared by those doing the rearranging. They did this because increasing 

access meant we all had a greater understanding of each other’s access needs and were thus all 

able to honor those needs and engage in deeper work.  

We had multiple new attendees and so took care to (re)introduce ourselves and conduct an 

access check-in. We continued generating ideas and raising issues to address in small groups. We 

asked for volunteers to lead different small groups and then split into those groups to pursue 

different topics or projects. The groups were: (a) Disability Justice and teacher education, (b) 

Disability Justice and Mathematics book proposal, (c) addressing and/or responding to the 
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“Science of Math” website, including international perspectives, (d) accessibility and ableism 

within mathematics education research spaces, specifically at professional conferences (This 

group formalized themselves into the Mathematics Education Conference Access Committee.), 

and (e) conference grant proposal writing to convene educators and disability-led organizations 

and coalitions. 

Day 3: Updates, Strategizing, and Articulating Next Steps 

On our final day we shared updates on our work in relation to the “Science of Math” website 

and heard from group members who were on the PME-NA steering committee. We discussed 

ideas to push PME-NA to make its conference hybrid and to examine biases and presumptions 

regarding different approaches to conference engagement (e.g., virtual v. in-person). We also 

worked towards establishing how the working group community could continue to make 

progress throughout the year. We assigned leaders to the logistical and intellectual work we 

wanted to pursue. Then, we planned to (a) update the group’s email listserv, (b) publicize 

speaking engagements and papers generated by group members, (c) we summarized what we had 

accomplished during this working group and (d) articulated next steps. 

Progress Since PME-NA 45 

This group maintains regular communication through an established listserv and has 

continued to work on several collaborative projects since our last meeting. In July 2023, four 

members of the working group submitted a paper that analyzed the language used on the 

“Science of Math” website. Since PME-NA 45, this paper has been rejected, revised, and is 

currently under review. 

In October 2023, following the conference, one group member reported that they and other 

members of the Mathematics Education Conference Access Committee had engaged in ongoing 

conversations with PME-NA conference organizers, specifically about increasing conference 

accessibility via a hybrid option. The group member elicited feedback from the working group 

about priority accessibility concerns and took those concerns to others in conference decision-

making roles. This small group continues to meet and advance our position about increased 

conference accessibility. 

In November 2023, three members of the working group elicited ideas for chapters and art 

works for a proposal to Teachers College Press’ Disability, Equity, & Culture series. The editors 

anticipate submitting a revised prospectus to the publisher in spring 2024. 

Actions to Include Participants 

To include as many people as possible, we employed several intentional strategies. First, by 

offering a hybrid option for our working group we signaled to our colleagues and in-person 

conference attendees that we prioritized enacting our values of inclusivity and access. Further, 

when people joined the working group on the second or third days of the conference, we took 

care to pause the work and properly introduce newcomers and orient them to the ongoing work. 

Beyond the conference, we maintain two different email groups: a PME-NA working group list 

and a broader listserv for anyone interested in staying connected to information about 

mathematics education and disability. This provides community, connection, and a recruitment 

avenue as our group positions PME-NA as a focal site for folks interested in taking up critical 

questions about mathematics education and disability. 
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Questions to Address in the Future 

Critical questions that our group will continue to address include: 

• What do we mean by “critical disability studies in mathematics education”?  

• How, if at all, does “critical disability studies” relate to “critical special education”? 

• As mathematics educators, how might we continue to engage folks in other disciplines 

including special education? 

• How could this group promote activism and advocacy within and beyond mathematics 

education? 

• What kinds of conversations about disability and mathematics education are happening in 

international contexts and how can those inform the work of this group? 

• What else is needed with respect to addressing disability and other intersectional 

identities in mathematics education? 

• What is the ethos of this group? 

• How can we meaningfully engage and mentor doctoral students within mathematics 

education and between mathematics education and other fields?  

• How can we support novice and experienced researchers to work and learn with disabled 

students, educators, and scholars? 

• What role can this working group play in advocating for and actualizing increased 

conference accessibility, specifically through organizations with an explicit commitment 

to equity and inclusivity? 
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Goals and Effort Toward These Goals 

“Taking up space as a disabled person is always revolutionary” (Ho, 2020, p. 115). 

As we Envision the Future of Mathematics Education, the theme of PME-NA 46, that future 

necessarily includes the voices, perspectives, and experiences of disabled students (and their 

families), disabled teachers, disabled activists, and disabled scholars. Yet, disability is 

persistently omitted from research in mathematics education (Lambert & Tan, 2020). Because 

mathematics education classrooms and content are often used as tools for marginalization, we 

draw upon critical theories such as Disability Studies in Education, Critical Race Theory, and 

Disability Critical Race Studies (DisCrit) to offer a justice-oriented vision of mathematics 

education. PME-NA 46 would represent the group’s sixth meeting; therefore, our goals 

necessarily encompass the continuation of past work as well as the development of new work: 

• Create an inclusive and accessible space that centers disability and topics related to 

mathematics education; 

• Anchor our work in the 10 principles of Disability Justice (Sins Invalid, 2019); 

• Generate interdisciplinary and cross-institutional collaborations; and 

• Leverage the group’s collective wisdom to (re)imagine solutions to persistent problems. 

Our strategies to meet these goals include: 

• Provide a hybrid option for the working group; 

• Unpack the 10 principles of Disability Justice (Sins Invalid, 2019); 

• Design spaces that prioritize focused, small-group work; and 

• Identify small-group leaders who are equipped to facilitate the cross-pollination of ideas. 

Beyond this meeting, we anticipate proposing future PME-NA working groups to ensure the 

sustainability of this community and the work that this community generates.  
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Theoretical Background 

We theorize ableism through Disability Studies in Education (Connor et al., 2008). We seek 

to disrupt ideologies of “ability” and “normal” (e.g., Annamma et al., 2013; Siebers, 2008) to 

study the pervasiveness of ableism in education. We apply scholarship on ableism to investigate 

how this operates in mathematics education (Dolmage, 2017; Price, 2021; Westby, 2021). We 

draw on the Disability Justice framework, which was developed by disabled queer activists and 

disabled people of color (Sins Invalid, 2019). We specifically draw upon the 10 principles for 

disability justice created by Patty Berne and others from Sins Invalid (Sins Invalid, 2019): 

intersectionality, leadership of the most impacted, anti-capitalist politics, cross-movement 

solidarity, recognizing wholeness, sustainability, cross-disability solidarity, interdependence, 

collective access, and collective liberation. Given the harm done to disabled communities, 

Disability Justice allows researchers to recognize the intersecting legacies of white supremacy, 

colonial capitalism, gender oppression, and ableism to understand how people are labeled 

“deviant”, “unproductive” and/or “invalid” (Sins Invalid, 2019). Acknowledging that disabled 

students and communities of color have gifts (Annamma & Morrison, 2018), such as unique 

mathematical ideas, perspectives, and solutions, challenges the deficit narrative and structures of 

ableism (Lewis & Lynn, 2018; Yeh, 2023). 

Plan for Active Engagement and Working Group Organization 

In specific response to the growing size and diversity of our working group members, we 

have designed a three-session sequence that is both structured and flexible. Group members will 

have choice in how and with which topics they engage. Small-groups will have the autonomy to 

define what “meaningful outcomes” mean for small-group members and a timeline by which 

those outcomes will be achieved; these strategies are designed to promote engagement. 

Session 1: Community, Connections, and Co-Designing 

Most of this session will be to introduce and orient people to the working group. We will start 

with introductions and access needs (20min), followed by an update about the group’s 

accomplishments, sharing the goals of the group, and introducing the principles of Disability 

Justice (30min). We will introduce small-group topics and their leaders and identify any 

additional small groups that may arise (10min). Small-group topics include, but are not limited 

to: (1) teacher education (ongoing from 2023); (2) intersectional identities, specifically 

LGBTQIA+; (3) interdisciplinary work with special education and addressing the “Science of 

Math” website (ongoing from 2022); (4) advocacy / activism; (5) conference accessibility 

(ongoing from 2022); (6) international contexts; (7) conference proposal development (e.g., 

Mathematics Education and Society; ongoing from 2023); (8) theoretical dives into Disability 

Justice, DisCrit, and Critical Disability Studies; and (9) articulating the working group’s ethos. 

This session will conclude with small-group meetings (30min). 

Session 2: Generating and Planning 

Most of this session will be working in small groups. We will (re)introduce people and share 

access needs (15min). We will transition into the small groups identified in Session 1 (55min). 

We will conclude by coming back to the whole group and sharing out (20min). 

Session 3: Articulating Next Steps 

Most of this session will be working in small groups. We will begin in small groups (60min). 

We will come back to the whole group and share out (20min). Finally, we will wrap-up the 
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working group by articulating a plan for ongoing communication and support beyond the 

conference (10min). 
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This new working group seeks to produce innovative ways to support the implementation of and 

research about ‘Building Thinking Classrooms’ at the university and K-12 levels. 

Keywords: Professional Development, Preservice Teacher Education, Classroom Discourse. 

Introduction 

Since it was first introduced to the mathematics education community, Building Thinking 

Classrooms (BTC) (Liljedahl, 2021) continues to grow in relevance among teachers and teacher 

educators across North America. We see this growth in regional conferences, professional 

learning programs, and learning communities across social media platforms. The relevance of 

this initiative has grown so much that the first annual International Building Thinking 

Classrooms Conference was held in Indianapolis in 2023.While BTC is a research-based 

initiative, the resources for teachers are mainly limited to the book and online forums for sharing 

ideas. For teachers to successfully implement, critique, and supplement these practices, guidance 

is needed to support their work. Our goal as mathematics teachers and mathematics teacher 

educators is to study how the practices and their implementation are supporting effective 

teaching and learning. Our aim is to support teachers to draw on the practices, along with other 

research-based initiatives that align with increasing student thinking in the classroom, as they 

make professional decisions in their classroom. 

The authors of this working group have engaged in various initiatives centered around BTC. 

One author has created an Instructional Circle (Author, 2022) to provide personalized and 

deprivatized feedback to teachers as they implement BTC. There are three stages to 

implementation of BTC that become more difficult to implement in a classroom (Liljedahl, 

2016). The instructional circle is a form of professional learning where teachers can find support 

from experienced teachers and knowledgeable others about ways they can improve their 

instructional practices. Another author developed an initiative with a local school district to 

provide instruction and materials for teachers wanting to implement BTC but lacking the support 

or materials to be successful. Lastly, one Author’s team is engaging in an initiative looking at 
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specific aspects of BTC including task writing and “thin slicing” and how teachers are utilizing 

them in their implementation of BTC (Frazee & Scharfenberger, 2023).  

As mathematics teachers and mathematics teacher educators we feel it is worthwhile to 

support the implementation of BTCs in a variety of contexts. This instructional practice supports 

ambitious teaching as defined in Principles to Actions: Ensuring Mathematical Success for All 

(NCTM, 2014). The creators of BTC also understand professional learning principles that state 

incremental changes to teacher practices are more sustainable long-term than sudden 

transformational professional developments (Otten et al., 2022). 

Goals of the Working Group 

The goals of this working group are two-fold. First, we want to serve as a forum for authors 

and participants to share a variety of research projects centered around Building Thinking 

Classrooms (Liljedahl, 2021). This will inform the conversations about how to create a more 

effective implementation and support structure for teachers using this instructional practice in 

both K-12 and university levels. Second, instructional circles (Melville, 2022) will be created for 

the participants of the working group to form professional learning communities for support 

around their specific interest with BTC beyond this conference. Specifically, these contexts may 

include using BTC in math content courses, math methods courses, in-service professional 

learning, and ways in which research projects can be designed to study various aspects of these 

settings. We believe that these instructional circles will be a valuable resource as we implement 

and study the effects of BTC on student learning and teacher education and the growth of 

mathematics teacher educators.  

We expect this working group to continue for multiple years; however, this initial setting will 

be for the introduction of BTC to some, and reports of what the authors and participants are 

currently doing. For future iterations of this working group, we hope to develop more concise 

ideas about the needs, struggles, and benefits of implementing BTC in content courses, method 

courses, and other professional learning settings. 

Organization and Presentation Plan 

The first session will start with presentations from the authors about what they are currently 

doing regarding coaching, implementing, and teaching BTC in methods courses and professional 

learning contexts. The authors alone have a variety of initiatives around BTC. One example is 

that BTC is being studied as a vehicle for task assessment and professional learning of teachers 

around planning (Frazee & Scharfenberger, 2023). has created an Instructional Circle (Melville, 

2022) to provide personalized and deprivatized feedback to teachers as they implement BTC. 

The last initiative studies how BTC is being used in a more traditional professional learning 

course for teachers who are or would like to implement these instructional strategies.  

The second session will include reports from non-author participants about their current 

initiatives that utilize BTC or that could benefit from using BTC. These participants will 

volunteer during the first session for this activity. The second session will end with forming 

break out groups according to participants’ interest in utilizing BTC (i.e., math content 

classrooms, math methods classrooms, professional learning settings, or researching the effects 

of BTC in these other contexts).  

The third session will continue the breakout groups for the different contexts that participants 

are interested in utilizing BTC. During these breakout sessions, we plan to help organize the 
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participants into instructional circles to provide support and fresh ideas to implement or study 

BTC in different settings. This session will also include each group sharing their current ideas 

and goals with the whole group.  
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The Embodied Mathematical Imagination and Cognition (EMIC) Research Colloquium offers 

hands-on activities; technological, curricular, and pedagogical demonstrations; and open spaces 

for exploration and discussion regarding the embodied nature of mathematics education. We use 

the PME-NA 46 conference theme “Envisioning the Future of Mathematics Education in 

Uncertain Times” to invite the community to experience perspectives across multiple institutions 

and expand notions of mathematical activity, effective teaching, learning, assessment, and 

learning technology design. We focus on current uses, future prospects, and challenges of virtual 

and augmented reality (VR/AR) to foster inclusive and effective educational experiences.  

Keywords: Cognition; Learning Theory; Teaching; Social Justice; Systemic Change; Technology 

Theoretical Background 

Virtual and augmented reality (VR/AR) serve an increasingly central role in mathematics 

education and teacher training (Bock & Dimmel, 2021). As with any such advancement, the 

research community must contribute to this process of technology transfer and translation based 

on rigorous methodology and sound theoretically-principled designs for curriculum, instruction, 

and assessment. However, few studies in AR/VR are informed by a clear theoretical framework 

(Mikropoulos & Natsis, 2011). VR/AR offers learners unprecedented access to mathematical 

objects and tools through sensorimotor and collaborative processes that may generate new forms 

of mathematical inscriptions, even entirely new branches of mathematics (Nathan, 2024). EMIC 

contributes a compelling framework for the empirical study of embodied interactions 

(collaborative gesture; multimodal analytics) using VR/AR, the design of future platforms and 

activities (affordances and constraints), and formative and summative assessments of nonverbal 

ways of knowing (Abrahamson, 2014; Alibali & Nathan, 2012; Arzarello et al., 2009; De Freitas 

& Sinclair, 2014; Edwards et al., 2014; Radford, 2009; Walkington et al., 2021) that address the 

whole learner, facilitate the development of diverse learners, and foster inclusive and effective 

educational experiences (McKinney de Royston, et al., 2020). 

A Brief History and Motivation of the EMIC Working Group 

The EMIC working group officially started in East Lansing, MI during PME-NA 2015. We have 

convened annually at PME-NA ever since, organizing events that investigate the embodied 
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nature of mathematics through physical and digital games, arts and crafts, individual and 

collaborative dance and movement, language, perception, immersive experiences, and more. 

EMIC members continue to explore new technologies (e.g., Harrison et al., 2018; Walkington et 

al., 2021) and research methods (e.g., Abrahamson et al., 2021; Closser et al., 2021) that 

acknowledge and leverage the inherently embodied nature of mathematical cognition. They go 

beyond scholarly publications and presentations to offer: novel embodied technologies, including 

some that have gone to scale for classroom use, special education, and emerging bilinguals; 

teacher learning for instructional uses of gestures; and webinars for teachers and parents. In 

addition to the authors, the organizers/institutions will include Dr. Teruni Lamberg (UNR), David 

Kirkland (Clark County School District), and Dr. Candace Walkington (SMU). 

 

VR/AR: Envisioning the Future of Mathematics Education in Uncertain Times 

VR/AR technology is rapidly altering the landscape of mathematics education and STEM 

professional work through immersion and direct, body-based interactions with (holographic) 

mathematical objects. In 2024, we will organize hands-on activities and group discussions 

around the proliferation of VR/AR technologies in classroom instruction and research. On Day 

1, we will do introductions and then give an overview of grounded and embodied mathematical 

thinking and teaching. We will then talk about published findings on the educational value of 

VR/AR technology for supporting math learning and teaching and its connection with embodied 

learning (e.g., Garzón et al., 2020). We will invite participants to engage and observe the use of 

an example VR system for teaching about powers of ten. We will explain why students often 

struggle to understand orders of magnitude and reason about very small and very large numbers 

in domains such as nanotechnology, and demonstrate how VR provides perceptual experiences 

that can improve their mathematical reasoning. Day 1 will conclude with an open-ended Q&A on 

the nature of embodiment theory and embodied design principles for VR/AR.  

On Day 2, organizers will facilitate exploring EMIC accounts of VR/AR in collaborative, 

embodied math activities. We address research methods for analyzing collaborative embodiment 

in immersive learning environments and some of the benefits and challenges for implementing 

these interventions in authentic learning contexts. We will then break into small design groups 

where participants consider ways VR/AR could be used to explore other topics in mathematics 

education, and ways of supporting diverse learners with varying physical abilities and linguistic 

and cultural experiences. We will report these ideas to the whole group, theorizing about the 

nature of learning in ways that inform research and the design of valid knowledge assessments 

for a broad range of learners and math topics, which will be chronicled in a shared document.  

Day 3 will start with reflections on the design ideas and learning principles generated during 

Days 1 & 2. We explore ways that VR/AR enables novel forms of mathematical activity by 

directly interacting with and transforming geometric objects using body movements and 

perceptual processes. We then consider how VR/AR can support expanded notions of 

mathematical representations, such as inscribing operations through person- and group-centered 

actions and perceptions, in contrast with disembodied, formalism-centered, symbolic notations 

and diagrams. We plan to have a facilitated discussion on why embodiment offers a unique set of 

theoretical and methodological resources for designing meaningful learning experiences.  
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Conclusions and Looking Ahead 

Embodied learning theory and design principles provide key insights into how perceptually 

concrete, bodily experiences and collaboration in VR/AR can engage learners across a wide 

range of topics and grade levels. Movement- and perception-based mathematical activities can 

reach students who may otherwise feel left out of highly discursive and symbol-based activities. 

Through EMIC, we aim to foster an engaged community committed to transformative education. 
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100-word description 

VR/AR technology is rapidly altering the landscape of math education and STEM professional 

work. Embodied approaches to mathematics learning, instruction, design, and assessment offer 

natural inroads for understanding the challenges and benefits of using VR/AR to engage all 

learners. Since 2015, the Embodied Mathematical Imagination and Cognition (EMIC) Research 

Colloquium has organized hands-on, collaborative, and generative activities for experiencing the 

contributions that embodied mathematics has to offer. During this 3-part research colloquium, 

participants are invited to experience, reflect on, and design activities for immersive learning 

experiences using VR/AR across a range of topics to suit all learners across learning settings. 
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In our third year of meeting at PME-NA, we brainstormed and solidified plans for conducting 

research studies that would support our future recommendations for how to prepare future 

elementary teachers to teach mathematics. Our goals for this year are to continue to support 

such research conducted by working group members, adding new members and studies as 

appropriate, and to prepare to synthesize and disseminate our research findings. 

Keywords: Preservice Teacher Education, Teacher Educators, Mathematical Knowledge for 

Teaching, Elementary School Education 

Elementary teacher preparation in North America is vitally important to ensure a robust 

mathematics education for elementary students. However, preparation programs for elementary 

teachers contain large variations in terms of what, how, and how much is taught. Various 

organizations (e.g., AMTE, 2017; CBMS, 2012; NCEE, 2016) have made recommendations 

about teacher preparation including the number of credit hours that prospective teachers (PTs) 

should take as well as what content should be taught, and what types of experiences PTs should 

have. However, research (e.g., Garner et al., 2023; Masingila et al., 2012) has shown that the 

majority of teacher preparation programs are not meeting these recommendations. In many 

programs, it seems that the current recommendations are not feasible, given the other 

requirements for preparing PTs. The purpose of this working group is to create a set of research-

based, specific recommendations for elementary teacher preparation that can be feasibly 

implemented by teacher education programs. We will do this by providing research-based 

evidence to stakeholders to show that our claims for the amount of instruction time and specific 

topics and instructional practices are needed to prepare PTs for their future jobs. 

Progress of Current Work 

According to Garner et al. (2023), the overwhelming majority of elementary teacher 

preparation programs in the United States fall short of the number of credit hours in elementary 
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mathematics content and methods recommended by the Standards for Preparing Teachers of 

Mathematics (AMTE, 2017). More specific research-based recommendations of what topics to 

teach, how much time to spend on each topic, and what pedagogical strategies are effective in 

teaching these topics will help programs advocate for change at their institutions. Corven et al. 

(2022) indicate that elementary prospective teachers require 6-8 hours of instructional time to 

acquire lasting and deep specialized content knowledge (Ball et al., 2008) for key mathematics 

topics from the elementary curriculum. Whereas Corven et al. (2022) claim this finding 

underscores the need to limit the number of topics taught in elementary teacher preparation (cf. 

Walsh et al., 2022), this result further supports the conclusion of Garner et al. (2023) that 

programs with fewer credit hours than AMTE’s (2017) recommendations may not be serving 

future elementary teachers well. Our working group continues to conduct research that will be 

useful in providing more specific recommendations for elementary teacher preparation programs. 

Organization and Presentation Plan 

This will be the fourth year that this working group has met at PME-NA. We have already 

created a number of subgroups that are undertaking research projects as detailed in our report. At 

PME-NA 46, we plan to have each research subgroup present their current research plans and 

research studies in progress during the first two sessions, with time allocated in the first session 

to orient new members to the working group. After each presentation, the audience will have an 

opportunity to ask general questions and give feedback. Each day, after the presentations, the 

subgroups that presented will meet to discuss the feedback and revise their research plans. 

Members of the working group who are not members of any of the subgroups that presented that 

day will be asked to serve as “outside reviewers” to a subgroup of their choice to provide 

additional specific feedback on research plans. This structure will allow new members of the 

working group time to figure out which subgroup(s) they want to join and be able to contribute 

meaningfully to subgroup work right away. Additionally, this structure will permit members who 

are part of two subgroups to meet with both subgroups during the conference. 

During the third session, all subgroups will meet for the first part of the session to discuss the 

concrete next steps for their research plans. We will provide a calendar template to subgroups to 

help with this planning. In the second half of the third session, we will give each subgroup five 

minutes to present their plan to the whole group. We will ask subgroups to talk specifically about 

the potential results they might present at a PME-NA Colloquium in 2025. 

Opportunities for New Members to Contribute and Future Plans 

New members of the working group should select one or two research subgroups that interest 

them. They will have opportunities to join these subgroups and contribute meaningfully to the in-

progress research plans as a collaborator. We encourage anyone interested in joining the working 

group to reach out to a subgroup leader before the conference (contact information for the 

subgroup leaders is in our report) to get added to the email notifications list. 

We expect the working group to transition to a Colloquium for PME-NA 47 (2025) to allow 

the subgroups to present research results. We also encourage researchers who are not members of 

the working group but who have conducted research related to one of the subgroups to reach out 

for inclusion in the Colloquium. After the Colloquium, we intend to organize a special issue of a 

journal or a book to disseminate the results of the working group. We expect to have an 

introductory article, one article for each subgroup that summarizes and synthesizes their work, 
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and a concluding article that contains policy recommendations and implications of each article. 

After the journal/book is published, we intend to hold a conference to discuss and debate a draft 

of the curricular recommendations. 
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Gender and sexuality research in mathematics education remains a significant focal point for 

discussions among researchers, educators, and students. During the 2023 Annual Meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics 

Education (PME-NA), the working group met to explore our journeys as gender and sexuality 

researchers, the challenges and supports encountered throughout our endeavors, and the stories 

told through our research. In this report, we discuss the key activities conducted during the 

working group sessions at PME-NA 2023, including a presentation about a recent literature in 

gender and sexuality, as well as two focus group discussions. Furthermore, we delve into how 

the discussions held during the 2023 working group sessions propelled us toward embracing 

intersectionality as a central focus for the 2024 working group initiatives. 

Keywords: Gender; LGBTQIA+; Equity, Inclusion, and Diversity; Social Justice 

History of the Working Group 

The Gender and Sexuality Working Group originated from discussions on equity in 

mathematics education at PME-NA 2017 in Indianapolis and first convened at PME-NA 2018 in 

Greenville. Since its inception, the working group has met annually at PME-NA to facilitate 

crucial discussions on gender and sexuality in mathematics education. At these gatherings, we 

have focused on various research approaches, including theory and data (Przybyla-Kuchek et al., 

2022), conceptual and methodological frameworks (Jackson et al., 2021), and data collection 

(Ataide Pinheiro et al., 2023). The group has been a welcoming and supportive venue for early-

career faculty and graduate students, and has provided opportunities for them to share their 

research, assume leadership roles, and engage with researchers from institutions across the 

United States, Canada, Brazil, and Australia. 

A significant aspect of the working group has been its efforts to broaden participants’ 

perspectives on gender and sexuality research in mathematics education and to support 

individuals in developing and advancing their work for publication. For instance, the group was 

pivotal in supporting contributions to the special issue on gender and sexuality in Mathematics 

Education Research Journal, co-edited by Jennifer Hall and Eva Norén (2021). Notably, during 

PME-NA 2021, the working group organized discussions featuring authors of articles from this 

special issue, providing a platform for in-depth exploration and debate, facilitated by a 

designated discussant (Jackson et al., 2021). The Gender and Sexuality Working Group continues 

to serve as a vital forum for advancing research, fostering collaboration, and promoting 

inclusivity within gender and sexuality research in mathematics education. 
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2023 Working Group Sessions and Efforts Made to Include Participants 

After several years of engaging in crucial discussions on theory and methodologies in gender 

and sexuality research, the 2023 Gender and Sexuality Working Group shifted its focus towards 

exploring the personal narratives and motivations that shape us as gender and sexuality 

researchers. Specifically, we sought to understand the life stories of researchers in this field, 

including what led them to develop an interest in this research topic, their experiences navigating 

research across various academic venues (e.g., faculties of education, departments of 

mathematics), and how these lived experiences may or may not have influenced their research 

agendas and the stories that they have told through their research. This exploration encompassed 

the challenges encountered and the support received in conducting gender and sexuality research. 

Next, we provide a detailed overview of the activities that transpired during the PME-NA 

2023 Gender and Sexuality Working Group sessions. 

Day 1 

We began the working group session on Day 1 with introductions of attendees and an open 

discussion to learn about the types of research that attendees were interested in pursuing in 

connection to gender and sexuality in mathematics education. After these introductions, we 

outlined the plans for the working group sessions.  

On Day 1, we also had the opportunity to delve deeper into a literature review prepared and 

presented by one of our 2023 leadership team members, Ana Dias of Central Michigan 

University. Ana systematically reviewed research methods utilized in previous research articles 

focusing on gender, sexuality, and mathematics education from 2020 to 2024, using the databases 

Google Scholar, EBSCO, ERIC, Web of Science, and ProQuest. In her review, Ana drew upon 

and expanded the dates covered in the review done by Becker and Hall (2023). English, French, 

Spanish, and Portuguese were the languages used in the review. For this systematic literature 

review, the types of work that were excluded were thesis and dissertations, conference 

proceedings, books, opinion pieces, theoretical papers, and reports on lessons and activities; 

studies in which STEM was treated as a whole (as opposed to those that had separate data about 

mathematics students, preservice teachers, or in-service teachers); and research articles in which 

gender or sexuality were used as a variable (as opposed to as a category of analysis). After the 

exclusion criteria were applied, 31 articles remained for review. Only four studies involved 

quantitative methodologies (Copur-Gencturk et al., 2021; Teague Tsopgny et al., 2020; Voigt, 

2022; Wolff, 2021). The rest were qualitative studies. 

Methods used in the qualitative studies were discourse analysis, content analysis, and 

interviews with drawing solicitation (Gjøvik et al., 2022; Guichot-Reina & De la Torre-Sierra, 

2023; Lafay, 2022; Neto & Ataide Pinheiro, 2021); interaction analysis for analyzing video data 

(Kolovou et al., 2023); semi-structured interviews and coding (Jaremus, 2021; Jaremus et al., 

2020); task analysis (Rubel et al., 2022), interventional studies (de Souza Ortolan et al., 2020; 

Soares et al., 2023); a combination of interviews, focus groups, photo solicitation, and discussion 

(Hall & Robinson, 2020); narrative inquiry and grounded theory (Kersey & Voigt, 2021); 

longitudinal mixed methods and national surveys (Barbosa et al., 2021; Hsieh et al., 2021); 

document analysis and ideology critique (Martins et al., 2021); questionnaires analyzed 

qualitatively (Guse et al., 2020); feminist post-structural discourse analysis (Przybyla-Kuchek, 

2021); doctrinal methodology (Sharma, 2021); and comparative methodologies (Sharma, 2021; 

Jao et al., 2023). Some of the perspectives from which the studies were conducted were post-
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structural feminism (Jaremus, 2021; Jaremus et al., 2020; Przybyla-Kuchek, 2021), and 

decolonization (Barbosa et al., 2021; Soares et al., 2023). This introductory discussion laid the 

groundwork for subsequent conversations during Days 2 and 3 of the Working Group. 

Day 2 

Day 2 discussions were focused on stories of how the working group participants became 

gender and sexuality researchers, and what led us to be interested in researching gender and 

sexuality in mathematics education. We also discussed the challenges and supports that we have 

encountered and continue to encounter as gender and sexuality researchers. In our discussions, 

we aimed to support graduate students and early-career faculty embarking on research in gender 

and sexuality who may benefit from learning about and learning from obstacles that we have 

faced, and that they may themselves face. Furthermore, such discussions are beneficial for all 

scholars as we shared knowledge, skills, and resources that are useful for successfully navigating 

conducting research in this field. 

The discussions on Day 2 were organized as focus group discussions. Therefore, we divided 

the leadership team and the participants into two groups. The questions discussed on this day by 

both leadership team members and participants included, but were not limited to: 

(a) How did you become interested in gender and sexuality research? 

(b) What challenges have you faced while doing gender and sexuality research? 

(c) What supports have you encountered while doing gender and sexuality research? 

(d) Is there anything else you would like to share about your story? 

Some of the themes that arose during these focus group discussions included challenges of 

conducting this kind of research, including having our voices not be heard in university 

departments, difficulty obtaining IRB approval, and differences in norms between countries.  

Day 3 

On the last day of the working group sessions, we engaged participants in focus groups in a 

similar manner to the ones that we employed on Day 2. The specific discussion questions we 

used to guide the discussion on Day 3 were: 

(a) What stories have you told through your gender and sexuality research? (For those who 

haven’t had the chance to conduct research in this area yet, what would you like to know 

before engaging in gender and sexuality research?) 

(b) How have your years of experience affected the stories that you have told through gender 

and sexuality research?  

(c) What ways do you envision this working group moving forward as a space to engage in 

discussions of gender and sexuality in mathematics education?  

Some of the topics that emerged from this focus group discussion were the need for better 

pre-service teacher education regarding these topics, the challenges of teasing out intersectional 

identities (especially hidden ones), the need to move beyond binaries and normativities, and the 

increased expectation of researchers sharing their identities with research participants and in 

publications.  

We concluded Day 3 by consolidating our plans for future research discussions using a 

Jamboard, as shown in Figure 1. During the conversation that followed, we noted that many of 

the topics suggested on the Jamboard pertained to intersectionality and thus determined that for 

the 2024 working group sessions, we would focus on a theme related to intersectional identities. 
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Figure 1: Jamboard Used by Participants During the Day 3 Session 

Progress Made From the 2023 Conference to the 2024 Conference 

As discussed, the initial design of the PME-NA 2023 Working Group on Gender and 

Sexuality involved building a repository of why and how individuals become gender and 

sexuality researchers, the challenges and supports that they have encountered when conducting 

research in this field, and the stories they have conveyed through their research. We are planning 

to follow up from the focus of the 2023 working group sessions and investigate possible outlets 

in which our stories could be shared more publicly (e.g., a special issue of a journal). We are 

eager to better understand: What motivates scholars to become gender and sexuality researchers? 

What challenges and supports do gender and sexuality researchers experience along the way? 

What stories have gender and sexuality researchers told through their research? How do their 

lived experiences affect the research questions that they choose to pose? 

Questions to Address in the Future 

As mentioned, one area of interest raised by participants of the 2023 working group was the 

topic of intersectional identities. Specifically, participants discussed how the multitude of 

individuals’ social identities, in addition to gender and sexuality, could be used to control, 

oppress, and exclude individuals from mathematics education. Therefore, discussing gender and 
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sexuality without considering race, socioeconomic status, disability, and other identities makes it 

difficult to have a more holistic discussion about how gender and sexuality impact the teaching 

and learning of mathematics. Participants demonstrated an interest in further discussions by the 

working group that bring to the forefront the intersections of race, gender, and sexuality, as well 

as socioeconomic status, disability, and other identity factors that may be less ‘visible’ than 

gender or race. Participants also raised questions regarding (a) the effects of national/state/district 

policy on discussions of sexuality on student identity, (b) supporting queer teachers and students 

by making the curriculum inclusive of queer people, and (c) preparing teachers to address gender 

and sexuality in inclusive, appropriate ways. These questions may be considered and explored in 

working group sessions at future PME-NA conferences. 

 

References 
Ataide Pinheiro, W., Hall, J., Piatek-Jimenez, K., Provost, A., Dias, A. L. B., & Jackson, B. (2023). Gender and 

sexuality in mathematics education working group: Supporting learners and scholars through our stories. In T. 

Lamberg & D. Moss (Eds.), Proceedings of the 45th Annual Meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (Vol. 2, pp. 1021–1023). North American 

Chapter of the International Group for the Psychology of Mathematics Education. 

Barbosa, G., Giraldo, V., & da Costa Neto, C. (2021). Etnomatemática e pedagogia decolonial na licenciatura em 

matemática: Uma experiência com estudantes LGBTQI+ [Ethnomathematics and decolonial pedagogy in 

mathematics teacher education: An experience with LGBTQI+ students]. Revista de Educação da Universidade 

Federal do Vale do São Francisco, 11(24), 393–425. 

Bento, A. S., Soares, A. C., Pastoriza, B. S., & Sangiogo, F. A. (2023). Diversidade em pauta em uma intervenção 

didática na formação de professores de ciências e matemática [Diversity in focus in a didactic intervention in 

the training of science and mathematics teachers]. Revista De Ensino De Ciências E Matemática, 14(1), 1–23. 

https://doi.org/10.26843/rencima.v14n1a19  

Copur-Gencturk, Y., Thacker, I., & Quinn, D. (2021). K–8 teachers’ overall and gender-specific beliefs about 

mathematical aptitude. International Journal of Science and Mathematics Education, 19, 1251–

1269. https://doi.org/10.1007/s10763-020-10104-7    

de Souza Ortolan, L., Possari, D. S., Paes, V. G., Galego, L. G. da C., & Pereira, F. L. (2020). O uso de expressões 

pejorativas em relação a gênero e sexualidade na perspectiva de futuros professores [The use of derogatory 

expressions in relation to gender and sexuality in the perspective of future teachers]. Revista FSA, 17(8), 149–

172. 

Gjøvik, Ø., Kaspersen, E., & Farsani, D. (2023). Stereotypical images of male and female mathematics teachers. 

Research in Mathematics Education, 25(2), 178–193. https://doi.org/10.1080/14794802.2022.2041471  

Guichot-Reina, V., & De la Torre-Sierra, A. (2023). The representation of gender stereotypes in Spanish 

mathematics textbooks for elementary education. Sexuality & Culture, 27(6), 1481–1503. 

https://doi.org/10.1007/s12119-023-10075-1  

Guse, H. B., Waise, T. S., & Esquincalha, A. da C. (2020). O que pensam licenciandos(as) em matemática sobre sua 

formação para lidar com a diversidade sexual e de gênero em sala de aula? [What do mathematics 

undergraduates think about their training to deal with sexual and gender diversity in the classroom?]. Revista 

Baiana de Educação Matemática, 1, 1–25. 

Hall, J., & Norén, E. (2021). Innovations in “gender issues” research in mathematics education. Mathematics 

Education Research Journal, 33(4), 787–791. https://doi.org/10.1007/s13394-021-00404-8   

Hall, J., & Robinson, T. (2020). “Death by a thousand papercuts”: Gender issues in university mathematics. Redress, 

29(2), 39–44. http://www.publications.awe.asn.au/redress-december-2020   

Hsieh, T.-Y., Simpkins, S. D., & Eccles, J. S. (2021). Gender by racial/ethnic intersectionality in the patterns of 

adolescents’ math motivation and their math achievement and engagement. Contemporary Educational 

Psychology, 66, 1–14. https://doi.org/10.1016/j.cedpsych.2021.101974  

Jackson, B., Przybyla-Kuchek, J., Piatek-Jimenez, K., Dias, A., Hall, J., Kersey, E., Moore, A., Ataide Pinheiro, W., 

& Wiest, L. (2021). Working group on gender and sexuality in mathematics education: Emerging conceptual 

https://doi.org/10.26843/rencima.v14n1a19
https://doi.org/10.1007/s10763-020-10104-7
https://doi.org/10.1080/14794802.2022.2041471
https://doi.org/10.1007/s12119-023-10075-1
https://doi.org/10.1007/s13394-021-00404-8
http://www.publications.awe.asn.au/redress-december-2020
https://doi.org/10.1016/j.cedpsych.2021.101974


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2187 

and methodological frameworks. In D. Olanoff, K. Johnson, & S. Spitzer (Eds.), Mathematics education across 

cultures: Proceedings of the 43rd Meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education (pp. 1950–1952). North American Chapter of the International Group for 

the Psychology of Mathematics Education. 

Jaremus, F. (2021). When girls do masculinity like boys do: Establishing gender heteroglossia in school 

mathematics participation. Mathematics Education Research Journal, 33(4), 713–731. 

  https://doi.org/10.1007/s13394-020-00355-6 

Jaremus, F., Gore, J., Prieto-Rodriguez, E., & Fray, L. (2020). Girls are still being ‘counted out’: Teacher 

expectations of high-level mathematics students. Educational Studies in Mathematics, 105(2), 219–236. 

  https://doi.org/10.1007/s10649-020-09986-9 

Kersey, E., & Voigt, M. (2021). Finding community and overcoming barriers: Experiences of queer and transgender 

postsecondary students in mathematics and other STEM fields. Mathematics Education Research Journal, 

33(4), 733–756. https://doi.org/10.1007/s13394-020-00356-5 

Kolovou, M., Ran, H., & Secada, W. (2023). CGI teachers’ patterns of interacting with male and female students 

during their first and second years of practice. International Journal of Science and Mathematics Education, 

21(7), 1451–1472. https://doi.org/10.1007/s10763-022-10314-1 

Lafay, A. (2022). Représentations de genre dans un manuel scolaire de mathématiques de première année du 

primaire au Québec [Gender representations in a first-grade mathematics textbook in primary school in 

Quebec.]. Canadian Journal of Education/Revue Canadienne de l'Éducation, 45(3), 769–786. 

  https://doi.org/10.53967/cje-rce.v45i3.5169 

Leyva, L. A. (2021). Black women’s counter-stories of resilience and within-group tensions in the white, patriarchal 

space of mathematics education. Journal for Research in Mathematics Education, 52(2), 117–151. 

  https://doi.org/10.5951/jresematheduc-2020-0027 

Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2021). Detailing racialized and gendered mechanisms 

of undergraduate precalculus and calculus classroom instruction. Cognition and Instruction, 39(1), 1–34. 

https://doi.org/10.1080/07370008.2020.1849218  

Lindner, J., Makarova, E., Bernhard, D., & Brovelli, D. (2022). Toward gender equality in education—Teachers’ 

beliefs about gender and math. Education Sciences, 12(6), Article 373. https://doi.org/10.3390/educsci12060373 

Lubienski, S. T., Ganley, C. M., Makowski, M. B., Miller, E. K., & Timmer, J. D. (2021). “Bold problem solving”: 

A new construct for understanding gender differences in mathematics. Journal for Research in Mathematics 

Education, 52(1), 12–61. https://doi.org/10.5951/jresematheduc-2020-0136 

Martins, I. M., Gonçalves, H. J. L., & Dias, A. L. B. (2021). Para além das aparências: As configurações de gênero e 

sexualidade em um currículo de formação inicial de professores/as de matemática [Beyond appearances: 

Gender and sexuality configurations in an initial teacher training curriculum for mathematics teachers]. Revista 

Enfoques Educacionales, 18, 123–143. https://doi.org/10.5354/2735-7279.2021.64158 

Mohr, I., & Civiero, P. A. G. (2023). Educação matemática colorida e fora do armário [Colored mathematical 

education and out of the closet]. PROMETEICA—Revista De Filosofía Y Ciencias, 27, 602–612. 

https://doi.org/10.34024/prometeica.2023.27.15355 

Neto, V., & Ataide Pinheiro, W. (2021). Análise comparativa entre Brasil e os Estados Unidos: O problema de 

gênero em livros didáticos de matemática [Comparative analysis between Brazil and the United States: The 

gender problem in mathematics textbooks]. Revista de Investigação e Divulgação em Educação Matemática, 

5(1), 1–21.https://doi.org/10.34019/2594-4673.2021.v5.33216 

Neto, V., Borges, L., & Alves, T. (2021). Redes produtivas de saber/poder: Gênero e matemática sobre análise de 

estudantes. Revista Internacional de Pesquisa em Educação Matemática, 11(3), 173–188. 

Przybyla-Kuchek, J. (2021). The possibilities of feminist poststructural discourse analysis as an approach to gender 

research in the mathematics classroom. Mathematics Education Research Journal, 33(4), 689–711.  

  https://doi.org/10.1007/s13394-020-00364-5 

Przybyla-Kuchek, J., Jackson, B., Piatek-Jimenez, K., Hall, J., Dias, A. L. B., & Ataide Pinheiro, W. (2022). Gender 

and sexuality working group: Applying theory to data. In A. E. Lischka, E. B. Dyer, R. S. Jones, J. N. Lovett, J. 

Strayer, & S. Drown (Eds.), Proceedings of the 44th Meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (pp. 2185–2873). North American Chapter 

of the International Group for the Psychology of Mathematics Education. 

https://doi.org/10.1007/s13394-020-00355-6
https://doi.org/10.1007/s10649-020-09986-9
https://doi.org/10.1007/s13394-020-00356-5
https://doi.org/10.1007/s10763-022-10314-1
https://doi.org/10.53967/cje-rce.v45i3.5169
https://doi.org/10.5951/jresematheduc-2020-0027
https://doi.org/10.1080/07370008.2020.1849218
https://doi.org/10.3390/educsci12060373
https://doi.org/10.5951/jresematheduc-2020-0136
https://doi.org/10.5354/2735-7279.2021.64158
https://doi.org/10.34024/prometeica.2023.27.15355
https://doi.org/10.34019/2594-4673.2021.v5.33216
https://doi.org/10.1007/s13394-020-00364-5


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2188 

Rubel, L. H., Ayalon, M., & Shahbari, J. A. (2022). Sequencing and selecting solutions in a gendered world. 

Mathematical Thinking and Learning. Advance online publication. 

https://doi.org/10.1080/10986065.2022.2062641  

Sharma, D. S. (2021). Challenges faced by the LGBTQ community—A comparative study between India and 

Australia. Turkish Journal of Computer and Mathematics Education, 12(4), 1105–1109.  

Bento, A. S., Soares, A. C., Pastoriza, B. S., & Sangiogo, F. A. (2023). Diversidade em pauta em uma intervenção 

didática na formação de professores de ciências e matemática [Diversity in focus in a didactic intervention in 

the training of Science and Mathematics teachers]. Revista De Ensino De Ciências E Matemática, 14(1), 1–23. 

https://doi.org/10.26843/rencima.v14n1a19  

Teague Tsopgny, A. V., Maingari, D., & Mbede, R. (2020). L’influence des enseignant·e·s de mathématiques dans 

l’orientation des filles vers ce domaine [Mathematics teachers’ influence in orienting girls toward the field of 

mathematics]. Nouveaux Cahiers de la Recherche en Éducation, 22(3), 68–88. 

https://doi.org/10.7202/1081288ar  

van de Rozenberg, T. M., Groeneveld, M. G., van Veen, D. P., van der Pol, L. D., & Mesman, J. (2023). Hidden in 

plain sight: Gender bias and heteronormativity in Dutch textbooks. Educational Studies, 59(3), 299–317. 

https://doi.org/10.1080/00131946.2023.2194536  

Voigt, M. (2022). A quantitative exploration of queer-spectrum students’ experiences in introductory undergraduate 

mathematics courses. PLoS ONE, 17(10), 1–18. https://doi.org/10.1371/journal.pone.0275325 

Wolff, F. (2021). How classmates’ gender stereotypes affect students’ math self-concepts: A multilevel analysis. 

Frontiers in Psychology, 12, Article 599199. https://doi.org/10.3389/fpsyg.2021.599199  

  

https://doi.org/10.1080/10986065.2022.2062641
https://doi.org/10.26843/rencima.v14n1a19
https://doi.org/10.7202/1081288ar
https://doi.org/10.1080/00131946.2023.2194536
https://doi.org/10.1371/journal.pone.0275325
https://doi.org/10.3389/fpsyg.2021.599199


Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2189 

AESTHETIC AND AFFECTIVE DIMENSIONS OF MATHEMATICS LEARNING 

V. Rani Satyam 

Virginia Commonwealth University 

vrsatyam@vcu.edu 

Leslie Dietiker 

Boston University 

dietiker@bu.edu 

Meghan Riling 

Vanderbilt University 

meghan.riling@vanderbilt.edu 

Aida Alibek 

University of Georgia 

aida.alibek@uga.edu  

Students’ aesthetic and affective responses are intertwined and are both central to mathematics 

learning. This working group will continue the conversation begun in 2022 to investigate the 

connection between the affective and aesthetic dimensions of mathematics education, and how 

connecting these dimensions can help us to better understand students’ experience with 

mathematics. The goals of this third meeting of the working group are to explore useful tools and 

methodologies for studying aesthetics and affect, as related to participants’ sharing their 

research interests. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Curriculum; Instructional Activities and 

Practices. 

Theoretical Background 

The relationships between aesthetics and affect (beliefs, engagement, motivation, etc.) for 

their centrality in understanding students’ mathematical experiences and learning is clear (e.g., 

Cheeseman & Mornane, 2014; DeBellis & Goldin, 2006; Malmivuori, 2001). The purpose of this 

working group, from Riling et al. (2023), is to investigate “the potential enabled by identifying 

the shared interests in aesthetics and affect. Our aim is to enable new solutions to a persistent 

problem [poor student experience in mathematics] that can become possible by bringing together 

these two domains” (p. 596). 

We describe the theoretical foundations for our working group, from our first proposal 

(Satyam et al., 2022): Affect has been defined as all aspects of experience that involve feeling 

(McLeod, 1988). This ranges from deeply held, long duration constructs such as beliefs, 

attitudes, math anxiety, and motivation, to shorter-term and in-the-moment feelings such as 

emotions and engagement (Grootenboer & Marshman, 2016; McLeod, 1992; Middleton et al., 

2017). In mathematics, where success versus failure is often visible, students’ affective responses 

can be quite strong (Boaler, 2015) and impactful (Grootenboer & Marshman, 2016; Op ’t Eynde 

et al., 2006).  

Yet, similar to how we would also examine a piece of art for explanations for an individual’s 

gasp in a museum, we argue that researchers also need to attend to the nature of the mathematical 

experience for explanations of how it potentially impacted students (e.g., inspiring a question, 

enabling predictions and eliciting surprise). We refer to the way a lesson supports the felt 

impulses that compel (or impede) a student to continue to progress (or not) through an 

experience as its aesthetic dimensions (Dietiker, 2015). Some researchers have recently begun to 

study the aesthetic potential of mathematical learning environments (e.g., Dietiker, 2016; 

Sinclair, 2001), learning for example how the design of technological tools can offer surprise and 

appeal (Sinclair et al., 2009). While still emerging, the field is learning how to design and enact 

mailto:aida.alibek@uga.edu
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what Sinclair (2001) calls “aesthetically-rich” mathematical experiences, which she describes as 

those that “enable children to wonder, to notice, to imagine alternatives, to appreciate 

contingencies and to experience pleasure and pride” (p. 26).  

This working group will continue to explore the linkage between affect and aesthetic to 

tackle multiple dimensions of one of the most significant dilemmas facing mathematics 

classroom practice today: poor student experiences with mathematics that fuel negative student 

dispositions. Through our working group design, we plan to bring together graduate students, 

early career and senior faculty together, to solidify the current state of the field and help form 

informal and formal connections for future research endeavors.  

History of Working Group at PME-NA 2023 

The goals of the second meeting of this working group were to bring researchers together to 

build community through structured but also informal activities, learn about each other’s work 

through participants sharing, and explore potential writing projects. We met over three days and 

a mixture of university faculty and graduate students attended. 

Day 1: Task as Anchoring Experience 

We began with an overview of aesthetics and affect, the purpose of our working group, and a 

recap of what occurred at the previous (first) meeting of the working group. This was important 

as we had some returning participants and some new participants joining. We then all engaged in 

an online task, Parable of the Polygons, as a shared experience through which participants could 

then have grounded reflection and discussion about their aesthetic and affective reactions. This 

was successful in new and returning members meeting each other, equalizing their contributions, 

yet bringing them together on the same page. Participants discussed which aspects of the activity 

most “drew them in” to explore more and how that related to the aesthetic and affective aspects 

of their experiences.  

The session ended with us collecting their information: research interests, population of 

interest (students or teachers, grade band, etc.) and what they would like from the working 

group. We also provided a sign-up for participants to share their work with the whole group the 

next day.  

Day 2: Participants Share Work 

On Day 2, we facilitated extended introductions, in which participants shared their research 

and/or teaching interests that fell under the umbrella of aesthetics and/or affect. We intentionally 

planned for this to occur after our participants had an experience together first (the previous day), 

so that participants would have shared language and experiences when learning about each 

other’s work and interests. The main activity of this session was for participants to share their 

work for 5-10 minutes. There were seven presenters (including the organizers): 

 

Brady Tyburski: Undergraduate STEM students’ art and artist statements 

Megan Selbach-Allen: Caring instruction 

Matt Melville: Teacher reactions to deprivitization of practice 

Tracy Dobie: Student perceptions of math usefulness 

Sandra Hall: Frameworks of aesthetic and affective domains 

Leslie Dietiker: Mathematically Captivating Lesson Experiences 

Meghan Riling: Types of aesthetic experiences and creativity 

 

https://ncase.me/polygons/
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Participants shared digital copies of their posters from the current PME-NA and other 

conferences, as well as artifacts from their research (see Figure 1). 

 

 

 

Figure 1. Samples of participants sharing conceptual diagrams and student work. Above: 

Sandra Hall. Below: Brady Tyburski  

 

At the end, participants reflected with a partner on what they found interesting across the 

presentations. This served as a wrap-up for Day 2 and as preparation for Day 3.   

Day 3: Comparing and Contrasting Conceptualizations 

On day three, we worked to bring the group together and set directions for future research 

collaboration. We finished presentations from Day 2. Then, we did a video analysis: we together 

watched a classroom video from a 9th grade geometry classroom about midpoint quadrilaterals 

and posed the following questions. How can you describe the aesthetic elements of the 
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interaction? How can you describe the affective elements of the interaction? Participants were 

given a transcript of the video and in groups, recorded their observations and preliminary 

analysis electronically in google docs. Participants noted constructs such as engagement, 

affective reactions, relations to Dewian aesthetic, and the overall benefits for how aesthetic and 

affective aspects created a space in which students could share ideas. The group also pondered 

the relationships between affect and aesthetic. For example: “Affective as part of the aesthetic - 

if aesthetic is felt reaction to a stimulus, then the affect is just the felt part. Aesthetic tries to tell 

the story of what happened and how student felt. Affect zeroes in on the student feelings.”  

The video analysis served as an example of future work together and a segue into an open 

discussion about next steps. We provided participants these prompts: 

  

Opportunities for Collaboration: What ideas or projects might you want to work on with a 

colleague? (Casual/informal) 

Group Interaction: What kinds of communication would you be interested in receiving from 

the group between now and next year? 

Connections: What other constructs are you most interested in connecting to aesthetics/affect, 

and how do you currently see them as being connected? 

Questions: What questions related to aesthetics or affect are you wondering about now? 

Anything Else: Is there anything else you’d like to share with any of us? 

 

We also shared an outline for a theoretical paper Dr. Dietiker had started, about aesthetics and 

affect, including possible journal venue and potential inclusion of video analyses.     

Next Steps for PME-NA 2024: Session Organization   

The goal of this third iteration of the working group will be on exploring useful tools and 

methodologies for aesthetics and/or affect, by way of participants sharing and talking about their 

own research and identifying resources to explore together. Given the success of the prior 

meetings, we will follow a similar structure as before. In particular, we have found that doing a 

task together on Day 1 to provide a collective, grounded experience provides a solid foundation 

that is memorable and useful.  

Prior to the working group start, we will send out an interest survey for participants’ research 

and/or teaching interests, population, and if they’d be interested in sharing any of their work 

(published work, data, instruments, etc.).    

Day 1: We will start by having participants introduce themselves, share their research and/or 

teaching interests and experience in aesthetics and affect so far (15 min). We will all engage in an 

anchoring mathematical activity from an existing research study, aimed toward producing 

affective and aesthetic reaction (30 min). This will elicit informal conversation among 

participants, returning and new, centered around a task and focus. We will pair this experience 

with some research data, such as video, that we will all watch together (30 min). This picks up 

where Day 3 of our last working group left off: selecting a task from a study and engaging with 

its data. We’ll end with an overview of the goals of this working group and will offer 

opportunities for participants to share a piece of their work for the next session on Day 2 (15 

min). 

Day 2: We will provide a short recap of Day 1 for any new participants (10 min). The main 

activity will be for a few participants who are currently working in the domains of aesthetics 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2193 

and/or affect to share their research. To elicit conversation and interaction, we will split the entire 

working group into 2-3 groups, so people can both share research within the group (20 min) and 

pick something else to explore together as a subgroup (40 min). Topics for further exploration 

may be other constructs, methodologies, or instruments related to the research shared, if 

applicable. We will then share out collectively what each group discussed and pursued (20 min), 

as a record of the working group’s thinking. 

Day 3: We will provide time and space for participants to discuss next steps. Options 

include: writing short pieces for future conferences or journals such as For the learning of 

mathematics, a conference proposal grant, and/or adapting powerful activities for students based 

on participants’ teaching interests. We will maintain a Google Drive folder, where Google Docs 

with work that we generate together will be kept as a record after the conference. There will also 

be a folder for participants to share their relevant published work with the group to facilitate 

spread of ideas, especially from new scholars.   

We plan for future iterations of the working group to be a larger, shared authorship team with 

participants. Our report would be a compilation of reflections from the participants, and those 

that agree to share for the report would be listed in the working group as authors. 
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This continuing working group, Conceptualizing the Role of Technology in Equitable 

Mathematics Classrooms (TechQuity), plans to extend the ongoing conversation regarding the 

role of technology in building equitable mathematics classrooms. During PME-NA 2023, the 

group met for the first time to better understand the intersections between technology- and 

equity-centered mathematics teaching and learning. While our initial meeting was successful, we 

found the complexity of the role of technology in equitable mathematics classrooms to be far-

reaching. This year we plan to grow our community and enact ideas to build sustainable 

programs of research dedicated to TechQuity in mathematics education. 

Keywords: Technology; Equity, Inclusion, and Diversity   

In this second year of meeting, the TechQuity working group will continue to develop 

opportunities for collaboration through the sharing of our current work in progress and 

facilitating opportunities to grow this network of mathematics educators dedicated to exploring 

TechQuity.   

While attending to precisely what equity means can be a challenge, our current 

conceptualization of TechQuity centers around examining potential intersections between, 

Gutiérrez’s (2009) four dimensions of equity, namely Access, Achievement, Identity, and Power, 

and the didactic tetrahedron (Hollebrands, 2017) that models interactions between students, the 

teacher, technology, and mathematics. This year we plan to continue unpacking what these 

intersections might look like in research and practice, especially in light of new advancements in 

technology (e.g., AI). Prior work on this topic (e.g., Suh et al., 2022; Witt, 2022) offers 

promising starts to promoting TechQuity. For example, Suh et al (2022) present, 

 

 “...dimensions for technology that have transformative potential to enhance access to inquiry 

based learning, promote positive math identity through authorship and agency, provide 

formative assessment and differentiation, encourage collective thinking, and amplify 

mathematical thinking processes” (p. 1564). 

 

Additionally, Witt (2022) argues for the leveraging of mathematical action technology– that 

is, dynamic interactive digital technology to support student-centered exploration (Dick & 
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Hollebrands, 2011) to support the development of a sociopolitical disposition in students. While 

promising, we acknowledge much more work and many more voices are needed to pursue 

TechQuity.  

Throughout the three-day working group sessions at the 2023 PME-NA conference, we set 

the stage for sustaining two interconnected subgroups. The Frameworks Subgroup focuses on 

creating a framework for equitable technology integration, what we refer to as the TechQuity 

Framework. The Task Design and Implementation Subgroup focuses on the design and 

implementation of mathematical tasks using technology that promote equitable teaching 

practices. Additionally, the Task Design and Implementation Subgroup decided to pursue further 

grant opportunities for examining the role of AI use in mathematics education. Our recent 

discussions in this subgroup have supported calls (e.g., NCTM, 2024) to bring more mathematics 

educators into the discussion on researching and developing AI for equitable access and 

outcomes in mathematics education. Ultimately, the most promising outcome of our work 

together thus far has been the building of a community of mathematics educators who are 

committed to pursuing more work related to TechQuity.   

With these two subgroups meeting regularly, we see this year’s working group as a great 

opportunity to share with the PME-NA community what our group has learned and plans to 

pursue while also welcoming new members interested in exploring these ideas with us further. 

Thus, we organize this year’s working group around the goals of these two subgroups: 1) sharing 

progress and gathering feedback on developing a TechQuity Framework, 2) compiling research 

on the implementation of and development of tasks that support TechQuity, and 3) examining 

ways that AI can support equitable opportunities to learn in mathematics classrooms. With these 

three emergent areas of interest, we intend to broaden participation by welcoming current and 

new members to join us and contribute to these conversations and collaborations. 

Table 1 shows our tentative plan for engagement with working group participants; we plan to 

adjust these plans to accommodate participant interests. 

 

Table 1: 2024 Plan for Engagement 

 

Session  Activities 

One 1. Introductions (20 mins) 

2. Updates and discussion of goals (70 mins) 

a. Developing a TechQuity Framework  

b. TechQuity Task Design and Implementation 

c. Equitable Use of AI in Mathematics Classroom 

d. Reflection: “What is TechQuity?” and “What are we missing?”  

Two Identifying emerging subgroups (15 mins) 

Collaborating in subgroups (60 mins) 

Sharing out ideas from the subgroups (15 mins) 

Three 1. Planning for future work in subgroups (45 mins) 

2. Sharing of subgroup plans (30 mins) 

3. Planning for dissemination, including website expansion (15 mins) 
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Our anticipated follow-up activities include: (a) collaborative research and task development, 

(b) grant writing, (c) continuing to develop a TechQuity Framework, (d) expanding our website 

to disseminate our work, and (e) growing our community. 
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The implicit connections between the practices of computational thinking and mathematics have 

the powerful potential to strengthen students’ reasoning about quantitative and spatial 

relationships. Working group participants will build upon their PME-NA 45 exploration of the 

synergies between CT and mathematics education to refine directions for collaborative research. 

We will continue to work toward our overarching goal of providing more equitable access to 

authentic mathematical problem solving through computing. Discussions will relate participant 

experiences with computationally-integrated mathematics tools and curriculum to the 

construction of productive learning environments and problem-solving identities.  

Keywords: Computational Thinking, Mathematical Thinking, Teacher Identity, Student Identity 

The integration of computational thinking (CT) and mathematics learning (Shute et al., 2017; 

Weintrop et al., 2016) has the powerful potential to deepen K-16 students’ mathematical skills 

and practices as they seek patterns, create visualizations, make strategic guesses, and experiment 

systematically (Pei et al., 2018). The natural connections across disciplines can foster students’ 

active engagement in the CT practices of abstraction, decomposition, pattern recognition, and 

algorithm design as they solve authentic mathematical problems (Gadanidis, 2017, Ng et al., 

2023). Ye and colleagues (2023) further describe this disciplinary relationship as an interactive 

and cyclical process of reasoning mathematically and computationally to generate knowledge. 

By extending upon constructionist perspectives of computational artifacts as “objects to think 

with” (Papert, 1980), mathematics educators integrate computational artifacts as dynamic visual 

representations of mathematical thinking (Dahshan & Galanti, 2024; Cui et al., 2023).  

Several directions for potential research were discussed at the inaugural meeting of this 

working group at PME-NA 45. While all participants were interested in exploring the synergies 

between CT, mathematics education, and data science education, there was a consensus that an 

actionable research agenda demanded a narrower focus. This year’s working group will draw on 

the expertise of our current and new participants to focus specifically on the use of CT to enrich 

K-16 mathematics teaching and learning. We will continue to work toward our overarching goal 

of more equitable access to authentic mathematical problem solving through computing.  

Session Plans and Focus 

Session 1 – Are we using mathematics to teach CT or CT to teach mathematics? 

In their systematic review on CT-based mathematics instruction and student learning, Ye et 

mailto:zyilmaz@ncsu.edu
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al. (2023) highlighted the need for research on curriculum resources and instructional designs 

aimed at integrating CT into school mathematics beginning from early grades. However, existing 

research is still in process to unpack what productive integration of CT and mathematics might 

look like and how the synergies and differences between these disciplines might influence 

integration. Studies suggest there is a reciprocal relationship between CT and mathematical 

thinking (Wu & Yang, 2022). Thus, we will explore whether we are using mathematics to teach 

CT or are we using CT to teach mathematics. To kick-start our inquiry, Ms. Strickland will share 

her extensive experience in elementary computer science and mathematics integration with a 

focus on culturally responsive pedagogy and curriculum. Then, small groups based on grade-

level interest discuss the overarching questions of session 1. 

Session 2 – How have we experienced CT integration in mathematics teaching?  

This session will focus on an international, multilevel exploration of existing curricular 

resources centered on the integration of CT into mathematics education in both the United States 

and Europe. Participants will contextualize their concepts of interdisciplinary teaching from 

session 1 as they engage with two presentations. The first presentation focuses on how many 

European countries have incorporated CT into their mandatory education systems.  While some 

countries, such as England and Poland, have integrated CT skills as part of a separate subject 

(Bocconi, 2022), the Nordic countries Finland, Sweden, and Norway, have integrated CT and 

programming into existing subjects, notably in mathematics (Vinnervik & Bungum, 2022). We 

will discuss a selection of one or two tasks that exemplify aspects of the integration of CT into 

primary and lower secondary education mathematics. We also will discuss illustrative examples 

of the opportunities and challenges encountered by teachers when incorporating CT into 

mathematics. The examples are drawn from a longitudinal evaluation study (Burner et al., 2022). 

Unlike the Nordic coordinated integration into school curriculum, there is no unified 

approach for integrating CT into US postsecondary mathematics classrooms. The second 

presentation will discuss research on curricular materials integrating computational modeling and 

linear algebra (Castle, 2022). Participants will critically consider the affordances and constraints 

of CT integration as described by students, focusing on the power that computation has to 

potentially disrupt previously held mathematical notions and confront mathematical assumptions. 

Small groups based on grade-level interest will then discuss the overarching question of session 

2 along with potential structural barriers to classroom implementation. 

Session 3 – How do we foster learner and teacher identities at the intersection of CT and 

mathematics education?  

The integration of CT into mathematics education necessitates a critical exploration of the 

potential intertwining of computational identities (e.g., Kafai & Proctor, 2022; Kong & Lai, 

2022) and mathematical identities (e.g., Boaler & Greeno, 2000; Graven & Heyd-Metsuyamin, 

2019). After primer presentations on both student and teacher identities in CT and mathematics, 

participants will develop potential theoretical framings for the interaction of computational and 

mathematical identity. We will consider how identity development can be supported and how it 

can be interpreted so it becomes an outcome of the learning processes in both K-16 classrooms 

and teacher education contexts. Specific attention will be given to topics such as avoiding the 

perpetuation of stereotypes of who belongs in these disciplines and focus on how the integration 

can bring out positive self and world views for students. We will also explore ways in which 

mathematics teachers (and mathematics teacher educators) can shape classroom discourse and 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2200 

power dynamics to strengthen CT and mathematics learner identities (Perez, 2018). 
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The “Power of Computational Thinking in Mathematics and Data Science Education” working 

group held its inaugural meeting at PME-NA 45 in Reno, Nevada. The skills and practices of CT 

can empower teachers to emphasize abstraction, automation, modeling, and simulations as their 

students investigate relationships in mathematics and data science. The focus of the three 

sessions was to advance conversations about the integration of CT in mathematics and DS 

education with aims to launch new collaborations. Our overarching goal of providing more 

equitable access to authentic mathematical problem solving through guided the design and 

facilitation of the working group sessions. Participants experienced three CT-integrated data 

science tasks on Day 1, created working visuals of the synergies across the disciplines on Day 2, 

and proposed directions for future research on Day 3.  

Keywords: Computational Thinking, Computing and Coding, Data Analysis and Statistics, 

Modeling 

A Brief History and Motivation of the Working Group 

This working group journey started at the PME-NA 44 conference in Nashville in 2022. 

During a session focused on computational thinking (CT) in mathematics education, the 

founding members (Yilmaz et al., 2023a) embarked on a journey, laying the groundwork for this 

thematic group. Mr. Alegre and Dr. Yilmaz presented on the transformative integration of 

mathematical thinking (MT) and computational thinking (CT) within the “Cultural Quilts" 

coding project. They shared how the coding efforts of high school students not only offered 

valuable insights into mathematical strategies (e.g., defining functions, using geometric 

transformations) within their code but also served as a means for students to express their 

cultural identities and values through uniquely personalized quilt designs (Alegre et al., 2022). 

Dr. Galanti (2022) presented on how elementary teachers in an online graduate-level CT course 

engaged in mathematical sensemaking using block-based programming. She shared how teachers 

modified parameters in a Scratch project to explore the dynamic relationship between changing 

height and changing volume to create a box with maximum volume from a sheet of paper. 

Teacher’s coding artifacts modeled the reciprocal relationship between CT (algorithmic thinking, 

abstraction, and automation) and MT (pattern seeking and generalization). These two 

presentations contribute to the growing knowledge base on the integration of CT and 

mathematics and its potential to deepen learning in both disciplines (e.g., Brady et al., 2021; 

Goldenberg et al., 2021; Kallia et al., 2021; Weintrop et al. 2016). 

Our shared passion for exploring the integration of CT and mathematics extended informal 

conversations at the PME-NA 44 conference to more format collaborations. Dr. Lawler invited 
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the presenters from the CT session at PME-NA 44 to co-host a mini-symposium at Kennesaw 

State University supported by the National Science Foundation 

(https://research.kennesaw.edu/cistemer/culturally-relevant-integration-cs-mathematics.php) This 

two-day event was attended by over 30 computer science and mathematics education scholars 

from diverse backgrounds and contexts. They considered ways in which culturally relevant 

pedagogy might enhance integrated approaches to learning computation and mathematics. 

Furthermore, our discussions extended to wonderings about the role of CT in data science 

education. We draw on several definitions of data science as an overlap of the skills of multiple 

disciplines including mathematics, business, statistics, and computer science (Lee et al., 2022). 

Acknowledging that data science requires not only CT but also MT, we were excited to expand 

our exploration to the synergies among these three disciplinary domains. Dr. Yilmaz envisioned 

extending these efforts beyond our one-time symposium event. She facilitated our submission of 

a thematic group proposal for PME-NA 45 by its founding members. This proposal created a 

“community focused on advanced conversations about synergies between CT in mathematics and 

data science education with the aim to launch new collaborations” (Yilmaz et al., 2023a, p. 674). 

Recognizing the importance of CT as a crucial yet underemphasized aspect of K-16 education in 

an increasingly technological world, this working group aims to challenge the mathematics 

education community to advance the teaching and learning of CT within both mathematics and 

data science. 

Progress Made Throughout the PME-NA 45 Working Group 

Day 1 Progress and Outcomes 

Workshop participants collaboratively engaged in three integrated problem-solving tasks. 

These tasks, all focused on statistical concepts (measures of central tendency), were selected to 

provide multiple entry points to our discussion of the synergies among CT, MT, and data science 

without an assumption of prior knowledge. The discussion questions were designed to stimulate 

conversations about the ways in which the concepts and practices of CT could be integrated in 

mathematics and data science teaching. 

Task 1 was adapted from a set of freely available elementary CT-integrated mathematics 

modules (Education Development Center, 2021). Participants used an unplugged CT approach 

(without a computer) to write algorithms to move two bots to calculate the mean and median of a 

data set (See Figure 1). They considered the following synergistic questions: 

• How does CT contribute to the development of the mathematical concepts of mean, 

median, and spread in this task? 

• How does the context of a mathematics task create opportunities to develop CT skills and 

practices?  

• How do the algorithms developed by the students in this task relate to concepts and 

techniques commonly used in data science? 

Task 2 was an adaptation of a plugged YouCubed K-12 Data Science activity (2020). 

Participants accessed an open-source Common Data Analysis Platform (CODAP) to explore 

mean, median, and mode for a mammals data set See Figure 2). They considered the following 

synergistic questions: 

https://research.kennesaw.edu/cistemer/culturally-relevant-integration-cs-mathematics.php
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• How does data science contribute to the development of the mathematical concepts of 

mean, median, and spread in this task? 

• How does the context of a data science task create opportunities to develop CT skills and 

practices? 

• What shifts do you see in CT skills and practices used when students transition from Task 

1 (algorithmic design as problem-solving) to Task 2 (data exploration and visualization as 

problem-solving)? 

 

 
 

Figure 1: Excerpt from Task 1 - Algorithm Writing to Compute Mean and Median) 

(Education Development Center, 2021) 

 

 
 

Figure 2: Excerpt from Task 2 - Using CODAP to Explore Attributes of Mammal Data Set 

 

Task 3 used a simple computer program (Figure 3) to explore the interactions of CT and MT 

in block-based programming approaches to calculating the mean of a set of numbers. Participants 
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had the opportunity to modify code to compare and contrast two approaches to a statistical 

calculation: 1) the use of a single variable to accumulate the sum of numbers as they are entered 

by the user and divided by the number of entries; and 2) the use of a list to first store all entered 

values before calculating the mean by iterating over a list of numerical entries.  

All three of these tasks were intended to highlight abstraction, decomposition, pattern 

recognition, algorithmic thinking, logical thinking, modeling, and automation as productive 

aspects of CT within mathematics education (Kallia et al., 2021). The participants were able to 

draw upon these different problem-solving experiences within a data science context to think 

about how dynamic computer models and the underlying algorithmic thinking can support 

generalization and evaluation in problem solving. 

 

 
 

Figure 3: Excerpt from Task 3 (Using a Block-based Scratch Computer Program to 

Calculate Mean) 

 

Day 2 Progress and Outcomes 

The three tasks on Day 1 provided a shared experience from which to elicit participants’ own 

teaching and learning experiences with CT, MT, and data science. After examining a series of 

published visual conceptualizations of relationships between the three disciplines (e.g., Lee et al., 

2022; Sneider et al., 2014), the participants worked in small groups to create their own visuals 

(see Figure 4 for examples). To contextualize these visualizations of disciplinary relationships, 

Mr. Alegre and Dr. Lawler presented research that challenges us as mathematics education 

researchers to reflect on whose ways of knowing are valued in CS and mathematics education. 

Mr. Alegre described a research practice partnership between Louisiana State University and 

secondary teachers to integrate CS in mathematics. Dr. Lawler shared work in after school 

programs designed to engage middle grades students in imagination, creativity, reasoning, and 
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discourse through integrated coding and mathematics experiences. These presenters encouraged 

conversations about the need to draw upon teachers’ and students’ cultural assets in considering 

future directions for disciplinary integration. 

         
  

Figure 3: Participant-created visualizations of CT, MT, and Data Science 

 

Day 3 Progress and Outcomes 

The final session started with participants' reflection on the visuals created on Day 2 and organic 

conversation across two main areas: 1) Computational Thinking: Knowing, Doing, Thinking and 

2) Equity and Access: Practical Applications of Computation and Mathematics in Schools. 

Computational Thinking: Knowing, Doing, Thinking. 

The participants delved one of the visuals created on Day 3 (See Figure 3 above). This visual 

emphasized the three aspects of computational integration as knowing, doing and thinking. They 

suggest computational knowing could include understanding algorithms and data structures and 

computational doing could include coding. They argued that both knowing and doing are both 

essential for CT. They also discussed concrete examples on the misconception that learning to 

code with an application such as Scratch (a visual block-based programming language) equates 

to CT. They shared the need for a broader conceptual understanding of what CT encompasses. 

The participants generated two questions for inquiry and reflection. 

• Is computational doing limited to coding, or are there other ways to enact CT? 

• What constitutes computational knowing, thinking and how can it be effectively taught 

and assessed in mathematics and data science education? 

Examination of various visuals from Day 1 and Day 2 motivated participants to consider the 

benefit of creating a unified visual showing the synergies between CT, MT, and data science. 

They suggested such a visual could support educators, policymakers, and practitioners in 

conceptualizing the varied approaches to integrating computation in K-16 mathematics and data 

science education and identifying areas for cross-disciplinary collaborations.  



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2207 

The participants acknowledged the challenges in creating a unified visual. One significant 

challenge is the establishment of common language and frameworks across disciplines. Each 

discipline may have its own terminology, methodologies, and epistemologies, making it 

challenging to develop a shared understanding. For instance, while mathematicians may 

approach problem-solving through abstraction and proof, computer scientists may focus on 

algorithms and computational complexity. Bridging these diverse perspectives requires careful 

negotiation and collaboration among experts from different disciplines. Additionally, the rapid 

evolution of technology and research methods further complicates efforts to create a unified 

representation that remains relevant over time. 

Equity and Access: Practical Applications of Computation and Mathematics in Schools 

The participants discussed how mathematics could serve as a pathway to increase access to 

computer science and related fields, potentially addressing issues of equity. Unlike elective 

courses like computer science, which may have prerequisites or limited availability, mathematics 

is a core subject taught to all students. One of the participants described how some students, 

particularly those underperforming in traditional subjects like mathematics and English, may be 

denied access to elective courses like computer science. This lack of access denies them the 

opportunity to explore practical applications in which they can use both CT and MT. Concrete 

applications of CT and MT skills, such as pattern making and measurement in fields like interior 

or fashion design, could improve students' understanding of mathematical concepts. Similarly, 

engaging students in computational activities rooted in mathematics might not only enhance their 

computational skills but also deepen their mathematical understanding. By incorporating CT into 

mathematics, schools can provide students with opportunities to explore real-world problem-

solving and creative expression, potentially empowering students who might otherwise struggle 

with traditional math instruction. 

Consideration of future research on equity and access to CT within K-12 mathematics and 

data science education settings yielded two questions for further inquiry. The first question was 

“Can students succeed in computer science courses without first meeting traditional grade-level 

math standards?” This question delves into providing alternative pathways or interventions to 

support more diversity in engagement with computer science in K-12 settings. The second 

question was “How can we as mathematics educators promote equitable access to CT in K-12 

settings, particularly for students from marginalized backgrounds?” This question underscores 

the need to address systemic barriers and biases that may hinder students participation in CT 

programs. 

Progress Made Following the October 2023 Working Group 

Our working group convened virtually in November 2023 and in January 2024 to continue to 

discuss directions for research and collaboration at the intersection of CT, MT, and data science. 

The participants collapsed our working list of 13 researchable topics generated on Day 3 of the 

October meeting to a set of seven topics for collaborative research (See Table 1). The attendees 

also considered methodologies to support exploration of these topics. A literature review seemed 

well aligned with Topic 1, while an investigation of existing curricula seemed to be a productive 

entry point for Topic 4. Discussions of potential research centered on the stakeholders in 

disciplinary integration, specifically students and classroom educators. The ways in which 

students and educators experience the integration of CT and MT was of continuing interest, with 

multiple theoretical frameworks (e.g. identity, content knowledge and pedagogical content 
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knowledge) and mathematical domains (e.g., geometry, algebra, and number) guiding the 

conversations. 

Our working group has continued its effort to define a near-term collaborative project by 

reading a 2023 systematic literature review on the integration of CT in K-12 mathematics 

education with a focus on instruction and learning (Ye et al., 2023). The central question of this 

literature review was, ”How do students' CT and mathematics learning interact when they are 

involved in CT-based mathematics instruction, and what are the consequences of such 

interactions?” (p. 13). Participants met virtually in January 2024 to share their key takeaways and 

their key wonderings based upon their reading. The following questions emerged: 

• Ng & Cui (2021) offered the descriptor of “computationally-enhanced mathematics 

education”. Would this description attract more interest in innovating traditional school 

curriculum with mathematics as a standalone subject?. 

• There was no mention of the role that artificial intelligence or machine learning could 

play in the teaching and learning of CT and MT.  Should we expand our focus to these 

potential integrations? 

• Dick and Hollebrands (2011) define a mathematical action technology that can “perform 

mathematical tasks and/or respond to the user’s actions in mathematically defined ways” 

(p. xii). How does computer programming fit within this definition? 

• Dynamic geometry software applications are mathematical action technologies. What CT 

skills and practices are teachers engaging in with students using dynamic algebra and 

geometry software applications? 

Table 1: Directions for Collaborative MT-CT- Data Science Research 

 

Direction for Collaborative Research Number of Interested Researchers 

Synergies between MT, CT, and Data Science 9 

Integration of MT, CT, and Data Science in K-12 

Education: Curriculum, Implementation, and Challenges 

6 

Integration of MT, CT, and DS: Effect on Underserved 

Students 

3 

Affordances of Data-Driven Math Curricula 2 

Teaching Mathematics, Data Science, and Computer 

Science Simultaneously 

4 

STEM Teachers as “Integrators” of computational 

thinking 

3 

STEM Parenting Identity 1 

 

Ye et al. (2023) stated that “future research on teacher professional development concerning 

the emergent competency of CT-based mathematical thinking is indispensable” (p. 24), but 

research on preservice and practicing teachers was an exclusion criterion for their literature 

review. We are tentatively working toward a collaborative literature review on preparing pre-

service and practicing teachers to integrate CT in mathematics instruction. 
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Conclusions and Looking Ahead 

Based on existing literature that explores the connections between CT and MT (e.g. Brating 

& Kilham, 2021; Hickmott et al., 2021) , as well as the integration of CT into mathematics as a 

school subject (e.g., Chan et al., 2023; Rich et al., 2020), our group is motivated to delve deeper 

into identified gaps, needs and challenges in these studies. Limited empirical studies have 

explored the synergies between CT and MT (Hickmott et al., 2018). Only a few studies have 

incorporated the expertise of mathematics educators to explore the integration of CT in 

mathematics (Hickmott et al., 2018; Kallia et al., 2021). 

Another identified gap in the research is evidence of what resources (e.g., knowledge, 

curricular materials, tools) teachers need to effectively integrate CT into their mathematics 

teaching (Wu et al., 2021; Yadav et al., 2016) and how to assess teacher CT learning (Galanti & 

Baker, 2023). These gaps highlight the need for more professional learning opportunities for 

teachers. However, only a limited number of PD studies (e.g. Ahamed et al., 2010; Hart et al., 

2008; Wu et al., 2021; Yilmaz et al., 2023b) have focused on the integration of CT and MT. This 

indicates a need for more tailored PD initiatives designed through interdisciplinary collaboration 

of mathematics and CS educators (Dahshan & Galanti, in press; Menekşe, 2015).  

Our group is also interested in how the integration of CT in mathematics education and data 

science education in fostering teacher and student problem-solving identities. By looking across 

the literature in CT identity (Kong & Lai, 2022) and use of coding to foster creativity in 

mathematical thinking (Castle, 2023), we seek to understand how CT integration can build an 

individual sense of self as a “doer” of mathematics or data science. 

As we continue engaging in generative inquiry and collaborative research, our thematic 

group is committed to seeking ways to address these gaps and needs and to broaden interest in 

this work in the PME-NA community. 
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THE CHALLENGES OF AI IN SHAPING MATHEMATICAL WORK: FROM HUMAN 

HYBRIDIZATION TO AUTOMATION THROUGH SYNERGIES OF SYMBOLIC AI 

AND GENERATIVE MODELS 

 

LES DÉFIS DE L’IA DANS LE FAÇONNEMENT DU TRAVAIL MATHÉMATIQUE : DE L’HYBRIDATION 

HUMAINE À L’AUTOMATISATION GRÂCE AUX SYNERGIES ENTRE L’IA SYMBOLIQUE ET LES 

MODÈLES GÉNÉRATIFS 

LOS RETOS DE LAS IA EN LA CONFIGURACIÓN DEL TRABAJO MATEMÁTICO: DE LA 

HIBRIDACIÓN HUMANA A LA AUTOMATIZACIÓN GRACIAS A LAS SINERGIAS ENTRE LAS IA 

SIMBÓLICAS Y LOS MODELOS GENERATIVOS 

 

Philippe R. Richard 

Université de Montréal  

philippe.r.richard@umontreal.ca 

 

This text explores the influence of artificial intelligence (AI) and technology in shaping 

mathematical work in educational contexts, with a focus on human-machine interaction 

dynamics. It addresses key aspects such as symbolic and statistical AI, digital artifacts, and the 

role of hybridization as a technological counterpoint to overcome current limitations. By 

presenting practical examples, it demonstrates how technology creates new forms of control, 

necessities, and challenges in mathematics education. Although large language models possess 

extensive knowledge, their limitations in performing genuine mathematical reasoning remain, 

highlighting the need for innovative approaches to carry out the new mathematical work. 

 

Introduction 

The integration of artificial intelligence (AI) and technology into mathematics education 

presents both opportunities and challenges in reshaping mathematical work. While the 

development and application of symbolic and statistical AI, along with digital tools, have 

become increasingly common in mathematical research, many educators and mathematicians 

remain hesitant to fully embrace these innovations. This hesitation is partly rooted in a long-

standing belief that mathematics is closely intertwined with language—not only as an expression 

of mathematical thought but as a core component of mathematical activity itself. Is mathematics 

not a science, and do the mathematical sciences not trace their origins to history, with the 

expression of writing as a fundamentally human characteristic? Consequently, the notion of 

delegating this inherently human endeavour to a machine—often perceived as a “black box” with 

opaque inner workings—sparks concerns about relinquishing control over the mathematical 

process. Moreover, the concept of reasoning, central to mathematical work, calls for 

reexamination in this evolving context. 

In contrast, the evolving reality of the modern classroom, where students interact daily with 

powerful digital tools and AI technologies, necessitates a shift in how mathematics is taught. 

Today’s learners, who have grown up in a world increasingly shaped by digital artifacts, are not 

only familiar with these tools but rely on them as part of their everyday lives. This trend has 

made it imperative for mathematics education (ME) to adapt to these new technological realities. 

mailto:philippe.r.richard@umontreal.ca
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However, this adaptation often occurs without a foundation in what might be called instrumented 

mathematics, or a clear epistemological reference or long-term understanding of the cognitive 

issues at stake with digital artifacts. This gap makes the theoretical and practical issues 

surrounding mathematics even more complex. 

This paper examines these dynamics by considering the role of AI, particularly through the 

synergy between symbolic AI and generative models in transforming the nature of mathematical 

work. It explores how hybridizations, or technological counterpoints—both in the integration of 

symbolic and statistical AI and in human-AI collaboration—may provide a potential solution to 

some of the limitations currently faced in the field. By drawing on concepts such as augmented 

intelligence, idoneity, and the challenges posed by “black box effects,” this work seeks to 

provide a comprehensive understanding of the shifting landscape of the new mathematical work 

in the context of fast technological advancements. 

 

Our Focus: Traditional and New Mathematical Work 

Mathematical Work  

Mathematical work refers to the activities, processes, and approaches involved in practising 

mathematics, whether by students, teachers, or professionals in the field. It encompasses various 

dimensions, including problem-solving, modelling, demonstrations and reasoning, 

representations and communication, as well as knowledge, procedures, and attitudes. 

In a more formal framework, mathematical work includes reflection on the nature of 

mathematics itself, on how it evolves, and on how it relates to other disciplines. In the theory of 

mathematical working space (ThMWS), mathematical work is progressively constructed as a 

process that bridges epistemological and cognitive aspects through three intertwined genetic 

developments, identified in the theory as semiotic, instrumental, and discursive genesis 

(Kuzniak, Montoya, & Richard, 2022). Beyond didactic transposition, the concept of 

mathematical work stimulates epistemological awareness in educational programs. 

 

New Mathematical Work 

The integration of digital artifacts into mathematical activity goes beyond merely facilitating 

or accelerating tasks; it transforms the nature of mathematical work itself by opening new 

pathways for problem-solving, exploration, and learning. The human-machine interaction 

resulting from this integration produces new forms of mathematical activity (Bruillard & 

Richard, 2024), including the dynamic interplay of representations, automated calculations and 

reasoning, exploratory conjecture, instant feedback, and the cognitive impact of artifact 

interactions. 

This new mathematical work, shaped by human-digital collaboration, is characterized by 

automation, dynamic visualization, and interactive feedback. These elements redefine 

mathematical practices by weaving together semiotic, instrumental, and discursive dimensions—

creating a complex “dance of genesis” that brings new depth to learning and problem-solving 

(Flores Salazar, Gaona, & Richard, 2022). 

The effects of this evolving mathematical work are wide-ranging, influencing all aspects of 

mathematical practice, from problem-solving and modelling to proofs and reasoning. In 

reasoning, specifically, studies such as Richard, Venant, and Gagnon (2019) show how 
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instrumental proofs and technology-assisted reasoning can already serve as valuable models for 

future exploration. 

 

Underlying References 

Aside from the theory of symbolic mathematical working spaces (ThMWS), our discourse 

also draws on two main references. First, the book Mathematics Education in the Age of 

Artificial Intelligence: How Artificial Intelligence Can Serve Mathematical Human 

Learning (Richard, Vélez, & Van Vaerenbergh, 2022) underscores the contributions of artificial 

intelligence to mathematics education, presenting concrete ideas grounded in mathematical work 

developed through dynamic international collaboration. This book further addresses the 

evolution of new mathematics in the contemporary world. Its themes and sections explore the 

creation of AI-enhanced learning environments for mathematics, AI-supported mathematics 

learning, and the integration of traditional paper-and-pencil techniques with new AI-aided 

educational working spaces. 

The second key reference, the article Artificial Intelligence and the Didactics of 

Mathematics: Current Situation and Issues (Emprin & Richard, 2023), delves into the complex 

interplay between artificial intelligence (AI) and mathematics education (ME), particularly 

timely given AI’s profound impact on society and the economy. Initially, the article questions the 

concept of “intelligence” itself, examining its definitions and the biases it may invoke when 

applied to AI. This foundational exploration paves the way for an analysis of potential links 

between AI and the didactics of mathematics, illustrated through examples of current projects in 

the Francophone world that offer insight into actively developed areas. The article then discusses 

theoretical frameworks in mathematics education and their integration with AI. Finally, it 

addresses critical questions and challenges that arise from AI usage, presenting promising 

perspectives for future developments. 

 

Artificial Intelligence (AI) 

From Foundations to Collaborative and User-Centric AI Design 

The historical and inherent connection between artificial intelligence and the didactics of 

mathematics is well established. Notably, the foundational references to this relationship were 

published nearly 30 years ago, with the work Didactique et intelligence artificielle (Balacheff, 

1994). The previous underlying references by Richard, Vélez, and Van Vaerenbergh (2022), and 

Emprin and Richard (2023), coincided with the rapid rise of public interest in ChatGPT and 

generative AI models. Indeed, ChatGPT gained widespread recognition in November 2022, when 

OpenAI released an accessible version based on the GPT-3.5 model. Its user-friendly interface 

and advanced conversational capabilities quickly captured the attention of users, media, and 

businesses alike, generating significant interest in AI applications across various fields. This 

surge in popularity has often led to a conflation of AI with generative models, overshadowing the 

foundational contributions of diverse research approaches in the field of AI (as discussed further 

below). Consequently, these recent publications have become essential references for 

understanding the challenges of new mathematical work, particularly concerning numerical and 

symbolic approaches. 

Balacheff’s (1994) work highlighted advances in AI and their impact on the development of 

computer environments for human learning. This initial period of enthusiasm was, however, 
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followed by a phase of disillusionment, during which the challenges involved were 

underestimated. Today, paradoxically, AI appears to be converging once again with didactics by 

offering approaches focused on solving non-routine problems, even before generative models 

began attracting significant attention. These approaches integrate phases of learning, modelling, 

and prediction that evoke both mathematical work and the expertise required to devise solutions. 

For AI to effectively contribute to academic success and assist teachers in monitoring student 

progress, any collaboration between a teacher and a tutoring system must involve a well-

informed understanding of didactic culture. The tutor must recognize the specific demands of 

teacher-student knowledge interactions and support these dynamics alongside human reasoning 

competencies. The system should adapt to human needs, rather than the reverse, to avoid 

reducing these considerations to mere instrumental issues. 

The integration of “machine thinking” and “human thinking” through artificial intelligence 

requires collaborative input that goes beyond computer scientists alone. Given the fundamental, 

shared concept that mathematics is pursued through seeking and solving specific problems—and 

thus continually posing new questions—each problem presents an opportunity to deepen 

understanding of both mathematics and reality. When students take ownership of this process, 

problem-solving and modelling provide insights into the nature of learning itself—whether in 

moments of blockage, overcoming obstacles, or successfully explaining and clarifying complex 

situations. As AI already proves valuable with traditional techniques (Lagrange, Richard, Vélez, 

& Van Vaerenbergh, 2023), its potential growth is imaginable through collaborative development 

involving both didactics and computer engineering, adopting a perspective of new mathematical 

work. Above all, AI could thrive by incorporating user involvement early in the design process, 

embracing the principle of “design-in-use” for the learning of mathematics. 

 

Classical Perspectives on AI Research Approaches and Beyond 

Artificial intelligence (AI) has long raised fundamental questions about its nature. In his 

preface titled AI for the Learning of Mathematics, Balacheff (2022) explains: 

It would have been good to have a precise and clear definition of Artificial Intelligence (AI) 

unanimously accepted. Unfortunately, it is not the case today as it was not the case formerly. 

The common criterion, AI is a property of machines “exhibiting certain behaviours which 

strikes as intelligent,” reminds us that this is a judgement underpinned by a kind of human 

empathy. Looking closer, it appears that such a judgement assesses both the task which has 

been achieved by the machine and the way it has been achieved: a behaviour is striking 

because the task is acknowledged complex and/or the way in which it has been achieved 

looks smart. 

Is it simply a “machine story,” a modelled extension of human capabilities, or a human-

machine collaboration that can take the form of both partner and adversary? While all three 

perspectives are possible, it is certain that the idea of collaborative interaction aligns more 

closely with the concept of mathematical work. Drawing on the classical perspective—and a bit 

beyond—we will initially explore contemporary issues related to AI in mathematics education. 

AI is traditionally divided into two dichotomous approaches, as illustrated by the OECD 

report (2019) and studies by the Massachusetts Institute of Technology (MIT) (Fig. 1). Generally, 

symbolic approaches are based on rules and symbols, striving to model human thought through 

logical processes that generate truth from truth. While powerful for certain tasks, symbolic AI is 
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limited by its inability to handle uncertainty and the complexity of real-world situations. It stands 

out for the transparency of its decisions due to explicit rules, its precision in logical reasoning, its 

formal demonstrations, and its resolution of symbolic equations. It is well suited to geometric 

constructions for exploring properties and performing visual proofs. It is effective in symbolic 

analysis to solve integrals, derivatives, and limits formally, without numerical approximation. 

Finally, it is useful in the symbolic treatment of statistical data to model distributions or establish 

theoretical correlations. However, it remains rigid when faced with new data, requiring manual 

updates or adaptations. It is difficult to adapt to uncertain data or unexpected variations, and 

generally, it is less effective at learning from large datasets. 

Statistical approaches to AI are based on data analysis to establish correlations and make 

predictions. They use techniques like machine learning and neural networks, allowing AI to 

recognize patterns and learn from large datasets. Unlike symbolic AI, statistical AI effectively 

handles uncertainty and unexpected variations, adapting its models autonomously as new data 

becomes available. It is particularly effective for predictive tasks, time-series analysis, and 

pattern recognition in complex data. In mathematics, it excels in the approximate resolution of 

numerical problems, such as statistical simulations and probabilistic modelling. However, it 

lacks transparency in its decisions (the “black box” effect) and does not provide formal 

demonstrations. Its results are often approximations, and despite its flexibility, it may lack 

precision in contexts requiring rigorous logic or explicit proofs. 

 

 

Figure 1: Adaptation of the original diagram in OECD, in which we added the “numerical 

approach” in dotted lines around the symbolic approach, and the “LLMs” and “generative 

models” in the deep neural networks. 
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As shown in Fig. 1, while there is no doubt that “LLMs” and “generative models” fall under 

the category of deep neural networks, it is less certain whether numerical approaches belong to 

AI for mathematical work. The answer may be yes, as numerical approaches seem essential for 

AI in mathematics. Indeed, statistical AI and large language models often struggle to achieve the 

precision needed for rigorous mathematical tasks, making them less suitable for high-level 

mathematical applications. For example, while symbolic approaches are effective for derivable 

functions, they fall short when integrating functions without primitives, which limits their scope. 

Additionally, numerical methods are crucial for solving complex and nonlinear differential 

equations, expanding the potential applications of AI in mathematics. Thus, without numerical 

models, AI’s capacity in mathematics is constrained. With them, AI gains a broader, more robust 

range of applications, making numerical approaches integral to mathematical AI.  

 

Technological Counterpoint 

In the title of our presentation, we used the term hybridization due to its familiarity. 

However, we need a term that operates on two levels: first, it should convey the integration of 

symbolic and statistical AI, representing a novel technological synthesis; second, it should 

capture the emerging interaction between humans and AI as a complex, cohesive system, like an 

instrumented human or augmented intelligence. While hybridization commonly denotes the 

crossbreeding of species—as seen in the historical interbreeding between humans and 

Neanderthals—it might not fully represent our intent in the context of human-AI interaction. 

Viewing the learner in mathematics as a “cyberborg” similarly implies an identity, we prefer to 

avoid. 

The term technological synergy could also be considered, as it suggests a harmonious 

collaboration where distinct elements combine to create a greater force. However, synergy often 

implies a fusion or productive integration between humans and technology, which does not 

accurately reflect the nuanced, non-fusional interaction we aim to describe. 

Instead, we propose the term technological counterpoint. Borrowed from music, 

counterpoint evokes a contrast or constructive opposition, presenting technology and human 

intelligence as distinct, parallel perspectives that mutually critique and enrich one another, 

creating a subtle dynamic tension. For describing human-AI interaction, counterpoint captures 

the idea of two entities acting in concert while preserving their individuality. Similarly, in the 

case of symbolic and statistical approaches, counterpoint aptly reflects two distinct currents that 

coexist and enrich the field of AI in a complementary, yet non-blending, manner. 
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Figure 2: The pinnacle of concrete art is exemplified in Arithmetic Composition by Theo 

van Doesburg (1929–1930). Black, white, and gray squares, repeated with varying 

dimensions and intervals according to a geometric progression, merge space and time. The 

artwork is on the left, and its study, on 12 cm graph paper, is on the right. 

 

Human “Hybridization” 

To assess how AI influences learners’ engagement in problem-solving, we developed an 

activity that fosters mathematical exploration by incorporating critical thinking and 

argumentative skills. The study is framed by a historical context: in the late 1920s, Dutch painter, 

architect, and art theorist Theo van Doesburg created his Arithmetic Composition (Fig. 2), at a 

time when mathematical character evidently took precedence over impressionism. Drawing from 

the artist’s approach, we designed a structured activity focused on exploring mathematical 

necessity within the artwork. This activity employs a guiding questionnaire and involves trainer 

interventions in sessions for teachers and researchers in mathematics education. It emphasizes 

critical reflection, in-depth analysis, and creative problem-solving, while allowing participants 

freedom in their use of technological tools. 

For the design of the activity, we incorporated findings and expertise gained from previous 

research in teacher training. The first area involves task definition by teachers and the 

establishment of hypothetical learning progressions within the context of Arithmetic 

Composition (García-Honrado, Clemente, Vanegas, Badillo, & Fortuny, 2018). The second area 

introduces an instrumented approach using GeoGebra’s automated reasoning tools to support the 

discovery, derivation, and demonstration of mathematical properties (Kovács, Recio, Vélez, 

2021). Initial analysis results are presented in García-Honrado, Fortuny-Aymemi, Recio, & 

Richard (2024), and the complete questionnaire is included in the appendix. 

The questionnaire is structured around two exercises, each designed to immerse students in 

training in distinct aspects of AI-supported mathematical exploration and problem-solving. The 

first exercise emphasizes qualitative analysis of Theo van Doesburg’s Arithmetic 

Composition (Figure 2) by engaging primarily with statistical AI, including advanced generative 

language models such as ChatGPT (developed by OpenAI) and Gemini (developed by Google 

DeepMind), alongside conventional tools like Google and Bing search engines. This exercise 

invites participants to examine the visible regularities and recursive patterns within the artwork, 

fostering critical observation skills that AI tools can supplement. For instance, students in 

training are guided to use ChatGPT to generate hypotheses about the mathematical properties 

embedded in the artwork, then compare these with factual data sourced from Google. This blend 

of AI tools allows participants to evaluate the distinct contributions of statistical AI and search 
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engines, providing insight into how generative models can support exploratory reasoning within 

a mathematical and artistic context. 

The second exercise shifts focus toward symbolic AI and traditional paper-pencil methods, 

encouraging participants to analyze the geometric structures in Arithmetic Composition through 

the automated reasoning capabilities of GeoGebra Discovery. As outlined in Figure 1, this 

exercise exemplifies the symbolic AI approach within the broader AI landscape, enabling the 

exploration of recursive geometric sequences and Thales’ configurations (Exercise 2) using 

GeoGebra’s interactive geometry modules. Students in training are tasked with verifying the 

alignment of square vertices and investigating proportional relationships, such as the scaling 

ratios and the positioning of elements in Thales’ configurations. These tasks highlight how 

symbolic AI, unlike statistical AI, provides precise calculations and direct verification of 

mathematical properties. 

The questionnaire embodies a dual “hybrid” approach through a structured technological 

counterpoint, bridging human-AI and symbolic-statistical AI paradigms to enhance mathematical 

exploration and validation. This approach aligns with the concept of new mathematical work, 

where digital artifacts transform traditional mathematical practices by enabling new forms of 

engagement. As illustrated in Figure 1, which depicts symbolic, statistical, and generative AI 

models, students in training are immersed in both the generative, language-based reasoning of 

models like ChatGPT and Gemini, and precision-oriented symbolic tools such as GeoGebra 

Discovery. This interplay fosters augmented intelligence, whereby human cognitive capacities 

are amplified through interaction with digital tools, supporting deeper exploration of 

mathematical concepts and enhanced problem-solving processes. Within this framework, the 

concept of idoneity becomes central (Emprin & Richard, 2023): through iterative questioning, 

students engage in a recursive adjustment process between their problem-solving intentions and 

the digital responses provided by AI tools, leading to an evolving alignment between human 

initiative and the technological affordances of AI. In their written answers, students also reveal 

the outcomes of their decisions, indicating whether the AI tool served as a partner, an adversary, 

or introduced new and surprising challenges in the process. This approach not only diversifies 

problem-solving methods but also cultivates critical thinking and argumentative skills, equipping 

students with a nuanced understanding of AI’s role in mathematical inquiry and fostering an 

adaptable, optimal integration of AI into pedagogical practices. 

 

Technological “Hybridization” 

When examining the intentions of AI system designers, the concept of technological 

counterpoint highlights the automated integration between symbolic and statistical AI. A notable 

example is the neurosymbolic approach implemented by OpenAI and Wolfram in ChatGPT. In 

the following, we aim to compare ChatGPT’s standalone performance with that of this type of 

“hybridized” system. 

Let’s be clear: when doing mathematics with ChatGPT, it can be misleading. It gives the 

illusion of performing genuine mathematical work, but this is not truly the case. For example, if 

we pose the following problem to the system: 

Prove that a quadrilateral with three right angles is a rectangle, 
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ChatGPT provides a solution (Fig. 3, left) derived from its training data. When we repeat the 

question immediately afterward (Fig. 3, right), its response changes because it now uses the prior 

context (our first question and its solution) as additional contextual input. This creates a form of 

learning by the system, where contextual inferences help maintain continuity in the conversation. 

 

 

Figure 3: First and second requests to ChatGPT for the rectangle problem. 

 

Although the problem itself is relatively simple, ChatGPT’s responses reveal two key 

aspects. In the first instance (first request), the solution appears well structured, almost textbook-

like, with mathematical elements (angles, the property of the sum of a quadrilateral’s angles, the 

equation to calculate the missing angle, the definition of a rectangle, etc.) and metamathematics 

elements (initial hypothesis, recall of geometric properties, logical steps in reasoning, “final 

conclusion” as a general reasoning) that seem appropriate for the problem. However, when the 

question is repeated (second request), instead of confirming its initial solution or exploring 

alternatives, ChatGPT adds contextual arguments that, while seems true, are unnecessary. This 

behaviour resembles the comportement heuristique observed in mathematics education research, 

where students employ heuristic strategies while attempting to solve proof problems (Richard, 

2004) or when they “say everything they know” on an exam to gain points. When explicitly 

asked for three different solutions (Figure 4), ChatGPT generates responses that use vectors and 

angles, geometric transformations, and parallelogram properties—an impressive variety, but how 

reliable are these? 
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Figure 4: Requesting three different solutions from ChatGPT for the rectangle problem. 

 

To understand how ChatGPT “reasons” in mathematical contexts, it becomes evident that it 

generates solutions based on identifying patterns and utilizing knowledge derived from text data 

within its training set. Rather than performing calculations or deductive reasoning, ChatGPT 

combines mathematical rules and examples it has “learned” from text exposure, but it does not 

employ symbolic engines like like Wolfram Mathematica or Maple for validation or calculation. 

This approach has significant limitations. First, ChatGPT lacks exact calculations and real-

time validation, meaning it does not verify each step as a symbolic tool would, which can lead to 

errors, particularly in complex calculations or advanced logical steps. As a result, ChatGPT’s 

solutions are often plausible but remain unverified, offering logical coherence but risking 

inaccuracies, especially in complex or ambiguous cases. 

A closer look at its inferential processes shows that ChatGPT’s “deductive reasoning” is 

closer to inductive inference, as it primarily relies on pattern recognition to produce responses 

that are relevant yet unverified. This contrasts with tools like WolframAlpha, GeoGebra 

Discovery, and other Computer Algebra Systems (CAS) that offer validation mechanisms. 

WolframAlpha combines CAS functionality with numerical and statistical tools, while GeoGebra 

Discovery uniquely integrates CAS with automated reasoning for symbolic AI, particularly in 

geometry. Unlike these tools, ChatGPT alone does not provide a mathematical validation, 

depending instead on unverified inductive patterns rather than formal, symbolic deduction. 

This tendency to make non-deductive deductions or to combine deductive fragments derived 

from training data in problems that have already been solved poses several problems. By 

blending different types of rationality, such as those found in experimental sciences versus 

mathematics, ChatGPT creates a confusion that can lead to significant challenges. For example, 

induction is useful for identifying invariants, models or conceptualizing categories, but its 

validation is an experimental matter and generally requires further research or long-term studies 
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to stand the test of time. In other words, induction is not designed to produce necessary truths 

from established truths, as deductive reasoning does, nor to articulate knowledge that necessarily 

follows from other knowledge, as is expected in mathematics. 

Moreover, when ChatGPT uses abduction, it can generate creative responses and explore 

potential solutions based on partial information, fostering interaction and opening up avenues of 

inquiry, while also mitigating the “blank page” effect. However, these abductive responses can 

be misleading by giving an impression of certainty, when in fact they are merely unverified 

hypotheses that require additional validation to ensure their accuracy.  

Paradoxically, a deeper understanding of how this AI functions allows us to tackle real 

problems and engage in an authentic modelling process, thereby moving away from often 

artificial school exercises. This approach recentres exploration and scientific inquiry—essential 

elements of learning that align with the natural curiosity of students, especially given the new 

possibilities offered by digital tools. However, this openness may unsettle inexperienced 

teachers, who might feel a loss of control over their students’ learning due to the element of 

uncertainty introduced. Should we then prioritize the student’s curiosity or the teacher’s need for 

control? 

 

 

Figure 5: Rectangle problem, first and second requests with ChatGPT + Wolfram. 

 

With the neurosymbolic technological counterpoint provided by the integration of ChatGPT 

and Wolfram, new dynamics emerge in mathematical reasoning and problem-solving (see 

Fig. 5). This “hybrid” model combines the precision of symbolic AI (Wolfram’s computational 

engine) with the generative flexibility of ChatGPT’s large language model. However, achieving 

coherence between these two approaches introduces distinct challenges, especially around 

communication, interpretation, and validity, where human input plays a central role. 

Firstly, effective integration relies heavily on clarity in questioning, where the user’s role is 

crucial. The phrasing, precision, and structure of the user’s question directly influence 

ChatGPT’s interpretation and the subsequent instructions it sends to Wolfram. For instance, if a 

user ambiguously asks for multiple proofs of a geometric property, ChatGPT may interpret this 

in ways that don’t align with the structured, symbolic expectations of Wolfram’s system. The 

user, therefore, must provide carefully framed questions, guiding ChatGPT to relay 
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mathematically precise requests to Wolfram, minimizing ambiguity and maximizing alignment 

between the systems. This is a typical case of the quest for idoneity in which scientific 

questioning is at the heart of the approach. Secondly, interpretation by ChatGPT introduces 

another layer where human oversight is beneficial. ChatGPT’s pattern recognition generates 

responses based on linguistic data and probabilistic associations from its training, yet it lacks 

formal verification for each logical step. Human users must be prepared to guide ChatGPT 

toward interpretations that are contextually relevant for Wolfram’s symbolic processing. For 

example, while ChatGPT might generate additional contextual information that is linguistically 

coherent, human oversight can help filter out unnecessary content that doesn’t contribute to the 

mathematical precision required by Wolfram. This interaction requires users to understand 

potential interpretive gaps and adjust their input for reliable outputs. 

Ensuring validity within this neurosymbolic integration hinges on the verification methods 

designed by developers, but also on human interaction during validation. Wolfram’s 

computational engine provides verified mathematical outputs, yet when combined with 

ChatGPT’s generative responses, unverified elements may arise. Human users play a vital role 

here, reviewing and assessing the outputs for coherence and accuracy, especially in complex or 

ambiguous queries. This oversight helps bridge the flexibility of generative responses with the 

strict validation of symbolic AI, guiding the combined system toward reliable and rigorous 

outcomes. The integration of ChatGPT and Wolfram offers a powerful tool for mathematical 

inquiry, blending exploratory reasoning with computational rigour. However, the human role in 

questioning, interpreting, and validating remains essential to navigate the system’s interpretive 

boundaries and to ensure coherent and accurate outputs. 

ChatGPT alone provides a step-by-step solution, including a recall of geometric properties 

and a progressive reasoning process that makes the solution more “pedagogical.” This approach 

includes metamathematical elements such as the initial hypothesis, the reasoning logic, and a 

general conclusion, making the reasoning relatively accessible to learners. In fact, this is not 

necessarily a drawback in itself, especially considering that, in a mathematics classroom, both 

human argumentative reasoning and deductive reasoning with calculations are typically present. 

However, as ChatGPT relies solely on probabilistic models, the solution lacks formal validation, 

introducing a latent uncertainty or a low epistemic value. 

With the integration of Wolfram, the solution becomes more concise and benefits from 

rigorous mathematical validation through symbolic computation. Wolfram enhances the accuracy 

and reliability of calculations, but the presentation adopts a more demonstrative style, focusing 

on results rather than intermediate “pedagogical” explanations. Consequently, while this 

approach is mathematically more precise, it may be less clear for beginner learners who wish to 

understand each step of the reasoning process. 

In summary, ChatGPT alone provides a step-by-step reasoning process that can help learners 

visualize the logical progression in a mathematical solution. However, in the absence of formal 

validation, this approach carries the risk of errors and inaccuracies, particularly for more 

complex problems. ChatGPT with Wolfram, on the other hand, incorporates formal mathematical 

verification that ensures the rigour of calculations and conclusions, though it may be less detailed 

in explaining intermediate steps. For situations where mathematical precision is essential, 

integration with Wolfram offers a more reliable and rigorous solution, and it can serve as a model 
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for correct mathematical reasoning, though it may sometimes require additional work to 

elaborate the complete reasoning pathway for learners. 

 

 

Figure 6: Three solution requests to ChatGPT + Wolfram for the rectangle problem. 

 

Comparing the three solutions proposed by ChatGPT alone (Fig. 4) and by ChatGPT with 

Wolfram (Fig. 6), we observe notable differences in terms of reasoning depth and diversity of 

geometric approaches. ChatGPT alone employs several methods, such as the use of angles and 

the properties of parallelograms, thereby offering solutions that evoke direct methods. In 

contrast, ChatGPT with Wolfram demonstrates increased rigour by adopting various geometric 

frameworks, notably moving from synthetic geometry to vector geometry, and by incorporating 

reductio ad absurdum arguments similar to those found abundantly in the original Elements of 

Euclid, prior to the introduction of algebraic calculation in subsequent versions. This flexibility 

in approach and the ability to rigorously validate each step through symbolic calculations confer 

a higher epistemic value and greater adaptability to the solutions provided by ChatGPT with 

Wolfram, allowing for a deeper exploration of mathematical concepts and processes while 

ensuring accuracy. 

 

Inspiring Examples of Technological Counterpoint and AI Classification for ME 

AlphaGeometry exemplifies a remarkable case of technological hybridization, showcasing 

substantial progress in solving geometric theorems. This neurosymbolic system combines a 

language model trained on synthetic data with a symbolic deduction engine, allowing it to 

navigate the “infinite space” of possible solution graphs in plane geometry. AlphaGeometry 

addresses one of the greatest challenges in AI for mathematics: the synthesis of human proof data 
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into machine-verifiable languages, a problem reminiscent of the concept of computational 

transposition (Balacheff, 1994). With a massive set of 100 million automatically generated 

theorems, AlphaGeometry produces human-readable proofs and even solves problems at the 

Olympic level, marking a step toward high-level automated reasoning in a field where rigour is 

essential (Trinh, Wu, Le, et al., 2024). For comparison, Euclid’s Elements contains 

approximately 465 propositions. While these propositions are meaningful condensations derived 

from human culture, many of AlphaGeometry’s properties hold no epistemological value. 

Although this example is not directly related to mathematics, it illustrates the resurgence of 

expert systems fuelled by advancements in generative AI (e.g., Trafton, 2019; Fearn, 2024). 

Machine translation systems, for instance, exemplify a technological counterpoint where expert 

systems and generative models work together to interpret and translate content across multiple 

languages. MIT is currently developing a hybrid architecture that combines symbolic and 

statistical AI, allowing machines to simulate “reasoning” about complex relationships with less 

data by integrating perception, language, and reasoning modules for more nuanced 

interpretations. In truth, the machine only simulates reasoning to some extent; it does not truly 

reason in the human sense of the term and is incapable of doing so. This hybridization leverages 

the efficiency of expert models, which provide linguistic precision in specialized fields, 

alongside the flexibility of generative models, which capture broader contextual nuances. Such 

architectures apply beyond translation to other areas requiring advanced cognitive functions, 

where AI can approximate a deeper understanding through a synergy of statistical approaches 

and symbolic reasoning. 

The QED-Tutrix system provides an innovative approach in AI-powered tutoring for 

mathematical proofs, focusing on enhancing human learning. As described by Font, Gagnon, 

Leduc, and Richard (2022), QED-Tutrix operates as an intelligent tutoring system, modelling 

knowledge and reasoning to support learners in understanding mathematical justifications. This 

kind of AI system plays a vital role in mathematics education by simulating interactive sessions 

where students can practise proof techniques, gradually mastering the logic and procedural steps 

necessary for complex problem-solving. Although promising, such systems require ongoing 

funding, especially in regions like Canada, to reach their full potential and expand their 

applications in AI-assisted learning. 

According to Van Vaerenbergh and Pérez-Suay (2022), AI systems for mathematics 

education can be classified into four categories: information extractors, reasoning engines, 

explainers, and data modelling systems. These categories reflect the various ways in which AI 

supports mathematical learning: information extractors transform raw data into usable 

mathematical representations, reasoning engines, such as WolframAlpha, solve complex 

problems, explainer breakdown solutions to facilitate understanding, and data modelling systems 

personalize learning by analyzing student interactions. 

This classification highlights how each type of AI can enhance mathematics education 

according to specific needs. Reasoning engines provide precise answers, while explainers help 

make these answers accessible, fostering a deeper understanding. By combining these tools, 

students strengthen their autonomy and actively engage with mathematical concepts. 

This categorization also supports the integration of AI within the technological counterpoint 

framework, providing teachers with a structured foundation for selecting AI tools that align with 

learning objectives and student profiles, thereby enriching the educational experience. 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2227 

Implications and Challenges for the Future 

In the era of new mathematical work, it is clear that in-depth studies on technological 

counterpoint involving human learners are essential. However, the rapid growth of computing 

and the utilitarian ideology often present in the field of AI developers—who are eager to decide 

alone on orientations and applications—raise critical questions for mathematics education. This 

movement risks overlooking the complexity of human learning and the pedagogical dynamics 

necessary for a thoughtful integration of AI with our students. By prioritizing efficiency and 

automation over scientific inquiry and the cultivation of critical thinking, we risk creating 

powerful tools that address learners’ educational needs only indirectly, with validity based solely 

on action itself. The absence of dialogue with researchers in didactics and mathematics education 

could also lead to AI systems poorly suited to the diversity of learning contexts, thereby limiting 

their educational impact to narrow usage considerations. Yet, mathematics education plays a 

central role in AI development, dating back to the rise of cognitive sciences in the 1980s. 

Enhancing intelligence within the framework of new mathematical work necessarily requires 

modelling knowledge and reasoning that can be implemented in today’s digital tools. 

 

 

Figure 7: The QED-Tutrix rectangle problem solution graph (Richard, Gagnon, & 

Fortuny, 2018). 

 

Imagine for a moment that the QED-Tutrix project receives funding and a team of 

researchers in mathematics education and computer engineering is reassembled. As mentioned in 

the previous section, QED-Tutrix is an intelligent tutoring system designed to support students in 

solving complex geometry proof problems. Unlike AlphaGeometry or ChatGPT + Wolfram, 

QED-Tutrix was created to facilitate students’ understanding of geometric reasoning by enabling 
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them to explore, articulate, and validate their problem-solving processes through guided 

interactions. While reasoning engines can solve mathematical problems and generate correct 

proofs, they do not necessarily produce results that are accessible to human understanding. Since 

QED-Tutrix is intended for mathematics education and needs to produce messages when 

students encounter blocks in the proof-solving process, an approach was required in which each 

step of the reasoning is known or accessible in some way by the computer system. This is why, at 

its core, the system models students’ thought processes and provides feedback based on an 

extensive memory of problem-solving steps (Fig. 7), allowing it to guide students out of 

impasses by suggesting connected problems that enhance understanding without simply 

providing solutions (Richard, Gagnon, & Fortuny, 2018). 

A unique feature of QED-Tutrix is its focus on enhancing mathematical competence by 

positioning problem-solving as a fundamental skill. Leveraging a comprehensive database of 

potential solution paths, it aims to simulate a teacher’s ability to provide contextually relevant 

hints and feedback. The system encourages students to analyze and synthesize geometric 

properties, ultimately empowering them to construct proofs independently. However, QED-

Tutrix’s development also underscores certain challenges, particularly the need for funding and 

additional research to expand its capabilities in adaptive learning and AI-supported education. 

 

 

Figure 8: Repository of geometry referential used in Quebec school textbooks and official 

documents for the creation of a common referential framework for implementation in the 

QED-Tutrix system (Cyr, 2018). 

 

 

Looking to the future, QED-Tutrix aims to enrich the pedagogical experience by becoming 
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more adept at identifying student needs and responding with customized prompts and connected 

problems, thereby fostering an integrated learning environment. Although this approach has not 

yet been fully implemented, generative models and large language models (LLMs) could provide 

substantial support. These technologies could not only facilitate human-machine communication 

but also help the system to accommodate the varied formulations of mathematical properties and 

definitions encountered in Quebec classrooms and beyond. For example, Cyr (2022) has already 

documented numerous variations found in official documents and various textbooks, both old 

and new (Fig. 8). By using AI to identify a representative for each definition or property—acting 

as a class representative in an internally unified referential—the system can adapt to different 

learning environments, operating with a streamlined solution graph that respects each 

classroom’s didactic contract. This approach allows QED-Tutrix to preserve unique inferential 

shortcuts and familiar styles of formulation without compromising rigour. 

This methodology is well aligned with the educational objectives of mathematics didactics, 

aiming to foster a richer, interactive environment where technology and human learning intersect 

dynamically through projects and purposeful tasks. As a member of the ThEDU community (see 

below), QED-Tutrix is positioned within a network dedicated to advancing educational 

technology, particularly in enhancing mathematical reasoning through digital tools, and serves as 

an intelligent tutoring system for the teaching and learning of mathematical proofs. 

The Xena Project, founded by Kevin Buzzard at Imperial College London, introduces 

mathematicians, particularly undergraduate students, to the use of Lean for formal verification of 

mathematical proofs. This software is based on the calculus of constructions with inductive 

types, enabling not only the formalization of deductive reasoning but also the modelling of 

inductive structures, which are essential in mathematical exploration and discovery. By 

transforming proofs into a kind of interactive game, it makes each theorem computer-verifiable 

through the mathlib library, integrating rigorously structured reasoning steps. This approach 

provides a technological counterpoint to large language models like ChatGPT, which Buzzard 

compares to students who “know a lot but do not think for themselves.” Unlike LLMs, Lean 

follows a verifiable, step-by-step proof logic, combining the rigour of formal and inductive 

systems from computer science to enrich mathematical learning and enhance understanding. 

ThEDU (Theorem proving and Automated Deduction in Education) is a community 

dedicated to integrating automated theorem proving and deduction in the field of education 

(Quaresma, 2022). Its objective is to promote the development and application of systems 

capable of verifying, proving, and exploring mathematical statements within an educational 

context. ThEDU supports the creation of educational software that leverages automated proof 

techniques to enhance learning in mathematics and logic, facilitating students’ understanding of 

proof concepts and rigorous reasoning. The community organizes academic events, such as 

workshops, to bring together researchers and practitioners around the latest advances in 

educational AI and proof systems. 

In conclusion, while large language models and symbolic AI systems represent significant 

advancements in computational capability, they are not inherently suited for authentic 

mathematical work. Despite drawing from an extensive knowledge base, these models lack the 
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structured, autonomous reasoning and control essential for genuine, dialectical mathematical 

learning—one that actively responds to the learner’s questioning and fosters the creation of 

meaningful knowledge. As we navigate an era of rapid computational evolution, the integration 

of technological counterpoints, where symbolic and statistical AI work in tandem, offers valuable 

support but may still fall short of addressing these intrinsic limitations. It is essential that humans 

act as “chefs d’orchestre” of this technological counterpoint, steering its design and applications 

to meet specific didactic needs and countering the utilitarian ideologies that often drive AI 

development. By prioritizing a collaborative, human-centered approach, we can foster a new 

generation of critical thinkers who not only engage deeply with mathematical concepts but also 

uphold the primacy of human reasoning in mathematics education. 

The illusion of creativity in ChatGPT arises from its ability to establish unexpected connections 

based on data produced by humans. Novelty, as envisioned in the principle of idoneity, thus 

becomes an essential reference that influences new mathematical work. It is worth recalling that 

the concept of idoneity, introduced by Ferdinand Gonseth, proposes an innovative approach in 

the philosophy of science, particularly for analyzing the relationship between established 

reference frameworks and the evolution of knowledge. According to Gonseth, these frameworks 

are not fixed structures; they must be continuously adapted to new experiences and discoveries. 

Although statistical AI attempts to mimic this adaptive process, it fails to exercise conscious 

control over these adjustments. Rather than seeking absolute and immutable foundations, we 

should adopt flexible approaches that allow knowledge to advance in step with ongoing 

developments. For humans, this implies a “strategy of engagement”: an active approach open to 

uncertainty, in contrast to the often rigid predictive methods, thus valuing adaptability, whether 

to explore scientific truth or simply to learn how to formulate and solve problems. Understanding 

the emergence of new ideas, and particularly those with real value, remains complex; yet it is 

precisely what we must aim for, even as we take into account the contributions and limitations of 

AI and other technological counterpoints. 
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Appendix 

Condensed version of the initial questionnaire. 
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This article aims to acknowledge the role played by the findings of mathematics education 

research in the development of technology learning environments, especially when AI 

components are incorporated. Reference is made to two examples that illustrate how knowledge 

of students' mathematical thinking processes enables anticipating critical moments in the 

understanding of concepts or in the resolution of mathematical tasks. The examples also 

illustrate how such possibility of anticipation is a fundamental element in didactic designs that 

include intelligent support for providing pupils with feedback on their performance within the 

learning environment. 

 

Introduction 

After four decades of research in mathematics education, one finds an enormous amount of 

accumulated knowledge about the nature of the difficulties students face in understanding 

concepts and developing skills in different areas of mathematics. Access to digital technologies 

for personal use made some researchers -the undersigned included- consider them as tools to 

create learning environments. It would be impossible here -in this space- to give a fair 

accounting of the different programs and devices with which studies and experiments have been 

carried out for the purpose of delving into the potential of those technologies. Their potential, 

that is, to help students overcome didactic and epistemological obstacles that make it difficult for 

them to understand concepts and develop mathematical skills. However, it is worth mentioning 

that in addition to supporting students in facing such difficulties, programs such as Logo, 

Scratch, Spreadsheets, Computer Algebra Systems, Dynamic Geometry (in versions of Cabri 

Géomètre, Geometer Sketchpad and Geogebra) have given rise to didactic designs that 

encourage exploration, experimentation and different forms of knowledge construction. 

In this regard one must acknowledge the role played by the findings of mathematics 

education research in the development of these didactic designs. Such is the case of studies on 

generalization processes or on conceptualization by working with different modes of 

representation of mathematical objects. These studies have led to the use of environments such as 

Logo and Geogebra (among many others) to realize the approach and verification of didactic 

hypotheses, as well as to propose their use in the mathematics classroom.  

A common denominator of the programs cited is the possibility to provide users with visual and 

quick feedback on their actions performed on mathematical tasks within the environments.  In 

relatively recent times it has been carried out the development of digital environments" 
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A research project bearing those characteristics was taken on by a group of academics at the 

UCL-Knowledge Lab of the University of London, for which the eXpresser1, microworld was 

developed. In that microworld students are asked to express in different codes the pattern they 

identify in a given diagrammatic configuration. Through the intelligent system embedded in the 

environment, natural language prompts are provided to students as they work on a proposed task 

(Gutiérrez Santos et al., 2012). It is not difficult to imagine how knowledge concerning 

generalization processes and structure sense, derived from specialized research, could have 

influenced the design of these interventions with prompts. Similarly, in the project entitled 

Intelligent dialogues with tertiary education students2, the Intelligent Dialogues learning 

environment was developed with an intelligent support that provides students with feedback in 

natural language as they perform modeling activities in mathematics and science (Rojano & 

García-Campos, 2017). In this case, the basis for the design of the feedback/intervention resource 

was research findings on the difficulties faced by tertiary education students at critical moments 

in modeling (Molyneux et al., 1999). 

Continuing with the theme of intelligent support that includes communication with users in 

natural language, one cannot ignore the fact that we are now entering a new era arising from 

progress in development of generative AI chats and expedited access to their use.  There is an 

expectation that with new tools it will be possible to enhance feedback such as those of 

eXpresser and Intelligent Dialogues. But in addition to their role in feedback generative AI chats 

are expected to be used in the creation of increasingly effective assistants or user support guides 

for learning concepts and solving mathematical tasks and problems. In the design of these 

assistants, drawing on what is known about the learning of specific mathematics topics is crucial, 

and it is in this use for design purposes that a meeting between fundamental research in 

mathematics education and the potential of new AI tools can take place. 

The following section uses two examples -taken from the aforementioned projects- to 

illustrate how knowledge of students' mathematical thinking processes enables (in many cases) 

anticipating critical moments in the understanding of concepts or in the resolution of 

mathematical tasks. They also illustrate how such possibility of anticipation is a fundamental 

component in the development of technology learning environments that include intelligent 

support for interaction with users, including feedback on their performance within those 

environments. 

 

Intelligent systems with didactic design based on foundational research 

In this section reference is made to two examples of the use of AI systems to encourage 

students to reflect, analyze and (where necessary) correct or redirect their actions, through 

 
1
The eXpresser microworld was designed to help students with mathematics generalization processes. Inspired by the robotics 

and adaptive systems methodology, the MiGen project used a ‘layers’ approach to develop and assess the intelligent support 

system for eXpresser. 

2 Intelligent Dialogues with tertiary and university education students is a three-year research project, funded by the National 

Council of Science and Technology (Conacyt) in Mexico, Reference No. 168620 
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didactic designs of activities and feedback resources based on findings in mathematics education 

research. 

 

Example 1. eXpresser  

Researchers at the UCL-Knowledge Lab, the developers of eXpresser, refer to Exploratory 

Learning Environments (ELEs) as a particular type of computer-based learning environments in 

which the focus is on learners' exploration of an area of knowledge (Mavrikis et al., 2019). These 

authors include microworlds in this ELE category, microworlds that are environments developed 

with a constructionist perspective, characterized by didactic designs based on open-ended tasks 

aimed mainly at promoting exploration and the construction of conceptual knowledge among 

students (Healy & Kynigos, 2010). As mentioned in the previous section, the possibility of 

providing feedback related to learners' actions is a constitutive element of interactive digital 

environments and ELEs are no exception in that regard. On the contrary, feedback in ELEs and 

especially in microworlds has distinctive features that distinguish it from the interaction in 

classical intelligent tutorial systems. Such features are related to the nature and purpose of the 

tasks designed for the microworlds, which as mentioned above are more about fostering students' 

exploration, discovery and understanding of concepts, rather than development of operational 

skills through instructionalist designs (Mavrikis et al., 2019, p.2). 

In the eXpresser microworld students are asked to build models with mosaics and algebraic 

rules associated with the models. The suggested strategy is to first construct 'building blocks' 

(which are perceived as a common piece of the different parts of a given model or diagrammatic 

configuration) and then repeat these blocks and generate the model with a particular number of 

constitutive elements and to thus infer/produce a general rule (algebraic formula) that makes it 

possible to generate a model with n elements (Mavrikis et al., 2019). A typical eXpresser activity 

is shown in Figure 1. 

 

 
 

Figure 1: “An example model and rules that students may construct in eXpresser. They can 

do so by creating “building blocks” to generate the centres of the flowers, the petals and the 

stalks, which they will then repeat to make the yellow, red, and green patterns. They will be 

nudged towards deriving general rules for n number of flowers. This is challenging as an 

“animation” feature applies different random values to the variables used by the student in 

order to check the generality of their rules.” From Mavrikis, et al. (2019, p. 4). 
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Clearly the construction of such blocks and of the model is a process that involves different 

stages of generalization, from the perception of the structure of a given pattern and the 

identification of the common unit that characterizes the structure associated with the pattern as it 

is perceived, to the steps of expression of that unit and its relation to the diagrammatic 

configuration in different codes (natural language, diagrammatic, numerical, or algebraic). These 

processes have been extensively researched, theoretically and empirically, from different 

perspectives; and the design of the tasks in eXpresser, as well as their feedback resources, are 

based on the results of that research. For example, present in the didactic design of the eXpresser 

tasks are both the well-known fact that the perception of the structure of a pattern is not unique 

(different individuals may have multiple perceptions of one same configuration), and what 

Rivera (2010) has pointed out regarding how decisive identification of the unit of repetition is to 

conceive the structure of the pattern. As already stated, in those tasks students are asked to build 

blocks that represent the common unit that they identify in the figural representation of the 

pattern (building blocks strategy). 

At the stage of the activity in which the review of and reflection upon the blocks and 

formulas built by each student or group of students is carried out, by verifying whether their 

construction (or formula) leads to the reproduction of the given figural pattern, feedback from 

the environment and/or through the teacher's intervention is usually required. It is at these times 

of review/reflection that the use of prompts -via questions and suggestions- is crucial for 

advancing towards the desired generalization. Some of the knowledge concerning the perception 

and generalization processes of a pattern, underlying the design of the activities that take place in 

the learning environment, translates into warnings regarding the difficulties that learners may 

face and they therefore also play an important role in the design of feedback. Geraniou & 

Mavrikis (2022, p. 134) refer to how thanks to the intelligent support of the MiGen system, of 

which eXpresser is a part, students participating in an experimental study were able to find the 

minimum number of tiles they could group in a building block and repeat it to form a pattern. 

This shows the relevance of having supports of this type, of specific and timely intervention, 

whose design considers both tracking data of student actions while working on a task, as well as 

knowledge of their learning and comprehension processes in mathematics. 

Another recurrent finding in studies on patterns and generalization is the tendency of students 

to view the relationships in the pattern recursively (and not functionally). This is an obstacle to 

generalization for case n (Stacey, 1989) and therefore it also represents an obstacle to the 

generation of an algebraic rule associated with the pattern. Hence intervention (of some sort) in 

this transition to symbolization in order to promote student reflection is also highly relevant. 

The case of the MiGen project and the intelligent system associated with eXpresser is an 

example of the usefulness of having knowledge of possible anticipations in student performance 

in generalization tasks for designing AI resources that allow relevant interventions. But in terms 

of types of use of such resources as well, the project goes beyond individual adaptive feedback 

and  the article Intelligent analysis and data visualisation for teacher assistance tools: The case 

of exploratory learning (Mavrikis et al. 2019, p.6 ) describes intelligent support components of 

the MiGen system that include intelligent Teacher Assistant Tools, and outlines the work that has 
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been done to extend the use of these tools to classroom activity, thus complementing the work of 

the teacher as facilitator or orchestrator. 

 

Example 2. Intelligent Dialogues 

The findings of the Anglo-Mexican project The role of spreadsheets within school-based 

mathematical practices in science3 include the identification of specific moments that were 

critical for all participating students (tertiary education students) during their performance of 

modeling activities using spreadsheets. The critical moments in question are: prediction of 

phenomenon behavior, verification of the prediction and generalization of the model (Molyneux 

et al., 1999). This finding together with the Dialogues with Theo (DiT) program 

(http://recursostic.education.es/descartes) served as the basis for designing and building the 

integrated environment Intelligent Dialogues in Parameterized Modelling Activities, hereafter 

referred to as Intelligent Dialogues. 

Using the DiT program, in the integrated Intelligent Dialogues environment it is possible to 

simultaneously display a dialogue window and a microworld window on the computer screen, 

both of which are dynamically linked (see Figures 2a and 2b). In that environment students can 

work on specific modeling tasks in the spreadsheets microworld and dialogue with the system in 

natural language. Consequently, students receive feedback both in the microworld and in the 

dialogue window. Figure 2a shows the activity scene Molecular diffusion in a cell, by means of a 

simulation of the phenomenon that consists of considering a simplified cell (in two dimensions) 

with six compartments. The outer walls are impermeable, although the internal membranes 

between each two compartments do allow molecules to move from one compartment to another. 

At time t=0, there are 1,200 molecules in the first compartment. In each time unit the molecules 

move in the four directions with the same probability. The students are asked to build a 

spreadsheet model that represents the molecules spreading into the different compartments over 

time. Figure 2a describes the phenomenon behavior at time t=0 and t=1; Figure 2b shows the 

questions asked by the system and student answers (dialogue window), as well as the 

calculations performed by the student (window on the right). The microworld offers students the 

option of working numerically or with formulae on a spreadsheet (Rojano, 2018, p. 227). 

 

 
3
Anglo-Mexican Project developed in collaboration with the Institute of Education of the University of London and the 

Department of Mathematics Education of the Centre for Research and Advanced Studies (Cinvestav) in Mexico, funded by the 

Spencer Foundation of Chicago, Ill, Grant No. B-1493. 

http://recursostic.education.es/descartes
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Figure 2a. “Screen with simulation of Molecular diffusion in a cell. From Rojano (2018, p. 

227).  

 

 
 

Figure 2b. “Screen with the dialogue (on the left) and the microworld (on the right) 

windows”. From Rojano (2018, p. 227) 

 

For the experimental study associated with this integrated environment, activities were 

designed considering three stages of the modeling activity: understanding the phenomenon, 

building the model, and predicting the phenomenon behavior in the long run. In view of the 

results of the previous study (without the AI layer), the critical moments were anticipated at each 

of the stages in order to design the feedback in the dialogue window. Figure 3 shows how 

students are presented with the option of a correct and an incorrect prediction of the long-term 

behavior of the molecular diffusion to encourage them to reflect on their choice and provide 

them with hints on how to verify or correct their prediction. Moreover, to support the students in 
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going through the different stages of the modeling activity, open questions, multiple-choice 

items, suggestions, and prompts were included in the dialogue window, whereas in the 

microworld window, different mathematical representation systems were used (see Rojano & 

García-Campos 2017, for the type of activities used and the methodological aspects of the study). 

The outcomes from the experimental study indicate that the Intelligent Dialogues system 

responds differently depending on to the type of strategy used by the student, be that 

spreadsheet-numerical or algebraic (using a formula). It was furthermore observed that the 

intervention through the intelligent system allowed students to successfully complete the activity. 

However, in some cases, where students were experiencing great difficulty from the initial stage 

of the modeling, substantive intervention from the teacher-researcher was necessary (Rojano & 

García-Campos, 2017, p.29). 

 

 
 

Figure 3: Dialogue and microworld windows. Choosing graphs for compartments 1 and 6. 

From Rojano, & García (2017, p. 25) 

 

Intelligent Dialogues -inspired by the MiGen project- is another example of integrating an AI 

component into a microworld, in which natural language is used as a vehicle for interaction with 

students. Due to the exploratory nature of the activities, both in this environment and in 

eXpresser, the possibility of dialogue with other students and with the teacher is considered. That 

is to say, the interaction with natural language goes beyond an individual-intelligent system chat 

modality. Hence in this type of use of intelligent systems and teamwork, natural language 

communication plays a key role in the didactic scenario. It is worth noting that in this respect the 
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experiment in empirical studies conducted with both environments confirms the hypothesis 

formulated by some authors to the effect that interaction through natural language contributes to 

the improvement of learning achievements, especially when it takes place in a technology 

environment. That hypothesis is derived from the research conducted by Litman et al (2009), 

which reports that a higher percentage of content-rich talk is correlated with higher learning gain. 

To the previous result it should be added that Chi, et al (1994) showed that self-explanation 

among students significantly improves learning, which reinforces the above-mentioned 

hypothesis. 

 

From incorporating a feedback system in a microworld to creating AI assistants to foster 

mathematical thinking: Algebra Structure Sense (ASS) and Expression Machine (Mex) 

Algebra structure sense (ASS) is the capability to gain awareness of the internal structure of 

algebraic objects (Rojano, 2022, p. 2). According to an operational definition of that capability, a 

person has structure sense if he/she: sees an algebraic expression or sentence as an entity, 

recognizes an algebraic expression or sentence as a previously met structure, divides an entity 

into sub-structures, recognizes mutual connections between structures, recognizes which 

manipulation it is possible to perform, and recognize which manipulations it is useful to perform 

(Hoch & Dreyfus, 2004, page 351). Hoch & Dreyfus used this definition to verify in a study 

involving 92 16-17 years old pupils whether a subject makes use of ASS when performing an 

algebraic task. The authors applied the following test: 

 

Study with 92 16-17 years old pupils. The purpose is to identify students who display 

structure sense, and if structure sense is affected by the number of sets of brackets (0, 1, 2) 

and by the placement of the variable (on one side of equation or on both sides of equation). 

From Hoch & Dreyfus (2004).  

 

 
 

In the data recorded two essentially different types of strategies were observed. One is based 

on the use of ASS, which allows students to identify identical compound terms that can cancel 

each other out and thus obtain the solution of the equation immediately. The other strategy 

consists of developing the operations called for, (including the elimination of parentheses or 

looking for a common denominator in rational expressions), which led in several cases to long 

and complicated processes that did not allow the students to arrive at the solution (Hoch & 

Dreyfus, 2004). 
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With another approach to the same topic, in the project Developing algebra structure sense in 

a digital interactive environment with an adaptive system4, Mex, an interactive web environment 

was created for the purpose of helping students from different educational levels to develop their 

ASS (Muñoz & Xolocotzin, 2022, pp. 79-84). In that environment, interaction is between the 

user and a multilevel network of algebraic tasks of varying degrees of complexity, and feedback 

is based on the user's responses to each task, without the use of a chat. The results of a first study 

with MEx (carried out among subjects with varying mathematical experience and knowledge) 

show that a group of participants make progress in the development and use of structure sense as 

they solve tasks along paths entailing different levels of complexity. However, the subjects with a 

tendency to develop algebraic expressions instead of using structure sense found it difficult to 

distance themselves from that tendency (Solares & Rojano, 2022 pp 91-104). In such cases the 

need for intervention to guide students to reflect on their responses and procedures was 

recognized. As seen in a preceding section, in projects such as eXpresser and Intelligent 

Dialogues, this need has been addressed through incorporation of prompts and a dialogue 

window. But in view of the nature of the cognitive ability involved in recognizing the internal 

order of algebraic objects (Kirshner, 1989), one option to support ASS development is to use 

generative AI systems applications to develop assistants. 

 

Knowing more about and exploring the potential of the new tools 

The features that distinguish generative AI applications from non-generative or 

conversational AI applications (https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox) make it 

possible to think of sophisticated and ambitious usage models, both as interlocutors for students 

and as teacher assistants in the classroom. Unlike conversational AI based in part on predefined 

answers or rule-based systems, generative AI can be used to create new content with the use of 

machine learning algorithms and deep learning to generate outputs. This has led to the creation 

of ChatGPT and Google Gemini, as well as many other applications 

(https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox). In a short period of time tools such as 

these have proven to be very powerful in assisting users with activities in different areas; it is at 

this point when the question arises as to how reliable and effective they are in the field of 

mathematics. For the moment, what can be said is that in some cases the applications can give 

mathematically and didactically correct answers or guidance. However, there are cases in which 

"their knowledge" of the subject matter is poor or scarce and their intervention can be erratic as a 

result. In other words, their effectiveness depends to a large extent on the mathematical content 

in question and the AI application’s ability to perform a particular task or solve a particular 

problem. The latter was evidenced in a preliminary study, in the framework of an ongoing PhD 

 
4
Developing algebra structure sense in a digital interactive environment with an adaptive feedback system is a Frontiers of 

Science Project, funded by the Council of Science and Technology in Mexico (Conacyt Ref. 2016-01-2347). The main aim of the 

project is to prove the feasibility to foster the development of high algebraic competencies in heterogeneous groups of students, 

using a technology environment that promotes autonomous learning. (https://www.teresarojano.com) 

https://www.teresarojano.com/
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project5, when a selection of items from the Hoch & Dreyfus questionnaire was used to test the 

ASS of a set of generative AI applications. 

In the doctoral research in reference, the author sought to answer the following questions 

regarding the generative AI applications: 1) Do they apply ASS to solve the Hoch & Dreyfus 

items; 2) Can they be taught to apply ASS; 3) How can AI be used to foster development of ASS 

in subjects? When testing the selected applications, it was found that only some of them make 

use of ASS when asked to solve one of the equations in the questionnaire; while others develop 

the algebraic expressions present in the equation, just as some of the participants in the study did 

with MEx. The above answers question 1). The following shows the performance of two of these 

tools when they are asked to solve the equation 1 −
1

(𝑛+3)
− 1 +

1

(𝑛+3)
=

1

72
, taken from the Hoch 

& Dreyfus questionnaire (Nebbia, in process). 

 

 
Figure 4b: Example of Open AI GPT 3.5 turbo solving the equation  

𝟏 −
𝟏

(𝒏+𝟑)
− 𝟏 +

𝟏

(𝒏+𝟑)
=

𝟏

𝟕𝟐
 (from the Hoch & Dreyfus questionnaire). The AI application 

used a syntactic rule-based strategy to find the solution (Nebbia, in process). 

 

 
5Nebbia, C. (in process). Construction of interactive environments for the enhancement of algebra structure sense: Into the world 

of generative AI tools. PhD project, Center for Research and Advanced Studies (Cinvestav), IPN, Mexico 
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Figure 4b: Example of Google Gemini 1.5 pro solving the equation 𝟏 −
𝟏

(𝒏+𝟑)
− 𝟏 +

𝟏

(𝒏+𝟑)
=

𝟏

𝟕𝟐
 (from the Hoch & Dreyfus questionnaire). The AI application used structure sense to 

find the solution (Nebbia, in process) 

 

The overall plan of this project entailed choosing generative AI applications that can be used 

to build an assistant that accompanies students as they solve algebraic tasks designed to promote 

the use of structure sense. The accompaniment will consist of engaging in a dialogue with the 

student during the joint resolution (student-assistant) of the tasks, making the student aware of 

the structural properties that s/he has not perceived and suggesting how to use them to perform 

the algebraic transformations that lead to the solution. 

 

Final Thoughts 

The author aimed to use the examples submitted in this article to emphasize the role of 

knowledge concerning the mathematical thinking of students in the design and development of 

technology learning environments. Through empirical studies, the latter environments have 

shown their potential to foster such thinking among users, both conceptually and in development 

of mathematical skills and abilities. However, one must acknowledge that matching didactic 

designs of this type with the dizzying advance of digital technology and AI tools represents an 

enormous challenge. This is in part because the generation of and access to fundamental research 

results in mathematics education are slower processes than technological progress. It is also 

partially due to the fact that widespread access to an expeditious use of the new tools -

particularly what we are witnessing today in relation to the use of generative AI applications- 

favors a great diversity of spontaneous uses in and out of school. The foregoing makes up a very 

different scenario as compared to what existed in the 90s, when access to use of digital devices 

and software was very restricted; in many cases the use of technology was barely starting in 
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academia or the workplace. The current context is in many ways very different, and major 

changes are beginning to be hypothesized both in the ways of teaching and learning, as well as in 

the manners of conducting educational research in general, and in mathematics education in 

particular. 
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Generative Artificial Intelligence has become prevalent in discussions of educational technology. 

These AI models can engage in human-like conversation and generate answers to complex 

questions in real-time, with education reports accentuating their potential to make teachers’ 

work more efficient and improve student learning. In this paper, I provide a review of the current 

literature on generative AI in mathematics education, focusing on four areas: generative AI for 

mathematics problem-solving, generative AI for mathematics tutoring and feedback, generative 

AI to adapt mathematical tasks, and generative AI to assist mathematics teachers in planning. I 

then discuss ethical and logistical issues that arise with the application of generative AI in 

mathematics education, and close with some observations, recommendations, and future 

directions for the field. 

 

Generative Artificial Intelligence has taken the world by storm since the release of ChatGPT 

in November of 2022. This release marked an important milestone in the development of 

conversational Artificial Intelligence agents, driven by ChatGPT’s ability to engage in human-

like conversation and answer complex questions. Stakeholders immediately began imagining 

how these tools might be applied to education. It has been nearly two years since ChatGPT’s 

release, and research is rapidly emerging on its implications for education. In this paper, I seek to 

summarize current trends and issues related to GenAI in mathematics education, since the release 

of ChatGPT. 

Artificial Intelligence (AI), according to the U.S. Department of Education, is “automation 

based on associations” (Cardona et al., 2023, p.1). Generative AI (GenAI) is a class of AI that is 

capable of generating new data and outputs by learning patterns from training data. Large 

Language Models (LLMs) are one type of GenAI that “build sophisticated statistical predictors 

by identifying patterns in a massive set of human-curated training data” (NCTM, 2023, p. 1). 

What was so revolutionary about GenAI models like ChatGPT when they were released was the 

ability of a human user to respond back to the AI model and ask it to change elements of its 

response – this practice is known as prompting. This ability gave rise to prompt engineering, which 

is the process of constructing inputs for LLMs to elicit precise, coherent, and pertinent responses (Liu et 

al., 2021). This process allows users to iteratively refine the kinds of output the LLMs provide, 

customizing the LLM’s work to their needs and context.  

The U.S. Department of Education gives many possible benefits of AI in education – from 

increasing the adaptivity of learning materials to students’ needs, to providing teachers support 

via automated teaching assistants, to better customizing learning resources to meet local 

demands (Cardona et al., 2023). NCTM’s (2023) AI Position Statement further expands on these 

affordances – describing how GenAI can allow for the quick development of multiple problem 

versions to illustrate a mathematics concept, can efficiently design engaging, personally relevant 

mailto:cwalkington@smu.edu
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questions tailored to individual students’ experiences, and can generate rich mathematical 

explanations that adapt to students’ current level of expertise. Both of these reports also detail the 

incredible risks that GenAI poses – including issues of bias towards marginalized groups, 

concerns related to privacy and surveillance, and GenAI’s tendency to hallucinate and provide 

incorrect information. 

I structure this paper by first discussing affordances and use cases of GenAI in mathematics 

education in four broad areas – focusing on mathematics problem-solving, mathematics tutoring 

and feedback, adapting mathematical tasks to learner needs, and supporting mathematics 

teachers in planning. I then move to discussing important ethical, theoretical, and practical issues 

to consider when implementing GenAI in education. I close by providing some observations and 

recommendations for the future of GenAI in mathematics education. 

 

Generative AI for Mathematics Problem-Solving 

GenAI programs like ChatGPT can have a wide variety of mathematics problems inputted 

into them and can not only generate an answer to these problems, but also give a detailed 

explanation of how to get to that answer. The latest version of the LLM GPT-4 (OpenAI, 2023) 

integrates computer vision, such that the AI can examine mathematical diagrams in addition to 

the problem’s text. GPT-4 scores 700 out of 800 on the mathematics portion of the SAT (OpenAI, 

2023), which is in the 89th percentile. This is an improvement on a score of 590 (70th percentile) 

that was achieved by GPT-3.5, its predecessor. GPT-4 also scores a 4 out of 5 on the AP Calculus 

BC exam, while its predecessor scored a 1. GPT-4 scores in the 80th percentile on the GRE 

Quantitative exam, with its predecessor in the 25th percentile. And while GPT-4o scored only 

13% on the qualifying exam for the Math Olympiad, the new GPT-o1 model designed for 

complex reasoning scored an impressive 83% (OpenAI, 2024), although it is slower and more 

costly than its alternatives. These results paint an impressive picture of the capability of 

contemporary LLMs for mathematics problem-solving. 

LLMs also seem to have a relatively easy time with typical K-12 mathematics word problems 

used in open-source curricula. For example, GPT-4 solved and generated explanations for middle 

school mathematics word problems from ASSISTments with only a 4% error rate in its 

mathematical explanations (Wang et al., 2024a). Interestingly, none of these errors in 

explanations were associated with incorrect answers, allowing researchers to conclude that the 

AI was relatively safe for use with middle school students. Other researchers have used GPT-4 to 

solve more difficult graduate-level mathematics problems, to test whether GenAI can assist 

mathematicians in their professional activities (Frieder et al., 2023). They found that while GPT-

4 could solve undergraduate mathematics problems, it performed poorly on graduate-level work. 

They concluded that GPT-4 can best be leveraged to act as a mathematical search engine and 

query databases of mathematical objects, rather than as a direct solver of advanced problems. 

Analyses have also been done into the nature of the mistakes GPT makes when solving 

mathematical tasks. Typical errors made by GPT-3.5 included using incorrect formulas or 

methods or unclear question definition, along with calculation errors and misinterpretations of 

the question being asked (Yen & Hsu, 2023). Mathematics problems that have a high number and 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2251 

diversity of mathematical operations needed to solve them tend to be more difficult for LLMs, as 

are problems that utilize a conversion of a quantity that requires real-world knowledge (Srivasta 

& Kochmar, 2024). Math word problems with unfeasible solutions (i.e., the analytical solution is 

not practical with respect to the real-world context), that contain quantities in them that are not 

needed to solve the problem, or that involve a comparison between quantities are also more 

difficult for LLMs (Albornoz-De Luise1 et al., 2024). In addition, holding mathematical features 

constant, longer and more difficult-to-read word problems are harder for LLMs to solve. One 

reason why understanding the capability of LLMs to solve mathematics problems is important is 

because these tools are used by students as a form of assistance. Although for primarily symbolic 

problems computer algebra systems like Maxima and Wolfram Alpha are more accurate, LLMs 

offer the advantage of communication using natural language, and can explain different steps for 

problem solving. Thus, LLMs may be preferred by students over alternatives. Integrating 

computer algebra systems (Matzakos et al., 2023) or other secondary systems that can check the 

LLM’s calculations (Yen & Hsu, 2023) with LLMs will be an important future direction to 

improve the reliability of these systems.  

There is surprisingly little research on how GenAI can be used effectively by students to 

enhance their learning of mathematics. Barana et al. (2023) gave university students 

combinatorics problems to solve with the help of GPT-3.5. They found that although GPT-3.5 did 

not consistently achieve correct answers to the problems, the output given by GPT-3.5 could be 

leveraged by the students. The students used the output to generate ideas for how to approach the 

problem, to compare their reasoning with GPT-3.5’s reasoning, to solve smaller parts of the 

problem, and to evaluate and then correct GPT-3.5’s solution paths. This is an important example 

of how LLMs can support higher-level thinking in mathematics. Research has also been done 

with pre-service mathematics teachers using ChatGPT to help them solve mathematical 

modelling tasks (Naresh et al., 2024). The researchers highlighted that incorrect answers from 

the AI could be opportunities for student learning and could launch important mathematical 

conversations. The teachers also recognized that their students could self-explain the different 

steps shown by ChatGPT as an opportunity for deeper learning. In sum, more research on how 

students can effectively partner with LLMs to confront challenging mathematical tasks, like 

mathematical modeling tasks, is needed. 

 

Generative AI for Mathematics Tutoring and Feedback 

Several different online learning platforms have launched GenAI chatbot mathematics tutors, 

which communicate with students through text chat to assist them with solving mathematical 

tasks. The most well-known is Khan Academy’s Khanmigo (Khan Academy, n.d.), which is free 

for teachers through a partnership with Microsoft, but has a monthly charge for students, 

families, and districts. Khan Academy describes how “Unlike other AI tools such as ChatGPT, 

Khanmigo doesn’t just give answers. Instead, with limitless patience, it guides learners to find 

the answer themselves.” Notably, Khanmigo is student-facing with no human directly in the loop 

– children interact directly with the GenAI conversational agent, relying on Khan Academy’s 

safeguards to prevent inappropriate interactions. Khanmigo acknowledges that it will sometimes 
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make mathematical errors, with a disclaimer at the top of the tutoring screen reading “Khanmigo 

make mistakes sometimes.”  

Results are starting to emerge on the effectiveness of GenAI tutoring. Bastani et al. (2024) 

conducted a pre-registered RCT that involved nearly 1000 high school students and compared 

students learning mathematics over a semester with either: (1) GPT-4, (2) GPT-4 with knowledge 

of correct solutions and student mistakes, as well as instructions to not give students answers, or 

(3) a control condition where students used books and notes with no access to devices. They 

found that both versions of GPT-4 improved immediate performance, but that the version that 

lacked the safeguards actually harmed later exam performance by 17%. Additional analyses 

suggested that GPT-4 was being used as a crutch by students, and that they were often simply 

asking it for the answer without a substantial conversation. The enhanced version of GPT-4 with 

the safeguards did not offer any benefit on the exam over simply studying the text and notes 

without devices, and its effect trended slightly negative compared to the control group.  

As little research exists on GenAI tutors, we can look to research on chatbot tutors that were 

built predating the rise of contemporary LLMs. A study that compared adults learning 

mathematics with a chatbot to adults learning with Khan Academy videos did not find significant 

differences in learning (Grossman et al., 2019), suggesting that the chatbot was generally not 

effective. However, a math tutoring chatbot for a younger population of elementary students 

showed some evidence of positive results for engagement and learning above a control condition 

with no support (Ruan et al., 2020). A follow-up study (Ruan et al., 2024) of elementary students 

found no differences in overall learning compared to a control condition with no support, but 

some suggestion of increased learning for students with lower pretest scores in the chatbot 

condition. At the secondary level, a chatbot implemented in ASSISTments was compared to 

students simply receiving static hints, and researchers found no differences in learning (Cheng et 

al., 2024). However, students who had interacted with the chatbot actually had lower confidence 

in their problem-solving, due to potentially becoming reliant on the chatbot’s high degree of 

assistance.  

None of these studies compared chatbots to human tutors, and overall, the evidence base for 

chatbot tutors does not seem particularly promising. However, we should not discount that many 

marginalized learners may not have access to human tutoring, and that LLMs’ abilities to 

communicate in different languages may have important affordances. Butgereit and van Staden 

(2023) report on an implementation in South Africa of adult learners receiving mathematics 

tutoring through a version of GPT-4 configured for tutoring interactions. The tutoring was 

delivered in several different languages, including less-resourced African languages that typically 

perform less well in LLMs.    

Given that there is little research on GenAI chatbots, I next look to research on whether 

LLMs can give actionable feedback to students on their mathematical problem-solving. In online 

learning platforms, generating text and images for explanations and hints to be administered 

when students need assistance can be time-consuming for curriculum developers. As a result, 

many curriculum developers are looking to LLMs to help with this process. Research suggests 

that GPT-4 has a tendency to over-identify instances of students making mathematical errors 
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(Karkarla et al., 2024). Other studies have examined the quality of GPT-generated explanations 

through ratings of explanation quality. Wang et al. (2024a) asked ten undergraduate mathematics 

majors to evaluate either explanations for middle school mathematics problems written by GPT-4 

or explanations for the same problems previously written by educators. They found that the 

perceived quality of the explanations was higher for GPT-4 than for teacher-written explanations, 

potentially because the GPT explanations were seen as having a clearer, step-by-step approach. 

Prior research had shown that GPT-3’s explanations for mathematics problems were rated lower 

than teacher-generated explanations (Prihar et al., 2023). Research comparing pre-service 

teachers’ reactions to educator-generated hints versus hints generated by GPT-4 found that 

educator-generated hints were preferred in some cases, as they incorporated visuals, while the 

LLM-generated hints were preferred in other cases, as they often were more thorough and 

detailed (Gattupalli et al., 2023a). Other research on GPT-4 suggests that the hints it gives may 

be too procedurally-focused and are not always written appropriately to support students’ reading 

needs (Gattupalli et al., 2023b). The rated quality of GPT-4-written explanations for middle 

school mathematics problems can be improved if the LLM integrates previous annotations of the 

student’s work from experts into its reasoning (Wang et al., 2024b). This blending of human and 

GenAI capabilities may be a promising approach. 

Research has also examined the learning implications of AI versus human-generated hints, in 

addition to preference scores. Pardos and Bhandari (2024) compared GPT-3.5-generated hints for 

mathematics problems in the OpenStax curriculum to human tutor-generated hints. They found 

that adult learners had higher learning gains in the GPT condition compared to a control 

condition with no hints, while the difference between human-generated hints and the control 

condition did not reach significance. However, they found that 32% of the hints generated by 

GPT were initially disqualified for inaccuracy, and that this percentage was reduced through the 

use of an LLM hallucination reduction technique. Overall LLMs seem to be improving in their 

ability to generate hints and feedback but work still needs to be done on ensuring the hints are 

accurate, conceptually-focused, and do not lead to over-reliance on the LLM. 

 

Generative AI To Adapt Mathematical Tasks to Learner Needs 

GenAI can also be used to adapt learning tasks to meet different learner needs. For example, 

students often struggle to read the text of mathematics word problems (Walkington et al., 2018), 

and LLMs have the potential to adapt problems to assist emerging readers. Norberg et al. (2024a) 

showed that having GPT-4 rewrite middle school mathematics problems to improve their 

readability resulted in similar effects on student performance as having humans rewrite the 

problems. They also found that compared to the original problems that had not been rewritten, 

the problems rewritten for improved readability using GPT-4 could in some cases improve 

students’ mastery rates. Using earlier LLMs, like GPT-3, for the same kind of task resulted in 

less impressive results, where outputs had more error and noise (Patel et al., 2023).  

LLMs can also adapt mathematics problems based on students’ interests in popular culture 

areas like sports or music, or career areas like nursing or engineering – this is often called context 

personalization (Walkington, 2013). GPT-3.5 was used in a research study to rewrite probability 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2254 

and statistics problems to correspond to undergraduates’ career interests in areas like 

pharmacology or economics (Einarsson et al., 2023). The study found that the problems 

sometimes required revisions due to mathematical issues, and that while some students liked the 

relevant contexts, others did not like the extra length and complexity the personalized contexts 

added. However, the authors recognize that better results for accuracy with respect to 

mathematical issues may have been found with GPT-4.  Indeed, another small study where GPT-

4 was used to personalize secondary mathematics word problems to correspond to students’ 

interests in areas like TikTok, results showed that GPT did not change the difficulty, intent, or 

values in the problem (Yadav et al., 2023). In a unique approach to personalization, Hwang et al. 

(2024) used GPT-3.5 to pose mathematical problems based on camera-captured images of real-

world geometric objects, personalizing mathematics problems to objects in the learners’ 

environment. They found that 5th grade students using the system outperformed a control group. 

While research shows some effects of personalization and readability on student outcomes, it 

is also important to examine the perspectives of teachers. An interview study with teachers who 

taught 8th grade math in urban settings asked about the possibilities of using GenAI to 

personalize mathematics problems (Walkington and Bainbridge, under review). The study found 

that teachers felt it would be an effective way to draw upon students’ real-world knowledge, 

activate interest, and allow for sense-making around mathematical problems. One teacher 

described how “If it's talking about a place, thing, or situation that they're actually familiar with, 

that they've actually had hands-on experience with, or have seen with their own eyes then, of 

course, it's gonna be a little bit easier for them to comprehend the problem,” while another 

teacher said, “I think them being able to have a little bit of background knowledge makes word 

problems a little less scary, sometimes, too, where they feel like they understand it better.” 

However, the teachers had concerns that LLM-generated problems would create greater reading 

burdens for students, that students still lacked important fundamental math knowledge, and that 

having different problem versions would translate into additional preparation time for teachers 

and/or create difficulty when going over problems as a class. One teacher described how “But if 

they're struggling in math, even giving them what they're interested in, it still may pose a 

challenge.” Overall teachers showed some enthusiasm about the approach, mixed with concern 

that it would not solve the fundamental issues they were experiencing with their instruction. 

Research has also examined partnering students with LLMs to engage in mathematical 

problem-posing activities (Silver, 1994), as a way to create personalized versions of story 

situations written by students (e.g., Walkington et al., 2024a). Norberg et al. (2024b) engaged 

middle school students in authoring their own personalized problems relating to probability and 

ratios and based on their interests, using GPT-4 to assist students. They found that students 

preferred more control over the personalization system and found slight increases in students’ 

sense of belonging in mathematics. Zhang et al. (2024) conducted a study of 4–8-year-olds 

writing math stories while partnering with a GPT-4 agent to support their storytelling. They 

found that compared to a human partner, the LLM’s assistance was actually better in helping 

students comprehend mathematical definitions, and comparable for supporting mathematics 

language learning and the generation of quality math stories. However, children interacting with 
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the LLM were less likely to provide substantial responses in the conversation and more likely to 

give uncertain responses, compared to when interacting with a human. 

Another study examined middle school girls posing mathematics story problems with the 

assistance of GPT-3.5, as part of a project-based unit to create a pitch for a mathematics video 

game (Walkington et al., 2024b). The study found that the girls used prompting to fine-tune the 

mathematics story problems for their game and their pitch, and typically gave length and style 

parameters to the LLM. The girls found that using GPT-3.5 created story problems they felt were 

fun and engaging, was an efficient process, and that the problems had the potential to increase 

mathematical understanding. However, further analyses found that the quality of the mathematics 

story problems, in terms of their realism and correspondence to actual real-world objects and 

events, was relatively low and problems could contain mathematical errors or inconsistencies. 

Overall, partnering students with GenAI to accomplish complex mathematical tasks that include 

problem-posing activities may be an important future direction of GenAI research, if students 

have an appropriate understanding of the issues involved with using GenAI. 

 

Generative AI To Support Mathematics Teachers in Planning 

Research suggests that teachers work an average of 50 hours per week, and that only 49% of 

this time is in direct interaction with students. The rest of this time involves preparing lessons, 

giving feedback, doing administrative work, and engaging in professional development (Cardona 

et al., 2023). There has thus been interest in leveraging GenAI to make teachers more efficient 

during the 51% of time they are not directly interacting with students. Many tools have arisen 

that use GenAI to help teachers plan their lessons and accomplish logistical classroom tasks. One 

of the most well-known tools is MagicSchool (powered by GPT-4, among other models), 

currently advertised to be used by 2 million educators worldwide (MagicSchool, n.d.). The 

MagicSchool suite has over 70 AI tools for educators that “help you lesson plan, differentiate, 

write assessments, write IEPs, communicate clearly, and more.” The base version of 

MagicSchool is currently free for teachers, with more advanced plans having recurring charges.  

However, there are many other GenAI tools for teachers, with Khanmigo, for instance, having a 

similar suite of free teacher tools (Khan Academy, n.d.). Gemini for Google Workspace (Google 

for Education, 2024) has also arisen as a major player in the “GenAI for Teachers” field. Gemini 

has easy integration with Google tools that are widely used in schools already like Docs, Sheets, 

Slides, and Gmail, as well as integration with Google’s Gemini chatbot. 

Research on pre-service and in-service mathematics teachers using MagicSchool 

(Beauchamp & Walkington, 2024) has examined the use of various tools to make mathematics 

tasks more relevant to students. This study found that teachers felt the tools had the potential to 

support students’ motivation to learn mathematics and that the tools could increase the efficiency 

with which the teachers could generate tasks. However, the teachers found the tools limited in 

their support for English Learners and felt that some of the tasks did not accurately or deeply 

reflect elements of students’ real-world experiences or had mathematical issues. Research has 

also examined pre-service elementary mathematics teachers using Khanmigo as a support for 

their mathematics learning related to number theory (Yilmaz et al., 2024). This study found that 
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teachers using Khanmigo appreciated the individualized learning and were comfortable sharing 

questions and struggles with Khanmigo. However, in some cases they found Khanmigo 

responses confusing or of questionable reliability and missed the human interaction of someone 

who gets to know them as students.  

Research has also examined pre-service mathematics teachers using ChatGPT for lesson 

planning (Berryhill et al., 2024; Broutin, 2024; Kwom & Ko, 2024; Naresh et al., 2024). One 

study found that teachers asked ChatGPT for both mathematical and pedagogical knowledge, 

that they used ChatGPT as an assistant in developing and organizing lessons, they had ChatGPT 

simulate possible student responses, and they asked ChatGPT to validate or comment on their 

ideas relating to teaching (Broutin, 2024). The teachers used continuous prompting to adjust the 

output and ideas that ChatGPT generated, and they extensively modified the output from 

ChatGPT to meet their needs. Similarly, a study on pre-service mathematics teachers using 

ChatGPT highlighted that it can be used to anticipate student misconceptions and approaches to 

problems, and that ChatGPT can simulate being an age-appropriate student to assist teachers in 

planning (Naresh et al., 2024). Teachers can also use ChatGPT to generate culturally relevant 

word problems, with research suggesting that the LLM can be a helpful thought partner through 

the use of iterative prompting and revision (Berryhill et al., 2024). GPT can further be used to 

generate mathematics assessment items. Secondary mathematics teachers using GPT-3.5 to 

generate statistics assessment items felt variably in their desire to actually use the GPT-generated 

problems (Kwon & Ko, 2024). The teachers appreciated the creativity, efficiency, and specificity 

of GPT, in addition to its ability to produce anticipated student solutions. However, concerns 

were raised about GPT’s mathematical errors, security and copyright issues, GPT’s lack of 

transparency, its inability to know teachers’ students and classrooms, as well as issues with item 

difficulty and discrimination. Overall, LLMs have some functions that will be useful to teachers 

in lesson planning, as long as the output can be modified and enhanced by the teachers 

themselves to best fit their needs. 

 

Issues with the Use of Generative AI in Mathematics Education 

A myriad of important ethical issues and concerns arise when applying GenAI technologies 

to education. Bender et al.’s (2021) groundbreaking paper describes some of these issues, 

highlighting the environmental and financial cost of increasingly complex and accurate GenAI 

that require more and more computing power (see also Li et al., 2023). In addition, the training 

data for GenAI is from large internet datasets that overrepresent people in positions of power in 

society, that show bias towards the inclusion of marginalized groups, and that include derogatory 

associations and stereotypes towards these groups (Bender et al., 2021).  

Issues with training data may be of particular concern in mathematics education, as common 

textbooks (including open access textbooks) that GenAI is drawing from have been found to be 

culturally-biased. An analysis of the top 9 textbooks for 8th grade mathematics on EdReports.  

found that the majority of the problems in these texts were situated in White, middle-class 

American culture (Pruitt-Britton & Walkington, 2022). Many of the activities described in the 

story problems in these texts required wealth or transportation to participate in – such as a story 
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problem about renting a jet-ski or vacationing in the Poconos. The analysis also found problems 

with specialized non-mathematical language that would be challenging for English Learners. If 

these are the kinds of data that GenAI is trained from, then GenAI is likely to show these same 

issues and biases when asked to generate problems. 

There are also concerns about LLMs having stereotypical negative associations with the 

subject matter of mathematics itself, given the commonness of mathematics anxiety and negative 

reactions to mathematics that are prevalent in society and thus in the LLM’s training data. 

Abramski et al. (2023) studied the associations that GPT-4 makes with the academic subject of 

mathematics, and the degree to which these associations are negative or positive. They found that 

10% of sentiments associated with mathematics were negative for GPT-4, compared to a 

surprising 50% in GPT-3.5. However, the authors still found that in GPT-4, “Math was associated 

with frustrating, anxiety, fearful, intimidating, confusing, and struggle. These negative 

associations were not found in the semantic frame of physics, whose negative associates were 

related to domain knowledge (e.g., chaos, nuclear)” (p. 15). 

When discussing limitations of LLMs, Bender et al. (2021) further describe how, “Text 

generated by an LLM is not grounded in communicative intent, any model of the world, or any 

model of the reader’s state of mind. It can’t have been because the training data never included 

sharing thoughts with a listener, nor does the machine have the ability to do that” (p. 616). 

Although these models can generate human-like responses, they are not reasoning or “thinking” 

in the way humans do. Indeed, the development of mathematics concepts themselves and the 

development of students’ mathematics learning is situated in their individual and collective 

interactions with the physical world (Nathan, 2022). However, it has been argued that AI systems 

are “fundamentally incapable of understanding people’s embodied interactions in the ways that 

humans understand them” (Nathan, 2023, p.1). These systems cannot account for forms of 

human reasoning that are non-verbal and non-pictorial, like gestures and actions. 

In addition, in education particularly, there are concerns about the protection of users’ inputs 

into the LLM, including privacy and issues of ownership of intellectual property (Gómez 

Marchant & Hardison, 2024). When an LLM collects data about young students to better adapt 

learning materials to student needs, issues of who sees the data and how it is deleted are 

paramount (Cardona et al., 2023). The rise of LLMs integrated into educational settings may also 

involve increasing possibilities for surveillance of both students and teachers, as the LLM 

collects data from multiple sources in order to best adapt instruction and assist teachers. 

Further, research on using ChatGPT in mathematics teacher education has shown that 

ChatGPT can create developmentally inappropriate learning activities and materials that include 

mathematical mistakes. ChatGPT may create inappropriate materials, such as a middle school 

mathematics scenario about someone losing 5 pounds per month in a weight loss program 

(Sawyer & Aga, 2024). LLM-generated problems can also involve haphazard, rather than 

purposeful, choice of numbers, and LLM’s lack of authentic connections to learners’ lived 

experiences can “demonstrate a dangerous surface-level approach to culturally relevant 

pedagogy” (Gómez Marchant & Hardison, 2024, p. 3).  

Indeed, Walkington et al.’s (2024b) study of middle school girls using GPT-3.5 to create 
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mathematics story problems, and Beauchamp and Walkington’s (2024) study of teachers using 

MagicSchool to create relevant learning tasks, found that the problems created by these LLMs 

often involved surface-level connections to students’ experiences. For example, one teacher 

asked MagicSchool to create a lesson relevant to their students’ interest in Mexican-American 

rapper ThatMexicanOT, and it generated the following: “Students will create a Spotify playlist 

based on songs by ThatMexicanOT. Each song will be represented by a cylinder-shaped object, 

and students will calculate the volume and surface area of each cylinder. This activity will show 

students how real-world math concepts are used in creative ways, like organizing playlists based 

on their favorite music.” Obviously, this scenario is nonsensical, as representing songs as 

cylinders and calculating their volume and surface area makes little sense. Similar issues were 

found for student-generated math problems in our study of middle school girls – GPT-3.5 

generated the problem “Jack, one of the last five remaining humans, is determined to defeat the 

robot army by factoring the polynomial expression 2x^2 + 5x - 3, representing the robots' central 

control system. If Jack successfully factors the polynomial into its linear expressions (Ax + 

B)(Cx + D), where A, B, C, and D are integers, he can exploit the weaknesses in the robots' 

programming.” This again is a shallow connection between the mathematics concepts and the 

real-world context. 

Image-generating GenAI also exhibit significant bias. For example, Figure 1 shows the 

output that was generated when DALL-E3 was asked to create “An image of a room of 

mathematics educators attending the Psychology of Mathematics Education - North America 

conference in Cleveland, Ohio.” The lack of diversity in the image is striking. A study of middle 

school girls using DALL-E2 reported that the girls recognized bias when the GenAI would 

generate mainly light-skinned images of humans, despite most of the girls being girls of color 

(Walkington et al., 2024b). One group of girls in this study described how the pictures of the 

“landlord” character in their game were consistently generated as older, White men. Gómez 

Marchant and Hardison (2024) further describe how Adobe Firefly’s image-generating AI shows 

negative racial imagery and incorporates an anti-fatness bias. They asked Adobe Firefly to 

generate images of a mathematics teacher, and all the images were of White adults. In the 

mathematics textbook analysis mentioned previously (Pruitt-Britton &Walkington, 2022), it was 

found that the majority of images of humans in mathematics textbooks were of White, able-

bodied people. Given that GenAI is largely trained on these kinds of datasets when generating 

images for mathematical problems, it is not surprising that the generated images lack diversity. 

There is also a lack of guidance in schools about how to handle students using GenAI to 

complete their assignments. This can lead to disciplinary action that may have disproportionate 

impact marginalized students, specifically special education students (Laird et al., 2023). There 

is evidence that English Language Learners and neurodivergent students may be 

disproportionately targeted by AI detection tools (Gegg-Harrison & Quaterman, 2024). Further, 

there is evidence that Black students are more likely to be false accused of using GenAI tools to 

cheat (Madden et al., 2024).  
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Figure 1: DALL-E3 image of attendees of PME-NA 2024 

 

Discussion 

NCTM (2023), in their Position Statement on Generative AI, compares GenAI to advances in 

technology like calculators, search engines, and image-based solving systems like Photomath. 

They describe how these tools have the potential to reduce an emphasis on computation in 

mathematics classrooms and increase focus on creative problem-solving. NCTM (2023) also 

describes how such tools can create positive pressure for teachers and curriculum developers to 

pose mathematical tasks that are deeper and involve creative thinking and are thus less prone to 

being solved with LLMs. NCTM further describes how GenAI tools can shift the focus of 

mathematics instruction from solving tasks to both solving and verifying – an evolutionary 

change where students must critically examine outputs from LLM and engage in deeper 

reasoning. 

This is a very optimistic and forward-looking account on how GenAI could be used to 

deliver on its promise to change education. The research that has emerged before and since this 

Position Statement, however, paints a different picture. There is certainly some important, 

emerging research happening that leverages GenAI to engage students in rich and meaningful 

mathematical problem solving – probably far more than is represented in this review, as results 

may not be published at this early stage. But much of the effort, funding, and emphasis in GenAI 

in mathematics education is being directed at creating AI chatbots or personalized feedback 

systems, and then making small incremental enhancements to these systems to more optimally 

respond to students’ errors or assess students’ knowledge. This may sound promising, but these 
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technologies are primarily being developed in contexts where students are solving simple, 

repetitive, skill-based mathematics tasks individually on a screen. Critiques of GenAI chatbots 

have been harsh, with Meyer (2024) arguing that Khanmigo “regards math as machine-

executable code, a numbered list of steps that a machine can execute one at a time with any error 

bubbling up the stack and identifying the earliest step that produced it” and “regards students as 

buggy computers whose errors should be identified and corrected as efficiently as possible.”  As 

a result, Meyer describes how “The lie that Khanmigo perpetuates here is that ‘math is about a 

huge number of small ideas.’” This then leads to the important question of, what actual, pressing 

problem in mathematics education is GenAI suited to solve? 

A survey in 2023 of why K-12 teachers are not using GenAI found that the most common 

reason was “I haven’t explored these tools because I have other priorities that are more 

important” (Klein, 2024). This was echoed by one of the teachers in the Walkington and 

Bainbridge (under review) interview study. An Algebra 1 teacher with 10 years of experience 

teaching in a district composed of predominantly marginalized learners, when asked about using 

GenAI to personalize content to his students’ interests, described how: 

 

It could help, you know - anything is better than nothing, but that's not the issue. The issue is 

the gaps of what they do and what they don't know based on where they are… We're trying to 

fill gaps like the city does potholes. If you've ever seen the cities do potholes, man, they just 

put something over it. But if the car hit that hole, maybe 20-30 minutes later, the pothole 

gonna be right back there next month. Instead of tearing up the street and starting over. And 

unfortunately, that's kind of what we're trying to do… we need to be able to kinda almost 

start over instead of trying to fix their gaps, the gaps are turning into canyons and in doing 

this, we're kind of wasting a year because we ain't fixing what the real issue is. 

 

These kinds of sentiments relating to teachers having to confront bigger issues than GenAI can 

solve were also echoed by a first-year mathematics teacher teaching in a district composed 

primarily of marginalized learners, in the Beauchamp and Walkington (2024) study. During a 

discussion of using MagicSchool in the classroom, this teacher described how: 

 

It’s so hard, because I feel like coming in, the teaching philosophy was “Oh I want to make 

sure my kids are well-rounded and critical thinkers.” But now, since like the district is like 

“Why are test scores so bad? Why are test scores so bad?” it’s like, my curriculum is going to 

be test questions basically, to prep them… They still tell us that we need to be stretching our 

kids thinking, but I’m like, we only have so much time. So I feel like because my district 

really does want to see test scores higher, I feel like my curriculum really is just test 

questions. 

 

Discussing the possibilities of GenAI with mathematics teachers can be a reminder that these 

technologies may not be particularly effective for solving the larger problems they face with 

mathematics instruction every day. The mixed reviews from teachers we see in the studies of 
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GenAI we reviewed lends further credence to this point. This leads to the question of whether the 

hype around GenAI in education, and its transformative potential, is indeed justified. 

 

Conclusion 

I close by considering how can GenAI give us opportunities to truly transform the nature of 

mathematics education, in the way that the advent of calculators and dynamic geometry software 

was transformative. First, the practice of students engaging critically with the output of LLMs, 

particularly their function to create an endless amount of worked examples with explanations, 

could be powerful. This may be especially important for learners who speak diverse languages or 

learners in low-resourced settings where human tutoring is not possible. This approach may be 

particularly effective for student learning if the LLM makes mathematical mistakes that learners 

must grapple with and reason about – but as these LLMs rapidly become more advanced, 

mistakes happening with regularity seems increasingly unlikely, especially for K-12 mathematics 

content. Second, students using LLMs as a thought partner for problem-posing or mathematical 

story-telling activities seems like a promising direction from the existing research – story-telling 

is one practice that this technology excels at, and mathematics instruction is often missing the 

integration of rich, compelling stories about quantitative and spatial experiences.  

Third, image-generating GenAI still has a long way to go to be ethical and useful. However, 

a promising way they could be leveraged is to automatically create rich visual representations to 

accompany mathematical tasks. This could also function to reduce costs associated with the 

development of high-quality open access materials that are freely available to teachers and 

districts. Fourth, mathematics teachers using GenAI as a thought partner to help them brainstorm 

and iterate upon lesson ideas, adapted for their context and needs, certainly has potential, 

especially if these lessons would be free. However, there are a variety of logistical and structural 

issues that may prevent this from being possible for individual teachers, and teachers will need to 

be prepared to modify and adapt the output of LLMs to suit their needs. Depending on the 

amount of time this modification takes, LLMs may not greatly enhance efficiency, and may 

instead mainly enhance creativity.  

Finally, the power of GenAI to support students with mathematics skill practice, particularly 

in its ability to adapt to student needs, does have real-world value. These skill-based tasks are 

ultimately the kinds of mathematical scenarios that students will be held accountable for being 

able to solve in K-12 settings, and students’ mathematical fluency can have high-stakes 

implications inside of school. However, the field of mathematics education needs to look beyond 

such applications of GenAI and consider how this technology, coupled with other initiatives, can 

help us solve the pressing problems teachers actually face with mathematics instruction. 
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Drawing on a math lesson from a kindergarten class, we reflect on the evolution of the field’s 

thinking about teacher noticing. Changes in the prevailing theoretical trends have influenced 

how we think about teacher noticing. In addition, evolving interests have led to the expansion of 

teacher noticing in new directions, pushing at the boundaries of the idea, as it was initially 

posed. Similarly, changes in recording technologies have profoundly impacted how we study and 

support teacher noticing. In reflecting on these developments, we first trace some of the origins 

of research on teacher noticing, then discuss the current state of research in the field, and finally 

share some considerations of next steps. 

Dorothy Fields, an experienced kindergarten teacher, was participating in an online course 

for early elementary teachers on mathematical argumentation (Lomax et al., 2017). As part of the 

course, Ms. Fields video-recorded her students as they engaged in weekly math activities. She 

then selected portions of the recordings to share and discuss with her peers. It was the fourth 

week of the course, and teachers were continuing to explore what their students understood about 

equality. 

Imagine for a moment, you asked a group of kindergarteners if the following equations were 

true or false (Figure 1). What might they say? 

 

7 = 2 + 5 

 2 + 5 = 5 + 2 

 2 + 5 = 5 - 2 

Figure 1: True/False Questions 

 

Ms. Fields’ students gathered on the rug in the front of the room, and she set up her computer 

at the back of the class to record their discussion. Ms. Fields projected each equation on the 

board, one at a time, asking students if it was “true or false” and stating that “I want to hear your 

thinking.”  

Students had mixed views about the first equation, with one student noting that 2 + 5 = 7 

would be the “regular equation.” When discussing the second equation, Timmy claimed that it 

was true “because 2 plus 5, it equals 7, and 5 plus 2 equals 7” and that “5 plus 2 is just reversed 

from 2 plus 5.” Ms. Field’s revoiced Timmy’s idea for the class, pointing to each side of the 
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equation “So, this side is just the reverse of this side.” Ellen agreed with Timmy because of how 

“in the last one…it [2 + 5] was the same thing as the first thing [7].”  

Miles then brought up the idea of “the wall” which Ms. Fields interpreted to mean the equals 

sign. Miles explained that “they’re both 7, but it’s actually kind of wrong because (pointing to 

the 5 + 2)…the 2 should be there and then the 5 would be there,” suggesting that 5 + 2 should be 

rewritten as 2 + 5. Rose and Nelson argued that the equation was false because “there’s two 

pluses” and if the final + 2 “was gone then it wouldn’t be true.” Rose also explained that “the 

minus is in the middle” instead of “next to the 2.” Ms. Fields asked Rose if she meant that “the 

equals sign should be over here [next to the 2]” and Rose agreed. 

Ms. Fields next turned to the third equation. Ellen claimed “I think it’s false because that 

one’s a minus… and that’s one says plus.” Callie then added that “this one is false because this 

one (pointing to 5 - 2) is 3 and this one (pointing to 5 + 2) is 7.” At one point, Timmy added that 

it was “extra, extra, extra false.”  

What do you “notice” in the students’ thinking? Is the idea of 2 + 5 = 7 being the “regular 

equation” something you have heard before? What might Timmy mean when he says the third 

equation is “extra, extra, extra false?” What do you think the teacher notices? Is Ms. Fields 

cueing into students’ comments about the order of the numbers in the equations? Does she notice 

that Callie’s claim is about the sum and difference of the two equations, rather than the form of 

the equations? What is it about Rose, or about what Rose says, that prompts Ms. Fields to 

wonder if Rose meant that the “equals sign is in the middle?”  

Teacher noticing continues to be of strong interest to the mathematics education community. 

Recent reviews note the wealth of publications on teacher noticing, the diversity of the work, and 

key shared assumptions (Amador et al., 2021; König et al., 2022; Weyers et al., 2024). More and 

more there is consensus that what teachers notice, and how teachers notice, matter for student 

learning. In addition, research continues to document that learning to notice is, to some extent, 

teachable — that teachers can learn to notice through teaching, through professional 

development, and with the use of tools (e.g., Larison et al., 2024; Sherin et al., 2011; van Es et 

al., 2017).  

Yet we believe this is a good moment to reflect on the evolution of the field’s thinking about 

teacher noticing. As trends have come and gone in the study of teacher learning, noticing has 

been impacted as well. Changes in the prevailing theoretical trends have been reflected in how 

we think about teacher noticing. And evolving interests have led to the expansion of teacher 

noticing in new directions, thus pushing at the boundaries of the idea, as it was initially posed. 

Similarly, changes in recording technologies have profoundly impacted how we study and 

support teacher noticing. In what follows, we reflect on these developments, first tracing some of 

the origins of research on teacher noticing, then discussing the current state of research in the 

field, and finally by sharing some considerations of next steps. 

 

Theoretical Perspectives on Teacher Noticing 

How it started. The idea that teacher noticing is a component of teaching expertise had 

multiple origins, largely within cognitive traditions characteristic of the time. One line of 
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thinking had its roots in the literature on expertise, which documented that experts in a variety of 

domains have the ability to see patterns and structure in domain phenomena that are different 

from those seen by novices. Furthermore, these patterns tend to be particularly useful for the 

types of tasks that are characteristic of expertise (e.g., Chase & Simon, 1973). In the 1980s, 

Berliner and colleagues applied these ideas to teaching, showing across a range of studies that 

expert teachers perceived meaning and substance in various depictions of classroom interactions, 

while novice teachers struggled to do so and often focused on features of the classroom that are 

less useful for the work of teaching (Berliner, 1986; Carter et al., 1988). Returning to our 

example, consider how Ms. Fields’ interaction with Rose’s idea about “the minus” being “in the 

middle” might reflect her teaching expertise. In her response, Ms. Fields pursued how Rose was 

thinking about the organization of the equation and where certain pieces belong rather than 

Rose’s inaccurate use of the term “minus” to refer to the equals sign. As an experienced teacher, 

we think it is quite possible that Ms. Fields foregrounds Rose’s comments about the organization 

of the equation because that is an aspect of Rose’s reasoning that was more relevant to her 

learning.   

Around the same time, Erickson and colleagues investigated what they referred to as 

“teachers’ practical ways of seeing” (Erickson et al., 1986). Central to the cognitive paradigm 

was viewing teaching as a way of thinking that involved a particular set of specialized 

knowledge and cognitive processes. Erickson’s claim was that to truly understand teaching, one 

needed to understand how teachers “observed and made practical sense of what happened in their 

classrooms daily” (Erickson, 2011, p. 19). Erickson explained further that teacher noticing was 

selective and multidimensional, and at times opportunistic, tied to areas where teachers believed 

they might act. 

Mason (1982, 1987) also explored the construct of teacher noticing in the early 1980s. 

Mason’s approach emphasized the importance of teacher awareness — of teachers paying 

attention to what and how they see mathematics and mathematics teaching and learning. Mason 

(2002) referred to this as the “discipline of noticing” to emphasize that effective teaching 

involved preparing to notice in particular ways, and required sustained effort and energy to 

successfully do so. In this way, Mason made clear his position that teachers can develop their 

noticing capabilities. 

My own (M. Sherin’s) interest in teacher noticing developed in the early 1990s as I worked 

with colleagues on a project in which teachers watched and reflected on excerpts of classroom 

videos (Frederiksen et al., 1998; Gamoran, 1994). Goodwin’s idea of “professional vision” 

(Goodwin, 1994) — that members of any professional group develop specialized ways of 

noticing — guided my work. A key feature of Goodwin’s idea is that expert vision is not simply 

something that individuals acquire, on their own, through repeated practice and experience. It 

also is partly shaped from their participation in a profession, one with its own technical 

foundations. To me, then, the idea of professional vision further elevated teacher noticing and did 

so at a time when professionalizing teaching was an important goal (Firestone, 1993).   

All of these lines of work shared the idea that perception was an active process; that is, that 

teachers direct their attention to significant features of the classroom environment as they engage 
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in teaching. Additionally, these influences emphasized that teacher decision-making is dynamic 

and dependent in part on what teachers perceive to be taking place in the moments of instruction. 

How it’s going. Research on teacher noticing has continued to expand and evolve over the 

past forty years. Much of this work continues to take a cognitive approach, describing the 

cognitive processes involved as individual teachers notice classroom events. However, over the 

last decade, increasing attention has been paid to what König et al. (2022)6 refer to as a socio-

cultural perspective of teacher noticing. This perspective aligns with Goodwin’s claim that “the 

ability to see a meaningful event is not a transparent, psychological process, but instead a 

socially situated activity” (Goodwin, 1994, p. 606). Furthermore, it foregrounds the idea that 

noticing is not just a social but a cultural activity, and that what a teacher notices is necessarily 

situated within the larger systems and discourses in which teaching and learning take place, 

systems that include, but stretch far beyond, the profession of teaching. In an early example of 

this approach, Levin et al. (2009) highlighted the challenge a teacher faced in consistently 

attending to student thinking in her classroom given direction from school administrators to 

focus on classroom management and content coverage, pressures that the school administrators 

may have felt more acutely given the recent passing of the No Child Left Behind Act (Klein, 

2015). Lefstein and Snell (2011) similarly emphasized the political nature of teacher noticing, 

suggesting that there are often multiple “professional visions” (p. 505), and that teacher noticing 

is inherently political given that some ideologies are privileged while others are marginalized.   

Expanding on such work, a number of recent studies examine the relationship between 

teacher noticing and cultural, historical, and ideological perspectives (Chen, 2020; Dominguez, 

2021; Louie et al., 2021; Scheiner, 2023; Shah & Coles, 2020). These studies illustrate, for 

example, that dominant discourses in mathematics education position students of color as less 

capable mathematicians and, therefore, influence teachers’ perceptions of “smartness” in student 

contributions (Louie, 2018). Returning to our example, a socio-cultural perspective would ask us 

to consider, among other things, ways in which Ms. Field’s noticing was influenced by her 

perceptions of Timmy, Ellen, Miles, and others more broadly, including their status in the 

classroom community and their broader societally-relevant identities. In short, this perspective 

emphasizes that what a teacher does and does not notice is shaped by cultural forces, and that 

research on teacher noticing must consider the broader framings within which noticing takes 

place, particularly in our efforts to help teachers develop noticing practices that promote 

equitable and meaningful mathematics learning (Horn & Garner, 2022). 

What’s next? The developments discussed in the preceding subsection all push on the notion 

of teacher noticing and in quite reasonable ways. It is certainly a good idea to think of teacher 

noticing as socially-situated. It also seems certain that a teacher’s noticing will be dependent on 

aspects of their past histories, such as, generally speaking, their cultural and ideological 

backgrounds (Hand, 2012; Mendoza et al., 2021). 

 
6König et al. (2022) introduce a total of four perspectives on teacher noticing — cognitive-psychological and 

socio-cultural, as discussed here, as well as discipline-specific and expertise-related. We would argue that the 

discipline-specific and expertise-related also take a cognitive approach to the study of teacher noticing. And of 

course while discussed separately, these perspectives are often interwoven in research. 
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But it’s less clear to us what this should mean for how we think about teacher noticing – how 

we should theorize about and study it going forward. In the proposals mentioned, there is still 

something called “noticing” that a teacher does. The proposals add inputs, and they say that what 

a teacher notices is going to heavily depend on these inputs. The details of the classroom context 

heavily impact a teacher’s noticing. And various inputs throughout a teacher’s life impact the 

noticing that they do in the classroom. 

But we should worry whether the developments discussed above require a more fundamental 

kind of change. Are we doing the equivalent of adding epicycles7 to a theoretical framework that 

needs a more thorough rewriting? 

Sherin and Star (2011) distinguish multiple possible ways to understand teacher noticing. 

One of these is noticing as a cognitive sub-process. This, loosely speaking, is how noticing was 

originally understood. A second possibility they discuss is noticing as an emergent property of 

the larger cognitive system. We believe that the above developments suggest the possibility that 

we should consider a third kind of understanding of teacher noticing: Noticing as an emergent 

property of a teacher and a classroom, taken together.  

Let’s consider this latter possibility for a moment. If we see noticing as an emergent property 

of a teacher-classroom system, where do we look to see teacher noticing? How can we say what 

is “noticed?” One possibility is to simply say that an attribute of the classroom context is noticed 

if it in some manner impacts a teacher’s behavior.  

This stance, if adopted, has some intriguing implications for how we might think about 

teacher noticing going forward. Suppose that Ms. Fields did not react, in any way, to Rose’s 

inaccurate use of the term “minus.” If we adopt the emergent perspective on noticing, then we 

would say that Ms. Fields did not notice Rose’s use of “minus.” 

Further, we imagine other teachers may notice differently than Ms. Fields; not all teachers 

will act the same in a given context. In some manner, a teacher’s behavior depends on their past 

history. A way to accommodate this is to borrow a term from Greeno (1998). We can say that, 

based on their histories, teachers develop “attunements” - propensities to be impacted by some 

features of the classroom context. 

So, in summary: we might say that teachers develop attunements based on their past 

histories. In the moment, in part because of these attunements, teachers behave in a manner that 

depends on some features of the classroom context and not others. 

We are not sure we want to argue for this new way of thinking. Our own belief is that it will 

be productive, going forward, to adopt multiple perspectives. But we do want to make the 

general point that, given the observations mentioned in the preceding section, we do have to 

think hard about where to go next. This emerging line of work raises an important question - is it 

sufficient to add new inputs and dependencies? Certainly, understanding the expansiveness of 

what captures teachers’ attention and why is important. At the same time, it prompts us to ask, 

how does this work advance our understanding of what constitutes teacher noticing or what 

 
7Some early astronomers added epicycles to geocentric models of planetary motion in order to better account for 

observational data. In these models, the planets move in smaller circles — the epicycles — as they trace their larger 

orbit around the Earth. The models were complicated, but could make highly accurate predictions. 
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teacher noticing is? Does it invite us to see noticing in a new light, such as, that noticing is being 

done and, in the doing, noticing enables new forms of action and social relations? If not, should 

there still be something called “teacher noticing?” 

 

The Boundaries of Teacher Noticing 

How it started. As work in teacher noticing continues to expand and evolve, it is important to 

carefully consider what we see as the boundaries of teacher noticing — that is, what belongs in a 

theory of teacher noticing. Early work in human perception emphasized the active nature of 

noticing, which involves both bottom-up and top-down processing (Gibson, 1950). On the one 

hand, we recognize patterns in available visual information and then apply our knowledge and 

experiences to make sense of what is seen (think here of walking into an unmarked building, 

seeing gurneys and people in scrubs, and realizing that you are in a medical center). On the other 

hand, our knowledge and experiences help us perceive and interpret visual information (think of 

walking into a medical center and immediately looking for the reception area in order to check 

in).  

In line with such work, initial conceptions of teacher noticing emphasized two key 

subprocesses: selective attention, or attending, reflecting the idea that teaching involves 

attending to some events while not attending to others, and knowledge-based reasoning, or 

interpreting, reflecting that teaching involves teachers using their knowledge and experiences to 

make sense of what they observe (Sherin, 2007). Furthermore, attending and interpreting were 

understood to act in a dynamic manner.  

Our decision to include both attending and interpreting in the construct of noticing was not 

driven by theory alone, as empirical work with teachers illustrated the close connection between 

these two subprocesses. For example, after viewing the recording of her class, Ms. Fields wrote, 

“I was not surprised by Timmy’s answers because I know he has a solid understanding of the 

equal sign.” In line with Sherin and Star (2011), we believe that Ms. Fields’ statement points to 

something that she noticed about Timmy’s comments, but it is not possible to distinguish what 

she attended to from her interpretation. Nor is it possible to say that these subprocesses operated 

in some kind of typical chronological fashion (Castro Superfine et al., 2017). It may be that, 

based on experiences with Timmy during the previous week’s activity related to equality, Ms. 

Fields was primed to attend to Timmy’s answers in a certain way. Or it could be that attending to 

Timmy’s comments in class were what convinced her that he had a “solid understanding of the 

equals sign.” Either way, empirical work supports the theoretical claim that “attending and 

interpreting are inextricably linked” (Castro Superfine et al., 2017, p. 422). 

How it’s going. Researchers have sought to expand the construct of noticing further by 

introducing other components. The most widespread of these is related to the introduction of 

professional noticing of children’s mathematical thinking by Jacobs et al. (2010). In doing so, 

Jacobs et al. defined three central processes: (a) attending to children’s strategies, (b) interpreting 

children’s mathematical understandings, and (c) deciding how to respond on the basis of 

children's understandings. They emphasized that “deciding how to respond” is temporally linked 

to attending and interpreting, and therefore should not be separated. The authors write, “We 
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suggest that… the three component skills of professional noticing of children’s mathematical 

thinking—attending, interpreting, and deciding how to respond— happen... almost 

simultaneously, as if constituting a single, integrated teaching move” (Jacobs et al., 2010, p. 

173). Blömeke et al. (2015) similarly include decision making as an integrated component of 

noticing. What might these scholars point to as evidence of Ms. Fields “deciding how to 

respond”? Perhaps when Ms. Fields followed up with Rose about the placement of the equals 

sign rather than Rose’s inaccurate use of the term “minus,” Ms. Fields had made a decision based 

on what she believed about Rose’s thinking — a decision that was not distinct from her attending 

to and interpreting Rose’s thinking. 

Two additional components were introduced in 2021. In their discussion of teacher noticing 

from a sociopolitical perspective, Louie et al. (2021) positioned framing as an important 

component of noticing. Building on previous studies that explored the relationship between 

framing and noticing, they chose to “locate framing within noticing, as an integral process that 

both shapes and is shaped by other noticing processes” (p. 97). In doing so, they sought to 

elevate ways that broader sociopolitical frames, like deficit discourses about students of color or 

framings of mathematics as “universal, objective, and fixed” (p. 98), are influential in a teacher’s 

framing in the moment and intimately bound up with processes of attending, interpreting, and (in 

their framework) responding. How might this idea of framing as connected to noticing be evident 

in our example? Consider that in the lesson, Ms. Fields probes statements from some of her 

students, while moving on after the responses of others. Might this indicate that she has a fixed 

sense of some students’ abilities and is unlikely to notice potential insights in their comments or 

to believe there is more to what they are thinking that was stated? Thus, what she notices about 

students’ thinking is connected to her sense of their capabilities as mathematical learners. 

Alternatively, Ms. Fields may be aware that some of her students seem to have a great deal of 

authority in the classroom, and so she attends more closely to the thinking of those who do not, 

in order to ascribe them more agency among their peers. In this case, her noticing about students’ 

thinking is connected to her beliefs about their positionality among their peers. 

Around the same time, van Es and Sherin (2021), revisiting their early work on teacher 

noticing, introduced a third component to their model of teacher noticing, what they refer to as 

shaping which involves “teachers constructing interactions, in the midst of noticing, to gain 

access to additional information that further supports their noticing” (p. 23). The idea then, is that 

teacher noticing involves not only attending to and interpreting what is happening in the 

classroom, but also actively seeking out, and in some cases creating, information that can be 

noticed. This component builds from the notion that noticing is active and in addition, that 

noticing involves interaction with one’s environment. van Es and Sherin discuss shaping 

specifically in the context of student mathematical thinking. Looking at our example, they might 

point to Ms. Fields’ question to the class “Does anyone think this is false?” as evidence of 

shaping. In response to several students having shared their thinking that 7 = 5 + 2 was true, Ms. 

Fields was creating opportunities to notice students who disagreed. Later in the lesson, Mason 

responded to the discussion that 2 + 5 = 5 + 2 is true by stating “if you just put the wall on” to 
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which Ms. Fields said “Tell me more about the wall.” Again, Ms. Fields was promoting an 

opportunity to have access to additional information about this idea of “the wall.” 

What’s next? As with our discussion of theoretical perspectives, evolution of the boundaries 

of a construct like teacher noticing feels natural as the field engages with it. New components 

can represent progress and refinement. However, new components can also muddy the waters of 

conceptual and analytical clarity. Here, we consider both sides of the coin in relation to teacher 

noticing. 

Conceptualizing components like deciding how to respond, framing, and shaping as part and 

parcel of noticing can help to draw our attention to key purposes and facets of the work teachers 

are doing when they notice classroom events. For instance, as Erickson (2011) discussed, teacher 

noticing is often tied to aspects of classroom events on which teachers want to act - including 

deciding how to respond as a component of noticing can emphasize this purposeful, selective 

nature of noticing on the part of teachers. Including framing as a subprocess of noticing can 

intentionally promote the field’s attention to the broader contexts in which teachers and 

classroom interactions operate, especially which culturally dominant frames or counterframes 

may be in play in acts of noticing. Positioning framing as a component can productively push 

researchers to consider this in any noticing analysis, not just ones in which relations between 

framing and noticing are an explicit focus of study. 

Yet additional components can also make it challenging to know where teacher noticing 

starts and stops. Are we headed down a slippery slope in which many acts of teaching fall under 

the umbrella of noticing (Sherin, 2017)? For instance, engaging in shaping in a classroom 

interaction, in order to create better opportunities for attending to and interpreting student 

thinking, looks quite similar to revoicing or asking probing questions (Franke et al., 2007). Did 

we ourselves create this potential slope when we extended noticing beyond attending to 

interpreting, to also include shaping (van Es & Sherin, 2021)? 

In short, we are asking ourselves and wish to ask the field — in what ways and for what 

purposes is it useful to think of these components as part of noticing, versus entangled with but 

separate from noticing? What are the implications for making progress on understanding 

teachers’ practice and thinking writ large? For designing teacher learning environments that 

cultivate noticing? Can teacher noticing be useful as a construct, if everything is teacher 

noticing? 

 

Using Video to Support Teacher Noticing 

How it started. In the 1960s, video cameras became more portable and less costly, and 

recording in classrooms as part of teacher education and professional development became 

increasingly common. One of the earliest uses involved a practice called microteaching in which 

participants were recorded using a specific teaching skill, then assessed their use of the skill 

based on the recording. Another approach, interaction analysis, involved the use of an 

observation instrument that outlined specific student and teacher behaviors to note when viewing 

a recording of a lesson. Both microteaching and interaction analysis were based on the idea that 
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teaching consisted of a set of observable teacher actions and that there exists a straightforward 

relationship between those actions and student outcomes (Russ et al., 2016). 

By the mid 1980s, the cognitive paradigm had become quite popular in educational research, 

and research on teaching focused on the mental structures of teachers, including identifying 

specific categories of knowledge. Recording teachers and classrooms was used as a way for 

researchers to investigate teachers’ thinking, and new approaches to the use of video with 

teachers were introduced. For instance, in 1994 the National Board for Professional Teaching 

Standards began to accept applications for certification that included video segments and 

corresponding teacher reflections (Goldhaber et al., 2004). Around the same time, M. Sherin and 

colleagues began to work with groups of teachers in video clubs in which participants watched 

and discussed excerpts of videos from their classrooms (Frederiksen et al., 1998).  

One of the outstanding questions of the time was what video might help teachers learn. Video 

cases, for example, were often geared towards the development of teachers’ subject matter 

knowledge or pedagogical content knowledge, though research was mixed on whether such 

efforts were successful (Sherin, 2004). In contrast, consideration of the affordances of video 

suggested that video was particularly well-suited to support the development of teacher noticing. 

In particular, because video provided a permanent record of classroom interactions that could be 

viewed repeatedly and did not require teachers to respond immediately as is needed when 

teaching, video came to be viewed as a valuable resource for working with teachers around their 

noticing capabilities. 

How it’s going. Over the past 25 years, the use of video to support teacher noticing has 

received a great deal of attention and innovation. A range of research has documented that video 

clubs and other video-based professional development can promote the development of teacher 

noticing as teachers shift in what and how they notice (Gaudin & Chaliès, 2015). A common 

focus in this work were efforts designed specifically to help teachers notice students’ 

mathematical thinking (Santagata et al., 2021). Such work demonstrated that reflecting on video 

of one’s teaching enabled both pre-service and in-service teachers to develop productive 

approaches for attending to and making sense of the ideas that students raise (Kleinknecht & 

Gröschner, 2016; Seidel et al., 2011; Santagata & Guarino, 2011). Related research looked 

specifically at how to situate video productively in order to support teachers’ learning to notice as 

well as the role of facilitation in such efforts (González et al, 2016; Seago et al., 2018; van Es et 

al., 2014). Of interest also was work that explored implications for instruction. Sherin and van Es 

(2009) and van Es and Sherin (2010), for example, documented that the development of teacher 

noticing in video clubs did in fact influence teachers’ classroom practices, as teachers came to 

use the noticing strategies developed in the video clubs during instruction. 

Research on the use of video to support teacher noticing has also explored the use of various 

video-based tools in this process. For example, Larison et al. (2024) and Walkoe et al. (2020) 

describe the use of a video-tagging tool to support teachers’ ability to identify and comment on 

interesting moments of students’ mathematical thinking in classroom video excerpts. Others 

discuss the use of video annotation tools that allow teachers to mark moments of video as 

associated with particular features of a framework (Suh et al., 2021) or video editing tools that 
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invite teachers to highlight particular moments of a video for themselves and others (Chen & 

Chan, 2022; Fadde et al., 2009). Another important line of research examined specific features of 

video clips that promote teacher noticing (Sherin et al., 2009) and in particular, the 

characterization of “critical events” in which student’s mathematical thinking is particularly 

salient and therefore can serve as key tools in helping teachers learn to notice (Leathem et al., 

2015; Rotem & Ayalon, 2022). 

What’s next? For the most part, research on the use of video to support teacher noticing has 

been based on the idea that teacher learning occurs through review and discussion of video 

excerpts among teachers. Further, video excerpts for discussion have often been chosen by 

teacher educators and researchers, rather than teachers themselves. More recently, however, we 

and others (e.g., Borowiec et al., 2022; Brouwer, 2022; Xiao & Eriksson, 2020) have begun to 

examine how the acts of self-capturing video in one’s classroom and selecting excerpts to share 

with others can also be sources of learning to notice for teachers. Sherin and Dyer (2017), for 

example, document that in preparing to record student mathematical thinking in their classrooms, 

teachers engage in a kind of anticipatory noticing in which they predict in what part of a lesson 

student mathematical thinking will be visible and what students might say or do at that time. In 

addition, teachers consider some of the logistics of recording with an eye towards making sure 

students’ ideas can be seen and heard on the video (Richards et al., 2021). Thus, prior to 

recording, teachers engage in what Mason (2002) described as preparing to notice. While 

recording a lesson, teachers also have opportunities to develop their noticing as they identify 

interesting student mathematical thinking taking place and, in some cases, adjust the lesson in 

progress in order to provide additional opportunities for student thinking to be visible. Finally, 

learning to notice can occur as teachers review their videos in an effort to select portions of a 

lesson to share with others. 

Animating some of these opportunities with our example, we focus on Ms. Fields’ initial 

review of the lesson in an attempt to select a 3-4 minute clip to share with peers in the course. 

Ms. Fields explained that she was looking for parts “where the thinking [in] the conversation is 

best,” or what was “interesting or different or surprising.” As she watched the recording on her 

own, Ms. Fields commented on what she noticed. “That was a good point. It's just 

reversed.”  “So, she's thrown off by the, the set up of the equation.” “Miles changed his thinking 

here. He wanted it to look like two plus five equals two plus five and then it would be true and 

then at the end, he realized that it still is the same, which I think is... it's interesting.” In an 

interview later in the course Ms. Fields explained that sometimes watching the video reminded 

her of something she had noticed while teaching, while at other times she noticed new aspects of 

what students shared. In fact at one point she stated “I think this part is better [than] what I 

remember.” 

After viewing the recording Ms. Fields explained that she would go back to “the most 

interesting moments” and “trim that part” to prepare a 3-4 minute excerpt to share with her peers 

in the course. As she made the selection for this lesson Ms. Fields explained that she “wanted to 

capture when she changed it to subtraction.” More generally, she explained that she wanted her 

recording to “show my colleagues…how [students] approached the numbers andtheir different 
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thinking.” Her peers similarly described attending closely to what they considered “more 

meatier” discussion among students and moments that showed changes in students’ thinking. 

We believe that this expansion of the use of video for teacher noticing is quite significant. As 

video equipment becomes smaller and more ubiquitous, teachers can more easily record their 

classrooms, and we are seeing that doing so can provide novel opportunities for meaningful 

teacher learning. Further, in our view, these shifts importantly put teachers at the helm of 

deciding what to elevate and discuss in video as classroom professionals, rather than locating this 

decision-making primarily or solely with teacher educators or researchers. While we still 

envision a role for teacher educators and researchers in designing and facilitating video-based 

programs for teachers, we feel that this represents an important move toward democratizing 

video-based teacher noticing and learning. Looking forward, we are intrigued by the possibilities 

of AI for facilitating teachers’ selection of video excerpts from their classrooms, while of course 

cautious of the ethical implications of doing so. Imagine Ms. Fields with a full corpus of video 

from her kindergarten class asking chatGPT to pull out moments where she said “interesting” in 

class, or to identify moments where students talked directly to each other. What possibilities 

might this open up for how the field both theorizes teacher noticing and studies teachers’ learning 

to notice in the future?  

Reflecting on the evolution of the construct of teacher noticing and the different ways 

noticing has contributed to our understanding of teaching, we believe that continuing to question 

what it means to notice and, therefore, how to study teacher noticing is a worthwhile endeavor. 

Our snapshot of Dorothy Fields offers a window into the ample and different opportunities for 

teachers’ learning to notice in the context of their recording, selecting, sharing, and reflecting on 

video of classroom activity. Indeed, we suspect that technological advancements and novel 

designs for teacher learning will continue to influence research on teacher noticing and how we 

conceive of and promote teacher noticing.  
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The state of assessment in mathematics education is arguably precarious at this time. Many 

educators question, if not downright reject, the use of high-stakes tests (Au, 2022). In fact, the 

climate of anti-testing in mathematics education has reached a point where some doubt the value 

of measurement itself, as a tool for the improvement of learning, (Zhao, 2020). Others are 

staunch advocates for the use of formative assessment to stimulate powerful reflective teacher 

noticing of students’ approaches but may overlook that formative assessment practices seldom 

accrue records of student progress over time—either individually or across groups of students. 

One might say that the field has thrown out the baby (measurement) with the bathwater (high-

stakes assessment). My goal is to rescue the baby, placing it carefully in the category of 

“assessment for learning”, rather than “assessment of learning” (Black & Wiliam, 1998). 

In this paper, I introduce the concept of a Learning Trajectory-based Diagnostic Assessment 

system (LTDA)10 as an alternative genre of assessment, which combines diagnostically valid 

with low-stakes characteristics and includes longer term record-keeping. I report on the kinds of 

contributions to instructional improvement made possible by harnessing and making accessible 

the rich foundation of research in the learning sciences and describe some emergent dynamics 

that influence student outcomes. This paper does not review related diagnostic systems but rather 

shares the story of the design and implementation of a prototype with the potential to improve 

practice at scale. 

Section One: Achievement, Student Voice, and Learning Trajectories 

The Current Context 

Most readers here are probably familiar with the data from The Nation’s Report Card or the 

National Assessment of Educational Progress (NAEP), which I review as a starting point. The 

NAEP mathematics scores were trending modestly upward until they plateaued in 2013. From 

2019 to 2022, during the pandemic years, there was a steep drop on both the fourth grade and 

eighth grade assessments (NAEP, 2022a; Figure 1). Of the regionally sampled NAEP test takers, 

the average scores in low-performing percentiles dropped more precipitously than those of the 

higher ones (NAEP, 2022b; Figure 2), as can be seen by comparing the decreases for students in 

the 10th percentile (12%) to the 90th percentile (only 3% decline). The declines during 2020-2022 

 
8
 A shorter version of this paper was presented as a talk at the IES Math Summit, Sept. 2024. This version has been 

modified and expanded considerably.  

9 I wish to thank Alan Maloney, Meetal Shah, and Erin Krupa for their helpful comments on earlier drafts. 
10

 At a 2010 conference (Confrey et al, 2011), the term IDAS (Interactive Diagnostic Assessment System) was 

introduced. Subsequent work discussed here adds in the use of learning trajectories to create a LTDA. 
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were even more substantial for Black (13 points) and Hispanic (8 points) students than for White 

students (5 points) (NAEP 2022a; Figure 3). Some scholars have raised concerns that too much 

focus is placed on the differences in scores (called “gap gazing” (Gutiérrez, 2008)) and that 

doing so leads to deficit thinking (Davis & Museus, 2019; Valencia, 1997). As valid and as 

historically justified as these perspectives are, it is still critical to disaggregate achievement 

scores; these data are essential for demanding action on inequity in instructional opportunities. 

We should simultaneously keep in mind that 75% of all of our 12th graders have been 

performing below proficiency since 2005. As Bob Moses reminded us, “As a nation, we stand 

with bated breath, waiting for public schools to reopen, and for a return to normal, while 

ignoring that for many ‘normal’ is not only not good enough, it was never really good.” (Moses, 

2021). 

 

 
 

Figure 1: Average math scores trend upward (1990-2013), level off (2014-19), then drop (2019-22) 

(https://www.nationsreportcard.gov/mathematics/supportive_files/2022_rm_infographic.pdf) 

 

https://www.nationsreportcard.gov/mathematics/supportive_files/2022_rm_infographic.pdf
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Figure 2: Lower performers’ scores dropped more precipitously 

(https://www.nationsreportcard.gov/highlights/ltt/2022/supporting_files/ltt-2022-age9-

infographic.pdf) 

 

 

Figure 3: Score reductions are greater for Black and Hispanic students 

(https://www.nationsreportcard.gov/highlights/ltt/2022/supporting_files/ltt-2022-age9-

infographic.pdf) 

https://www.nationsreportcard.gov/highlights/ltt/2022/supporting_files/ltt-2022-age9-infographic.pdf
https://www.nationsreportcard.gov/highlights/ltt/2022/supporting_files/ltt-2022-age9-infographic.pdf
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These data imply massive systemic failure both in policy and in practice. Further, inequitable 

post-pandemic outcomes were predictable—not as student failure, but as direct evidence of how 

rapidly learning losses accrue if equitable, adequate resources and supports are withheld (Kane & 

Reardon, 2023). At this point in our country's history, we should be pursuing a commitment 

towards solving a nationwide problem; namely, how to achieve quality education as a 

constitutional right for all citizens (Liu, 2006).  

Focusing on Learner’s Voice 

To generate alternative approaches to improve instruction and outcomes, we need to focus on 

the learners and their perspectives. I, along with others, have argued repeatedly that students are, 

ironically, the most underutilized resource in our educational system. I view them as receivers of 

their education rather than as partners in a journey. In order to describe how to design a more 

robust approach to assessment and use it to foster instructional improvement, we begin with an 

admission that, in general, adults are not very good at listening to and seeing learners (Confrey 

1991). 

To give the reader a sense of what it means to listen to students’ mathematical reasoning, I 

begin with a story. I asked a six-year-old to explain what the digits in the number 314 stood for. 

Using base 10 blocks, he pulled out 3-100s blocks (flats) and 14 single blocks. His representation 

(Figure 4a), while correct, was missing the interpretation of the one as a single ten (along with 

four ones). He saw the digits as representing 300 + 14. As I pondered how to respond to the 

missing use of ten-stick, he said, "It's like the clock." And he drew two boxes on the paper, as 

shown in Figure 4b (without adding numbers).  

 

a)  

b)  

Figure 4: a) Child’s representation of the number 314 using Dienes blocks. b) Child’s 

representation of a digital clock display 

 

Now my question is, how would you respond if you were his teacher? Take a second to think 

about this before reading on.  

For the number 314 in our base ten system, each of the digits represents a different unit; 

hundreds, tens, and ones. This system, associated with counting, operates so that as the number 

of units reaches ten, the single digit numeral is replaced by a 1 and a zero. The numeral 1 no 

longer represents a single unit but rather the composite unit 10, consisting of 10 ones, hence it is 
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a system of placement of the digits (hence place) and value of that digit (based on place as ones, 

tens, hundreds).  

Typically, his comment about the clock would either be ignored or corrected, calling his 

attention only to the need for a ten-stick to represent the fourteen. But if this were how a teacher 

proceeded, s/he would miss an opportunity to consider how his response sheds light on a 

particular–and ubiquitous–use of place and value in our culture. 

Consider his second representation: two boxes separated by a vertical line. It does mirror 

what one sees on digital clocks. In the case of clocks, the two boxes represent hours and minutes. 

On a timer (e.g., on a microwave oven), the boxes could represent minutes and seconds. In either 

case, the numeric values in the boxes or places can exceed 10; they can range to 12 or 24 in the 

case of the hours, and 1 to 59 for minutes or seconds. The boxes can contain only certain values, 

whose meanings depend on their placement. Further, they represent a place value system, 

because there is a relationship between the places that determines the conversion from seconds to 

minutes or minutes to hours. Thereby one can see that digital timers contain a rudimentary place 

value system, and one for which his representation of 314 as, for instance, 3 hours and 14 

minutes, would be accurate and complete. (And it is also the case that our base ten system of 

place value is operating within each of the places referenced in the clock/timer.)  

So, has this child demonstrated an understanding of place value? Note that with his second 

idea he demonstrates a sound, culturally-situated response to the question of what the digits 

could represent (time); in doing so, he articulated an understanding of a connection between 

place and value with his boxes. (If I had asked him about the relative values of the numbers that 

could be in the two boxes, I could have further assessed the extent of his understanding of a 

system of exchange or conversion.)  

This anecdote and the description of a common response serve several purposes. First, 

children’s inventions should be a basis on which they are made to feel welcome, engaged, and 

capable in mathematics. However, a common experience of learners is having their ideas under-

recognized and undervalued. Children’s expressions of ideas, their insights and inventions, 

frequently and unintentionally, fall on deaf ears, a common occurrence (which I have witnessed 

in hundreds of classrooms across the country over the course of my career). Alternatively, but no 

better, children may receive merely superficial encouragement, a kind of pat on the head, when 

in fact, their idea’s validity, vitality, and legitimacy are being overlooked or disregarded. 

Students’ experiences of this kind could even be considered a form of micro-oppression. Over 

time, for a child to have his or her ideas treated as irrelevant has a deadening effect on a child’s 

eagerness to learn.  

Much is asked of teachers. For instance, elementary teachers, who are often weak in or 

frightened of mathematics, are assigned to teach all subjects. What supports are provided for 

most elementary teachers? Typically, the answer is two meager courses during teacher prep 

programs around the country. Secondary teacher candidates likewise cannot possibly re-examine 

all of K-12 mathematics as they complete math and other required coursework. As a result, there 

is a fair amount of evidence that American teachers are not adequately prepared to recognize 

children’s legitimate alternative competences nor to steer them toward more complete 
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understandings. This requires significant insight and a strong foundation in mathematical 

reasoning. And few school districts offer professional development with a strong focus on 

content learning (Scott & Philip 2023). 

Ma (2010) conducted a study that compared the ways Chinese and American teachers discuss 

elementary math content including the topic of place value. Comparing their explanations of 

place value, she documented that Chinese teachers refer to the relationship among the places in a 

place value system as “decomposing a unit of higher value” (p. 7). This phrase refers to the fact 

that each time one switches places, from ones to tens or tens to hundreds and so on, a group of 

ten of a given unit or value comprises the next unit. In a base ten system, that exchange rate 

across units is always in the ratio 10:1. In contrast, the digital clock place value system has a 

variable rate; switching from 60:1 (for seconds to minutes and then minutes to hours) but it 

switches to 12:1, for an hour to a half day where the clock recycles, or 24:1 if days are recorded. 

Ma’s study documented that American teachers said little about this underlying mathematical 

principle, speaking only of the act of “carrying” in addition.  

One might hope the Standards will help address these teacher needs. If one examines the 

relevant standards for place value (Table 1), one sees that they do express what kind of numbers 

to analyze each year (teens, two-digit, three-digit) and how to represent the digits in terms of 

bundles of ones, tens, and hundreds. But the Standards provide little insight or guidance into how 

these composite units are formed, how the key ideas of “place” and “value” are combined and 

related; nor do they express the idea of a constant or variable “rate of 

composition/decomposition.”  
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Table 1: The Common Core Standards for Numbers and Operations in Base Ten for K-2 

 

K.NBT 1.NBT 2.NBT 

Work with numbers 11–19 

to gain foundations for place 

value. 

.A.1 Compose and decompose 
numbers from 11 to 19 into ten 
ones and some further ones, 
e.g., by using objects or 
drawings, and record each 
composition or decomposition 
by a drawing or equation (e.g., 
18 = 10 +8); understand that 
these numbers are composed of 
ten ones and one, two, three, 
four, five, six, seven, eight, or 
nine ones. 

Understand place value. 

.B.2 Understand that the 

two digits of a two-digit 

number represent amounts of 

tens and ones. Understand the 

following as special cases: 

.a 10 can be thought of as a 

bundle of ten ones — called a 

“ten.” 

.b The numbers from 11 to 

19 are composed of a ten and 

one, two, three, four, five, six, 

seven, eight, or nine ones. 

.c The numbers 10, 20, 30, 

40, 50, 60, 70, 80, 90 refer to 

one, two, three, four, five, six, 

seven, eight, or nine tens (and 0 

ones). 

.B.3 Compare two two-digit 
numbers based on meanings of 
the tens and ones digits, 
recording the results of 
comparisons with the symbols 
>, =, and <. 

Understand place value. 

.A.1 Understand that the 

three digits of a three-digit 

number represent amounts of 

hundreds, tens, and ones; e.g., 

706 equals 7 hundreds, 0 tens, 

and 6 ones. Understand the 

following as special cases: 

.a 100 can be thought of as 

a bundle of ten tens — called a 

“hundred.” 

.b The numbers 100, 200, 

300, 400, 500, 600, 700, 800, 

900 refer to one, two, three, 

four, five, six, seven, eight, or 

nine hundreds (and 0 tens and 

0 ones). 

.B.2 Count within 1000; 

skip-count by 5s, 10s, and 100s. 

.B.3 Read and write 

numbers to 1000 using base-

ten numerals, number names, 

and expanded form. 

.B.4 Compare two three-
digit numbers based on 
meanings of the hundreds, tens, 
and ones digits. 

 

Realistically it is unreasonable to expect the Standards alone to support a teacher’s readiness 

to recognize and support the range of students’ inventions and nascent reasoning. Standards 

express goals for accomplishment at particular grade levels to allow coordination of topics across 

grades and set expectations for levels of achievement.  

Other resources could be synthesized to help teachers consider student reasoning about place 

value, specifically the extensive research on “composite units” (Boyce et. al, 2024; Steffe, 1992; 

Ulrich, 2015). Built within constructivist paradigms, this research documents how students come 

to create bundles into larger units and how they use these units in place value, skip counting, and 

multiplication and division. However, to support learner-centered instruction, this type of 

research from the learning sciences must be synthesized and made accessible to and actionable 

by teachers. Seldom does this occur. 
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In this one small story, I have tried to encapsulate how a child’s explanation often needs to be 

recognized and acknowledged as “correct” in relation to his own experiences and ideas, and that 

these explanations are potentially productive in a shared journey to more sophisticated reasoning. 

But it also further represents the need for teachers and researchers to use such student 

explanations as opportunities to reexamine their own understanding of mathematical ideas and 

meanings.  

I formalized the concepts underpinning this story when I developed the notion of a “voice-

perspective dialectic” (Confrey, 1998) and it has served as an underlying theme of much of my 

subsequent work. Voice refers to the learner’s way of making sense of a situation; perspective 

refers to the way the more experienced listener (a researcher, teacher, etc.) makes sense of the 

situation (Figure 5a). The reason it is a dialectic is that a listener cannot directly know what the 

student is perceiving and thinking. Instead, the listener filters the student voice through their own 

perspective (Figure 5b). When that perspective is formal mathematics training, understanding a 

child can require the expert to relax, or momentarily ignore, their prior knowledge. In this case 

(the student’s clock idea), a listener need not see 14 indivisible blocks as wrongly ignoring the 

tens place in place value, but as situated in a place value system where the box on the right can 

range to sixty before conversion (and hence can have two places in the base ten system). It 

requires one to break set on the “rigor” expected in mathematics, in order to build a bridge from 

student ideas and towards the connections and distinctions among concepts. As one begins to 

understand the student voice, another fundamental opportunity emerges: the voice-perspective 

dialectic reverses and one can employ student voice as a means to reconceptualize one’s own 

perspective (see Figure 5c). The clock example is an illustration of opportunities to apply this 

dialectic, and eventually reconsider one’s own understanding of place value. Learning to 

recognize student inventions is a bit like seeing fireflies. The first one is difficult to see, but once 

you do, then you often realize they are all around you, winking on and off. For me, the 

interactivity of the voice-perspective dialectic in collaboration with learners comprises one of the 

most profound and satisfying aspects of teaching mathematics.  
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a)   

b)   
 

c)   
 

Figure 5: Using the Voice-Perspective Dialectic 

 

The Concept of Learning Trajectories 

Developing a learner-centered frame of mind is essential for educators, but it has to be 

accompanied by informational resources about what is known about patterns in student 

reasoning. The learning sciences have documented extensive information, concept by concept, 

about misconceptions, multiple representations, strategies, cases, verbal descriptions, 

connections to familiar contexts, and predictable approaches of students. Little of this research 

has been easily available outside of a few systematic efforts such as cognitively guided 

instruction (CGI) (Carpenter et al., 1996), the Rational Number Project (Behr et al., 1983), and 

“Turn-On CCMath” (Confrey et al., 2011).  

I suggest that learning trajectories offer another resource for organizing relevant research 

from the learning sciences. In a learner-centered classroom, teachers begin teaching a topic by 

examining what students already know, often stimulated by posing a provocative task or activity. 

Depending on the responses, they must figure out how to weave from the students’ experiences, 

conjectures, inventions, or ideas towards an intended learning target. Simon (1995) called these 

conjectured paths “hypothetical learning trajectories” (HLTs). These HLTs should be richly 

informed by the wealth of research on student thinking, so numerous researchers have proposed 

actual learning trajectories (LTs) as a systematic way for teachers to access student reasoning 

patterns as guides to drive instruction (See Confrey, 2019, for one compilation of these.)  

The National Research Council (2007) described “learning trajectories” as “successively 

more sophisticated ways of thinking about a topic that can follow one another as children learn 

about and investigate a topic” (p. 214). They typically include a domain-specific target and 

descriptions of the levels of student reasoning. Some researchers include associated instructional 

tasks by level in LTs, while others, including myself, provide them for illustrative purposes. In 

my case, this approach allows me to associate a range of tasks with a level and keep curricular 
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materials distinct from the LTs themselves. For this paper, it is important for the reader to 

recognize the salient points about what LTs are and are not (Table 2). For more detailed reviews 

of LTs see Anderson et al., 2012; Confrey, 2019; Daro et al, 2011; Lobato & Walter, 2017). 

 

Table 2: Features of Learning Trajectories (from Confrey, 2019) 

 

Learning Trajectories Are: Learning Trajectories Are Not: 

Domain-specific models General or universal principles 

Expected probabilities Stage theories 

Empirically-based models of student 

thinking 
Logico-mathematical deconstructions 

Elicited by rich or novel tasks Derived from typical exercises 

Include strategies, reasons, 

explanations and cases 
 Sub-goals of the target 

Include exploring misconceptions A means to avoid errors 

Ordered by increasing sophistication Ordered by difficulty 

Evolving Fixed 

 

Although LTs represent domain-specific models of learning, they rely on aspects of “grand” 

theories of learning. Learning trajectories draw from sociocultural theory and situated cognition 

in that they are built on students’ ideas, and hence demand unearthing and drawing on learners’ 

ideas and experiences. They also draw from the Piagetian tradition of studying cognitive 

development using as a key concept “genetic epistemology” (Piaget, 1971). It focuses on the 

movement in thinking, an action of learning that progresses from an initial idea or set of 

operations, through their extension to new situations or cases, to reach a generalization, or 

scheme, which is then available for use in future situations. It requires one to think of 

mathematical ideas in terms of purpose, asking what a mathematical idea allows one to do, 

recognize, predict, or explain. 

For instance, the concept of percents makes the process of comparing ratios more efficient 

because it standardizes relative size, expressing it as a single comparable number. Instead of 

comparing ratios of 2/5 and 1/3, one compares 40% to 33.3% (of the same whole). The driving 

heuristic in mathematics education is for students to realize the beauty of how mathematics can 

help them make sense of their world in compelling, efficient ways. How can one apply genetic 

epistemology? Consider asking if two different-sized concert venues, with different numbers of 

seats and attendees, are equally full—where “full” can be described as the ratio of attendees to 

seats. Imagine how students might first argue that the one with the most attendees is more full. 

Or that the one with the fewest empty seats is more full. And then might consider when the two 

venues would be considered equally full or empty. And so on.  

Genetic epistemology focuses one’s attention on the starting ideas and their transformation 

from operations to schemes through “reflective abstraction” (Piaget, 1977). In this sense, a LT is 

not simply a list of behaviors to elicit, but a description of increasingly sophisticated ways of 

reasoning about a phenomenon, with the key concept being how the levels’ descriptions scaffold 
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the movement between levels. That said, LTs are not stage theories nor are they logical 

mathematical deconstructions built using typical exercises. Learning trajectories are 

probabilistic; different students may be more or less likely to exhibit the behaviors associated 

with a level when working on a related task. Learning more about the probabilities will require 

more research, new methods of data collection, larger samples, and careful attention to the 

cultural background and experience of a diverse set of participants.  

I liken the array of ideas explicated at the level of an LT to the multiple paths on a climbing 

wall (Confrey, McGowan, Shah, et al., 2019, p. 79) but where the target is clear, obstacles are 

predictable, as are the handholds and footholds. The levels can include strategies and 

representations, explanations and cases, and they necessarily include exploring misconceptions 

instead of avoiding them. It is very important to note that grain sizes of LT-levels matter. If 

they're too fine-grained, they can't be readily used to guide instruction, and if they're too broad or 

coarse-grained, the level of detail is also insufficient to guide instruction.  

In summary, low achievement scores on NAEP continue to remind us that large portions 

(often minority and poor students) of our student population are still underserved by our 

mathematics education system, and, at the same time, the overall system is faltering. When 

students are given opportunities to participate in engaging tasks, they offer their own ideas about 

mathematical concepts, but these ideas are not typically leveraged to revitalize classroom 

learning. Learning scientists, however, have studied the patterns in student reasoning and 

identified fruitful pathways, which can be packaged in the form of learning trajectories. These 

LTs may be a fruitful source of innovation that can be employed to address the system’s 

weaknesses at scale. 

 

Section Two: Introducing a Learning Trajectory-based Diagnostic System,  

Math-Mapper Features, Partners, and Validation 

 

Designing a Learning Trajectory-based Diagnostic Assessment (LTDA) System called 

Math-Mapper 

Between 2015 and 2022, my research group built a web-based application in which the LTs, 

associated assessments, and an overarching measurement validation process were described as a 

prototype of a “Learning Trajectory-based Diagnostic Assessment” (LTDA) system. We sought 

to accomplish multiple goals. Those included bringing the rich resources of domain-specific 

knowledge (LTs) from the learning sciences into the classroom. We sought to provide detailed 

learning feedback to students and teachers: timely, precise, and relevant descriptions of what 

students already knew and what remained to be learned. We hoped our LT- and feedback-

oriented approach would support students in considering their own learning and enrich teachers’ 

understanding of both student responses and the underlying mathematical epistemology. Further, 

if incorporated as designed into classroom routines, this approach could reduce or avoid the 

disfiguring pressures and drawbacks of high-stakes testing, and, instead, highlight student voice 

and put it to work in deepening students’ agency as learners. 

The assumptions underlying this approach included: 1) students are empowered to be more 

aware of their own progress, and 2) teachers are able to target subsequent instruction to topics 
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needing more (or different) approaches, and plan more effective and efficient ways to meet the 

personalized individual or group needs of their students. We had two additional goals: creating 

such a system in partnership with on-going practice to anticipate issues of scale and establishing 

measurement bona fides for the system in order to document its effects validly and fairly, and 

include evidence of growth, as movement along the LTs.  

In this section of the paper, I describe a range of features and capabilities of our prototype 

LTDA called Math-Mapper (MM)11. I selected one learning trajectory (LT) to illustrate the use of 

the LTDA. A report validation process is also provided to illustrate how its measurement model 

shifted in part due to the low-stakes structure of the LTDA design. In a subsequent section, I 

report on some insights learned from its implementation. 

The model for use of the diagnostic assessment evolved over time and came to be referred to as 

an “agile curriculum framework” (Confrey et. al. 2018). It placed curricular implementation 

between the two bookends of standards and policies on the one hand and high-stakes testing on 

the other. The model for diagnostic assessment was specified to coordinate the administration of 

diagnostic assessments with the curriculum across a department at a grade level. Diagnostic tests 

were scheduled approximately 2/3 of the way through a curricular topic’s designated time 

allocations (based on pacing guides). MM returns assessment data in real time, so teachers can 

review data with their students and make individual instructional adjustments. The model also 

included periodic professional learning communities (PLCs) where one teacher would present 

and discuss their data and others would report on their data and discuss explanations and 

approaches. We referred to this as two-cycle feedback (Figure 6).  

 

 
11

 It is not possible to acknowledge every contributor to MM–however, I do wish to acknowledge a core group who 

contributed significantly and consistently across nearly the entire project: Meetal Shah, Youngjae Kim, Emily 

Toutkoushian, Charlene Marchese, Margaret Hennessey, Pedro Larios, and Alan Maloney.  
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Figure 6: A Two-Cycle Feedback Use in a Diagnostic Formative Assessment System based 

on LTs (Confrey et al., 2018) 

 

The system consisted of a map of “11 big ideas” to cover all of middle school mathematics 

including algebra (Figure 7) incorporating 74 individual learning trajectories (called 

“constructs”) organized into a total of 32 “clusters” of topically related constructs. To the degree 

possible, the LTs were research-based; however, we acknowledge that some topics have a more 

secure foundation in research than others.  
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Figure 7: The MM learning map, at top level (i.e. displaying the “big ideas” of the Fields of 

Geometry and Measurement, Algebra, Number, and Statistics and Probability 

 

In the system, tapping on a construct reveals the associated learning trajectory (Figure 8). 

The LT levels also include descriptions of related misconceptions (yellow triangles) and their 

corrected conceptions. Teachers can also access the Common Core Standards related to a LT, or 

conversely, use a standard to search for its relevant LTs on the map.  
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Figure 8: A Close Up of the Cluster “Finding Key Percent Relationships” in the Big Idea 

“Compare Quantities as Ratio, Rate or Percent and Operate with Them” 

 

To illustrate the system, I will use a single, relatively simple LT, Benchmark Percents (Table 

3). We list learning trajectories to mirror the climbing wall from bottom to top. In this LT, the 

first level children typically can learn to associate 100% with all of a quantity, and 0% with none. 

At level two, they can associate 50% with half of the quantity when 100% of that quantity is 

given. And so it goes up the levels, students learning to identify 25%, 75%, 10%, 5%, and 1%, 

and then applying those to solve problems. An important thing about this trajectory is that it is 

not based on the teaching of definitions. It builds from the learner’s experiences in the world. 

And they have a lot of experience with percentages as some form of numeric measure. They see 

percentages on cell phones with the amount of battery left. They see them when they download 

apps, looking at what percentage has been downloaded. And they see them, of course, in prices 

and sales in other places out in the world. Therefore, our expectation is that students come to 

school with some familiarity with the idea, flavored with their own experiences. 
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Table 3: Learning Trajectory for the Construct “Benchmark Percents” 
 

Level 5 Given the benchmark percentage and the numeric value of the subset, finds the 

size of the collection 

Level 4 Applies benchmark percents to find the percentage of a numeric quantity 

Level 3 
Associates benchmark percents of 25%, 75%, 10%, 5%, and 1% with 

corresponding “fractional amounts of” a quantity, and describes 

interrelationships using figures, percent bars, circles, or hundredths grids 

Level 2 Associates 50% with half of a quantity when 100% of that quantity is given, 

visually or numerically 

Level 1 Associates all of a quantity with 100% and none of a quantity with 0% visually 

and numerically given the value or size of the whole 

 

In the learning map, the learning trajectory for Benchmark Percents is situated in a group of 

three related LTs which also include Percents as an Amount per 100 and Combinations of 

Percents (Figure 8). There are also LTs for solving percent problems for the part, the whole and 

the percentage, and solving multi-step percent problems.  

 

The Context 

Two districts were contacted and agreed to work with us on how to meet the individual needs 

of students more effectively, while striving to improve their scores on state tests. Our district 

partners differed. One was a rural district with a nearby military base, serving a diverse, high-

need, student body (27% African American, 10% Hispanic and Mixed, 53% White, with 57% 

FRL [free and reduced lunch]). Student mathematics performance at the school, measured on an 

annual state test, was bimodal. The principal was a strong advocate for the LTDA, and most of 

the time there was no mathematics supervisor. The other district was suburban, relatively 

wealthy, and much less diverse (4% AA, 8 % Hispanic and Mixed, 79% White and 10% FRL). 

Performance measured with the PARCC exam was one of the strongest in the state. The 

mathematics supervisor was a school leader and a key participant in the design of new 

affordances in the LTDA.  

Over 2,500 original, conceptually-oriented items (16% 1-letter answer such as T/F; 27% 

multiple-choice; 27% numeric response; 18% multiple-select items; 12% parameterized, 

algebraic manipulation items), each associated with a single level on a LT, were authored by the 

research and development team. An assessment of a construct (LT) or a cluster (multiple LTs) 

comprising 8-12 items, requiring about 20-30 minutes, can be assigned and administered to a 

class. Once students complete their assessment, the MM system generates individual and class-

level data reports. Psychometrically equivalent tests are provided to support repeated 

assessments in a proficiency-based achievement framework. Students also have access to 

practice items at any LT level.  

High quality, intuitive data reports for students, teachers, and administrators are critical to the 

diagnostic assessment model. Upon completion of an assessment, each student can access their 
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own data report. Figure 9 shows a student report for the cluster “Finding Key Percent 

Relationships” (this includes the construct for “benchmark percents” on which the student scored 

89%). At the right, the student’s detailed performance on each selected construct is provided 

using a color-coded ladder that indicates which levels were assessed and the student’s 

performance on each level (shown: results for construct “Percents as Combination of Other 

Percents”). The student can also scroll down to access each item on the test, their results, and 

tools for revising and resubmitting or, alternately, revealing answers for each item (not shown). 

The green sectors of the circles in Figure 9 indicate that the student has already submitted a 

correctly revised response. 

 

 

Figure 9: The top half of a student data report on a cluster assessment for “Finding Key 

Percent Relationships” 

 

As students complete the assessments, teachers have access to all the students’ results in the 

form of a heat map (Figure 10), with a color-coded scale (orange to blue) indicating the 

percentage correct or designating an untested level (grey) on the particular assessment. Each 

column (“stack”) represents a student’s score profile for the construct. Students’ score profiles 

for each construct (LT) are ordered from least to most proficient for that assessment 

administration. 
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Figure 10: Heat map for assessment for cluster “Finding Key Percent Relationships” 

 

During professional learning sessions, we use Figure 11 to teach teachers how to interpret 

heat maps (only teachers have access to student names on heat maps; during in-class discussions, 

they use heat maps without identifiers). 

 

 

Figure 11: Heat map detail from Figure 10: construct “Benchmark Percents” (explanatory 

marks and labels added) 

 

Because the items aligned to the LT-levels increase in difficulty, it typically generates a 

heatmap with more orange towards the upper left (high levels and weaker student performances) 

and blue towards the lower right (lower levels and strong student performances). Teachers learn 

to imagine the superimposed curve shown, as an indicator of performance above and below 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 

the forty-sixth annual meeting of the North American Chapter of the International Group for the 

Psychology of Mathematics Education. Kent State University.  

2298 

proficiency-level performance. Teachers learn to identify any set of students needing additional 

instructional help (probably the first two or three students); and any levels that the majority of 

the class may need to review (levels 4 and 5). To further support classroom discourse, a teacher 

can display the actual items used in the assessment, reveal the correct answer, display the 

percentage of students exhibiting misconceptions associated with that item, and examine an item 

analysis of the students’ responses within the heatmap. 

 

Validation of MM  

MM is designed as a formative assessment system, to support student- and classroom-level 

reasoning and discussion. As a system producing scores, it needs to be validated, albeit to a 

different set of criteria than high stakes tests. The validation of an assessment is “an integrated 

evaluative judgment of the extent to which empirical evidence and theoretical rationales support 

appropriate actions in line with the purpose of the test” (Messick, 1990) in this case, feedback on 

students’ progress on LTs that can inform the focus of subsequent instruction. As low-stakes 

assessments, attention to technical measures of reliability may be de-emphasized. However, 

fairness, as the absence of bias, must still be examined. 

In this low-stakes setting, validation of an LTDA system can be informed by Pellegrino et al.'s, 

(2016) approach to instructionally valid “classroom assessments”. Our validation methodology is 

described along three dimensions: the validation argument (Kane, 2013), the techniques or 

models selected, and the process of review. Validation arguments help to ensure that the way 

assessments are designed and are intended to be used are made explicit so that their effectiveness 

can be knowledgeably and fairly evaluated. We have generated numerous papers about the 

validation argument (Confrey, Toutkoushian, & Shah, 2019), the validation of particular LTs, and 

a summary review of the performance of MM based on two rounds of validation for 45 of the 

LTs. 

The validation argument consists of five claims and evidence:  

 

• Construct subscores for a cluster will be highly correlated, reflecting the mutual 

dependencies implied by the cluster’s structure. 

• Overall, the empirical difficulty of items will vary positively with level (positive 

correlation).  

• Empirical item difficulties will vary within an LT level in ways closely associated with 

the meaning of the level; construct-irrelevant variance can be minimized. 

• On class (or multi-class)-level reports (such as heat maps or compound bar displays), 

ordering the levels (and the items by difficulty within the levels) will reveal relative 

strength of students’ performances across items and levels and across the class or classes. 

• Based on the data on the students’ performance by level, teachers target instruction 

appropriately.  

 

These five claims tie together the theory of action for MM, moving from the structure of the 

map into clusters, the relationship between item difficulties and levels, the prediction about the 

shape of the results and the resulting instructional actions. Further reflection has convinced us 
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that the validation argument needs an additional step that recognizes the importance of the 

classroom assessment review process. 

Following the lead of others, (Lehrer et al., 2014; Wilson, 2005, Graf & van Rijn, 2015), our 

first step in the validation process was to employ Item Response Theory (IRT) as a psychometric 

test of the strength of the relationship between the difficulty of the items and the levels of the 

LTs. Using an iterative regression technique, we identified “potentially non-conforming items” 

and analyzed the items further. A summary of results from the first two rounds of validation, 

using 45 of the LT constructs with sufficient data (Confrey et al., 2020) reported a mean 

correlation of 0.71 between levels and difficulty; 68% of those constructs had strong correlations 

and 24% had a moderate correlation. Only four constructs had poor correlations that justified 

major revisions. 

Our procedure for deciding what to do with the potentially non-conforming items differed 

from standard processes. Instead of simply discarding items that did not conform to the expected 

model, we developed an interdisciplinary review and documentation process conducted by 

learning scientists, practitioners, and psychometricians. Examining the extent and nature of the 

data (sample size, school, grade level, and class), we considered seven actions, ranging from 

discarding the item; revising items; revising, adding, or removing LT levels; collecting more 

data; re-examining the literature; or completely revising the LT. Building on work by Lehrer 

(2013) we likened our validation process to a trading zone (Confrey, 2019; Confrey et al., 2021). 

 

Section Three: Five Fundamental Dynamics of the MM LTDA System 

I have introduced and described a diagnostic assessment system, based on learning 

trajectories, whose primary purpose is formative. It is intended to provide learner-centered 

feedback to students and teachers during instruction, to locate learners’ current progress and 

needs, and to articulate possible paths toward more sophisticated understanding of target 

concepts. The fine-grained LTs were based on available data from the learning sciences, and the 

assessments were validated and equated. The just-in-time feedback from the assessments at the 

teacher-level strengthens reflection and drives instruction and, at the student-level, provides 

awareness about specific areas that need more work. 

The project, situated as “design-based implementation research” (DBIR, LeMahieu, P. et al., 

2017; Penuel & Fishman, 2012) resulted in a number of studies, including studies of classroom 

assessments, validation studies, a lesson study, and a set of think-aloud interviews. We regularly 

collected data from classroom observations, PLCs, professional development sessions, 

administrative memos, and software design documents. DBIR involves a complex interplay over 

time among the theoretical premises of LTs, the software design decisions, measurement choices, 

student performance data, teacher professional development, curriculum, and classroom 

implementation.  

These rich data sources provided opportunities to consider how underlying design 

commitments played out in the fray of implementation. Below, I identify five of these design 

commitments that are critical to successful implementation. I call them “system dynamics” to 

emphasize that 1) dynamics allow the “study of the effects of forces on the motion of objects in 
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the system” (Wiktionary, https://en.wiktionary.org/wiki/dynamics) and 2) those forces may 

strengthen or weaken the outcomes. Thus, a dynamic here is metaphorically how forces are 

related to outcomes, and whose intensity and direction varies during implementation. In this 

context, a dynamic does not function as an independent component of the system but rather as a 

force that influences components of the system, making them function more or less effectively. 

Attention to the dynamics has a qualitative effect on the system’s operation. As the importance of 

these dynamics became increasingly apparent, we added affordances to the LTDA to foster and 

monitor them in positive ways. 

 

Dynamic 1: Timely, fine-grained LT-situated feedback to teachers supports targeted 

instruction to increase learning and promote more equitable outcomes.  

The central goal of formative assessment is to enact practices that improve instruction and 

learning over time by providing relevant, timely, and actionable feedback to the participants such 

that every student has the opportunity to become proficient in mathematics. To study this 

dynamic in the MM system, we examine compound bar graphs that describe school or district-

wide assessment performance on the LTs.12 Data from the two partner districts, by grade and 

class type for the LT “Benchmark Percents” are shown in Figure 12. Bar graph displays mirror 

the earlier heat map color coding: each bar displays, by LT level, the percentage of students who 

answered equivalent items aligned to this level incorrectly (orange) and correctly (blue). Note 

that the rural school only administered this assessment to sixth graders, because they did not 

group students into classes by performance level. The suburban school had “regular” and 

“advanced level” classes and administered the assessment in both sixth and seventh grades.  

 
12 We did not report data by race, gender, ethnicity or SES because we did not negotiate to do so with our partners as 

we sought to build the system. In our lower SES rural school, we did report evidence of correlations between the 

increased use of MM and data gains on the state test. We found that assignment by teachers of more of these tests of 

any topic (just four sections of 25 students) was correlated with the gains of.88 on a five-point scale end of-course 

test. Conversely, opportunity by individual students to take five more Math-Mapper tests (any topic) per year was 

associated with gain of.4 on the end-of-course high-stakes test. 

https://en.wiktionary.org/wiki/dynamics
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Figure 12: Compound Bar Graphs for the construct Benchmark Percents across the levels, 

by district, grade, and grouping 

 

These results provide evidence that the LT behaves as expected: for the most part, the higher 

levels of the LT are more difficult13. 

More importantly, they show that a substantial proportion of students do not reach proficiency 
at the upper levels. Across all the LTs, these proportions of non-proficient students often exceed 

 
13 Note: Level 3 associates 25%, 75%, 10%, 5%, and 1% with corresponding “fractional amounts”, and the items 

proved easier than expected. Re-examining those items during validation revealed that the presentations of the 

percentages using pitchers and circles could simply be ordered visually to identify the associated percents without 

understanding the values. The items were retired. 
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50%, results which run counter to a proficiency-oriented perspective on learning. During our field 

studies, teachers had a number of explanations for their students’ weak performances at the upper 

levels, ranging from arguing that the levels were not aligned with standards (they are), that some 

students do not need to reach the top levels (low expectations), or that students had insufficient 

time to reach those levels. Based on discussions during professional development, we noted that 

these upper levels were often less well understood as targets, or that teachers asserted that top 

levels were more properly assigned to higher grades. We believe this result merits closer attention: 

teachers may lack adequate time to reach these levels, they may focus more than necessary on 

lower levels, or may themselves not fully understand the target proficiencies of the LT. Many times, 

however, we also observed a highly successful teacher explain in PLCs how she/he addressed these 

levels as a culmination of the LT-related instruction. We see this as an important reminder that 

schools have their own reservoir of talent that they can draw on to strengthen capacity using their 

own data from a LTDA. 

Across our classroom observations, teachers’ review practices varied in the extent to which they 

drew out student thinking (vs. telling them how to solve the problem), and how they situated the 

items within the LT. Later, in PLCs, they examined results and shared their interpretations and 

instructional practices. Re-testing with equated tests could shed some light on student progress and 

the effectiveness of review and modified instruction. Most teachers we observed did review the data 

with their classes, but unfortunately, few conducted retesting due to their pacing guide time 

pressures. We were, however, able to examine the results of repeated testing for a small sample of 
students on the cluster “Finding Key Percent Relationships” (Figure 13). The distribution of the 

scores suggests there is a strong potential role for using retesting after a review of the initial 

diagnostic assessment to support a stronger proficiency-based outcome. 

 
Figure 13: The distribution of student scores across three administrations of equivalent 

MM assessments 
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Dynamic 2: Personalized, fine-grained LT-situated data delivered immediately to students, 

in a context of assessment for learning, fosters growth mindset and student agency.  

Learning trajectories place students at the center of instruction. A ground-breaking feature of 

Math-Mapper is the direct and immediate return of data to students, along with access to the 

learning trajectories. We argue that this can strengthen student agency, because the students are 

considered partners in learning, and can evaluate their own strengths and weaknesses based on 

their own data. The MM system has other affordances to both support teachers in fostering a 

growth mindset and provide students the opportunities to build their own mathematical strengths. 

For instance, MM provides students with the option to revise and resubmit answers to any item 

(with consistent feedback); we repeatedly witnessed students–who at the onset were sure they 

could not solve a problem–who, through careful reading and persistence, solved the problem.  

The student experience of taking MM assessments differed from typical assessments in many 

ways. Teachers reported that the items were more conceptual. We designed the items, especially 

at the upper levels, so that students would experience some productive failure/challenge (Kapur, 

2009, 2014). Students who were accustomed simply to solving clones of textbook problems 

found many MM items challenging; on average, overall percent correct scores ranged in the 60-

80 percent range. Teachers needed to shift students’ expectations of their scores: to understand 

that the lower range in scores left room for growth (and would not translate directly to the 

customary grading scale). 

In these examples, one can see that teacher expertise is critical to support students in re-

orienting themselves to assessment for learning in contrast to assessment of learning. In our field 

work, we observed sharp differences in how teachers conducted data reviews. Some treated the 

items as “hard”, and simply explained the solution. In contrast, other teachers asked students to 

read the problems out loud, queried them about their initial thoughts, and invited sharing and 

comparison of strategies. The teachers with this second approach often reflected back on the 

problem with students considering why it had been hard and how difficult ways to approach it 

were warranted. Not surprisingly, when students discussed these challenges as they learned more 

successful paths to proficiency on the concepts, their growth in learning outcomes accelerated. 

Students of teachers in the second group learned to approach the assessments with more 

confidence and determination. These teachers’ moves promoted a growth mindset in students and 

set high expectations. 

Supporting students to become change agents for their own learning can (and should) involve 

groups and not just individual students. We saw evidence of students adopting the language of 

the LT for themselves to scaffold their own learning. A teacher grouped students with similar 

response profiles together and asked them to use the practice resource collaboratively on LT 

levels on which they were weak before revising and resubmitting assessment items. Students 

increasingly used the language of the trajectory levels to explain their reasoning while they 

taught each other or collaboratively solved the problems.  

A recent collaboration with the Young People’s Project (directed by Maisha Moses, Bob 

Moses’s daughter and collaborator) involved working with high school students on their way to 

becoming math literacy (peer) workers. Together we reviewed the LTs on ratio as a means to 
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discuss content and pedagogy. After working through the levels, the group somewhat reluctantly 

took a MM assessment, resulting in a heat map with spotty performances–some stronger, some 

weaker. However, rather than respond individually to their incorrect results, the group used its 

own collaborative process to join together and work to “turn the heat map blue”. By doing so, 

they reappropriated what had too often been an oppressive experience (assessment) into a shared 

opportunity to assert agency. 

 

Dynamic 3: Data demonstrating variability in learners’ initial success across LTs can 

challenge beliefs about learning: both student’s self-limiting beliefs and teachers’ 

stereotyping of students’ learning potentials. 

If students feel that they have low chances to succeed in school, they can develop behaviors 

and perceptions that reinforce failure. Unfortunately, once students are behind the expected 

pacing of the curriculum, it's increasingly hard to change their negative self-perceptions. 

Similarly, students who are advanced in their pacing may come to expect that all topics should be 

easily learned, and feel compelled to hide missed connections and confusion.  

To counter such static evaluations, we emphasized the use of flexible grouping using the heat 

maps for differentiation by LT. Teachers can quickly identify groups of students who need 

assistance with similar issues. These groups may need instruction to strengthen prerequisite or 

supplemental topics, to reteach the whole topic (LT), or to focus on specific LT levels. New 

groupings are formed regularly by need. 

MM also allows teachers to explore the consistency of students’ performances across 

different constructs. In a cluster heat map, for example, selecting a student’s score profile (a 

stack) in one construct automatically displays that student’s profile in the other constructs of the 

cluster. It reveals that a score of high (or low) proficiency on one construct does not always 

correspond to a score of high (or low) proficiency on the others; that is, students frequently do 

not perform consistently across constructs in a cluster. From this insight, teachers learn that 

students differ in what they find easier or harder to learn and why one-size-fits-all instruction is 

unlikely to meet learners’ needs well.  

The MM heat maps also allow teachers to select multiple student profiles simultaneously. 

Using this feature, teachers can investigate patterns of reasoning within groups of learners within 

a cluster. For example, the profiles of four high-performing students have been selected in 

“Construct B: Benchmark Percents” (Figure 14). But their performances on the other two 

constructs varied (Table 4). Multiple conjectures are possible here. Perhaps student O did not 

understand the new construct about the additive nature of combinations of percent, while 

students U and E might need more explanations for using certain representations of percents 

(e.g., using percent bars and extending beyond 100%). That gap in understanding seems to have 

hampered student E (but not student U) in learning Combinations of Percents. Teachers 

developed more nuanced understandings of difference and more curiosity about the reasons 

behind it. 

These features of MM can challenge teachers’ and class beliefs about students’ abilities as 

well as tacit assumptions that mathematical reasoning ability is immutable. By using the MM 
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tools for flexible grouping, teachers can avoid the pejorative and lasting effects of a student 

always being assigned to the same level or group. In addition, the content-specific conjectures 

offer rich insights to guide data review discussions and instructional follow-ups. This form of 

investigation of performance across constructs establishes the value of detailed data on student 

strengths and needs, using digital affordances to convey this information quickly and accurately. 

It provides a concrete instance of seeing personalized learning data as a means for all students to 

experience challenges and success.  

 

 

Figure 14: Heat map of Assessment Results from Finding Key Percent Relationships. 

(Color coding added for interpretability) 

 

 

Table 4: A Summary of Students O, U, E, and D’s Proficiency across Constructs 

 

 
Student 

O 

Student 

U 

Student 

E 

Student 

D 

Construct B: Benchmark 

Percents 
High High High High 

Construct A: Percent as 

amount per one hundred 
High Moderate Low High 

Construct C: Combinations 

of percents 
Low High Moderate High 
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Dynamic 4: Gradual sustained teacher professional learning about the LTs and data use 

increases the effectiveness of LTDA implementation 

Any complex diagnostic technology, from medicine to car repair, requires preparation and 

ongoing updating for proper implementation. It seems intuitively obvious, then, that making 

effective use of a LTDA system requires adoption of a continuous improvement approach to 

building teachers’ expertise in implementing the LTDA while gaining their trust and buy-in. A 

gradual process was needed to learn to use the data effectively in both cycles of the agile 

curriculum feedback model. 

Initially, we documented that during the “short-cycle” feedback process (Figure 6) teachers 

tended to treat solving each item itself as the direct target of discussion. Gradually, and often 

with coaching, they learned to shift their focus to 1) treat each item as representative of a level, 

and 2) treat LT levels as situated within the trajectory, thereby focusing on movement up the 

levels as a goal of instruction. Overall, we interpreted this process as the teachers gradually 

recognizing and coming to trust the LTs as valid frameworks for learning and instruction.  

During the “long-cycle” feedback process, teachers needed opportunities and coaching to 

become effective at reading and interpreting data patterns, linking them to potential causes or 

larger trends, and designing responsive instructional adjustments. Initially, they would jump to 

propose interventions without careful data examinations. This led us to develop a data-driven 

PLC framework to guide teachers in the process of 1) closely examining and understanding the 

student data, led by one teacher, 2) generating conjectures and explanations about connections 

and possible causes, and 3) planning how to adjust, supplement or change curricular materials or 

instructional approaches (Figure 15). As an illustration of the value of data use, at our rural 

school, a sixth-grade teacher shared data showing weak performance for L4: “Builds Up to 

Percents Larger than 100” within the LT “Percents as Combinations of Other Percents.” When 

other teachers confirmed similarly weak performance in their classes, the teachers as a group 

realized the topic had simply been overlooked, with the main source of the problem having been 

the scope and sequence and pacing guides. Some of these problems can be relatively easy to 

address, with data to guide its identification. 
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Figure 15: Data-Driven PLC Framework for analyzing and interpreting formative 

diagnostic assessment data, and making data-grounded short- and long-term instructional 

adjustments 

 

It is imperative to note that the school or district leaders’ commitment, and content- and 

instructionally focused leadership, are essential for the eventual success of any such adoption. 

Our schools were more successful from the outset of implementation, when they had the 

consistent and substantive leadership of the lead district administrator and a mathematics 

education curriculum specialist, instructional coach, or district supervisor. Success also required 

school or district commitment to prioritizing the LTDA’s use (avoiding competing formative 

assessment initiatives) and establishing expectations for: 1) content-focused conduct of PLCs, 

and 2) documented evidence of gradual and sustained improvements in student learning. 

Supervisors were needed who oversaw the conduct of the PLCs and communicated the district’s 

long-term vision and commitment. To be effective, supervisors should conduct observations of 

the use of the tool and promote teacher leadership at individual schools. They must co-develop a 

logistical plan to fully implement MM including choosing focal units to start with after 

coordinating instruction and common assessments with the pacing guides and the scope and 

sequence across teachers, and scheduling heatmap review classes and PLCs. The lack of 

substantive support from those professionals could undercut an implementation.  

To enact the high-leverage practices supported by a formative diagnostic assessment system, 

schools should plan a multi-year ramp to full implementation, even if initial benefits accrue more 

quickly. Clusters and domains place varying demands on teachers; for most teachers, descriptive 

statistics and probability and inference are less familiar and more challenging than fractions and 

decimals. It may take several years to rotate the content focus among the 11 big ideas and 32 

clusters: schools should make use of their teachers’ varied expertise in different domains.  

Implementing a LTDA is a systemic enterprise. that dramatically deepens content-based 

discussions and sharing among teachers. Studies of teachers using MM (Confrey, Shah, Persson, 

Ciliano, 2019) showed that the most successful teachers exhibited the following patterns: 
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• emphasis on “assessment for learning,” 

• conceptual understanding of, and growing trust in, the LTs, as instructional foundations 

• increasingly consistent focus on student reasoning, 

• participation in and fostering of peer (teacher) interactions around valid and reliable data, 

• growth in the ability to query data in a principled way, and  

• commitment to achieve gradual, steady professional growth as a community member. 

 

Dynamic 5: Trading Zone-style collaboration among learning scientists, psychometricians, 

teachers, and students promotes iterative improvement of the design, implementation, and 

effectiveness of the LTDA. 

In general, LTDAs should and can be designed and implemented as dynamic systems to 

accomplish these dynamic principles (summarized in Table 5). By its nature, an LTDA 

encompasses all the stakeholders, researchers, and software professionals, as well as the 

technology product itself. Today’s technology development can be fast and flexible. The map and 

the LT’s function as a boundary object, that is an object that is meaningful to a variety of 

communities in different ways, but which also has a common meaning that fosters 

communication. In this context, changes to LTs and assessment items are expected, including 

adding, modifying, or removing some, grounded in the validation process. New formats for items 

can be added. Video exemplars of student reasoning can be shared. As reported, our validation 

process already alters the interaction patterns among learning scientists, psychometricians, and 

practitioners to resemble more of a trading zone (in which, the exchange is based on debate and 

evidence about the relative value, to participants, of various objects at a point in time). A 

community of stakeholders (now including researchers) with multiple concerns and sets of 

expertise collaborate, respectful of their different perspectives, with the common goal of 

promoting growth in all students’ learning. 

Changes in MM arose from research, technological advances, and the perspective of 

practitioners. For instance, integers were originally grouped in the same cluster as fractions and 

decimals, under the header of “rational numbers”. Teachers pointed out that most curricula do 

not teach these topics in the same unit, some putting integers in closer proximity to actions on the 

coordinate plane, so we moved integers to its own cluster. Change can also be initiated based on 

new research or changes to standards. For example, the constructs encompassing probability 

were significantly reworked as the topic of early inferential statistical reasoning emerged from 

research.  

A communal process should include critical discussions concerning how to strengthen LTDA 

design, implementation, and/or practices to equitably support mathematical learning by 

subgroup, based on race, ethnicity, gender or SES, special education needs, and ESL. The use of 

the LTDA should be regularly examined for its effects on instructional quality overall and the 

delivery of quality instruction at all performance levels. Schools should report on the data in 

easily understandable formats, to support the reduction in learning gaps and improvement in 

overall performance without shifting its use to a high-stakes entity. 
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Table 5: Five dynamic principles underlying MM LT-based Diagnostic Assessment System 

 

Dynamic 1: Timely, fine-grained LT-situated feedback to teachers supports targeted 

instruction to increase learning and promote more equitable outcomes. 

Dynamic 2: Personalized, fine-grained LT-situated data delivered immediately to 

students, in a context of assessment for learning, fosters growth mindset and 

student agency. 

Dynamic 3: Data demonstrating variability in learners’ initial success across LTs can 

challenge beliefs about learning: both student’s self-limiting beliefs and teachers’ 

stereotyping of students’ learning potentials. 

Dynamic 4: Gradual sustained teacher professional learning about the LTs and data use 

increases the effectiveness of LTDA implementation. 

Dynamic 5: Trading Zone-style collaboration among learning scientists, 

psychometricians, teachers, and students promotes iterative improvement of the 

design, implementation, and effectiveness of the LTDA. 

 

Concluding Remarks  

By describing Math Mapper’s features and identifying dynamics associated with its 

implementation, I have sought to illustrate a concrete vision of the potential value of diagnostic 

approaches in a low-stakes feedback data-rich assessment-for-learning environment. MM is both 

flexible and valid for its purpose as a formative assessment tool. Its validity is enhanced by its 

proximity and relevance to instruction, and its goal is to stimulate student progress towards more 

sophisticated reasoning about specific mathematical concepts. Learning trajectories put the 

learning sciences to work by conveying the richness and diversity of student thinking. In MM, 

we have synthesized the research on LTs on a full range of the big ideas in middle grades math 

and accomplished an unprecedented degree of scale in linking those findings to diagnostic 

assessments. MM’s flexibility resides in the way in which it is compatible with a variety of 

choices of instructional materials whose scopes and sequences vary. 

MM provides timely and useful feedback to its users in three notable ways. First, both 

students and teachers immediately and directly receive the data from assessments. Secondly, the 

data reports are situated within a learning map of the topics, and the underlying learning 

trajectories provide an overview of the knowledge under study. Thirdly, the data displays include 

an array of affordances that encourage interactive data review processes. Students are able to 

revise and resubmit incorrect initial responses. They can practice collaboratively on levels 

needing more work and then can take equivalent retests supporting the ultimate goal of 

proficiency at each level. Teachers work with their classes using heat maps to strategically focus 

instruction at the appropriate levels and to identify students needing additional support to reach 

proficiency. Affordances of the heat maps allow teachers to project problems that merit further 

discussion, and to provide access to relevant answers and/or item analysis of the array and 

percentages of learner responses. Teachers share data with colleagues in search of patterns and 

alternative approaches or curricular materials.  
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Through Math-Mapper, we have contributed to the field our methodology for building and 

refining assessments. Building assessment items specific to the LT levels led us to develop a 

large base of original items, which were conceptually oriented and nuanced in their cognitive 

distinctions. Widely accepted psychometric techniques were used to check assumptions about 

how LTs should behave and identify potentially non-conforming items. Typical practice relies on 

psychometricians to decide how to modify or remove troubled items; however, our practice was 

to include learning scientists, psychometricians, and practitioners, all on equal footing. These 

teams examined the data and decided how to modify items, LT levels, or entire LTs, as we 

generated explanations based on data characteristics (size of sample, population sampled). With 

each round of validation studies, we saw the association between LT level and item difficulty 

improve. Math-Mapper’s design made careful use of measurement, and its results supported 

teachers in making innovative instructional adjustments to meet and record student progress and 

needs. However, measurement was but one component of this formative diagnostic assessment 

system. So, I would suggest we have rescued the baby (measurement) and placed it in a new 

low-stakes context of assessment for learning. 

Working at scale within a DBIR project with multiple data sources allowed the identification 

of five “dynamics.” The term “dynamics” was chosen to identify forces that would act on, and 

interact with, the components of implementation to affect outcomes. Their influence could 

enhance or diminish the quality of implementation; hence the dynamics are not just additional 

components. We saw how progress was fostered by a clear understanding of, and focus on, the 

structure of the LT and on student participation, as evidenced by the methods of review. We 

observed how fostering a growth mindset and recognizing students as partners and collaborators 

to each other in learning strengthened student agency. We watched how stereotypes about who 

can and cannot learn math were diminished as the focus moved to sharing different ideas, 

challenges, and strategies. And we observed teachers engaging in more specific content-based 

exchanges about strategies and resources.  

The last, perhaps most essential, dynamic was the final one, recognizing the need for 

transparency and the value of inclusivity14 in the design and use of formative diagnostic 

assessment systems in a low-stakes context. In settings with strong and energetic leadership, with 

leaders tuned into their teaching staff, feedback on the tool’s use and features accompanied and 

enhanced the entire endeavor. Absent leadership with actual knowledge of curricular pacing and 

level of coordination among staff, communication became muddled, and resistance could build. 

When information flowed in both directions, however, teacher suggestions for changes to MM 

resulted in notable enhancements. The beauty and power of a low-stakes LTDA is that it can also 

be improved on a shorter and more flexible timeline because ownership is shared among users 

and experimentation with techniques can be encouraged. 

Bob Moses implored us that it cannot be good enough to return to “normal”, because normal 

has failed to serve such a large proportion of our youth, and has actively disadvantaged specific 

 
14

 Parents are also stakeholders for implementation of an LTDA. They were not included in the current version of 

MM due to funding and time constraints. 
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groups. We are suggesting that the next round of LTDA innovation must also be learner-centered 

with ways to document progress within feedback systems and examine fairness in achieving the 

system’s formative goals. Collaborative contributions by a diverse group of experts and 

stakeholders must be a central feature. Designed well to produce relevant, timely, and easily used 

data and implemented in partnership, we can simultaneously make progress on achievement to 

high levels of mathematical proficiency and equity.  
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